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Abstract. We propose a new and low per-iteration complexity first-order primal-dual opti-
mization framework for a convex optimization template with broad applications. Our analysis relies
on a novel combination of three classic ideas applied to the primal-dual gap function: smoothing,
acceleration, and homotopy. The algorithms due to the new approach achieve the best-known con-
vergence rate results, in particular when the template consists of only nonsmooth functions. We also
outline a restart strategy for the acceleration to significantly enhance the practical performance. We
demonstrate relations with the augmented Lagrangian method and show how to exploit the strongly
convex objectives with rigorous convergence rate guarantees. We provide representative examples to
illustrate that the new methods can outperform the state of the art, including Chambolle–Pock, and
the alternating direction method-of-multipliers algorithms. We also compare our algorithms with
the well-known Nesterov smoothing method.

Key words. gap reduction technique, first-order primal-dual methods, augmented Lagrangian,
smoothing techniques, homotopy, separable convex minimization, parallel and distributed
computation

AMS subject classifications. 90C25, 90C06, 90-08

DOI. 10.1137/16M1093094

1. Introduction. We introduce a new analysis framework for designing primal-
dual optimization algorithms to obtain numerical solutions to the following convex
optimization template described in the primal space:

P ? := min
x∈Rn

{P (x) := f(x) + g(Ax)} ,(1)

where f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are proper, closed and convex
functions and A ∈ Rm×n is given. For generality, we do not impose any smoothness
assumption on f and g. In particular, we refer to (1) as a nonsmooth composite
minimization problem.

Associated with the primal problem (1), we define the following dual formulation:

D? := max
y∈Rm

{
D(y) := −f∗(−A>y)− g∗(y)

}
,(2)

where f∗ and g∗ are the Fenchel conjugate of f and g, respectively. Clearly, (2) has
the same form as (1) in the dual space.

The templates (1)–(2) provide a unified formulation for a broad set of applica-
tions in various disciplines, see, e.g., [8, 12, 14, 16, 44, 58, 73]. While problem (1)
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A SMOOTH PRIMAL-DUAL OPTIMIZATION FRAMEWORK 97

is presented in the unconstrained form, it automatically covers constrained settings
by means of indicator functions. For example, (1) covers the following prototypical
optimization template via g(z) := δ{c}(z) (i.e., the indicator function of the convex
set {c}):

f? := min
x∈Rn

{
f(x) + δ{c}(Ax)

}
≡ min
x∈Rn

{
f(x) | Ax = c

}
,(3)

where f is a proper, closed and convex function as in (1). Note that (3) is sufficiently
general to cover standard convex optimization subclasses, such as conic programming,
monotropic programming, and geometric programming, as specific instances [7, 9, 11].

Among classical convex optimization methods, the primal-dual approach is per-
haps one of the best candidates to solve the primal-dual pair (1)–(2). Theory and
methods along this approach have been developed for several decades and have led
to a diverse set of algorithms; see, e.g., [2, 11, 15, 17, 18, 21, 23, 24, 25, 26, 28, 32,
34, 35, 38, 39, 42, 46, 47, 48, 55, 60, 61, 64, 71], and the references quoted therein. A
more thorough comparison between existing primal-dual methods and our approach
in this paper is postponed to section 7. There are several reasons for our empha-
sis on first-order primal-dual methods for (1)–(2), with the most obvious one being
their scalability. Coupled with recent demand for low- to medium-accuracy solu-
tions in applications, these methods indeed provide important trade-offs between the
per-iteration complexity and the iteration-convergence rate along with the ability to
distribute and decentralize the computation.

Unfortunately, the newfound popularity of primal-dual optimization has led to
an explosion in the number of different algorithmic variants, each of which requires
different set of assumptions on problem settings or methods, such as strong convexity,
error bound conditions, metric regularity, Lipschitz gradient, Kurdyka– Lojasiewicz
conditions, or penalty parameter tuning [13, 41, 40]. As a result, the optimal choice
of the algorithm for a given application is often unclear, as it is not guided by theo-
retical principles but rather trial-and-error procedures, which can incur unpredictable
computational costs. A vast list of key references can be found, e.g., in [15, 64].

To this end, we address the following key question: Can we construct heuristic-
free, accelerated first-order primal-dual methods for nonsmooth composite minimiza-
tion that have the best-known convergence rate guarantees? To our best knowledge,
this question has never been addressed fully in a unified fashion in this generality.
Intriguingly, our theory is still applicable to the smooth cases of f without requiring
either Lipschitz gradient or strongly convex-type assumption. Such a model covers
several important applications, such as graphical learning models and Poisson imaging
reconstruction [70].

1.1. Our approach. Associated with the primal problem (1) and the dual one
(2), we define

G(w) := P (x)−D(y)(4)

as a primal-dual gap function, where w := (x, y) is the concatenated primal-dual
variable. The gap function G in (4) is convex in terms of w. Under strong duality, we
have G(w?) = 0 if and only if w? := (x?, y?) is a primal-dual solution of (1) and (2).

The gap function (4) is widely used in convex optimization and variational in-
equalities; see, e.g., [29]. Several researchers have already used the gap function as a
tool to characterize the convergence of optimization algorithms, e.g., within a varia-
tional inequality framework [15, 35, 61].
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98 QUOC TRAN-DINH, OLIVIER FERCOQ, AND VOLKAN CEVHER

In stark contrast with the existing literature, our analysis relies on a novel combi-
nation of three ideas applied to the primal-dual gap function: smoothing, acceleration,
and homotopy. While some combinations of these techniques have already been stud-
ied in the literature, their full combination is important for the desiderata and has
not been studied yet.

Smoothing: We can obtain a smoothed estimate of the gap function within Nes-
terov’s smoothing technique applied to f and g [4, 56]. In what follows, we denote the
smoothed gap function by Gγβ(w) := Pβ(x)−Dγ(y) to approximate the primal-dual
gap function G(w), where Pβ is a smoothed approximation to P depending on the
smoothness parameter β > 0 and Dγ is a smoothed approximation to D depending
on the smoothness parameter γ > 0. By smoothed approximation, we mean the same
max-form approximation as [56]. However, it is still unclear how to properly update
these smoothness parameters in primal-dual methods.

Acceleration: Using an accelerated scheme, we will design new primal-dual de-
composition methods that satisfy the following smoothed gap reduction model:

Gγk+1βk+1(w̄k+1) ≤ (1− τk)Gγkβk(w̄k) + ψk,(5)

where {w̄k} and the parameters are generated by the algorithms with τk ∈ [0, 1)
and {max {ψk, 0}} converges to zero. Similar ideas have been proposed before; for
instance, Nesterov’s excessive gap technique [55] is a special case of the gap reduction
model (5) when ψk ≤ 0 (see [67]).

Homotopy: We will design algorithms to maintain (5) while simultaneously up-
dating βk, γk, and τk to zero to achieve the best-known convergence rate based on
the assumptions imposed on the problem template. This strategy will also allow our
theoretical guarantees not to depend on the diameter of the feasible set of (3). A
similar technique is also proposed in [55], but only for symmetric primal-dual meth-
ods. It is also used in conjunction with Nesterov’s smoothing technique in [10] for
unconstrained problem but had only an O(ln(k)/k) convergence rate.

Note that without homotopy, we can directly apply Nesterov’s accelerated meth-
ods to minimize the smoothed gap function Gγβ for given γ > 0 and β > 0. In this
case, these smoothness parameters must be fixed a priori depending on the desired
accuracy and the prox-diameter of both primal and dual problems, which may not be
applicable to (3) due to the unboundedness of the dual feasible domain.

1.2. Our contributions. Our main contributions can be summarized as follows:
(a) (Theory) We propose to use differentiable smoothing prox function to smooth

both primal and dual objective functions, which allows us to update the
smoothness parameters in a heuristic-free manner. We introduce a new
model-based gap reduction condition for constructing novel first-order primal-
dual methods that can operate in a black-box fashion (in the sense of [54]).
Our analysis technique unifies several classical concepts in convex optimiza-
tion, from Auslander’s gap function [1] and Nesterov’s smoothing technique
[4, 56] to the accelerated proximal gradient descent method, in a nontrivial
manner. We also prove a fundamental bound on the primal objective residual
and the feasibility violation for (3), which leads to the main results of our
convergence guarantees.

(b) (Algorithms and convergence theory) We propose two novel primal-dual first-
order algorithms for solving (1) and (3). The first algorithm requires per-
forming only one primal step and one dual step without using any primal
averaging scheme. The second algorithm needs one primal step and two dual
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A SMOOTH PRIMAL-DUAL OPTIMIZATION FRAMEWORK 99

steps but using a weighted averaging scheme on the primal. We prove an
O(1/k) convergence rate on the objective residual P (x̄k)−P ? of (1) for both
algorithms, which is the best-known in the literature for the fully nonsmooth
setting. For the constrained case (3), we also prove the convergence of both
algorithms in terms of the primal objective residual and the feasibility vio-
lation; both achieve an O(1/k) convergence rate and are independent of the
prox-diameters unlike existing smoothing techniques [4, 55, 56].

(c) (Special cases) We illustrate that the new techniques enable us to exploit ad-
ditional structures, including the augmented Lagrangian smoothing scheme,
and the strong convexity of the objectives. We show the flexibility of our
framework by applying it to different constrained settings including conic
programs.

Let us emphasize some key aspects of this work in detail. First, our characterization
is radically different from existing results such as [5, 15, 27, 34, 35, 61, 64] thanks
to the separation of the convergence rates for primal objective residual and the fea-
sibility gap for (3). We believe that this is important since the separated constraint
feasibility guarantee can be interpreted as a consensus rate in distributed optimiza-
tion. Second, our assumptions cover a broader class of problems: we can trade-off
the primal objective residual and the feasibility gap without any heuristic strategy on
the algorithmic parameters while maintaining the best-known convergence rate for a
class of fully nonsmooth convex problems in (3). Third, our augmented Lagrangian
algorithm generates simultaneously both the primal-dual sequence compared to ex-
isting augmented Lagrangian algorithms, while it maintains its O

( 1
k2

)
-worst-case

convergence rate both on the objective residual and on the feasibility gap. Fourth,
we also describe how to adapt known structures on the objective and the constraint
components, such as strong convexity to obtain new variants of our methods. Fifth,
this work significantly expands on our earlier conference work [67] not only with new
methods but also by demonstrating the impact of warm-start and restart. Finally,
our forthcoming paper [69] also demonstrates how our analysis framework and gap
reduction model extend to cover alternating direction optimization methods.

1.3. Paper organization. In sction 2, we propose a smoothing technique with
proximity functions for (1)–(3) to estimate the primal-dual gap. We also investigate
the properties of smoothed gap function and introduce the model-based gap reduc-
tion condition. Section 3 presents the first primal-dual algorithmic framework using
accelerated (proximal-) gradient schemes for solving (1)–(3) and its convergence the-
ory. Section 4 provides the second primal-dual algorithmic framework using averaging
sequences for solving (1)–(3) and its convergence theory. Section 5 specifies different
instances of our algorithmic framework for (1)–(3) under other common optimization
structures and generalizes it to the cone constraint Ax− c ∈ K. Numerical examples
are presented in section 6. A comparison between our approach and existing methods
is given in section 7. For clarity of exposition, technical proofs are moved to the
appendix.

2. Smoothed gap function and optimality characterization. We propose
to smooth the primal-dual gap function defined by (4) by proximity functions. Then
we provide a key lemma to characterize the optimality condition for (1) and (2).

2.1. Basic notation. We use 〈·, ·〉 for the standard inner product and ‖x‖2
for the Euclidean norm. Given a matrix S, we define a seminorm of x as ‖x‖S :=√
〈Sx,Sx〉. When S is the identity matrix I, we recover the standard Euclidean norm.
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100 QUOC TRAN-DINH, OLIVIER FERCOQ, AND VOLKAN CEVHER

When S>S is positive definite, the seminorm becomes a weighted norm. In this case,
its dual norm exists and is defined by ‖u‖S,∗ = max {〈u, v〉 | ‖v‖S = 1}. When S>S is
not positive definite, we still consider the quantity ‖u‖S,∗ = max {〈u, v〉 | ‖v‖S = 1},
although ‖u‖S,∗ is finite if and only if u ∈ Ran(S>).

We also use ‖·‖X (respectively, ‖·‖Y) and ‖·‖X ,∗ (respectively, ‖·‖Y,∗) for the norm
and the corresponding dual norm in the primal space X (respectively, the dual space
Y) induced by the above standard inner product in X (respectively, in Y). Given a
proper, closed and convex function f , we use dom (f) and ∂f(x) to denote its domain
and its subdifferential at x, respectively. If f is differentiable, then we use ∇f(x) for
its gradient at x. For a given set C, δC(x) := 0 if x ∈ C, and δC(x) := +∞ otherwise
denotes the indicator function of C. In addition, ri (C) denotes the relative interior of C.

For a smooth function f : Z → R, we say that f has the Lf -Lipschitz gradient
with respect to the norm ‖·‖Z if for any z, z̃ ∈ dom (f), we have ‖∇f(z)−∇f(z̃)‖Z,∗ ≤
Lf‖z − z̃‖Z , where Lf ≡ L(f) ∈ [0,∞). We denote by F1,1

Lf
the class of all con-

vex functions f with the Lf -Lipschitz gradient. We also use µf ≡ µ(f) for the
strong convexity parameter of a convex function f with respect to the seminorm
‖ · ‖Z , i.e., f(·) − (µf/2)‖ · ‖2Z is convex. For a proper, closed and convex function
f , we use proxf to denote its proximal operator, which is defined as proxf (z) :=
argmin

{
f(u) + (1/2)‖u− z‖2Z | u ∈ dom (f)

}
.

2.2. Smooth proximity functions and Bregman distance. We use the fol-
lowing two mathematical tools in what follows.

2.2.1. Proximity functions. Given a nonempty, closed and convex set Z in
the primal space or in the dual space, a continuous and µp-strongly convex function
p is called a proximity function (or a prox-function) of Z if Z ⊆ dom (p). We also
denote

z̄c := argmin {p(z) | z ∈ dom (p)} and DZ := sup {p(z) | z ∈ Z}(6)

as the prox-center of p and the prox-diameter of Z, respectively. Without loss of
generality, we can assume that µp = 1 and p(z̄c) = 0. Otherwise, we can shift and
rescale the function p. Moreover, DZ ≥ 0, and it is finite if Z is bounded.

