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ABSTRACT

Gravity currents are often modelled by means of shallow water equations (SWEs). In these models, simplifications such as the consideration of a
constant layer-averaged density are common. This note presents the complete and general derivation of a 2D depth-averaged momentum equation
for gravity currents with density and velocity varying in the bed-normal direction. Special attention is given to the pressure term which is evaluated
for constant, linear and exponential density profile. The shape of the density profile has implications for the momentum balance: the assumption of
constant density leads to an overestimation of the driving force due to pressure gradient by a factor of 33% for linear density profile and up to 50%
for an exponential profile. It also leads to an overestimation of celerity in numerical models based on traditional SWEs by factor of 22% and around

40% for linear end exponential density profiles respectively.

Keywords: Gravity currents; pressure term; shallow water equations; varying density; reduced gravity; celerity

1 Introduction

Gravity currents are geophysical flows driven by density dif-
ference between two fluids caused by gradients in tempera-
ture, dissolved substances or particles in suspension. Velocity
and density profiles typical for gravity currents are often non-
uniform in the bed-normal direction, as reported by several
experimental and numerical studies (Altinakar et al., 1996;
Kneller et al., 1999; Parker et al., 1987; Sequeiros et al., 2010;
Stagnaro & Bolla, 2014; Ottolenghi et al., 2016a, 2016b). Tra-
ditionally the depth-varying shape of the profiles is taken into
account through multiplicative factors, often called shape fac-
tors, which appear in the shallow-water layer-integrated equa-
tions (SWEs) (Chu et al., 1979; Hogg & Pritchard, 2004;
Parker et al., 1987; Sequeiros et al., 2010). In this note we
refer to these multiplicative factors simply as coefficients.
Particular coefficients are named after the SWE term where
they appear, e.g. momentum coefficient and pressure coeffi-
cient. A coefficient in an SWE term is defined as the ratio
of the value of the term obtained by integration over the

current depth and the same term obtained from depth-averaged
quantities.

The values of SWE coefficients/shape factors have been
reported for some flow regimes and bed roughness (Parker
et al., 1987; Sequeiros et al., 2010). Some difficulties in com-
paring these coefficients are associated with the definition of
the current height, /# (Stacey & Bowen, 1988). According to
the definitions of Altinakar et al. (1996) and of Ellison and
Turner (1959), current height is notional, and all depth-averaged
quantities are found by integration between the bed level and
infinity. On the other hand, Chu et al. (1979) use a physically-
based current depth for expressing SWE coefficients/shape
factors, but these are subsequently set to one. Although the non-
uniformity of the density and velocity profiles in gravity currents
has been well established, SWE models often set coefficients
in all terms to the value that corresponds to uniform profiles,
i.e. to unity (Chu et al., 1979; Stacey & Bowen, 1988; Ungar-
ish, 2009; Adduce et al., 2012; Lombardi et al., 2015). This may
not be justified in some cases, for example for supercritical flows
(Sequeiros et al., 2010).
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This note aims to provide the basis for estimating various
SWE coefficients. It therefore presents a rigorous derivation of
2D depth-averaged momentum equations for gravity currents,
following a procedure similar to Pokrajac and Kikkert (2011).
Derivation of other balance equations such as volume and mass
balance are analogous, and they have been omitted for brevity.
Depth averaging is performed until the top boundary of the cur-
rent which must be physically-based defined. Various options
for defining this boundary are beyond the scope of the note.

The note is focused solely on the coefficient which appears
in the pressure term due to the bed-normal variation of density.
It will be shown that this coefficient, termed pressure coeffi-
cient, can be easily evaluated for typical density profiles from
the literature and incorporated in the existing SWE simulation
models. It will also be shown that, for cases with substan-
tial density variation across current depth, omitting pressure
coefficient in SWEs results in significant error. Other SWE coef-
ficients require a much more elaborate analysis before they can
be evaluated and incorporated in simulations models if/where
necessary. These coefficients are therefore also beyond the scope
of the note.

