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Abstract

We investigate the feasibility of the use of convolutional neural networks to estimate the amount of
groundwater stored in the aquifer and delineate water-table level from active-source seismic data.
The seismic data to train and test the neural networks are obtained by solving wave propagation in
a coupled poroviscoelastic-elastic media. A discontinuous Galerkin method is used to model wave
propagation whereas a deep convolutional neural network is used for the parameter estimation
problem. In the numerical experiment, the primary unknowns, the amount of stored groundwater
and water-table level, are estimated, while the remaining parameters, assumed to be of less of
interest, are successfully marginalized in the convolutional neural networks-based solution.

1 Introduction

Groundwater is the worlds largest readily available freshwater resource [13] and hugely important in
both developed and developing countries. A detailed knowledge of the underground water storage
(aquifer) properties and subsurface parameters are crucial in aquifer management, e.g. preventing
waterlevel drawdown and planning aquifer protection. Traditional approaches for studying aquifers
include geophysical surveys, followed by drilling and hydraulic test studies. The methodology
presented in this paper can potentially make a significant difference both economically, by reducing
the number of boreholes, and for data coverage, by transitioning from point data to continuous
data.

Groundwater aquifers are found in porous media such as gravel or sand, or within fractured
bedrock. One potential method to characterize and monitor aquifers is to employ seismic data.
Seismic signals are generated by vibrators or man-made impacts and propagate through the porous
aquifers. Because the seismic wave field interacts with the porous materials, the poroelastic sig-
nature of the aquifer can potentially be captured in seismograms. Hence, measured signals can be



used, with efficient numerical tools, to increase the knowledge of the groundwater reservoir state.
Porosity, and its subsurface distribution, and the water-table are the factors that define the amount
of groundwater stored in an aquifer. Recent progress in computational methods for seismic wave
propagation has made it possible, in principle, to attempt the estimation of the key aquifer pa-
rameters [6, 23, 24]. It is well-known that porosity not only influences seismic velocities but also
reduces the seismic amplitude. Hence, porosity can be estimated from seismic data [20, 28].

Neural networks have been applied to estimate groundwater levels and aquifer parameters. For
example, [9], [10], and [33] use inputs such as temperature and well-based water level measurements
to build a model for predicting groundwater levels. Furthermore, [4] and [19] are examples of studies
where neural networks are used to estimate aquifer transmissivity and storativity from an applicable
well-based dataset.

In this work, we consider prediction of the groundwater stored in an aquifer and the water-
table level using seismic data. We couple simulations with deep learning for the prediction. More
specifically, the presented approach consists of two main components:

I Seismic wave propagation from the source to receivers (i.e. the forward problem) in coupled
poroviscoelastic-elastic media is simulated using a discontinuous Galerkin (DG) and low-
storage Runge-Kutta time stepping methods [16, 26, 12]. The DG method is a well-known
high-order accurate numerical technique to numerically solve differential equations and has
properties that makes it well-suited for wave simulations (see e.g. [21, 11, 36, 32, 14]). These
properties include, for example, the straightforward handling of complex geometries and large
discontinuities in the material parameters. In addition, the method has excellent paralleliza-
tion properties. All of these are essential features for the numerical scheme to be used in
complex wave problems.

II The inverse problem of estimating the amount of groundwater and water table-level is solved
by neural networks techniques. Compared to the conventional inversion techniques, neural
networks has an advantage, that after the network has been trained, inferences can be car-
ried out using the network without evaluating the forward model. This can dramatically
reduce the computational time. Furthermore, the neural networks provide a straightforward
approach to marginalize uninteresting parameters in the inference. In this study, we consider
a convolutional neural network (CNN) [30, 5, 29, 7] that employs convolutions instead of ma-
trix multiplications. The convolutional neural networks have shown potential to interpret the
data in various estimation problems. Recent studies include electrical impedance tomography
[15], aerosol research [17], and ultrasound tomography [27]. In the context of seismic imaging,
the deep learning techniques have been studied, for example in [2, 3].

