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A numerical investigation is carried out to understand the equilibrium β-limit in
a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys.
Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic
islands and stochastic field-lines can emerge at high β. Two modes of operation are
considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact
that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741–763),
the former is shown to maintain good flux surfaces up to the equilibrium β-limit
predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms.
The latter, which has no ideal equilibrium β-limit, is shown to develop regions of
magnetic islands and chaos at sufficiently high β, thereby providing a ‘non-ideal
β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift
of the axis reaches a fraction of the minor radius follows in all cases the scaling
laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator
theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a
new prediction for the non-ideal equilibrium β-limit above which chaos emerges.
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1. Introduction
In stellarators, the maximum achievable β is most probably set by the equilibrium

and not by its stability (Helander et al. 2012). In fact, magnetic surfaces are not
guaranteed to exist in three-dimensional magnetohydrodynamics (MHD) equilibria
without a continuous symmetry (Meiss 1992). While stellarators can be designed to
possess magnetic surfaces in vacuum (Hanson & Cary 1984; Cary & Hanson 1986;
Hudson & Dewar 1997; Pedersen et al. 2016), the necessary existence of plasma
currents that maintain force-balance at finite plasma pressure engenders the potential
destruction of magnetic surfaces at sufficiently high β and can thus lead to the loss
of confinement (Drevlak, Monticello & Reiman 2005; Suzuki et al. 2008).

The equilibrium β-limit is not fully understood since it requires the accurate
computation of three-dimensional MHD equilibria, which generally consist of an
intricate combination of magnetic surfaces, magnetic islands and magnetic field-line
chaos. The stepped-pressure equilibrium code (SPEC) was developed as one possible
approach to fulfil this highly non-trivial task (Hudson et al. 2012), although there are
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2 J. Loizu and others

a few more ongoing parallel efforts (Suzuki et al. 2006; Hirshman, Sanchez & Cook
2011). SPEC has been rigorously verified in axisymmetry (Hudson et al. 2012), in
slightly perturbed configurations (Loizu et al. 2015a,b, 2016a) and more recently in
stellarator geometries (Loizu, Hudson & Nührenberg 2016b).

With a view to progressing towards an understanding of the β-limit in advanced,
fusion-relevant stellarator experiments, we focus on a classical stellarator geometry
with a simple pressure pedestal and perform a basic numerical study of its equilibrium
β-limit. The simplified geometry allows us to use the High-Beta-Stellarator model
(Freidberg 2014) to guide our investigation. This paper leads to the distinction
between ‘ideal’ and ‘relaxed’ equilibrium β-limits, for which we derive analytical
expressions that push our theoretical understanding forward and validate the numerical
calculations. Although this study is not aimed at providing experimental predictions
yet, the potential consequences of the results presented herein for real experimental
situations is briefly discussed at the end, together with some of the open questions.

2. Model and control parameters
We consider the fixed-boundary problem of a finite β equilibrium in a classical

l = 2 stellarator (Freidberg 2014). Namely, we must provide (i) the geometry of the
boundary, e.g. via the Fourier coefficients of the cylindrical coordinates defining the
boundary surface, {Rmn, Zmn}; (ii) the pressure profile as a function of the enclosed
toroidal magnetic flux, p(Ψ ); and (iii) an additional profile, e.g. the rotational
transform, ι-(Ψ ), or the net toroidal current, Iϕ(Ψ ). The total toroidal magnetic
flux enclosed by the boundary, Ψedge, is also provided but its value is irrelevant and
only acts as a global scale-factor for the magnetic field strength.

2.1. Boundary
The simplest boundary representation that can model an l= 2 stellarator is that of a
rotating ellipse with no toroidally averaged elongation. Namely,

R(θ, ϕ)= R00 + R10 cos θ + R11 cos (θ −Npϕ)

Z(θ, ϕ)= Z00 + Z10 sin θ + Z11 sin (θ −Npϕ),

}
(2.1)

with Z00 = 0, Z10 = −R10 and Z11 = R11. For our β-limit study, the main parameters
of interest in (2.1) are the major radius, R00, and the number of field periods, Np.
In fact these can be used to vary independently the inverse aspect ratio, ε, and the
vacuum rotational transform, ι-v, which are predicted to determine the ideal equilibrium
β-limit. We therefore choose to fix the other parameters to R10 = 1 and R11 = 0.25.
Two examples of such boundaries with different values of Np are shown in figure 1.