2 Integral form of the momentum balance equation

2.1 Definitions

The definition sketch with the main variables is shown in
Fig. 1. We consider a density current propagating over a flat
bed, which may be inclined in both longitudinal and lateral
directions — corresponding angles are o and f, respectively.
A right-handed Cartesian coordinate system used throughout
the note consists of a longitudinal coordinate x, lateral coor-
dinate y and bed-normal coordinate z with the origin z=0 at
the bed. The corresponding components of current velocity are
u,v,w, and those of the velocity of the interfaces are U,V,W.
An alternative coordinate system x;, i = 1,2,3 (= x,y,z) with
corresponding velocity components u;, U; is also used wher-
ever it produces simpler expressions, and in such case Einstein
summation convention applies.
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Geometry of the control volume is defined in a local coor-
dinate system (&,n,z): the stream-wise extent of the domain
is —Ax/2 <& < Ax/2, and its lateral extent is —Ay/2 <n <
Ay /2. In the bed-normal direction, z, the control volume covers
the entire current depth until the interface with the ambient fluid
(Spin Fig. 1), 1.e. 0 < z < z; = h. The ambient fluid is assumed
to be stagnant and to have a constant density, py. For the pur-
pose of deriving depth-averaged momentum balance equation,
the average of a general fluid variable i over the current depth
is defined as:

1
W = Zf v dz (1)
0

2.2 Momentum balance in terms of relative pressure and
density difference

We start from the differential form of the momentum balance
equation for an incompressible fluid with generally variable
density p:

dpu; d i Ui b} af,“
e A e R} LT —1,2,3

TR T SR PR P

For the stagnant ambient fluid the momentum equation
reduces to:

opo
£ . 2
ox, 008 (2)

Combining the previous two equations yields:

8,0uj 8,0uj Uu;

dp —po) | 0Ty
dt Bx,- +

axj 8x,~

=gi(p— po) — 3)

where py is the pressure of ambient fluid at any point as it
would be without the presence of the density current. This
way of expressing momentum balance makes the derivation of
the depth-averaged equation somewhat simpler. Integration of
Eq. (3) over an arbitrary control volume V, enclosed within a

(b) (©) (d)
" ay
2
¢
—Ax Ax
2 2
Ay
2

Figure 1 Sketch with the definition of the control volume and coordinate systems: (a) control volume; (b) plan view of the control volume; (c)

longitudinal domain; (d) lateral domain
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surface S which moves at velocity 1, yields:

8puj
dv + ,ouj l?ﬂ’li ds + pu; (u,’ - ﬂi)ni ds
v N

Jat
RM
- /(p ~ pog dV—/<p —poymy dS
v S
G P
=+ / Ti/nidS (4)
oo

T

The terms on the left hand side of Eq. (4) represent, respectively,
the rate of change of momentum within the control volume, the
momentum flux through the surface S due to its own movement,
and the momentum flux due to the movement of the fluid relative
to S. Collectively these terms also represent the Rate of change
of Momentum (in a control volume moving with the fluid), so
they are denoted with RM. The terms on the right hand side rep-
resent the net force acting on the control volume due to Gravity,
Pressure and bed shear s7tess, respectively, so they are denoted,
in the same order, with G, P, and T. In the next subsections terms
RM,G,T and P are developed for the control volume shown
in Fig. 1, and for the x-momentum. Derivation of the balance
equation for the y-momentum is analogous.

2.3 Rate of change of momentum terms RM

The left hand side of Eq. (4) is now expressed for the control vol-
ume shown in Fig. 1, contained within a surface which consists
of the bottom, B, the four bed-normal faces, and the interface
between the current and the ambient fluid, I. This interface
moves at velocity U;, whereas all other surfaces are station-
ary. Furthermore, the bottom surface is considered solid so that
no-slip condition applies and all velocity components along this
surface are zero. The left hand side of Eq. (4) therefore becomes:

Ax/2 pAy/2 pziEn) dpu
RM=/ / / —dzd dS—i—/ pulU;n; dS;
St

—Ax/2 J—Ay)2
Term 1 Term 2
Ay/2 z1(—Ax/2,n)
+ [ put—vpmasi [ | pu &z di
Si —Ay/2 J0
Term 3

Ay/2  pzi(Ax/2,m)
+ f / puu dz dn
—Ay/2 J0

Ax/2 pzi(§,—Ay/2)
—/ / puv dz dé
—Ax/2J0

Ax/2 pzi(§,A/2)
+/ / puv dz d& (5)

—ax/2Jo
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The Leibniz rule applied to the first term on the right hand side
of Eq. (5), denoted with Term 1, produces:

Ax/2  pAy/2 21(§.n)
Term 1 :/ / / pudzdndé
—Ax2 J—ay)2 at

Ax/2 Ay/2 9z
- / / iy d )

