Design, Modeling, and Control Methods for
Fluid-Mediated Programmable Self-Assembly of
Resource-Constrained Robotic Modules

THESE N° 8599 (2018)

PRESENTEE LE 22 JUIN 2018
A LA FACULTE DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT
LABORATOIRE DE SYSTEMES ET ALGORITHMES INTELLIGENTS DISTRIBUES
PROGRAMME DOCTORAL EN ROBOTIQUE, CONTROLE ET SYSTEMES INTELLIGENTS

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Bahar HAGHIGHAT

acceptée sur proposition du jury:

Prof. J. Paik, présidente du jury
Prof. A. Martinoli, directeur de thése
Prof. R. Nagpal, rapporteuse
Prof. M. Sitti, rapporteur
Prof. A. ljspeert, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2018

Acknowledgements

This work would not have been possible without the help of many people. I would like to start
by thanking my advisor Prof. Alcherio Martinoli for his invaluable guidance and unconditional
support all throughout the course of this work. His enthusiasm and creativity has greatly influ-
enced the development of this thesis. I am also very grateful for his constant encouragement
and support to allow me shape the course of my research.

I would like to thank Emmanuel Droz, who actively contributed to several aspects of the design
and implementation of the experimental robotic platform, as well as Massimo Mastrangeli
and Grégory Mermoud who introduced me to the field and shared their expertise during
earlier stages of this research.

I'would like to acknowledge the hardworking and talented students whom I had the pleasure to
supervise: Alexandre Cherpillod, Beat Geissmann, Loic Waegeli, Luca Brusatin, Brice Platerrier,
Matthias Ruegg, Maximilian Mordig, and Hala Khodr.

I would like to express my gratitude to all the members of the DISAL lab for their kind support.
In particular, I would like to acknowledge the backbone of our laboratory, Corinne Farquhar-
son and Denis Rochat.

Finally, I am thankful to all my friends at EPFL. With some I already shared a culture and with
some I came to share one over the years. I shall forever remember the unparalleled friendship,
kindness, and generosity through which I always found myself in a family in Lausanne.

My deepest gratitude and most sincere appreciation goes to my family: my sister Elaheh,
and my parents Nasrin and Hessam whose boundless love, encouragement, and support has
always empowered me. I owe you beyond what words may ever describe.

Lausanne, 25 March 2018 Bahar Haghighat

Abstract

HE newly emerged and quickly growing science of nanotechnology has been rec-

ognized as one of “the twenty-first century’s great leaps forward in scientific knowl-

edge”. Self-assembly provides a powerful enabling technique for nanotechnology

by providing a bottom-up solution as an alternative to the conventional top-down
approach in nano-fabrication. Employing self-assembly in nanotechnology seems in fact
inevitable. As we try to build ever smaller structures as big as only a few atoms, utilizing
tools for putting the molecular building blocks together proves more and more inefficient
and impractical. Alternatively, we may let the building blocks put themselves together, let the
molecules do what they do best, self-assembling themselves into useful structures. The big
question today is thus, can we learn to build things the way nature does? In order to answer
this question and to be able to fully employ the power of self-assembly in nanotechnology, we
need to understand the principles of what nature does as she puts structures together through
self-assembly. Today, understanding and employing self-assembly is a quest pursued by re-
searchers and engineers in almost every imaginable scientific field. In the pursuit of this goal,
our research considers a programmable self-assembling distributed robotic system where the
self-assembly building blocks are miniaturized robotic modules of a few centimeters in size.
Our work leads us, on a high level, to ask this question: how can we influence and control the
process of self-assembly in our system so that our robotic modules put themselves together
into specific predefined structures? Addressing this question, we follow three distinct though
highly intertwined research directions concerned with the mechatronic design, modeling, and
control of our self-assembling robotic system.

A core element of our work is the experimental robotic system. With the goal of realizing a dis-
tributed robotic system in which the resource-constrained robotic modules build pre-defined
target structures through programmable stochastic self-assembly, our developments are cen-
tered around the 3-cm-sized water-floating Lily robotic module. Furthermore, we implement
a controllable setup around the Lily robotic modules where several environmental features
such as the fluidic flow in the environment as well as the ambient luminosity perceived by the
modules can be controlled in order to influence the self-assembly process towards the target
structure. The experiments reported in this dissertation has been carried out with up to 15
Lily robotic modules.

iii

Abstract

Developing models that accurately describe the assembly process dynamics is a key com-
ponent in studying programmable stochastic self-assembling systems. Such models help
in: (1) accurately predicting the performances (assembly rate and yield) of the distributed
system, and (2) evaluating and optimizing control strategies, whether distributed (e.g., ruleset
controllers programmed on the modules) or centralized (e.g., modulating environmental
features such as mixing forces deriving random interactions among modules), based on model
predictions. We develop models at three abstraction levels, namely submicroscopic, micro-
scopic, and macroscopic. The submicroscopic model provides a realistic replication of the real
experimental setup, faithfully capturing the physics of the self-assembly process in the system.
The purpose of the microscopic model is to allow for comparing the intrinsic performance
of the synthesized rulesets, i.e., the final yield and the convergence rate determined by the
ruleset concurrency, in absence of any influence of physical phenomena on the application of
the rules. The macroscopic model captures the dynamics of the system in terms of Markovian
models. In particular, we utilize the chemical reaction network formalism and develop a
Markov model of the system based on the robotic modules’ ruleset controllers. The Markov
model is then automatically refined into a more complex and accurate hidden Markov model.

Programmable self-assembly defines a subclass of self-assembly processes where the building
blocks carry information about the final desired target structure. It is through modifying this
information that the outcome of the self-assembly process can be programmed. The problem
of distributed control for programmable self-assembly is thus one of designing a global-to-
local behavioral compiler. The problem of ruleset synthesis for programmable self-assembly
of bodiless modules has been studied in the literature by employing graph grammar formalism.
We extend the graph grammar formalism and take into account the morphology of the robotic
modules. This allows for formulating automatic rule synthesis methods for self-assembly of
robotic modules, where the synthesized rules can be directly deployed on the robotic modules,
with no further tuning. Moreover, we propose a new rule synthesis algorithm for synthesizing
assembly rules which further promote parallelization in the self-assembly process without
losing guarantees on the completeness of the achieved target.

Keywords: Programmable self-assembly, distributed robotic systems, mechatronic design,
multi-level modeling, distributed and centralized control.

iv

Résumé

A science nouvellement émergée et en croissance rapide de la nanotechnologie a

été reconnue comme 'un des “grands progres du XXIe siécle en science.” L'auto-

assemblage offre une puissante technique de réalisation pour la nanotechnologie,

en fournissant une solution ascendante comme alternative a I’approche descen-
dante conventionnelle en nanofabrication. Lemploi de I'auto-assemblage en nanotechnologie
semble en effet inévitable. Alors que I'on essaye de construire des structures de plus en plus
petites, ne consistant que de quelques atomes, I'utilisation d’outils pour assembler les briques
moléculaires se montre de plus en plus inefficace et peu pratique. Alternativement, on pour-
rait laisser les briques se rassembler, laisser les molécules faire ce qu’elles font le mieux,
s’auto-assembler en structures utiles. La grande question aujourd’hui est donc, pouvons-
nous apprendre a construire les choses comme le fait la nature ? Afin de répondre a cette
question et d’étre en mesure d’employer entierement le pouvoir de 'auto-assemblage dans
la nanotechnologie, nous devons comprendre les principes de ce que fait la nature en as-
semblant les structures par 'auto-assemblage. Aujourd’hui, la compréhension et I'utilisation
de l'auto-assemblage est une quéte poursuivie par des chercheurs et des ingénieurs dans
quasiment tous les domaines scientifiques imaginables. Dans la poursuite de cet objectif,
notre recherche considere un systeme robotique distribué programmable auto-assemblant
dont les briques d’auto-assemblage sont des modules robotiques miniaturisés de quelques
centimetres. Notre travail nous amene, de facon abstraite, a poser cette question : comment
pouvons-nous influencer et contréler le processus d’auto-assemblage dans notre systéeme,
afin que nos modules robotiques se réunissent en structures spécifiques et prédéfinies 2 Pour
répondre a cette question, nous suivons trois directions de recherche distinctes, mais tres
étroitement liées, portant sur la conception mécatronique, la modélisation, et le controle de
notre systeme robotique d’auto-assemblage.

Un élément essentiel de notre travail est le systéme robotique expérimental. Dans le but de
réaliser un systeme robotique distribué, dans lequel les modules robotiques a ressources
limitées construisent des structures prédéfinies, grace a un auto-assemblage stochastique
programmable, nos développements sont centrés autour du module robotique flottant Lily,
mesurant 3 cm. En outre, nous implémentons une configuration contrélable autour des mo-
dules robotiques Lily, dans laquelle plusieurs caractéristiques environnementales, telles que le

A%

Résumé

flux fluidique dans I’environnement ainsi que la luminosité ambiante percue par les modules
robotiques, peuvent étre contrdlées afin d’'influencer le processus d’auto-assemblage vers
la structure désirée. Le travail expérimental rapporté dans la dissertation a été réalisé avec
jusqu’a 15 modules robotiques Lily.

Le développement des modeles qui décrivent précisément la dynamique du processus d’as-
semblage est un élément clé dans I'étude des systemes d’auto-assemblage stochastiques
programmables. Ces modeles aident a : (1) prédire avec précision les performances (vitesse
d’assemblage et rendement) du systéme distribué et (2) évaluer et optimiser les stratégies de
controle, qu’elles soient distribuées (par exemple, les regles programmeées sur les modules)
ou centralisées (par exemple, moduler les caractéristiques environnementales telles que les
forces de fluctuation menant a des interactions aléatoires entre les modules), basées sur des
prédictions du modele. Nous développons des modeles a trois niveaux d’abstraction, a savoir
sous-microscopique, microscopique et macroscopique. Le modele sous-microscopique offre
une réplication réaliste de la configuration expérimentale réelle, reflétant fidelement la phy-
sique du processus d’auto-assemblage dans le systéme. Le but du modele microscopique est
de permettre d’établir une comparaison de la performance intrinséque des regles synthéti-
sées, c’est-a-dire, le rendement final et le taux de convergence déterminés par le parallélisme
dans les regles, en 'absence de toute influence de phénomeéne physique sur 'application des
régles. Le modéle macroscopique représente la dynamique du systéme en termes de modeles
Markoviens. En particulier, nous utilisons le formalisme du réseau de réaction chimique et
développons un modele de Markov du systéeme, basé sur les régles des modules robotiques. Le
modele de Markov est ensuite affiné automatiquement en un modele de Markov caché plus
complexe et plus précis.

Lauto-assemblage programmable définit une sous-classe de processus d’auto-assemblage
ol les briques du systéme contiennent des informations sur la structure finale souhaitée.
C’est en modifiant cette information que le résultat du processus d’auto-assemblage peut étre
programmé. Le probléme du controle distribué pour 'auto-assemblage programmable revient
donc a celui de la conception d'un bloc interpréteur des comportements globaux aux locaux.
Le probleme de la synthese des regles pour I’auto-assemblage programmable de modules
abstrait a été étudié dans la littérature en utilisant le formalisme grammatical des graphes.
Nous étendons le formalisme grammatical des graphes et prenons en compte la morphologie
des modules robotiques. Ceci permet de formuler des méthodes de synthese automatique des
régles pour I'auto-assemblage de modules robotiques, grace auxquelles les régles synthétisées
peuvent étre directement déployées sur les modules robotiques, sans réglage supplémentaire.
De plus, nous proposons un nouvel algorithme de synthése de regles pour synthétiser des
régles d’assemblage qui favorisent la parallélisation dans le processus d’auto-assemblage sans
perdre garanties sur 'obtention de la structure atteinte.

Mots clés : Auto-assemblage programmable, systémes robotiques distribués, conception
mécatronique, modélisation multi-niveaux, controle distribué et centralisé.

Zusammenfassung

AS neu entstandene und schnell wachsende Feld der Nanotechnologie wurde

als einer der "grof3en Fortschritte des 21. Jahrhunderts in der wissenschaftli-

chen Erkenntnis“ anerkannt. Die Selbstorganisation ist eine leistungsfahige

Methode fiir die Nanotechnologie, indem sie eine ,bottom-up“ Losung als Al-
ternativezum herkémmlichen , top-down“ Ansatz in der Nanofabrikation bietet. Der Einsatz
von Selbstorganisation in der Nanotechnologie scheint unvermeidlich. Wahrend wir versu-
chen immer kleinere Strukturen, die nur ein paar Atome gro8 sind, zu bauen, erweist sichdie
Verwendung von Werkzeugen zum Zusammensetzen der molekularen Bausteine als immer
ineffizienter und unpraktischer. Alternativdazu kénnen wir die Bausteine sich zusammen-
fiigen lassen, die Molekiile tun lassen, was sie am besten kénnen, sich selbst zu niitzlichen
Strukturen zusammenfiigen. Daraus ergibt sich die zentrale Frage, wie wir es schaffen, kénnen,,
Dinge so zu bauen, wie die Natur es tut? Um diese Frage zu beantworten und die Kraft der
Selbstorganisation in der Nanotechnologie voll nutzen zu kénnen, miissen wir die Prinzipien
verstehen, die die Natur anwendet, wenn sie Strukturen durch Selbstorganisation zusammen-
bringt. Heutzutage ist das Verstdndnis und die Anwendung von Selbstorganisation ein Auftrag,
der von Forschern und Ingenieuren in fast jedem wissenschaftlichen Bereich verfolgt wird. Um
dieses Ziel zu erreichen, betrachten wir ein programmierbares selbstorganisierendes verteiltes
Robotersystem, bei dem die selbstorganisierenden Bausteine miniaturisierte Robotermodule
von wenigen Zentimetern Grée sind. Unsere Arbeit lduft auf die Frage hinaus: Wie konnen
wir den Prozess der Selbstorganisation in unserem System beeinflussen und kontrollieren,
so dass sich unsere Robotermodule in bestimmte vordefinierte Strukturen zusammenfiigen?
Um diese Frage zu beantworten, verfolgen wir drei unterschiedliche, aber stark verwobene
Forschungsrichtungen, die sich mit der mechatronischen Realisierung, der Modellierung und
der Kontrolle unseres selbstorganisierenden Robotersystems befassen.

Ein Kernelement unserer Arbeit ist das experimentelle Robotersystem. Unser Ziel ist es, ein
verteiltes Robotersystem zu realisieren, in dem die Robotermodule mit begrenzten Ressourcen
durch programmierbare, stochastische Selbstorganisation vordefinierte Zielstrukturen auf-
bauen. Hierbei konzentrieren sich unsere Entwicklungen auf das 3 cm grole, schwimmende
Robotermodul Lily. Dariiberhinaus haben wir einen steuerbaren Aufbau um die Lily Roboter-
module herum konzipiert und gebaut, um den Selbstorganisationsprozess in Richtung der

vii

Zusammenfassung

Zielstruktur zu beeinflussen. Verschiedene Kontrollparameter, wie die Stromungsgeschwin-
digkeit sowie die Umgebungshelligkeit, die von den Robotern wahrgenommen wird, kénnen
gesteuert werden. Die experimentellen Arbeiten die in dieser Dissertation beschriebenen sind,
wurden mit bis zu 15 Lily Robotermodulen gleichzeitig durchgefiihrt.

Die Entwicklung von Modellen, die die Dynamik des Zusammensetzungprozesses genau
beschreiben, ist eine Schliisselkomponente bei der Untersuchung programmierbarer, sto-
chastischer, selbstorganisierender Systeme. Solche Modelle helfen dabei: (1) die Leistungen
(Montagerate und Ausbeute) des verteilten Systems genau vorherzusagen und (2) Regelstra-
tegien auszuwerten und zu optimieren, ob sie verteilt (zum Beispiel durch auf den Modulen
programmierten Regeln) oder zentralisiert sind (zum Beispiel durch Anderung von Umge-
bungsvariablen, die die zuféllige Interaktionen zwischen Modulen beeinflussen), basierend
auf Modellvorhersagen.Wir entwickeln dazu Modelle auf drei Abstraktionsebenen: submi-
kroskopisch, mikroskopisch und makroskopisch. Das submikroskopische Modell liefert eine
realistische Wiedergabe des realen Versuchsaufbaus, wobei die Physik des Selbstorganisati-
onsprozesses im System wirklichkeitsgetreu erfasst wird. Der Zweck des mikroskopischen
Modells ist es den Vergleich der intrinsischen Leistung der synthetisierten Regeln, also die
Endausbeute und die Konvergenzrate, die durch die Gleichzeitigkeit im Regelwerk bestimmt
wird, in Abwesenheit eines Einflusses physikalischer Phinomene auf die Anwendung der
Regeln, zu ermoglichen. Das makroskopische Modell erfasst die Dynamik des Systems in
Form von Markov Modellen. Insbesondere verwenden wir den Formalismus des chemischen
Reaktionsnetzwerks und entwickeln ein Markov Modell des Systems, das auf den Regeln der
Robotermodule basiert. Das Markov Modell wird dann automatisch zu einem komplexeren
und genaueren versteckten Markov Modell verfeinert.

Die programmierbare Selbstorganisation definiert eine Unterklasse von Selbstorganisations-
prozessen, bei der die Bausteine des Systems Informationen {iber die endgiiltige, gewiinschte
Zielstruktur enthalten. Durch die Anderung dieser Information, kann das Ergebnis des Selbst-
organisationsprozesses programmiert werden. Das Problem der verteilten Kontrolle fiir die
programmierbare Selbstorganisation besteht somit in der Entwicklung eines Global-zu-Lokal-
Verhaltens-Compilers. Das Problem der Regelsatzsynthese fiir die programmierbare Selbst-
organisation von kérperlosen Modulen wurde in der Literatur untersucht, indem ein Graph-
grammatikformalismus verwendet wurde. Wir erweitern den Graphgrammatikal Formalismus
und betrachten dieMorphologie der Robotikmodule. Dieser erméglicht die Formulierung au-
tomatischer Regel-Synthesemethoden fiir die Selbstorganisation von Robotermodulen, wobei
die synthetisierten Regeln ohne weitere Anpassung direkt auf den Robotermodulen implemen-
tiert werden kénnen. Dariiber hinaus schlagen wir einen neuen Regelsynthesealgorithmus
vor, um Assemblierungsregeln zu synthetisieren, die die Parallelisierung Im Selbstorganisati-
onsprozess weiter fordern ohne die Vollstdndigkeit des erreichten Ziels zu verlieren.

Schliisselworter: Programmierbare Selbstorganisation, verteilte Robotersysteme, mecha-
tronische Entwurf, mehrstufige Modellierung, verteilte und zentrale Regelung.

viii

Contents

Acknowledgements

Abstract (English/Francais/Deutsch)

II

Introduction
Self-Assembly
1.1 Definition e e e
1.2 NaturalInstances it teeee
1.3 Principles e e e
1.4 Outlook e e

Engineered Self-Assembling Systems

2.1 OVEIVIEW . . o ottt et e e e e e e e e e e e e e e e

2.2 Mechatronic Characteristics e

2.3 Analysis Methodsand Modeling

2.4 Synthesis Methodsand Control

Scope of this Thesis

3.1 ObjectivesandOutline

3.2 Contributions e

System Design

Introduction

4.1 RelatedWork e

4.2 Problem Statement e

Lily Robotic Module

5.1 ExternalShell e

5.2 Printed CircuitBoard

5.3 Electro-Permanent Magnetic Latches
5.3.1 DesigningEPM Latches

iii

S O W W

Qo

19
19
20

23

25
25
27

ix

Contents

5.3.2 BuildingEPM Latches, 43

5.3.3 EPM Switching Circuitry 46

5.3.4 EPM Communication Circuitry 46

54 PoweringthelLily. 47
54.1 PowerCirCuitry ittt it 48

54.2 Charging 49

5.5 Communicationand Sensing, . 50
5.5.1 Radio Communication 50

5.5.2 Inter-Robot Communication 51

56 Firmware 52
5.6.1 Wireless Programming. 53

6 Experimental Setup 55
6.1 SetupDesign e 55

6.2 Setup Characterization ittt 57

7 Conclusion 63
III Modeling Self-Assembly 65
8 Introduction 67
8.1 RelatedWork 67

8.2 Problem Statement 68

9 Submicroscopic Model 71
9.1 DesigningtheModel 71

9.2 CalibratingtheModel 75
9.2.1 Mean Squared Displacement Metric 76

9.2.2 Parameter Optimization 77

10 Microscopic Model 83
10.1 Graph grammars for Self-Assembly of Bodiless Modules 84
10.2 Graph Grammars for Self-Assembly of Robotic Modules 86
10.3 Random Pairwise Interactions, . 89
10.4 ShapeRecognition. e 90
10.5 RunningtheModel 91

11 Macroscopic Model 95
11.1 Introduction 95
11.2 Markovian Models for Programmable Self-Assembly 96
11.3 Developing MarkovModels 98
11.4 Evaluating Well-Mixed Condition 101

Contents

11.5 Developing Hidden MarkovModels 103

12 Conclusion 107
IV Controlling Self-Assembly 109
13 Introduction 111
13.1 RelatedWork e 111
13.2 Problem Statement 113

14 Synthesizing Self-Assembly Rules 115
14.1 Extended Rules for Self-Assembly of Robotic Modules 115
14.2 Singleton and Linchpin for Self-Assembly of Bodiless Modules 116
14.3 SingletonR and LinchpinR for Self-Assembly of Robotic Modules 120
14.4 Synthesized Rulesets for Lily Robotic Modules 120
14.5 SimulationTools 122
14.6 Experimentsandresults 123

15 Synthesizing Parallel Rules 131
15.1 GS-RGS: A New Synthesis Algorithm 131
15.1.1 Stagel: Grow Subtrees (GS) 132

15.1.2 Stage II: Re-Group Subtrees (RGS) 133

15.2 Synthesized Rulesets for Lily Robotic Modules 135
15.3 ExperimentsandResults 135

16 Conclusion 139
V Conclusion 141
17 Conclusion and Outlook 143
17.1 Summaryof Contributions o .. 143
17.2 Discussionand FutureWork o L. 146
Glossary 149
Bibliography 151
Curriculum Vitae 159

1] Self-Assembly

recurrent theme in natural structuring phenomena is the absence of a top-down

building approach. Nature does not use any assembly tools for putting things

together. The elegance of this simple observation represents the essence of the

science of self-assembly. From the simplest bacteria to the most intricate galaxies,
nature seems to have a special way of building things: it simply lets the building blocks, some
alive, and some not, to put themselves together, to self-assemble into structures of a wide
variety of complexities and scales. Today, understanding and utilizing self-assembly is being
actively investigated in several scientific disciplines [1]. In the field of biology, scientists strive
to understand the origin of life and nature’s principles and techniques in creating intricate
structures. In the field of chemistry, researchers study characteristics and formation of ever
more complex chemical systems out of molecular building blocks. In engineering fields, novel
manufacturing methods are being developed that allow for realization of engineered systems
at the nanoscale. In the field of computer science, scientists are learning to employ DNA
building blocks to perform massively parallel computations. In the field of mathematics,
scientists try to find solutions for the process design problems by developing accurate models
of self-assembly. This chapter will provide a clear definition of self-assembly and outline
its different categories as well as the motivations justifying why self-assembly research is of
utmost interest at the present time.

1.1 Definition

Several different definitions for self-assembly have been adopted by scientists [2], [3], [4], [5],
[6]. Similar to [1], we define self-assembly as the spontaneous formation of ordered structures
through a reversible stochastic process that involves pre-existing building blocks, and can be
controlled through proper design of the building blocks, the environment, and the driving
force [1]. Each of the elements of this definition are necessary for specifically characterizing the
phenomena which we consider as self-assembly. The word “ordered” distinguishes between
self-assembly and aggregation processes. The phrase “pre-existing building blocks” highlights

Chapter 1. Self-Assembly

the difference between self-assembly and pattern formation processes. Additionally, the words

” «

“stochastic,” “design,
which play a key role in the design of engineered self-assembling systems.

environment,” and “driving force” highlight the aspects of self-assembly

Here, we highlight four particular subclasses of the class of the self-assembly phenomena [1],
[7]. Static self-assembly processes result in structures in either local or global equilibrium.
From an engineering perspective, the best understood and most highly developed engineered
self-assembling systems are within this subclass. Dynamic self-assembly processes lead to
stable structures under non-equilibrium conditions. That is, the system has to actively dis-
sipate energy for the structures exist. The inspiration for studying such systems is the one
identified by Richard P. Feynman in 1959 - biology. The principles of dynamic self-assembly, or
equivalently nonequilibrium self-assembly, are yet to be studied in depth. Programmed or pro-
grammable self-assembly defines involves self-assembly processes where the self-assembly
building blocks carry information about the form or function of the target structure. While
both passive and intelligent building blocks may be employed to carry out programmable
self-assembly, intelligent building blocks would allow us to consider problems such as yield
optimization more flexibly. For a building block to be considered truly intelligent, it must be
able to sense its state, communicate with its neighbors, and act on this information. Tem-
plated self-assembly employs templates for guiding the process of self-assembly. Templates
are commonly used in the fabrication of macroscale objects. In the context of self-assembly,
a template can be used to align or orient the building blocks so that they may bind via a
secondary process or so that binding occurs more rapidly. Rather than binding to one another,
the building blocks first bind to the template. The building blocks in the template then become
bound together, creating the final structure.

1.2 Natural Instances

While it is not difficult to find patterns in nature, not all natural patterns result from self-
assembly processes. In this section we take a brief look at several naturally occurring systems
that are the result of some form of self-assembly, within both organic and inorganic natural
systems. The examples discussed here are taken from [1].

Inorganic Instances of Self-Assembly

The first example we consider is crystallization. Crystals exhibit atomic scale order which may
be explained using packing theory. Packing problems are a class of optimization problems in
mathematics that involve attempting to pack objects together into containers. Crystals also
exhibit specific macro scale structures. From the point of view of self-assembly, what is of
interest is not only the various structures forming through the process of crystallization, but
also the process of crystallization itself which defines how such structures form.

The second example are the bubble rafts which self-assemble with the capillary forces in

1.3. Principles

action. The short and long range order in the assembled system can be explained using the
optimal packing theory. The bubbles in the assembled cluster are usually of very different sizes.
If one of the bubbles bursts, the cluster would quickly rearrange itself in a new configuration
filling the vacancy.

The third example is polymerization. Polymers are long-chain macro-molecules formed by
monomer building blocks. The polymerization process leads to a distribution of polymer
chains of different lengths through a self-assembly process in which the monomer building
blocks arrange themselves into ordered complex structures.

Organic Instances of Self-Assembly

The hope for employing self-assembly for building complex functional structures similar to
the biological instances discussed in this section is perhaps one of the main reasons for the
amount of present interest in studying self-assembly today. We consider two main examples
of organic self-assembly.

The first example concerns protein structures and the phenomenon of protein folding. Funda-
mental in biology, proteins serve both as the structural material and the machinery of the cell.
Proteins are essentially polymers, comprising long chain molecules of amino acid building
blocks. The folded structure of the protein is determined by the sequence of these amino
acid building blocks along the polymer chain. The mechanism through which this sequence
determines the final structure defines the protein folding phenomenon.

The second example is the ribosome which provides an instance of a self-assembled nanoma-
chine. The ribosome is comprised of protein building blocks that self-assemble to build a
functional system which forms the manufacturing center of the cell producing specific protein
structures according to instructions delivered by RNA. The ribosome has been cited as a per-
fect example of a nanoscale assembler machine, capable of building various nanomachines
(8].

1.3 Principles

In order to identify the principle components playing role in self-assembly phenomena, we
need to rethink the nature of each phenomenon from an abstract viewpoint. The systems
we have mentioned so far, crystals, ribosomes, and bubble rafts, may seem to have little in
common. However, when viewed abstractly, these systems are very similar. In fact, we argue
that nature repeatedly uses the same principles in designing systems that self-assemble. In the
following, we identify and highlight four principle components present in all self-assembling
systems: structured building blocks, a binding force, a driving force, and an environment.

The building blocks, the units performing the assembly, represent the first principle com-
ponent in self-assembly phenomena. The complexity of the final self-assembled system is

Chapter 1. Self-Assembly

directly determined by the features of the building blocks. Consequently, tuning the features
of the building blocks allows for controlling the resulting structure in the system, the first
means for controlling the self-assembly process.

The binding force between the building blocks holding them together is the second principle.
The reversibility of the binding between the building blocks allows the system to move from
local equilibria to a global equilibrium. Tuning the binding force provides a second means for
controlling the self-assembly process. This could be done by the building blocks as a result of
their interactions or by external stimuli. Several types of binding forces may be observed such
as capillary, electromagnetic, and chemical bonding forces.

The environment, where the self-assembly process takes place, comprises the third principle
component. A proper environment is necessary in order for the binding force to act. For
example, capillary forces are only useful when the building blocks sit at the surface of a liquid.
Adjusting or dynamically changing the environment provides the third means of controlling
the self-assembly process.

The driving force is the last principle component. The building blocks have to stochastically
interact with one another in order for the self-assembly process to occur. Essentially, the
driving force in the system provides the randomness and moves the system through different
possible system configurations on its way to the final ordered configuration.

1.4 Outlook

To celebrate the 125th anniversary of Science, 25 big questions as well as 100 little questions
were selected [1], highlighting the most likely research questions to shape the course of
scientific research for the next 125 years [9]. Quite remarkably, right among ever sought after
big questions such as “What is the universe made of?” and “Are we alone in the universe?” one
will find “How far can we push chemical self-assembly?” How did the yet barely defined field
of self-assembly rise to prominence so quickly?

This sudden ascent of self-assembly may be ascribed to simultaneous developments in several
scientific fields, interactively reinforcing understanding of one another [1]. The advent of
nanotechnology quickly highlighted the fact that we need to be able to understand and
efficiently utilize self-assembly to operate at such small length scales. It was first at the
1959 annual meeting of the American Physical Society where Richard P. Feynman introduced
the idea that humans may create functional machines at the nanoscale. At the same time,
several core developments took place in other fields of science and engineering including
mathematics, computer science, chemistry, and biology that lead us to where we stand today.
We are now on the verge of understanding and utilizing the power of self-assembly. Table 1.1
summarizes these landmarks in the history of self-assembly. Self-assembly is being pursued
by researchers in almost every imaginable scientific field today, bringing us closer to recreating
the elegance of nature every day.

1.4. Outlook

Time | Event

1930s | Alan Turing develops the theory of universal computation.

1950s | John von Neumann develops theory of automata replication.

1953 James D. Watson and Francis Crick discover the structure of DNA.

1955 H. Fraenkel-Conrat and R.C. Williams self-assemble the tobacco mosaic virus in a test tube.

1957 Penrose and Penrose construct a simple self-replicating system.

1961 HaoWang develops “Wang Tiles” demonstrating the equivalence of tiling problems and computation.

1991 Nadrian C. Seeman and Junghuei Chen self-assemble a cube from DNA.

1994 Leonard Adleman launches the field of DNA computation by using DNA to solve a Hamiltonian path
problem.

1996 Kazuo Hosokawa’s group demonstrates microscale self-assembly using surface tension.

2000 George M. Whitesides’s group self-assembles electrical networks from millimeter scale polyhedra.

2004 | William Shih adapts the methods of Seeman to self-assemble a DNA octahedron.

2004 Eric Winfree and Paul Rothemund self-assemble a Sierpinski triangle from DNA demonstrating that
self-assembly may be used for computation.

2000s | Self-assembly research explodes drawing the interest of researchers from every imaginable field.

Table 1.1 - Landmarks in the history of self-assembly [1].
Summary

Self-assembly is defined as the spontaneous formation of ordered structures through a

reversible stochastic process that involves pre-existing building blocks and can be con-

trolled through proper design of the building blocks, the environment, and the driving

force. In the quest of fully understanding self-assembly, a multi-disciplinary effort is un-

dertaken by biologists, chemists, computer scientists, engineers, and mathematicians.

In addition to precisely defining self-assembly and the means through which it may be
controlled, this chapter briefly reviewed the history of self-assembly and highlighted
the motivations for the present interest in studying the science of self-assembly.

4 Engineered Self-Assembling Systems

N this chapter we dedicate our attention to the engineered self-assembling systems at

the centimeter scale, some comprising intelligent robotic modules and some passive

modules, and review the recent developments made in the design and experimentation

of systems most relevant to the focus of this thesis. Throughout our review, we outline
that the development of engineered self-assembling systems involves addressing three major
problems: the fabrication problem, the analysis problem, and the synthesis problem. The
fabrication problem concerns all the practical aspects of fabricating and operating a typically
large swarm of self-assembly building blocks. This is particularly important when the building
blocks are intelligent robotic modules where programming, charging, deploying, and repairing
the faulty ones requires specific careful operations. Therefore, the design and fabrication
of the building blocks has to allow for these operations to be doable in large swarms. The
analysis problem considers a predictive aspect: given a set of building blocks, a binding force,
an environment, and a driving force, what structures will the system produce? The synthesis
problem addresses the opposite aspect: given the desired target structure, how do we choose a
set of building blocks, a binding force, an environment, and a driving force so that the system
builds the target structure?

2.1 Overview

Being increasingly viewed as reliable models for the study of self-assembly processes at
a variety of scales, engineered self-assembling systems at the centimeter scale are widely
studied throughout different fields in science and technology including biology, chemistry,
manufacturing, material science, microelectronics, physics, robotics, and sociology [10], [11].
During recent years, self-assembly has been extensively studied both as an enabling technique
for micro-/nano-fabrication and as a coordination mechanism for distributed robotic systems.
Several functionalities have been demonstrated within engineered self-assembling systems,
including formation [12], [13], [14], [15], [16], [17], growth [18], [19], [20], self-reconfiguration
[21], [22], [23], self-repair [24], and template replication [25]. Achieving the level of scalability

Chapter 2. Engineered Self-Assembling Systems

and robustness, which inherently exists in natural self-assembling system instances, both in
terms of swarm sizes and the size of individual building blocks, has been a key motivation for
investigating self-assembly in engineered collective systems, where typically multiple rather
simple and small building blocks are deployed.