In addition to the strong convexity, we also limit our class of prox-functions to
the smooth ones, which have a Lipschitz gradient with the Lipschitz constant Lp ≥ 1.
We denote the class of prox-functions whose gradient has Lipschitz constant L by
S1,1
L,1. For example, pZ(z) := (1/2)‖z‖2S is a simple prox-function in Z = Rnz , i.e.,

1
2‖ · ‖

2
S ∈ S

1,1
‖S‖2,1(Z).

2.2.2. Bregman distance. Instead of smoothing the primal and dual problems
(1)–(2) by smooth proximity functions, we use a Bregman distance defined via pZ as

bZ(z, ż) := pZ(z)− pZ(ż)− 〈∇pZ(ż), z − ż〉 ∀z, ż ∈ Z,(7)

where pZ ∈ S1,1
L,1(Z). Clearly, if we fix ż = z̄c at the center point of pZ , then

bZ(z, z̄c) = pZ(z). In addition, ∇1bZ(z, z) = 0 for all z ∈ Z. We use in what follows
∇bZ for ∇1bZ .

2.3. Basic assumption. Our main assumption for problems (1)–(2) is to guar-
antee the strong duality, which essentially requires the following assumption (see [2,
Proposition 15.22]).

Assumption A.1. The solution set X ? of the primal problem (1) (or (3)) is
nonempty. In addition, the following assumption holds for either (1) or (3):
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A SMOOTH PRIMAL-DUAL OPTIMIZATION FRAMEWORK 101

(a) The condition 0 ∈ ri (dom (g)−A(dom (f))) for (1) holds.
(b) The Slater condition ri (dom (f)) ∩ {x ∈ Rn | Ax = c} 6= ∅ for (3) holds.

Now we define X := dom (f), Y := dom (g∗), and W := X × Y. Note that if the
function g in (1) is Lipschitz continuous on Y, then Assumption A.1 holds.

Under Assumption A.1, the strong duality for (1)–(2) holds; see, e.g., [2]. The
solution set Y? of the dual problem (2) is nonempty, and

P ? = f(x?) + g(Ax?) = D? = −f∗(−A>y?)− g∗(y?), ∀x? ∈ X ?, ∀y? ∈ Y?.(8)

Let W? := X ? ×Y? be the primal-dual (or the saddle point) set of (1)–(2). Then (8)
is equivalent to f(x?) + g(Ax?) + f∗(−A>y?) + g∗(y?) = 0 for all (x?, y?) ∈ X ? ×Y?.
In addition, we can write the optimality condition of (1)–(2) as follows:

−A>y? ∈ ∂f(x?) and y? ∈ ∂g(Ax?).(9)

Note that this condition can be written as 0 ∈ ∂f(x?) + A>∂g(Ax?) for the primal
problem (1) and as 0 ∈ ∂g∗(y?)−A∂f∗(−A>y?) for the dual problem (2).

2.4. Smoothed primal-dual gap function. The gap function G defined in (4)
is convex but generally nonsmooth. This subsection introduces a smoothed primal-
dual gap function that approximates G using smooth prox-functions.

2.4.1. The first smoothed approximation. Let bX be a Bregman distance
defined on X and ẋ ∈ X be given; we consider an approximation to the dual objective
function D(·) as

Dγ(y; ẋ) := min
x∈X
{f(x) + 〈y,Ax〉+ γbX (x, ẋ)} − g∗(y) ≡ −f∗γ (−A>y; ẋ)− g∗(y),(10)

where γ > 0 is a dual smoothness parameter. The minimization subproblem in (10)
always admits a solution, which is denoted by

x∗γ(y; ẋ) := argmin
x∈X
{f(x) + 〈y,Ax〉+ γbX (x, ẋ)} .(11)

We emphasize that our algorithms presented in the next sections support parallel
and distributed computation for the decomposable setting of (1) or (3), where f is
decomposed into N terms as f(x) :=

∑N
i=1 fi(xi) with the ith block being in Rni such

that
∑N
i=1 ni = n. In this case, we can choose a separable prox-function to generate a

decomposable Bregman distance bX (x, ẋ) :=
∑N
i=1 bi(xi, ẋi) to approximate the dual

function D defined in (2). By exploiting this decomposable structure, we can evaluate
the smoothed dual function and its gradient in a parallel or distributed fashion. We
will discuss the detail of this setting in section 5.

2.4.2. The second smoothed approximation. Let bY be a Bregman distance
defined on Y the feasible set of the dual problem (2) and ẏ ∈ Y. We consider an
approximation to the objective g(·) in (1) as

gβ(u; ẏ) := max
y∈Y
{〈u, y〉 − g∗(y)− βbY(y, ẏ)} ,(12)

where β > 0 is a primal smoothness parameter. We also denote the solution of the
maximization problem in (12) by y∗β(u; ẏ), i.e.,
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y∗β(u; ẏ) := arg max
y∈Y
{〈u, y〉 − g∗(y)− βbY(y, ẏ)} .(13)

We consider an approximation to the primal objective function P as

Pβ(x; ẏ) := f(x) + gβ(Ax; ẏ).(14)

This function is the second smoothed approximation for the primal problem. We note
that if g(·) := δ{c}(·) and pY(·) := (1/2)‖ · ‖22, then y∗β(u; ẏ) = ẏ + β−1(u− c), which
has a closed form.

2.5. Smoothed gap function and its properties. Given Dγ and Pβ defined
by (10) and (14), respectively, and the primal-dual variable w := (x, y), the smoothed
primal-dual gap (or the smoothed gap) Gγβ is now defined as

Gγβ(w; ẇ) := Pβ(x; ẏ)−Dγ(y; ẋ),(15)

where γ and β are two smoothness parameters and ẇ := (ẋ, ẏ).
The following lemma provides fundamental bounds of the objective residual P (x)−

P ? for the unconstrained form (1) and the objective residual f(x) − f? and the fea-
sibility gap ‖Ax − c‖Y,∗ for the constrained form (3). For clarity of exposition, we
move its proof to Appendix A.2.

Lemma 1. Let Gγβ be the smoothed gap function defined by (15) and Sβ(x; ẏ) :=
Pβ(x; ẏ)−P ? = f(x)+gβ(Ax; ẏ)−P ? be the smoothed objective residual. Then we have

Sβ(x; ẏ) ≤ Gγβ(w; ẇ) + γbX (x?, ẋ) and(16)
1
2
‖y∗β(Ax; ẏ)− y?‖2Y,∗ ≤ bY(y?, ẏ)+

1
β
Sβ(x; ẏ).

Suppose that g(·) := δ{c}(·). Then, for any y? ∈ Y? and x ∈ X , one has

−‖y?‖Y‖Ax− c‖Y,∗ ≤ f(x)− f?,(17)

and the following primal objective residual and feasibility gap estimates hold for (3): f(x)− f? ≤ Sβ(x; ẏ)− 〈y?, Ax− c〉+ βbY(y?, ẏ),

‖Ax− c‖Y,∗≤ βLbY
[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2Y + 2L−1

bY
β−1Sβ(x; ẏ)

)1/2]
,

(18)

where the quantity in the square root is always nonnegative.

The estimates (17) and (18) are independent of optimization methods used to
construct {w̄k} for the primal-dual variable w = (x, y). However, their convergence
guarantee depends on the smoothness parameters γk and βk. Hence, the convergence
rate of the objective residual f(x̄k)− f? and feasibility gap ‖Ax̄k − c‖Y,∗ depends on
the rate of {(γk, βk)}.

The first inequality in (16) is more precise than what [56] tells us. It holds
even if X is unbounded and it shows that if ẋ is close to x?, then the smoothed
function is more accurate. The second inequality in (16) shows that the distance
between y∗β(Ax; ẏ) and y? is controlled by quantities that will remain bounded. In
practice, we observe that y∗β(Ax; ẏ) cconverges to y?. Hence, restarting the algorithm
with ẏ′ = y∗β(Ax; ẏ) gives us a chance to accelerate the actual performance of our
algorithms while not hurting the convergence guarantee [30].
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3. The accelerated primal-dual gap reduction algorithm. Our new scheme
builds upon Nesterov’s acceleration idea [53, 54]. At each iteration, we apply an ac-
celerated proximal-gradient step to minimize f + gβ . Since f + gβ is nonsmooth, we
use the proximal operator of f to generate a proximal-gradient step. As a key fea-
ture, we must update the parameters τk and βk simultaneously at each iteration with
analytical updating formulas.

3.1. The method. Let x̄k ∈ X and x̃k ∈ X be given. The Accelerated Smoothed
GAp ReDuction (ASGARD) scheme generates a new point (x̄k+1, x̃k+1) as

x̂k := (1− τk)x̄k + τkx̃
k,

y∗βk+1
(Ax̂k; ẏ):= arg max

y∈Y

{
〈Ax̂k, y〉 − g∗(y)− βk+1bY(y, ẏ)

}
,

x̄k+1 := proxβk+1L̄
−1
A f

(
x̂k − βk+1L̄

−1
A A>y∗βk+1

(Ax̂k; ẏ)
)
,

x̃k+1 := x̃k − τ−1
k (x̂k − x̄k+1),

(ASGARD)

where τk ∈ (0, 1] and βk > 0 are parameters that will be defined in what follows. The
constant L̄A is defined as

L̄A := ‖A‖2 = max
x∈Rn

{
‖Ax‖2Y,∗
‖x‖2X

}
.(19)

The ASGARD scheme requires a mirror step with the conjugate g∗ of g to get
y∗βk+1

(·; ẏ) in (13) and a proximal step of f in the third line.
The following lemma shows that x̄k+1 updated by ASGARD decreases the smoothed

objective residual Pβk(x̄k; ẏ)− P ?, whose proof can be found in Appendix A.3.1.

Lemma 2. Let us choose τ0 := 1. If τk ∈ (0, 1) is the unique positive root of the
cubic polynomial equation p3(τ) := τ3/LbY + τ2 + τ2

k−1τ − τ2
k−1 = 0 for k ≥ 1 and

βk := βk−1
1+τk−1/LbY

, then βk = O
( 1
k
1/LbY

)
as k →∞ and

Pβk+1(x̄k+1; ẏ)− P ? +
τ2
k

βk+1

L̄A
2
‖x̃k+1− x?‖2X ≤

τ2
k

βk+1

L̄A
2
‖x̃0 − x?‖2X .(20)

Moreover, if LbY = 1, then 1
k+1 ≤ τk ≤

2
k+2 , τ2

k

βk+1
≤ τ2

0
β1(k+1) = 1

β1(k+1) and βk ≤ 2β1
k+1 .

3.2. The primal-dual algorithmic template. Similar to the accelerated
scheme [3, 53], we can eliminate x̃k in ASGARD by combining its first line and last
line to obtain

x̂k+1 = x̄k+1 +
(1− τk)τk+1

τk
(x̄k+1 − x̄k).

Now we combine all the ingredients presented previously and this step to obtain a
primal-dual algorithmic template for solving (1) as in Algorithm 1 below.

Per-iteration complexity of Algorithm 1. The computationally heavy steps of Al-
gorithm 1 are Steps 4 and 5. The per-iteration complexity of Algorithm 1 consists of
the following:

• One matrix-vector multiplication Ax and one mirror step of g∗ at Step 4
to compute y∗βk+1

(Ax̂k; ẏ). If g(·) := δ{c}(·) and pY(·) := (1/2)‖ · ‖22, then
y∗βk+1

(Ax̂k; ẏ) = ẏ + β−1
k+1(Ax̂k − c), which only requires one matrix-vector

multiplication Ax.
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104 QUOC TRAN-DINH, OLIVIER FERCOQ, AND VOLKAN CEVHER

Algorithm 1. (Accelerated Smoothed GAp ReDuction (ASGARD) algorithm).
Initialization:

1: Choose β1 > 0 (e.g., β1 := 0.5
√
L̄A, where L̄A is given in (19)), and set τ0 := 1.

2: Choose x̄0 ∈ X arbitrarily, and set x̂0 := x̄0.
For k = 0 to kmax, perform:

3: Compute τk+1 ∈ (0, 1) the unique positive root of τ3/LbY + τ2 + τ2
k τ − τ2

k = 0.
4: Compute the dual step by solving

y∗βk+1
(Ax̂k; ẏ) := arg max

ŷ∈Y

{
〈Ax̂k, ŷ〉 − g∗(ŷ)− βk+1bY(ŷ, ẏ)

}
.

5: Compute the primal step x̄k+1 using the proxf of f as

x̄k+1 := proxβk+1L̄
−1
A f

(
x̂k − βk+1L̄

−1
A A>y∗βk+1

(Ax̂k; ẏ)
)
.

6: Update x̂k+1 = x̄k+1 + τk+1(1−τk)
τk

(x̄k+1 − x̄k) and βk+2 := βk+1

1+L−1
bY
τk+1

.

End for

• One adjoint matrix-vector multiplication A>y and one proximal step of f
at Step 5. If f is decomposable, evaluating proxf can be implemented in
parallel.

We note that if pY(·) := (1/2)‖ · ‖22, the the mirror step in g∗ becomes a proximal step
proxg∗ .

3.3. Convergence analysis. Our first main result is the following two theo-
rems, which show an O(1/k) convergence rate of Algorithm 1 for both the uncon-
strained problem (1) and the constrained setting (3).

Theorem 3. Suppose that g = δ{c}. Let β1 > 0 and bY be chosen such that
LbY = 1. Let {x̄k} be the primal sequence generated by Algorithm 1. Then the
following bounds hold for (3):

f(x̄k)−f? ≥ −‖y?‖Y‖Ax̄k − c‖Y,∗,

f(x̄k)−f? ≤ 1
k
L̄A
2β1
‖x̄0 − x?‖2X + ‖y?‖Y‖Ax̄k − c‖Y,∗ + 2β1

k+1bY(y?, ẏ),

‖Ax̄k − c‖Y,∗ ≤ β1
k+1

[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2Y + β−2

1 L̄A‖x̄0 − x?‖2X
)1/2]

.

(21)

Proof. If g = δ{c}, then we apply Lemma 1 and use the bound on the smoothed
optimality gap given by Lemma 2, noting that x̃0 = x̄0 = x̂0, to get the bounds as in
(18). Moreover, since βk ≤ 2β1

k+1 and

τ2
k

β2
k+1

=
τ4
k

β2
k+1

1
τ2
k

≤
( 1
β1(k + 1)

)2
(k + 1)2 =

1
β2

1
,

using these estimates into the resulting bounds, we obtain (21).

Note that if we choose ẏ := 0m and bY(y, ẏ) = 1
2‖y − ẏ‖

2
Y , then the bounds (21) can

be further simplified as
∣∣f(x̄k)−f?