Ax/2 Ay/2

Due to the kinematic condition for the surface S; the second
term on the right hand side of Eq. (6) cancels with the Term
2 in Eq. (5). Term 3 on the right hand side of Eq. (5) will be
denoted with
flux that enters the current through its interface over the entire
plan area of the control volume, Ax, Ay. Furthermore, all inte-
grals of quantities over the current depth (i.e. between 0 and z)
are replaced with the product of depth and the depth-averaged
quantity (according to Eq. (1)). The result is:

Ax/2 Ay/2
RM = / f
—Ax/2 Ay/2
Ay/2
- / (puu)y, hle=—axs2 dn
—Ay/2

—E,, where E, represents the net x-momentum

ddSE

Ay/2
4 / (putt)y Moo di
—Ay/2

Ax/2
- / (v Hlyernys dE

—Ax/2

Ax/2
+ / (puv)y hly—ays2 d& %)
—Ax)2

where the symbols for “value at”, e.g. |e—_a\/2, apply to all
terms within integrals.

24 Gravity term G

The gravity term for the control volume covering the current
height becomes:

Ax/2  pAy/2  pzEn)
- / / / (b — po)gy dz dn dé
—Ax/2 J—=Ay/2 JO

Ax/2 Ay/2
= / (0 = po)y hgx dn d§ (8
—Ax/2 J—=Ay/2

2.5 Viscous stress term T

The viscous stress term is non-zero along all surfaces enclosing
the control volume, so the total force due to the viscous stress
is the sum of forces acting on the bottom, the interface, and the
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four bed-normal surfaces:

Ax/2 Ay/2
f TBx d?’] dg +/ TixNi dSI
Ay/2 Si

Ay/2  pz(—Ax/2n) Ay/2 pz(Ax/2,n)
/ T dzdp +/ / T dz dp
0 —Ay/2J0

Ax/2 pz(5,—Ay/2) Ax/2 pzi(5,Ay/2)
/ f T, dz dE + / / 7, dz dg
Ax/2J0 —Ax/2J0

Ax/2 Ay/2
/ TBx dT] dE +/ TixNi dSI
St

Ay/2
Ay/2

<Txx)hh|é=fo/2 d’? +/ <txx>h h|$:Ax/2 d)’]
2

—Ay/2

Ax/2 Ax/2
- f , (T} Aly=—ay/2 d& +fA (T} Aly=ary /2 A€

—Ax/2

)

It should be noted that this note considers only flat bed, so that
the shear stress acting on the fluid across the bed surface, z,,
is equal to the viscous stress. Extrapolation to the case of rough
bed, where the bed shear stress is the sum of the viscous stress
and all pressure forces acting on the grains per unit area (i.e. it is
due to both viscous drag and form drag) is straightforward (see
Pokrajac, 2013 for details).

z/h z/h
1
\
\
v\
\\
~e \\~
0 1 ppy O 1 ppy
<p-p>, <p-p, 5 geos h

Figure 2 Shapes of density and pressure profiles for: constant (con-
tinuous line), linear (dashed line), and exponential (dotted line) density
profiles
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2.6  Pressure term P

The pressure term is assumed to be zero along the interface
(where p — py = 0) and along the bed and the two lateral
bed-normal surfaces (n = —Ay/2 and n = —Ay/2) where the
x-component of the unit normal vector of the surface is zero.
The remaining non-zero contributions are:

Ay/2  pzi(=Ax/2,m)
r=[ (o — po) dzd

—ay2Jo

Ay/2  pzi(Ax/2,7m)
—/ / w—pdzdn  (10)

—Ay/2J0

Pressure distribution is assumed hydrostatic, so the expression
for p — py at a level z is found by integrating the z-momentum
equation between z and zj, as:

p—po=/ (0 — po)g cos o dz (11)

A pressure coefficient, a,, can now be defined as the force
due to pressure per unit width, normalized with the force that
corresponds to the constant density i.e.:

Z] _ dZ Z] Z1 _ dZdZ
0= - o (@ —po) - Olfz(p po)2 12)
3 {0 — po)y g cosah 5 {0 —po)yh

as:

P —Po
(0 = po)y

4 :2/1 P —Po
? 0 (p—po>hg005ah

or, alternatively, using a non-dimensional coordinate ¢ = z /A,
———d¢ dg

13)
The net force resulting from the pressure is now expressed as:
1 Ay/2
P=1 /
2J a2

| [ ,
-3 / a, (P — po)p " le=ax/2 dn (14)
—Ay/2

ay (p — po)y M ls——av/2 dn

For some simple density profiles such as those shown in Fig. 2,
the integrals in Eqs (11) and (12) can be expressed analytically.