Simplicity in the building blocks’ internal design allows for reducing costs, increasing robust-
ness and also further reduction of the blocks’ size, ultimately resulting in finer resolutions
in the assembled target structures. While intelligent building blocks can actively take part in
the self-assembly process and thus allow for distributed control approaches [15], [26]-[28],
the self-assembly process of passive building blocks can only be controlled through a cen-
tralized approach modulating the environmental features [17], [29], [30]. Centralized control
approaches become quickly computationally intractable and unfeasible as the size of the
swarm grows. Distributed control approaches on the other hand, offer the advantage of high
scalability as they remain feasible for large swarms. A less explored area of study is where a
combination of distributed and centralized control approaches can be applied: the guided
programmable self-assembly of miniaturized robots, where the minimal design allows for
realizing large swarms of intelligent modules at small scales while a controllable environment
can additionally guide the self-assembly process.

In order to understand the system dynamics and to guide the design of the self-assembling
systems, both regarding the hardware aspects and the control aspects, models at different
abstraction levels are investigated. Various modeling approaches have been employed for
understanding the process of self-assembly. Three main approaches can be identified, physi-
cal or low-level models where the physical details of the self-assembling system are carefully
captured in the model [31]-[33], abstract or high-level models where the model mostly de-
scribes the functionality of the underlying assembly process in the system [34]-[37], and
multi-level modeling approach where starting from a low-level model a suite of incrementally
abstract models are created [38], [39]. In the following sections, we take a closer look at engi-
neered self-assembling systems along their three major aspects of fabrication or mechatronic
characteristics, analysis and modeling approach, and control and synthesis approach.

2.2 Mechatronic Characteristics

A wide variety of engineered self-assembling systems have been reported in the literature,
comprising both passive and intelligent modules sizing from a few centimeters to half a meter,
and weighing from 4 to 11,000 g. While the mechatronic design of the system involves both
the design of the environment as well as the constituting modules, typically, most of the
sophistication lies in the module design. Tables 2.1 and 2.2 detail the physical and electrical
characteristics of the modules in a number of prominent engineered self-assembling systems,
broadly categorized according to the mobility of their constituting modules.

In systems with self-propelled modules, self-propulsion may be realized with a differential
drive or tracks, providing good locomotion on flat and rough terrains respectively. Modules of

10

2.2. Mechatronic Characteristics

(a)

b

R

(b) - A e~

Figure 2.1 - Schematic of Penrose’s simple model of self-replication as illustrated in [11].

visual marker NS magnets
weight

— SN magnets
2cm 8cm

(b) (c)

Figure 2.2 — Passive self-assembling Lily modules setup [17]: (a) Water-filled tank; (b) Passive Lily
module, including the latching mechanism composed of four permanent magnets with different
pole orientation north-south (NS) and south-north (SN), respectively; (c) Real-time visual tracking
of modules (the blue lines show a short history of the trajectory of each block)

swarm-bot combine both mechanisms [40]. Modules of CEBOT Mark III have nozzles provid-
ing propulsion on flat terrain [41]. In some systems with self-propelled modules, by having
modules move within the constructed structure, achieving self-reconfiguration. Examples of
such systems include CONRO [42], PolyBot [43], and M-TRAN [44]. Self-propelled modules
typically have high power consumption, limiting their lifetime without external power supply.
Perceiving their surroundings and actively moving towards selected modules is usually part of
the capabilities of such modules, putting a great demand on their design.

In systems with externally propelled modules, the modules encounter each other on a random
basis. In these systems, the modules are designed to operate in a limited range of environments
which may impose constraints on the design. In the system of Griffith et al. [45] and in
PPT [15], modules are endowed with on-board batteries. Therefore, in principle, any two
modules can bind and communicate with each other upon collision. In White et al.’s systems

11

Chapter 2. Engineered Self-Assembling Systems

[46] and [47], modules are not powered initially. A special seed module is directly linked to
an external power supply. Following binding to the seed structure, modules receive power
through the connection link. This power sharing scheme and the existence of a seed module
is also the case with the Pebble robots system [48]. In general, computing requirements

for externally propelled modules are relatively low. In these systems, modules can bind

passively upon collision, and use computation to make the decision whether to stay assembled

or not. A number of different environmental media have been utilized, providing for the

random collisions and interactions among the modules including employing a shaking table
or container [34], [48]-[50], an air table [15], [45], [46], agitating the modules floating within
a fluid [47], or agitating the modules floating on a fluid surface [17], [51]. All the mentioned

systems operate at the centimeter scale. At the sub-millimeter scale, however, utilizing a liquid

provides the most efficient way for moving the modules [52].

System Fig. Mass Battery | Processor Environment | Communication | Latching
Penrose & Penrose | 2.1 N N N 1D shaking N mechanical
[49] interlocking
upon collision
Hosokawa et al. [34] 2.3(a) 36¢g N N 2D rotating | N permanent
flat box magnets
Breivik [51] 23(M) | 30g N N 2D fluid N permanent
magnets
White et al. [46] 2.3(c) 165 g N 8-bit Basic | 2D air table serial link be- | electromagnets
Stamp II-SX, tween connected
50 MHz modules
White et al. [46] 2.3(d) 165 g N 8-bit Basic | 2D air table serial link be- | swiveling
Stamp 1II, 50 tween connected | permanent
MHz modules magnets
Grifith et al. [45] 2.3(e) 26g Y 8-bit AT- | 2D air table 4 wireless elec- | mechanical
megasg, 8 tromagnetic latch, regu-
MHz local transmit- | lated electro-
ters magnetically
White et al. [47] 2.3(f) | 895¢g N 8-bit Basic | 3D fluid serial link be- | electromagnets
Stamp II-SX, tween connected | and perma-
50 MHz modules nent magnets
White et al. [47] 2.3(g) | 1480g | N 8-bit Basic | 3D fluid serial link be- | pressure of
Stamp 1II, 50 tween connected | fluid flow,
MHz modules regulated by
valves
PPT [15] 2.3(h) 110g Y 8-bit 2D air table 3 infrared emit- | swiveling
PIC18F242, ters/receivers permanent
3.6 MHz magnets
Bhalla & Bentley [50] 2.3() N N N 2D shaking N permanent
magnets
Pebbles [48] 2.3() N N 8-bit AT- | 2D shaking 4 wireless elec- | electro-
mega328, 8 tromagnetic permanent
MHz local transmit- | magnets
ters
Mermoud et al. [17] 2.2 173g | N N 2D fluid N permanent
magnets

Table 2.1 - Externally propelled modules’ characteristics in various engineered self-assembling
systems. Table data is taken from [11] and extended.

12

2.2. Mechatronic Characteristics

System Fig. Mass Battery | Processor Sensor Communication | Latching
RSD 1 [53] 2.4(a) N N relay (1 head, 2 | bump switch (0 | parallel link be- | impulse
tail) head, 3 tail) tween connected | and fric-
modules tion
CEBOT, 2.4(b) 2700 g N sub CPU (+ main | 4 infrared detec- | 9 infrared emit- | actuated
Mark II [54] CPU off-board) tors (3 rigid, 1 | ters (8 rigid, | mechani-
rotational), 3 ul- | 1 rotational), | cal hook
trasonic distance | parallel link be-
(1Tx and 2Rx) tween connected
modules
CEBOT, 2.4(c) N N sub CPU (+ main | 9 infrared detec- | 9 infrared emit- | mechanical
Mark III [41] CPU off-board) tors, 6 ultrasonic | ters, parallel link | pin/hole &
distance (3Tx | between con- | SMA
and 3Rx) nected modules
CEBOT, 2.4(d) 4100g N 16-bit 8086, 5-10 | 2 infrared detec- | 2 infrared emit- | actuated
Mark IV [55] MHz tors ters, wireless (RS- | mechani-
2320) cal hook
Bererton & | 2.4(e) 250 ¢g Y 8-bit PIC16C73A, | B&W camera | wireless (RF) mechanical
Khosla [56] 20 MHz + off- | (320x240), bump pin hole
board switch
PolyBot, G2 | 2.4(f) 416 g N 32-bit PowerPC | 4 infrared detec- | 8 infrared emit- | mechanical
[43] 555 (MPC555), | tors ters, 2 CANbus pin/hole &
40 MHz SMA
PolyBot, G3 | 2.4(g) 200¢g N 32-bit PowerPC | 8 infrared detec- | 8 infrared emit- | mechanical
[43] 555 (MPC555), | tors, 2 2-axis in- | ters, 2 CANbus pin/hole &
40 MHz clinometers, 8 1- SMA
axis force
CONRO [42] 2.4(h) 114 ¢ Y 8-bit Basic | 4 infrared detec- | 4 infrared emit- | mechanical
Stamp II-SX, 50 | tors ters pin/hole &
MHz SMA
Swarm-bot 2.4() 700 g Y 32-bit XScale, | 19 infrared prox- | 8 RGB LEDs | actuated
(401, [571, 400 MHz + 13 8- | imity, color | changing body | mechani-
[58] bit PIC16F876/7, | camera (640x480, | color, 2 speakers, | cal hook
20 MHz omnidirec- Wi-Fi
tional), 2-axis
force, torque, 4
microphones,
8 light, 3-axis
inclinometer, 2
humidity, 2 light
barriers
SMC [59] 2.4() 11000g | Y 32-bit Pentium | color camera | Wi-Fi actuated
MMX, 233 MHz (2 per parent: mechani-
640x416, 2-3 per cal hook
child: 320x240),
1-axis force
M-TRAN III | 2.4(k) 420 g Y 32-bit 13 infrared detec- | 13 infrared emit- | actuated
[44] HD64F7047, tors, 3-axis incli- | ters, CANbus, | mechani-
48 MHz, 3 16-bit | nometer wireless (Blue- | cal hook
HD64F3687/94, Tooth)
16MHz + off-
board
3D M-block | 2.4() 150 g Y 32-bit Nordic | N infrared link be- | permanent
[28] nRF51422, tween neighbor- | magnets
16MHz ing modules
Kilobot [60], | 2.4(m) N Y 8-bit ATmega328, | N infrared link be- | N
[26] 8 MHz tween neighbor-

ing modules

Table 2.2 - Self-propelled modules’ characteristics in various engineered self-assembling systems.
Table data is taken from [11] and extended.

13

Chapter 2. Engineered Self-Assembling Systems

14

0] (k)

Figure 2.3 — Systems with externally propelled components, figure data is adapted from [11]: (a)
Hosokawa et al.’s self-assembling hexagons [34]. (b) Breivik’s template-replicating polymers [51].
(c), (d) White et al.’s self-assembling programmable modules. (e) Griffith et al.’s electromechanical
assemblers [61]. (f) White et al.’s first system for self-assembly in 3D. (g) White et al.’s second
system for self-assembly in 3D. (h) Programmable parts testbed [15]. (i) Bhalla and Bentley’s
self-assembling special purpose modules [50]. (j) Pebble robots [48]. (k) Mermoud et. al.’s passive
Lily modules [17].

2.2. Mechatronic Characteristics

(m)

Figure 2.4 — Systems with self-propelled components, figure data is adapted from [11]: (a) RSD I
[53]. (b) CEBOT Mark II [54]. (c) CEBOT Mark III [41]. (d) CEBOT Mark IV [55]. (e) Bererton and
Khosla’s system [56]. (f), (g) PolyBot G2 and PolyBot G3 [43]. (h) CONRO [42]. (i) Swarm-bot [40].
(j) Super Mechano Colony [59]. (k) M-TRAN III [44]. (1) 3D-Mblock [28]. (m) Kilobot robot [60].

15

Chapter 2. Engineered Self-Assembling Systems

2.3 Analysis Methods and Modeling

Probabilistic models were developed for various aggregation and self-assembly experiments
[62]. Miyashita et al. proposed an interesting modeling and simulation framework that
includes both microscopic simulations and macroscopic models for capturing the dynamics
of Tribolon modules that perform stochastic self-assembly at the surface of water [63]. A
comprehensive theoretical study of microscopic robot coordination in viscous fluids has
been carried out by Hogg [64]. Kumar and colleagues have extensively investigated stochastic
modeling and distributed control of swarms of robots [65]. Their approach originates from
the study of chemical systems [66], in which randomness plays a key role. The chemical
formalism is particularly suitable to the study of aggregation and self-assembly, as pointed out
by Hosokawa et al. [34]. Hosokawa et al. analyzed the yield of desired products as well as the
process dynamics (with six discrete components per entity) [34]. In the swarm-bot system
[40], the analysis addressed the reliability and speed by which individual modules connect
into single entities, as well as the additional capabilities and functions such processes may
provide (with up to 16 discrete components per entity).

2.4 Synthesis Methods and Control

The process of self-assembly is governed by the modules’ interactions with each other and
by their spatially anisotropic binding preferences. In simpler systems with passive building
blocks, modules have static binding preferences and are externally propelled. Examples
include the systems of Hosokawa et al. [34], Bhalla and Bentley [50], and Mermoud et al.
[17]. In these systems, the course of the assembly process is typically guided through actively
controlled environment, while the space of achievable structures is limited by the binding
preferences of the passive modules. In more complex systems with intelligent building blocks,
a module’s motion and/or binding preferences can depend on its state which may change
following interactions with other modules and/or the environment. For instance, a module’s
state changes by mechanical interactions with other modules in the system of Penrose [49]. In
the system of Breivik, a module’s state can be affected by the temperature of the environment
[51]. In the swarm-bot system, a module’s state depends on the state of connectivity of its
neighboring modules. In several systems, self-assembly starts from a seed which may be a
single module or a modular entity, static or mobile, usually designated by the experimenter.
The seed may also be autonomously chosen by the system as in the case of [58].

In several systems, modules execute a deterministic finite-state machine which may be em-
bedded in the hardware or software. In the systems of Penrose [49], RSD I [53], and the system
of Breivik [51] this logic is embedded in the hardware characteristics of the modules. For the
case of intelligent building blocks the logic is embedded in the module’s software. For instance
for the case of PPT [15], each of the programmable modules executes a program which defines
the module’s binding preferences, specified by a graph grammar. In the case of the swarm-bot
system, designing the behavioral controller is automated using evolutionary algorithms [40].

16

2.4. Synthesis Methods and Control

Summary

Over the course of the past 60 years, a variety of self-assembling systems have been
designed with building blocks at the centimeter scale. These systems demonstrate
several basic functionalities such as formation, growth, self-reconfiguration, self-repair,
and template replication. In this chapter we highlighted the three major problems
one has to address when developing engineered self-assembling systems, the fabri-
cation problem concerned with mechatronic realization and operation of the system,
the analysis problem concerned with modeling, predicting and evaluating the system
performance, and the synthesis problem concerned with influencing the self-assembly
process towards building specific desired target structures.

17

8] Scope of this Thesis

HIS chapter highlights where this thesis stands with respect to the state of the art
and defines our specific contributions. It provides an outline of the thesis along
with the main objectives of the research. Finally, we present our contributions in
each of the main parts of the thesis and describe their link to our published record.

3.1 Objectives and Outline

The research efforts of this thesis can be basically divided into two main thrusts: (i) a tech-
nological research thrust concerned with the design, the fabrication, and the packaging of
the experimental platform, and (ii) a methodological research thrust concerned with the
development of distributed, stochastic control schemes supported by a flexible modeling
framework.

The thesis is laid out in five parts:

PartI - Introduction In this part, we briefly introduce the concept of self-assembly in both
natural and engineered systems. We explain why studying the science of self-assembly is of
importance today and how investigating self-assembly in robotic systems may contribute to
future technological developments in nano-technology.

Part II - Robotic Platform In this part, we present the mechatronic system design process
of our robotic platform. The design challenges and system requirements as well as devised
solutions are described. We explain the functionalities of the realized robotic platform and
characterize the system features through several experiments.

Part III - Modeling Self-Assembly This part lays out our multi-level modeling approach in
order to capture the dynamics of the self-assembling system at different model abstraction
levels. We explain how the models are built based on a description of the embedded controllers
defining the robotic modules’ behaviors and as well as observations of the self-assembly
process in the system.

19

Chapter 3. Scope of this Thesis

Part IV - Controlling Self-Assembly This part focuses on how the self-assembly process
may be guided in order for certain global patterns to form. We explain how appropriate
embedded controllers can be synthesized and deployed on real robotic modules. In particular,
we show how the self-assembly process in our robotic platform can be controlled mainly
through a distributed fashion while global centralized feedback may also affect the course of
the process.

PartV - Conclusion In this final part, we summarize the research conducted in this thesis
and highlight the core contributions of the work. Considering the achievements and the
challenges yet to overcome, we provide an outlook on possible research directions following
up our work.

3.2 Contributions

The contributions of this thesis are along three main axes: design, modeling, and control of
a programmable self-assembling robotic platform. Each of the following parts contributes
along one of these axes to the state of the art.

Part II - Robotic Platform Our first contributions concern design and development of
an experimental fluidic self-assembly robotic platform. Our system consists of two main
components: 1) the floating Lily robotic modules, and 2) the controllable experimental setup
built around them.

m B. Haghighat, E. Droz, and A. Martinoli, “Lily: a miniature floating robotic platform for
programmable stochastic self-assembly”, in IEEE International Conference on Robotics
and Automation (ICRA), 2015, pp. 1941-1948

m B. Haghighat and A. Martinoli, “Characterization and validation of a novel robotic system
for fluid-mediated programmable stochastic self-assembly”, in IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2778-2783

m B. Haghighat, M. Mastrangeli, G. Mermoud, E Schill, and A. Martinoli, “Fluid-mediated
stochastic self-assembly at centimetric and sub-millimetric scales: design, modeling,
and control”, Micromachines, vol. 7, no. 8, p. 138, 2016

PartIII - Modeling Self-Assembly The third contribution explores the development of mod-
els which capture the dynamics of the self-assembling system at different abstraction levels. In
particular we develop models at three abstractions levels: (i) submicroscopic level, where the
physics of the system is accurately captured in a realistic robotic simulator; (ii) microscopic
level, where the physics of the problem is abstracted out into probabilistic interactions of the
modules; (iii) macroscopic level, where we employ Markov modeling techniques to capture
the evolution of the state of the system as a whole.

20

3.2. Contributions

m B. Haghighat, R. Thandiackal, M. Mordig, and A. Martinoli, “Probabilistic modeling of
programmable stochastic self-assembly of robotic modules”, in IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 4656-4663

Part IV - Controlling Self-Assembly The second main contribution is the synthesis of em-
bedded ruleset controllers which allow the self-assembly process of the system to be guided
towards a specific desired target structure in a distributed fashion. Additionally, we show
how rules giving rise to a parallel assembly scheme achieving higher assembly rates can be
synthesized for robotic modules.

m B. Haghighat and A. Martinoli, “Automatic synthesis of rulesets for programmable
stochastic self-assembly of rotationally symmetric robotic modules”, Swarm Intelligence,
vol. 11, no. 3-4, pp. 243-270, 2017

m B. Haghighat, B. Platerrier, L. Waegeli, and A. Martinoli, “Synthesizing rulesets for
programmable robotic self-assembly: a case study using floating miniaturized robots”,
in International Conference on Swarm Intelligence (ANTS), vol. 9882 of LNCS, 2016,
pp. 197-209

m B. Haghighat and A. Martinoli, “A rule synthesis algorithm for programmable stochastic
self-assembly of robotic modules”, in Proceedings of the 13th Int. Symp. on Distributed
Autonomous Robotic Systems (DARS), vol. 6, 2018, pp. 329-343

Summary

This thesis focuses on developing design, modeling, and control methods for pro-
grammable stochastic self-assembly in a swarm of robotic modules. It is driven by
two main thrusts: (i) a technological research thrust concerned with the design, the
fabrication, and the packaging of the experimental platform, and (ii) a methodologi-
cal research thrust concerned with the development of distributed, stochastic control
schemes supported by a flexible modeling framework. Part II contributes to the techno-
logical research thrust, while parts III and IV contribute to the methodological research
thrust with each part building on top of the preceding part.

21

23

Introduction

HAPTER 3 revealed that this thesis comprises two main research thrusts: (i) a

technological research thrust, and (ii) a methodological research thrust. This

chapter describes the details of the technological research thrust in our work, in

particular, the development of our experimental fluid-mediated self-assembly
robotic platform built around a specifically designed water-floating robotic module, called Lily.
We discuss the design choices and specific manufacturing details of the Lily robotic module as
well as functionality validation results. Moreover, we explain the design and characterization
of the full experimental setup through several basic self-assembly experiments.

4.1 Related Work

Inspired by the nature, self-assembling robotic systems typically consist of multiple simple
and small robotic modules as building blocks. Simplicity in the building blocks’ internal design
is in favor of reducing manufacturing costs and increasing robustness as well as allowing for
reduction of the blocks’ size, ultimately resulting in finer resolution in the assembled structures.
While obtaining low-power reliable latching and communication is generally challenging
at small physical scales, taking advantage of the stochastic forces in the environment for
locomotion allows for further simplification of the blocks’ internal design, in particular in
terms of power, computation, and actuation on-board resources.

The self-assembly robotic modules has been studied in numerous works, where a wide range
of hardware implementations, including fully-autonomous robots and controllable environ-
ments, along with corresponding control approaches, have been developed. These works
differ mainly in the capabilities of the robots, i.e., the self-assembly building blocks, the type
of the environment and its level of controllability, and the approach employed to guide the
self-assembly process towards the target. The cubic modules presented in [28] are capable
of forming structures in three dimensions deploying magnetic latching and a lattice-based
locomotion approach on a test table. Self-assembly of a swarm of autonomous floating robots
in 2D has been studied in [73]. In [26], programmable self-assembly has been demonstrated

25

Chapter 4. Introduction

to be a powerful means for the formation of structured patterns in two dimensions in a large
swarm of miniaturized robots, the Kilobots. While the motion of the Kilobots is inherently
noisy, the primitive collective behavior programmed implements a deterministic and quasi-
serial approach to shape formation. Taking advantage of the stochastic ambient dynamics
for module transportation can, however, allow for the simplification of the internal design
of the modules, as well as increased parallelization of the self-assembly process. 3D stochas-
tic self-assembly of passive modules on an active substrate is investigated in [29]. Tribolon
modules stochastically assemble into floating structures [63]. Tribolons are actuated using
vibrating motors, and the environment is not capable of providing any control to guide the
assembling process; the robots have a pantograph for both energy supply and control, includ-
ing a latching mechanism based on the Peltier effect. The intelligent programmable parts
in [15] are capable of local communication via infra-red and have controllable permanent
magnet-based latches. The modules stochastically self-assemble on an air table, based on
their internal behavior. The system of Pebble robots in [27] starts the process of shape forma-
tion with an ordered lattice; the stochastic forces in the environment are then used to detach
unwanted blocks. Pebbles are only powered once they connect to the structure formed around
the seed module; once connected and powered, they are capable of local communication
among themselves. Abundant research has been dedicated to theoretical and experimental
aspects of self-replication [74]. Self-replication of robotic units, for which self-assembled
structure formation is crucial, is demonstrated using five 2D coding strings as templates [75]
and also using self-swiveling microcontroller-based gripping blocks in [76]. A wide variety
of platforms were developed in the context of modular robotics, some of which have the
capabilities of autonomous locomotion and docking [23], [47], [73], [77]-[79].

To distinguish our contribution from the literature, we highlight that in almost all the above
mentioned research activities on robotic self-assembly, no priority is given neither to real-time
tracking of the modules’ trajectories nor to related quantitative investigations of the influence
of driving strategies and stirring conditions on the evolution, efficiency, and yield of the pro-
cesses. Moreover, while in the case of Miyashita’s triangular Tribolons the modules are set at
the water-air interface similar to our Lily robotic modules, they are connected to external pan-
tographs for energy supply, and they share the underlying “substrate” (i.e., electrolytes-loaded
water) as second, shared electrode to perform propulsion or Peltier latching, and they are not
endowed neither with on-board sensing nor computation; as an additional, relevant difference,
their set-up does not allow to precisely control the underlying fluid flow apart from that deriv-
ing from the mechanical vibrations of the tank. Our modules are instead energy-autonomous,
endowed with sensing, computation (microcontroller), and actuation (for latching/unlatching
purposes), stirred by programmable fluid flows, and eligible to construct more articulated
structures as compared to Tribolon’s closed polygonal (hexagonal or triangular) ones. That is,
our modules will allow investigations within the same platform both structural and informa-
tional aspects concerning aggregation and self-assembly, thereby combining both attention to
graph-theoretic constructions (as studied mainly by Klavins’ group) and focus on the effects
of blocks morphology on assembly yield (as represented by Miyashita’s work on Tribolons).

26

4.2. Problem Statement

Our approach is also substantially different from the work in [79], where the fluidically stirred
blocks explore a physical assembly space of higher dimensionality than that possible with
our Lily robotic module. The growth of the assembled structures in [79] starts from a single
fluidic sink located on the underlying active substrate; and only blocks physically attached to
the structure rooted on the energy-providing substrate can be actuated, because electricity is
transmitted upon contact among blocks. Furthermore, apart from the electrical actuation of
internal valves, the modules feature neither on-board sensing nor computational capabilities.

4.2 Problem Statement

Our work considers the Lily robotic modules that, while compensating for their very limited
autonomy of movement by scavenging momentum from their local fluidic environment, are
still endowed with software controlled, intentional though primitive capabilities of interaction.
The basis for our developments is the work in [17] on self-assembling passive Lily modules
mentioned in Chapter 2. The Lily robotic modules’ capabilities are based on active sens-
ing, actuation, latching, and internal memory states able to encode rules for the building
of predefined target structures. The Lily platform consequently embodies the minimalist
tendency toward reduced fabrication costs, reduced energy budgets, and improved operating
robustness of swarming robotic modules—as represented by the simplification of the blocks’
functions concerning locomotion and interactions—along with the complementary tendency
toward the purposeful, smart exploitation of environmental fields for leveraging interaction
and aggregation activities. Such set of properties is coherent and very flexible as far as its
defining parameters can be tuned and adapted to different scenarios. Particularly, it allows
for a software design of behavioral rules of the robots, thereby extending the possibilities
provided by physically hardwired interactions only. Additionally, the pose of the Lily robotic
modules can be easily tracked using a standard overhead camera, and their internal states
can be retrieved in real time using standard low-power wireless communication. Therefore,
the Lily platform and its related experimental tools represent a setup of increased ease of
handling and troubleshooting, ideally suited to investigate the general open issues posed by
fluid-mediated self-assembly, especially given the substantial amount of features shared with
similar systems at smaller length scales (e.g., external agitation, geometrical shape-matching
and alignment, flotation at an interface).

One important argument in favor of our proposed approach to leverage centimeter-scale
robots with the aim of allowing for investigating future sub-millimeter devices is the experi-
mental ease of use and flexibility offered by our proposed robotic platform at this scale. The
communication capabilities of the Lily allows one to probe the internal states of each robotic
module in real time during the experiment. In the context of experiments with a large number
of modules, this type of information is invaluable for both planning, analysis, and debugging
purposes. Moreover, the larger size of Lily makes visual tracking, handling, and troubleshoot-
ing much easier than in the case of sub-millimeter-sized modules. Here below, we concretely
list the design objectives considering the development of our experimental robotic platform.

27

Chapter 4. Introduction

28

Design Objective I: minimal design complexity, miniature size, centimeter scale. At the
centimeter scale, the Lily robotic modules endowed with minimal design complexity
will be eminently representative of the self-assembly processes of passive MEMS build-
ing blocks. However, unlike the passive building blocks, we intend for the intelligent
Lily robotic modules to be able to host and perform a considerable variety of tailored
experiments without any hardware re-design, rather through exploiting their software
programmability.

Design Obijective II: software controlled primitive capabilities of interaction. The robotic
modules should be easily re-programmable, allowing for running different self-assembly
experiments. The program on the robotic modules determines the outcome of the local
interactions among them. These local interactions eventually result in a specific global
structure to emerge. By programming the robotic modules with different software
we may change the target structure emerging through self-assembly thus realizing
programmable self-assembly.

Design Objective III: power autonomy, running on battery. The robotic modules should
be power autonomous by employing an on-board battery, allowing for the modules to
take part in the assembly process at all times. This will also eliminate the need for a
seed module. Employing on-board batteries is fairly affordable at centimeter scale and
reduces the overall system design complexity compared to the case where the modules
need to harvest energy from the environment.

Design Objective IV: low-power controllable latching. The robotic modules need to
employ a controllable latching mechanism in order to actively take part in forming or
severing bindings according to the programmed software behavior. The controllable
latching mechanism needs to be low power in order for the limited on-board battery
capacity to allow for long enough assembly experiments.

Design Objective V: local communication. The robotic modules need to have a means
for communicating with their neighboring modules. This local communication enables
the modules to make a mutual decision, based on their programmed software behavior,
for forming or severing a binding with another module. Through these local decisions
the self-assembly process will progress towards the desired target structure emerging at
the global level.

Design Objective VI: global communication. Existence of a global radio communication
link between the robotic modules and a base station allows for collecting information
about the experiments as the self-assembly process is in progress. Such link may also
be exploited for sending commands or feedback to the robotic modules during the
experiments. Additionally, one may perform functionality health check on the robots
through this radio link as well as programming them.

Design Objective VII: minimalist sensing. The robotic modules need to be equipped
with minimal sensing means to (i) perceive if they have neighboring modules, and (ii)

4.2. Problem Statement

perceive possible environmental clues guiding the self-assembly process.

m Design Objective VIII: scalable operation, charging, and programming. Our self-assembly
experiments are intended to include tens of modules. With large numbers it can be
tedious to turn on or off, charge, or program the robots individually. For these reasons,
the robotic modules need to be designed such that they do not require to be handled
individually for these operations.

m Design Objective IX: non-self-locomoted water-floating modules. The Lily robotic mod-
ules are intended to float on water and be driven around by the flow in the environment.
This places certain constraints on the design. For the robots to be floating two key
conditions need to be met: the payload should be below the buoyancy threshold and
evenly distributed for a balanced flotation. Another crucial aspect of the design is proper
sealing of the electronics inside while maintaining the ability to quickly dis-assemble,
repair, and re-assemble the faulty modules.

m Design Objective X: controllable environment. The environment should be able to
actively take part in the self-assembly process by adapting the global conditions such as
the flow field moving the robotic modules around or communicating specific feedback
to the robotic modules.

Considering the design objectives outlined above, we will explain the final design choices
made in the following chapter. Here below, we briefly list the design choices made for the
realization of the final experimental platform.

m Design Choice I: minimal design complexity, miniature size, centimeter scale The Lily
robotic module has a cubic shell of 3 cm size. In order to simplify the design, no moving
parts are included. The Lilies are not self-locomoted. Instead, they float on water and
are driven around by the flow created in the environment. This ambient fluidic flow
field drives the mixing in the system and provides for the various interactions among
the robotic modules ultimately guiding the self-assembly.

m Design Choice II: software controlled primitive capabilities of interaction. The self-
assembly of the Lily robotic modules is mainly controlled by the software embedded
on the modules on-board 8-bit microcontroller in a distributed fashion. The software
defines a rule-based behavioral controller where each rule determines if a binding
between two Lily robots in a certain configuration should be formed or severed in order
for the assembly process to progress towards the desired target structure. The robotic
modules employ a wireless bootloader which allows for programming the robots with a
new behavioral controller wirelessly.

m Design Choice III: power autonomy, running on battery. The robotic modules employ a
small LiPo battery which sits at the bottom of the plastic shell.

29

Chapter 4. Introduction

30

m Design Choice IV: low power controllable latching. The robotic modules are endowed

with four electro-permanent magnetic latches which can be placed in two controllable
states: the on state where magnetic attraction is applied, or the off state where no
magnetic attraction is applied. Unlike electromagnets which hold the assumed state
only while consuming power, electro-permanent magnets require power only during
the transient time when changing from one state to the other and consume zero power
while holding a state. As a result, for low switching frequencies, electro-permanent
magnets offer a very low-power controllable latching mechanism.

Design Choice V: local communication. Once latched, the electro-permanent magnetic
latches form an inductive communication channel. The robotic modules employ this
channel to communicate to their neighbors.

Design Choice VI: global communication. The robotic modules employ an integrated
transceiver within the on-board microcontroller and a chip antenna for radio communi-
cation with a base station. This radio link is used for (i) wireless programming of the
robots, and (ii) communicating with the robots during assembly experiments for data
collection or providing specific commands.

Design Choice VII: minimalist sensing. The robotic modules are equipped with a light
sensor as a minimal means of sensing the environment. Additionally, via the local
inductive communication channel formed through their electro-permanent magnetic
latches they can find out if another robot exists in their neighborhood.

Design Choice VIII: scalable operation, charging, and programming. The Lily robotic
modules have been designed not to prevent individual handling for operations such as
turning on or off, charging, or programming as well as starting or stopping an experi-
ment. Multiple Lilies can be programmed with a new software through a radio link at the
same time using the multicast mode, thus the overall programming time is independent
of the swarm size. For charging a group of Lilies, they are all placed in a charging rack
with powered rails connected to a power supply. The robotic modules have on-board
charging chips which take care of a proper scheme for safely and efficiently charging the
LiPo batteries. Lilies have a small push-button controller chip on board that eliminates
the need for a physical switch for turning the modules on or off. In order to switch on the
robotic modules, one may simply switch the power supply off and on once, providing a
pulse of voltage which will switch on all the modules in the power rack.