∣∣ ≤ 1
k

(
LA
2β1
‖x̄0−x?‖2X + 3β1‖y?‖2Y +

√
LA
β1
‖x̄0−x?‖X ‖y?‖Y

)
,

‖Ax̄k−c‖Y,∗≤ β1
k+1

(
2‖y?‖Y +

√
LA
β1
‖x̄0 − x?‖X

)
.

(22)D
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Clearly, the choice of β1 in Theorem 3 trades off between ‖x̄0 − x?‖2X and ‖y? − ẏ‖2Y
on the primal objective residual f(x̄k)− f? and on the feasibility gap ‖Ax̄k − c‖Y,∗.

Theorem 4. Suppose that g is Lipschitz continuous and ẏ = ȳc ensures DY =
supy∈dom(g∗) bY(y, ẏ) < +∞. Let β1 > 0 and bY be chosen such that LbY = 1. Let
{x̄k} be the primal sequence generated by Algorithm 1. Then the primal objective
residual of (1) satisfies

P (x̄k)− P ? ≤ L̄A
2β1k

‖x̄0 − x?‖2X +
2β1

k + 1
DY for all k ≥ 1.(23)

Proof. If g is Lipschitz continous, then, for all x ∈ X , ∂g(Ax) 6= ∅ and dom (g∗)
is bounded. For y ∈ dom (g∗), we have bY(y, ẏ) ≤ DY < +∞. Let y∗(x) ∈ ∂g(Ax).
Then we can show that

g(Ax) = 〈Ax, y∗(x)〉 − g∗(y∗(x)) ≤ max
y∈Y
{〈Ax, y〉 − g∗(y)− βbY(y, ẏ)}+ βbY(y∗(x), ẏ)

≤ gβ(Ax) + βbY(y∗(x), ẏ) ≤ gβ(Ax) + βDY .

Therefore, the bound (23) follows directly from (20) and this inequality.

Remark. If, in addition to g∗, f also has a bounded domain, we recover the
assumptions of [56]. By choosing x̄c := x̄0 and β1 :=

√
L̄A

DX
2DY

, we get a convergence

bound as P (x̄k)− P ? ≤ 2
√

2
√
L̄ADXDY
k . The worst-case convergence rate bound (23)

is the same as the one in [56] (up to a small constant factor). However, β1 does not
depend on the tolerance ε as in [56].

Remark. When Algorithm 1 is applied to solve the constrained convex problem (3)
using pY(·) := 1

2‖ · ‖
2
2, we can simplify the update rule for τk at Step 3 and βk at

Step 6 as follows:

βk+1 := (1− τk)βk and τk+1 :=
τk

τk + 1
=

1
k + 2

.(24)

This update rule does not improve the worst-case convergence guarantee in Theorem 4,
but it is simple. The detail analysis can be found in Appendix A.4.

4. The accelerated dual smoothed gap reduction method. Algorithm 1
can be viewed as an accelerated proximal scheme applying to minimize the function
Pγ(·; ẏ) defined in (14). Now we exploit the smoothed gap function Gγβ defined by
(15) to develop a novel primal-dual method for solving (1) and (2). Our goal is
to design a new scheme to compute a primal-dual sequence {w̄k} and a parameter
sequence {(γk, βk)} such that max

{
0, Gγkβk(w̄k; ẇ)

}
converges to zero.

4.1. The method. Given w̄k := (x̄k, ȳk) ∈ W, we derive a scheme to compute
a new point w̄k+1 := (x̄k+1, ȳk+1) as follows:

ŷk := (1− τk)ȳk + τky
∗
βk

(Ax̄k; ẏ),

ȳk+1 := proxγk+1L̄
−1
A g∗

(
ŷk + γk+1L̄

−1
A Ax∗γk+1

(ŷk; ẋ)
)
,

x̄k+1 := (1− τk)x̄k + τkx
∗
γk+1

(ŷk; ẋ),

(ADSGARD)

where τk ∈ (0, 1) and the parameters βk > 0 and γk+1 > 0 will be updated in what
follows. The points x∗γk+1

(ŷk; ẋ) and y∗βk(Ax̄k; ẏ) are computed by (11) and (13),
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106 QUOC TRAN-DINH, OLIVIER FERCOQ, AND VOLKAN CEVHER

respectively. This scheme requires one primal step for x∗γk+1
(ŷk; ẋ), one dual step for

y∗βk(Ax̄k; ẏ), and one dual proximal-gradient step for ȳk+1. Since the accelerated step
is applied to gγ , we call this scheme the Accelerated Dual Smoothed GAp ReDuction
(ADSGARD) scheme.

The following lemma, whose proof is in Appendix A.5, shows that w̄k+1 updated
by ADSGARD decreases the smoothed gap Gγkβk(w̄k) with at least a factor of (1−τk).

Lemma 5. Let w̄k+1 := (x̄k+1, ȳk+1) be updated by the (ADSGARD) scheme.
Then if τk ∈ (0, 1], βk, and γk are chosen such that β1γ1 ≥ L̄A and(

1 + τk/LbX
)
γk+1 ≥ γk, βk+1 ≥ (1−τk)βk, and

L̄A
γk+1

≤ (1− τk)βk
τ2
k

,(25)

then w̄k+1 ∈ W and satisfies Gγk+1βk+1(w̄k+1; ẇ) ≤ (1− τk)Gγkβk(w̄k; ẇ) ≤ 0.
Let τ0 := 1. Then for all k ≥ 1, if we choose τk ∈ (0, 1) to be the unique

positive solution of the cubic equation p3(τ) := τ3/LbX + τ2 + τ2
k−1τ − τ2

k−1 = 0, then
1
k+1 ≤ τk ≤

2
k+2 for k ≥ 1. The parameters βk and γk computed by β1γ1 = L̄A and

γk+1 :=
γk

1 + τk/LbX
and βk+1 := (1− τk)βk(26)

satisfy the conditions in (25).
In addition, if LbX = 1, then γk ≤ 2γ1

k+1 and L̄A
2γ1(k+1) ≤ βk+1 ≤ β1

k+1 for k ≥ 1.

4.2. The primal-dual algorithmic template. We combine all the ingredients
presented in the previous subsection to obtain a primal-dual algorithmic template for
solving either (1) or (3) as shown in Algorithm 2.

Algorithm 2. (Accelerated Dual Smoothed GAp ReDuction (ADSGARD)).
Initialization:

1: Choose γ1 > 0 (e.g., γ1 :=
√
L̄A, where L̄A is given by (19)). Set β1 := L̄A

γ1
and

τ0 := 1.
2: Take an initial point ȳ∗0 := ẏ ∈ Y.

For k = 0 to kmax, perform:
3: Update ŷk := (1− τk)ȳk + τkȳ

∗
k.

4: Compute x̂∗k+1 in parallel with

x̂∗k+1 := argmin
x∈X

{
f(x) + 〈A>ŷk, x〉+ γk+1bX (x, ẋ)

}
.

5: Update the dual vector

ȳk+1 := proxγk+1L̄
−1
A g∗

(
ŷk + γk+1L̄

−1
A Ax̂∗k+1

)
.

6: Update the primal vector x̄k+1 := (1− τk)x̄k + τkx̂
∗
k+1.

7: Compute

ȳ∗k+1 := arg max
y∈Y

{
〈Ax̄k+1, y〉 − g∗(y)− βk+1bY(y, ẏ)

}
.

8: Compute τk+1 ∈ (0, 1) the unique positive root of τ3/LbY + τ2 + τ2
k τ − τ2

k = 0.
9: Update γk+2 := γk+1

1+L−1
bX
τk+1

and βk+2 := (1− τk+1)βk+1.

End for
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Since τ0 = 1, Step 3 shows that ŷ0 = ȳ∗0 , while Step 6 leads to x̄1 = x̂∗1. The main
steps of Algorithm 2 are Steps 4, 5, and 7, where we need to solve the subproblem (11)
and to update two dual steps, respectively. The first dual step requires the proximal
operator proxρg∗ of g∗, while the second one computes ȳ∗k+1 = y∗βk+1

(Ax̄k+1; ẏ).
When g = δ{c}, the indicator of {c} in the constrained problem (3), we have

y∗βk(Ax̄k; ẏ) = ∇b∗Y
(
β−1
k (Ax̄k − c), ẏ

)
and ȳk+1 := ŷk + γk+1

(
Ax∗γk+1

(ŷk; ẋ)− c
)
.

The first dual step only requires one matrix-vector multiplication Ax. Clearly, by
Step 6, it follows that Ax̄k+1 − c = (1 − τk)(Ax̄k − c) + τk(Ax̂∗k+1 − c), and by
Step 7, we have ȳ∗k = y∗βk(Ax̄k; ẏ) = ∇b∗Y

(
β−1
k (Ax̄k − c), ẏ

)
, which is equivalent to

Ax̄k− c = βk∇bY(ȳ∗k, ẏ). Hence, Ax̄k+1− c = (1− τk)βk∇bY(ȳ∗k, ẏ) + τk
γk+1

(ȳk+1− ŷk)
due to Step 5. Finally, we can derive an update rule for ȳ∗k+1 as

ȳ∗k+1 := ∇b∗Y
(
β−1
k+1

(
(1− τk)βk∇bY(ȳ∗k, ẏ) +

τk
γk+1

(ȳk+1 − ŷk)
)
, ẏ
)
.(27)

Per-iteration complexity of Algorithm 2. From the above analysis, we can con-
clude that the per-iteration complexity of Algorithm 1 consists of the following:

• One adjoint matrix-vector multiplicationA>y and one mirror step in f at Step
4 to compute x̂∗k+1. If f is decomposable, then Step 4 can be implemented in
parallel.

• One matrix-vector multiplication Ax, one proximal step of g∗ at Step 5 to
compute ȳk+1, and one mirror step of g∗ at Step 7 to compute ȳ∗k+1. If
g = δ{c} and pY(·) := (1/2)‖ · ‖22, then computing ȳk+1 using (27) requires
only one Ax.

4.3. Convergence analysis. The following theorem shows the convergence of
Algorithm 2. For the constrained setting (3), we still have the lower bound on f(x̄k)−
f? as in Theorem 4; i.e., −‖y?‖Y‖Ax̄k−c‖Y,∗ ≤ f(x̄k)−f? for any x̄k ∈ X and y? ∈ Y?.

Theorem 6. Suppose that g = δ{c}. Let bX be chosen such that LbX = 1 and
{w̄k} be the sequence generated by Algorithm 2 for solving (3), where γ1 > 0 is given.
Then the following bounds for (3) hold:

f(x̄k)−f? ≥ −‖y?‖Y‖Ax̄k − c‖Y,∗,

f(x̄k)− f? ≤ 2γ1
k+1bX (x?, ẋ) + L̄A

γ1k
bY(y?, ẏ) + ‖y?‖Y‖Ax̄k − c‖Y,∗,

‖Ax̄k− c‖Y,∗ ≤ L̄A
γ1k

LbY

[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2Y + 8γ2

1
LbY

bX (x?, ẋ)
)1/2]

.

(28)

Proof. This set of inequalities is a consequence of Lemmas 1 and 5 using βk ≤ β1
k ,

γk ≤ 2γ1
k+1 , and γk

βk
≤ 4γ2

1k
k+1 ≤ 4γ2

1 .

Theorem 7. Suppose that g is Lipschitz continuous as in Theorem 4. Let bX
be chosen such that LbX = 1 and {w̄k} be the sequence generated by Algorithm 2 for
solving (1), where γ1 > 0 is given. Then the following convergence bound holds:

P (x̄k)− P ? ≤ 2γ1

k + 1
bX (x?, ẋ) +

2L̄A
γ1k

DY .(29)

Proof. Since Sβ(x; ẏ) ≤ Gγβ(w; ẇ) + γbX (x?, ẋ), using Lemma 5 we can show
that Sβk(x̄k; ẏ) ≤ Gγkβk(w̄k; ẇ) + γkbX (x?, ẋ) ≤ γkbX (x?, ẋ). Similar to the proof of
Theorem 4, we obtain the bound (29) for the objective residual of (1).
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Similar to Theorem 4, we can simplify the bound (28) to obtain a simple bound
as in (22), where we omit the details here. The choice of γ1 and β1 in Theorem 7 also
trades off the primal objective residual and the primal feasibility gap.

4.4. The choice of smoothers. For this algorithm, one needs to choose a norm
‖ · ‖X = ‖ · ‖S and a smoother pX such that pX is strongly convex with respect to
the norm ‖ · ‖S. One possibility is to choose ‖ · ‖S in order to have a simple formula
for x̂∗k+1 = x∗γ(ŷk; ẋ). A classical choice is a diagonal S, and bX (·, ẋ) = 1

2‖ · −ẋ‖
2
S is a

quadratic function for a given ẋ ∈ X .
If f is decomposable as f(x)=

∑N
i=1 fi(xi) and we choose bX(x, ẋ):=

∑N
i=1 bXi(xi, ẋi),

then the computation of x̂∗k+1 at Step 4 of Algorithm 2 can be carried out in parallel.
Another possibility is to choose S = A and pX (·) = 1

2‖ · ‖
2
S. In that case, the

computation of x∗k+1 may require an iterative subsolver, but we are allowed to take
ẋ = x?. Indeed, as Ax? = c, we have that for all x, bX (x, x?) = 1

2‖x − x?‖2A =
1
2 (Ax − c)>(Ax − c). Hence, we can consider x? as a center even though we do not
know it. We shall develop the consequences of such a choice in the section 5.1.

5. Special instances of the primal-dual gap reduction framework. We
specify our ADSGARD scheme to handle two special cases: augmented Lagrangian
method and strongly convex objective. Then we provide an extension of our algo-
rithms to a general cone constraint.

5.1. Accelerated smoothing augmented Lagrangian gap reduction
method. The augmented Lagrangian method is a classical optimization technique
and has widely been used in various applications due to its emergingly practical per-
formance. In this section, we customize Algorithm 2 using ADSGARD to solve the
constrained convex problem (3). The inexact variant of this algorithm can be found
in our early technical report [68, section 5.3].

The augmented Lagrangian smoother. We choose here pX = ‖·‖2X = ‖·‖2A, pY(·) =
‖ · ‖2Y = ‖ · ‖2I and ẋ = x? and bX (x, ẋ) := (1/2)‖A(x − x?)‖2Y,∗ = (1/2)‖Ax − c‖2Y,∗.
This is indeed the augmented term for the Lagrange function of (3). Note that even
though ẋ is unknown, bX (x, ẋ) can be computed easily using the equality Ax? = c.