Table 1 Pressure distribution and coefficients for typical density profiles. For exponential pro-
file C=1—e"" —ye™ 7, where y is an empirical coefficient. In Altinakar et al. (1996) y takes

values in the range (2.29-2.74)

Profile type _pP=hro __p=pP0 ap
(0= Po)n {0 — po)pgcosah
z
Constant 1 1 - 7 1
Linear 2 (1 Z) (1 Z>2 2
i _z _z z
h h 3
1 2
Exponential %(e"’(z/h) —e77) E(e_y(z/h) + y% e V+C—-1) v %e_y
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These expressions are listed in Table 1 for constant, linear and
exponential density profiles. The dimensional exponential pro-
file was expressed as p — py = A(e” 77" —e7), adopted from
Altinakar et al. (1996), and slightly modified to ensure that at
the top of the current p — py = 0.

Figure 2 also shows the pressure profiles that correspond
to the analysed density profiles. It is clear that the area of the
pressure diagram is smaller for a variable density than for the
corresponding constant density (equal to its depth-average). The
force due to pressure is therefore smaller for the variable density,
hence resulting in the pressure coefficient smaller then unity.
This means that omitting pressure coefficient a,, results in over-
estimating the force due to pressure gradient by factor (1 — a,),
i.e. 33% for the linear density profile. For the range of y values
reported in Altinakar et al. (1996) (2.29—2.74) the pressure coef-
ficient @, takes the values in the range 0.50-0.53, so the pressure
term is overestimated by up to 50%.

3 Differential form of momentum equation

All previously derived terms in momentum equation are
grouped, the equation is divided by AxAy, and Ax, Ay are
made infinitely small to yield:

a h d h 0 h
(pu)y n (puu),, n (puv)y
at dax ay

1 da, (p — poy I
= (p— po) hg + ~g LU
2 0x

(T h + 0 (tyx}}t h
dx ay

€y

COS® — Tpy + Tix

+

(15)

where ¢, is the flux of x-momentum entrained through the inter-
face with the ambient fluid per unit plan area of the current. The
equation for the y-momentum is derived in an analogous way
and its final form is:

a h o h 0 h
{pv)y " {pvv), n (pvu),
at ay ax

L 9ay (p— po)y I
= (p = po) gy + 58— —

— ey

cos B — 1, + Ty

2 ay
4 a(ryy>hh + a<TXy>hh (16)
ay ax

The x and y-momentum equations explicitly contain only the
pressure coefficient in the pressure gradient term. Other coeffi-
cients that arise from the correlations of the shape of density
and velocity profiles are “hidden” in the averages of double
and triple products. One of them its the well-known Boussinesq
coefficient which accounts for non-uniformity of velocity pro-
file. Expressing and analysing other terms will be the subject of
further investigation.
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4 Discussion

In order to further assess the effect of the pressure coefficient
we consider a horizontal unidirectional flow in x direction, and
assume that: Boussinesq momentum coefficient is 1, there is no
correlation between density and velocity profiles, density profile
does not change in time and space, and all shear stress terms,
as well as the entrainment term are negligible. Under these
assumptions Eq. (15) becomes very similar to the traditional
shallow water momentum equation:

(0= pody , 0h
h— 17
o) gh=~ (17)

+ =a,

Combining Eq. (17) with the corresponding SW continuity
equation:

ah d(uh,h

— =0 18
ot ox (18)

yields the celerity (i.e. the speed of small disturbances in a
current) equal to 24/g’h, where reduced gravity is defined as:

g =a (0 — po)p
P o

(19)
This definition of the reduced gravity differs from the tradi-
tional one by factor a,. This means that taking into account
non-uniformity of density profile modifies the celerity by fac-
tor ,/a,. For linear density profiles this factor is equal to 0.82.
In other words for two gravity currents with the same depth
and depth-averaged density, but different density profiles, small
disturbances will move 18% slower in the current with linear
density profile, compared to the one with constant profile. This
clearly has implications for numerical models based on SWEs:
for currents with a, < 1, models which do not incorporate the
pressure coefficient will overestimate celerity by factor 1/,/a,,
i.e. by 22% and around 40% for linear end exponential density
profiles, respectively.