Design Choice IX: non-self-locomoted water-floating modules. The Lily’s shell is a 3D-
printed water-resistant structure of 1 mm thickness. It encloses the module and defines
the available volume, determining the payload limit to be 35 g. Four small cavities
are devised in the shell to allow for trimming and fine tuning weight distribution for a
balanced flotation. The design includes a narrow gap of Imm depth and width between
the shell and the cap which is sealed using silicone paste. To open the module one only
needs to cut the paste using a sharp blade and lift the cap.

4.2. Problem Statement

m Design Choice X: controllable environment. While the self-assembly process towards a
desired target structure is mainly guided by the programmed behavior of the Lily robotic
modules in a fully distributed and thus scalable fashion using a rule-set description, the
environment has the capability to actively take part in the process by adapting the flow
field, changing the ambient luminosity pattern perceivable by the modules, or sending
global feedback information to the modules over radio.

Summary

In this chapter we reviewed the related work in self-assembling robotic systems at the
centimeter scale. In particular we focused on the mechatronic design of the robotic
modules and the environment. Moreover, we explained our system design objectives
and subsequent design choices. In the following chapters, we will carefully describe
the development of the Lily robotic modules as well as the experimental fluidic self-
assembly platform built around them.

31

Lily Robotic Module

s the first step towards developing our experimental platform, we focus on the

building blocks which actually perform the self-assembly. In particular, we con-

sider the mechatronic design and fabrication of the Lily robotic modules. Having

inherited their external shell shape from the passive Lily modules firstly employed
in a preceding research effort [17], Lily robotic modules employ low-power controllable
Electro-Permanent Magnet (EPM) latches which they can disable to refuse certain interactions
according to their embedded behavioral rule-set controller as well as the information about
their neighbors acquired by communication through inductive EPM channels. Lilies can
also communicate over a radio link to a base station to receive commands, new firmware,
or to report specific information. Being powered by a small LiPo battery, Lilies can actively
take part in the assembly process at all times allowing for a parallel assembly scheme where
sub-structures of the target can be built separately, eventually joining to complete the overall
target. Lily robotic modules are unique in the field in that they are the only power-autonomous
fluid-mediated self-assembling building blocks capable of both wireless communication to a
base station and local communication to neighbors through their custom-designed latches.
Fig. 5.1 shows a Lily robotic module, a 35 mm roughly cubic-shaped power-autonomous unit.
The choice of a latching mechanism was severely restricted by the small size of the robotic
module, in particular a low-power mechanism was crucial. For the robots to be floating, two
key conditions were necessary: the payload needed to be below a threshold and the weight
needed to be evenly distributed. The following sections explains the design and development
of the Lily robotic modules in detail.

As depicted in Fig. 5.2, each robotic module is composed of several components: a LiPo
battery, four EPMs serving as physical latching and local communication channel, and a
flexible circuit board. The flexible board is a two-layer design of total 260 ym thickness, on
which a microcontroller unit with an integrated radio transceiver, an analog radio front-end,
and a switching and power circuitry are placed. The battery is placed at the bottom of the shell.
The flexible board with the four EPMs soldered on it is then folded and placed on top of the
battery with the EPMs snapping in the sockets on the walls. A small frame is then placed in the

33

Chapter 5. Lily Robotic Module

Figure 5.1 - Picture of a Lily robotic module. Some key features visible in the picture are: charging
contacts (A), chip antenna (B), two LEDs signaling board status (C), ambient light sensor (D),
sealing gap filled with silicone paste (E), and two of the four trimming holes (F).

middle to hold the EPMs in place. The gap between the transparent cap and the shell is sealed
to protect the electronics inside from moisture. Table 5.1 summarizes the mass breakdown for
a Lily robotic module.

5.1 External Shell

The Lily shell is a 3D-printed watertight structure of 1 mm thickness. It encloses the module
and defines the available volume, determining the payload limit to be 35 g. The shells were
ordered to the US-based 3D printing company Shapeways. The shells are made of a UV-cured
Polymer which is also heat resistant up to 80 °C. This material is printed using the Multi-Jet

Table 5.1 - Mass break-down for a Lily robotic module.

Item Mass

Shell 95¢g

Cap 13g

Battery 7.8¢g
Populated board 3g

4x EPM 6.8¢g

EPM frame 05g
2xChargingpin 0.2g
Sealing paste 05g
Total 296¢g

34

5.1. External Shell

(f)

(d)

(©

Figure 5.2 - Each Lily robotic module is composed of (a) a flexible circuit board with four EPM
latches soldered on it, (b) a 240 mAh LiPo battery, (c) two brass charging pins protruding the
transparent cap, (d) a 3D printed transparent cap, (e) a 3D printed shell, and (f) a 3D printed frame
for holding the EPMs in place.

Modeling (MJM) process. Molten plastic is deposited onto an aluminum build platform in
layers using several nozzles, essentially like a large print that sweeps across the build layer. As
the heated material jets onto the build plate, it solidifies instantly. After each layer is deposited,
itis cured, or polymerized, by a wide area UV lamp. The next layer is then applied, and through
this repeated process, layers of thermoplastic build up into a model. Each layer has a thickness
of 0.029 mm. When printing is finished, the models are removed from the tray and placed into
an oven that melts away the wax support material. Next, they are placed into an a ultrasonic
oil bath to remove any remaining wax residues, and then a ultrasonic water bath to remove
any oil on the model.

The thickness of the shell wall is 1 mm everywhere except for the windows devised on each
wall for the placement of the EPMs where the wall thickness is 0.3 mm. As a result, when two
Lilies are in close contact, their neighboring EPMs are 0.6 mm apart. As depicted in Fig. 5.2,

35

Chapter 5. Lily Robotic Module

(b)

Figure 5.3 — (a) Placing the EPM latches on the flexible PCB lying on a 3D-printed support. The
3D-printed support allows for ensuring precise placement. The EPMs are then manually soldered
on the PCB using a soldering iron. (b) After soldering the EPMs on the flexible PCB, the board is
bent along 5 bending axes to fit inside the 3D-printed cubic shell. In order to bend the flexible PCB
a small 3D-printed support piece is used to ensure uniform and repeatable bending and across
several flexible boards and along all bending axes.

the shell has a specific rugged shape designed to prevent the latched units from easily slipping
away due to high energy agitations in the fluid. Four small cavities are devised in the shell
to allow for trimming and fine tuning weight distribution for a balanced flotation. For this,
cylindrical brass pieces cut into a variety of predefined sizes were used as trimming weights.
Just before closing and sealing the cap, the Lily would be checked for balanced flotation and
an appropriate number of trimming pieces would be placed in the four trimming holes to
balance the module. Right below the transparent cap, four LEDs signaling the board status
as well as an ambient light sensor are placed. The cap is also a 3D printed model ordered

36

5.1. External Shell

(a)

(b)

Figure 5.4 — (a) Placing the bent PCB inside the 3D-printed shell. The EPMs snap into the sockets
devised on the inner walls. (b) Sealing the Lily by injecting Silicone paste in the sealing gap.

to the Shapeways company. The model is printed in acrylic plastic which is watertight and
translucent. The material is also heatproof up to 48 °C.

A crucial aspect of the design was proper sealing of the electronics inside while maintaining
the ability to quickly dis-assemble, repair, and re-assemble the device. The design includes
anarrow gap of lmm depth and width between the shell and the cap which is sealed using
silicone paste (see also Figure 5.4(b)). The E41 Elastosil Silicone paste from Wacker was
selected due to the softness of the cured paste which allows for easy and quick removal of the
paste. To open the module one only needs to cut the paste using a sharp blade and lift the
cap. It is easy to scrape off the dried paste and re-apply fresh silicone. Several tests conducted
using humidity indicator paper slips inside the sealed shells submerged in water for several

37

Chapter 5. Lily Robotic Module

hours proved the reliability of the design before experiments were attempted.

5.2 Printed Circuit Board

The Lily Printed Circuit Board (PCB) is a flexible design comprising two layers with a total
thickness of 260 ym. Each copper layer is about 35 um thick. The copper layer thickness and
width of the tracks were critical design parameters due to the high current pulses required for
reliable switching of the EPM latches. Compared to conventional rigid PCBs, flexible PCBs
of the same size and layer count save up to 60% of weight. Additionally, the flexible PCB can
be easily bent to conform with the Lily shell design and to be quickly placed inside the shell.
While the first 20 boards were manually populated with components and soldered using a
small infra-red oven, the final batch of boards were populated by the company fabricating
the boards. The EPMs were later soldered on the boards using a 3D printed template for the
boards to ensure precise placement as shown in Figure 5.3(a). If the EPMs are not well-aligned
when soldered on the flexible PCB, the placement of the board inside the shell such that all
four EPMs snap into the specific windows devised on the shell walls can be very difficult. After
soldering the four EPMs, the board is bent around five bending lines using a small 3D-printed
piece as shown in Figure 5.3(b). The bent board is then placed inside the shell on top of the
battery sitting at the bottom and the module is closed and sealed as shown in Figure 5.4.

5.3 Electro-Permanent Magnetic Latches

Due to the high energy dynamics and stochastic nature of fluidic flows, in the realm of fluid-
mediated self-assembly it is crucial that the latching faces can get aligned automatically.
In order to meet a long-term energetic autonomy and the specific density requirements, a
low-power and small-size latching mechanism was a necessity. We selected EPMs as they
come with several advantages. These controllable magnets consume power only during the
transient switching time. They are also efficiently down-scalable; while the required energy
for switching is proportional to the latch volume, the force is proportional to its area [80].
The alignment of latching faces is also realized automatically through the interaction of the
magnetic fields. Additionally, for low switching frequencies, electro-permanent magnets do
not require coils with lower density than that of electro-magnets [80].

An EPM consists of two different types of permanent magnet rods, both having almost the
same remnant magnetization but very different coercivities (see Figure 5.5 and Table 5.2). The
rods are wrapped with a copper coil and have a small iron pole at each end for directing the
magnetic flux. A high enough current pulse through the coil turns the latch “on" or “off" by set-
ting the polarization of the soft magnet similar or opposite to that of the hard one, respectively.
This high current peak is obtained by discharging a capacitor on the EPM coil. When the latch
is “on", the magnetic flux reaches out and attracts magnetic materials; when it is “off" the iron
poles provide a low resistance path for the flux to close within the two magnetic rods.

38

5.3. Electro-Permanent Magnetic Latches

Coil (N, o)

NdFeB

\/ AINiCo

Target
Surface

(@ (b)

Figure 5.5 - EPM construction schematic [80] (a), CAD design of an EPM for the Lily robotic
modules with three layers of winding (b).

5.3.1 Designing EPM Latches

In order to design customized EPM latches for our Lily robotic modules we started from the
work described in [80]. We chose to use the same magnetic material, similar to the EPMs
described in [80], we consider EPM devices made from the parallel set of a Neodymium-Iron-
Boron (NIB or NdFeB) magnet rod with a very high coercivity, and an Aluminum-Nickel-Cobalt
(Alnico) magnet rod with a relatively lower coercivity. Both magnetic material have roughly
the same residual flux density as indicated in Table 5.2. Due to the high coercivity of the NIB
magnet, the flux through it remains in the same direction under the operation conditions of
the EPM device that we consider (see Figure 5.6). When the EPM device is in the off-state,
the NIB and Alnico magnet rods are magnetized in opposite directions. Figure 5.6(a) shows
the operation cycle of the EPM device. A positive current pulse through the EPM device coil
results in a clockwise flux through the magnet and target surface, magnetizing the Alnico
magnet towards right, turning the device to the on-state. A negative current pulse through
the EPM device results in a counterclockwise flux through the magnet and the target surface,
magnetizing the Alnico magnet towards left, turning the device to the off-state. Both magnet

Magnet types Coercivity | Residual flux density
Grade N40 NdFeB | 1000 kA/m | 1.28T
LNG40 Alnico 48 KA/m 1.26 T

Table 5.2 - Magnetic properties of the utilized magnet rods.

39

Chapter 5. Lily Robotic Module

f
[

_ Ake.

off Switching On On Switching Off

(a) (b)

Figure 5.6 — (a) The EPM operation scheme. In the off state, the two magnetic materials are
oppositely polarized, so magnetic flux circulates inside the device, and there is no force on the
target. In the on state, the two magnetic materials are polarized in the same direction, so magnetic
flux travels outside the device and through the target, attracting it to the magnet. A current pulse
in the coil of proper magnitude and sufficient duration switches the device between the on and
off states, by switching the magnetization of only the Alnico magnet, which has a lower coercivity
than the NIB magnet [80]. (b) Hysteresis curves of NdFeB and AINiCo, the one of AINiCo is much
smaller. The coercitivity of NdFeB is 1000kA/m and the one for AINiCo is 48kA/m.

rods see the same magnetic field created by the current through the device coil. However,
as it can be seen in Figure 5.6(b), on the scale of the Alnico B/H curve, the NIB B/H curve
appears as a line and is far from its saturation region because of the NIB magnet’s much higher
coercivity. As a result of having roughly equal residual flux density, at any of the two stable
on-state or off-state of the EPM device the polarization of the NIB and Alnico magnet rods add
up such they result in a residual flux density near zero on the lower part of the hysteresis loop
but a positive residual flux density on the upper part of the hysteresis loop. A current pulse
through the coil imposes a magnetic field H across the device, cycling it around the biased-up
hysteresis loop shown in Figure 5.6(a).

In the following, we first summarize the mathematical descriptions, originally fully derived
in [80], for several quantitative features of an EPM latch. We then use these descriptions for
determining a set of appropriate parameters for the custom-design of the EPM deployed on
Lilies and its corresponding switching circuitry using a simulation setup in Matlab. A list of
parameters as well as their description and a reference to they show up is provided in table 5.3.

The magnetizing current, I,;,4¢: Starting from the Ampere’s law and considering the EPM
schematic shown in Figure 5.5(a) one can follow a magnetic circuit through the magnet rods,

40

5.3. Electro-Permanent Magnetic Latches

both air gaps and closing through the target surface, and write:

HpnL+2Hgg=NI (5.1)

We consider the ideal case where the pole-to-pole leakage flux ¢;.,x = 0. Using Gauss’s law for
magnetic fields and the same magnetic circuit, we have:

T
Zdz (Batnico + Bn1s) = (Bgab) (5.2)

For the NIB magnet, we consider a straight-line magnetization curve as in Figure 5.6(b).

Bnig = By + o Hp (5.3)
Parameter | Description Reference
Banico magnetic flux density in Alnico magnet Eq. 5.2
Bnis magnetic flux density in NdFeB magnet Eq. 5.2
B, residual magnetic flux density of NdFeB rod Eq. 5.3
Bg magnetic flux density in the air gap Eq. 54
Hg magnetic field intensity in the air gap Eq. 5.4
Hp, magnetic field intensity in any of the magnet rods Eq. 5.3
Hyag required magnetic field intensity for Alnico to reach saturation | Eq. 5.6
Bmag required magnetic flux density for Alnico to reach saturation Eq. 5.6
Inag required current through the coil for Alnico to reach saturation | Eq. 5.6
o permeability of free space Eq. 5.3
lwire coil wire length Eq. 5.8
Ayire coil wire cross section area Eq. 5.9
Lepm inductance of the EPM device Eq. 5.12
Repm resistance of the EPM device Eqg. 5.10
N number of turns in the coil winding Eq. 5.1
L length of magnet rods Fig. 5.5
d diameter of magnet rods Fig. 5.5
a width of iron pole Fig. 5.5
b thickness of iron pole Fig. 5.5
g width of air gap Fig. 5.5
w thickness of coil winding Fig. 5.5

Table 5.3 - A summary of parameters concerning the formulations for an EPM device.

41

Chapter 5. Lily Robotic Module

Through the air gap, the magnetic field and flux density are linearly related.

Unlike the air gap and due to the hysteresis effect, the Alnico magnet has a nonlinear B/H
relationship, Bgjnico(Hm (), t) as shown in 5.6(b). Combining the equations above, we have:

Hoab
2g

%d2(Balnico(Hm(t);t)+Br + HoHp) = (JINI(t) = Hp(1)L) (5.5)

To switch the EPM device to the on-state, we will apply a pulse of voltage V to the coil for a
time T, until the coil current rises to I;;4. The magnetic field intensity to saturate the Alnico
is Hy, = Hyag, and the associated magnetic flux density is Bsjpico = Bmag. Substituting these
values into Equation 5.5 and solving for I, we have:

nd?(Bmag + Br + 1o Hnag)
mag r+ Mo mag) (5.6)

1
Imag = N (HmagL +

b
455

The EPM device resistance, Rppys: The resistance of the final EPM device is equal to the
resistance of the unrolled wire.

l .
RZP wire (5.7)

Awire

The length of the unrolled wire is N times the length of an average-length turn.

Lire = N[2d + (d + w)] (5.8)

The wire cross section area as a function of the wire diameter d,, and assuming square wire
packing in the winding is:

A _ndz_nwL (5.9)
wzre—4 w_4N .

42

5.3. Electro-Permanent Magnetic Latches

Combining Equations 5.7, 5.8, and 5.9, we have the resistance of the EPM device:

4pN?

d 2
Rgpy = 1+—00+-)] (5.10)
w b1

The EPM device inductance, Lrp);: We can approximate the EPM device behavior as an

average constant inductance L = %, in order to estimate the switching time T.

AL N(Byae + Br + o Hpge) Ed?
Lppy = — = mag ¥ Or + HofTmag)y (5.11)
Al Al

N2
LEPM = 28 N 4HmagL (5.12)
Hoab ndz(Bmag+Br+l10Hmag)

The switching voltage: The voltage drop across the EPM device is the sum of the induced
voltage and the voltage across the series resistance.

Baini B 2
V(t)zN(d alnico | @ N’B)”d +I(OR (5.13)
dt dt 4

From the above equation, we can see that higher voltage results in faster switching. We can
also see that there is a minimum voltage, V,;i;, below which a current I,,,,, will not grow after
the transient time.

d 2
Vinin = ImagR=4HmugpN[l+E(1+;)] (5.14)

5.3.2 Building EPM Latches

Fig. 5.7 depicts the structure of a custom-sized EPM for the Lily robots. EPMs are placed
horizontally inside the Lily shell on four walls, i.e. with their North and South poles pointing
left and right (as opposed to pointing up and down) resulting in a 4-way symmetric design. The
force between two meeting Lilies is then always non-repulsive, thus in favor of getting latched.
It is shown that in scenarios where the configuration form or pattern matters, gender-less
latches are favorable [81].

43

Chapter 5. Lily Robotic Module

A B C

Y 0 .
/@9/ L =

.,

lcm

Figure 5.7 — A: An EPM is composed of two magnet rods (a), sandwiched between two iron pole
pieces (b), and wrapped with 32 turns of grade 26 AWG wire (c). B: The pieces are held together
using glue. C: The assembly is then put in a Polyurethan mold for protection against humidity and
for increased sturdiness of the piece.

In order to build custom EPM devices for the Lily modules, we first determined the size of
the magnet rods, i.e. the L and d parameters in Table 5.3, with the aim to achieve a certain
attraction force. Using the equations derived above and by simulating an RLC circuit in
Matlab, we then determined appropriate number of coil turns N as well as the capacitor size
and supply voltage. The number of coil turns directly influences the overall coil inductance
which in turn affects the choice of the capacitor used for producing the current pulse. The
magnetic rods were chosen to be grade N40 NdFeB and LNG40 Alnico, both of 2 mm diameter
and 6 mm length. The pole pieces were laser cut from an Iron sheet to a size of 5 mm by
4.5 mm by 1.5 mm. Simulating the equations governing the electrical characteristics of the
EPM in MATLAB and using a systematic search in a coarsely discretized parameter space, the
electrical parameters were determined: 32 turns for the coil, a required current peak of 22 A,
a capacitor of 400 uE and a voltage level of 12 V for charging the capacitor. The coils were
made by wrapping 32 turns of thermal copper wire of #26 AWG around a mold. A current of
20 A was then passed through the coil for a few seconds to heat up the wire for the insulation
to melt and the structure to be fixed. The magnet rods were glued to the pole pieces. We
used a dedicated set-up for assembling the EPMs, allowing for a quick, precise and repeatable
assembling procedure, resulting in EPM latches with almost identical characteristics.

Two types of tests were conducted to characterize the EPM latching strength, a pull test to
determine the holding force and another test in which one EPM approached the other to
sketch the force field. One EPM was always anchored to a 250 g block placed on a weighing
scale with 0.1 g precision. For sketching the force field, the second EPM was mounted on a
linear motion axis with a precision of 0.1 mm and approached the first one from a distance
of 4 cm. Fig. 5.8 depicts the normal force for two different conditions, involving one or two
latching pulses, averaged over 10 trials. It can be seen that the two curves are only slightly
different. Therefore, it can be concluded that applying several pulses instead of one would
not increase the latching strength considerably. For measuring the holding force, a pull test

44

5.3. Electro-Permanent Magnetic Latches

Force Between Two EPMs vs. Distance
120 ‘ ‘

-‘--Double Pulse

1005 —Single Pulse

80
60H

401

Normal Force [g]

20

0 15 20 25
Distance [mm]

Figure 5.8 — Latching force between two EPMs as a function of the distance between them.

EPM Coil Current and Voltage

40 T T T T T
—Voltage

301 Current|

20r R

Coil Current [A] / Voltage [V]

— 1 1 1 1 1 1 1 1 1
20 -10 0 10 20 30 40 50 60 70 80

Time [us]

Figure 5.9 — Current through and voltage across an EPM coil during switching.

was performed in which the second magnet was fixed to one end of a spring of constant k =
6.7 N/m while the other end was pulled by the moving axis. The average holding force for the
case where the EPMs were turned on using one switching pulse was 116 g. When the EPMs
were turned on using two pulses the average holding force was 128 g. For the case where one
EPM was turned on using one switching pulse and the other was off the average holding force
was 32 g. The force between two magnets in the off state was measured to be 0 within the
aforementioned precision.

Fig. 5.9 depicts the current through and the voltage across an EPM coil during a single
switching pulse. As it can be seen the threshold current for switching the soft magnet is
reached within 50 us after which the current path is opened on the H-bridge. The voltage
across the capacitor bank of 400 uF is depicted in Fig. 5.10. It can be seen that the back
Electro-Motive Force (EMF) of the switching coil charges the capacitor back up by 0.7 Vin less
than 10 us, the capacitor is then charged up to 12 V through the DC-DC converter in 17 ms.

45

Chapter 5. Lily Robotic Module

400uF Capacitor Voltage During Switching

[EnN
N

[N
\S]

[y
o

Capacitor Voltage [V]
(o]

S

L
-50 0 50 100
Time [us]

o
o

| |
150 200 250

Figure 5.10 - Voltage across the 400 uF capacitor during switching.

5.3.3 EPM Switching Circuitry

Fig. 5.11 depicts the EPM switching circuitry. An H-bridge structure was necessary for driving
current in the EPM coils in two directions. For the sake of saving space on the board, each
EPM has one dedicated half-bridge while the four share one common half-bridge, similar
to the design in [48]. The MOSFET switches are capable of handling a maximum pulsed
current of 40 A, and are all N-Channel type, thus faster to switch, less bulky and less lossy
than P-Channel types of similar current capacity. To make the switching fast and also to
protect the microcontroller, gate driver ICs are used to turn the MOSFET switches on and off.
We leveraged the intrinsic diodes in the MOSFETs, capable of standing a maximum forward
current of 25 A, for passing the induced current to the capacitor while the switches are turning
off. As shown in Fig. 5.10 this current charges the capacitor back up by 0.7 V.

5.3.4 EPM Communication Circuitry

The detection circuitry for EPM communication is shown in Fig. 5.11. The analog comparator
is internal to the microcontroller. Due to the four EPMs sharing a common half-bridge and a
single analog comparator, it is impossible for the controller to process messages on multiple
EPM channels at the same time. The EPM channels are thus scanned sequentially. Similar
to [48], to select a channel the dedicated side of the the H-bridge is grounded by turning on
the low-side MOSFET, while the other end of the coil is connected to the positive input of the
analog comparator through a high-pass filter with the DC level set to 1.5 V. The clipper diodes
protect the input pins of the analog comparator against high voltage peaks. The negative
input of the comparator is connected to a low-pass filtered square wave generated using the
PWM timer channel of the microcontroller. This generates a DC level that can be adjusted for
different detection sensitivities by modifying the duty cycle. If the processor does not detect
an incoming message on a channel within 1ms, it will proceed to the next one.

46

5.4. Powering the Lily

C=400uF
_ _ __ _Dedicated halfbridges_ _ _ _____________
Y ammm RN Y Y/ N) E \
| [| (| { T { \
| \ | Iy -—‘JE 2|) 4 (] I
R R S A | —
: Gate Gate Gate L Gate B -
| k) UR) JO[) 10k,
l ___7___ N .) S |
S— .S __L___ %_‘__i___:ﬁ___.’
R ;g 3 J:g .
EPM 1 EPM 2 ‘ EPM 3 EPM 4
~-- - == ~
+V Internal |
- toMcuU |

Shared half bridge High-pass, £ = I

e —— L HPF-
__leN | Filter ’f

Gate
Driver| ——’

e \ !
S - v Cer
- low-passs~-" Mo _ _ ___ ’

Filter

_——— = — -

-_—e e o (e e e e o .

- o

Figure 5.11 - The EPM switching and communication circuitry. In order to produce a current
pulse in an EPM, the current path is closed through the dedicated half bridge and the shared
one. Communication pulses are received on the positive input of the analog comparator, with the
dedicated side grounded and the shared side floating.

5.4 Powering the Lily

Being endowed with an on-board battery, Lilies have a small push-button controller chip
on board that eliminates the need for a physical switch for turning the robots on or off. A
power-off input from the microcontroller to this chip allows for powering down the system.
In order to turn off a swarm of Lilies the base station sends a multicast “turn off” command.
Upon receiving the command, the Lily’s microcontroller does some housekeeping operations
and then activates the power-off input to the push-button controller which disconnects the
battery from the rest of the circuit. In this state only the push-button controller is on, drawing
a 6 pA current from the battery. Lilies can be safely stored in this state for more than two years
on a single battery charge. In order to turn a Lily on, a short pulse of 5 V is applied on its
charging input contacts. A swarm of Lilies can be turned on by lining them up and placing

47

Chapter 5. Lily Robotic Module

the charger rail on top of them, the short pulse can then be applied to the charging rail. Upon
turning on, Lilies will be running the bootloader code, waiting for a command to start the
experiment.

Table 5.4 shows the supply current drawn on different modes. As can be seen, power con-
sumption when only the core is running and the radio is off, is considerably less than when
the radio is on. It is thus efficient to keep the microcontroller in this mode most of the time,
while the core needs to be running for EPM communications and switching, the radio can be
turned on only when communication to the base station is necessary. When no EPM commu-
nication, switching, or radio communication task is pending the microcontroller enters the
sleep mode. The microcontroller turns the radio on frequently and queries the base station
for any commands that might have been issued and queued during the time the node was not
listening. For a typical scenario with an estimated encountering rate of 2 per minute resulting
in a communication over radio, the average current consumption will be 4.4 mA, resulting in
40 hours of power autonomy.

5.4.1 Power Circuitry

Lily robots are designed to be energetically autonomous deploying a 3.7 V 240 mAh Lithium-
Polymer battery as shown in Fig. 5.2. Each module contains four surface-mount 100 uF
ceramic capacitors charged through a DC-DC converter chip that raises the voltage level from
3.7V to 12 V. Discharging these capacitors on an EPM coil for approximately 50 us produces a
current peak of around 30 A, well above the required amount of 20 A. The battery is protected
against running on low voltage or high current. In addition, the controller monitors the voltage
level and is capable of issuing a turn-off command. There is also a charger chip on the board.
It is thus sufficient to connect the charging contacts (see Figure 5.2) to a power supply, and
the charging scheme will be regulated automatically. By applying a short pulse on the same
contacts, the robot can be turned on or off immediately.

Table 5.4 — Current consumption on different modes.

Item Consumption
Sleep 700 pA
Core 4.1 mA
Radio Tx 18.6 mA
Radio Rx 16.6 mA
EPM Switching 30 A (50 us)
EPM Tx 5A (1 us)

48

5.4. Powering the Lily

(a)

(b)

Figure 5.12 - Lily robotic modules in the charging station. The close-up shows the spring-loaded
contact pins in touch with the Lilies’ charging pins. The charger simply connects the Lilies to a
power supply, while the LiPo batteries charging scheme is regulated by each module’s on-board
charger chip.

5.4.2 Charging

In order to charge the battery, the input contacts of the Lily’s charger (see the pins in Figure
5.2) have to be connected to a 5.5 V power supply. These contacts are protected against wrong
polarity and short circuit. The charger chip on the flexible board regulates the appropriate
charging scheme for the LiPo battery. A green LED signals different charging states; it turns off
when the battery is full. Deploying this charging chip eliminates the need for separate chargers.
For charging a group of Lilies, the modules are placed in the charger base and a charging rail
connected to a power supply is placed on top of them as shown in Figure 5.12. Each charger
chip will draw the appropriate current to charge a battery and stops automatically when the
battery is full.

49

Chapter 5. Lily Robotic Module

5.5 Communication and Sensing

Lilies need to communicate with their neighbors to decide whether they should remain latched
or unlatch in order to build-up the target structure collectively. They also need to communicate
with the base station. For logging the assembly process, the nodes report the changes in their
internal state back to the base station. The base is also capable of communicating individually
or globally to the robots inside the arena to guide the assembly process or query a specific
information, to make sure that the robots are running well. As another minimal means of
sensing the environment, there is an ambient light sensor on board. Lilies can thus change
their behavior according to the controllable light patterns generated through a dedicated
overhead projector as in [82].

5.5.1 Radio Communication

Wireless communication between the base station and the Lily robotic modules is necessary
for several purposes. Since the Lily modules need to be water resistant, the electronics is
enclosed and sealed inside the plastic shell. While wired programming required the sealing to
be opened to access a programming header, using an Over The Air Upgrade (OTAU) scheme
only required a wireless communication link to the base station. Through wireless boot-
loading, the Lilies can be programmed easily without the need to open the sealing. The
wireless communication is also used for logging the robotic modules’ internal data during
experiments. For instance, the robotic modules can send information about their internal
state, battery level, or the measured luminosity level. This information can be later used to
compare models with the ground truth experimental results and also to detect any faulty
robotic modules during experiments. Lilies are also capable of receiving commands from the
base station such as queries about specific information, or commands to change parameters
in the modules’ behavior.

For the wireless communication with the base station a command interface including 21
messages was designed. Table 5.5 lists the most important ones. When running the bootloader
code the robotic module is constantly listening on the radio for incoming messages. In this
state, being the default state after the module is turned on, the Lilies can reply to the base
station’s ping request, sending back their short address, and the version of the bootloader they
are running. The wireless bootloader allows for programming the robotic module with a new
application image. To allow for an update over radio, the program counter is redirected from
the application code to the bootloader code upon receiving the corresponding command from
the base. When running the application, the Lily’s receiver is turned on for 100 ms every 1
second, after having sent a “command request" message to the base.

50

5.5. Communication and Sensing

5.5.2 Inter-Robot Communication

Lilies communicate to their neighbors using the EPM latches. When two EPMs are in close
contact, they couple magnetically through shared magnetic flux. Similar to a 1:1 isolation
transformer, a current pulse through one of the coils induces a similar pulse on the second coil,
the size of which is proportional to the size of the pulse on the first coil and also to the mutual
inductance of the coupled EPM coils. This inductive communication channel is utilized to
transfer data between robots. In order to avoid affecting the physical bonding quality, the
communication pulses are sent in the same direction as the ones used to turn the latch on.
The inter-robot communication takes place at 9600 bps using a series of 1 us wide pulses. The
data bits are encoded using at least one pulse of 1 us length. Two such pulses less than 100 us
apart represent a logic 1 while the lack of a second pulse within the 100 us time frame after a
first pulse is considered as a logic 0. Compared to a synchronized approach where the high
and low bits are encoded by the presence of a pulse within a time window, this scheme needs
to send half a pulse more on average for transmitting the same information. However, the
advantage is that there is no need for a synchronized communication clock between the two
communicating units.

The detection circuitry for EPM communication is shown in Fig. 5.11. The analog comparator
is internal to the microcontroller. Due to the four EPMs sharing a common half-bridge and a
single analog comparator, it is impossible for the controller to process messages on multiple
EPM channels at the same time. The EPM channels are thus scanned sequentially. Similar
to [48], to select a channel the dedicated side of the the H-bridge is grounded by turning on
the low-side MOSFET, while the other end of the coil is connected to the positive input of the
analog comparator through a high-pass filter with the DC level set to 1.5 V. The clipper diodes
protect the input pins of the analog comparator against high voltage peaks. The negative
input of the comparator is connected to a low-pass filtered square wave generated using the
PWM timer channel of the microcontroller. This generates a DC level that can be adjusted for
different detection sensitivities by modifying the duty cycle.

As explained in Section 5.5.2, EPM channels are scanned sequentially for incoming messages.
Independent from this scheme, the Lily robotic modules frequently send hello messages to
actively discover their neighborhood. The exchange of hello message serves two purposes.
First, it allows the robotic module to discover changes in its neighborhood by querying its
neighbors to find out if a new module has been latched on a previously available face or if
a previously latched neighbor has been detached due to high agitation in the environment.
Second, the receiving Lily will use the handshaking scheme initiated with the hello message to
detect the beginning of the neighboring transmitter data.