We specify the primal-dual ADSGARD scheme with the augmented Lagrangian
smoother for fixed γk+1 = γ0 > 0 as follows:

ŷk := (1− τk)ȳk + τky
∗
βk

(Ax̄k; ẏ),

x̂∗γ0(ŷk) := argmin
x∈X

{
f(x) + 〈ŷk, Ax− c〉+

γ0

2
‖Ax− c‖2Y,∗

}
,

ȳk+1 := ŷk + γ0(Ax̂∗γ0(ŷk)− c),
x̄k+1 := (1− τk)x̄k + τkx̂

∗
γ0(ŷk),

(ASALGARD)

where τk ∈ (0, 1), γ0 > 0 is the penalty (or the primal smoothness) parameter, and βk
is the dual smoothness parameter. As a result, this method is called the Accelerated
Smoothing Augmented Lagrangian GAp ReDuction (ASALGARD) scheme.

This scheme consists of two dual steps at lines 1 and 3. However, we can combine
these steps as in (27) so that it requires only one matrix-vector multiplication Ax.
Consequently, the per-iteration complexity of ASALGARD remains essentially the
same as the standard augmented Lagrangian method [9].

The update rule for parameters. In our augmented Lagrangian method, we only
need to update τk and βk such that βk+1 ≥ (1− τk)βk and γ0βk(1− τk) ≥ τ2

k . Using
the equality in these conditions and defining τk := t−1

k , we can derive
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Algorithm 3. (Accelerated Smoothing Augmented Lagrangian GAp ReDuction
(ASALGARD)).
Initialization:

1: Choose an initial value γ0 > 0 and β0 := 1. Set t0 := 1 and β1 := γ−1
0 .

2: Choose an initial point (x̄0, ȳ0) ∈ W.
For k = 0 to kmax, perform:

3: Update y∗βk(x̄k; ẏ) := ∇b∗Y
(
β−1
k (Ax̄k − c), ẏ

)
.

4: Update

x̂∗γ0(ŷk) := argmin
x∈X

{
f(x) + 〈ŷk, Ax− c〉+

γ0

2
‖Ax− c‖2Y,∗

}
.(31)

5: Update ȳk+1 := ŷk + γ0(Ax̂∗γ0(ŷk)− c) and x̄k+1 := (1− t−1
k )x̄k + t−1

k x̂∗γ0(ŷk).

6: Update tk+1 := 0.5
(

1 +
√

1 + 4t2k
)

and βk+2 := (tk+1 − 1)t−1
k+1βk+1.

End for

tk+1 :=
1
2

(
1 +

√
1 + 4t2k

)
and βk+1 :=

(tk − 1)
tk

βk.(30)

Here we fix β1 > 0 and choose t0 := 1.
The algorithm template. We modify Algorithm 2 to obtain the following aug-

mented Lagrangian variant, Algorithm 3.
The main step of Algorithm 3 is the solution of the primal convex subproblem (31).
In general, solving this subproblem remains challenging due to the nonseparability of
the quadratic term ‖Ax − c‖2Y,∗. We can numerically solve it by using either alter-
nating direction optimization methods or other first-order methods. The convergence
analysis of inexact augmented Lagrangian methods can be found in [51].

Convergence guarantee. The following proposition shows the convergence of Al-
gorithm 3, whose proof is moved to Appendix A.6.

Proposition 8. Let {w̄k} be the sequence generated by Algorithm 3. Then we have − 8LbY ‖y
?‖Y‖y?−ẏ‖Y

γ0(k+2)2 ≤ f(x̄k)− f? ≤ 8LbY ‖y
?‖Y‖y?−ẏ‖Y+4bY(y?,ẏ)

γ0(k+2)2 ,

‖Ax̄k−c‖Y,∗ ≤
8LbY ‖y

?−ẏ‖Y
γ0(k+2)2 .

(32)

As a consequence, the worst-case iteration-complexity of Algorithm 3 to achieve an

ε-primal solution x̄k for (3) is O(
√

bY(y?,ẏ)
γ0ε

).

The estimate (32) guides us to choose a large value for γ0 such that we obtain
better convergence bounds. However, if γ0 is too large, then the complexity of solving
the subproblem (31) increases commensurately. In practice, γ0 is often updated using
a heuristic strategy [9, 11]. In general settings, since the solution x̂∗k+1 computed
by (31) requires solving a generic convex problem, it no longer has a closed form
expression.

5.2. The strongly convex objective case. If the objective function f of (1) is
strongly convex with the convexity parameter µf > 0, then it is well known [56] that
its conjugate f∗ is smooth and its gradient ∇f∗(·) := x∗(·) is Lipschitz continuous
with the Lipschitz constant Lf∗ := µ−1

f , where x∗(·) is given by
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110 QUOC TRAN-DINH, OLIVIER FERCOQ, AND VOLKAN CEVHER

x∗(u) := arg max
x∈X
{〈u, x〉 − f(x)} .(33)

In addition, if f∗A(·) := f∗(−A>(·)), then∇fA is Lipschitz continuous with Lf∗A := L̄A
µf

.
The primal-dual update scheme. In this subsection, we only illustrate the modi-

fication of ADSGARD to solve the strongly convex primal problem (1) as
ŷk := (1− τk)ȳk + τky

∗
βk

(Ax̄k; ẏ)

x̄k+1 := (1− τk)x̄k + τkx
∗(−A>ŷk)

ȳk+1 := proxL−1
f∗
A
g∗

(
ŷk + L−1

f∗A
Ax∗(−A>ŷk)

)
.

(ADSGARDµ)

We note that we no longer have the dual smoothness parameter γk, which is fixed to
µf > 0. Hence, the conditions (25) of Lemma 5 reduce to βk+1 ≥ (1 − τk)βk and
(1− τk)βk ≥ Lf∗Aτ

2
k . From these conditions we can derive the update rule for τk and

βk as in Algorithm 3, which is

tk+1 :=
1
2

(
1 +

√
1 + 4t2k

)
, βk+1 :=

(tk − 1)
tk

βk, and τk := t−1
k .(34)

Here we fix β1 := Lf∗A = ‖A‖2
µf

and choose t0 := 1.
Convergence guarantee. The following proposition shows the convergence of

ADSGARDµ, whose proof is in Appendix A.7.

Proposition 9. Suppose that the objective f of the constrained convex problem
(3) is strongly convex with the convexity parameter µf > 0. Let

{
w̄k
}

be generated by
(ADSGARDµ) using the update rule (34). Then the following guarantees hold: − 8LbY L̄A‖y

?‖Y‖y?−ẏ‖Y
µf (k+2)2 ≤ f(x̄k)− f? ≤ 8LbY L̄A‖y

?‖Y‖y?−ẏ‖Y+4bY(y?;ẏ)
µf (k+2)2 ,

‖Ax̄k−c‖Y,∗ ≤
8LbY L̄A‖y

?−ẏ‖Y
µf (k+2)2 .

(35)

This result shows that ADSGARDµ has an O(1/k2) convergence rate with respect
to the objective residual and the feasibility gap. We note that in both Propositions 8
and 9, the bounds only depend on the quantities in the dual space and L̄A.

5.3. Extension to general cone constraints. The theory presented in the
previous sections can be extended to solve the following general constrained convex
optimization problem:

f? := min
x∈X
{f(x) | Ax− c ∈ K} ,(36)

where f , A, and c are defined as in (3) and K is a nonempty, closed and convex set
in Rm.

If K is a nonempty, closed and convex set, then a simple way to process (36) is us-
ing a slack variable r ∈ K such that r := Ax−c and z := (x, r) as a new variable. Then
we can transform (36) into (3) with respect to the new variable z. The primal sub-
problem corresponding to r is defined as min {〈−y, r〉 | r ∈ K}, which is equivalent to
the support function sK(y) := sup {〈y, r〉 | r ∈ K} of K. Consequently, the dual func-
tion becomes g̃(y) := g(y) − sK(y), where g(y) := min {f(x) + 〈Ax− c, y〉 | x ∈ X}.
Now we can apply the algorithms presented in the previous sections to obtain an
approximate solution z̄k := (x̄k, r̄k) with a convergence guarantee on f(x̄k) − f?,
‖Ax̄k − r̄k − c‖Y,∗, x̄k ∈ X and r̄k ∈ K, as in Theorem 3 or Theorem 6.
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If K is a cone (e.g., K := Rm+ , K := Lm+ is a second-order cone or K := Sm+ is a
semidefinite cone), then with the choice pY(·) := (1/2)‖ · ‖2Y , we can substitute the
smoothed function gβ in (12) to obtain the following one:

ĝβ(Ax, ẏ) := max
{
〈Ax− c, y〉 − (β/2)‖y − ẏ‖2Y | y ∈ −K∗

}
,(37)

where K∗ is the dual cone of K, which is defined as K∗ := {z | 〈z, x〉 ≥ 0, x ∈ K}.
With this definition, we use the smoothed gap function Ĝγβ as Ĝγβ(w; ẇ) := P̂β(x; ẏ)−
Dγ(y; ẋ), where Dγ(y; ẋ) := min {f(x) + 〈Ax− c, y〉+ γbX (x, ẋ) | x ∈ X} is the
smoothed dual function defined as before and P̂β(x; ẏ) := f(x) + ĝβ(Ax, ẏ).

In principle, we can apply one of the two previous schemes to solve (36). Let us
demonstrate the ADSGARD for this case. Since K is a cone, we remain using the
original scheme (ADSGARD) with the following changes: y∗βk(Ax̄k; ẏ) := proj−K∗

(
ẏ + β−1

k (Ax̄k − c)
)
,

ȳk+1 := proj−K∗
(
ŷk + γk+1

L̄A

(
Ax∗γk+1

(ŷk)− c
))

,

where proj−K∗ is the projection onto the anti-cone −K∗. In this case, we still have
the convergence guarantee as in Theorem 7 for the objective residual f(x̄k)− f? and
the primal feasibility gap dist

(
Ax̄k − c,K

)
, the Euclidean distance from Ax̄k − c to

K. We note that if K is a self-dual conic cone, then K∗ = K. Hence, y∗βk(Ax̄k; ẏ) and
ȳk+1 can be either efficiently computed or a closed form.

5.4. Restarting techniques. Similar to other accelerated gradient algorithms
in [31, 59, 66], restarting ASGARD and ADSGARD may lead to a better performance
in practice. We discuss in this subsection how to restart these two algorithms using
a fixed iteration restarting strategy [59].

If we consider ASGARD, then, when a restart takes place, we perform the fol-
lowing steps: 

x̃k+1 ← x̄k+1,
ẏ ← y∗βk+1

(Ax̄k+1; ẏ),
βk+1 ← β1,
τk+1 ← 1.

(38)

Restarting the primal variable at x̄k+1 is classical; see, e.g., [59]. For the dual center
point ẏ, we suggest restarting it at the last dual variable computed. Indeed, by (16),
we know that the distance between y∗βk+1

(Ax̄k+1; ẏ) and the optimal solution y? will
remain bounded. Hence, in the favorable cases, we will benefit from a smaller dis-
tance between the new center point and y?, while in the unfavorable cases, restarting
should not affect too much the convergence. In practice, however, we observe that
y∗βk+1

(Ax̄k+1; ẏ) converges to the dual solution y?. We note that the restarting strat-
egy (38) does not increase the per-iteration complexity of the algorithm.

For ADSGARD, we suggest restarting it using the following steps:

ŷk+1 ← ȳk+1,
ẏ ← ȳk+1,
ẋ ← x∗γk+1

(ŷk; ẋ),
βk+1 ← β1,
γk+1 ← γ1,
τk+1 ← 1.

(39)
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Understanding the actual consequences of the restart procedure as well as designing
other conditions for restarting are still open questions, even for the unconstrained
case. Yet we observe that it often significantly improves the convergence speed in
practice.

6. Numerical experiments. In this section, we provide some key examples to
illustrate the advantages of our new algorithms compared to existing states of the
art. While other numerical experiments can be found in our technical reports [68],
we instead focus on some extreme cases where existing methods may encounter an
arbitrarily slow convergence rate due to lack of theory, while our methods exhibits an
O(1/k) rate as predicted by the theory. We then compare our methods with [56] and
provide one application to illustrate the advantages of the proposed algorithms.

6.1. A degenerate linear program. We aim at comparing different algorithms
to solve the following simple linear program:

min
x∈Rn

2xn

s.t.
∑n−1
k=1 xk = 1,

xn −
∑n−1
k=1 xk = 0 (2 ≤ j ≤ d),

xn ≥ 0.

(40)

The second inequality is repeated d− 1 times, which makes the problem degenerate.
Yet qualification conditions hold since this is a feasible and bounded linear program.
This fits into our framework with f(x) := 2xn + δ{xn≥0}(xn), Ax := [

∑n−1
k=1 xk;xn −∑n−1

k=1 xk; · · · ;xn −
∑n−1
k=1 xk], c := (1, 0, . . . , 0)> ∈ Rd, and g(·) := δ{c}(·). A primal

and dual solution can be found explicitly, and by playing with the sizes n and d of
the problem, one can control the degree of degeneracy.

In this test, we choose n = 10 and d = 200. We implement both ASGARD and
ADSGARD and their restart variants. In Figure 1, we compare our methods against
the Chambolle–Pock method [15]. We can see that the Chambolle–Pock method
struggles with the degeneracy, while ASGARD still exhibits an O(1/k) sublinear
convergence rate as predicted by our theory.

#iteration
0 500 1000 1500 2000

‖
A
x
−
b
‖
in

lo
g
sc
a
le

10
-6

10
-4

10
-2

10
0

10
2

ASGARD & ADSGARD

ASGARD bound

ASGARD-restart

ADSGARD-restart

Chambolle-Pock

#iteration
0 500 1000 1500 2000

|f
(x
)
−
f
(x

⋆
)|
in

lo
g
sc
a
le

10
-6

10
-4

10
-2

10
0

10
2

10
4 ASGARD & ADSGARD

ASGARD bound

ASGARD-restart

ADSGARD-restart

Chambolle-Pock

Fig. 1. Comparison of the absolute feasibility violation (left) and the absolute objective resid-
ual (right) for (ASGARD) (solid blue line), (ASGARD) with a restart every 100 iterations using
(38) (dashed pink line), (ADSGARD) with a restart every 100 iterations using (39) (black dotted
line), and Chambolle–Pock (green dashed-dotted line). The dashed red line is the theoretical bound
of (ASGARD) (Theorem 4). (ADSGARD) leads to similar results as (ASGARD) on this linear
program (40): the difference is not perceptible on the figure.
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Fig. 2. Comparison of the absolute feasibility violation (left) and the absolute objective residual
(right) for (ASALGARD) (solid blue line), (ASALGARD) with a restart every 100 iterations (dashed
red line), and ADMM (black dotted line).