The inverse aspect ratio is
ε = reff

R00
, (2.2)

where the effective minor radius is reff =√rmaxrmin, with rmax = R10 + R11 = 1.25 and
rmin = R10 − R11 = 0.75, respectively the major and minor axis of the rotating ellipse.
The vacuum rotational transform can be estimated analytically (Helander 2014) as

ι-v = Np

2
(rmax − rmin)

2

r2
max + r2

min
. (2.3)

For example, for Np = 5 we get ι-v ≈ 0.3.
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Stellarator β-limits 3

(a) (b)

FIGURE 1. Boundary of a classical l= 2 stellarator with Np= 5 (a) and Np= 10 (b) field
periods. The inverse aspect ratio is ε= 0.1 and the colour represents the amplitude of the
vacuum magnetic field on the boundary as computed from SPEC.

2.2. Pressure profile

We model a pressure pedestal by assuming that all the pressure gradient is
concentrated on a single flux-surface, namely p(Ψ ) = p0 for Ψ 6 Ψa and p(Ψ ) = 0
for Ψ > Ψa. This step in the pressure is naturally described by the SPEC code: two
Taylor-relaxed volumes (Taylor 1974) separated by an ideal-interface supporting a
pressure step JpK = p(Ψ +a ) − p(Ψ −a ) = p0, in correspondence to which a jump in B
must arise according to Jp + (B2/(2µ0))K = 0. This implies, by virtue of Ampère’s
law, the presence of a surface current density, j = n × JBK δ(x − xa), where δ(x) is
the Dirac delta-function, x = xa defines the points on the surface across which the
jump occurs and n is the unit vector normal to that surface. This current density is
simply a weak representation of the pressure-driven current density (diamagnetic and
Pfirsch–Schlüter), by which we mean that it shall be interpreted only in the integral
sense (see § 2.3).

For our basic β-limit study, we choose to fix the value Ψa = 0.3Ψedge and use the
freedom in p0 to control the value of β, which we define here as β= 2µ0p0/B2

0, where
B0 = B(Ψ = 0).

We would like to remark that the SPEC code can handle pressure profiles with
arbitrarily many interfaces, hence arbitrarily many pressure jumps, thereby allowing
the equilibrium to approach the ideal-MHD limit (Dennis et al. 2013a; Loizu et al.
2015b). In this study, however, we are looking for the ‘worst case scenario’ and hence
we consider a single, localized pressure pedestal. By ‘worst case scenario’ we mean
that ‘maximally relaxed’ or ‘minimally constrained’ equilibrium states are sought. In
fact, when the magnetic helicity is assumed to be conserved only globally in a certain
volume (Taylor 1986), magnetic reconnection is ‘maximal’ within that volume: there
are no more possible reconnecting events that could lower the plasma potential energy.
If the pressure gradient was distributed among many surfaces, the available volume for
relaxation would be smaller; and in the ideal-MHD limit with all surfaces supporting
a pressure gradient, no reconnection would be possible. To conclude this discussion:
whenever good flux surfaces are to be found despite the allowed relaxation, it shall be
understood that no possible relaxation mechanism can destroy these surfaces. When,
on the other hand, islands and chaotic field-lines are produced, it shall be inferred that
this is the ‘worst case scenario’ and the potential destruction of flux-surfaces is subject
to the available relaxation and healing mechanisms. A similar approach was taken
(Dennis et al. 2013b) in order to reproduce self-organized helical states in reversed
field pinches.
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4 J. Loizu and others

2.3. Zero-net-current versus fixed-iota
The SPEC code calculates MHD equilibria as extrema of the Multiregion, Relaxed
MHD (MRxMHD) energy functional (Hole, Hudson & Dewar 2007; Hudson, Hole &
Dewar 2007). In essence, the energy functional is the same as in conventional ideal
MHD equilibrium theory (Kruskal & Kulsrud 1958), but the constraints under which
the function is extremized are different. While in ideal-MHD the magnetic topology
is continuously constrained, in MRxMHD the topology is only discretely constrained,
thus allowing for partial relaxation. More precisely, the plasma is partitioned into
a finite number, NV , of nested volumes, Vv, that undergo Taylor relaxation. These
volumes are separated by NV − 1 interfaces that are constrained to remain magnetic
surfaces during the energy minimization process. For the β-limit study at hand, we
have NV = 2 volumes separated by one ideal-interface. The location and shape of
this interface is unkown a priori and determined self-consistently by a force-balance
condition. MRxMHD equilibrium states satisfy