Hello messages are sent every 500 ms by default; a complete tour on all four EPM channels
thus takes 2 seconds. The frequency of sending hello messages needs to correspond to the
dynamics of the self-assembly process. In a highly stochastic environment where the rate of
collision events is high, the Lilies need to check for neighborhood changes more frequently.
While not latched to other robotic modules, a transmitting Lily receives no response to the

51

Chapter 5. Lily Robotic Module

sent hello message. While latched to other modules, the query pulses from the transmitting
Lily create an interrupt, waking up the receiver. Consisting of four bytes, the hello message
is 4.2 ms long in total. If the hello message is correctly detected, the receiving Lily replies
with an acknowledgment message (ACK) which consists of a single high bit, before the data
communication starts. The Lilies will exchange their internal states and decide whether they
should stay latched or to unlatch. Since all robotic modules are endowed with a given identical
rule-set, their individual decisions will be the same. In order to unlatch, two pulses are sent to
an EPM. The first pulse is in the direction that demagnetizes the EPM latch, while the second
one, sent a few seconds after, magnetizes the EPM back to its default state.

5.6 Firmware

Several low-level routines have been implemented abstracting the low-level switching, com-
munication, and sensing functionalities. The current firmware occupies 20 KB of the micro-

controller’s memory leaving more than 230 KB for the behavioral code.

Table 5.5 - Lily-base terminal commands. The wireless base station may issue the specified
commands which will be received and processed accordingly by the addressed Lily module.

Command Parameters Description

Host commands

crc none Get host data CRC

echo <string to be echoed> Echo a string

info none Information about myself
channel <channel> Set radio channel on host
? none Print commands

Comprehensible commands while Lily on bootloader

ping <short_addr> Ping a node

finish <short_addr> Finish a node (force write)
feedhex <short_addr> <line from hexfile> Feed a line of hex file to a node
feedhexfile <short_addr> Feed hex file to a node (not used)
reset none Reset all nodes

exit <short_addr> Exit node to application

target <F : Flash memory> or <E : EEPROM> or Set target memory

<L: Lock bits> or <X : No memory, dry run>

Comprehensible commands while Lily on application

jbootl
unlatch_addr
unlatch_epm

<short_addr>
<short_addr> <short_addr of lily to unlatch from>
<short_addr> <epm>

Jump to bootloader
Send unlatch command to node
Send unlatch command to node

stoprx <short_addr> Stop Lilly from listening on radio

text <short_addr> <message> Send one line of text to node (radio echo)
sreset <short_addr> Soft reset application

poweroff <short_addr> Turn off node

battery <short_addr> Get battery voltage

light <short_addr> Get light measurement

pwm <short_addr> <pwm> <true_delay> <valid_delay> Set parameters

52

5.6. Firmware

—_— " OXFFFF Flash end (Bootloader end)
Config record

§ 9 I 16 bytes
x Bootloader section

—_— 0xFO00 Bootloader offset

256KB e OXEFFF Application end

=
g Application section

— —— 0x0000

16 bits

Figure 5.13 — Flash memory structure of the Lily’s on-board microcontroller. The bootloader,
residing in the Read While Write (RWW) section, receives and transfers new application data to
the Non Read While Write (NRWW) section.

5.6.1 Wireless Programming

The flash memory division of the Lily module is shown in Figure 5.13. The bootloader, stored
in the Read While Write (RWW) section, is capable of receiving and transferring data to the
Non Read While Write (NRWW) section, where the application is stored. A config record that
contains the information about the address of the module is appended to the bootloader
section. While the size of the RWW and NRWW sections are fix, the bootloader offset can
be changed to several different values if needed, this can be done via reprogramming the
BOOTSZ fuse bit. Figure 5.13 shows the actual configuration of the Lily flash memory. After
initialization, the bootloader is constantly reading the radio receiving buffer and parsing the
incoming frames with respect to the command set in the middle section of Table 5.5. It is clear
that this symmetric radio communication is costly in terms of power consumption.

Summary

In this chapter, we describe in detail the design and development of hardware for our
experimental self-assembly robotic platform built around the Lily robotic modules
which serve as the self-assembly building blocks. In particular, different design choices
for the Lily robotic module and the overall setup are explained and motivated. The
functionality of the Lily robotic module as well as the full experimental setup is validated
through several tests, assuring the achievement of the pre-established design objectives.

53

Experimental Setup

N this chapter we describe the setup built around the Lily robotic modules. Together

with the Lily modules, this completes our experimental platform whose primary goal

is to serve as a physical testbed for stochastic control strategies and corresponding

modeling methods for programmable fluid-mediated self-assembly of robotic modules.
Fig. 6.1 depicts the self-assembly arena. Forming a target structure by a swarm of Lilies involves
several aspects. Given a target structure, an appropriate behavioral rule-set is deployed on
all modules through wireless bootloading. The robotic modules’ EPM latches are by default
enabled, resulting in a default latching upon meeting another robot. Once two modules are
latched, the EPM-to-EPM inductive communication channel is physically established. The
blocks then exchange their internal states and according to their rule-set behavior, they will
either decide to unlatch or remain latched and update their internal states accordingly. Each
Lily then updates the base station with its new internal state over the radio. This information
will then be part of the experimental logs and will also serve as, together with the trajectory
tracks gathered through a dedicated overhead camera, the ground truth for validating models.
In the case of an unfavorable interaction, the Lilies will both disable their involved EPM for a
certain time during which the blocks will drift apart as a result of the agitation in the fluidic
environment. In addition to event-based reporting of their internal state, Lilies periodically
communicate to the base station to check for pending commands such as a query about
the battery voltage level or the internal state, a command for pausing the experiment, or a
command for turning the robot off. This scheme allows the robotic modules to spend most
of their time in sleep mode or having the power hungry radio transceiver off, thus resulting
in extended battery life. The commands from base station can be as well used to modify the
robots’ behavioral rule-set on the fly.

6.1 Setup Design

The experimental setup consists of a circular water-filled tank equipped with peripheral
pumps, an overhead camera, an overhead projector, a wireless node communicating with

55

Chapter 6. Experimental Setup

b] Overhead 1
Camera Overhead
Camera ;o Projector 5 -
~ y -
£ * v
. 8 £
, N s §
o =
Lighting L N =
Panels ’ J_,J"“TAM'_\
LY

Lily Robots
Water Pump

Trimming
d) holes
Light
sensor L

Charging
contacts

Chig
Sealing antenna
B2p

Figure 6.1 — Overall experimental setup. a) Image of the real experimental setup. b) Sketch of the
experimental setup. c) Visual tracking of the Lily robots. The red arrows indicate the pump flow.
The blue lines indicate a history of the trajectory of the robots. d) A Lily robotic module.

the robots, and a workstation. The Lily robots are not self-locomoted, they are instead stirred
by the flow field produced by the pumps. The tank is approximately 0.6 m in diameter and
0.3 m in depth, and has seven inlets perpendicular to the wall which are endowed with a
small insert piece to deviate the flow by about 15 degrees, creating a flow field with both
radial and circular components. While the perpendicular flow components instigate irregular
trajectories and induce collisions in the middle of the tank, they exhibit dead spots around
the wall. The tangential components, however, generate a circular field, giving rise to regular
closed trajectories which do not favor collisions but eliminate dead spots. To minimize any
interference with the surface flow, the outlets are all placed at the bottom of the tank. Each
pump’s flow rate can be continuously controlled up to 9 1/min, allowing for a variety of flow
fields and corresponding induced trajectories.

To monitor the evolution of the system, we use an overhead camera to track a passive marker
located at the top of each robotic module using SwisTrack [83]. The positions of the markers
are logged at a rate of 30 to 50 Hz. Complementary to the visual tracking data, is the data
logged by the wireless node communicating with the robotic modules over radio. These data
contain the evolution of the module internal states. The wireless node is also used to program
the robots and send commands or feedback to them during the experiment, enabling the
Lilies to adapt their behavior according to the feedback which is based on a global image of
the self-assembly process rather than the modules’ local perception.

The overhead projector allows for changing the ambient luminosity which is perceivable by

56

6.2. Setup Characterization

the robotic modules. Different ambient luminosity levels as well as patterns can be cast on
the arena to define regions of different characteristics similar to [84]. As a result, while the
information sent over radio can be used to adapt the behavior of uniquely identifiable robotic
modules, the lighting system can be used to adapt the behavior of Lilies in specific regions of
the arena.

6.2 Setup Characterization

In order to characterize the system and validate its functionalities, we conduct four main
experiments. In the first experiment, the purpose is to assess the applicability of the standard
chemical kinetics modeling to our system, and thus to show the relevance of our previous
modeling efforts to the current experimental platform [17]. In the second experiment, we
investigate the natural tendencies of the system to favor formation of certain structures
depending on the latching forces and the flow field. The third experiment studies the dynamics
of interactions among the modules as they decide to unlatch from one another. In the fourth
experiment, we investigate adaptive formations based on a global signal perceived by the
robotic modules.

All the experiments were conducted using 10 Lily robotic modules, and three main flow
regimes were used. The flow regimes are referred to as high, medium, and low agitation
modes hereafter, corresponding to 6.0 1/min, 4.4 1/min, and 2.6 1/min flow rate for all pumps,
respectively. To gather statistics, each experiment was repeated 10 times. The error envelopes
denote one standard deviation interval around the mean value.

Macroscopic Kinetics

Previous work has proposed a computational framework for automated modeling and central-
ized control of self-assembly [17]. The assumption of the framework was that the system was
well-mixed and thus governed by reaction-diffusion dynamics, allowing us to apply canonical
chemical kinetics models. Here we investigate the diffusion dynamics in the current system.
For this experiment the robotic modules were programmed with an empty ruleset, thus im-
mediately detaching upon binding events. Diffusing particles exhibit the Brownian motion.
A characteristic of such particles is that they quickly forget their speeds [15]. Fig. 6.2 shows
the speed autocorrelation. The speed of each Lily is essentially uncorrelated with its initial
speed after approximately 5 s. Additionally, we can quantify the mixing in the system based
on its diffusion. For the system to be well-mixed it is required that the modules diffuse faster
than they react. This can be quantitatively stated as D/ k > A, where D = 0.0015 m?/s is the
diffusion coefficient, k = 0.01 s~ is the typical reaction rate measured experimentally in dimer
formation experiments, and A = 0.09 m? is the effective area in the system in presence of the
high agitation mode measured experimentally through tracking the floating modules. The
diffusion coefficient for a module is estimated as the expected value of r?(t)/4t, where r(¢) is
the displacement of the module extracted from the visual tracking data for any given t.

57

Chapter 6. Experimental Setup

1% T T T T T

Average over 10 robots

— Single robot

Autocorrelation

] 5 10 15 20 25 30
Time [s]

Figure 6.2 — Speed autocorrelation extracted from visual tracking of the robotic modules.

Natural Signature of the System

While the self-assembly process in our system is mainly guided by the programmed behavior
of the Lily robotic modules, the stochastic fluidic field is leveraged for bringing the robotic
modules into contact with one another. In initial experiments with the passive Lily modules,
it was observed that each agitation mode in the system has its own signature distribution
across the span of reachable assemblies. This was a result of the interplay of the magnetic
latching force and the fluidic forces induced by the pumps’ flow. The fact that the inter-
module bonding was specifically designed to be reversible also allowed for a higher variability
of observed assemblies for each agitation mode. In the current system with the Lily robotic
modules, the inter-module bonds are designed to be more resilient, since the modules can
always choose to turn their latches off if they wish to reject an interaction. In this experiment,
we look at the growth rate of the size of the largest assembly in the system for the three different
aforementioned agitation modes, under the two different states their EPMs can assume (on
and off). While in the case where all of the robots have their EPMs on (see Figure 6.3), higher
energy agitations only slightly accelerate the growth of the assembly, when all EPMs are off
(see Figure 6.4), the final achievable size is strongly determined by the agitation mode. This
shows the efficiency of the higher energy modes for taking the modules apart as a key factor
in the unlatching mechanism. Furthermore, an interesting observation was made regarding
the shape of the resulting structures when all robots have their EPM latches on: while for
all studied agitation modes the system quickly ends up with one connected component, the
resulting structures tend to have circular symmetry for the high agitation mode. On the other
hand, chain-like structures are more common for the low agitation mode. This indicates that

58

6.2. Setup Characterization

12 T T T T T T T T T

| ow Agitation
High Agitation
Medium Agitation
D L 1]] 1 1 1 1]]

0 10 20 30 40 50 80 70 80 a0 100

Time [s]

Largest Connected Component Size

Figure 6.3 — Largest assembly size evolution, all robotic modules have their EPMs on.

utilizing the higher agitation mode facilitates forming compact structures while the lower
agitation mode allows the robots to form structures which span wider. This finding highlights
the crucial role of the agitation modes in guiding the self-assembly process. In other words,
depending on whether the modules should be guided towards forming a compact structure or
a widely spanning one, an appropriate agitation mode can be chosen similar to [17].

Unlatch Dynamics

Here, we studied how the coordination between two robotic modules turning their latched
EPMs off affects dynamics of the unlatching interaction. The modules were programmed with
an empty ruleset and two cases were studied. In the first case, the robotic modules performed
their normal unlatch behavior, turning off their EPMs synchronously, while in the second
case, only the module that initiated the communication turned off its EPM. As can be seen in
Figure 6.5, the interaction time distribution tends towards significantly larger values for the
second case, suggesting that the robots have more difficulty to detach. These results highlight
the crucial role of the handshaking process between the two neighboring robotic modules
involved in an unlatched dynamic. The handshaking process is crucial to reliably ensure that
the modules are mutually aware of the decision and timing for turning their EPMs off.

Adaptive Formation

For these experiments, the robotic modules were programmed with appropriate rulesets
derived using a dedicated framework discussed in Part IV. In addition to the static rulesets, the
robotic modules constantly read the light signal values or radio messages, based on which

59

Chapter 6. Experimental Setup

12 T T T T T
= Low Agitation
High Agitation)
0T Medium Agitation | |

Largest Connected Component Size

180 240 300 360
Time [s]

Figure 6.4 — Largest assembly size evolution, all robotic modules have their EPMs off.

Synchronized Unlatch

600 T T T T T T T
(%]
3
2 400 8
Q
3 |
g 200
o

O i j — | 1 — — 1
0 2 4 6 8 10 12 14 16 18 20
Time [sé
Unsynchronized Unlatch
200 T T T T T T

Occurrences
=
o
o

40 60 80 100 120 140
Time [s]

Figure 6.5 — Interaction time distribution: synchronized unlatching can be seen to allow for more
efficient breaking of a bond.

they choose to pick certain rules among the available ones in their rule set. The fluidic arena
is lit up using the overhead projector . The Lily robots perceive the green light using their
on board light sensor. When the light is off, the environmental condition is considered to be
undesirable for assembly. When the light is on, the condition is in favor of dipole formation.
The light signal changes periodically, with each experiment having a different duty cycle of the

60

6.2. Setup Characterization

Dipole Duty Cycle
% Z‘ 2 2 5
=
L L

s E 1 1 1 1 1 1 1
] 05 aes s

Duty Cycle of Light Signal Favoring Dipole Formation

T T T T T T T
[
Il Il Il Il Il Il Il

Chain Length

] ‘ ‘ ‘ ‘ ‘

Duty Cycle of Radio Signalv Favoring Chain Formation

Figure 6.6 — Interaction time distribution: dynamic behavior changes upon perceiving environ-
mental luminosity.

light being on. In a real-world application, this scenario may be associated with a medication
delivery application where the particles enclose some medication while forming a dipole and
release the substance only when they are located in the target region defined by a certain
desirable condition. Additionally, in a similar scenario, the Lily robots periodically receive a
message over the radio signaling them to switch their behavior from dipole formation to the
formation of chains of unrestricted lengths and the other way around. We change the duty
cycle of the message and measure the average length of assemblies in the system. Figure 6.6
depicts the dipole life time versus the duty cycle of the light signal, as well as the average length
of the chains versus the radio signal duty cycle. In Figure 6.6, on the top, it can be seen that
the time that the robots spend in a dipole formation increases accordingly with the duty cycle
of the light signal, meaning that the system successfully detects the environmental condition
and behaves accordingly. Figure 6.6, at the bottom, shows that the average length of the chains
increases accordingly with the signal duty cycle, meaning that the system successfully behaves
according to the feedback from the central node.

Summary

In this chapter, we describe the experimental setup built around the Lily robotic mod-
ules. Through a series of basic self-assembly experiments, we characterize the function-
ality of our experimental setup. Additionally, the conducted experiments validate and
the achievement of the pre-established design objectives outlined in the Chapter 4.

61

7d Conclusion

N Part I, we have presented the first main contribution of this thesis which concerns
the mechatronic design of the experimental self-assembly robotic platform. We first
motivated the design objectives and then outlined the final design choices made in
the process of developing the hardware. Moreover, we presented the validation and

characterization results which verify the achievement of our pre-established design objectives.

We consider the following mechatronic design recipes to be the transferable methods explored

in this part of the thesis:

m Controllable environment, resource-constrained modules - Employing a controllable

environment allows for transferring some of the functionalities of the robotic modules
that are required for guiding the self-assembly process to the environment. This in turn
allows for further reduction of the complexity of the robotic modules’ mechatronic de-
sign, ultimately fulfilling severe volume and weight constraints imposed by the targeted
application area. An example of such design choice in our setup is the mobility of the
robotic modules. The Lily robotic modules are not self-locomoted, instead they are
driven around by the flow in the environment.

Low power, down-scalable latching, merging communication and latching mechanism -
The choice of the EPMs as the latching mechanism offers several advantages. In addition
to being low-power due to a power consumption happening only during the latching
state transitions, EPMs enable an inductive local communication channel, allowing
for merging the communication and latching mechanism and thus eliminating the
need for additional hardware. This design choice favors further miniaturization of the
robotic modules. Particularly, an EPM latch can be efficiently down-scaled as the energy
required to switch the latching state is proportional to the latch volume (i.e., I3, with [
being the characteristic length), while the obtained bonding force is proportional to the
surface area of the latch (i.e., [?).

m Resource-constrained, down-scalable modules - A design that natively takes into account

63

Chapter 7. Conclusion

64

the resource constraints of the building blocks allows for efficiently transferring similar
design ideas as well as core control concepts to smaller scales. For instance in our setup,
the Lily robotic modules may be directly redesigned to fit in about a one-cubic-cm
volume, provided that we relax the full energetic autonomy requirement based on an
on-board battery. This will in turn trigger the use of the first point mentioned above for
a design of the surrounding environment that provides an energy harvesting scheme
to power the robotic modules. Such energy harvesting scheme could be for instance
realized through endowing the modules floating on water with two power poles, one
extruding the top side and connected to a pantograph and one submerged in water.

Scalable operation for large swarms - Working with large swarms of robotic modules
can be easily troubled by the number of individual operations required to be under-
taken for each of the robotic modules. In our system design, all operations have been
devised to scale well with the size of the swarm. Such operations include the broadcast
wireless programming, the charging, the switching on/off of the robotic modules for
starting/stopping an experiment, and the communication with the robotic modules
during an experiment.

Summary

This chapter concludes the mechatronic design part of the thesis. The main outcome
of the research and development carried out in this part is the realization of an experi-
mental platform built around the Lily robotic modules. Our overall experimental setup
is unique in its utilization of a fluidic environment for programmable self-assembly of
robotic modules and allowing for the exploration of control strategies ranging from fully
centralized to fully distributed. In this concluding chapter, we provided a summary of
the contributions of Part IT and highlighted the core methods and techniques which we
believe one one may apply to the design of similar systems.

Modeling Self-Assemblyjic:iya |

65

Introduction

key component in studying programmable stochastic self-assembling systems is

developing models that accurately describe the assembly process dynamics. Such

models could help with: (i) accurately predicting the performances (assembly rate

and yield) of the self-assembling system, and (ii) evaluating as well as optimizing
control strategies, whether distributed (e.g., ruleset controllers programmed on the modules)
or centralized (e.g., modulating environmental features such as mixing forces deriving random
interactions among modules), based on model predictions [17], [65], [85].

8.1 Related Work

One core problem in designing programmable self-assemblying systems is understanding
the effect of individual robot characteristics, both in terms of hardware as well as software
features, on the collective behavior [62]. Low level embodied simulators have been utilized
in an attempt to faithfully recreate the environment, the robots’ noisy actuation and sensing,
and the interactions between the robots and the environment [86]. Abstract probabilistic
models (see [62] for a general overview) have been developed for various aggregation and
self-assembly experiments using mobile robots [87], [15], [88]. The choice of employing
probabilistic modeling techniques for such systems is essentially motivated by the randomness
lying at the core of these systems: random motion of the modules in the environment, explicit
random decisions made by the modules’ embedded controller, and random interactions
among the modules [89]. Additionally, probabilistic models can be employed to provide a
high-level macrostate description of the system state at each point in time by abstracting away
low-level physical details of the system state such as positions, velocities, and internal states of
all modules (i.e. the microstate description). A general methodology for developing accurate
probabilistic models of the dynamics of programmable self-assembling systems is sought after
to date.

67

Chapter 8. Introduction

8.2 Problem Statement

From a modeling standpoint, our focus will be on developing models at different abstrac-
tion levels, i.e. submicroscopic, microscopic, and macroscopic levels. Each model will be
implemented using dedicated simulation tools which run the models to produce prediction
results. We then employ these simulation tools to assess the performance of different control
approaches for several case studies on our self-assembling robotic system. Our hope is that
our efforts in this part will form the basis for a methodological framework that could be applied
to a large variety of future self-assembling systems.

The motivation for employing multi-level models for self-assembling robotic systems is the
great variety of time and length scales and possible design choices exhibited by such systems,
which prevents single-level models to probe the dynamics of the whole system and explicitly
represent all possible design choices. First, one needs very detailed models that capture
low-level features of the individual modules such as body geometry, pose, and placement of
various inter-module components. High-fidelity simulations using rigid-body physics engines
belong to this category. However, such simulators can be computationally very expensive, and
their computational cost grows at least linearly with the number of modules in the distributed
system. Second, one could be interested in models that can yield accurate numerical results
(in particular preserving exact quantities of building blocks) at a lower computational cost, in
order to carry out systematic exploration of the design space, especially in terms of control.
Agent-based models belong to this microscopic modeling level. Finally, at the highest level
of abstraction, macroscopic probabilistic models allow one to obtain faithful predictions of
collective metrics, investigate, possibly formally, macroscopic properties (e.g., the size, type
and distribution of resulting populations of aggregates, stability, state reachability), and offer
the best computational performance, enabling the simulation of arbitrarily large swarms of
robotic modules. Below, we highlight the features and functionality of each modeling level
in our studies. In particular, we shall emphasize that in our multi-level modeling approach
the middle level, i.e. the microscopic level, serves a special purpose of verification of the
synthesized ruleset behavioral controllers, assuring that the target structure is reachable
provided that the ruleset’s strategy is executed reliably. For this reason, we do not consider
calibrating the microscopic model level with lower implementation levels. The submicroscopic
model is calibrated based on the observations of the real system, while the macroscopic model
is calibrated based on the observations of the submicroscopic simulated system.

The submicroscopic model provides a realistic replication of our real experimental setup,
faithfully capturing the physics of the fluid-mediated self-assembly process in the system.
Moreover, discrete intra-module details such as the EPM latches, EPM communication, radio
communication, and light sensor are also faithfully reproduced This framework allows for
the comparison of the performance of the ruleset controllers in simulation under realistic
conditions, revealing the outcome of the interplay of the physical characteristics of the system
and the assembly strategy of the ruleset controllers. This is particularly interesting considering
that in our system the functionality of the ruleset controllers depends on the robotic modules’

68

8.2. Problem Statement

randomly arranged encounters. The nature of these random encounters is strongly determined
by the physical characteristics of the system. More specifically, since the Lily robotic modules
are not self-locomoted and are assumed to be driven around by the environmental agitation,
we are essentially relying on diffusion for module transportation and thus the performance
of the assembly process can be hindered by the diffusion limitations in the system. In other
words, if the modules do not have the chance for proper interactions, the target structure will
never form, regardless of any well-designed features of the employed ruleset controllers.

The purpose of the microscopic model designed in this work is to allow for the comparison
of the intrinsic performance of the derived rulesets, i.e., the final yield and the convergence
rate determined by the concurrency in the ruleset, in absence of any influence of physical
phenomena on the application of the rules and an explicit representation of the spatiality
in the system. This is particularly interesting considering that the rule synthesis algorithms,
as detailed in Part IV, are agnostic about the spatial aspects of the system. More specifically,
given a target structure, the relevant metric when comparing rulesets synthesized by rule
synthesis algorithms is the number of concurrent steps in their assembly strategy as defined
in Chapter 10. In reality, the realization of the conditions under which each assembly step can
be executed depends directly on the spatial characteristics of the system influenced by, for
instance, the density of the modules and their mobility due to agitation in the environment,
effects that are excluded in the microscopic simulation framework.

The macroscopic model provides a high-level description of the system’s state at each point in
time by aggregating multiple building blocks together and capturing low-level physical details
using probabilistic parameters. We focus on creating a general approach for developing a
discrete-state Hidden Markov Model (HMM) of programmable stochastic self-assembly di-
rectly obtained from (1) a description of the robotic modules’ embedded ruleset controller, and
(2) an estimation of the rate constants defining the formation rates of different assemblies. We
will show that assuming that the system is well-mixed and starting from different Markov mod-
els, the hidden states augmented through the automatic HMM refinement method improve
the model prediction accuracy, compensating the imprecise modeling assumptions.

Summary

In this chapter, we reviewed the related work on developing models for self-assembling
systems. In particular, we explained our objective and motivations for developing
models at multiple abstraction levels, capturing the dynamics of the system at different
computational costs. Moreover, we explained the features and functionalities of each
modeling level in the context of the studies conducted in this dissertation.

69

Submicroscopic Model

HE submicroscopic modeling level is the most detailed level. The word “submi-
croscopic” reflects the fact that the model provides a higher level of details than
a canonical microscopic model, faithfully recreating intra-robot features such as
the body shape and the functionality of individual sensors and actuators. With
this level of details, a submicroscopic model and its corresponding simulator can keep track
of a number of state variables such as the exact pose of a robotic module, the specific forces
exerted by one of its actuators, or the signal perceived by one of its sensors. In this chapter,
we explain how we employ the Webots robotic simulator as a platform where we develop a
submicroscopic model of our fluid-mediated self-assembling robotic system.

9.1 Designing the Model

In order to realistically recreate our self-assembling robotic system in simulation, we use
Webots [86], a physics-based robotics simulator which uses the Open Dynamics Engine (Open
Dynamics Engine (ODE)) for simulating rigid body dynamics. Additionally, in order to simulate
specific not natively supported physics such as complex fluid dynamics, it is possible to employ
custom-designed physics plugins. Building our submicroscopic model within the Webots
simulation framework comprised two main aspects. First, faithful recreation of the Lily robotic
module’s hardware and software features, and second, faithful recreation of the hydrodynamic
forces acting on the floating robotic modules in the fluid-mediated self-assembly arena.

Recreating the Lily Robotic Module

We recreated the Lily robotic module within the simulated world of Webots in several steps.
In the first step, we defined the physical entity of the module. A CAD design of the external
shell of the module was designed in SolidWorks and directly exported to Webots in the VRML
V2.0 format. This defines the bounding object (i.e. bounding volume) associated with a Lily
and is the one referred to by the ODE engine for simulating the collisions among modules. In

71

Chapter 9. Submicroscopic Model

(@) (b)

Figure 9.1 - (a) A real Lily robotic module. (b) CAD design of the Lily robotic module exported
from SolidWorks to Webots. (c) A sample world of simulated Lily robotic modules in Webots. The
lines on the modules indicates the axes of the EPM connector nodes located inside the modules.

the second step, a Lily robotic module PROTO was created. Within Webots, a PROTO allows
for capturing all feature of a certain object within one PROTO container. The Lily PROTO
was then augmented with the physical features of the Lily robotic modules. In particular, its
bounding object as exported from SolidWorks, mass, and center of mass. A physical object
in Webots has its associated linear and angular damping coefficients which are used to slow
down an object. The rotational and linear speed of each object is reduced by the specified
percentage (between 0.0 and 1.0) every second allowing for coping with simulation instability.
We initially left these parameters to their default values of 0.5 each. The Lily PROTO was then
augmented with several functionality nodes, that is four connector nodes located on the sides
to replicate the EPM latching mechanism, four emitter as well as four receiver nodes located
on the sides with a range of 0.5 mm replicating the EPM inductive channel function, one
light sensor node on the top, and an emitter as well as a receiver node located on the top
with an infinite range to replicate the radio channel communication with the base station.
Additionally, the Lily PROTO was declared as a supervisor rather than a robot. A supervisor
has the base functionalities of a robot with the additional possibility to access other robot’s
information fields. This was primarily done to facilitate further development and debugging
of the simulated world. The supervisor’s functionalities proved useful later on as we tried to
implement the EPM communication and the hand-shaking established through exchanging
hello and acknowledgment messages between the robotic modules. In some rare cases, due to
simulation synchronization issues between the emitter-receiver nodes emulating the EPM
inductive channel and the robotic modules’ controllers, the state update of the two Lilies would
not happen correctly despite the successful initial hand-shaking. For these cases, we employ
the supervisor access to the state data of all modules, in order to make sure that the two Lilies
involved in a communication manage to update their states accordingly, following a successful
hand-shaking. To be precise, the Lily that initiates the communication utilizes its supervisor
functionality to assure the consistency of the final state update with its neighboring Lily. The
next step was then importing the Lily robotic modules’ embedded controller software into the
Webots simulated world. The low-level functionalities such as EPM communication through

72

9.1. Designing the Model

sending current pulses needed to be abstracted away and replaced by similar functions from
Webots. However, the adapted controller still maintained the same structure as the original
one programmed on the real Lilies. The specific rulesets employed on the simulated robotic
modules are identical to those embedded in the real robotic modules.

Recreating the Flow Field

The latest version of Webots supports a basic fluid node which allows for a simple uniform
stream velocity, but is not capable of simulating a complex fluidic field such as the one created
in our experimental arena. In order to reproduce the complex flow field and the hydrodynamic
forces acting on the Lilies in the real world, we use an approach inspired by the one in [90]. Our
approach distinguishes from the one of [90] in two ways: (i) we capture trajectories of multiple
floating blobs rather than a single one, with the aim of capturing the effects of interactions
and collisions of the floating objects which disturb the flow field, (ii) rather than brute force
optimization, we employ a Particle Swarm Optimization (PSO) algorithm to optimize for the
model parameters.

A spherical object has an isotropic drag coefficient, i.e. a constant value in all directions, while
submerged in a fluidic flow. We record the trajectory of floating spherical blocks (diameter
of 3 cm), roughly the same size of a Lily robotic module, for three experiments with random
starting positions and duration of 10 minutes each. For this we use ping pong balls whose
weight is tuned such that the submersion level is similar to that of a Lily robotic module (25
mm below water level). The captured velocity fields acquired from different experiments are
then augmented and discretized on a regular grid of 50 cells on each side, for our water tank
of 60 cm in diameter. For each cell of the grid, the average and standard deviation of the
observed velocity vectors are computed and assigned to that cell as expressed in Eq. 9.4. The
fluid velocity field can be computed considering the drag force. The value of the Reynolds
number R, determines the flow regime and the form of the drag force. The Reynolds number is
a dimensionless value that measures the ratio of inertial forces to viscous forces and descibes
the degree of laminar or turbulent flow. Systems that operate at the same Reynolds number
will have the same flow characteristics even if the fluid, speed and characteristic lengths vary.
The Reynolds number is calculated as below:

VL
Re= T ~ 6700 9.1

In the case of our system, this high Reynolds number indicates that the drag force takes a
quadratic form:

- 1 N N
|Faragl = EPAC“}block - Vflow|2 9.2)

73

Chapter 9. Submicroscopic Model

Heat Map: KS Test (5%) : Flow Veloci(y‘ .Test Level= -8 cm,pumps on 68.63 %

50 1 Heat Map: KS Test (5%) : Flow Velocilyy .Test Level= -8 cm,pumps on 68.63 %

50 1
45
40

35

(a) (b)

Figure 9.2 — Visualization of the Kolmogorov-Smirnov (KS) test results on the captured velocity
field. The points of higher temperature (yellow color) indicate the grid cells for which the hypoth-
esis that the data points within the corresponding cell have a Gaussian distribution .4 (0,5?) is
rejected at a significance level of 5%.

where p = 103 kg/m?3 is the density of water, V = 20 cm/ s the experimentally-measured mean
velocity of a ball, L = 3 cm the characteristic dimension, and y = 8.90 . 10~ Pa.s the dynamic
viscosity of water. The submerged area of the globe is, A = 7 cm? and the drag coefficient
constant in all directions C = 0.47. The velocity and acceleration of the ping pong balls are
computed using the captured trajectory data. Considering the mass of a ball m, the flow
velocity is then computed from Eq. 9.2 as below, considering ﬁdmg = Mlgrag = MAgrag:

-

- . ma
Uflow = Ublock + 9.3)

\/%pACm‘/a)zﬁ az

A customized physics plugin is then designed for Webots so that an appropriate drag force is
applied to a simulated Lily module based on the velocity of the module and the flow velocity

at its location at each time instant. In order to account for rotational effects, the drag force is
integrated over each face of the module. Each face is divided into N = 10 sections, and the
drag force is computed for each section using Eq. 9.2 with C being the estimated Lily robotic
module’s drag coefficient Cy ;.

For each cell j in the grid of a total of 2500 cells, we record the average y; and the standard de-
viation o ; of the computed flow velocity vectors. We also test the normality of the distribution
in each cell using the KS test. Results, shown in Figure 9.2, demonstrate that for the majority
of the grid cells, the KS test failed to reject the hypothesis that the samples do not belong to
a normal distribution with a confidence level of 95%. We can thus assume that the velocity
at the location of each grid cell can be drawn from a normal distribution. Therefore, when a

74

9.2. Calibrating the Model

0.12 01

pump=49.80 % level=-7 cm
pump= 68.63 % 0.09F level=- 9 cm
pump= 82.35 % level=- 8 cm
pump= 98.04 %

0.1

0.02

" . \ y :)
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time[s] Time[s]

(a) (b)

Figure 9.3 - (a) Effect of changing pump power on Mean Square Displacement (MSD). All exper-
iments were done at the same water level, i.e. -7 cm . (b) Effect of the water level on MSD. The
pump power is fixed at 68.63%.

block falls in a given cell j, the physics plugin applies the corresponding flow velocity as below,
where K, is a free optimization parameter.