In Figure 2, we compare methods requiring the resolution of a nontrivial optimiza-
tion subproblem at each iteration. In this case, the inversion of a rank-deficient linear
system, we thus compare ASALGARD with and without restart against ADMM [11].
For ADMM, we selected the step-size parameter by sweeping from small values to
large values and choosing the one that gives us the fastest performance. Again, our
algorithm resists the degeneracy, and restarting strategies improve the performance,
while ADMM has a very slow convergence rate.

6.2. Generalized convex feasibility problem. Given N nonempty, closed
and convex sets Xi ⊆ Rn for i = 1, . . . , N , we consider the following optimization
problem:

min
x:=(x>1 ,...,x

>
N )>∈RNn

{
f(x) :=

N∑
i=1

sXi(xi) |
N∑
i=1

A>i xi = 0m
}
,(41)

where sXi is the support function of Xi and Ai ∈ Rn×m is given for i = 1, . . . , N .
It is trivial to show that the dual problem of (41) is the following generalization

of a convex feasibility problem:

Find y? ∈ Rm such that Aiy? ∈ Xi (i = 1, . . . , N).(42)

Clearly, when Ai = I the identity matrix, (42) becomes the classical convex feasibility
problem. When Ai = I for some i ∈ {1, . . . , N} and Ai = A otherwise, (42) becomes
a multiple-set split feasibility problem considered in the literature. Assume that (42)
has a solution and N ≥ 2. Hence, (41) and (42) satisfy Assumption A.1.

Our aim is to apply Algorithm 1 and Algorithm 2 to solve the primal problem
(41) and compare them with the most state-of-the-art ADMM algorithm with multiple
blocks [26]. Clearly, with nonorthogonal Ai, the primal subproblem of computing xi in
the parallel-ADMM scheme [26] does not have a closed form solution, and we need to
solve it iteratively up to a given accuracy. In addition, by a change of variable, we can
rescale the iterates such that ADMM does not depend on the penalty parameter when
solving (41). With the use of Euclidean distance for our smoother, Algorithm 1 and
Algorithm 2 can solve the primal subproblem (11) in xi with a closed form solution,
which only requires one projection onto Xi.
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Fig. 3. Comparison of Algorithm 1, Algorithm 2, and ADMM with different values of ε
(left). Comparison of Algorithm 1, Algorithm 2, and their restart variant (restarting after every
100 iterations) (right). The number of variables is 20, 000.

The first experiment is for N = 2. We choose X1 := {y ∈ Rn | εy1−
∑n
j=2 yj ≤ 1}

and X2 := {y ∈ Rn |
∑n
i=2 yj ≤ −1} to be two half-planes, where ε > 0 is fixed. The

constant ε represents the angle between these half-planes. It is well-known [69] that
the ADMM algorithm can be written equivalently to an alternating projection method
on the dual space. The convergence of this algorithm strongly depends on the angle
between these sets. By varying ε, we observe the convergence speed of ADMM is
also varying, while our algorithms seem not to depend on ε. Figure 3 shows the
convergence rate on the absolute feasibility gap ‖

∑N
i=1 xi‖2 of three algorithms for

n = 10, 000. Since the objective value is always zero, we omit its plot here.
The theoretical version of Algorithm 1 and Algorithm 2 exhibits a convergence

rate slightly better than O(1/k) and is independent of ε, while ADMM can be arbi-
trarily slow as ε decreases. ADMM very soon drops to a certain accuracy and then is
saturated at that level before it converges. Algorithm 1 and Algorithm 2 also quickly
converge to the 10−5 accuracy level and then make a slower progress to achieve the
10−6 accuracy but still obey our theoretical guarantee. We notice that the averaging
sequence of ADMM converges at the O(1/k) rate, but it remains far away from our
theoretical rate in Algorithm 1 and Algorithm 2 due to a big constant factor. If we
combine these two algorithms with our restart strategy, both algorithms need 102
iterations to reach the desired accuracy. We can see that Algorithm 1 performs very
similar to Algorithm 2. We can also observe that the performance of our algorithms
depends on L̄A and initial points, but it is relatively independent of the geometric
structure of problems as opposed to the ADMM for solving the generalized convex
feasibility problem (41).

Now we extend to the cases of N = 3 and N = 4, where we add two more sets
X3 and X4. We choose X3 := {y ∈ Rn | 0.5εy1 −

∑n
j=2 yj = 1} to be a hyperplane in

Rn and X4 := {y ∈ Rn | −y1 +
∑n
j=3 yj ≤ 1} to be a half-plane in Rn. We test our

algorithms and the multiblock-ADMM method in [26] again.
The results are plotted in Figure 4 for the case n = 10, 000. In both cases, the

ADMM algorithm still makes slow progress as ε is decreasing and N is increasing.
Algorithm 1 and Algorithm 2 seem to scale slightly to N , the number of blocks.
We note that since Ai = I for i = 1, . . . , N , the per-iteration complexity of three
algorithms in our experiment is essentially the same.
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Fig. 4. Comparison of Algorithm 1, Algorithm 2, and ADMM with different values of ε. The
left plot is for N = 3, and the right one is for N = 4.

6.3. A comparison with [56]. To see the advantages of our homotopy strategy,
we consider the following square-root LASSO problem considered in the literature,
e.g., [6]:

P ? = min
x∈Rn

{
P (x) := 1√

m
‖Ax− b‖2 + λ‖x‖1

}
,(43)

where A ∈ Rm×n, b ∈ Rm, and λ > 0 is a given regularization parameter. As sug-
gested in [6], we can choose λ := 1.1√

m
Φ−1(1 − 0.5α/n), where α = 0.05 and Φ is

the standard normal distribution. By letting f(x) := λ‖x‖1 and g(u) := ‖u − b‖2 =
max {〈u, y〉 − 〈b, y〉 | ‖y‖2 ≤ 1}, we can easily check that f and g satisfy Assump-
tion 1. Clearly, the conjugate function g∗(y) := 〈b, y〉 + δB2(0;1)(y), where δB2(0;1) is
the indicator function of the `2-norm ball B2(0; r) := {y ∈ Rm | ‖y‖2 ≤ r}.

Since the solutions of (43) are sparse, we apply Algorithm 1 to solve this problem
and compare it with Nesterov’s method in [56]. Let us choose bX (x, ẋ) := 1

2‖x− ẋ‖
2
2

and bY(y, ẏ) := 1
2‖y−ẏ‖

2
2 with ẋ = 0 and ẏ = 0. In this case, y∗β(x; ẏ) can be computed

as the projection on the unit `2-ball, while x∗γ(y; ẋ) is computed from the proximal
operator of the `1-norm (a soft-thresholding operator). We initialize the algorithms
at x0 = 0.

Let us try to tune the smoothness parameter in both algorithms. Nesterov sug-
gested to tune it as follows. Given an iteration budget K and an a priori bound
on the distance to the solution, choose the smoothness parameter that minimizes
the known theoretical bound. In Figure 5, this corresponds to “β with guaran-
tees.” For this square-root LASSO problem, we take K := 105. Theoretically, we
can show that ‖x? − x0‖2 ≤ ‖x?‖1 ≤ ‖b‖2

λ
√
m

. We can also compute DY := 1
2 , where

Y := {y ∈ Rm | ‖y‖2 ≤ 1} is an `2-unit ball. The theoretical bound derived from

[56] becomes P (xK) − P ? ≤ 4‖A‖‖b‖2
√
DY

λ
√
m(K+1) . Similarly, in our algorithms, we set β1

and γ1 as suggested by (23) and (29), respectively, and we obtain a slightly better
theoretical bound.

In practice, the a priori bound on the distance ‖x?−x0‖2 may be very conservative.
Hence, we will also use the quantity ‖b‖2

λ
√
mn

as an estimate of R0 := ‖x? − x0‖2. In
Figure 5, this corresponds to “β a priori tuned.”

We generate matrix A using standard Gaussian distribution N (0, 1) with 25%
correlated columns. The true parameter x\ is a given s-sparse vector. We generate the
observation b as b := Ax\+N (0, 0.005), where the last term represents Gaussian noise.
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Fig. 5. Comparison of Algorithm 1 (Alg. 1) and Nesterov’s smoothing algorithm in [56]
(Nes. Alg.). Left: convergence of the algorithms and their theoretical bounds. Right: recovered solu-
tions and x\. (ASGARD) (red color plots) features a steady O(1/k) decrease. Nesterov’s smoothing
algorithm (blue color plots) has a slower start than (ASGARD), then enters a quick decrease phase,
and finally stagnates when it has reached the minimum of the smoothed problem. At the end of the
iteration budget, (ASGARD) returns a more accurate solution. This behavior can be seen for both
parameter tuning strategies and is consistent with the theoretical bound.

Figure 5 illustrates the performance of the two algorithms for solving (43), where
m = 700, n = 2000, and s = 200. The left-plot shows the convergence behavior of both
algorithms and their theoretical bounds. We clearly see that for each tuning strategy,
Algorithm 1 reaches a smaller final objective value than the one in [56]. Moreover,
Nesterov’s method has the disadvantage of stagnating after a given moment, while
Algorithm 1 makes steady progress. Restarting the method every 25 iterations gives
improvement again in the performance. We can finally observe that both algorithms
have better performance than their theoretical worst-case bounds. Figure 5 (right)
shows the solutions of both algorithms and compares them with the true parameter
x\. We see that the obtained solutions fit well x\, and they are both sparse solutions.

6.4. Application to image reconstruction. In this example, we propose to
use the following total variation norm optimization formulation to reconstruct images
from compressive measurements b obtained via a linear operator L:

min
Z∈Rp1×p2

{
f(Z) := ‖D(Z)‖1 | L(Z) = b

}
,(44)

where D is a two-dimensional discrete gradient operator, L : Rp1×p2 → Rn is a linear
transformation obtained from a subsampling-FFT transformation, and b ∈ Rn is a
compressive measurement vector. We first reformulate problem (44) into the form (3)
using a splitting trick as follows:

f? :=

{
min

x:=[u>,vec(Z)>]>

{
f(x) := ‖u‖1

}
s.t. L(Z) = b, D(Z)− u = 0.

(45)

We now apply Algorithm 1 and Algorithm 2 to solve this problem and compare
them with the Chambolle–Pock method in [15, 72]. We also compare our methods
with a line-search variant of the Chambolle–Pock method recently proposed in [43].
We note that our algorithms and the standard Chambolle–Pock method have the
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Table 1
Performance and results of the five algorithms on two MRI images.

MRI-knee (650× 650) MRI-brain-tumor (630× 611)

Algorithms f(Zk) ‖L(Zk)−b‖
‖b‖ Error PSNR Time[s] f(Zk) ‖L(Zk)−b‖

‖b‖ Error PSNR Time[s]

ASGARD 39.927 2.426e-03 2.305e-02 90.07 172.85 54.186 2.206e-03 3.179e-02 85.81 101.94
ASGARD-restart 40.126 6.443e-04 2.290e-02 90.12 173.41 54.655 7.122e-04 3.109e-02 86.00 103.07

ADSGARD 39.372 3.580e-03 2.336e-02 89.95 210.36 53.727 3.353e-03 3.238e-02 85.65 115.36
Chambolle–Pock 39.931 3.710e-02 6.689e-02 80.82 160.12 54.408 5.748e-02 1.232e-01 74.04 107.71
Linesearch CP 41.291 4.514e-03 2.563e-02 89.15 469.35 54.720 4.005e-03 3.520e-02 84.92 317.09

same per-iteration complexity. We first test all the algorithms on two MRI images:
MRI-brain-tumor and MRI-of-knee.1 We follow the procedure in [37] to generate the
samples using a sample rate of 20%. Then the vector of measurements b is computed
from b := L(Z\), where Z\ is the original image. Our experiment is implemented
in Matlab 2014b running on a MacBook Pro (Retina, 2.7 GHz Intel Core i5, 16 GB
1867 MHz).

In the Chambollle–Pock method, we use the parameters as suggested in [15] with
τ = σ = ‖A‖−1 (see [43]). For the line-search variant of the of the Chambollle–Pock
method in [43] (denoted by Linesearch CP), we tune the parameters to obtain the
best performance on a set of sample images. These parameters are set to β = 105,
µ = 0.7, and δ = 0.99. Since we aim at reducing the feasibility gap, as guided by our
theoretical results above, we use β1 = 10−3‖A‖ in our algorithms. The performance
and results of these algorithms are summarized in Table 1, where Error := ‖Zk−Z\‖F

‖Z\‖F
presents the error between the original image Z\ to the reconstruction Zk after k = 500
iterations.

As we can see, both Algorithm 1 and Algorithm 2 have comparable performance
with the line-search variant of the Chambolle–Pock method in terms of accuracy while
outperforming the standard variant. In fact, our standard ASGARD method is still
slightly better than this line-search version. The ASGARD with restart gives the
best performance in terms of accuracy as well as peak signal-to-noise ratio (PSNR).
The Linesearch CP is more than three times slower than the other methods in this
experiment.

The reconstructed images are revealed in Figure 6. As we can see from this plot,
the quality of recovery image is very close to the original image for the sampling rate
of 20%. Our algorithms give slightly higher PSNR for both images. The Chambolle–
Pock algorithm has the worst performance compared to the others. However, the
performance of this algorithm can slightly be changed and depends on the tuning
strategy of the step-size parameters [15], which is often very hard to tune a priori in
practice without using a heuristic strategy.

7. A comparison between our results and existing methods. We have
presented a new primal-dual framework and two main algorithms (one with a pri-
mal flavor and one with a dual flavor) together with two special cases. Now let us
summarize the main differences between our approach and existing methods in the
literature.

The composite convex problem (1) can be written as a convex-concave saddle
point problem:

min
x∈Rn

max
y∈Rm

{Φ(x, y) := f(x) + 〈Ax, y〉 − g∗(y)} .(46)

1These images are from https://radiopaedia.org/cases/4090/studies/6567 and https://www.
nibib.nih.gov.
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Original ASGARD ASGARD-Restart ADSGARD Chambolle-Pock Linesearch CP

Original ASGARD ASGARD-Restart ADSGARD Chambolle-Pock Linesearch CP

Fig. 6. The original image and the reconstructed images of the five algorithms.

The optimality condition of this problem is a maximal monotone inclusion and can be
reformulated as a variational inequality (VIP) [2, 29, 62]. While (46) is classical, it has
broad applications in image processing, machine learning, and game theory, among
many others [2, 20, 29, 52]. Recent developments in solution methods for solving (46)
has attracted great attention. Let us briefly survey some notable works which we find
most related to ours.

