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Magnonic crystals are interesting for spin-wave based data processing. We
investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable
CoFeB nanostripes separated by 75 nm wide air gaps. By adjusting the
magnetic history, we program a single stripe of opposed magnetization in
an otherwise saturated 1D MC. Its influence on propagating spin waves is
studied via broadband microwave spectroscopy. Depending on an in-plane
bias magnetic field, we observe spin wave phase shifts of up to almost π and
field-controlled attenuation attributed to the reversed nanostripe. Our findings
are of importance for magnetologics, where the control of spin wave phases is
essential.

Information encoded in spin waves (SWs) can be transmitted and processed without
moving electrical charge. This feature makes SWs promising for low power consumption in
future logic devices1,2. Here magnonic crystals play an important role3. A specific approach
is to encode data in the phase of SWs and use Mach-Zehnder-type interferometers as logic
gates4–6. For this, the controlled manipulation of SW phases is essential. 360◦ domain walls
were predicted to provide the relevant SW phase shift ∆Θ of π [Ref.4]. This concept has
however not yet been realized due to experimental challenges. Instead the magnetic field
of a current carrying wire5,6 was used to create an inhomogeneous effective field Heff in a
ferromagnet and shift the phase of backward volume spin waves7. The required current
might however cause local heating. Recently, magnonic crystals with magnetic defects were
thoroughly investigated8–11, but defect-induced phase shifts for propagating SWs were not
reported.

In this Letter, we explore a magnetic defect in one-dimensional (1D) magnonic crystals
(MCs) as a phase shifter. The MCs consisted of bistable Co20Fe60B20 (CoFeB) stripes
separated by air gaps. By reversing the magnetization of a specific stripe in an otherwise
ordered MC we find phase shifts of Damon-Eshbach-type (DE) SWs of close to π, depending
on an applied magnetic field H. Also the SW amplitude is varied. Because of their high

FIG. 1. (a) Scanning electron microscopy image of the central region of MC1. Dispersion relations
measured via wavevector resolved BLS (symbols) on saturated 1D MCs with p of (b) 400 and (c)
600 nm (plotted in the reduced zone scheme) at H = 0. Grey colors indicate stopbands. The
dashed lines in (c) and (d) indicate fitted linear functions that evaluate the averaged slopes, i.e.,
the averaged group velocities. (d) MFM performed on a reference MC1 at µ0H = +18 mT after
saturation at −90 mT. Black (white) signals indicate stray fields, i.e., orientations of magnetization
vectors along (opposite) to the applied field. Grey-scaled plot of (e) a11(H) and (f) a21(H) of MC1
for increasing H (indicated by arrows), after saturation at µ0H = −90 mT. In (f) between HSW2

and HSW3 we assume the presence of a single magnetic defect. At HSW3 the SW signal undergoes
an abrupt phase jump.
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group velocities12 and non-reciprocity13 DE-type SWs are favorable for future magnonic
applications.

The MCs [Fig. 1 (a)] were fabricated from magnetron-sputtered CoFeB with a thickness
of (19 ± 2) nm deposited on an oxidized silicon substrate. The nanostripes were defined
via electron beam lithography (EBL) using the negative resist hydrogen silsesquioxane
(HSQ) and transferred into the magnetic film via ion beam etching. After the etching,
a layer of ∼ 20 nm thick HSQ remained as an isolation layer. We present data on two
1D MCs with periods p = 400 nm (sample MC1) and p = 600 nm (MC2). In both cases
the air gap between stripes amounted to g = (75 ± 10) nm [Fig. 1 (a)], and the overall
outer dimensions were 160 µm in x-direction and 80 µm in y-direction. The saturation
magnetization µ0Ms = 1.8 T was extracted from ferromagnetic resonance measurements on
a reference film (not shown). Dispersion relations f(k) were studied on reference samples
that were similar to MC1 [Fig. 1 (b)] and MC2 [Fig. 1 (c)] (f is the frequency, k is the
wavevector). For this, we applied k-resolved Brillouin light scattering (BLS) on MCs in
backscattering configuration following Refs. 14,15. The laser had a wavelength 473 nm. A
lens with focal length of 50 mm and f-number 2.8 was used to focus the laser to a spot
diameter of few tens of micrometers. Figure 1 (b) and 1 (c) shows the resonance frequencies
f (BLS peaks) recorded as a function of transferred in-plane wavevector k. The measured
dispersion relations f(k) consist of allowed minibands and SW stopbands (shaded in gray
color), similar to magnonic bandstructures reported in Ref. 15. For p = 400 nm (p = 600 nm)
we attribute the first allowed miniband to a frequency regime ranging from 8.4 GHz to 11.3
GHz (6.7 GHz to 9.0 GHz). The second one ranges from 13.9 GHz to 14.4 GHz (11.5 GHz
to 12.1 GHz).