2 Model setup

We consider a 48 m-long model domain I = [—24,24] m, which consists of one elastic (bedrock)
and two poroelastic (air- and water-saturated aquifer) subdomains, see Figure 1. This model is
motivated by an on-going seismic experiment carried out in Virttaankangas, Finland [31]. The
upper porous layer is air-saturated while the lower layer is water-saturated and the interface is
the water-table. We set the free boundary condition on the top surface while other boundaries
are modeled as outflow boundaries. Receivers are placed on the ground surface while sources are
assumed to be buried at depth of 0.5 m from the ground surface. In addition, 38 receivers are used



to measure the vertical velocity data from 10 seismic source positions. The z-components of the
receivers are distributed uniformly over the interval x € [-23, 23] m while z-components of the
sources are distributed uniformly over the interval x € [—22.378, 22.378] m.
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Figure 1: Model used for benchmarking purposes. Circles denote the receivers and the crosses
denote the sources.

The seismic sources are modeled as force-type point sources, with the force pointing along the
negative vertical-axis. We use the first derivative of a Gaussian pulse as the time-dependent source
signal with a frequency fy = 100 Hz and a time delay ¢y = 1.2/ fy. The modeling time was 0.17 s.
Note that recorded data are downsampled to a sampling frequency of 1 kHz on each receiver.

As the physical model, we use the coupled poroviscoelastic-elastic model studied in [12]. The
aquifer is modeled as a fully saturated porous material based on the Biot theory while the bedrock
layer is assumed to have very low porosity and can therefore be modeled as an elastic layer. In
the physical model for the poroviscoelastic media, a total of 11 physical parameters must be given.
These parameters are: fluid density p¢, fluid bulk modulus k¢, viscosity 7, solid density ps, solid bulk
modulus ks, frame bulk modulus kg, frame shear modulus pg, tortuosity 7, porosity ¢, permeability
k, and quality factor Qg. In this study, we operate in the Biot’s high-frequency regime for which
the attenuation is controlled by the quality factor Qo [8, 34, 12]. In the elastic layer, we have a total
of three unknown physical parameters, namely density p., bulk modulus K,, and shear modulus
te. For a more detailed discussion of the physical model, we refer to [8] and references therein.

Model parametrization

The basement profile is taken from a ray-tracing based estimate (;y(a:) [31] to model parametrization
and smoothing constraints used for fast model convergence. However, the basement profile is not
assumed to be fully accurate. Instead, profiles are perturbed randomly. Basement profiles are

sampled as
by(x) = by(x) + o Me(x) + 0gHyp (z), x €, (1)



where M, is a Matern field [35] with v = 3/2 or, more specifically, a Gaussian process with the
covariance function

Co=sppe(r,a’) = cov(Mc(x), Mc(z"))
(143 p (—val
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where c¢ is the correlation length and H is a Heaviside function (Hy, (z) = 1 if z > gy and 0
otherwise), used to produce a possible discontinuity in the basement profile.

To generate a sample of a basement profile, we first sample the correlation length ¢ and the
standard deviation dpr as ¢ ~ U(3, 10) and dpr ~ U(0,1), respectively, and then generate a
realization of the Matern field corresponding to c¢. In addition, we sample dy ~ U(—2,2) and
xg ~ U(—24,120), i.e. the discontinuity exists with probability 48/144 = 1/3, and add the
discontinuity to the profile. Figure 2 shows examples of the sampled basement profiles. The water-
table level W' is assumed to vary uniformly between -3.7 m and -0.7 m whereas the ground surface
remains fixed in each sample.
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Figure 2: Three realizations and the ray-tracing based value (thick black line) to represent the
basement profile.

The fluid parameters for the water-saturated zone are given by: the density ps = 1000 kg/m3,
the fluid bulk modulus x; = 2.1025 GPa, and the viscosity n = 1.3e-3 Pa-s, while in the air-saturated
part, we set: pf = 1.2 kg/m?, ky = 1.3628e5 Pa, and ) = 1.8e-5 Pa-s. All other material parameters
of the aquifer are assumed to be unknown. Furthermore, the remaining material parameters are
realizations of Gaussian Markov random fields (MRF). The MRFs are generated using an isotropic
Ornstein-Uhlenbeck process Il with the correlation length ¢. Fach unknown material parameter
0 ={ps, ks, K, Pr, 7, &, k, Qo} is randomized as follows:

0~ U(0.90, 1.10), Sy ~U(0, 0.16%), c ~U(2, 20) (4)

Mean values of 0 are given in Table 1. Furthermore, the unknown parameters are assumed to be
uncorrelated.