Nemirovskii in [52] proposed an averaging scheme to solve (46) based on its VIP
formulation. His algorithm requires a proximal step at each iteration, which is usually
not easy to compute in applications. He proved an O(1/k) convergence rate in an
ergodic sense for the primal-dual gap function under the boundedness of both the
primal and the dual domains. Nesterov in [57] proposed a similar method to solve
VIP that covers (46) as a special case. By using smoothing techniques, he could
prove an O(1/k) convergence rate for the gap function in an ergodic sense as in [52].
While this method has a simple subproblem, it requires the underlying operator to
be Lipschitz continuous, and both primal and dual domains are bounded.

One of the most celebrated works for solving nonsmooth convex problem (1)
is due to Nesterov in [56]. By combining both the smoothing technique and his
accelerated gradient-type method, he proposed an algorithm to solve (1) just using
proximal operators of f and g∗. The method achieves an O(1/ε) complexity to obtain
an ε-solution. However, this algorithm has two disadvantages. First, it requires
the boundedness of both the primal and dual domains. Second, the smoothness
parameter depends on both the accuracy ε and the diameter of the primal and dual
domains. An improvement was proposed in [55] to remove the second disadvantage.
But this algorithm requires a symmetric update which leads to a different per-iteration
complexity than [56].

Another remarkable work was proposed by Chambolle and Pock in [15]. This
algorithm solves (46) just using the proximal operator of f and g∗. Similar to [52],
they also proved an O(1/k) convergence rate on the gap function in an ergodic sense
requiring the boundedness of both the primal and dual domains. An improvement
on the parameter range was proposed in [35]. However, the convergence guarantee
remains preserved under the same assumptions. Extensions of [15] can be found in
several papers, including [21, 22, 43].
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Shefi and Teboulle provided a comprehensive study on the convergence rate of
proximal-type methods for solving (1) in [64], which extended the work of [18]. They
discussed different variants of the primal-dual proximal-type methods including the
Chambole–Pock scheme, alternating minimization algorithms (AMA), and alternat-
ing direction methods of multipliers (ADMM). With a proper choice of metric, they
showed an O(1/k)-convergence guarantee on the primal-dual gap function in an er-
godic sense. Their convergence guarantee indeed unifies several schemes but is dif-
ferent from our results in this paper. First, they used different metric for proximal
terms depending on A. This makes the subproblem much harder to solve. Second,
they provided a guarantee for convergence rate on the gap function, which is not ob-
vious to transform it into a separated guarantee for the objective and constraints in
constrained convex optimization settings such as (3). Moreover, the rate on the fea-
sibility in the constrained setting reduces to O(1/

√
k) (see [64, Theorem 5]). Finally,

the gap function is defined on a given domain, and it is not clear how to choose the
radius of this domain.

Other methods for solving (46) can be found in the literature including [15, 19,
23, 24, 25, 36, 60, 61]. Each method requires different structure assumptions and
achieves different guarantees mostly in an ergodic or averaging sense. For instance,
in [19], the authors required f to have a Lipschitz gradient which is much more
limited than our assumptions. The authors in [36] specified a so-called hybrid proximal
extragradient framework proposed in [65] to solve (46). While this method achieves
an O(1/ε) complexity without any boundedness assumption on the domains, it is
rather complicated due to a double loop of inner and outer iterations.

Regarding the constrained setting (3), primal-dual first-order methods for directly
solving large-scaled settings of this problems are also well developed. Let us briefly
discuss some of these methods here. A natural approach is due to dual gradient-type
methods. Such methods often use directly the subgradients of the dual function or
smooth the dual function using proximity terms [50, 49]. While the former gives
a slow convergence rate, which is O(1/

√
k), the latter uses Nesterov’s smoothing

technique in [56] and therefore faces the same drawbacks. In addition, for the set-
ting (3), the dual domain is unbounded, which leads to a difficulty to estimate the
worst-case complexity bounds. Another approach is using penalty or augmented La-
grangian as considered in [38, 39, 51], which often leads a two-loop algorithm and is
much more complicated to control the specified parameters and accuracies in prac-
tice. Alternating direction methods are perhaps the most common use for solving (3);
see [11, 15, 23, 24, 25, 60, 61]. This method often requires an additional structure
assumption, such as f being the sum of two separable convex functions. Without
this structure, auxiliary variables need to be introduced, which is again equivalent
to the two-block case; see, e.g., [11, 74, 75]. Two common methods in this direction
are AMA and ADMM. While AMA can be viewed as a forward-backward splitting
scheme for the dual formulation (2) and requires strict assumptions to guarantee con-
vergence (e.g., one objective component is strongly convex), ADMM is equivalent to
the Douglas–Rachford splitting method applying to the dual and has a convergence
guarantee under mild assumptions. Recently, the convergence rate of ADMM has
been attracted great attention. Many papers have studied ADMM and its variants,
including [11, 24, 34, 60, 61]. We would also like to mention that during the revision
process of this paper, variants of ALM and ADMM with similar convergence rates as
ours have been proposed in [76].

In summary, this paper has tried to overcome several issues we have mentioned
above in recent primal-dual methods. Let us highlight the following characterizations.
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Problem structure assumptions. Our approach requires the convexity and the
existence of primal and dual solutions of (1). In the unconstrained setting (1), we
require g to be Lipschitz continuous, which is often the case in practice. We argue
that such assumptions are mild for (1) and (2) and can be verified a priori. We
emphasize that existing primal-dual methods in [15, 23, 24, 25, 60, 61, 64] require
other structure assumptions on either f , such as Lipschitz gradient, strong convexity,
error bound conditions, or the boundedness of both the primal and dual feasible sets,
which may not be satisfied for (1) and especially for (3) [15, 23, 24, 25, 60, 61].

Convergence characterization. We characterize an O(1/k)-convergence rate for
both the objective residual f(xk) − f? and the feasibility violation ‖Axk − c‖Y,∗ for
the constrained convex problem (3). Our finding is the best-known result under very
mild assumptions and low per-iteration complexity. In the composite form (1), we
also achieve the same O(1/k)-convergence rate as in the seminal work [56]. Tables 2
and 3 compare our theoretical convergence rate results with the most recent selected
algorithms in the literature for solving (1) and (3), respectively.

Decomposition methods. Our algorithms naturally support decomposable struc-
tures in f without either reformulating the problem as in ADMM or requiring addi-
tional assumptions as in parallel and multiblock ADMM [42]. Both algorithms simply
require only one proximal operator of f and g∗, one matrix vector multiplication, and
one adjoint per iteration.

Smoothing and smoothness parameter updates. In contrast to proximal-type ap-
proaches in [45, 46, 64, 65], where the subproblem is often more complicated to solve,
we instead exploit Nesterov’s smoothing technique [56], which allows us to use prox-
imal operators of f and g∗. However, we use differentiable smoothing functions as
compared to Nesterov’s smoothing technique in [56]. We propose explicit rules to
update the smoothness parameters simultaneously at each iteration. We emphasize
that this is one of the key contributions of this paper. To the best of our knowledge,
this is the first adaptive primal-dual algorithms for smoothness parameters without
sacrificing the O(1/k) rate and requiring additional assumptions.

Averaging vs. nonaveraging. Most existing methods employ either nonweighted
averaging [15, 34, 35, 64] or weighted averaging schemes [24, 60, 61] to guarantee the
O(1/k) rate on the primal sequence. While we also provide a weighted averaging
scheme (Algorithm 2), we alternatively derive a method (Algorithm 1) without any
averaging in the primal for solving (1). The nonaveraging schemes are important since
taking averages may destroy key structures, such as the sparsity or low-rankness in
sparse or low-rank optimization. Our weighted averaging scheme has increasing weight
at the later iterates compared to nonweighted averaging schemes [15, 34, 35, 64]. As
indicated in [23, 25], weighted averaging schemes have a better performance guarantee
than nonweighted ones.

We have attempted to review various primal-dual methods which are most related
to our work. It is still worth mentioning other primal-dual methods that are based on
augmented Lagrangian methods, such as alternating direction methods (e.g., AMA,
ADMM, and their variants) [11, 38, 39, 71], Bregman and other splitting methods
[2, 21, 28, 32, 48, 46, 47], and using variational inequality frameworks [15, 35, 33].
While most of these works have not considered the global convergence rate of the
proposed algorithms, a few of them characterized the convergence rate in unweighted
averaging schemes or used a more general variational inequality/monotone inclusion
framework to study (1)–(3). Hence, the results achieved in these papers are distinct
from our findings.
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Appendix A. The proof of theoretical results. This section provides the
full proof of lemmas and theorems in the main text.

A.1. Technical results. We first prove the following basic lemma, which will
be used to analyze the convergence of our algorithms in the main text.

Lemma 10. Let h be a proper, closed and convex function defined on Z and h∗

its Fenchel conjugate. Let bZ be a Bregman distance as defined in (7) with a weighted
norm. We define a smoothed approximation of h as

hβ(z; ż) := max
ẑ∈Z
{〈z, ẑ〉 − h∗(ẑ)− βbZ(ẑ, ż)} ,(47)

where ż ∈ Z is fixed and β > 0 is a smoothness parameter. We also denote by z∗β(z; ż)
the solution of the maximization problem in (47). Then the following facts hold:

(a) We have a relation between the partial derivatives of (z, β) 7→ hβ(z; ż) as

∂hβ(z; ż)
∂β

(β) = −bZ(z∗β(z; ż), ż) = −bZ(∇hβ(z; ż), ż).

(b) For all z ∈ Z, β 7→ hβ(z; ż) is convex, and for βk+1, βk > 0 and z̄ ∈ Z, we
have

hβk+1(z̄; ż) ≤ hβk(z̄; ż)− (βk − βk+1)
∂hβ(z̄; ż)

∂β
(βk+1)(48)

= hβk(z̄; ż) + (βk − βk+1)bZ(∇hβk+1(z̄; ż), ż).

(c) hβ(·; ż) has a 1/β-Lipschitz gradient in ‖ · ‖Z,∗. Hence, for all z̄, ẑ ∈ Z, we
have

hβ(z̄; ż) ≤ hβ(ẑ; ż) + 〈∇hβ(ẑ; ż), z̄ − ẑ〉+
1

2β
‖z̄ − ẑ‖2Z,∗(49)

hβ(ẑ; ż) + 〈∇hβ(ẑ; ż), z̄ − ẑ〉 ≤ hβ(z̄; ż)− β

2
‖∇hβ(ẑ; ż)−∇hβ(z̄; ż)‖2Z .(50)

(d) Both functions h and hβ evaluated at different points z, ẑ ∈ Z satisfy

hβ(ẑ; ż) + 〈∇hβ(ẑ; ż), z − ẑ〉 ≤ h(z)− βbZ(∇hβ(ẑ; ż), ż).(51)

(e) If ‖ ·‖Z is derived from a scalar product, then for all τ > 0, z̄, ẑ ∈ Z, we have

(1− τ)‖∇hβ(ẑ; ż)−∇hβ(z̄; ż)‖2Z + τ‖∇hβ(ẑ; ż)− ż‖2Z(52)

≥ τ(1− τ)‖∇hβ(z̄; ż)− ż‖2Z .

(f) We can control the influence of a change in the center points from ż1 to ż2
using the following estimate:

hβ(z; ż2) ≤ hβ(z; ż1)− β

2
‖z∗β(z; ż1)− z∗β(y; ż2)‖2Z(53)

+ β
[
bZ(z∗β(z; ż2), ż1)− bZ(z∗β(z; ż2), ż2)

]
.

Proof. We prove from item (a) to item (f) as follows.
(a) Since hβ(y) is defined by the maximization of a strongly convex program in

(47), where the function in the max operator is linear in β and convex in z, the
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minimizer z∗β(z; ż) is unique. By the classical marginal derivative theorem [63], the
function is differentiable with respect to β and z. In addition, ∇zhβ(z; ż) = z∗β(z; ż).

(b) The function β 7→ hβ(z; ż) is the maximization of a linear function in β
indexed by y and ẏ. Hence, it is convex. The remaining statement follows by the
convexity of hβ with respect to β and item (a).

(c) Since βbZ(·, ż) is β-strongly convex in the weighted norm ‖ · ‖Z , hβ(·; ż) is
1
β -Lipschitz [56] in the corresponding dual norm. The inequalities (49) and (50) are
classical for convex functions with Lipschitz gradient [54].

(d) Let us denote here ẑ∗β := z∗β(ẑ; ż). Then we can derive

hβ(ẑ; ż) + 〈∇hβ(ẑ; ż), z − ẑ〉 =
(
〈ẑ, ẑ∗β〉 − h∗(ẑ∗β)− βbZ(ẑ∗β , ż)

)
+ 〈ẑ∗β , z − ẑ〉

= 〈z, ẑ∗β〉 − h∗(ẑ∗β)− βbZ(ẑ∗β , ż)

≤ max
u∈Z
{〈z, u〉 − h∗(u)} − βbZ(z∗β , ż)

= h(z)− βbZ(∇hβ(ẑ; ż), ż).

(e) The elementary equality ‖(1−τ)a+τc‖2 = (1−τ)‖a‖2+τ‖c‖2−τ(1−τ)‖a−c‖2
directly implies the result for any norm ‖ · ‖ deriving from a scalar product.

(f) Let us denote by z∗β,1 = z∗β(z; ż1) and z∗β,2 := z∗β(z; ż2). Using the definition of
hβ in (47) and its optimality condition, we can derive

hβ(z; ż2) = max
ẑ∈Z
{〈z, ẑ〉 − h∗(ẑ)− βbZ(ẑ, ż2)} = 〈z, z∗β,2〉 − h∗(z∗β,2)− βbZ(z∗β,2, ż2)

=
(
〈z, z∗β,2〉 − h∗(z∗β,2)− βbZ(z∗β,2, ż1)

)
+ βbZ(z∗β,2, ż1)− βbZ(z∗β,2, ż2)

≤〈z, z∗β,1〉−h∗(z∗β,1)−βbZ(z∗β,1, ż1)

− β

2
‖z∗β,1− z∗β,2‖2Y +βbZ(z∗β,2, ż1)−βbZ(z∗β,2, ż2)

= hβ(z; ż1)− β

2
‖z∗β,1 − z∗β,2‖2Y + β

(
bZ(z∗β,2, ż1)− bZ(z∗β,2, ż2)

)
,

which proves (53).