We patterned coplanar waveguides (CPWs) on top of the MC1 and MC2 via EBL and
lift-off processing of 4 nm thick evaporated Cr and 120 nm thick Au. Intentionally, a single
CoFeB stripe in the center between CPW1 and CPW2 was longer by 8 µm [Fig. 1 (a)].
The CPWs allowed for excitation and detection of propagating SWs16. The center-to-center
separation between CPW1 and CPW2 amounted to s = 7.5 µm. The width of the signal and
ground lines of the CPWs were w = 0.8 µm. Using a vector network analyser we applied a
radiofrequency signal with a power of ≤ −5 dBm at CPW1. The spatial profile of the exciting
magnetic field of the CPW was simulated in COMSOL Multiphysics. Fast Fourier analysis of
the in-plane field component showed a peak in SW excitation at kI = 2.0 · 104 rad/cm, which
is below the wavevector kBZ = π

p of the first Brillouin zone (BZ) boundary, amounting to

7.9 · 104 rad/cm (5.2 · 104 rad/cm) for MC1 (MC2). Scattering parameters S11(H) (S21(H))
were recorded at CPW1 (CPW2), while a magnetic field H was applied in y-direction. In
this work we discuss the magnitude of the scattering parameters. To extract the magnon-
induced signal contribution aij = Sij(H)−Sij(H⊥) (i, j = 1, 2), we subtracted the reference
spectrum Sij(H⊥) taken at µ0H⊥ = 90 mT applied in x-direction, where SW excitation was
negligible. We performed magnetic force microscopy (MFM) [Fig. 1 (d)] on a reference MC1
to estimate the reversal fields of the bistable nanostripes. The sample was first saturated at
−90 mT with H collinear to the y-axis. Then the field was increased in steps of 1 mT. The
short stripes forming the MC were found to reverse their magnetization direction between 5
and 15 mT. The long stripe switched at a larger field of 19 mT which we attributed to the
modified shape anisotropy compared to the short stripes.

Figure 1 (e) shows a11(H) of MC1 for increasing H after it was saturated at µ0H =
−90 mT. The prominent dark branch indicates the SW resonance at kI. Its frequency
fres (dark) linearly decreases with increasing H until µ0HSW1 = 6 ± 1 mT. Here, the
intensity of the branch reduces and its linewidth increases. The signal strength recovers
at µ0HSW2 = 16 ± 1 mT. Beyond µ0HSW2, fres increases with H. We attribute the
field regime between HSW1 and HSW2 to the switching fields of stripes in close vicinity of
CPW1. In Fig. 1 (f) field-dependent transmission signals a21(H) are summarized. a21 shows
pronounced oscillations (black-white-black contrast) which we attribute to the interference
of the spin-precession induced voltage and direct electromagnetic crosstalk between CPW1
and CPW2 following Ref. 17. The crosstalk showed a stable phase, and the interference
pattern allowed us to analyse phase differences ∆Θ of transmitted SWs as will be presented
later.
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FIG. 2. (a) Grey scale plot (SAT) of a21(H) of MC1 for decreasing H (indicated by arrows) after
µ0H = 90 mT was applied. Green dashed lines indicate extrema P1 and P2 defined in (b). (b)
Line plot of a21 at H = 0. P1 and P2 are used to extract δf and ∆p−p. (c) Excitation spectrum
of the CPW where k is in units of π/p. (d) a21(H) obtained in a minor loop (ML) assuming the
presence of a magnetic defect. H was decreased starting from µ0H