∇×B=µvB in the volumes (2.4)[[
p+ B2

2µ0

]]
= 0 on the interface (2.5)

for v= 1, 2. In addition to providing the enclosed toroidal fluxes in each volume (Ψa
and Ψedge), the solution to equation (2.4) requires one more parameter if the volume
is a topological torus (the innermost volume) and two more parameters if the volume
is an annulus (the outer volume). Hence we must provide a total of 3 parameters to
determine the equilibrium solution at a given value of β.

If we want to enforce a zero net-toroidal-current, Iϕ= 0, we can impose µ1=µ2= 0
and then iterate on the total enclosed poloidal flux, ψp, until the surface current has
no net toroidal component. At each iteration step, the net toroidal surface current can
be easily calculated as

ICS
ϕ =

∫ 2π

0
JBK · eθ dθ (2.6)

by virtue of Ampère’s law. Here eθ = ∂θx and x(θ, ϕ) parametrizes the surface. The
iterative procedure can be implemented via a Newton method and brings ICS

ϕ down
to machine precision in a few steps. We refer to this mode of operation as zero-net-
current.

If we want to constrain the rotational transform, ι-(Ψ ), we can force it to remain
constant on both sides of the ideal-interface, ι-+a = ι-−a = ι-a and at the edge, ι-edge. Once
again, this can be achieved by iterating on the values of µ1,2 and ψp. We refer to this
mode of operation as fixed-iota.

We would like to remark that while the zero-net-current mode guarantees Iϕ = 0, it
does not guarantee that the rotational transform remains constant and in particular we
expect ι-+a 6= ι-−a . Conversely, the fixed-iota mode guarantees that ι- remains constant on
certain surfaces but in general we expect Iϕ 6= 0, in particular at the location of the
pressure-gradient.

3. High-β equilibria and Shafranov shift
Figure 2 shows Poincaré plots of the equilibrium magnetic field at different values

of β for both the zero-net-current stellarator and the fixed-iota stellarator. In both cases
there is a Shafranov shift that increases with β. However, the Shafranov shift of the
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Stellarator β-limits 5

(a) (b)

FIGURE 2. Poincaré section (ϕ= 0◦) of the equilibrium magnetic field at different values
of β. (a) Zero-net-current stellarator. (b) Fixed-iota stellarator. Here Np = 5 and ε = 0.1.
Indicated in red are the boundary surface and inner interface supporting the pressure
pedestal.

axis, ∆ax, increases with β much faster in the zero-net-current stellarator. This can
be explained as follows. For small β, one expects ∆ax ∼ β/ ι-2

a (Miyamoto 2005). As
shown in § 4, ι-a decreases with β in the zero-net-current stellarator, thus amplifying
the effect.

It is useful to define the quantity

β0.5 ≡ β
(
∆ax = reff

2

)
, (3.1)

namely, the value of β at which the Shafranov shift of the axis reaches half of the
minor radius. According to ideal-MHD equilibrium theory (Miyamoto 2005), β0.5 is
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6 J. Loizu and others

(a) (b)

FIGURE 3. Scaling of β0.5 with the inverse aspect ratio, ε ∼ 1/R00 (a), and with the
vacuum iota, ι-v ∼Np (b). Black circles are for the fixed-iota stellarator. Magenta stars are
for the zero-net-current stellarator. The dashed lines have slope 1 (a) and 2 (b).

predicted to scale as

β0.5 ∼ ε ι-2
v ∼

N2
p

R00
(3.2)

for large aspect ratios, ε� 1, and slowly varying ι-v, which is true for Np∼ 1. A scan
in both R00 and Np has been carried out in order to assess how β0.5 scales in the
numerical MHD calculations. Figure 3 shows the result of this scan. Despite the fact
that SPEC allows for plasma relaxation, the scaling law (3.2) is very well reproduced
in both modes of operation; except at high values of ε∼ 1/R00 and Np, for which the
scaling law ceases to be valid. Moreover, the values of β0.5 are much higher in the
fixed-iota stellarator, by a factor of about 6. This reflects, once again, the fact that the
Shafranov shift increases faster in the zero-net-current stellarator.