A.2. The proof of Lemma 1: Key bounds for approximate solutions.
We consider the smooth objective residual Sβ(x; ẏ) :=

(
f(x) + gβ(Ax; ẏ)

)
−
(
f(x?) +

g(Ax?)
)
. By using the definition of gβ , we can derive that

gβ(Ax; ẏ) = max
ŷ∈Y
{〈Ax, ŷ〉 − g∗(ŷ)− βbY(ŷ, ẏ)}

≥ 〈Ax, y?〉 − g∗(y?)− βbY(y?, ẏ)
= 〈Ax−Ax?, y?〉+ 〈Ax?, y?〉 − g∗(y?)− βbY(y?, ẏ)
= 〈A(x− x?), y?〉+ g(Ax?)− βbY(y?, ẏ),(54)

where the last line is the equality case in the Fenchel–Young inequality using the fact
that Ax? ∈ ∂g∗(y?). Similarly, we have

f∗γ (−A>y; ẋ) = max
x̂∈X

{
〈−A>y, x̂〉 − f(x̂)− γbX (x̂, ẋ)

}
≥ 〈A>(y? − y), x?〉+ f∗(−A>y?)− γbX (x?, ẋ).(55)
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Combining (55), the definition (15) of Gγβ(·; ẇ), and the strong duality condition (8),
we can show that

Gγβ(w; ẇ) := Pβ(x; ẏ)−Dγ(y; ẋ)
= f(x) + gβ(Ax; ẏ) + f∗γ (−A>y; ẋ) + g∗(y)
(8)
= Sβ(x; ẏ) + f∗γ (−A>y; ẋ) + g∗(y)− f∗(−A>y?)− g∗(y?)
(55)
≥ Sβ(x; ẏ) + 〈A>(y? − y), x?〉+ g∗(y)− g∗(y?)− γbX (x?, ẋ)
≥ Sβ(x; ẏ)− γbX (x?, ẋ),(56)

where the last inequality holds because g∗ is convex and Ax? ∈ ∂g∗(y?) due to (9).
This proves the first inequality of (16).

Since bY(·, ẏ) is 1-strongly convex with respect to the weighted norm, using the
optimality condition of the maximization problem in (12) at y := y? and u := Ax, we
obtain

gβ(Ax; ẏ) ≥ 〈Ax, y?〉 − g∗(y?)− βbY(y?, ẏ) +
β

2
‖y∗β(Ax; ẏ)− y?‖2Y .(57)

By (9), we have −A>y? ∈ ∂f(x?). Using this and the convexity of f , we have
f(x) ≥ f(x?)− 〈A(x− x?), y?〉. Summing up the last inequality and (57), then using
the definition of Sβ(x; ẏ), we obtain

β

2
‖y∗β(Ax; ẏ)− y?‖2Y ≤βbY(y?, ẏ) +Sβ(x; ẏ) + g(Ax?) + g∗(y?)−〈Ax?, y?〉

≤βbY(y?, ẏ) +Sβ(x; ẏ),

which implies the second estimate in (16), where the last inequality is due to the
Fenchel–Young equality g(Ax?) + g∗(y?) = 〈Ax?, y?〉 and Ax? ∈ ∂g∗(y?).

Now we consider the choice g(·) := δ{c}(·) in the constrained setting (3). Under
Assumption A.1, any w? := (x?, y?) ∈ W? is a saddle point of the Lagrange function
L(x, y) := f(x) + 〈Ax− c, y〉, i.e., L(x?, y) ≤ L(x?, y?) ≤ L(x, y?) for all x ∈ X
and y ∈ Rm. The dual function D in (2) becomes D(y) := −f∗(−A>y) − c>y =
minx {f(x) + 〈Ax− c, y〉}. It leads to D(y) ≤ D(y?) = f(x?) ≤ f(x) + 〈y?, Ax − c〉,
and hence

f(x)−D(y) ≥ f(x)− f(x?) ≥ 〈c−Ax, y?〉 ≥ −‖y?‖Y‖Ax− c‖Y,∗(58)

for all (x, y) ∈ W, which proves (17).
Finally, we prove (18). Indeed, using the definition of g and gβ and Ax? = c, we

can write

f(x)− f(x?) = f(x) + gβ(Ax; ẏ)− f(x?)− g(Ax?)− gβ(Ax; ẏ) + g(Ax?)
= Sβ(x; ẏ)− gβ(Ax; ẏ) + g(Ax?)
(54)
≤ Sβ(x; ẏ)− 〈A(x− x?), y?〉+ βbY(y?, ẏ)

(56)
≤ Gγβ(w; ẇ) + 〈c−Ax, y?〉+ βbY(y?, ẏ) + γbX (x?, ẋ).

We then use the second inequality of (58) to get

〈y?, c−Ax〉 ≤ f(x)− f(x?) = Sβ(x; ẏ)− gβ(Ax; ẏ) + g(Ax?)(59)
= Sβ(x; ẏ)− gβ(Ax; ẏ),

where g(Ax?) = 0 due to the feasibility of x?, i.e., Ax? = c. Now it is obvious that
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gβ(Ax; ẏ) := sup
ŷ∈Y
{〈Ax− c, ŷ〉 − βbY(ŷ, ẏ)} ≥ 〈Ax− c, y?〉 − βbY(y?, ẏ).

Hence, combining this estimate and (59), we obtain the first inequality in (18).
As ∇bY(·, ẏ) is LbY -Lipschitz continuous, bY(ẏ, ẏ) = 0 and ∇bY(ẏ, ẏ) = 0, we have

gβ(Ax; ẏ) = sup
ŷ∈Y
{〈Ax− c, ŷ〉 − βbY(ŷ, ẏ)} ≥ sup

ŷ∈Y

{
〈Ax− c, ŷ〉 −

βLbY
2
‖ŷ − ẏ‖2Y

}
=

1
2βLbY

‖Ax− c‖2Y,∗ + 〈ẏ, Ax− c〉.

The last equality comes from the formula of the Fenchel conjugate of the squared
norm. Combining this inequality and (59), we obtain

〈y?, c−Ax〉 ≤ Sβ(x; ẏ)− 1
2Lbyβ

‖Ax− c‖2Y,∗ − 〈ẏ, Ax− c〉.

Rearranging this expression and using the Cauchy–Schwarz inequality, we obtain
−‖y? − ẏ‖Y‖Ax− c‖Y,∗ ≤ Sβ(x; ẏ)− (2LbYβ)−1‖Ax− c‖2Y,∗, which leads to

‖Ax− c‖2Y,∗ − 2βLbY‖y? − ẏ‖Y‖Ax− c‖Y,∗ − 2LbYβSβ(x; ẏ) ≤ 0.

Let t := ‖Ax−c‖Y,∗. The last inequality becomes t2−2βLbY‖y?−ẏ‖Y t−2LbYβSβ(x; ẏ)
≤ 0. This inequation in t has solution. Hence, ‖y?− ẏ‖2Y + 2L−1

bY
β−1Sβ(x; ẏ) ≥ 0 and

t := ‖Ax− c‖Y,∗ ≤ βLbY
[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2∗ + 2L−1

bY
β−1Sβ(x; ẏ)

)1/2]
,

which is the second estimate of (18).

A.3. The convergence analysis of the ASGARD method. In this ap-
pendix, we provide the full convergence analysis of ASGARD. First, we prove a key
inequality to guarantee the optimality gap reduction condition.

Lemma 11. Let us define Sβk(x̄k; ẏ) := Pβk(x̄k; ẏ)− P ∗ = f(x̄k) + gβk(Ax̄k; ẏ)−
f(x?)− g(Ax?). If τk ∈ (0, 1], then

Sβk+1(x̄k+1; ẏ) +
L̄Aτ

2
k

βk+1
‖x̃k+1 − x?‖2X ≤ (1− τk)Sβk(x̄k; ẏ) +

L̄Aτ
2
k

βk+1
‖x̃k − x?‖2X

+ (1− τk) [(βk − βk+1)LbY − βk+1τk]
∥∥∇gβk+1(Ax̄k; ẏ)− ẏ

∥∥2
Y .(60)

Proof. Using Lemma 10 with h := g, hβ := gβ , Z := Y, and z := Ax, we can
proceed as

f (̄xk+1) + gβk+1(Ax̄k+1; ẏ)
(49)
≤ f(x̄k+1)+gβk+1(Ax̂k; ẏ)+〈∇gβk+1(Ax̂k; ẏ), Ax̄k+1−Ax̂k〉

+
1

2βk+1
‖Ax̂k −Ax̄k+1‖2Y,∗

∇gβ=y∗β
≤ f (̄xk+1)+gβk+1(Ax̂k; ẏ)+〈A>y∗βk+1

(Ax̂k; ẏ), x̄k+1−x̂k〉+ L̄A
2βk+1

‖x̂k−x̄k+1‖2X(61)

def. of x̄k+1

≤ f(x)+gβk+1(Ax̂k; ẏ)+〈A>y∗βk+1
(Ax̂k; ẏ), x−x̂k〉+ L̄A

2βk+1

[
‖x̂k−x‖2X−‖x̄k+1−x‖2X

]
,
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where the last inequality comes from the definition of x̄k+1 by using its optimality
condition and the functions value at x ∈ X .

Our next step is to choose x := (1− τk)x̄k + τkx
?. In this case, we have

x− x̂k = (1− τk)x̄k + τkx
? − (1− τk)x̄k − τkx̃k = τk(x? − x̃k),

x− x̂k = (1− τk)x̄k + τkx
? − (1− τk)x̂k − τkx̂k = (1−τk)(x̄k−x̂k)+τk(x?−x̂k),

x− x̄k+1 = (1− τk)x̄k + τkx
? − x̂k − τk(x̃k+1 − x̃k) = τk(x? − x̃k+1).

Now we plug these expressions into (61), and using the convexity of f , we can derive

f(x̄k+1) + gβk+1(Ax̄k+1; ẏ) ≤ (1− τk)f(x̄k) + τkf(x?) + gβk+1(Ax̂k; ẏ)

+ τk〈A>y∗βk+1
(Ax̂k; ẏ), x?−x̂k〉+(1−τk)〈A>y∗βk+1

(Ax̂k; ẏ), x̄k−x̂k〉

+
L̄Aτ

2
k

2βk+1
‖x̃k − x?‖2X −

L̄Aτ
2
k

2βk+1
‖x̃k+1 − x?‖2X

(50)+(51)
≤ (1− τk)f(x̄k) + τkf(x?) + τkg(Ax?)− τkβk+1bY(∇gβk+1(Ax̂k; ẏ), ẏ)

+(1−τk)gβk+1(Ax̄
k; ẏ)−(1−τk)

βk+1

2
‖∇gβk+1(Ax̂

k; ẏ)−∇gβk+1(Ax̄
k; ẏ)‖2Y

+
L̄Aτ

2
k

2βk+1
‖x̃k − x?‖2X −

L̄Aτ
2
k

2βk+1
‖x̃k+1 − x?‖2X

(48)
≤ (1− τk)f(x̄k) + τkf(x?) + τkg(Ax?) + (1− τk)gβk(Ax̄k; ẏ)

− τkβk+1

2
‖∇gβk+1(Ax̂k; ẏ)− ẏ‖2Y + (1− τk)(βk − βk+1)

bY(∇gβk+1(Ax̄k; ẏ), ẏ)

− (1− τk)
βk+1

2
‖∇gβk+1(Ax̂k; ẏ)−∇gβk+1(Ax̄k; ẏ)‖2Y

+
L̄Aτ

2
k

2βk+1
‖x̃k − x?‖2X −

L̄Aτ
2
k

2βk+1
‖x̃k+1 − x?‖2X .

By using (52) from Lemma 10, we can further estimate this inequality as

f(x̄k+1) + gβk+1(Ax̄k+1; ẏ)
(52)
≤ (1−τk)f(x̄k)+(1−τk)gβk(Ax̄k; ẏ)+τkf(x?)+τkg(Ax?)

+ (βk − βk+1)(1− τk)bY(∇gβk+1(Ax̄k; ẏ), ẏ)

− βk+1

2
τk(1− τk)‖∇gβk+1(Ax̄k; ẏ)− ẏ‖2Y

+
L̄Aτ

2
k

2βk+1
‖x̃k − x?‖2X −

L̄Aτ
2
k

2βk+1
‖x̃k+1 − x?‖2X .

Finally, using the LbY -Lipschitz continuity of ∇bY in the weighted norm ‖ · ‖Y and
the fact that ∇bY(ẏ, ẏ) = 0, we obtain (60) from the last derivation.

A.3.1. The proof of Lemma 2: Small smoothed primal optimality gap.
Let us denote Sβk(x̄k; ẏ) := Pβk+1(x̄k; ẏ)−P ? = f(x̄k)+gβk(Ax̄k; ẏ)−f(x?)−g(Ax?).
Using (60) from Lemma 11, we have

Sβk+1(x̄k+1; ẏ) +
L̄Aτ

2
k

βk+1
‖x̃k+1 − x?‖2X ≤ (1− τk)Sβk(x̄k; ẏ) +

L̄Aτ
2
k

βk+1
‖x̃k − x?‖2X

+
(1− τk)

2
[
(βk − βk+1)LbY − βk+1τk

]
‖∇gβk+1(Ax̄k; ẏ)− ẏ‖2Y .(62)
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In order to remove the last term in this estimate and to get a telescoping sum, we can
impose the following conditions:

(βk − βk+1)LbY = βk+1τk and (1− τk)
βk+1

τ2
k

=
βk
τ2
k−1

.(63)

By eliminating βk and βk+1 from these equalities, we obtain τ2
k (1+τk/LbY ) = τ2

k−1(1−
τk). Hence, we can compute τk by solving the cubic equation

p3(τ) := τ3/LbY + τ2 + τ2
k−1τ − τ2

k−1 = 0.(64)

At the same time, we also obtain from (63) an update rule βk+1 := βk
1+ τk

LbY

< βk.

Now we show that (64) has a unique positive solution τk ∈ (0, 1) for any LbY ≥ 1
and τk−1 ∈ (0, 1]. We consider the cubic polynomial p3(τ) defined by the left-hand
side of (64). Clearly, for any τ > 0, we have p′3(τ) = 3τ2/LbY +2τ + τ2

k−1 > 0. Hence,
p3(·) is monotonically increasing on (0,+∞). In addition, since p3(0) = −τ2

k−1 < 0
and p3(1) = 1/LbY+1 > 0, the equation (64) has only one positive solution τk ∈ (0, 1).

Next we show that τk ≤ 2
k+2 . Indeed, by (64), we have p3(τ) ≥ τ2 + τ2

k−1τ −
τ2
k−1 := p2(τ). Since the unique positive root of p2(τ) = 0 is τ̃k := τk−1

2 (
√
τ2
k−1+4−τk−1),

we have p3(τ) ≥ p2(τ̃k) = 0 for τ ≥ τ̃k. As p3(τ) is monotonically increasing on R+,
its positive solution τk must be in (0, τ̃k]. Hence, we have τk ≤ τk−1

2 (
√
τ2
k−1+4−τk−1).