∗ = 19 mT after saturation at
µ0H = −90 mT. (e) Relative signal η(H) of spectra ML compared to spectra SAT. (f) Frequency
shift ∆f between peaks P1 of SAT and ML datasets. (g) to (l) Corresponding data obtained on
MC2. µ0H

′∗ amounted to −12 mT indicating a smaller coercive field of MC2. Green dashed lines
in datasets (a), (d), (g) and (j) indicate the frequencies of extrema P1 and P2 as they are defined
in (b).

Increasing H from 0 mT in Fig. 1 (f), the oscillations in a21 become weak at HSW1. At
HSW2 the oscillating signature regains a pronounced signal strength. Beyond µ0HSW3 =
23± 1 mT in Fig. 1 (f) the signal is found to be even stronger than at H = 0. We attribute
the regime between HSW2 and HSW3 to the configuration where all short stripes are aligned
to the external field, but the long stripe is oppositely magnetized similar to Fig. 1 (d).
Strikingly, at HSW3 not only the amplitude changes, but also a clear phase jump is seen in
the oscillations, indicating an abrupt SW phase variation. We attribute this observation to
the reversal of the long nanostripe. Similar characteristics were observed for MC2. Only the
switching of stripes occurred at smaller field values of µ0H

′
SW1 = 3 mT, µ0H

′
SW2 = 8.5 mT

and µ0H
′
SW3 = 12.5 mT [see Fig. (S1) in the supplementary material].

Based on Fig. 2 we now discuss in detail the effect of an individual magnetic defect on SW
transmission in the 1D MCs. It is instructive to first present field-dependent transmission
signals a21,SAT(H) for the saturated (SAT) array. For Fig. 2 (a) we saturated MC1 at
+90 mT and then decreased H in a stepwise manner down to µ0H = −4 mT > −µ0HSW1

without inducing a reversal. We find a branch containing pronounced oscillations over the
full depicted field regime. Frequencies of local extrema P1 and P2 [Fig. 2 (b)] systematically
shift with H as highlighted by broken lines. The envelope of the oscillating signal of Fig.
2 (b) reflects the excitation spectrum of the CPW which is displayed in the reduced zone
scheme in Fig. 2 (c) (k ≤ kBZ). For the following analysis we refer to Fig. 2 (b), define the
peak-to-peak amplitude ∆p−p (signal strength) between neighbouring extrema P1 and P2,
and introduce the frequency difference δf . According to Ref.18 we calculate the group velocity
following vg = ∂ω

∂k = 4πδf
2π/s = 2δf × s. At H = 0 we find δf = 0.244 GHz corresponding to

vg = 3.7 km/s. This value represents the upper limit of vg, considering Ref.17 where a phase
accumulation length smaller than s was encountered.

The effect of the defect was probed via a minor loop (ML) starting at a field H∗ located
between HSW2 and HSW3. For the spectra displayed in Fig. 2 (d) we first saturated
MC1 at −90 mT, and then applied µ0H

∗ = +19 mT to reverse the short stripes but keep
the long stripe oriented along the negative field direction. Thereby we programmed the
magnetic defect. We highlight three discrepancies found in Fig. 2 (d) compared to (a):
(i) between 12 and 19 mT less oscillations are present, (ii) the oscillation amplitudes are
weaker over a broad field range, and (iii) the local extrema appear at different frequencies
when measured at the same H. In the following we quantify the discrepancies in that we

introduce both the relative signal strength η(H) =
∆p−p (ML)
∆p−p (SAT) [Fig. 2 (e)], and frequency

shift ∆f = fP1(ML)− fP1(SAT) [Fig. 2 (f)] evaluated at different H between peaks P1 of
the ML and SAT datasets. In Fig. 2 (e), η(H) is slightly above one at H = 0 and then
decreases with increasing |H| to a minimum value of 0.3 at H∗. This means that at 19 mT
the programmed defect reduces the transmitted SW amplitude by 70 %. In Fig. 2 (f), the
frequency shift ∆f(H) is zero at H = 0. At 19 mT, we find ∆f = −0.2 GHz.