In the bedrock layer, material fields are assumed to be purely elastic and homogeneous. Most
of the energy reflects back from the basement layer and we expect the heterogeneity of the bedrock
layer to have a minor effect. Therefore parameters § = { Ko, pe, pe} are assumed to be homogeneous
and be sampled as in (3) with 9 = 0. For the mean values we set: K. = 66.0 GPa, fi. = 24.75
GPa, and p. = 2750 kg/m?3.



Table 1: The mean values of the uniform sampling distributions for each unknown physical param-
eter.

variable name symbol | value
solid density ps (kg/m3) | 2400
solid bulk modulus s (GPa) 3.0
frame bulk modulus &g (GPa) 0.3
frame shear modulus i, (GPa) 0.2

tortuosity T 1.8
porosity b (%) 30
permeability k (m?) 5e-8
quality factor Qo 50

Table 2: Calculated wave speeds for each subdomain. c;, and clI

» denote the fast and slow pressure
and ¢, the shear wave speed, respectively. Both minimum/maximum values, which are based on
sampling the material parameters, are given.
subdomain c; (m/s) c]IDI (m/s) ¢s (m/s)
air-saturated 428/829  205/336  239/514
water-saturated | 983/1563  210/470  231/478

bedrock 5434/6598 - 2715/3312

Table 2 lists the calculated wave speeds for each subdomain. The reported wave speed values
correspond to the values generated by sampling of the material parameters. For further details of
calculating wave speeds, we refer to [12].

The total amount of water stored in the aquifer is one of the primary unknowns in the application
and can be computed as

KU}
VU= "grAp. (5)
/=1

Here, K denotes the number of elements that belong to the water-saturated aquifer and ¢}’ and
A} are the porosity and area of the /th element in the water-saturated aquifer, respectively.

Two randomized porosity fields are shown in Figure 3 (a). Fields are shown for the cases when
the amount of stored groundwater is low (left) or high (right). The blue horizontal line shows the
water-table level. The visualized porosity fields share the same color scale.

The snapshots of the total solid velocity field are shown in the Figure 3 (b). The source location
is shown in the top row. In contrast to the porosity visualization, the color scale is unique for the
velocity fields. Snapshots are visualized at the time instant 59 ms. The velocity fields support the
previous statement that very low levels of energy penetrate to the elastic subdomain. Furthermore,
both of the selected samples contains a sharp discontinuity in the basement profile which can also
be seen clearly from the snapshots.

In Figure 3 (c), the corresponding noiseless shot records are shown. As with the snapshots, the
source location is given in the top row figures. The modeling results show the direct arrival and a
clear reflection from the basement boundary. Water-table appears to produce no clear reflection as
expected from the two heterogeneous models. Weak reflections from the boundaries are evident in



the record and the wave field snapshot, particularly for the case with deeper water-table.
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Figure 3: Two example porosity fields (a) and the corresponding recovered vertical solid velocity
data (c). Colorbar at top shows the porosity values in percent. Snapshots in the middle (b) show
the total solid velocity field for time instant 59 ms. Images correspond to samples where the amount
of stored water is low (left) or high (right). The source location (red ’x’) and water-table level
(horizontal blue line) are shown on the top figures.

3 Deep convolutional neural networks

In this work, we apply deep convolutional neural networks to estimate the parameters related to
groundwater storage. A neural network © = ©(X;w) is a nested composition of functions, from a
d-dimensional input space X € R% to © € R™, which is the output space of the inferred variable.
For example, a neural network, comprising two convolutional layers and two fully connected layers
(the architecture used in this work), can be expressed as

@(X;w) = 04(11}4 . Jg(wg . UQ(U}Q * 01(w1 * X + bl) + bg) + b3) + b4), (6)

where wy and ws are the parametrized convolution kernels (filter weights) for the convolutional
layers, w3 and wy are the weight matrices for the fully connected layers, and b, are bias terms. The
functions oy, are used to model nonlinearity of the network and in our case are chosen to be the



non-linear Rectified Linear Unit (ReLU), o = max(0, X). It is to be noted that the convolutional
layers also involves pooling layers that reduce the signal dimension.