By induction, we can easily show that τk ≤ 2
k+2 .

We show by induction that τk ≥ 1
k+1 . First of all, by the choice of τ0, we have

τ0 = 1 ≥ 1
0+1 . Suppose that τk−1 ≥ 1

k ; we show that τk ≥ 1
k+1 . Assume by

contradiction that τk < 1
k+1 . Then using (63), we have

1
k2 ≤ τ

2
k−1 = τ2

k

1 + τk/LbY
1− τk

<
1

(k + 1)2

1 +
L−1
bY

k+1

1− 1
k+1

=
1

(k + 1)2

k + 1 + LbY
k

.

This is equivalent to (k + 1)2 < k(k + 1 + LbY ), which contradicts the assumption
that LbY = 1 in Lemma 2. Hence, if τk−1 ≥ 1

k , then we have τk ≥ 1
k+1 . We have

1
k+1 ≤ τk ≤

2
k+2 for k ≥ 0.

By the update rule βk+1 := βk
1+ τk

LbY

of βk, we can show that

βk+1 =
βk

1 + τk/LbY
≤ βk

k + 1
k + 1 + L−1

bY

≤ β1

k∏
l=1

l + 1
l + 1 + L−1

bY

= O
( 1
k1/LbY

)
−→
k→∞

0.

Clearly, if LbY = 1, then βk+1 = βk
1+τk

≤ k+1
k+2βk ≤

2β1
k+2 by induction.

Finally, we upper bound the ratio τ2
k/βk+1 by using the second equality in (63)

as

τ2
k

βk+1
=
τ2
k−1

βk
(1−τk) =

τ2
0

β1

k∏
l=1

(1−τl) ≤
τ2
0

β1

k∏
l=1

(
1− 1

l + 1

)
=
τ2
0

β1

k∏
l=1

l

l + 1
=

τ2
0

β1(k+1)
.

Using these relations in (62) and letting Sk := Sβk(x̄k; ẏ), we obtain

βk+1

τ2
k

Sk+1 +
L̄A
2
‖x̃k+1−x?‖2X ≤

βk
τ2
k−1

Sk +
L̄A
2
‖x̃k−x?‖2X ≤

β0(1−τ0)
τ2
0

S0+
L̄A
2
‖x̃0−x?‖2X

and get (20), noting that τ0 = 1, the bound on τ2
k

βk+1
, and Sk := Pβk(x̄k; ẏ)− P ?.
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A.4. The analysis of the update rule (24). If we choose pY(y) := 1
2‖y‖

2
2,

then bY(y, ẏ) = 1
2‖y− ẏ‖

2
2. We can compute y∗β(u; ẏ) from (13) explicitly as y∗β(u; ẏ) =

ẏ + 1
β (u − c) and gβ(u; ẏ) from (12) as gβ(u; ẏ) = 1

2β ‖u − c‖
2
2 + 〈ẏ, u − c〉. Hence,

gβk+1(u; ẏ) = gβk(u; ẏ) + (βk−βk+1)
βk+1βk

‖u − c‖22. Using this relation in the proof of
Lemma 11 instead of (48), we obtain

Sβk+1(x̄k+1; ẏ) +
L̄Aτ

2
k

βk+1
‖x̃k+1 − x?‖2X ≤ (1− τk)Sβk(x̄k; ẏ) +

L̄Aτ
2
k

βk+1
‖x̃k − x?‖2X

+
(1− τk)
2βkβk+1

[βk+1 − (1− τk)βk] ‖∇gβk+1(Ax̄k; ẏ)− ẏ‖2Y .

Hence, if we choose βk+1 = (1− τk)βk, then we can remove the last term in the above
estimate. Combining this rule and the second condition of (63), we obtain the update
rule (24).

A.5. The proof of Lemma 5: Gap reduction in ADSGARD. For simplic-
ity of notation, we denote by f∗k (y) := f∗γk+1

(−A>y; ẋ) using (10), ȳ∗k := y∗βk(Ax̄k; ẏ),
x̂∗k+1 := x∗γk+1

(ŷk; ẋ), and x̄∗k+1 := x∗γk+1
(ȳk; ẋ). By (49), ∇f∗γ is Lipschitz continuous

with the Lipschitz constant Lf∗γ := γ−1, and thus ∇f∗k is Lipschitz continuous with
the Lipschitz constant γ−1

k+1L̄A.
First, using the optimality condition for problem (14), we obtain

f(x̄k) + 〈Ax̄k, y〉 − βkbY(y, ẏ)− g∗(y) ≤ Pβk(x̄k; ẏ)− (βk/2)‖y − ȳ∗k‖2Y .(65)

Second, using the definition of f∗γ (·; ẋ) in (10), we can show that

〈Ax̂∗k+1, y〉+ f(x̂∗k+1) = −γk+1bX (x̂∗k+1, ẋ)− f∗k (ŷk) + 〈Ax̂∗k+1, y − ŷk〉
= −γk+1bX (x̂∗k+1, ẋ)− f∗k (ŷk)− 〈∇f∗k (ŷk), y − ŷk〉.(66)

Third, using (48) for f∗γ and the inequality (50) of f∗γk+1
(·; ẋ), we can derive

−Dγk(ȳk; ẋ) = f∗γk(−A>ȳk; ẋ) + g∗(ȳk)
(48)
≥ f∗γk+1

(−A>ȳk; ẋ) + g∗(ȳk)− (γk − γk+1)bX (x̄∗k+1; ẋ)
(50)
≥ f∗γk+1

(−A>ŷk; ẋ) + 〈∇f∗γk+1
(−A>ŷk; ẋ), A>(ŷk − ȳk)〉

+
γk+1

2
‖∇f∗γk+1

(−A>ȳk; ẋ)−∇f∗γk+1
(−A>ŷk; ẋ)‖2X

+ g∗(ȳk)− (γk − γk+1)bX (x̄∗k+1, ẋ)

= f∗k (ŷk) + 〈∇f∗k (ŷk), ȳk − ŷk〉+
γk+1

2
‖x̄∗k+1 − x̂∗k+1‖2X

+ g∗(ȳk)− (γk − γk+1)bX (x̄∗k+1, ẋ).(67)

Then by the definition of ȳk+1, we can write

Dγk+1(ȳk+1; ẋ)=−g∗(ȳk+1)− f∗γk+1
(−A>ȳk+1, ẋ)

≥ −g∗(ȳk+1)− f∗k (ŷk)− 〈∇f∗k (ŷk), ȳk+1−ŷk〉− L̄A
2γk+1

‖ȳk+1−ŷk‖2Y

= −min
u∈Y

{
g∗(u) + f∗k (ŷk)+〈∇f∗k (ŷk), u−ŷk〉+ L̄A

2γk+1
‖u−ŷk‖2Y

}
.(68)
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Using these relations, the definition of x̄k+1, and the convexity of f , we have

Pβk+1(x̄k+1; ẏ) = f(x̄k+1) + max
y∈Y

{
〈Ax̄k+1, y〉 − g∗(y)− βk+1bY(y, ẏ)

}
(25)
≤ max

y∈Y

{
(1− τk)

[
f(x̄k) + 〈Ax̄k, y〉 − βkbY(y, ẏ)− g∗(y)

]
+ τk

[
〈Ax̂∗k+1, y〉+ f(x̂∗k+1)− g∗(y)

] }
(65)+(66)
≤ (1− τk)Pβk(x̄k; ẏ)− τkγk+1bX (x̂∗k+1, ẋ)

−min
y∈Y

{
τkf
∗
k (ŷk)+τk〈∇f∗k (ŷk), y−ŷk〉+(1−τk)βk

2
‖y−ȳ∗k‖2Y+τkg∗(y)

}
(67)
≤ (1− τk)

[
Pβk(x̄k; ẏ)−Dγk(ȳk; ẋ)

]
− τkγk+1bX (x̂∗k+1, ẋ)

− (1− τk)γk+1

2
‖x̄∗k+1 − x̂∗k+1‖2X + (1−τk)(γk−γk+1)bX (x̄∗k+1, ẋ)

−min
y∈Y

{
f∗k (ŷk) + 〈∇f∗k (ŷk), (1−τk)ȳk+τky−ŷk〉

+
(1−τk)βk

2
‖y−ȳ∗k‖2Y + g∗((1− τk)ȳk + τky)

}
.

Let us define the auxiliary term Tk as

Tk := (1−τk)γk+1
2 ‖x̄

∗
k+1 − x̂∗k+1‖2X − (1−τk)(γk−γk+1)bX (x̄∗k+1, ẋ)

+τkγk+1bX (x̂∗k+1, ẋ).
(69)

Now we consider the change of variable u := (1− τk)ȳk + τky for y ∈ Y. Then u ∈ Y
and u− ŷk = τk(y − ȳ∗k). We have

Pβk+1(x̄k+1; ẏ) ≤ (1− τk)Gγkβk(w̄k; ẇ)− Tk

−min
u∈Y

{
f∗k (ŷk)+〈∇f∗k (ŷk), u−ŷk〉+(1−τk)βk

2τ2
k

‖u−ŷk‖2Y + g∗(u)
}

(68)+(25)
≤ (1− τk)Gγkβk(w̄k; ẇ) +Dγk+1(ȳk+1; ẋ)− Tk.(70)

Finally, we estimate Tk in (69) using the strong convexity of bX (·, ẋ) as follows:

2Tk ≥ (1−τk)γk+1‖x̄∗k+1 − x̂∗k+1‖2X + τkγk+1‖x̂∗k+1 − ẋ‖2X
− (1−τk)(γk−γk+1)LbX ‖x̄∗k+1 − ẋ‖2X
(52)
≥ (1− τk) [τkγk+1 − (γk−γk+1)LbX ] ‖x̄∗k+1 − ẋ‖2X

(25)
≥ 0.(71)

Substituting (71) into (70), we get Gγk+1βk+1(w̄k+1; ẇ) ≤ (1− τk)Gγkβk(w̄k; ẇ).
Note that this is valid for all k ≥ 1. Using similar ideas together with the relations

x̄1 = x̂∗1 and ŷ0 = ȳ∗0 , we also get

Gγ1,β1(w̄1; ẇ) ≤ −γ1bX (x̄1, ẋ) +
L̄A
2γ1
‖ȳ∗1 − ȳ∗0‖2Y − β1bY(ȳ∗1 , ẏ).

As β1γ1 ≥ L̄A and ȳ∗0 := ẏ, we obtain Gγ1β1(w̄1; ẇ) ≤ 0.
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Next we set the equality in three conditions of (25) to get γk+1 = γk(1 +
τk/LbX )−1, βk+1 = (1−τk)βk, and (1−τk)βkγk+1 = τ2

k L̄A. In particular, γk+1βk+1 =
τ2
k L̄A, and thus γ1β1 = L̄A. By eliminating γk and βk, we obtain τ3

k/LbX + τ2
k +

τ2
k−1τk − τ2

k−1 = 0. Hence, similar to the proof of Lemma 2, we can show that
τk ∈ (0, 1) is the unique positive solution of the cubic equation p3(τ) := τ3/LbX +
τ2 + τ2

k−1τ − τ2
k−1 = 0. In addition, 1

k+1 ≤ τk ≤
2
k+2 for k ≥ 1 and τ0 = 1. If LbX = 1,

then γk+1 = γk
1+τk

≤ γk(k+1)
k+2 ≤ 2γ1

k+2 . Similarly, βk+1 = (1 − τk)βk ≤ k
k+1βk ≤

β1
k+1 .

Finally, we note that βk+1 = τ2
k L̄A
γk+1

≥ L̄A
(k+1)2

k+2
2γ1
≥ L̄A

2γ1(k+1) .

A.6. The proof of Proposition 8: The accelerated augmented Lagran-
gian method. First of all, with the choice of norm associated with the Lagrangian
smoother, we have

L̄A := ‖A‖2 = max
x∈Rn

{
‖Ax‖2Y,∗
‖x‖2X

}
= max
x∈Rn

{
‖Ax‖2Y,∗
‖Ax‖2Y,∗

}
= 1.

Next note that the conclusions of Lemma 5 are valid for any seminorm. In particular,
if we choose β1γ0 ≥ L̄A = 1,

γk+1 = γ0 ≥
γ0

1 + τk/LbX
, βk+1 = (1− τk)βk, and

L̄A
γ0

=
(1− τk)βk

τk
,

then Gγ0,βk+1(w̄k+1; ẇ) ≤ (1− τk)Gγ0,βk(w̄k; ẇ) ≤ 0.

Eliminating βk+1 and βk in these equalities, we get τ2
k+1

1−τk+1
= τ2

k . One can easily

check by induction that βk = β1
∏k
l=1(1 − τl) = β1

τ2
k

τ2
0

= τ2
k

γ0
and τk ≤ 2

k+2 . We then
conclude, using Lemma 1 and the fact that bX (x?, ẋ) = 0, that

Sβk(x̄k; ẏ) ≤ Gγ0βk(w̄k; ẇ) ≤ 0,

‖Ax̄k − c‖Y,∗ ≤ βkLbY
[
‖y? − ẏ‖Y +

(
‖y? − ẏ‖2Y + 2L−1

bY
β−1
k Sβk(x̄k; ẏ)

)1/2]
≤

8LbY‖y? − ẏ‖Y
γ0(k + 2)2 ,

and

f(x̄k)− f? ≤ Sβk(x̄k; ẏ)− 〈y?, Ax̄k − c〉+ βkbY(y?, ẏ)

≤ ‖y?‖Y‖Ax̄k − c‖Y,∗ + βkbY(y?, ẏ) ≤
8LbY‖y?‖Y‖y? − ẏ‖Y + 4bY(y?, ẏ)

γ0(k + 2)2 ,

f(x̄k)− f? ≥ −‖y?‖Y‖Ax− c‖Y,∗ ≥ −
8LbY‖y?‖Y‖y? − ẏ‖Y

γ0(k + 2)2 .

The proposition is proved.

A.7. The proof of Proposition 9: The strongly convex objective case.
The proof follows the same arguments as the proof of Lemma 5. We only need to
replace the Lipschitz continuity coefficient L̄A

γk+1
by Lf∗A = L̄A

µf
in (68) and replace all

other occurrences of γk+1 by zero. Under a choice of parameters satisfying (34), we
obtain the gap reduction condition

G0,βk+1(w̄k+1; ẇ) ≤ (1− τk)G0,βk(w̄k; ẇ) ≤ 0

as in Lemma 5. We can also check by induction that βk ≤ 4
(k+2)2

L̄A
µf

. Hence, we
obtain the conclusion of Proposition 9 by using Lemma 1.
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