In § 4, the fundamental, macroscopic differences between the two modes of
operation are explained in terms of the High-Beta-Stellarator (HBS) model developed
in Freidberg (2014). In § 5, we attempt to describe and predict the β-induced
generation of islands and chaotic field-lines in the fixed-iota stellarator (figure 2).

4. Ideal β-limit and the HBS theory
The HBS model for a classical stellarator developed in Freidberg (2014) and briefly

summarized in appendix A predicts that the rotational transform at the plasma edge, ι-a,
evolves with β and plasma current as

ι-a = (ι-v + ι-I)
(
1− ν2

)1/2
, (4.1)

where ι-I is the transform produced by the net toroidal current,

ι-I = µ0IϕR0

2πa2B0
, (4.2)

and
ν = β

εa(ι-v + ι-I)2
, (4.3)
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Stellarator β-limits 7

FIGURE 4. Rotational transform as a function of toroidal magnetic flux from both SPEC
(black stars) and VMEC (solid blue line) at β = 0.15 %. For comparison, the vacuum
transform is also shown (dashed magenta line). Here Np = 5, ε = 0.1 and the vertical
dashed line indicates the location of the pressure pedestal.

where a is the effective minor radius of the plasma edge and εa=a/R. For our system,
we have a=√Ψa/Ψedgereff and thus εa =

√
Ψa/Ψedgeε.

In the context of the HBS theory, the zero-net-current stellarator can be analyzed
by taking ι-I = 0. Equation (4.1) then implies that ι-a decreases with increasing β.
This is visible in figure 4, where the profile ι-(Ψ ) obtained from SPEC at finite β is
shown and compared to the vacuum transform. A jump in the rotational transform self-
consistently develops on the ideal interface supporting the pressure gradient, namely
at Ψa = 0.3Ψedge. The ideal MHD, variational moments equilibrium code, or VMEC
(Hirshman & Whitson 1983), was also run for this case with a pressure pedestal of
small but finite width (the calculation requires a rather high radial resolution, with
about 3000 flux surfaces) and shown to produce essentially the same transform profile.

In figure 5, the value of ι-a is shown as a function of β and compared to the HBS
prediction, equation (4.1), showing fairly good agreement (notice that there are no free
parameters). The agreement is even more remarkable if we notice that the HBS model
assumes a circular cross-section and uses Solov’ev pressure profiles. In appendix A,
we show that adapting the theory to the case of a stepped-pressure profile produces
very similar predictions (see figure 5). This reflects the fact that the macroscopic
equilibrium depends on integral quantities (e.g., the total plasma pressure) and not so
much on the details of the profiles.

The point where ι-a = 0, which from (4.1) happens when ν = 1, corresponds to the
emergence of a separatrix (see, e.g., figure 2) and this defines the ideal β-limit, namely

βlim = εa ι-2
v. (4.4)

For example, for the Np = 5 case depicted in figure 5 we have εa ≈ 0.05 and ι-v ≈
0.27, thus (4.4) gives βlim ≈ 0.4 %, in good agreement with the SPEC calculations.
We note that the separatrix forming at β > βlim seems to possess two X-points that
connect to the current sheet established on the ideal-surface (see middle-left panel
in figure 2); a situation that is reminiscent of the Waelbroeck ribbon forming in the
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8 J. Loizu and others

FIGURE 5. Rotational transform at the plasma edge, ι-+a = ι-(Ψ +a ), as a function of β,
from SPEC calculations (stars), from the HBS prediction with Solov’ev pressure profile,
equation (4.1) (dashed line) and from the HBS prediction adapted to a stepped-pressure
profile, equation (A 10) (dash-dotted line). Two cases are shown: Np = 3 and Np = 5 at
fixed ε = 0.1.

reconnecting kink-tearing mode in tokamaks (Waelbroeck 1989; Zakharov, Rogers &
Migliuolo 1993).