The input of the network is the recorded vertical solid velocity wave data, expressed as 3D-data
X € R%, d = N, x N, x Ny, where N; denotes the number of time steps, N, the number of receivers,
and N, the number of sources (in our case, the input dimension is d = 171 x 38 x 10). An example
of the velocity data are shown in Figure 4. Note that, since the data are three-dimensional, the
convolutions are also three-dimensional. We are interested in the amount of water stored in the
aquifer V* (see Eq. (5)) and the water-table level W!. We train the networks for the amount of
stored water and water-table level separately, meaning that the output dimension is chosen to be
m =1 and © is either V,* or Wé. The precise model architecture is shown in Table 3.

source source source source source source source source source source
index 1 index 2 index 3  index 4 index 5  index 6 index 7  index 8 index 9 index 10

receiver receiver receiver receiver receiver receiver receiver receiver  receiver  receiver
index index index index index index index index index index

Figure 4: An example 3D-image, expressed as a stack of 2D-images, used for training the deep
convolutional neural networks. Note that the deep learning algorithm uses the original pixel values
of the image X. In each 2D-image, time is shown on the vertical-axis and the receiver index on the
horizontal-axis. Hence, each figure shows data from different sources.

Table 3: The convolutional neural network architecture used in this study.

Layer k Type and non-linearity input size output size
Input 171 x 38 x 10 x 1 | 171 x 38 x 10 x 1
1 Convolution layer (5 x 3 x 3 filter) | 171 x 38 x 10 x 1
+ ReLU+ Max-pooling (2 x 2 x 2) 86 x 19 x 5 x 10
2 Convolution layer (5 x 3 x 3 filter) | 86 x 19 x 5 x 10
+ ReLU + Max-pooling (2 x 2 x 2) 43 x 10 x 3 x 20
3 Vectorization 43 x 10 x 3 x 20 25800
Fully connected layer + ReLLU 25800 250
4 Fully connected layer 250
Output




The neural network is trained using a dataset comprising of physical parameters {©;} and
corresponding images {Xy}, £ = 1,..., Np,. The generation of such a dataset is described below.
The goal is to find weights w and biases b that minimize the discrepancy between the physical
parameters {©,} and the values predicted by the neural networks {©(X,;w,b)}. Hence, one is
minimizing the quadratic loss function f(w,b;{X,}) over the simulation dataset

Nnn

D (O(Xp3w,b) — ©)? (7)

1
Nnn

flw,b:{X,}) =

~
—_

to obtain the network parameters, weights, and biases of the network. We employ the Adam
optimizer [22] for the optimization and the batch size is chosen to be 50 samples. For the network
generation, a total of 200 full training cycles in stochastic optimization (epochs) was run. As the
computing interface, a Python library TensorFlow [1] was used.

Training and test datasets

For the training of the convolutional neural networks, we generate a dataset comprising 15,000
samples, using computational grids that have ~3.5 elements per wavelength. The physical param-
eters and the geometry for each sample are drawn using the framework discussed in Section 2. To
further control the numerical accuracy of the forward solver, the order N, of the polynomial basis
functions is allowed to vary in elements ¢ of the computational grid. The order of the basis function
in each element is selected from -

Tahs, . N l_)-‘ 7

vo= | ®

where [-] is the ceiling function, A

max 18 the largest distance between two vertices, A}’ = i/ fois

the wavelength, cfnin is the minimum wave speed, and parameters @ and b control the local accuracy

on each element. For the generation of training data, we set (a, b) = (1.0294, 0.7857), see [26, 25]
for further details of the nonuniform basis orders.

To train the model to understand the presence of the measurement noise, the samples are

corrupted with a simulated Gaussian noise. More precisely, we create five copies of each image in

the dataset which are then corrupted as

Xpoised — X, + Aae + B|X,|eB, (9)
where « is the maximum absolute value of the training dataset and e*/% are independent zero-
mean Gaussian random variables. The second term represents additive (stationary) white noise
and the last term represents noise relative to the signal amplitude. To include a wide range of
noise levels, the coefficients A and B for each sample are randomly chosen such that the standard
deviations of the white noise component is between 0.03-5% (varying logarithmically), and the
standard deviations of the relative component is between 0-5%. The total number of samples in
the training set is V,,,, = 5 x 15000 = 75000.