It should be noted that the modified definition of g’ given
by (19) should be also applied to Froude number defined in
terms of the reduced gravity.

The significance of the pressure coefficient a,, and all associ-
ated quantities depends on the degree of non-uniformity of the
density profile which in turn depends on the current composi-
tion (Altinakar et al., 1996; Kneller & Buckee, 2000; Stagnaro
& Bolla, 2014) and, arguably and non-consensually, on Froude
number (Sequeiros et al., 2010; Stagnaro & Bolla, 2014).

5 Conclusions

This note has presented a rigorous derivation of a 2D depth-
averaged momentum equation for gravity currents for a control
volume that extends between the bed and the top of the current.
Equations contain a coefficient in the pressure gradient term, a,,
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accounting for the bed-normal variation of the current density.
This coefficient, named pressure coefficient, should be incorpo-
rated in SWE-based models of density currents and set to unity
only when justified.

For the case of a linear density profile the pressure coefficient
is 0.67, whereas for the analysed exponential profile it is around
0.5. This means that neglecting linear or exponential bed-normal
variation of density leads to overestimation of pressure gradients
by 33% and 50%, respectively.

The pressure coefficient has also been incorporated in the
definition of the reduced gravity for currents with non-constant
density profiles: the traditional expression for g’ is multiplied
by factor a,. This changes the celerity of the current by factor
/@, implying that, for currents with a, < 1, celerity is over-
estimated in the numerical models based on traditional SWEs
which do not contain the pressure coefficient.
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Notations
a, = pressure coefficient (-)
E, = the net x-momentum flux that enters the current through

the interface, over the entire plan area of the control
volume (kg ms™2)

e, = the net x-momentum flux that enters the current
through the interface, per unit plan area of the current
(kgm~!s7?)

e, = the net y-momentum flux that enters the current
through the interface, per unit plan area of the current
(kgm~!s7?)

g = reduced gravity (ms~?)

gj = gravity acceleration in the j t direction (ms—2)

g = gravity acceleration in the x direction (ms~?2)

h = current depth (m)

~

counter, indicating the direction of any coordinate (-)

j = counter, indicating the primary direction of the momen-
tum balance equation (-)

i component of the unit normal vector for surface S
pointing out of the control volume (-)

p = pressure (Pa)

po = ambient fluid pressure (Pa)

S = surface that encloses the control volume (m?)

S = part of S which is the interface between the current and
the ambient fluid (m?)

t = time(s)

U = x component of the interface velocity (ms™")

U = i component of the interface velocity, i =1,2,3
= UV, W) (ms™")

u = x component of the instantaneous fluid velocity at a

point (ms~!)
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u; = i component of the fluid velocity, i=1,2,3

(= u,v,w) (ms™")
V= y component of the interface velocity (ms™')

v = y component of the instantaneous fluid velocity at a
point (ms~!)

W = zcomponent of the interface velocity (ms™!)

w = z component of the instantaneous fluid velocity at a
point (ms~!)

x = longitudinal Cartesian coordinate (m)

x; = Cartesian coordinate in ™ direction, i=1,2,3
(=x,,2) (m)

y = lateral Cartesian coordinate (m)

z = bed-normal Cartesian coordinate (m)

z1 = z coordinate (height above the bed) of the interface (m)

a = bed slope in x direction (RAD)
B = bed slope in y direction (RAD)

y = empirical coefficient in equation for density profile (-)

Ax = control volume length (m)

Ay = control volume width (m)

n = lateral coordinate of the local coordinate system cen-
tered at an arbitrary x, y point (m)

®; = i component of the velocity of the surface S (ms~')

& = longitudinal coordinate of the local coordinate system
centered at an arbitrary x, y point (m)

p = current density (kgm™3)

po = ambient fluid density (kgm~3)

8y = x component of the bed shear stress, i.e. 7, acting at the
bed level (Pa)

T8, = y component of the bed shear stress, i.e. 7,. acting at the
bed level (Pa)

1, = x component of the shear stress at the interface between

the current and the ambient fluid, i.e. 7y, acting at the
interface (Pa)

7, = y component of the shear stress at the interface between
the current and the ambient fluid, i.e. 7). acting at the
interface (Pa)

T; = i,j component of viscous stress (Pa)
Y = general fluid variable

Y = control volume (m?)
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