For the fixed-iota stellarator, we can impose ι-a= ι-v in the HBS model. This leads to
an expression for the value of the plasma current that is necessary to keep ι-a constant.
One obtains (Freidberg 2014)

ι-I = ι-v
(√

1
2

(
1+

√
1+ 4H2

)
− 1

)
, (4.5)

where

H = β

βlim
. (4.6)

Figure 6 shows the net toroidal surface-current, Iϕ , self-consistently generated in SPEC
equilibria as a function of β and compares it to the HBS prediction, equation (4.5),
showing good agreement (again, there are no free parameters). Since the predicted
current is entirely pressure-driven, we do not expect currents to develop in the relaxed
volumes and we have checked that for these SPEC calculations the values of µv
remain small (<10−2), such that the corresponding volume currents are more than
10 times smaller than the pressure-driven surface-current. For large H � 1, one has
Iϕ ∼√β and the HBS model predicts that no β-limit is reached because the plasma
current keeps rising and preventing the separatrix to form. From SPEC equilibrium
calculations, however, where plasma relaxation is allowed, we observe that magnetic
islands and chaotic field-lines emerge at sufficiently high β, thereby providing a ‘non-
ideal β-limit’.

5. Non-ideal β-limit and emergence of chaos

We can quantify the emergence of chaos by calculating the fractal dimension of the
field-lines on the Poincaré section as a function of β (Meiss 1992). More precisely,
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Stellarator β-limits 9

FIGURE 6. Net toroidal plasma current as a function of β, from SPEC calculations (stars)
and from (4.5) for both Solov’ev profiles (dashed line) and stepped-pressure profile (dash-
dotted line). Two cases are shown: ε = 1/10 and ε = 1/20 at fixed Np = 5.

we can evaluate the so-called box-counting dimension, or Hausdorff dimension,

D= lim
L→0

∣∣∣∣ log(N)
log(L)

∣∣∣∣ , (5.1)

where L is the size of the boxes and N is the number of boxes containing at least
one point of the magnetic field-line on the Poincaré section. If the field-line traces
a magnetic surface, or even a magnetic island, one expects D = 1. If the magnetic
field-line trajectory is chaotic, however, it fills up a certain ‘area’ in the Poincaré
section and D> 1 is expected. We remark that the accurate evaluation of D requires a
large number of toroidal transits, Ntrans, when generating the Poincaré section via field-
line-tracing. Satisfactory convergence was found at values of about Ntrans > 2 × 104.
The value of D for each field-line i= 1, . . . , nlines can be plotted against an effective
toroidal flux, Ψi∼ ρ2

i , which is proportional to the square of the radial coordinate, ρi,
obtained from the interpolation of the inner and outer ideal surfaces.

Figure 7 shows the calculated fractal dimension as a function of the toroidal flux
in equilibria of increasing β. First, we observe that for sufficiently low β we obtain
D(Ψ )= 1, as expected, because magnetic surfaces are preserved in the entire volume.
Second, we notice that for sufficiently high β there are regions in which D(Ψ ) > 1
for Ψ >Ψa. Third, the value of D seems to be almost-binary, taking values at either
D≈ 1 or D≈ 1.6. Fourth, the regions with D≈ 1.6 correspond to what appears to be
stochastic regions in the corresponding Poincaré section. Finally, the volume occupied
by these regions increases with β. These observations suggest that D is a good proxy
for the emergence of chaos, which greatly simplifies the task of probing the ‘non-ideal
β-limit’. In fact, we can now define the volume of chaos, Vchaos, in the system as

Vchaos = Vtot

nlines∑
i=1

(Ψi −Ψi−1)

Ψedge
H(D(Ψi)−Dcrit), (5.2)

where Vtot is the total volume defined by the fixed-boundary, nlines is the number
of traced field-lines, Ψi − Ψi−1 measures the enclosed toroidal flux between
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10 J. Loizu and others

FIGURE 7. Fractal dimension of the magnetic field lines in a Poincaré section as a
function of toroidal flux. The pressure pedestal is at Ψ/Ψedge = 0.3. Different curves are
for different values of β. All equilibria have Np = 5 and ε = 0.1.

FIGURE 8. Volume of chaos as a function of β for Np= 3, Np= 5 and Np= 10, at fixed
ε = 0.1. Vertical dashed lines indicate the predicted transition to chaos at β = βchaos given
by (5.4).

two neighbouring field lines, and H is the Heaviside function, with H = 0 for
D<Dcrit= 1.5 and H= 1 otherwise. Figure 8 shows the profile of Vchaos(β) calculated
for three different values of Np. Clearly, the emergence of chaos occurs at some
critical value of β = βchaos, which we define as the non-ideal equilibrium β-limit. The
question remains: can we theoretically predict the value of βchaos?