Ufiow,j = Ky N (1j,0/) 9.4)

We consider the drag force as below, where KF is a free optimization parameter.

. 1 R .
|Faragl = KFEPAC| Uplock — Vflow|2 (9.5)

The physics plugin also adds a stochastic force F; ~ A(0, Ui toch) to the center of mass of each
block in order to take into account the stochasticity and non-modeled effects as in [90]. The
standard deviation o .. defines our third optimization parameter. Moreover, we have two
additional free parameters in Webots which are the linear and angular damping of the block:
Diinear» Dangular- In summary, we will have a total of five free optimization parameters to be
calibrated: the constants Ky, Kr, 0stoch, Diinear» a0d Danguiar-

9.2 Calibrating the Model

In the previous section, we explained how we designed the model in order to faithfully capture
the underlying physics present in our experimental platform. In this section, we focus on
calibrating the free model parameters. By definition, model calibration is the process of

75

Chapter 9. Submicroscopic Model

MSD: Mean and Standard Deviation of 100 runs

MSD [m?]

L L L L L
0 10 20 30 40 50 60
Time[s]

Figure 9.4 - Mean and standard deviation of MSD of simulated trajectories in Webots. The data is
extracted from 100 runs.

adjustment of the model parameters to obtain a model representation of the processes of
interest that satisfies pre-agreed criteria, typically expressed in the form of faithfulness metrics.
We use the trajectories of the blocks floating on the simulated and real flow fields and refer to
the MSD extracted from each data set. We then define our faithfulness metric to be optimized
as the error between the real and simulated MSD functions. We run a PSO algorithm in order
to optimize the free model parameters and encode our targeted metric as the fitness function
of the PSO. In the following section we motivate the choice of the MSD metric.

9.2.1 Mean Squared Displacement Metric

In statistical mechanics, the MSD is a measure of the deviation of the position of a particle with
respect to a reference position over time. It is the most common measure of the spatial extent
of random motion, and can be thought of as measuring the portion of the space “explored”
by the random walker. In the realm of biophysics and environmental engineering, the MSD
is measured over time to determine if a particle is spreading solely due to diffusion, or if an
advective force is also contributing. For instance, MSD analysis is a technique commonly used
in colloidal studies and biophysics to determine the dynamics of displacement of particles
over time. The MSD is expressed as below.

n
<Ar*(f)>= Y <[R(0) - Re(to)]* > 9.6)
k=0

Where R is the position vector, and n is the total number of particles. MSD is usually used
to calculate the diffusion coefficient of a given system [91]. In order to verify that the MSD
captures the change in the system dynamics, experiments of 10 minute length per water level
and pump power configuration were conducted using 24 ping-pong balls. As indicated in the

76

9.2. Calibrating the Model

Heat Map: Web Number of Heat Map: Real Number of Samples

10 20 30 40 50 10 20 30 40
X X

(@) (b)

Figure 9.5 — Comparison of (a) real, and (b) simulated number of samples. The data is extracted
from 10 minutes of experiment. The points of higher temperature (yellow color) indicate the grid
cells for which the normalized presence of the floating blocks, i.e. the ping-pong balls, were more
frequent.

previous section, we use ping-pong balls for simplicity as they are symmetric and have an
isotropic drag coefficient. We used 3 water levels in the tank, measured from the upper border
as -7, -8, and -9 cm, respectively.

Figure 9.3 illustrates the MSD curves for different pump power and water level settings. Each
pump has a maximum flow of 9 //min at 100% power. First, we can notice that the MSD has
an oscillating pattern and a convergence plateau. The oscillations are related to a situation
where the blocks are affected by the stirring flow generated by the pumps and the frequency of
the oscillations is related to the speed of circulation. On the other hand, the plateau indicates
a maximum effective displacement explored by the blocks. As we can see in Figure 9.3(a),
the higher the pump power, the higher the frequency of the oscillations and the lower is the
plateau. This can be explained considering that when the pumps power is increased, the
force pushing the blocks towards the center is higher and therefore the effective radius of the
area explored by the blocks is smaller. Furthermore, by keeping the same pump power, but
reducing the water level, we can see a similar effect. Lowering the water level will change
the relative alignment between the pumps’ nozzles and the surface of the water, therefore
increasing the fluidic force acting on the blocks’ which in turn will decrease the effective
exploration radius.

9.2.2 Parameter Optimization

As discussed earlier, the basic principles of the calibration is to match the simulated and real
MSD curves in an attempt to faithfully reproduce the dynamics of the real system in simulation.
There are five model parameters to be tuned in the calibration process; K, defining a scaling
factor for the randomness in the velocity field as described in Eq. 9.4, Kr defining a scaling

77

Chapter 9. Submicroscopic Model

Real V
b 4

Webots \J’y
50

20 40
X X

Figure 9.6 - Comparison of real and simulated mean velocity. The data is extracted from 10
minutes of experiment.

2000 | 1
1800 ‘ Average | | 09l
—Best -
0.7
06
=
005
2]
s
0.4
03
0.2
0.1
0) 3) s ;
0 10 20 30 40 50 60
lterations time [s]
(@) (b)

Figure 9.7 — (a) Learning of the fitness function throughout the PSO algorithm iterations. (b)
Comparison of simulated and real MSD data for the case of experiments with ping-pong balls.
Simulated trajectories are obtained using the optimized submicroscopic model parameters ex-
pressed in Table 9.1. The pump power is at 68.6% and the water level is at -8 cm.

78

9.2. Calibrating the Model

factor in the drag force as described in Eq. 9.5, 05;0ci, defining the standard deviation of the
stochastic force field, and the two linear and angular damping coefficients used by Webots
for any body mass expressed as Djineqr and Dapnguiar, respectively. As mentioned before, we
use a PSO algorithm to fine tune these parameters so that real and simulated MSD curves are
as aligned as possible. The PSO parameters of self coefficient, personal best coefficient, and
neighborhood best coefficient are set to 0.1832, 0.5287, and 3.1913, respectively. No particular
attempt to optimize the PSO parameterization was carried out. To check the necessity to use
a noise-resistant version in PSO, we have to verify the amount of noise characterizing the
chosen fitness function described in Eq. 9.7. To do that, we carry out 100 runs of the same
simulation setup with random initialization of the five parameters, and we calculate the mean
and standard deviation. The result is illustrated in Figure 9.4. We notice that the standard
deviation is small enough to assume that the noise-resistant PSO will not be necessary. The
fitness function is therefore the difference between the resulting MSD from simulation and
the mean MSD measured on our real set-up. When computing the MSD value the trajectories
of each of the floating blocks are aggregated, rather than being considered separately, and
the resulting MSD curves are averaged. Mathematically, we can formulate as below, where N;
is the number of time steps in one sample. Where N; = 2400 in our case corresponds to 60
seconds emulated wall-clock time with a simulation time step of 25 ms.

N;
Fitness=)_ |IMSDyepots— MSDreqll 9.7)
i=1

In what follows, we will consider two cases: we will first apply the optimization to the case
of trajectories obtained from experiments with floating ping-pong balls for a specific pair of
water level and pump power to validate the possibility of having matching MSD through our
optimization process in this simpler case where the drag coefficient is isotropic. We will then
apply the same method to match the MSD curves in the case of trajectories obtained from
experiments with Lily robotic modules.

Experiments with Ping-Pong Balls

In this case, we have 24 ping pong balls, the water level is equal to 8 cm from the edge of the
tank, the pump power is set to 68.6 %. The PSO results as well as the matching MSD are shown

Table 9.1 — PSO Algorithm Parameters and the optimized submicroscopic model parameters.
Simulation with ping-pong balls.

Number of | Maximum | Swarm K, Kr Ostoch | Diinear | Danguiar
dimensions number of | size

iterations
5 30 47 1.24 | 2.266 | 195.25 | 0.3483 0.2476

79

Chapter 9. Submicroscopic Model

1200

Average
1000 —Best

Fithess

5 10 15 20 25 30 0 10 20 30 40 50 60
lterations time [s]

(a) (b)

Figure 9.8 - (a) Learning of the fitness function throughout the PSO algorithm iterations. (b)
Comparison of simulated and real MSD data for the case of experiments with Lily robotic modules.

in Figure 9.7. The simulation as well as the optimized model parameters are listed in Table 9.1.

As a checking step, we compare the normalized number of samples in both Webots and real
experiment, and we can see a matching between the two as illustrated in Figure 9.5. The
number of samples in each cell gives an idea about the spacial distribution of the floating
objects in the arena, i.e the cells with highest number of samples will indicates the most visited
cells. Consequently, a visual inspection of the matching between the left and right plots of
Figure 9.5 will indicate similar dynamics. In addition, we compare the mean velocities in x
and y directions, and they are also matching as we can see in Figure 9.6. A matching mean
velocities in both directions indicate similar system kinematics on average.

Experiments with Lilies

In this case, we have 15 Lilies, the water level is -8 cm and the pump power is set to 68.6 %.
The PSO results as well as the resulting matching MSD are shown in Figure 9.8 and the used
simulation parameters as well as the optimized model parameters are listed in Table 9.2. This
combination of water level and pump power is the one that we will use as the default. However,
for any other combination the same optimization procedure can be carried out in order to
find the proper model parameters.

Table 9.2 - PSO Algorithm Parameters and the optimized submicroscopic model parameters.
Simulation with Lily robotic modules.

Number of | Maximum | Swarm K, Kr Ostoch | Diinear | Danguiar
dimensions number of | size

iterations
5 100 47 1.365 | 0.442 | 126.82 | 0.332 0.12

80

9.2. Calibrating the Model

Summary

In this chapter, we introduced our submicroscopic model developed within Webots, a
physics-based robotics simulator. We explained how we created a dedicated physics
plugin in order to recreate the fluidic flow field observed in our real experimental
setup within the simulated world. The designed model was then calibrated by finding
optimized model parameters for matching real and simulated trajectory data. We used
the matching between the MSD of the real and simulated trajectories as the metric
assessing the simulation faithfulness and employed a PSO algorithm to optimize free
model parameters influencing such metric.

81

1[I} Microscopic Model

HE microscopic modelling level sits between the submicroscopic level, at which

the physical details of the real system are faithfully recreated, and the macroscopic

level, at which only the aggregated collective behavior of the system is captured.

In this chapter, we introduce our microscopic model and the corresponding simu-
lation tool. At this modeling level, the system is still viewed as a swarm of individuals each
having an internal state and executing a set of assembly rules upon interactions with one
another. However, the spatial aspects of the dynamics of the system are not explicitly included.
Our framework is based upon the abstract method for randomized interactions among bodi-
less modules originally introduced in [92]. We build upon this method in two ways. First, in
order to model interactions between robotic modules we introduce and utilize the notion
of “extended graphs” along with appropriate geometrical constraints. Second, we introduce
a new shape recognition method which is an extension over a graph isomorphism check to
track the progress of the self-assembly process in the modeled system.

Graph transformation or graph grammar formalisms concern techniques of creating a new
graph out of an original graph algorithmically. It has numerous applications, ranging from
software engineering to layout algorithms and picture generation. Graph transformations
can in general be used as a computation abstraction. The basic idea is that the state of a
computation can be represented as a graph, further steps in that computation can then be
represented as transformation rules on that graph. Such rules consist of an original graph,
which is to be matched to a subgraph in the complete state, and a replacing graph, which will
replace the matched subgraph. Describing dynamics of self-assembling robotic systems by
means of an appropriate graph grammar formalism offers several advantages. First, a graphical
description inherently suits the self-assembly problem where the typically fixed number
of constituting modules can be represented by the graph vertices and the bonds forming
and severing throughout the self-assembly process can be represented by the graph edges,
evolving over time. This provides an efficient model for capturing self-assembling systems
characteristics at a high level [93]. Second, such a description enables the application of several
formal rule synthesis algorithms, originally developed for self-assembly of abstract graphs,

83

Chapter 10. Microscopic Model

to the case of self-assembly of robotic modules. Previous research has already demonstrated
the relevance and application of the standard graph grammar formalism for formulating
self-assembly of bodiless modules and successfully presented several automatic rule synthesis
algorithms. However, to capture the morphology of the robotic modules and the assemblies
that they form, it is necessary to extend the standard graph grammar formalism. In other
words, while in the case of assembling bodiless modules it is only the existence of edges among
vertices that specifies the graph structure, in the case of physical modules their embodiment
plays a crucial role. For instance, the orientation of the links formed between the modules is
restricted by their morphology, in particular by the placement of their latching connectors.
In the following sections, we first review the standard graph grammar formalism applied
to the problem of self-assembly of bodiless modules and then present our extended graph
grammar formalism for the case of self-assembly of robotic modules. In doing so, we consider
the specific but widely common case of robotic modules endowed with genderless latching
connectors arranged in a rotationally symmetric fashion.

10.1 Graph grammars for Self-Assembly of Bodiless Modules

In this section, we summarize the graph grammar formalism for formulating self-assembly
of graphs as presented in [15], and [92]. A self-assembling system of bodiless modules can
be efficiently modeled as a graph evolving over time. Each vertex in the graph represents an
anonymous module in the system. While the number of vertices is finite and established at
the start of the self-assembly process, the set of edges is dynamic. A finite ruleset determines
the course of the evolution of the graph, providing a distributed control scheme for the self-
assembly process. Each module maintains an internal state taking values from a discrete and
finite set, represented as a labeling on the graph. A rule specifies how an edge between vertices
corresponding to modules with certain internal states may be modified. In order to simulate
the self-assembly process, at each time step two modules are selected randomly. If the finite
ruleset contains a rule applicable to the modules considering their current internal states,
the rule gets applied and the graph is modified. In case of probabilistic rules, the rule gets
actually applied only with a certain probability associated with the rule. Since the modules are
considered to be bodiless, their embodiment and thus the physical orientation of the bonds
they form is irrelevant. In the following, we formally define various concepts related to the
self-assembly of graphs.

Definition - Internal state of bodiless modules: Each module maintains an internal state
which corresponds to its local perception of the progress of the self-assembly process, or
equivalently its local neighborhood structure. The internal state of a module evolves according
to the rules specified in its ruleset, depending on its interactions with other modules and their
respective internal states.

Definition - Labeled graph: A labeled graph is a triple G = (V, E, ¢) where V = {1, ..., M} is the
set of vertices, E c V x V is the set of edges, and ¢ : V — X is a labeling function, with Z being

84

10.1. Graph grammars for Self-Assembly of Bodiless Modules

a set of labels. A pair of vertices {x, y} € E is represented by xy. The vertex set, the edge set,
and the labeling function of a graph G are represented by Vi, Eg, and ¢ respectively. The
notation ng(x) represents the neighbors of vertex x relative to the edge set E.

Two graphs G; and G, are considered to be isomorphic when there exists a bijection h: Vg, —
Vi, such that i j € Eg, © h(i)h(j) € Eg,. The function h is called a witness. A label-preserving
isomorphism has the additional property that £, (x) = ¢, (h(x)), Vx € Vg,. Since the vertices
represent identical bodiless modules, G; and G, represent the same assembly iff they are
isomorphic. A graph G is said to contain a graph H if a subgraph of G is isomorphic to H.

Definition - Rule: A rule is an ordered pair of labeled graphs r = (L, R) such that V; = V. The
graphs L and R are the Left Hand Side (LHS) and Right Hand Side (RHS) of the rule r. The rule
r = (L, R) essentially specifies how the LHS graph L transforms to the RHS graph R through
modification of E; to Eg and ¢ to £ . The size of r is defined as | V| = |Vg|. A rule specifies a
local change in the system graph, meaning that |Vg| > |V |. An example of a rule of size two,
i.e., a binary rule, can be visually represented as a b — ¢ — d, with the characters denoting
the labels of the two initially disconnected engaged vertices forming a bond and updating
their respective internal states, i.e., the vertex with internal state a updates its internal state to
¢ and the vertex with internal state b updates its internal state to d.

A binary rule corresponds to an interaction between two modules. Simultaneous interactions
among many modules, i.e., rules of size larger than two, are generally believed to be difficult
to coordinate.

Definition - Rule applicability: A rule r = (L, R) is applicable to a graph G if there exists I c V5
such that the subgraph Gn I has a label-preserving isomorphism h: I — V.

Definition - Ruleset: A ruleset ¢ is a set of rules r; = (L;, R;) which specifies the evolution
of the self-assembly process towards a desired target assembly out of initially disconnected
modules. The application of rules included in ¢ sequentially advances the self-assembly
progress by forming or severing bonds between modules with proper internal states.

Definition - Action: The triple (r, I, h) is called an action. The application of an action with
r =(L,R) to G gives a new graph G’ = (V;, Eg, lg') defined by

Eg =(Eg—xy:xyeEgnIxDu(xy:h(x)h(y) € Er)

ZG(X), ifxe Vo—-1
[G/(x) =
fr(h(x)), otherwise

Definition - Reverse rule: The complement or reverse of a rule r = (L, R), is 7 = (R, L), such

that G 220 67 2L Gr = G, for appropriate I and h corresponding to the rule r.

Definition - System trajectory: A trajectory of a system (Gy, ¢»), where Gy is the initial graph

85

Chapter 10. Microscopic Model

1 a 0 0
a0 ANV L] Lo
a 0 0
2[5 § §

2 g 2 4
A [z]
1 3

d 4 2

Figure 10.1 - Different structures represented by the same abstract graph not capturing the
orientation of the formed links (left). Association of latching connectors with labels marked in red
[15] (middle). Relative CCW convention for hop numbering, marked in red, starting at the most
recently engaged latching connector, marked in blue (right).

of the system and ¢ is a ruleset, is a finite or infinite sequence, depending on the number of
r,Lh r2,1,h r3,Lh
= G —— Gy —— ..

applicable rules, of Gy

Given a ruleset ¢, one can study the sequences of graphs obtained from successive application
of the rules in ¢. For a probabilistic ruleset, a probability is associated with each rule by
the mapping P : ¢ — (0,1], indicating the tendency for the corresponding event to take
place provided that the conditions under which the rule is applicable are met. All formal
rule synthesis methods proposed for programmable self-assembly of graphs automatically
generate a ruleset ¢ for assembling a desired target by iteratively browsing and parsing the
target graph [94], [15], [92]. Chapter 14 provides details on the functionality of such methods
and how they can be extended to generate rules for self-assembly of rotationally symmetric
robotic modules.

10.2 Graph Grammars for Self-Assembly of Robotic Modules

In this section, we explain how we extend the graph grammar formalism to formulate the prob-
lem of ruleset synthesis for programmable self-assembly of rotationally symmetric robotic
modules [71]. As explained in Section 10.1, the self-assembly process in a system of bodiless
modules can be directly modeled by an abstract graph evolving over time and the standard
graph grammar formalism can be applied. For the case of robotic modules, their embodiment
needs to be incorporated in the model as the modules’ morphology, in particular the orienta-
tion of the links they may form, strictly determines the shape of the resulting structure. This
information cannot be directly encoded in the structure of abstract graphs. Figure 10.1 (left)
gives a simple illustration of this issue considering square-shaped modules. While in both the
L shaped structure, on the top, and the chain shaped structure, in the middle, the assembly
comprises three modules, with two modules having one common neighboring module, it can
be seen that depending on the latching connectors which get engaged, two distinct assembly
structures may exist. If the orientation of the formed links are ignored, both assemblies can be
described by the same abstract graph, depicted on the bottom.

86

10.2. Graph Grammars for Self-Assembly of Robotic Modules

In order to employ the graph grammar formalism for the problem of self-assembly of robotic
modules two main issues should be addressed: first, how the morphology of the robotic
module, in particular its latching connectors, can be incorporated into the structure of the
system graph, and second, how the internal states of the robotic modules, which includes
information on the orientation of the links formed, can be encoded and represented in the
graph structure.

One approach to address the aforementioned issues is considered in [15]. Instead of repre-
senting a single module, each vertex in the system graph can be associated with a latching
connector on a robotic module. The vertices corresponding to latching connectors of a cer-
tain robotic module are then connected using permanent links which indicate the physical
coupling, as depicted in Figure 10.1 (middle). For the case of bodiless modules the state of
the module can be encoded by a single label associated with its corresponding vertex in the
system graph. For the case of robotic modules, the method in [15] represents the internal
state of a module as the set of labels associated with the vertices corresponding to its latching
connectors. Several drawbacks may be listed for this method of representing a robotic module
and its internal state within a graph grammar formalism. First, as a result of dedicating several
vertices to represent a single module, i.e., one vertex per latching connector, the system graph,
i.e., the graph representing the system, will be crowded with vertices and edges which encode
redundant information, giving rise to an increased complexity in analyzing and simulating
the model. Second, automatic synthesis of rules for robotic modules is not straightforward
using this method, mainly due to the complex structure of the graph. Indeed, [15] first runs a
synthesis algorithm on an abstract description of the desired target, and the resulting rules
are then manually tuned to account for the correct orientation of the forming links. Third, for
arobotic module with N connectors each acquiring a dedicated state label, it can be shown
that the ruleset complexity grows with O(N' 2,

In what follows, we propose an alternative approach for applying a graph grammar formalism
to the self-assembly problem of rotationally symmetric robotic modules. Our goal is not only
to be able to employ such formalisms but also to formulate algorithms for the automatic
synthesis of rules. To this end, we extend the notion of labeled graphs by introducing the
definition of extended vertices and labels. While we are particularly interested in scenarios
involving our Lily robotic modules in 2D, the assumptions we make are general enough to be
directly applied to similar platforms. The method is also easily applicable to 3D self-assembly
with similar assumptions. In essence, we augment the vertices with link slots and introduce the
extended vertices, where a link between two extended vertices is formed through specific link
slots. The link slots are then indexed according to an enumeration convention on the latching
connectors of the robotic modules. Assuming that the latching connectors on the robotic
modules are genderless and arranged in a rotationally symmetric configuration, the relative
hop distance between the engaged link slots determines the relative orientation of the links
formed between the modules and thus determines the shape of the structure. Following this
extension, we introduce the extended labels, encoding the internal state of a robotic module
as a pair of the control state and the latest engaged connector index. Formal definitions of

87

Chapter 10. Microscopic Model

these concepts are provided below.

Definition - Extended vertex: An extended vertex has ordered link slots which correspond to
the latching connectors of a robotic module. An extended vertex v representing a rotationally
symmetric robotic module endowed with N latching connectors is a N-tuple v = (sy, S2, ..., SN)
where s; € {0,1} is a binary value representing the latching state of the corresponding latching
connector on the i latching slot. The numbering of the slots is assumed to match the one on
the robotic module, following a counter-clockwise (CCW) rotation convention on the module.
Since the modules are assumed to be rotationally symmetric, the connectors are anonymous
for an isolated module.

Definition - Internal state of robotic modules: Similar to the case of bodiless modules, each
robotic module maintains an internal state which corresponds to its local perception of the
progress of the self-assembly process, or equivalently its local neighborhood structure. The
internal state of a module evolves according to the rules specified in the ruleset, depending on
its interactions with other modules and their respective internal states. The difference is in the
notion of the neighborhood structure.

In the case of bodiless modules, the local neighborhood structure of a module and its cor-
responding internal state does not contain information about the orientation of the links.
However, for the case of robotic modules with specific embodiment, the orientation of the
links strongly determines the structure of the assembly formed around a module, and must be
encoded in the modules’ internal state.

For the case of rotationally symmetric robotic modules, we consider the internal state to
consist of two components: a non-spatial component, called the control state hereafter, which
encodes the same information as the internal state in the case of bodiless modules, and a
spatial component, called the latching state hereafter, which encodes the index of the latest
engaged latching connector.

Definition - Extended label: An extended label is a pair [= (I, [;) encoding the internal state
of a rotationally symmetric robotic module. [, represents the control state of the robotic
module and /,, represents the latching state of the robotic module, i.e., the index of its most
recently engaged connector. Notice that /,, may be extended to be an ordered list of recently
engaged connectors.

Definition - Extended labeled graph: An extended labeled graph is a quadruple G = (V, E, S, ¢)
where V = {1, ..., M} is the set of extended vertices, E c V x V is the set of edges, K ={1,..., N}
is the set of link slots available on each of the extended vertices, S: E — K x K defines which
slots are involved in a link between two vertices, and ¢ : V — X is a labeling function, with =
being a set of extended labels.

Following the extension of the graphs, the rules are also extended to be described using
elements which are a combination of a control state variable and a relative latching state

88

10.3. Random Pairwise Interactions

Algorithm 1 Pseudo code for generating a sequence of graphs employing the random pairwise
interactions dynamics..

1: Initialize with ¢ = 0 and Gy.
2: Increment ¢.

3: F(Gy) is sampled, giving a pair of vertices {x, y}.

4: Let¢pr={re¢:3h (r,{x,y}, h) is an action on G;_1}.
5: If ¢ = @ let Gy = G¢—1 and return to step 2.

6: Let r € ¢; be chosen at random, uniformly.
7
8
9

, xy1 h
: Let Gy_q 22D o1,

G ith probability P
ety ={ ¢ ithprobabiliy P()

Gt—1 with probability 1 - P(r)
. Return to step 2.

variable as explained below. The idea is that a robotic module can only take part in an
interaction governed by a certain rule if it has the appropriate control state and is participating
in the interaction with the appropriate orientation.

We assume that the robotic modules exchange information of their respective internal states
once their latching connectors are engaged. More specifically, once one of the connectors
is engaged, the robot may communicate its internal state in the form of a relative extended
label of I = (14, I;;) with [, being the robot’s control state and [/;, being a relative hop number
which represents the relative orientation of the currently engaged connector with respect to
its predecessor, assuming a CCW hop convention (see Figure 10.1, right). For a vertex with an
extended label of (I4,1,,) on a robot with N connectors Ij, = [(I, — Ic) mod N] + 1, where . is
the index of the currently engaged and [, is the index of the previously engaged connector.

Definition - Extended rule: An extended rule is an ordered pair of extended graphs r = (L, R).
An extended binary rule can be depicted as [, I, — I3 — Iy, with the Iy, l», I3, l4 being pairs of
the form [; = (l;4, [;;,) denoting the relative extended label of the engaged vertices.

10.3 Random Pairwise Interactions

In our extended formalism, a random pairwise interaction dynamics is defined as a quadruple
(G, F, ¢, P). Rule probabilities are assigned by P : ¢ — (0, 1]. The set of pairs of disjoint vertices
is defined as PW(G) = {(x,y) : AI < G|(x,y) € Ej,x # y}, where I is a connected subgraph of
G. The set PW (G) specifies the modules among which an interaction is feasible as they are
not connected to the same subassembly. F(G) maps an extended graph G to probabilities
of pairwise vertex selections from V. A random trajectory of the system, is generated by
sampling F(G;) at each time instant to obtain a pair (x, y) and then executing an appropriate
action on the selected pair. For the two selected vertices to interact, engaged link slots are
chosen randomly from the available slots. Sampling from F(G;) introduces an inherent
stochasticity to the trajectories of the system even if the ruleset contains only deterministic
rules. The interaction probabilities, defined by F(G;), depend on the current graph G; and
can be calibrated based on experimental data to reflect the spatial aspects of the underlying
self-assembly process. More specifically, it is the dynamics of mixing in the physical system

89

Chapter 10. Microscopic Model

Algorithm 2 Pseudo code of the shape recognition algorithm for the case of square-shaped
Lily robotic modules.

1: procedure GROUPTOSHAPE(Vg, Eg, Si) 21: if §j == k then

2: Vv;:i=1,2,..1Vgl, pos(v;) =(0,0) 22: Let R(0) be the 2D

3 Vv;:i=12,..,1Vgl,prev(v;) =0 23: rotation matrix

4: Vviii=12,.,IVgldir(vy) =1 24: pos(vj) — pos(vy)+
5: unvisited — {v1} 25: [-1,0]R(k-7/2)

6: visited — {2} 26: end if

7 while (unvisited # {&}) do 27: end for

8: v; — unvisited(l) 28: dir(vj) < s;

9: S; — (dir(v;)—1+2) (mod 4) +1 29: prev(vj) < v;

10: si — Sg(vi, prev(vy)) 30: unvisited — unvisited U{v;}
11: d—S$;—sj 31: visited — visited U {v;}
12: if d < 0 then 32: end if

13: d—d+4 33: end for

14: end if 34: unvisited(l) — {&}

15: fvj:j=1: Ing; (O} — ng (k) 35: end while

16: for j=1to InEG(k)I do 36: (Xmins Ymin) =1(x, Y|

17: ifv; ¢ visited then 37: (x,) = pos(v;),¥ j,pos(vj) > pos(v;)}
18: sj =S}, v;) 38: Vi pos(w;) — poswj)—Xmin» Ymin)
19: Sj=(sj—1+d (mod 4)+1 39: return (pos)

20: fork=1:4do 40: end procedure

which affects the interaction chances of different assemblies. For instance, larger assemblies
may move around the arena more slowly, or orient themselves in the fluidic field in such
a way that certain encounters are less probable. In the current work, our goal is to employ
the microscopic simulation framework to study the intrinsic performance of the synthesized
rulesets, similar to the studies conducted in [92]. Therefore, the interaction probabilities are
kept uniform similar to [92]. Similar to the work in [92], a random sequence of graphs {G;}72,
is generated as described in Algorithm 1. The asymptotic behavior of {G;} can be characterized
for various choices of ¢p and P.

10.4 Shape Recognition

In order to keep track of the structures being formed at each step in the simulation, the created
sub-assemblies must be identified. In the case of abstract graphs, i.e. the self-assembly of
graphs, this would represent a graph isomorphism problem. However, in the self-assembly of
modules case, the addition of link slots allows for a simplified identification to be achieved,
since it endows the graph with means to define geometrical orientations and relative positions
of the vertices engaged in a structure.

Some solutions optimizing the process of graph isomorphism, such as the one presented by
Asadpour et al. in [95], were first considered. Indeed, the most promising part of their research
lies in the capability to determine the closest shape we could obtain from the reorganizing of
the parts thanks to the definition of a similarity metric. This additional information would
probably be of some help in the exploration of greedy approaches and self-disassembly
However, in the interest of time and considering the overall complexity of the algorithm, its
computational cost, and the lack of information on its implementation, we chose to go a

90

10.5. Running the Model

simpler solution.

Our method relies on 2D geometrical considerations and is based on the browsing of the
enhanced graph and computing the relative locations of the vertices with respect to the
starting node. In order to find the positions of the vertices and their orientation, the relative
ordering of the slots of adjacent modules is used. Similar to the positioning of pixels on a
screen, the method is applicable to modules performing structure formation with a wide
variety of shapes provided that the edges of the shape are regular (latches of the same size, for
instance).

Tracking the progress of the self-assembly process of the simulated system requires a mapping
between the connected components of the graph of the system and the shape of the corre-
sponding assemblies. For the case of self-assembly of graphs, where the system is represented
by an abstract graph at each time instant, this describes a problem of graph isomorphism [92].
However, for the case of our extended graphs, the relative position of the engaged slots needs
to be taken into account to recognize the shape of the resulting assembly. We propose a simple
method for recognizing the shapes based on traversing the connected components of the ex-
tended graph and constructing a series of locations of the Center Of Mass (COM) of the robotic
modules. The relative ordering of the link slots on the neighboring modules determines the
orientation of each traverse. The series of locations are then rotated and translated such that
all coordinates are positive. The resulting ordered set is used as the identifier of the structure.
This method can be applied to modules with a variety of shapes. Our method is sufficient for
the case of structures confined in 2D and is substantially less computationally expensive than
general approaches such as the ones presented in [95], [96]. The pseudo code of our proposed
shape recognition algorithm for the case of Lily modules is shown in Algorithm 2.

10.5 Running the Model

By definition, running a model is the process of running the appropriate simulation tool which
contains a description of the model. In this section, we will illustrate using an example how
the previous definitions and explanations are employed to realize an implementation of a
microscopic model of self-assembling robotic modules in Matlab. In particular, consider a
system of 24 initially isolated square-shaped modules endowed with four latching connectors,
one on each side. Consider the modules to be Lily robotic modules as described in Chapter
5. The desired target structure is a cross shape comprising six robotic modules as shown in
Figure 10.2(b). Employing our formalism detailed in Section 10.2, the system is modeled as
an extended graph. We consider, two rulesets comprising extended rules for self-assembly
of the cross shape target structure. Each ruleset is synthesized by a dedicated rule synthesis
algorithm, namely the SingletonR and the LinchpinR algorithms, described in detail in Chapter
14. While the rules synthesized by SingletonR induce a serial assembly scheme by building the
target adding one module at a time, LinchpinR rules allow for a more parallelized scheme in
the self-assembly process by buidling dimer structures first and then joining them to build

91

Chapter 10. Microscopic Model

Cross Shape Formation

45 T . . .
e
€ 351 J
=
8 sf]
®
o 25F J
(0]
@
15F . b
g —SingletonR
Eoir 1
05k —LinchpinR | |

D 1 1 1 1 L 1 L 1 1
0 20 40 60 80 100 120 140 160 180 200

Steps
(@) (b)

Figure 10.2 - Progress of the self-assembly process for a cross shape target in a system of 24
initially isolated square-shaped modules. Two different ruleset controllers are employed, a serial
ruleset synthesized by the SingletonR algorithm described, and a parallel ruleset synthesized by
the LinchpinR algorithm. Both algorithms are described in detail in Chapter 14.