Corresponding measurements were also conducted for MC2. In Fig. 2 (g) we show a21,SAT

of MC2 for decreasing H after it was saturated at +90 mT and while the MC remained fully
aligned. Again, we observed a clear branch with several oscillations. At H = 0 [Fig. 2 (h)]
δf amounted to 0.279 GHz corresponding to vg = 4.2 km/s. Compared to MC1 [Fig. 2 (b)]
a larger number of oscillations is observed. We attribute this to the excitation spectrum
of the CPW in that the kI peak now covers a broader range of the first BZ of MC2 [Fig.
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FIG. 3. Estimated SW phase shifts ∆Θ (full lines) when the long stripe is magnetized oppositely to
the short stripes in (a) MC1 and (b) MC2. Phase shifts are given relative to the fully saturated
MC. The dashed lines reflect model calculations based on Eq. (1).

FIG. 4. (a) Sketch of Heff for H > 0. At the defect H enters Heff with opposite sign. Thereby
a well is formed. Considering a small Heff in the well, the wave vector k′ at the defect is larger
than k to match the excitation frequency. (b) Dispersion relations sketched for different Heff . The
resonance frequency of regular stripe arrays is shifted upwards following f(k,Heff = +H), in the
oppositely magnetized long stripe it shifts downwards following f(k,Heff = −H). Such a shift
results in different wavevectors kI and k′ for a fixed frequency f with ∆k = k′ − kI.

2 (i)]. In Fig. 2 (j) we show a21 obtained in a ML. After saturation at −90 mT a field of
µ0H

′∗ = +12 mT located between H ′SW3 and H ′SW2 was applied. In this regime the long
stripe was assumed to be magnetized in opposite direction to both H and the short stripes.
At H ′∗ the signal was small. When decreasing the field from H ′∗, the signal increased until
H = 0. This behaviour is analyzed by η(H) shown for MC2 in Fig. 2 (k). η amounts to 0.4
(1.2) at H ′∗ (H = 0). ∆f of MC2 is shown in Fig. 2 (l). We find ∆f = −0.2 GHz (0 GHz)
at H ′∗ (H = 0).
We assume that ∆f is a measure of a magnetic-defect-induced phase shift accumulated by

SWs going across a reversely magnetized nanostripe. In the following, we estimate the phase
shift ∆Θ that appears relative to the fully saturated MC. In a fully saturated MC, SWs
leading to neighboring extrema P1 and P2 of spectra a21 in Fig. 2 (a) and (g) are separated

by δf(H) corresponding to a known phase shift of π. Using the relation ∆Θ(H) = −∆f(H)
δf(H) ·π

we estimate the field-dependent phase shifts ∆Θ(H) in MC1 [solid line in Fig. 3 (a)] and
MC2 [solid line in Fig. 3 (b)] considering δf(H) of Fig. 2 (a) and (g), respectively. For
both samples ∆Θ is found to vary monotonously with H. For MC1 (MC2) ∆Θ = 0.9π
(∆Θ = 0.5π) is reached at H∗ (H ′∗).

In the following we explain these findings with different static effective fields Heff for
the defect and the MC when H 6= 0 [Fig. 4 (a)]. Heff enters the equation of motion for
spin precession19. To facilitate the discussion we assume infinitely long nanostripes with a
demagnetization factor Ny = 0 such that |Heff | ≈ H. For a positive magnetic field, H points
parallel (antiparallel) to the static magnetization M of the short stripes (the reversed long
stripe) and enters Heff with positive (negative) sign. This scenario leads to a variation in
Heff(x) as sketched in Fig. 4 (a). The defect represents a SW well. Corresponding dispersion
relations f(k) inside and outside the SW well are sketched in Fig. 4 (b). When SWs are
transmitted between CPW1 and CPW2 at a fixed frequency f , the relevant wavevector k′

in the well is different from k of the MC. Stimulated by Ref.20 we estimate the difference
between k and k′ in that we consider local dispersion relations f(k) of Fig. 4 (b). First
we assume that for H = 0 the branch shown as the broken line is valid. For H 6= 0
this branch shifts to larger and smaller frequencies depending on the orientation of the
magnetization vectors M in nanostripes. At k = 0 the two branches for opposing directions
of M acquire a frequency splitting ∆fres. If, for a fixed excitation frequency f > f(k = 0),
the SW takes the wavevector k = kI in the MC the relevant wavevector in the SW well
amounts to k′ > kI.