We expect that chaos emerges due to the overlapping of magnetic islands according
to the Chirikov criterion (Chirikov 1979). That requires, however, predicting which
resonances appear first and how does the width of the corresponding islands grow
with β. While we intend to investigate this question in more detail in the future, we
derive here a criterion based on the following general idea. The expected width of an
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Stellarator β-limits 11

island generated by a resonance at ι-= n/m is expected to scale as w∼√Bmn/(m ι-′)
(Boozer 2004). Thus, new resonances can appear at finite β due to (i) a change in the
rotational transform, or (ii) a change in the harmonic content of B inevitably caused
by the Shafranov shift. As β increases, the net toroidal current increases and modifies
the rotational transform by increasing its value in the region Ψa <Ψ <Ψedge (data not
shown). The rising of ι- allows new resonances to appear (and with lower values of
m). At this point we make the following hypothesis: the emergence of chaos may
occur when the perturbations in the poloidal field due to finite toroidal current are
comparable to the vacuum poloidal field. Namely, chaos may emerge when ι-I(β)∼ ι-v.
From the HBS theory we know that ι-I increases with β according to (4.5), hence
applying our constraint we have

1=
√√√√1

2

(
1+

√
1+ 4

β2
chaos

ε2
a ι-4
v

)
− 1 (5.3)

and hence
βchaos =

√
12εa ι-2

v, (5.4)

which gives βchaos ≈ 0.5 % for Np = 3, βchaos ≈ 1.4 % for Np = 5, and βchaos ≈ 6.5 %
for Np = 10, thus in excellent agreement with the observed transition to chaos (see
figure 8). More importantly, equation (5.4) predicts that the non-ideal equilibrium β-
limit scales exactly as the ideal equilibrium β-limit but with a larger factor in front,
of the order of

√
12≈ 3.5.

6. Discussion
The equilibrium β-limit in a classical stellarator has been thoroughly investigated

via numerical calculations that have guided our analytical understanding. A classical
stellarator with zero net-toroidal-current possesses an equilibrium β-limit as predicted
by ideal MHD, βlim= εa ι-2

v, above which a separatrix forms due to the vanishing of the
rotational transform at the plasma edge, ι-a→ 0. A classical stellarator with constant ι-a,
however, has a higher equilibrium β-limit, which is of non-ideal nature. In fact, ι-a can
be maintained at any value of β as long as a net-toroidal-current flows in the vicinity
of the pressure pedestal; when such current produces a change in transform that is
comparable to the vacuum transform, ι-I ∼ ι-v, magnetic field-line chaos emerges in
maximally relaxed equilibria and this occurs at βchaos =

√
12εa ι-2

v. For β > βchaos, the
volume of destroyed magnetic surfaces increases monotonically with β and radially
outward from the location of the pressure pedestal. We remark that this non-ideal β-
limit does not consider the possibility of island-healing mechanisms; on the contrary,
it considers the ‘worst case scenario’ of complete relaxation. Therefore βchaos should
be interpreted as a lower bound for the β-limit of a classical stellarator where a net-
toroidal-current clamps the value of ι-a. Furthermore, we would like to emphasize that
a relatively small toroidal current is enough to maintain ι-a constant and therefore to
raise the β-limit. For example, for a classical stellarator with Np = 5, ε = 0.1, B0 ∼ 1
T and R0 = 10 m, we have Iϕ ≈ 40 kA at about β ≈ 2 % (figure 6). This current is
easily overwhelmed by the bootstrap current.

Two questions remain to be investigated: (1) can this predictive theory be extended
to more complex stellarator geometries and non-trivial pressure profiles? (2) How
to incorporate the possibility of pressure-induced island healing (Bhattacharjee et al.
1995; Narushima et al. 2008; Hegna 2012) in the derivation of the equilibrium
β-limit? Some new ideas are needed here.
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Appendix A
The main model assumptions and equations in the HBS theory (Freidberg 2014)

when applied to the high-β equilibrium of an l = 2 stellarator are as follows. The
starting equilibrium equations are the usual ideal-MHD equations ( j × B = ∇p,
∇ × B = µ0 j, ∇ · B = 0) and a reduction is carried out by expansion in the small
parameter ε = a/R0, namely the inverse aspect ratio. An ordering is assumed for the
key normalized plasma parameters: the helical field amplitude, δ = |Bp|/Bϕ ∼ ε, the
plasma pressure, β = 2µ0p/B2