Step 10 Step 40 Step 70 Step 100

4 'k

(a)

Step 10 Step 40 Step 70 Step 100

(b)

Figure 10.3 - Visualization of the progress of the self-assembly process towards a cross shape
target in a system of 24 initially isolated square-shaped modules. The color coding indicates
the count number of each assembled structure. Two different ruleset controllers are employed,
(a) a serial ruleset synthesized by the SingletonR algorithm described, and (b) a parallel ruleset
synthesized by the LinchpinR algorithm. Both algorithms are described in detail in Chapter 14.

the target structure eventually. As a result of this parallelization, LinchpinR rules are expected
to achieve the target structure faster. Figure 10.2(a) depicts the progress of the assembly
process, in particular the number of assembled copies of the target structure, as a function
of simulation steps. Figure 10.3 shows snapshots of the simulated self-assembly process.

92

10.5. Running the Model

From both figures it can be seen that the LinchpinR rules build the target structure in fewer
steps, thus achieving a higher assembly rate. Both rulesets eventually achieve the maximum

assembly yield of four.

Summary

In this chapter, we presented our microscopic model and corresponding simulation
tool. The simulation tool is based upon the abstract model for randomized interac-
tions among bodiless modules and employes the extended graph grammar formalism
introduced in Chapter 14. In this dissertation, the microscopic model is specifically
developed to evaluate the comparative intrinsic performance of the synthesized rule-
sets abstracting away the spatial aspects of the self-assembly process. Given a desired
target structure and its associated appropriately synthesized ruleset, the microscopic
simulation tool allows for verifying whether the ruleset and its corresponding assembly
strategy attain the necessary complexity in order to build the target structure efficiently.

93

1§} Macroscopic Model

T the highest abstraction level sit the macroscopic models. These models directly

describe the collective behavior of the robotic swarm, abstracting away the often

complex and partially predictable behavior of the constituting robotic modules.

Because macroscopic models use fewer parameters to describe the dynamics of
the swarm they offer higher computational efficiency and tractability compared to microscopic
and submicroscopic level models. Calibration with real experimental data directly obtained
from the physical system or from accurate submicroscopic or microscopic level models is
crucial to ensure the accuracy of the macroscopic models. In this chapter, we focus on
developing probabilistic models at the macroscopic level. We employ the Chemical Reaction
Network (CRN) formalism and capture the system dynamics using Markovian stochastic
processes.

11.1 Introduction

A key component in studying programmable stochastic self-assembling systems is developing
models that accurately describe the assembly process dynamics. Such models would help
in: (1) accurately predicting the performances (assembly rate and yield) of the distributed
system, and (2) evaluating and optimizing control strategies, whether distributed (e.g., ruleset
controllers programmed on the modules) or centralized (e.g., modulating environmental
features such as mixing forces driving random interactions among modules), based on model
predictions [65], [85].

Several works have addressed developing Markovian probabilistic models for stochastic self-
assembling systems to date [93], [97]-[100]. The choice of employing probabilistic modeling
techniques for such systems is essentially motivated by the randomness lying at the core of
these systems: random motion of the modules in the environment, explicit random decisions
made by the modules’ embedded controller, and random interactions among the modules
[89]. Additionally, probabilistic models can be employed to provide a high-level macrostate
description of the system state at each point in time by abstracting away low-level physical

95

Chapter 11. Macroscopic Model

details of the system state such as positions, velocities, and internal states of all modules (i.e.
microstate description). A general methodology for developing accurate probabilistic models
of the dynamics of programmable self-assembling systems is sought after to date.

In this work, our focus is on creating a general approach for developing a discrete-state hidden
Markov process model of programmable stochastic self-assembly directly obtained from (1)
a description of the robotic modules’ embedded ruleset controller, and (2) an estimation of
the rate constants defining the formation rates of different assemblies. To demonstrate this
approach, we consider the case of our floating self-assembling robotic system, where the
self-assembly process is controlled in a fully distributed fashion through the programmable
embedded ruleset controllers of the robotic modules. We use a high-fidelity calibrated simula-
tion of the system as the ground truth and address different aspects of developing probabilistic
macrostate models for the system. The contributions of this work are along three axes (1) anew
rate estimation method for computing Markov model parameters is introduced and compared
with two existing ones [93], [97], (2) a new method for estimating diffusion coefficient and
evaluating the well-mixed condition is studied and compared with an existing one [93], and
(3) a systematic method in the literature for refining Markov models using HMM formalism,
presented in [98], is employed to develop an HMM through automatic refinement of an initial
Markov model of the system.

11.2 Markovian Models for Programmable Self-Assembly

We employ similar formulations as in [98] and [99], and provide formal definitions of several
concepts in this section.

Markov Models

A discrete-time stochastic process can be defined as a collection of random variables, {X;} sen-
Similar to realization of a single random variable, a realized trajectory w € N — X generated by
the stochastic process defines an assignment of the random variables X, to particular values
x in state space X. A discrete-time discrete-state Markov process, i.e. a Markov chain, has the
following property, where x; € X:

PriXns1 = xp01lXn = Xp, X1 = Xp-1, .., Xo = Xo} = PriXu41 = Xp11l X = x,3 (11.1)

The transition dynamics of a Markov chain is specified by the one-step transition probabilities,
where matrix A is independent of n for a stationary process:

Aij(n) = PriXps1 = jIX, =i} fori,jeX (11.2)

Consider a self-assembling robotic system consisting of Ny individual robotic modules that
may be in Nj; different control states 4, ..., gn, as specified in their embedded ruleset con-

96

11.2. Markovian Models for Programmable Self-Assembly

troller. At the microscopic level, the state of the system can be described by the vector:

Xmicro(t): [Ql(t),Qz(t),---,QNo(t)]r (11.3)

where Q;(f) = qi,..., qn, is the state of module i at time ¢. The embedded ruleset controller
guides the modules to build the target structure through building specific intermediate assem-
bly configurations. Assuming that the set of possible assembly configurations as prescribed by
the embedded ruleset controller is cy, ..., cn,. At the macroscopic level, one is interested in the
number of copies of the specific assembly configurations. Therefore, the state of the system
can be described as:

Xmact () = [Ny (8), Na(8),..., N, (8], (11.4)

where N; € N> is the number of copies of assembly configuration c; at time t. We consider
discrete-time, with X3 indicating the system macrostate at the n’" timestep. Assuming
well-mixed conditions, the evolution of the system state may be expressed as a discrete-time
discrete-state Markov process {Xmacroy . Note that in order to fully specify the model, one
has to list all the feasible system macrostates as well as the transition probabilities between
them.

Hidden Markov Models

An HMM can be defined as a stochastic process with state space Y whose trajectories are
described by a Markov chain with state space X and an output function f : X — Y. The
function f can be many-to-one, therefore, the resulting process Y can be non-Markov while
the process X is. In practice, HMMs correspond to the case where the system state is not
fully observable and as a result several underlying Markov process states (hidden states) may
correspond to the same observable state of a non-Markov process.

Chemical Reaction Networks

A CRN & =(£,) is a set of reactions # = {Ry,...,Ry,} acting on a set of species ¥ =
{S1,...,Sn,}. Each reaction R is then defined as two vectors of nonnegative integers spec-
ifying the stoichiometry of the reactants, 7g = [rgr;,...,7r N,], and the products species,
Pr=I[PRr1,.-., PR N;], respectively. The stoichiometry determines the number of copies of a
given reactant or product species that is required or produced when a reaction occurs. The
CRN provides a population model, it thus keeps track of the number of copies of each species
present in the system at each given time. Consider the case of the self-assembling robotic
system. The CRN species correspond to the assembly configurations induced by the modules’
embedded ruleset controllers. The CRN state is given by the vector Xmacro sy ¢ I\IIZV(S) at each
point in time, where the vector elements specify the number of individuals of each species. A
reaction R may occur provided that the number of reactants is sufficient, that is, Xmacro > TR

97

Chapter 11. Macroscopic Model

element-wise. When reaction R occurs, the new state X,}%<"° is given by:

Xnacro — xmacro _ o 4 pp (11.5)
A characterizing quantity for a reaction R is its propensity function ag, defined such that
ar(X,.)dt is the probability that one instance of reaction R will occur in the next time interval
[t,t+dt) as dt — 0, assuming the current state of the system to be X (f) = X. When the
propensity function ag is determined only by the current state of the system the Markov
property holds and the time ¢ until the next firing of reaction R can be described by an
exponential random variable with mean 1/ag (%), that is, its probability density is given by:

F(0) = ag(F)e~ w1 (11.6)

where X is the state of the CRN (i.e., a population vector), and ag(.) is the propensity function
of the reaction R. The specific form of ag(.), assuming that the system is in dynamic equi-
librium, is determined by the law of mass-action [101], and can be thus expressed as below:

ar(xX) = krap(x) (11.7)

where kp is the rate of reaction R and dr(X) has the appropriate form according to the
stoichiometry of R, and does not depend on kg. As an example, for the reaction R: 1+2 — 3
the propensity function is computed with d@g (%) = N7.N, where N; and N, denote the number
of reactants of type 1 and 2 in the system.

11.3 Developing Markov Models

We use the CRN formalism as detailed in Section 11.2 to express a Markov model of our system
and estimate the reaction rate constants of the network. The structure of the CRN model is
fixed, with the species determined by the assembly configurations, the parameters can instead
be estimated through different methods. It can be shown that for a given set of observations of
the system, i.e. a sequence of events (e1,...,en), with e; = (R;, t;, X ;), the Maximum Likelihood

(ML) estimator of the rate vector 7c> = [I%l, - IENR] of the underlying CRN is [98]:

N z?—llRi:Rj
fi=—=1H) io1,. N (11.8)
J n ~ J
2., (ti.ag;(X)

Given the high-fidelity simulation framework described in Chapter 9, one can evolve the
system dynamics from any desired initial condition and for any desired duration of time. The
essential idea for estimating the rate constants is to observe and record the different reaction
events and the corresponding waiting times in between.

Different methods have been proposed for gathering the statistics necessary for the rate

98

11.3. Developing Markov Models

Method 1 Method 2 Method 3
e — £
o 1 — — o 1 — — © T —
E E £
= 08 = 08¢ = 08¢
c c =
@ o @
o 06| o 06 o 06}
5 5 5
o O w 0471 wn O
] [o
= = =
= 0. =027 1 =0
i i ©
[} Q [}
X o ¥ o or o
-5 4 -3 -2 -1 12345 5 4 -3 2 -1 12345 5 -4 -3 2 -1 12345
Rule index (neg: reverse rules) Rule index (neg: reverse rules) Rule index (neg: reverse rules)

Figure 11.1 — Normalized number of samples per rule gathered through the three methods of
Section 11.3.

Method 1 Method 2 Method 3
0.05 — — 0.05 — — 0.05
L L et
T 004 £ 0.04 = 0.04
2 2 &
o 003 o 0.03f o 0.03
o o (=]
O o o 00
0.02f :
2 g o
[5] o]
(e X 501 X g01
0 0 0
54321 12345 5 4-3-2A 123465 54324 12345
Rule index (neg: reverse rules) Rule index (neg: reverse rules) Rule index (neg: reverse rules)

Figure 11.2 — Estimated rate constants using the three methods of Section 11.3.

estimation. We exploit the high-fidelity submicroscopic simulation framework described in
Chapter 9 and study two existing methods and propose a third new method for gathering
statistics. The main difference between these methods is the conditions under which they
sample an event occurence and also the statistical composition of the dataset they gather.
Methods 1 and 2 initialize and reinitialize the system to various macrostates upon occurrence
of different events. Method 3, on the other hand, gathers observations from a full-length
simulation of the system, initializing the simulation to fully isolated modules for each set of
observations.

Method 1: This method has been originally proposed in [97]. The authors propose to run
simulations for a wide variety of initial macrostates, covering all the states traversed by the
system during the self-assembly process. Formally, the initial conditions are defined as follows:

SM(tZO) = (Sl,SZ,.-.,Sn)

for all feasible macrostates in the system. The simulation is initialized and run for each initial

99

Chapter 11. Macroscopic Model

Species 1

Number of copies of species [#]

—&— Method 1
—+—Method 2
—&— Method 3
=——Ground truth

0 L . L .
1000 1500 2000

2500 3000 3500

Number of copies of species [#]

Species 2

—&— Method 1
—+—Method 2
—&— Method 3
=———GCround truth

0.5 [+

1000 1500 2000 2500 3000 3500

0 500 0 500
Time [s] Time [s]
Species 3 Species 4
1r P 08 P

= —&— Method 1 & —&— Method 1
H 08 —+—Method 2 H —+—Method 2
e —&— Method 3 Sosf —&— Method 3
& Ground truth & Ground truth
B 06| 5
w w
L L 04t
[=% [=%
S04 8
fhus fhug
(=] (=]
E E 02

0.2
£ £
= =
=z z

odl \ . \ \ \ \ 0 . \ \ \ \ . \
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Time [s] Time [s]
Species 5 Species 6
06 2r

o
w
T

o
-
T

o
(]
T

Number of copies of species [#]
o o
. w

e

—&— Method 1

—+—Method 2

—&— Method 3
Ground truth

1000 1500 2000
Time [s]

0 500

2500 3000 3500

Number of copies of species [#]

2

e
»

e

0 500

—&— Method 1
—+—Method 2
|| —&—Method 3
Ground truth

1000 1500 2000 2500 3000 3500
Time [s]

Figure 11.3 - Comparison of model prediction regarding the trajectory of each of the six species,
averaged 1000 runs in Stochkit, formed by the ¢ j,4in using the rates estimated by the three
methods in Section 11.3. The ground truth is obtained by averaging 90 runs of the simulated world
in Webots (see Chapter 9).

macrostate distribution, as soon as a reaction R occurs, the time of that reaction is noted and
the simulation is reset.

Method 2: This method has been originally proposed in [93] and is similar to the Method
1 in that it also considers only a simulation period until a reaction occurs in the system.
However, the number of different initial conditions is reduced. For computing the reaction
rate for a specific reaction R, the initial macrostates used in the simulations are only the ones
containing the reactants of reaction R. For instance, given the stochastic reaction equation
1+ 3 — 4, which describes the formation of substructure 4 from substructures 1 and 3, require

100

11.4. Evaluating Well-Mixed Condition

the following corresponding initial conditions:

sm(t=0)=(5,0,83,0) , Si=0 Vi#{L3}

The values of the number of copies of substructures S; are randomly varied within the feasible
macrostates. The simulation is thus initialized and run for each initial macrostate distribution,
as soon as reaction R occurs, the time of that particular reaction is noted and the simulation is
reset but the time is not reset.

Method 3: This is our proposed method. The idea is simply centered on the complete observa-
tion of simulations starting from different initial conditions (all the agents separated at start)
until the target structures are ultimately built. This typically provides a wide variety of interac-
tions between the agents distributed according to the natural tendency of the system, allowing
therefore to collect enough relevant statistical information to determine rate constants. All
initial conditions are defined as follows:

SM(tZO) = (NO)O)”«)O)

where the first element in the macrostate vector indicates the species corresponding to an
isolated module, thus, S; = Nj.

For gathering the statistics, our simulation setup consists of 12 robotic modules that are stirred
in the fluidic arena of 1.2 m diameter. The evaluation was performed for the ¢4, ruleset
that builds the target structure of a chain using six robotic modules. All the forward rules are
set to be executed with probability 1, for the reverse rules the probabilities were set to the
following values 0.05, 0.01, 0.002, 0.0004, 0 for {7y, 2, ', 4, 75} respectively. Figure 11.1 shows
the statistics of the number of sample points gathered while the estimated values of the rates
are shown in Figure 11.2. It can be seen that the statistical composition of the datasets gathered
by the three methods are very different. In addition to the different number of samples per
reaction rule, the system state at which the reaction time has been sampled is also different
for the three methods, resulting in different rate estimates. While the differences between the
estimated rates as depicted in Figure 11.2 seem minor, they describe substantially different
system evolution courses as depicted in Figure 11.3. We generate 1000 sample trajectories
using the Gillespie method [101] with the Stochkit software for each CRN model. It is also
noteworthy that Method 1 provides the most varied system state at the sampling time, while
Method 3 samples the reaction events at system states through which the system has a natural
tendency to traverse.

11.4 Evaluating Well-Mixed Condition

The mismatch between the Markov model predictions and the ground truth as depicted in
Figure 11.3 can be ascribed to two factors. First, as previously mentioned, the underlying CRN

101

Chapter 11. Macroscopic Model

describing the states of the Markov model has its species determined by the ruleset. However,
as a result of random interactions between the robotic modules, temporary bindings can also
form, which are later severed as the modules switch their EPMs off and drift apart. These
temporary bindings/structures are not explicitly modeled as the CRN species. Second, the
physical dynamics of the system might be practically far from the ideal well-mixed conditions,
thus voiding the Markov property assumption. In this section, we specifically look into
validation of the well-mixed condition. The well-mixed condition is sufficient for guaranteeing
that the underlying process is Markovian and that each possible combination of reactants for
a particular reaction will be equi-probably involved in the next instance of the reaction [93].

We use the definition of well-mixedness from [101]: the rate at which new collisions occur
should be greater than the rate at which reactions occur, in other words the modules should
diffuse faster than they react. Similar to the work in [93], we rely on diffusion for module
transportation. A measure of “well-mixed" as proposed in [93] is to require that D/k,, > A
where D is the diffusion coefficient, k,, is a nominal reaction rate in the system and A is the
effective area of the fluidic arena occupied by the interacting modules. We study two methods
for estimating the diffusion coefficient, one proposed in the previous literature [93] and a new
method. In order to gather statistics, we exploit again our high-fidelity simulation framework
described in Chapter 9 and conduct two simulated experiments with 12 robotic modules
each for a duration of 10 min. The robotic modules are programmed with an empty ruleset
controller and as a result unlatch right after they latch.

Method 1

This method has been originally proposed in [93]. The authors propose to estimate the
diffusion coefficient for a robotic module as below:

_E(r3(1)
4t

D (11.9)

where r(t) denotes the random displacement of the robot as a function of time. We compute
the expected value considering all the robotic modules and all the time steps. The final
obtained estimated diffusion coefficient using this method is 0.0016 m?/s. For the nominal
reaction rate we consider the order of magnitude of the rate of the rule r; in the ruleset ¢ 4in
as computed by Method 3, 0.001. The condition of D/k,, > A implies that the arena size
should be smaller than A,,,, = 1.6m? while the area of our arena is 1.13m2. We thus conclude
that the system is well-mixed.

Method 2

Fick’s law of diffusion gives a relation between the diffusion flux, the gradient in concentration
and a diffusion coefficient under the assumption of the system being in steady state. It can be

102

11.5. Developing Hidden Markov Models

expressed as:
J=-DV, (11.10)

Where in the case of a 2D diffusion, J is the rate of module transfer per boundary length
normal to the direction of transfer, expressed in [modules/m.s], D is the diffusion coefficient,
expressed in m?/s, and V. is the gradient in concentration, expressed in [modules/m?]. In
order to estimate the diffusion coefficient in the case of our 2D system, the arena is partitioned
by a square grid of 16x16 with each cell i containing a concentration of modules c; (where
¢; € N*™0). For each simulation time step At, the modules’ flow is computed across each cell
boundary (e.g. from cell i to cell j) of a 4-connected neighborhood, using a discrete expression
of the Fick’s law:

Fi_.jZ—D(Cj—Ci)At (11.11)

To estimate the diffusion coefficient, we write:

Fciﬁcj

Dee; = (cj — A Iey—c, (11.12)
The diffusion coefficient is thus computed for every pair of observed concentrations (c;, ;).
The result of this diffusion coefficient estimation is a 2D matrix. To investigate the well-mixed
condition, individual values are then averaged to have a single value for the estimated D. The
final estimation for the diffusion coefficient using this method is 0.00065 m?/s. Referring to
the well-mixed condition described as D/k,, > A, we should have an A4 = 0.65m?. While
the total area of the arena is 1.13m2, the effective area to which the motion of the modules
is limited is smaller, about half of the total available arena size. We thus conclude that the
system is border-line well-mixed.

11.5 Developing Hidden Markov Models

The goal here is to construct a CRN corresponding to an HMM. Based on an existing CRN A
model of the system, we provide a method to automatically obtain a refined CRN A& model,
where the original species are augmented with proper hidden species. We take the systematic
approach described in [98] and employ a metric in order to provide for a fully automatic
refinement method. The original approach starts from a given CRN A" = (%,.¥) and an
associated set of events (ey,..., e,), and attempts to construct a refinement N =(R,F) of N
such that the likelihood $(%Ie1, cenn) > f(l?lel, ..., ep), i.e., the sequence of events is better
explained by the refined model than the original one. In order to refine a CRN, a species Sy
is selected. It is then split into two subspecies S and S(l)’ . All reactions involving Sy are then
duplicated, with their corresponding reactants and products updated accordingly. Consider

103

Chapter 11. Macroscopic Model

Number of copies of species [#] Number of copies of species [#]

Number of copies of species [#]

Species 1

—Ground truth
10 HMM

0 L . L
1000 1500 2000 2500 3000 3500

0 500
Time [s]
) Species 3
08k HMM

e
o

e
IS

<
o

0 L

I I I
1000 2000 3500

0 500 1500 2500 3000
Time [s]
Species 5
06
Ground truth
0.5 HMM
04r
031
021
01r
pleial” =, |
0 500 1000 1500 2000 2500 3000 3500

Time [s]

Number of copies of species [#] Number of copies of species [#]

Number of copies of species [#]

Species 2

= Ground truth
HMM

500 1000 1500 2000 2500 3000 3500
Time [s]

Species 4

—Ground truth
HMM

.

A
=

05

I I I I
500 1000 1500 2000 3500

Time [s]

2500 3000

Species 6

Ground truth
HMM

500 1000 1500 2000 2500 3000 3500
Time [s]

Figure 11.4 - Comparison of model prediction regarding the trajectory of each of the six original
species formed by the ¢.j4i, using the rates estimated by the Method 3 in Section 11.3 after
the CRNs have been refined. The gray dashed curves are sample trajectories corresponding to
different initial HMM states.

RjZ So+2A; —3A;

it will be duplicated as below:

104

R%: So,u+2A1 —3A;
RV: Sop+2A; —3A,.

(11.13)

(11.14)
(11.15)

11.5. Developing Hidden Markov Models

In contrast to the approach proposed in [99], the resulting subspecies Sy , and Sy ; are not
specifically associated to the type of a previous interaction partner. More specifically, if
an event e; = (R;, t;,X;) is such that R; is duplicated, one needs to re-assign this event to
either R; = R{ or R; = Rf’ , and update accordingly the population vectors X;; of the upcoming
events. To solve this problem, an expectation-maximization (EM) algorithm is used, an
iterative method for finding maximum likelihood estimates of parameters in statistical models
that depend on unobserved latent variables [98]. We introduce modifications in the original
method in two ways: first, in order to automatically choose the species to be refined we
propose a metric based on evidence from the observed set of events as below:
o(At)

h= (11.16)
m(At;)

Where for a reaction of interest, o (At;) is the standard deviation of all the observed waiting
times and m(At;) is the median of the observed waiting times. & is computed for all species
in the CRN and the species with the maximum value of / will be refined next. Additionally,
we introduce a stopping condition for the refinement procedure based on the same metric:
the refinement process would thus be halted when the maximum # in the CRN is less than a
predefined threshold ¢, set to 0.3 in our experiments. In order to keep the size of the CRN
model tractable, here we perform one round of refinements starting from the CRN correspond-
ing to the best model in Section 11.3, i.e. Method 3. In order to generate trajectories for the
refined CRN, the original initial condition of fully isolated modules should be also refined
to consider the initialization of the hidden species as well. Using the Stochkit software, we
generate 1000 sample trajectories for each initial condition of the refined CRN correspond-
ing to the HMM. This is a crucial part in evaluating the HMM accuracy which has not been
addressed in previous works. The average trajectory of the HMM is then compared with the
ground truth provided by high-fidelity simulations of the system as detailed in Chapter 9. The
results are depicted in Figure 11.4. It can be seen that the model accuracy is significantly
improved and the average trajectories match the ones of ground truth very well. Species
5 exhibits an interesting characteristics, the sample trajectories corresponding to different
initial states differ largely compared to those of the other species, and the HMM does not
manage to capture the ground truth trajectory peak. We speculate that a deeper refinement
corresponding to an HMM with more hidden species in combination with a larger dataset
should achieve better accuracy.

105

Chapter 11. Macroscopic Model

Summary

In this chapter, we considered the case of our fluid-mediated programmable self-
assembling robotic system and investigated developing macroscopic probabilistic
models of our system through multiple methods. A high-fidelity simulation of the
system was used as the ground truth. We utilized the CRN formalism to express the
self-assembly mechanism in the system. We show that assuming that the system is
well-mixed and starting from different Markov models of the system, the hidden states
augmented through our automatic HMM refinement method improve the model pre-
diction accuracy, compensating the initial imprecise modeling assumptions.

106

|4 Conclusion

HIS part of the dissertation covers the development of models and corresponding

simulation tools for programmable self-assembling systems, forming the second

main contribution of this thesis. In order to investigate the real system behavior, we

develop models at different abstraction levels leveraging our experimental setup
in several conducted studies. We estimated the model parameters for the submicroscopic
level based on the observation of the real system and for the macroscopic level based on the
realization of the submicroscopic model. Contrary to the convention in the literature, the aim
of the microscopic model in this thesis was not to deliver quantitatively faithful predictions
of the system behavior, but rather to provide a verification tool for the synthesized control
strategies captured within the ruleset controllers, and therefore calibration based on one of
the two underlying implementation levels was not considered.

The following transferable methods were developed in this part of the thesis:

m Submicroscopic model, trajectory-based model calibration using PSO- We presented
a trajectory-based calibration method for capturing the dynamics of the fluidic field
in our experimental setup that leverages a powerful metaheuristic method (PSO) for
automatically optimizing model parameters. This method is particularly interesting
as the resulting model, while being approximated, is computationally lightweight in
comparison to models involving direct coupling between robotic and computational
fluid dynamics simulators.

m Microscopic model, extended graph grammar formalism- While graph grammar formal-
ism has been previously used for formulating models of programmable self-assembly,
only bodiless modules were considered. We extended the graph grammar formalism
such that the morphology of the robotic modules as well as the orientation of the bind-
ings they form among each other are embedded in the extended graph representation.
We then proposed a computationally light-weight shape recognition algorithm for effi-
ciently identifying the type of sub-assemblies within an extended graph representation.

107

Chapter 12. Conclusion

m Macroscopic model, Markovian models based on ruleset structure- We employed the

structure of the ruleset controller embedded on the robotic modules s a blueprint for
building Markovian models of the self-assembly process. This structure defines the
ruleset strategy for building the desired target structure out of existing, initially isolated
modules in the system. Consequently, the type of intermediate assembled structures
is determined by the ruleset and their evolution over time can be directly observed,
allowing for automatically extracting the model parameters. The choice of using a CRN
formalism to formulate a Markovian model is well-aligned with the intrinsic nature of
our programmable self-assembling system: the states of the CRN model correspond
to the subassemblies in the system and its parameters, the reaction rates, correspond
to their transformation times observed in the system. Markovian models can provide
an accurate prediction of the system dynamics provided that the system is well mixed.
To mitigate the influence of non-well-mixed conditions on the accuracy of the final
model predictions, we employed an automatic technique to augment the model with
additional refined states, eventually building an HMM. The overall automatic procedure
that, starting from the ruleset controller is able to both generate an CRN-based Markov
model and subsequently refine it to cope with hidden states resulting from non-well
mixed conditions, is the final transferable method studied in this part of the dissertation.

Summary

This chapter concludes the modeling part of the thesis. The main outcome of the effort
in this part is development of models at different abstraction levels for capturing the
behavior of a programmable self-assembling system. Each model is coupled with a
simulation tool, running the model for acquiring predictions. At the submicroscopic
level, we present a novel method for calibrating computationally lightweight models
capturing the dynamics of the fluid-mediated environment based on trajectory data
of the building blocks in the system. At the microscopic level, we present an extended
graph grammar formalism for capturing the dynamics of self-assembly of robotic mod-
ules and leverage this tool for evaluating the intrinsic performance of the deployed
ruleset without taking into account the spatial effects mediated by the environment.
At the macroscopic level, we investigate building Markovian models based on a de-
scription of the ruleset behavior of the robotic modules. In this concluding chapter, we
briefly summarize the contributions of Part III and highlight the core methods which we
believe one may apply to the development of models for programmable self-assembling
systems of resource-constrained modules.

108

Controlling Self-Assembly

109

|4 Introduction

EPENDING on the capabilities of the self-assembly building blocks and the con-

trolability of the environment, a range of fully distributed to fully centralized

control approaches may be employed. The control approaches aim to guide the

self-assembly process towards building the desired target structure, efficiently.
The efficiency of a control approach can be measured considering two metrics, the rate and
the yield of the controlled process. The assembly yield at each time is the number of copies
of the target structure assembled at that time. The final yield is at a point in time when the
experiment is halted. The assembly rate indicates the rate at which the process progresses
towards building copies of the target structure. It can be measured as the assembly yield over
time. In this chapter we briefly review the different control strategies that have been employed
for guiding the process of self-assembly towards achieving the desired target structure, both
in physical experimental systems and in abstract models of self-assembly. Moreover, we will
outline our approach to controlling self-assembly.

13.1 Related Work

Programmable self-assembly has been demonstrated in [26], and [15] where active modules
self-assemble into predefined desired 2D structures following a set of assembly rules. In
[26], the miniaturized self-locomoted Kilobot robots coordinate using a deterministic and
quasi-serial approach in a large swarm of 1000 robots. Module transportation may also be
achieved by taking advantage of the stochastic ambient dynamics, realizing stochastic self-
assembly. This in turn can allow for simplifying the modules’ internal design. In [15], the
programmable parts stochastically self-assemble on an air table based on their internal ruleset
controller. In that work, a ruleset is generated using an automatic rule synthesis algorithm
which starts from a description of a target structure in the form of an abstract graph (where
each node of the graph is a bodiless module) and automatically generates proper rules for self-
assembly of bodiless modules. The resulting rules are then manually tuned to suit the specific
morphology of the physical robotic modules. An alternative method employed for generating

111

Chapter 13. Introduction

self-assembly rules is using powerful metaheuristic methods. For instance, employing the
abstract Tile Assembly Model (aTAM) [102], [103], evolutionary computing has been used to
generate rules for self-assembly in a system of passive modules in 2D [104], and a system of
real and simulated passive modules in 3D [105]. The resulting off-line evolved rules are then
encoded in the physical characteristics of the passive modules in each case in the form of
a magnetic bit pattern, enabling modules with matching patterns to assemble successfully.
Manually designed ruleset controllers are utilized in a case study of stochastic self-assembly
of simulated underwater robotic modules in 3D in [97], where the authors manually define
ruleset controllers specifically tailored to their robotic modules and the target structures.

The problem of ruleset synthesis for programmable self-assembly of graphs is first addressed
in [106] where the self-assembling system consists of bodiless modules represented as the
graph vertices, and the connections between the modules are represented by the graph edges.
The system graph evolves as the self-assembly process progresses, following the specified
assembly rules. Graph rewriting systems may be used to express algorithmically how a new
graph is created given an initial one and a set of directives. In [94], the formalism of graph
grammar is formally applied to the self-assembly of graphs and two rule synthesis algorithms
are presented. The synthesized rules represent local changes in the system graph based on
locally available information. The local nature of the interactions leading to formation of
edges between vertices may produce deadlock situations, blocking the system from further
progression towards the global objective. The deadlock situation is discussed in [94], where
the number of copies of the target structure being assembled in parallel is higher than the
maximum feasible number, considering the total number of initially available modules. In the
same work, in order to avoid deadlocks the authors propose a disassociation rule that requires
implementing a consensus algorithm among the communicating modules. Alternatively, the
authors in [92] employ a graph grammar formalism and show that the self-assembly of graphs
can be achieved while avoiding deadlocks by introducing probabilistic dissociating rules. Two
formal rule-synthesis algorithms, Singleton and Linchpin, are introduced in the same work.
While in the case of assembling bodiless modules it is only the existence of edges among
vertices that specifies the graph structure, in the case of physical modules their embodiment
plays a crucial role. For instance, the orientation of the links formed between the modules is
restricted by their morphology, in particular by the placement of their latching connectors, and
therefore the space of the possible assembled structures is ultimately determined by such local
embodiment. In an attempt to apply similar formalisms to the case of robotic modules, the
authors in [107] leverage weighted graphs in a case study to encode the geometric orientations
of the edges. While several formal rule synthesis algorithms leveraging graph grammars
have been proposed for programmable self-assembly of graphs, their synthesized ruleset
controllers are not directly applicable to self-assembly of robotic modules where orientation
of the forming links determines the resulting assembled structures.

112

13.2. Problem Statement

13.2 Problem Statement

Aswe explained int Chapter 1, one means of controlling the process of self-assembly is through
proper design of the building blocks. In a system of intelligent building blocks, this translates
to proper design of the intelligence - or equivalently the behavioral controllers - embedded in
these building blocks. As outlined in the previous section, several algorithms for automatic
synthesis of self-assembly rules have been proposed in the literature. These algorithms take
as input a description of the desired target structure in the form of a graph and produce
assembly rules for bodiless modules. While this automatic and general scheme in designing
the assembly rules is very desirable, the rules produced by these algorithms can not be readily
applied and programmed on robotic modules, limiting their usefulness in the case of practical
instances of engineered self-assembly in real systems where the self-assembly building blocks
are robotic modules with a certain physical embodiment. Hence, we recognize the problem of
automatically synthesizing rules directly applicable to robotic modules as the core problem
we tackle in this part.