Furthermore, an additional test dataset were generated, which comprise 3000 samples. The
dataset were generated as the training set, except computational grids were required to have ~4
elements per wavelength and the non-uniform basis order parameters are (@, b) = (1.2768, 1.4384)
[26] of model (8). The main reason to use different discretization was to avoid an inverse crime [18]
related to simulation studies: the use of the same computational model, e.g. same discretizations, to



generate both training and test data could potentially lead to a situation in which severe modelling
errors are ignored, yielding unrealistic impressions of the accuracy of the estimates as compared to
actual performance with real data. In the test data, noise was added in a more systematic manner
to study the performance with different noise levels.

4 Results

We applied the trained network to predict the amount of stored groundwater and water-table level
from images of the test data. One must note that the proposed neural networks-based approach
enables direct estimates of the amount of stored groundwater in a heterogeneous porous material
rather than separately estimating the porosity field and the aquifer geometry. Both the porosity field
and the geometry could potentially have many unknowns which increase the overall computational
demand.

Figure 5 shows estimates for the test data, contaminated with the white noise component of a
moderate level, and Figure 6 shows results for the high noise level. The figures also include relative
prediction error histograms.
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Figure 5: Predicted amounts of stored water (left), water-table levels (middle), and two example
signals for noisy (black) and noiseless (red) data for the test data with A = 0.011 and B = 0.248.

Bottom row shows histograms of the relative prediction error (difference between the predicted and
true values).

Figure 7 shows a normalized root-mean-squared error (NRMSE) as a function of the parameters
A and B for both estimated parameters V' (top) and W' (bottom). Results show that the estima-
tion is much more noise sensitive for parameter A than parameter B. In the figures, the selections
of A and B, used in Figures 5 and 6 are highlighted with white *x’ and ’o’ markers, respectively.
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Figure 6: Results with noise parameters A = 0.045 and B = 0.497. Otherwise same caption as in
Figure 5.

Furthermore, the upper bounds for the noise parameters used in the training are highlighted with
a dashed white line.

In addition, we have carried out experiments with different network architectures. For instance,
increasing the number of layers or neurons did not improve the performance significantly, meanwhile
there was some performance decrease with a smaller number of layers or neurons. On the other
hand, using 2D-convolutions results into inferior performance compared to the 3D-convolutions.

5 Conclusions

We propose the use of a convolutional neural network (CNN) to estimate the water stored in an
aquifer and the water-table level from synthetic seismic data. In the model, seismic data were
generated in a heterogeneous three-layered material model. In the material model, two subdomains
were modeled as poroviscoelastic while the bedrock layer was modeled as purely elastic. A total of
38 receiving sensors were positioned on the ground surface while a total of 10 separately activated
sources were assumed to be located at a depth of 0.5 m from the ground surface. The recorded
vertical solid velocity data were represented as 3D-images, which were used as an input data to the
CNN.

We estimated the water stored in the aquifer and water-table level while all other material
parameters were considered as nuisance (uninteresting) parameters. Based on the results, we argue
that these parameters can be estimated with acceptable accuracy with a wide variety of noise
levels, while the nuisance parameters are successfully marginalized. The error histograms for both
stored water and water-table show promising accuracy in terms of relative prediction error and bias.
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Figure 7: Normalized RMSE as a function of noise parameters A and B for the amount of water
stored in the aquifer V¥ (top) and the water-table level W' (bottom). The dashed white box in
the bottom-left corner shows the parameter space used in the training data. In addition, the white
"%’ data are visualized in Figure 5 and the white ’o’ in Figure 6.

One benefit of the proposed framework is that it can effectively be used for monitoring aquifer’s
water storage state without estimating the material fields, which may change as a result of seasonal
fluctuations and/or earthquakes, for example.

Future studies should include the extension to field /real measurements. This study is performed
with synthetic data, but the future goal is to combine synthetic and real data in such way that
the training data can be generated by simulating wave fields while the test data is the actual
measurements. These are essential steps to guarantee the effectiveness of the proposed method.
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