21 Accordingly, the transmitted spin wave experiences an extra phase
shift ∆Θ(H) = (k′ − kI)× p = ∆k × p. Based on this model, we can estimate phase shifts
from independently measured parameters in that we consider

∆Θ = ∆k × p ≈ (∆k/∆fres)×∆fres × p
≈ (df/dk)−1 × [(df/dH)× 2H]× p.

(1)

From the dispersion relations of the lowest minibands (dashed green lines) in Fig. 1 (b)

and (c) we evaluate the first term, i.e., the slopes df/dk = vg/2π. We find 0.346 GHz µm
rad

(0.464 GHz µm
rad ) for MC1 (MC2). For the second term we evaluate the curves P1 in a21,SAT

of Fig. 2 (a) and (g) in that we extract the field dependency of the eigenfrequencies, df/dH,
for H < H∗ and H < H ′∗, respectively. We get 80 MHz/mT for MC1 and 114 MHz/mT for

http://dx.doi.org/10.1063/1.5024541


5

MC2. We assume df/dH to be constant in the field regime defined by Fig. 3. Using these
values, we calculate the frequency offset ∆fres between dispersion relations f(k) of MC and
SW well [Fig. 4 (b)] according to ∆fres ≈ (df/dH)× 2H. The dashed lines shown in Fig.
3 (a) and (b) reflect the calculated phase shifts based on the model of Fig. 4 and Eq. (1).
The model explains the magnitude of the experimentally extracted ∆Θ well and underlines
that a modified wavevector in the magnetic defect causes an appreciable field-dependent
phase shift. Equation (1) allows us to optimize the phase shift. Following Eq. (1) the phase
shift depends on the product H/vg. To increase ∆Θ one needs to either reduce vg or, more
favourably, increase the field H∗ which is applied without reversing the magnetic defect. An
additional uniaxial anisotropy along the long axis of the nanostripe might allow for large
H∗.

The increase of k′ in the defect might also explain the observed field-dependence of relative
signal strength η(H). We think of two relevant mechanisms. First, SW reflection at the defect
can occur due to the inhomogeneous Heff

7, inducing a mismatch of the wave impedance9;
second, a large wavevector reduces the dipolar strength across a gap22. Therefore we expect
a reduced dipolar coupling for an increased k′ at the defect. We note that in our experiment
we intentionally used long stripes with a small demagnetization field. In the contrary,
Haldar et al.10 explored a chain of short nanomagnets. In this case a significant change
of the demagnetization field took place when the magnetization direction of an individual
nanomagnet was switched. Consistently, the authors reported a pronounced SW attenuation
at a reversed nanomagnet for already H = 0.

To avoid the bias magnetic field H that we introduced to adjust effective fields for SW
phase control, one could expose the relevant CoFeB nanostripe to a magnetic anisotropy
that is induced by e.g. inverse magnetostriction23. If provided by a ferroelectric substrate,
this anisotropy and the related Heff can be controlled by an electric field24,25. The concept
outlined here could allow for all-magnon data processing if -in a three terminal device- spin
waves induce domain-wall motion in the magnetic defect26 and thereby control the magneti-
zation direction of the corresponding SW well through which spin waves are transmitted.

In conclusion, we demonstrated that SW amplitudes and phases are controlled via a
magnetic defect in a 1D magnonic crystal. A phase shift of almost π was observed and
explained by a modified wavevector at the defect forming a spin-wave well.

SUPPLEMENTARY MATERIAL

See supplementary material for a11 and a21 of MC2 for increasing H.
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