We consider the specific but widely common case of rotationally symmetric robotic modules
endowed with genderless latching connectors. In order to overcome the problems mentioned
above, we employ the extended graph grammar formalism introduced in Chapter 10 where
the concept of abstract graphs is extended by augmenting vertices with link slots, introducing
extended vertices, where a link between two extended vertices can only form through specific
slots. Additionally, this extension is coupled with a new way of encoding the robotic modules’
internal state by introducing extended labels; a module’s internal state evolves according to
the ruleset controller and corresponds to the module’s local perception of the assembly it is
part of. This allows for formulating general methods for synthesizing rules directly applicable
to robotic modules endowed with an arbitrary number of genderless connectors arranged
in a rotationally symmetric fashion. Hence, we model the self-assembling robotic system
using an extended graph, with each module being associated with one extended vertex in the
graph and its internal state being encoded by a control state label and a latching orientation
index. For a rotationally symmetric module with N genderless connectors, we provide a proof
that our extended formalism achieves a ruleset complexity of O(N) compared with that of
O(N?) obtained by assigning one vertex and label per connector as presented in [15]. The
reduced ruleset complexity is of particular interest for the case of miniaturized modules where
very limited memory and communication resources are available. In particular, it allows for a
reduction of the memory required for storing the rules as well as that of the overall volume of
data shared among modules.

In Chapter 14, we leverage the extended formalism of Chapter 10 and extend the Singleton
and Linchpin rule synthesis algorithms originally introduced [92], obtaining the SingletonR
and LinchpinR algorithms. Compared with the original Singleton and Linchpin, the two
new extended algorithms allow for synthesis of rulesets which are directly applicable to
robotic modules. We then use SingletonR and LinchpinR to synthesize rules for our resource-
constrained floating robotic modules considering case studies involving two specific target

113

Chapter 13. Introduction

structures (i.e., a chain and a cross shape). Finally, in order to increase the prototyping
speed and the thoroughness of the validation for the synthesis algorithms, we leverage two
complementary simulation frameworks capturing the system at different levels of abstraction
(submicroscopic and microscopic). In Chapter 15, we leverage the extended formalism of
Chapter 10 once more and propose a novel rule synthesis algorithm for robotic modules which
allows for a further parallelized assembly strategy than the one of the LinchpinR algorithm
introduced in Chapter 14.

Summary

In this chapter, we introduced the problem of controlling the self-assembly process
towards building specific desired target structures and reviewed the approaches investi-
gated, both in physical self-assembling systems and in abstract models of self-assembly.
In particular, we explained that a variety of control approaches may be employed
depending on the capabilities of the building blocks and the controlability of the envi-
ronment. While with passive building blocks only centralized control approaches are
feasible, with intelligent building blocks one may employ a range of distributed control
approaches possibly still combined with centralized ones. In particular, we are inter-
ested in extending and employing a method based on graph grammars to automatically
synthesize self-assembly rules for intelligent building blocks.

114

1l] Synthesizing Self-Assembly Rules

N this chapter, we focus on the problem of rule synthesis for programmable self-

assembly of robotic modules. In a broad sense, the engineering question that motivates

this effort can be formulated as follows: given a desired target structure composed

of multiple robotic modules, how can we design the proper ruleset controllers to be
deployed on the individual robotic modules? Our focus here is thus on formulating automatic
rule synthesis algorithms for the self-assembly of robotic modules. In particular, we consider
the specific but widely common case of rotationally symmetric robotic modules endowed
with genderless latching connectors.

Leveraging the extended graph grammar formalism introduced in Chapter 10, we extend the
Singleton and Linchpin rule synthesis algorithms from [92], obtaining the SingletonR and
LinchpinR algorithms. Unlike the original Singleton and Linchpin, the two new extended
algorithms are able to synthesize rulesets which are directly applicable to robotic modules. We
then use SingletonR and LinchpinR to synthesize rules for our resource-constrained floating
robotic modules considering case studies on two specific target structures. Finally, in order
to increase the prototyping speed and the thoroughness of the validation for the synthesis
algorithms, we leverage two complementary simulation frameworks capturing the system at
different levels of abstraction.

14.1 Extended Rules for Self-Assembly of Robotic Modules

Following our explanations of the notion of the extended graph in Chapter 10, here we provide
a detailed definition of the extended rules. The extended rules are described using elements
which are a combination of a control state variable and a relative latching state variable
as explained below. The idea is that a robotic module can only take part in an interaction
governed by a certain rule if it has the appropriate control state and is participating in the
interaction with the appropriate orientation.

We assume that the robotic modules exchange information of their respective internal states

115

Chapter 14. Synthesizing Self-Assembly Rules

once their latching connectors are engaged. More specifically, once one of the connectors
is engaged, the robot may communicate its internal state in the form of a relative extended
label of I = (14, I;) with [, being the robot’s control state and /;, being a relative hop number
which represents the relative orientation of the currently engaged connector with respect to
its predecessor, assuming a CCW hop convention (see Figure 10.1, right). For a vertex with an
extended label of (/4, [,;) on a robot with N connectors Ij, = [(I,, — I;) mod N] + 1, where [, is
the index of the currently engaged connector and [, is the index of the previously engaged
connector.

Definition - Extended rule: An extended rule is an ordered pair of extended graphs r = (L, R).
An extended binary rule can be depicted as [y I, — I3 — Iy, with the [y, I», I3, I being pairs of
the form [; = (l;4, [;;,) denoting the relative extended label of the engaged vertices.

Corollary 1. For a rotationally symmetric robotic module with N number of connectors,
employing extended relative labels allows for a ruleset complexity of O(/N) compared to the
one-label-per-connector approach which results in a ruleset complexity of O(N?). More
formally, if y is the set of alphabets utilized in the ruleset for encoding the modules’ internal
states then the extended relative labeling approach results in | y| = O(N) while the one-label-
per-connector approach results in |y| = O(N?).

Proof. Consider a rotationally symmetric robotic module having N number of connectors
and an internal state S. Having N connectors, the module can interact with a similar one
through N different orientations, i.e., one orientation per each of its connector. Assume that
each one of these N configurations can potentially result in a distinct assembly. For each
distinct assembly, the module’s internal state S needs to be updated to a distinct value of S'.

Consider the one-label-per-connector approach; S is encoded by assigning a new label to
each connector. To encode a new distinct internal state §', this approach requires N new
labels to be added to the alphabet included in). To encode all possible interaction outcomes,
i.e., all possible updated S’ values, N new labels should be added to the ruleset for each one of
the N possible configurations, thus a total of N? new labels.

Consider the relative extended labeling approach; S’ is encoded by assigning a new I, label
per interaction configuration and updating the [, label to the currently engaged connector
index. To encode all possible interaction outcomes, one new label should be added to the
ruleset for each of the N possible interaction configurations, thus a total of N new labels. B

14.2 Singleton and Linchpin for Self-Assembly of Bodiless Modules

In this Section, we briefly review the Singleton and Linchpin algorithms originally presented
in [92]. For a given acyclic target graph, these algorithms synthesize rulesets for self-assembly
of a system of bodiless modules represented as an abstract graph. The rulesets generated by
both algorithms include reverse rules executed probabilistically in order to avoid deadlock

116

14.2. Singleton and Linchpin for Self-Assembly of Bodiless Modules

. r r r
d)Szngleton —_ — — l; 2;
0 0 0 0 5 3
7 10
0 ! 2 3—2 /
0 0 0 6 5 V5
0 0 4 \\ g 2
0 0 3 0 N 3 9 /
0 2 0 5 0 —7
gb . . T&Ty T3 T4 s
Linchpin mp — —_— —

Figure 14.1 — Progress of the self-assembly process for a chain shape target graph as guided by the
rulesets @singleron ANd Princhpin-

situations. While the rules are the output of the synthesis algorithms, proper execution
probabilities need to be assigned separately. This is due to the fact that the synthesis algorithms
are agnostic to the dynamics of the underlying self-assembling system and solely consider the
necessary steps for the formation of the target.

Thanks to the use of probabilistically executed reverse rules, the rulesets synthesized by the
two algorithms provide probabilistic guarantees on achieving the maximum feasible assembly
yield. However, they natively differ in their temporal assembly profile. While Singleton induces
a serial assembly strategy, Linchpin gives rise to a more parallel scheme. More specifically,
for a given target graph G, Singleton generates a serial ruleset where each rule progresses the
self-assembly of the target graph by appending an isolated vertex to the structure. In contrast,
Linchpin synthesizes a parallel ruleset, where the target graph is assembled from each leaf
towards a final vertex, with the process culminating in two concurrently built subgraphs
joining together [92]. Note that both algorithms were specifically designed for handling acyclic
target graphs, i.e., trees, and thus do not synthesize valid rulesets for cyclic target graphs.

As an example consider a chain shape target graph comprising six modules, G = (V, E) where
we have (V =1{1,2,3,4,5,6} and E = {12,23,34,45,56}), assuming vertex 2 as the root vertex fed
to the algorithms in [92], the resulting rulesets are as below, where the forward rules and their
corresponding reverse rules are denoted as r; and 7;, respectively:

0=1-2 (r1, /D)
0=3-4 (r2,r2)
0=5-6 (r3,r3) PLinchpin =
0=7-8 (r4,rd)
0=9-10 (r5,75)

0=1-2 (r1,rl)
0=7-8 (r2,r2)
0=3-4 (r3,r3)
0=5-6 (r4,rd)
6=9-10 (r5,r5)

(pSingletan =

o O = O
0 M O O

117

Chapter 14. Synthesizing Self-Assembly Rules

Algorithm 3 Original Singleton algorithm for the self-assembly of bodiless modules as pre-
sented in [92].

1: Target graph:G=(V,E) 13: t—t+1
2: Root vertex: vy 14: t—t+2
3: Initial label:1=0 15: Let (V/, E/) be the component
4: procedure SINGLETON(G, v, [) 16: of (V,E—{vg vj}) containing v;
5 p—¢ 17: Gj — (VJ,E))
6: ifing (k)| =0 then 18: (Ij,¢) — SINGLETON(G}, v},])
7: return ([,) 19: G —puU;
J
8. else 20: bt
9 fvj:j=12,.,Inpwplt — ng(vg) 21: end for
10: T—1 22: end if
11: forj=1to I_nE(k)I do 23: return ([,)
12: ¢—pufto=(U+D-(+2)} 24: end procedure

Algorithm 4 SingletonR algorithm for the self-assembly of rotationally symmetric robotic
modules obtained by applying our extended graph grammar formalism.

1: Target graph:G=(V,E,S,L) 22: Pp—Ppu;

2! Root vertex: vy 23: end for

3: procedure SINGLETONR(G, vy) 24: endif

4: b—9 25: return ([,)

5: if|ng(k)|=0then 26: end procedure

6: return ([, ¢)

7: else 27: procedure GVL(L, s, v)
8: vj:j=12,..,Ingpl} — ngk) 28: (la,1n) <= L(v)

9: for j=1to|ng(vy)l do 29: I —(Up—s+1) (mod N)
10: (s, 8j) = S(vg, vj) 30: return (Ig, 1)

11: Iy — GVL(L, sg, vg) 31: end procedure

12: lj — GVL(L,s;,v})

13: I — INCREMENTSTATE(], 1) 32: procedure SVL(L,v,s,1)
14: I — INCREMENTSTATE(], 2) 33: (alp) <1

15: SVL(L, v, g, D) 34: s

16: SVL(L, vj,s},1) 350 L) < Uasln)

17: p—pUll ;= I-n 36: end procedure

18: Let (V/,E/) be the corgpgnent 37: procedure INCREMENTSTATE(!, i)
19: of (V,E—'{Uk'vj}) containing v 38: return (g + i,)
20: Gj— (V/,E1,S, L) 39: end procedure

21: (l,([)j) — SINGLETONR(G}, v;)

Considering a system of six randomly interacting bodiless modules, all initially isolated and
labeled 0, the assembly progress guided by the forward rules of the two synthesized rulesets of
Osingleton and Princhpin are depicted in Figure 14.1. Note the difference in the natural course
of the processes induced by the two rulesets. This is regarded as the assembly strategy of the
ruleset. While ¢s;,g1er0n assembles the target graph in five sequentially executed steps, the
rules r1 and r in the ¢ incnpin ruleset can be executed concurrently and may thus constitute
one step. It is through this concurrency that the assembly strategy of ¢1i,cnpin can reduce
the total required assembly time and achieve a higher assembly rate than that of ¢g;ngieron-
Note that the ultimate assembly rate in a system depends strongly on the system dynamics, in
particular the mixing in the system which allows for the probabilistic interactions between
the bodiless modules. However, assuming that all the interactions in the system take place
equiprobably, the assembly process guided by ¢ ;,chpin Will on average achieve the target

118

14.3. SingletonR and LinchpinR for Self-Assembly of Robotic Modules

Algorithm 5 Original Linchpin algorithm for the self-assembly of bodiless modules as pre-
sented in [92].

1: Target graph:G=(V,E) 13: lj<0

2: Root vertex: vy 14: ¢j—9

3: Initial label:1=0 15: end if

4: procedure LINCHPIN(G, vy, I) 16: end for

5: b—9@ 17: ¢—Ppru{l0=(+D—-(I+2)}
6: for j=1,2,..,|Ing(vy)| do 18: l—1+2

7. ifInE(vj)IEZthen 19: for j=2,..,|Ing(vy)l do

8: Let (V/,EJ) be the component 20: p—pugpjuiljl=>1+1-(+2)}
9: of (V, E~ {vyv}}) containing v; 21 l=1+2

10: (lj,¢) — LINCHPIN(G}, vk,]) 22: end for

11: 11 23: return ([, ¢)

12: else 24: end procedure

Algorithm 6 LinchpinR algorithm for the self-assembly of rotationally symmetric robotic
modules obtained by applying our extended graph grammar formalism.

1: Target graph:G=(V,E,S,L) 19: I~ INCREMENTSTATE(],1)

2: Root vertex: vy 20: | — INCREMENTSTATE(/,2)

3: procedure LINCHPINR(G, v} 21: SVL(L, v, s, D)

4 -9 22: SVL(L, vy, s1,10)

5: forj=1,2,..,Ing(v) do 23: pe—Prulli 0=(+1)—(+2)}
6: iflnE(vj)|22then 24: l—1+2

7 Let (Vj,Ej) be the component 25: for j=2,..., Ing(vy)l do

8: of (V, E - {v}v;}) containing v; 26: (Sk>87) = S(vg, vj)

9: (1j, ;) — LINCHPIN(G}, vg) 27: Iy — GVL(L, s, vg)

10: I—1; 28: lj < GVL(L s, v))

11: else 29:] — INCREMENTSTATE(/, 1)
12: lj -0 30: |~ INCREMEI\ITSTATE(I,Z)
13: ([)] — @ 31: SVL(L, U]C,Sk,l)

14: end if 32: SVL(L, vj,Sj, D

15: endfor 33: $p—pupjulljl=>1U+1)-U+2)}
16: (Sk»$1) — S(vg, v1) 34: l—1+2

17: I} — GVL(L, s, vg) 35: endfor

18: Iy <= GVL(L, s1,v7) 36: return ([, ¢)

37: end procedure

graph faster than that guided by ¢s;ngieron- Below we formally define a measure for ruleset
concurrency.

Definition - Concurrent steps: The number of concurrent steps required by a ruleset ¢ for
building a certain target structure is the minimum number of steps that it takes to assemble
the target structure out of initially isolated modules, considering that several concurrently
executable rules can be executed simultaneously, and assuming that execution of one rule
takes one step. Note that the measure of concurrent steps as defined above is general and
applies to rulesets for the self-assembly of both bodiless (see examples given in Section 14.2)
and rotationally symmetric robotic modules (see examples given in Section 14.3).

119

Chapter 14. Synthesizing Self-Assembly Rules

14.3 SingletonR and LinchpinR for Self-Assembly of Robotic Mod-
ules

Algorithms 3 and 4 depict the pseudo codes of Singleton and SingletonR algorithms, while
Algorithms 5 and 6 depict the pseudo codes of Linchpin and LinchpinR algorithms, respec-
tively. SingletonR and LinchpinR essentially have the same structure as their abstract graph
counterparts, Singleton and Linchpin, respectively. Their main difference is that at each step
of the rule synthesis they determine two labels, i.e., [; and [}, instead of a single one. As a
result of following the same rule synthesis strategy, the class of targets which are achievable
by SingletonR and LinchpinR are the same as the ones of the original algorithms, that is
solely acyclic target graphs can be handled. /, k, and Ng(k) denote the largest label, the root
vertex, and the neighbors of node k with respect to edge set E, respectively. For a given target
graph G, running SINGLETON((V, Eg, k,0)) for any k € V5 generates a ruleset. The ruleset
allows the self-assembly process to grow the target graph outwards from the starting vertex k.
Similarly, SingletonR generates a ruleset for robotic modules based on a given target structure,
represented by an extended graph G = (V, Eg, Si), where S(v;, v;) returns the ordered pair of
(si,$;), the involved link slots on the two linked vertices. L(v) returns the current extended
label of a vertex, (4, I,;). The GVL() (short for Get Vertex Label) procedure returns the ordered
pair of (I4, ;) by updating the value of /;, such that it indicates the relative position of the
currently engaged link slot, s, with respect to the previously engaged one. The SVL() (short
for Set Vertex Label) procedure updates the extended label (I4, [;;) by updating the value of [,
considering the value of the applied label. Compared to the Singleton algorithm where only
the state labels are synthesized, SingletonR and LinchpinR produce the relative hop number
I, indicating the proper linking orientation as well. It is the combination of these two values
that provides a general description of the full internal state of a robotic module.

14.4 Synthesized Rulesets for Lily Robotic Modules

The rulesets returned by SingletonR for a chain and a cross structure, ¢5 and ¢ respectively,
as well as the rulesets returned by LinchpinR for a chain and a cross structure, ¢~ and ¢t
respectively, using six rotationally symmetric Lily robotic modules (see Chapter 5 for details),
are reported below. The ({4, [},) notation is used for the relative extended labels expressed in
the rules as explained in Section 10.2, and the reverse rules are separated.

The resulting rulesets are not easy to understand at first glance. Here, we provide additional
explanations and visualizations in order to bring additional intuition on their operation. Con-
sider the ¢° whose self-assembly progress course using six Lily robotic modules is visualized
in Figure 14.2. While the state labels returned by SingletonR for Lilies are similar to the ones for
a chain shape in the case of bodiless modules presented in 14.2, it can be seen that the values
of I;, = 3 on the left-hand-side (LHS) of the rules dictate two hops on the link slots between
the successive latching events, resulting in a linear structure considering the square-shape
of Lily robotic modules. The reverse rules all have [, = 1 at the LHS, indicating that the rule’s

120

14.4. Synthesized Rulesets for Lily Robotic Modules

Figure 14.2 - Progress of the self-assembly process for the chain shape target structure employing
¢S. The latest engaged latching connectors on the modules are highlighted with a blue mark,
while the relative hop numbering starting at the most recently engaged latching connector are
shown on the sides of each module.

corresponding interaction happens at the link slot engaged the latest.

©0,0 0,0 X an-@ 00 00 L an-@n
w3 0,0 2 31-41 1,2 00 2 GB1-41
4,3) (0,0) 3, 5,1)—-(6,1) 3,3) (0,0) I3, 5,1)-(6,1)
63 00 2 @n-@6D 5,4 0,0 2 @n-6D
83 0,0 > ©1-00,1 83 0,0 > ©1-00,1

¢S:< rl ¢S:< rl

- Yav-eny 2 00 ©0 +~Yav-en L 0o ©0
3,1)-4,1 LEX (1,3) (0,0) 3,1)-4,1) LEN (1,4) (0,0)
GD-6D = @3 00 GD-6D = 33 00
@D-61 2 63 00 @D-61 2 51 00
©O,n-101) > 83 ©0 ©,n-101) > 83 ©0
0,0) (0,0) i 1,1)-(2,1) (0,0) (0,0) i 1,1)-(2,1)
©0,0 0,0 2 GD-@4 0,0 00 2 ©1-@1
23 00 2 51-61D 00 49 2 51-61D
@3 0,0 2 @n-@60D 0,0 63 % @D-@61D
83 63 = (9,1)-10,1) 23 62 2 ©1-00,1

(,bL:< rl (,bL:< rl

- Yav-eny 2 00 ©0 +~Yav-eny 2 00 ©0
GD-41) 2= 00 00 GD-41) 2 00 00
GD-61 = 23 0,0 GD-61 = 00 42
@D-61) = 43 0,0 @D-61 = 0,0 63
©O,1n-0101) L 83 ©3) ©O,n-0101) L 23 @©4

Consider the ¢* whose self-assembly progress course using six Lily robotic modules is visu-
alized in Figure 14.3. Each square represents a Lily, labeled with its internal state [, value
in the middle. The most recently engaged link slot is indicated with a blue mark, while the
relative hop numbers of /j, are shown on the modules’ sides. For each Lily, numbering the slots
always starts with [, = 1 at the most recently engaged link slot and follows a CCW convention.

121

Chapter 14. Synthesizing Self-Assembly Rules

(7]
0g ﬂ a
° G G @

l lr3 lrs
(]
5 i

Figure 14.3 — Progress of the self-assembly process for the cross shape target structure employing
¢L. The latest engaged latching connectors on the modules are highlighted with a blue mark,
while the relative hop numbering starting at the most recently engaged latching connector are
shown on the sides of each module.

&
g T
(43

a*:—

Note that the synthesis algorithms only generate the rules; appropriate probabilities should
be associated with forward and reverse rules in order to allow the system to recover from
deadlocks, while reliably forming the target.

14.5 Simulation Tools

In order to compare the performance of different rulesets synthesized by the SingletonR
and LinchpinR algorithms for self-assembly of our Lily robotic modules and to study the
transient system behavior corresponding to each of these ruleset controllers, we leverage two
of the modeling levels and their corresponding simulation tools introduced in Part III: the
microscopic model (Chapter 10) and the submicroscopic model (Chapter 9), each shedding
complementary light on specific aspects of the process.

The purpose of the microscopic framework is to allow for the comparison of the intrinsic
performance of the derived rulesets, i.e., the final yield and the convergence rate determined
by the concurrency in the ruleset, in absence of any influence of physical phenomena on the
application of the rules. This is particularly interesting considering that the two rule synthesis
algorithms, i.e., SingletonR and LinchpinR, are agnostic about the spatial aspects of the system,
analogous to their abstract graph counterparts, the Singleton and Linchpin algorithms. More
specifically, given a target structure, the relevant metric when comparing rulesets synthesized
by SingletonR and LinchpinR is the number of concurrent steps as defined formally in Section
14.2 for formal definition. In reality, the realization of the conditions under which each step
can be executed depends directly on the spatial characteristics of the system influenced by, for
instance, the density of the modules and their mobility due to agitation in the environment,
effects that are not taken into account in this microscopic simulation tool.

The submicroscopic modeling level and corresponding simulation tool (Webots), on the other

122

14.6. Experiments and results

! Target structure Synthesrs Contro.llerfor real Real-world
! (extended graph) : algorithm robotic module .
................ grapnl i (Matlab) (C language) .

v ¥

Controllerfor simulated

Controllerfor simulated agent
(microscopic simulation,
Matlab)

robotic module
(submicroscopic simulation,

Webots)
Simulated Simulated
experiments experiments

Figure 14.4 — Diagram of the overall software framework. The “synthesis algorithm" block may
utilize different rule synthesis algorithms. In the current chapter SingletonR and LinchpinR
synthesis algorithms are used.

hand, provides a realistic replication of the real experimental setup, faithfully capturing the
physics of the self-assembly process in the system. This modeling level allows for the com-
parison of the performance of the ruleset controllers in simulation under realistic conditions,
revealing the outcome of the interplay of the physical characteristics of the system and the
assembly strategy of the ruleset controllers. This is particularly interesting considering that
the functionality of the ruleset controllers depends on the robotic modules’ randomly ar-
ranged encounters. The nature of these random encounters is strongly determined by the
physical characteristics of the system. More specifically, since the Lily robotic modules are not
self-locomoted and are assumed to be driven around by the environmental agitation, we are
essentially relying on diffusion for module transportation and thus the performance of the
assembly process can be hindered by the diffusion limitations in the system. In other words, if
the robotic modules do not have the chance for proper interactions, the target structure will
never form, regardless of any well-designed features of the employed ruleset controllers.

14.6 Experiments and results

We have conducted simulated experiments using the microscopic and submicroscopic sim-
ulation frameworks described in Section 14.5, as well as real-world experiments using the
platform described in Part II. The performance of the rulesets synthesized by Singleton and
Linchpin algorithms for self-assembly of bodiless modules have been comparatively studied
in [92]. The purpose of this section is primarily to validate the rulesets generated by the
SingletonR and LinchpinR algorithms using the different simulated and real platforms and sec-
ondarily, to provide a comparison between the performance of the rulesets synthesized by the
two algorithms for the self-assembly of Lily robotic modules. We expected to observe similar
trends in the performance of the rulesets of SingletonR and LinchpinR compared to the ones

123

Chapter 14. Synthesizing Self-Assembly Rules

g

Chain Shape Formation

Cross Shape Formation

80T ;

120

120

100 |

100

80} ¢

7

Proportion of Target Formed [%]

Proportion of Target Formed [%]

60 60]
40 |7 - - -SingletonR | | 40 - - -SingletonR | |
——LinchpinR \ ——LinchpinR
20 ‘ ‘ : : 20 ‘ ‘ : :
0 50 100 150 200 0 50 100 150 200
Steps Steps

Figure 14.5 — Comparison of the rulesets synthesized by SingletonR and LinchpinR algorithms
in the microscopic simulation using six Lily robotic modules for the two target shapes. The lines
(dashed for SingletonR and continuous for LinchipR) and shaded regions (striped for SingletonR
and uniform for LinchpinR) indicate the mean and standard deviation of 100 runs, respectively.

of Singleton and Linchpin. More specifically, the concurrency in the rulesets synthesized by
LinchpinR should allow for an intrinsically (i.e., disregarding spatial effects) higher assembly
rate than that of SingletonR rulesets. We investigated this aspect in our first set of experiments
conducted at the microscopic modeling level. In our second set of experiments, we employed
the submicroscopic simulation tool to investigate the performance of the rulesets in more
realistic conditions where the spatial aspects of the underlying self-assembly process are
carefully modeled. Finally, we used physical Lily robotic modules to evaluate the rulesets
performances in real world experiments.

Figure 14.4 depicts the structure of the overall software framework developed and employed
in this work. Rulesets for self-assembly of Lily robotic modules are synthesized utilizing the
SingletonR and LinchpinR algorithms in the synthesis algorithm block depicted in Figure 14.4
to derive rules for 1) the chain shape target assembly, and 2) the cross shape target assembly,
both of size six. The synthesized rulesets, explained in detail in Section 14.4, are deployed at
all the three implementation levels (microscopic and submicroscopic simulations as well as
real world) using six modules and only in simulation (microscopic and submicroscopic) using
24 modules. For forward rules P(.) = 1 and for reverse rules P(.) = 0.1 are chosen. In addition,
within a ruleset, all the rules with identical LHS are set to be equi-probable and share the
P(.) =1 which is set for forward rules. This concerns only rules in the LinchpinR ruleset where
the two rules forming dimers label them probabilistically. As a result each rule is executed
with P(.) = 0.5. The finishing rule is chosen to be irreversible in all the rulesets, i.e., P(i5) =0,
giving rise to stable target assemblies once they are formed. There exists a breadth of research

124

14.6. Experiments and results

Chain Shape, SingletonR Ruleset Cross Shape, SingletonR Ruleset

120 120

Proportion of Target Formed [%]

Proportion of Target Formed [%)]

20 —Real setup 20 —Real setup
- - -Webots setup - - -Webots setup
0 : : 0 ' : ' '
0 500 1000 0 100 200 300 400
Time [s] Time [s]

0 Chain Shape, LinchpinR Ruleset

0 Cross Shape, LinchpinR Ruleset

2 1 2 1

T T

£ 100/ £ 100/

(e} (e}

el el

[<b] [<b]

jo)] {o)]

5 601 5 60

S 40f S 40|

& i & ,

'-g 20 —Real setup '-g 20¥ —Real setup

a - - -Webots setup a - - -Webots setup

e ‘ : S 4 . ‘ . .

& o 500 1000 & o 100 200 300 400
Time [s] Time [s]

Figure 14.6 — Comparison of experimental results obtained with the real setup and the Webots
setup using six Lily robotic modules for the two target shapes. The lines (dashed for the real and
continuous for the Webots setup) and shaded regions (striped for the real and uniform for the
Webots setup) indicate the mean and standard deviation of five runs, respectively.

on optimization of ruleset controllers for programmable self-assembling systems [108], [65].
However, with the focus of our current work being on automatizing rule synthesis for robotic
modules, the rule probabilities are chosen empirically and are not necessarily optimal. The
reverse rules probability is chosen such that the dissociation of advanced assemblies is roughly
less probable than the formation of a more advanced assembly. In other words, the assemblies
are stable enough not to disassemble before a further rule can be applied in order to progress
the assembly process, for the chosen agitation regime in the fluidic arena. Regarding reverse
rules probabilities, two other values were tested as well, P(.) = 0.5 which typically resulted in
having all the modules isolated and P(.) = 0.01 which typically resulted in having the modules
all stuck in a dimer formation.

Mean and standard deviation of several sample runs are used for performance study and

125

Chapter 14. Synthesizing Self-Assembly Rules

Figure 14.7 — Snapshots of the self-assembly process employing SingletonR rulesets for the cross
shape target (arranged in the top row) and chain shape target (arranged in the bottom row) and
using six Lily robotic modules.

comparison in [92]. We use the same statistical indicators due to roughly symmetric quasi-
Gaussian distribution of our data for all the plots in this chapter. Figure 14.5 shows the
performance of the rulesets derived by SingletonR and LinchpinR for the two target structures
in microscopic simulation with a total of six available modules, all initially isolated. With
a maximum feasible yield of one (i.e., six available robotic modules and targets of size six),
the vertical axis shows the proportion of modules in the correct placement. The horizontal
axis shows the number of steps, with each step representing a formation event in the system
as a result of application of a forward deterministic rule. For both target structures, the
rulesets derived by SingletonR and LinchpinR exhibit similar assembly rates, in other words,
the curves have similar slopes. However, it is interesting to note that the LinchpinR rulesets
generally exhibit slightly higher variability around the mean performance value. Both of
these observations can be explained considering the assembly strategies of the corresponding
rulesets. The LinchpinR ruleset by design builds the target structure in fewer concurrent
steps than the SingletonR ruleset (three versus five concurrent steps for the case of the chain
structure and four versus five concurrent steps for the case of the cross structure). However,
such concurrency is unexploited if not enough modules are supplied to the ruleset. Indeed,
as we will see later (Figure 14.8 depicting results achieved with 24 modules), it is sufficient to
increase the absolute number of available modules (and therefore increase the number copies
of the objective target) to see a clear exploitation of the Linchpin superior concurrency. More
specifically, considering the rules in ¢* and ¢, LinchpinR builds dimers with two possible
labelings assigned probabilistically with equal probability (as introduced in the ruleset), while
SingletonR adds modules one by one, labeled deterministically. With exactly six modules
available, if the probabilistically assigned labeling happens not to be of the type needed, the
progress of the self-assembly process is delayed until a dimer disassembles and reassembles
with the required labeling.

126

14.6. Experiments and results

Chain Shape Formation Cross Shape Formation

5
€ 47 € 47
3 3
O 3t O 3f
a o f
22 2 2) Z
0 7 .
g1 i’
= 0 - - -SingletonR| | = 0 ,/ - - -SingletonR
—LinchpinR —LinchpinR
-1 ; : ' : -1 ; : ' ‘
0 50 100 150 200 0 50 100 150 200

Steps Steps

Figure 14.8 — Microscopic simulation results of rulesets derived by the two extended synthesis
algorithms for the two target structures of chain and cross shape. The lines (dashed for Single-
tonR and continuous for LinchipR) and shaded regions (striped for SingletonR and uniform for
LinchpinR) summarize the mean and standard deviation of 100 runs, respectively.

Real-world experiments were conducted by programming six Lily robotic modules with the
four derived rulesets to build the two target structures. Each experiment was repeated five
times. The same experiments were also conducted using the submicroscopic simulation
tool, each repeated five times, to provide a direct comparison between the simulated and the
real-world setups. Figure 14.6 shows the evolution of the target structure in the simulated and
real-world setups. With a maximum feasible yield of one (i.e., six available robotic modules and
targets of size six), the vertical axis shows the proportion of modules in the correct placement.
For all the simulated and real experiments, the maximum yield of one was achieved as depicted
in Figure 14.6. These results roughly indicate a good matching between the two setups. Table
14.1 details the formation time statistics from the real-world experiments. The low number of
runs (five runs per experiment) limits the significance of the gathered statistics. However, as we
will show below through leveraging submicroscopic simulation, the observations from these
experiments are confirmed in simulated experiments repeated for a larger number of runs and
when higher number of modules are available. Considering the real-world results for the chain
shape, while the median formation time for SingletonR is less than that of LinchpinR, the
minimum and maximum formation times achieved by the two rulesets are close (see Table 14.1
results and horizontal width of the blue region in Figure 14.6, left column). LinchpinR builds
the target out of dimers and requires two dimers labeled differently. Since the labeling is done
at random, when the available modules are scarce this can easily result in longer formation
times. In other words, LinchpinR does not necessarily make the best use of the available
resources. This explains how SingletonR manages to achieve lower median. Additionally, the
specific interaction configuration that LinchpinR requires for chain formation, i.e., two chains

127

Chapter 14. Synthesizing Self-Assembly Rules

g

Chain Shape Formation

Time [s]

Cross Shape Formation

O - O ‘ / .
- = 2
. T
© Z i © # 7
-] c y 7
w w 1t / =
© - - - SingletonR o 0 // - - -SingletonR | |
= ——LinchpinR = ——LinchpinR
1000 2000 3000 0 1000 2000 3000

Time [s]

Figure 14.9 - Submicroscopic simulation results of the performance of rulesets derived by the two
extended synthesis algorithms for the two target structures of chain and cross shape. The lines
(dashed for SingletonR and continuous for LinchipR) and shaded regions (striped for SingletonR
and uniform for LinchpinR) summarize the mean and standard deviation of 50 runs, respectively.

of size three joining to form the target chain of size six, is particularly difficult to arrange, while
for the case of the SingletonR ruleset, the isolated Lily module seems to manage more easily
to reach the interaction site. For the cross shape, both the smallest and the largest formation
times were obtained by LinchpinR. This can be explained by considering the interaction
between the intermediate subassemblies. While LinchpinR builds the target through four
concurrent steps as opposed to SingletonR’s five, the relative orientation of the connecting
subassemblies is more easily achieved for SingletonR where one component, i.e., the isolated
Lily, is always symmetric. Figure 14.7 depicts the progress of the self-assembly process for
the two target structures deploying the SingletonR ruleset on the Lily robotic modules. These
observations highlight the importance of having simulation tools at different modeling levels
as each tool manages to shed light on aspects which remain out of reach of the other tools.