ϕ ∼ ε, the toroidal periodicity mode number N ∼ 1 and
the poloidal periodicity mode number, l ∼ 1. The resulting reduced equations are
then compared to the Greene–Johnson stellarator model (Greene & Johnson 1961),
which assumes a different ordering, namely δ ∼ ε1/2, β ∼ ε, N ∼ 1/ε and l ∼ 1. A
useful region of overlap is identified, with an intermediate ordering δ ∼ ε3/4, β ∼ ε,
N ∼ 1/ε1/2 and l∼ 1. A substantial amount of analysis is required to reduce the HBS
model to the Greene–Johnson model in the overlap region (Freidberg 2014). The final
result is a Grad–Shafranov-like partial differential equation, also called the overlap
equation,

∇
2
⊥ψ =−J − dβ

dψ
(x− 〈x〉)+∇2

⊥

( ∞∑
1

i
n

eϕ · ∇⊥A∗n ×∇⊥An

)
, (A 1)

where ψ(ρ, θ) is the normalized poloidal flux, J(ψ) is the normalized toroidal current
density, β(ψ) is the normalized plasma pressure and An(ρ, θ) are the vector potentials
associated with the vacuum helical fields. The operator ∇⊥ is the gradient in the polar
(ρ, θ) coordinates, x= ρ cos θ , and 〈 〉 denotes an average over the poloidal angle as
〈Q〉 = (∮ Q(r, θ) dlp/|∇⊥ψ |)/(

∮
dlp/|∇⊥ψ |), with lp(θ) the poloidal arc length.

Equation (A 1) can be solved by choosing a single l= 2 vacuum field helicity,

An(ρ, θ)= ∆2

4
ρ2ei2θ , (A 2)

and Solov’ev profiles for the free-functions,

dβ
dψ
=C (A 3)

J = A+C〈x〉, (A 4)

where ∆2, C and A are constants. This reduces the overlap equation to

∇2
⊥ψ =−A− 2∆2

2 −Cρ cos θ. (A 5)

Equation (A 5) with boundary condition ψ(ρa, θ)= 0 (thus assuming a fixed, circular
boundary) is easily solved analytically. The solution can be written as

ψ(ρ, θ)= ι-I + ι-v
2N

(ρ2
a − ρ2)(1+ νρ cos θ), (A 6)
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where ι-I , ι-v and ν are defined in § 4. Finally, one can evaluate the rotational transform
at the plasma edge, ι-a = q−1

a , with

ι-a ≈−2πN
(∫ 2π

0

dθ
[∂ψ/∂ρ]ρ=ρa

)−1

= (ι-I + ι-v)
√

1− ν2, (A 7)

which is exactly (4.1).
If a stepped-pressure profile is considered instead of a Solov’ev profile, for example

by replacing (A 3) with
dβ
dψ
=Cδ(ψ −ψa), (A 8)

and assuming that the plasma-vacuum surface, ψ =ψa, remains approximately circular,
then (A 1) reduces to

∇2
⊥ψ =−A− 2∆2

2 −
C

ψ ′0(ρa)
δ(ρ − ρa)ρ cos θ, (A 9)

where we have written δ(ψ − ψa) = δ(ρ − ρa)/ψ
′
0(ρa) with ψ0(ρ) the solution to

equation (A 1) in the β = 0 limit. Equation (A 9) can be easily solved for ρ < ρa and
for ρ > ρa, and an appropriate matching determines the global solution. The resulting
final expression for the rotational transform at the plasma edge, ι-a, is almost the same
as (A 7),

ι-a = (ι-I + ι-v)
√

1− λ2, (A 10)

where

λ=
(

1+ ρ2
a

2ρa

)
ν. (A 11)

In particular, the prediction for the β-limit in the zero-net-current case is therefore

βlim =
(

2ρa

1+ ρ2
a

)
εa ι-2

v. (A 12)

For the SPEC calculations presented in this paper, we have ρ2
a =Ψa/Ψedge= 0.3, and

hence βlim is slightly lower (by a factor of 0.84) but very similar to the one obtained
for Solov’ev profiles (see figures 5 and 6 for a comparison).
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