Table 14.1 - Real experiment results of the four rulesets derived by the two extended synthesis
algorithms for the two target structures of chain and cross shape. Formation time statistics are
reported for five runs of each experiment.

Algorithm Target Median (s) Mean(s) Min.(s) Max.(s) Std. (s)
SingletonR Chain shape 788 844 720 1080 166
LinchpinR Chain shape 935 941 780 1112 139
SingletonR Cross shape 185 181 146 208 26
LinchpinR Cross shape 165 190 131 300 78

Figure 14.8 shows the performance of the rulesets derived by the two extended synthesis
algorithms for the two target assemblies in the microscopic simulation using 24 available

128

14.6. Experiments and results

modules, all initially isolated. The vertical axis shows the number of copies of the target assem-
bly in the system at each step. The four rulesets exhibit interestingly different performance
in comparison with the previous scenario employing only six modules. For the cross shape
target, the naturally serial ruleset of SingletonR is outperformed by the more concurrent one
of LinchpinR, achieving the target with fewer rule executions. For the chain shape target, the
rulesets of the two algorithms perform similarly. With a large number of available modules
compared to the desired target size, the strategy of LinchpinR to build dimers with two possible
labelings assigned probabilistically proves efficient in comparison to the one of SingletonR,
adding modules one by one with deterministic labelings.

Figure 14.9 shows the submicroscopic simulation results of the derived rulesets using 24
available modules all initially isolated. These findings further confirm the results of the
real-world experiments. For the chain shape, both rulesets exhibit a high variability in the
formation time, and perform similarly in effect. However, for the case of the cross shape, the
performance of the two rulesets is significantly different. SingletonR outperforms LinchpinR
in this case achieving lower average formation time as well as lower standard deviation. This
is in agreement with the observations of the real experiments and highlights the strong spatial
effects. Even though the LinchpinR ruleset is capable of forming the target with fewer rule
executions, the final rule forming the target requires a specific configuration which is not
easily achieved in the system.

Summary

In this chapter, we addressed the problem of rule synthesis for programmable self-
assembly of rotationally symmetric robotic modules endowed with genderless latching
connectors. Exploiting the extended graph grammar formalism introduced in Chapter
10, we introduce extended versions of two automatic rule synthesis algorithms from the
literature which are capable of synthesizing rules directly applicable on robotic modules.
Moreover, we provide the proof that rule synthesis algorithms based on the extended
graph grammar formalism achieve rulesets of lower complexities than the existing ones
in the literature. We then focus on two case studies in our system concerned with the
self-assembly of cross and chain shape targets. The self-assembly process in the system
was guided towards achieving a global target structure in a distributed fashion by means
of appropriate ruleset controllers programmed on the robotic modules, which regulated
the outcome of the random interactions between two robotic modules based on their
internal states.

129

1] Synthesizing Parallel Rules

N this chapter, we take a step further along the line of synthesizing ruleset controllers for

self-assembly of robotic modules and introduce an automatic rule synthesis algorithm

which allows for a higher level of parallelization in the assembly strategy than that of

the LinchpinR algorithm introduced in the previous chapter. The main idea is to break
down the assembly process into a number of stages. At each each stage subassemblies of a
certain size are built. These subassemblies eventually join and build the final desired target
structure.

15.1 GS-RGS: A New Synthesis Algorithm

Given an acyclic target structure composed of rotationally symmetrical robotic modules with
any number of connectors, our proposed synthesis algorithm derives rulesets based on two
principles: 1) limiting the size of the concurrently built sub-assemblies to a user-defined
value, and 2) unifying the rules which give rise to sub-assemblies with similar structures. The
algorithm comprises two stages, each realizing one of the two principles. The first stage parses
a graphical description of the target, and derives a ruleset which builds the target by merging
sub-assemblies with sizes no more than the user-defined value and with distinct labelings, as
a result of employing distinct rules. The second stage then processes this ruleset to identify
the rules producing structures with identical morphology; such rules are then merged in a
single one. As a result of the second principle, i.e. unifying the rules and consequently the
labelings, the rulesets need to include update rules. Consider the case where the maximum
user-defined size is two. With the rules unified properly, all dimers (sub-assemblies composed
of two modules) are labeled similarly. As the dimers join to build the target, the labelings
of both consisting modules need to be updated to reflect their placement in the forming
target structure to allow for proper further reactions, completing the target eventually. In
other words, the use of update rules is an alternative to building the target out of distinctly
labeled sub-assemblies, as a result of being formed through distinct link rules, according
to their intended placement in the target structure. Thus in general, introducing update

131

Chapter 15. Synthesizing Parallel Rules

rules into the rulesets can reduce the number of link rules necessary to build the target,
at the expense of possibly increasing the total ruleset size to include several update rules.
However, this can offer a significant advantage in terms of assembly time. The occurrence
of the link rules is probabilistic and is determined by the stochastic nature and dynamics of
the system which is relied upon to provide proper interactions in order for the self-assembly
process to progress. The occurrence rate for link rules is usually in the order of once in tens
of seconds. On the other hand, update rules are purely communicational rules and do not
depend on the system dynamics. Once a proper interaction has happened and two modules
have bonded successfully, the occurrence of a proper update rule is solely determined by the
modules communication rate, usually in the order of once in less than a second. Fewer link
rules can thus significantly decrease the total assembly time. The first principle addresses
the propagation delay concerns which can cause scalability issues. Limiting the size of the
concurrently built sub-assemblies allows for restricting the extent by which the update rules
need to propagate. Therefore, in a robotic system with measurable propagation delay and
interaction rate, the update propagation depth can be set accordingly to allow for a parallel
assembly scheme while minimizing possible propagation delay faults. In order to avoid
deadlocks, we employ probabilistic dissociating rules. Appropriate reverse rules are generated
at the end of the second stage. It should be noted that the algorithm only generates the ruleset.
Appropriate probabilities should be assigned to the rules to reliably build the target while
avoiding deadlocks.

15.1.1 Stage I: Grow Subtrees (GS)

Stage I allows for creating concurrently built sub-assemblies similar to the concurrency created
by the LinchpinR algorithm [92], with the additional capability to control the maximum
permitted size of such sub-assemblies. The GS algorithm employed in Stage I tries to build
a given target structure using as many sub-assemblies of a defined size as possible built in
parallel, before trying to join them to make a bigger sub-assembly and eventually form the
target. In principle, the algorithm addresses the second issue with the LinchpinR algorithm
(see Chapter 14). LinchpinR generates rules to build parallel substructures for every branch
split in the target recursively in order to build the target using one final finishing rule. With one
finishing rule in the ruleset, it is shown in [92] that the target can be built reliably while avoiding
deadlocks by having probabilisitic dissociating rules for all rules except for the finishing rule.
The GS algorithm on the other hand, permits a maximum size for the concurrently built sub-
assemblies and as a result may end up building the target using several concurrent finishing
rules. Stage II then processes this ruleset and results in one finishing rule. Algorithm 1 shows
the pseudo code of the GS algorithm. The first call to GS is by Size = 0. The algorithm then
recursively proceeds to create extended labels and corresponding rules, moving outwards from
a starting vertex k. The ruleset returned by GS for a chain structure of size 6 and maximum
sub-assembly size of 2, is depicted below along with the link rules generated by LinchpinR. In
order to simplify the comparison, the rulesets have been designed for an abstract graph.

132

15.1. GS-RGS: A New Synthesis Algorithm

Algorithm 7 Pseudo code of the GS algorithm employed in Stage I.

1: C:(V,E,S,L,k,1,Size,Smax) 29: G—PpUPUP;

2: procedure GS(C) 30: if Size == S;qx then

33 -9 31: lj = GVL(L,sj,v))

4 b—9 32: I — INCREMENTSTATE(], 1)

5. Size—Size+1 33: 1 — INCREMENTSTATE(I, 2)

6: if|ng(k)|=0then 34: G—puillj=1-1

7: return ([, ¢) 35: else

8 else 36: Size — Sizej

9 tvj:j=12,..,Ing(B)} — np(k) 37: end if

10: for j=1ro|ng(k)| do 38: end for

11: Sk — S, vj) 39: endif

12: sj—Sj,vg) 40 return ([, ¢, Size)

13: lj. — GVL(L, s, V) 41: end procedure

14: if Size < S;ax then

15: lj = GVL(L,sj,v)) 42: procedure GVL(L,s, v)

16:] — INCREMENTSTATE(/, 1) 43 (lg,ln) — L(v)

17: | — INCREMENTSTATE(/,2) 44 I — (p—=s+1) (mod N)

18: b—duily ljil_fl} 45 return (I, [},)

19: SVL(L, v, S, 1) 46: end procedure

20: SVL(L, Vj,Sj, D

21: Size]- —Size 47: procedure SVL(L, v,s,1)

22: else 48 (la,1p) —1(1:2)

23: ¢—0 49: I

24: Sizej —0 50: L)< Ua,ln)

25: end if 51: end procedure

26: Let (V/,EJ,87) be the

component of (V, E — {ij}) containing vj 52: procedure INCREMENTSTATE(!, k)

27: C:(VI,E1,S,L,vj,1,Sizej, Smax) o paeturn (la t k1)

28: (L}, Sizej) — GS(C) - endprocedure
00 — 1-2 (r1) 00 — 1-2 (rl)
00 — 3-4 (ro) 00 — 3-4 (r2)

PGs=40 0 — 5-6 (r3) PLinchpink =10 2 — 5-6 (3

45 — 7-8 (rg) 04 — 7-8 (r4)
2 3 —- 9-10 (r5) 5 7 — 9-10 (r5)

Consider a set of initially isolated atomic agents, all labeled 0. The rules generated by GS allow
for the target to be built in two concurrent steps, i.e. first (rq, 72, r3) and then (74, r5), while the
rules synthesized by LinchpinR require three concurrent steps, i.e. first (ry, 72), then (r3, r4),
and eventually (7).

15.1.2 Stage II: Re-Group Subtrees (RGS)

Stage II processes the ruleset generated by Stage I to unify the link rules which create up to
the maximum size sub-assemblies and add proper update rules. The key idea of processing is
to apply the rules synthesized by GS to two graphs with initially fully isolated vertices. The
two graphs evolve identically in structure but differ in labeling, one graph is labeled according
to the original ruleset, while in the other graph the forming sub-assemblies are processed
to identify the rules with products of identical shapes. In order to identify structures with

133

Chapter 15. Synthesizing Parallel Rules

identical shapes the shape recognition algorithm explained in Chapter 10 is utilized. The RGS
algorithm can be explained in four phases:
Phase I: Forming dimers Unify the rules (of Stage I) which form dimers.

Phase II: Forming larger sub-assemblies Grow on the dimers. Recognize the shape of the
resulting sub-assemblies. Unify the rules producing identical structures.

Phase I1I: Relabeling max-size sub-assemblies Create update rules for relabeling all the mod-
ules in sub-assemblies of up to the max-size (i.e. user-defined value) size.

Phase IV: Growing on max-size sub-assemblies Create necessary rules, both link and up-

date, to form the target assembly out of the max-size sub-assemblies.

Considering the target shape of a chain of size six for an abstract graph, the rules generated by
RGS are as below:

00 — 1-2 (r)

1 2 — 4-3 (r2)

18 — 10-9 (r3)
¢Prgs=41-3 — 6-5 rH
2-4 — 8-7 rH

7-9 — 12-11 (@

2-10 — 14-13 (Y

Two points are noteworthy here. First, the existence of the update rules in the rule-set (ri‘
to r}). And second, the number of concurrent steps necessary for forming the target being
equal to three. Assuming that the update events are instantaneous and that the number of
available modules is limited, RGS can on average build the target faster than LinchpinR with
the same number of necessary concurrent steps (see Section 15.3). This is due to the fact that
RGS makes a better use of the available modules by limiting the number of distinctly labeled
sub-assemblies with identical shapes. At the end of Stage II, the ruleset is augmented with
proper reverse rules accounting for both the link and the update rules. The application of a
reverse rule essentially takes the self-assembly process back in time by reversing the labeling
and/or the bonding.

Corollary 2. The complete ruleset ¢ r,,;; generated by our proposed method for assembling
a target structure described as an extended graph G = (V, E, S,]) will eventually achieve the
maximum possible number of copies of the target structure (i.e. maximum yield) provided
that the available assembly modules executing the ruleset interact often enough and that the
corresponding execution probability is set to p = 1 for link and update rules and to p < 1 for
reverse rules.

Proof. The ruleset ¢ ¢,;; contains an unlink rule for each link and update rule. Only the last
link rule has no corresponding reversal rule. Therefore, while all partially formed structures
dis-assemble with a non-zero probability, the finishing rule is reversed with zero probability,
therefore leading to a stable target structure.]

134

15.2. Synthesized Rulesets for Lily Robotic Modules

Corollary 3. The complete ruleset ¢ r,,;; generated by our proposed method for assembling
a target structure described as an extended graph G = (V, E, S, [) will achieve an assembly
rate at least as fast as that of a ruleset derived by the LinchpinR algorithm, assuming that the
update rules are applied instantaneously.

Proof. Rulesets generated by Stage I have as many link rules as the ones generated by the
LinchpinR algorithm, i.e. the number of edges in the target graph, as a result of forming the
target out of uniquely labeled sub-assemblies. As a result of merging the link rules in Stage II,
¢ ru11 contains at most as many link rules as the ruleset ¢gs created in Stage 1. Therefore, ¢ £,
achieves the target structure in the same or fewer concurrent steps than LinchpinR rulesets. B

15.2 Synthesized Rulesets for Lily Robotic Modules

We consider two targets, a chain and a cross structure, each composed of six Lily robots (see
Fig. 15.1). The rulesets returned by our algorithm (with the maximum user-defined size set to
2) for the chain structure ¢_, and for the cross structure ¢, are reported below. The (I, I,
notation is used for the relative extended labels and the reverse rules are separated. Note
that the reverse rules do not correspond to a single link or update rule, but rather have a time
reversal effect, taking the labeling back in time.

(0,00 0,0) — (L,D-@2D

L3 23 2 @41n-31) 0,00 (0,0 r—* 1,1-@2,1)
1,3 83 2 10,)-0©,1 00 @4 = @H-E1
0D-G3 A 60-61 0,0 G2 = ©®D-@1
' T ’ @3 7,2 % 10,1)-@O1
@D-43 - BD-71 u

L LD-32 = 61-61

d-=<La7,1n-093 = azn-ann IR ry

p LD-(10,3) - (12,H)-1L1)
2,1)-(10,3) - (14,1) - (13,1) LD -2 ;1 0.0 0.0
LD-@21) ;4/((0,0) (0,0) @h-6G4 2 00 G
(5,3)-(7,3) I» G (41 60-G2 5 wy-eu
(3,3)-(6,1) ;’ @n-a,1 D-BD 2 53 00
43)-81) —> 1,D-@1

15.3 Experiments and Results

We evaluate our algorithm leveraging the two modeling levels and corresponding simulation
tools of Part III, studying the self-assembly process in a swarm of 24 initially isolated Lily
robotic modules. Experiments using the real setup are additionally planned to be carried out.
Two targets of chain and cross shapes, each composed of six robotic modules, are considered.
A maximum of four copies of each target can be assembled thus. The microscopic model
employs a random pairwise interaction dynamics as described in Chapter 10. All interactions
among microscopic nodes are set to be equiprobable, i.e. we make the assumption that the

135

Chapter 15. Synthesizing Parallel Rules

Cross Shape, Microscopic Model Cross Shape, Submicroscopic Model
45 25
4
T35 € 2
> 3
ST [s]
(@] (@]
@ ® 15
Q25 Q.
@© ©
= L
[%]]
D ko
o1 >
@ ©
= 1 o5
05 =—=Linchpin ====Linchpin
== Proposed Algorithm Proposed Algorithm
0 0
0 50 100 150 200 0 500 1000 1500 2000 2500 3000 3500
Steps Time [s]
(@) (b) (c)
Chain Shape, Microscopic Model Chain Shape, Submicroscopic Model
3.5
4
3
€35 IS
3 >3
o N o 25
O O
@ o,
Q25 Q.
5 5]
£ flay
n 2 N 15
kol @
15
2 2,
@ ©
[~
05 —Linchpin 05 =—==Linchpin
Proposed Algorithm Proposed Algorithm
0 0
0 50 100 150 200 0 500 1000 1500 2000 2500 3000 3500
Steps Time [s]
(d) (e))

Figure 15.1 — Results of microscopic ((a) and (d), 100 runs averaged) and submicroscopic models
((b) and (e), 30 runs averaged) for two target shapes, cross (c) and chain (f).

system is perfectly mixed. We employ rulesets synthesized by our algorithm and the extended
LinchpinR algorithm, for our simulated Lily robotic modules. For forward and update rules
P(.) =1 and for reverse rules P(.) = 0.01 is set. The finishing rule is set to be irreversible in all
the rulesets, giving rise to stable target assemblies once they are formed. Figure 15.1 depicts
the performance of the rulesets derived by the GS-RGS algorithm along with the ones of the
extended LinchpinR for the two target shapes. While for the submicroscopic simulations the
results are reported as a function of the experimental time (emulating the real time progress
in a real experiment), the results of the microscopic simulations are reported as a function
of steps, each step representing a formation event in the system. While such choice makes
the results of the two modeling levels not directly comparable, the adopted progress unit is
well suited for measuring the concurrency of the rulesets. It can be seen that the GS-RGS
algorithm achieves higher assembly rates in all cases. Interestingly, the maximum yield of four
is not obtained in the case of the submicroscopic simulations within the one hour simulated
time. This can be ascribed to several reasons. First, it is observed in the submicroscopic
simulation that larger structures with several corners trap other sub-assemblies and stall the
self-assembly process. In addition, as the structures grow the conditions diverge from perfect
mixing since the shape of the sub-assemblies affect their orientation in the fluidic field and
certain interactions tend to be less probable.

136

15.3. Experiments and Results

Summary

In this chapter, we addressed the problem of synthesizing rules for programmable self-
assembly of rotationally symmetric robotic modules endowed with genderless latching
connectors, such that further parallelism in the assembly scheme is induced. More
specifically, we focused on a case study involving our Lily robotic modules and employed
the two submicroscopic and microscopic simulation frameworks introduced in Part
I1I to compare the performance of the rulesets synthesized by the GS-RGS algorithm
with those synthesized by LinchpinR. Results show that for both studied target shapes
of chain and cross structures, rulesets synthesized by GS-RGS achieve higher assembly
rates compared with those synthesized by LinchpinR.

137

1[4} Conclusion

N this part of the thesis, we investigated the synthesis of ruleset controllers for pro-

grammable self-assembly of robotic modules. In particular, we employed the extended

graph grammar formalism introduced in Part III and developed automatic rule syn-

thesis methods for programmable self-assembly of robotic modules. We first showed
how the extended graph grammar formalism can be used to extend and transform existing
rule synthesis algorithms for bodiless modules into algorithms which synthesize rules which
are directly applicable to robotic modules. Moreover, we proposed the new rule synthesis
algorithm GS-RGS which allows for further parallelization in the assembly scheme, resulting
in increased assembly rates.

We highlight the following as the transferable methods developed in this part of the thesis:

m Rules directly applicable to robotic modules - Employing the extended graph grammar
formalism, one can formulate automatic rule synthesis algorithms which consider
the morphology of the robotic modules as they synthesize rules for the self-assembly
process to build a predefined target structure comprising several robotic modules. This
allows for eliminating the posterior tuning step which was previously necessary when
the rules where actually synthesized for bodiless modules, as reported in the existing
literature.

m Lower ruleset complexity using the extended grammar - We provided the proof that the
rule synthesis algorithms employing the extended graph grammar formalism achieve
a lower ruleset complexity, O(N) as opposed to O(N?%) reported in the literature. This
lower complexity is due to the particular representation of the internal states of the
robotic modules in the extended graph used as a model for deriving rules which control
the course of the assembly process.

m Parallel rulesets, higher assembly rate - In general, one may take advantage of the sym-
metries in the target structure to break down the assembly process into a number of
assembly stages. At each stage, several sub-assemblies can be built in parallel, eventu-

139

Chapter 16. Conclusion

ally joining together to build the product of that stage. The succession of these stages
eventually culminates in building the target structure. The proposed GS-RGS algorithm
automatically generates rules able to leverage such decomposition in assembly stages.

Summary

This chapter concludes the control part of the thesis. The main outcome of the effort
in this part are automatic rule synthesis algorithms which, based on a description of
the desired target structure and the morphology of the robotic modules, synthesize
self-assembly rules that can be directly applied to the robotic modules without the
need for any further tuning or adjustment. This is achieved due to the fact that the
model based on which the rules are synthesized explicitly captures the morphology of
the robotic modules in the form of an extended graph, described in detail in Part III.
Moreover, we introduced the GS-RGS rule synthesis algorithm that automatically creates
assembly rules capable of obtaining higher assembly rates through allowing for higher
concurrency in its assembly strategy. In this concluding chapter, we briefly summarize
the contributions of Part IV and highlight the core methods and techniques which
we believe one may apply to the development of control strategies for programmable
self-assembling systems of resource constrained robotic modules with a rotationally
symmetric morphology.

140

141

|d Conclusion and Outlook

E have in this dissertation investigated the programmable self-assembly of

resource-constrained robotic modules in 2D within a fluidic environment.

The conducted research effort was guided by two main thrusts: (i) a tech-

nological research thrust, concerning the mechatronic development of the
experimental self-assembly platform around a resource-constrained robotic module, and (ii)
a methodological research thrust concerning building appropriate models for capturing the
dynamics of programmable self-assembly as well as development and evaluation of different
control approaches for the self-assembly process carried out by the robotic modules. Having
a wide variety of applications, engineered programmable self-assembly is envisioned to be
employed in numerous scientific domains and within systems with a variety of length-scales.
For all the three aspects studied in this work, i.e. the mechatronic design, the modeling, and
the control, we have intentionally made an effort to develop and employ techniques that
extend beyond the experimental system used in our studies. It is our hope that the design,
modeling, and control methods and principles explored in this work will provide a basis for
researchers not only in the robotics community but also all the various fields that are currently
investing in the development of engineered self-assembling systems.

17.1 Summary of Contributions

Our work in this dissertation provides core contributions along the lines of the two main
research thrusts, with each main contribution explained in a dedicated part of the manuscript.

Part II of this manuscript describes the mechatronic design and development of our self-
assembling robotic platform. We summarize our contributions as follows:

m We developed the 3-cm-sized Lily robotic modules as the building blocks in our pro-
grammable self-assembling robotic system. Lilies employ four custom-designed electro-
permanent magnetic latches which are also used as an inductive channel for local
communication with their neighboring robotic modules. They employ a radio link for

143

Chapter 17. Conclusion and Outlook

communicating with a base station to receive new firmware or specific commands dur-
ing an experiment. All the operations regarding charging, programming, and switching
on/off the robotic modules have been designed to be scalable for swarms of tens of Lilies.
As aresult, the Lily robotic module captures a specific set of features which have been
previously only partially demonstrated in various modules deployed in self-assembling
systems, thus making it unique in the field.

We developed the controllable fluidic experimental setup around the Lily robotic mod-
ules. The setup allows for controlling the ambient flow field driving the mixing in the
fluidic arena as well as the ambient luminosity which can be perceived by the robotic
modules. Through several experiments we fully characterized the system.

We explicitly motivated the different design objectives and the final design choices in
the process of developing the experimental robotic platform.

Part II of this manuscript describes the modeling effort in order to capture the dynamics of
programmable self-assembly of robotic modules at multiple abstraction levels. We summarize
our contributions as follows:

144

m At the submicroscopic modeling level, in order to faithfully recreate our self-assembling

system in simulation, we used Webots, a physics-based robotics simulator, and de-
veloped a dedicated physics plugin software capable of recreating the fluidic force
field of our experimental arena as well as a dedicated calibration method leveraging a
PSO algorithm. The simulated world was then calibrated based on real experimental
data. This framework allows for the comparison of the performance of the ruleset con-
trollers in simulation under realistic conditions, revealing the outcome of the interplay
of the physical characteristics of the system and the assembly strategy of the ruleset
controllers.

At the microscopic modeling level, we captured the self-assembling system using an
extended graph grammar description of the underlying process. For this, we first in-
troduced the extended graph grammar formalism. This extended formalism allows for
directly incorporating the morphology of the robotic modules in the graph structure
by utilizing the notion of extended graphs that comprise extended vertices with or-
dered link slots representing the robotic modules’ latching connectors. The microscopic
model and its corresponding simulation tool developed in Matlab allow for evaluation
and comparison of the intrinsic performance of different ruleset controllers, based
on precise metrics such as the final yield and the convergence rate determined by the
concurrency in the ruleset, in absence of any influence of physical phenomena on the
application of the rules.

At the macroscopic modeling level, we employed the CRN formalism to express a Marko-
vian model of our system by using the ruleset controllers structure as a blueprint for

17.1. Summary of Contributions

determining the structure of the CRN and its corresponding Markov model. Moreover,
we introduced a new rate estimation method for the CRN model and compared it with
two existing ones in the literature, demonstrating its higher efficiency in capturing
the model parameters. Finally, based on the initial computed Markov model and its
corresponding EPM representation, an automatic method for creating an HMM was
formulated, following upon a previously existing systematic method in the literature.
Our effort in this part showed that starting from different Markov models assuming
the well-mixed conditions, the hidden states augmented through our automatic HMM
refinement method improve the model prediction accuracy, compensating for the inac-
curate model assumptions.

Part IV of this manuscript describes the control effort in order to guide the self-assembly
process carried out by the robotic modules towards specific pre-defined target structures. We
summarize our contributions as follows:

m We addressed the problem of rule synthesis for programmable self-assembly of rota-
tionally symmetric robotic modules endowed with genderless latching connectors. We
showed that by utilizing the extended graph grammar formalism, one can formulate
automatic rule synthesis algorithms whose direct output of synthesized rules can be
directly programmed on the robotic modules without the need for any further adjust-
ments, what was otherwise necessary as reported in the state of the art. Additionally, we
provided the proof that employing the extended graph grammar formalism allows for
synthesizing rulesets of O(N) complexity, with N being the number of genderless con-
nectors available on a robotic module, compared to rulesets of O(N?) in the literature.

m Using the extended graph grammar formalism and to illustrate automatic synthesis of
rules directly applicable on robotic modules, we extended two synthesis algorithms
originally introduced for the self-assembly of bodiless modules in the literature, namely
Singleton and Linchpin. Doing so, we obtained their counterparts for the self-assembly
of rotationally symmetric robotic modules, namely SingletonR and LinchpinR. Studies
on the synthesized rulesets in simulation and reality considering two specific target
structures were conducted to validate the functionality and evaluate the relative per-
formance of the synthesized rulesets. Following this verification, we presented the full
framework which captures a close coupling between the ruleset controllers synthesis
through employing graph grammatical models and the analysis of the performance of
the corresponding self-assembly process using either the real system, the submicro-
scopic model, the microscopic model, or the macroscopic model of the real system.

m In a further step, we addressed the problem of synthesizing parallel rulesets for pro-
grammable self-assembly of robotic modules. Again, employing the extended graph
grammar formalism, we proposed the automatic synthesis algorithm GS-RGS. Using
the GS-RGS algorithm, we synthesized parallel rulesets for two target structures. Studies

145

Chapter 17. Conclusion and Outlook

on the synthesized rulesets in simulation, using both the microscopic and the submi-
croscopic models, demonstrated the superior performance of the GS-RGS algorithm
compared to the LinchpinR algorithm from the literature. Additionally, we provided a
formal proof for this superior performance.

17.2 Discussion and Future Work

We believe that, in the long run, engineered programmable self-assembling systems, particu-
larly those systems comprising miniaturized robotic modules, have the potential of several
applications. Notable applications will most likely lie in environmental, space, and medical
domains, where robust structure formation out of miniaturized building blocks in a reversible
and re-programmable fashion could be of significance.

This work constitutes a first step towards understanding and formalizing the principles
of building fluid-mediated programmable self-assembling systems comprising resource-
constrained robotic modules. Having addressed many aspects of the path to this goal, several
problems remain to be tackled. Here, we will firstly address the aspects of this research along
which further investigations and follow-up work may be conducted. We will then discuss
promising research thrusts that can be undertaken leveraging the current experimental setup
and developed methods. Finally, we will provide our outlook, reaching beyond the current
state of our developments.

Following up on the technological research thrust, several aspects of the current self-assembling
robotic platform may undergo further investigation and development in the future. Firstly,
an investigation on the fluidic arena may be carried out to allow for creation of a variety of
fluidic flow field patterns with distinct spatial characteristics, each giving rise to a substantially

different mixing regime and thus assembly possibilities. To this goal, one needs to experimen-
tally evaluate and to empirically find a set of configurations on the power level and perhaps

time synchronization of the activation of the peripheral pumps installed in the fluidic arena.
Secondly, the robotic modules may be endowed with two more latching connectors, one at the

top and one at the bottom side of the cubic shell, and additionally tuned for neutral buoyancy

in order to float and assemble in 3D. Finally, the mechatronic design of the robotic modules

may be scaled down. This might require removing the on-board battery from the module

and designing the setup such that the modules are capable of harvesting energy from the

environment.

Following up on the methodological research thrust, one may consider developing accu-
rate HMM models of the system for different combinations of mixing regimes and ruleset
controllers, for a predefined target structure. Based on the observation of the modules configu-
ration in the system and estimation of the only partially observable full state of the system, the
set of accurate HMM models can then be employed to develop optimized control for choosing
the environmental fluidic flow and ruleset parameters which can be communicated to the
robotic modules over the existing radio link in real time in order to guide the self-assembly

146

17.2. Discussion and Future Work

process towards the predefined target structure. In order to be able to build a larger vari-
ety of target structures, one may extend the GS-RGS algorithm that only handles tree target
structures by considering (i) general non-tree target structures for which a method needs to
be developed to address formation of loops, and (ii) by considering further parallelization
through, for instance, exploiting the symmetries in the target structure and breaking it down
into sub-structures which can be assembled in parallel and then joined to form the target.

The current developed experimental setup can be utilized to conduct further experimental
studies. One interesting approach would be to utilize the setup for performing experiments
on a swarm of Lily robotic modules which are endowed with different ruleset controllers.
Unlike the case where all modules are endowed with the same ruleset controllers, different
modules may take up different roles in the assembly process. Allowing for non-homogenoity
in the swarm could be realized in three ways. First, the modules may start with different initial
internal states but identical set of rules and associated probabilities. Second, the modules may
be endowed with the same set of rules but different associated probabilities, and third, both
the structure and the associated probabilities of the ruleset controllers of the modules may
differ. This non-homogenity can potentially allow for further parallelization in the process
of assembling the target by allowing the modules to work on different parts of the target in
parallel. Once built, these parts will eventually join to form a complete copy of the target
structure.

We have in this work striven to explore and develop general and transferable methods for
building programmable self-assembling robotic systems comprising resource-constrained
robotic modules operating in a fluidic environment. While the main focus of our research has
been on the design, modeling, and control of swarms of centimeter-sized robotic modules
fabricated through standard mechatronic techniques, we believe that the flexibility and gen-
erality of our methods may pave the way to even smaller modules, down to the millimeter
and sub-millimeter scales, possibly even realized through a different fabrication technique,
as long as parametric behavioral rules can be encoded. In the near future, we wish to see
the multi-level suite of platform-independent control and modeling tools hereby developed
forming a reference for a range of applications in fields where control of distributed systems
comprising resource-constrained modules is required. In a farther future, our hope is to see
the techniques developed in this work to be employed as a knowledge base to deploy ever
smaller robots. Miniaturized robots of a few centimeters in size have not attracted many
application interests because of an unfavorable performance-size tradeoff. This will possibly
not be the case with millimeter-sized robots, which due to their small size and light weight
can be deployed in unprecedented environments such as living bodies or natural niches.

147

Glossary

CRN Chemical Reaction Network. 95, 97, 98, 101-106, 108, 144, 145

EPM Electro-Permanent Magnet. 33-48, 51, 52, 55, 58-60, 63, 68, 72, 102, 145
HMM Hidden Markov Model. 69, 96, 97, 103-106, 108, 145, 146

KS Kolmogorov-Smirnov. 74

MJM Multi-Jet Modeling. 34

MSD Mean Square Displacement. 75-81

NRWW Non Read While Write. 53

ODE Open Dynamics Engine. 71

PSO Particle Swarm Optimization. 73, 76, 78-81, 107

RWW Read While Write. 53

149

Bibliography

(1]

(2]

(3]

(4]

[5]

6]

(7]

(8]

91

[10]

(11]

(12]

J. A. Pelesko, Self assembly: the science of things that put themselves together. CRC Press,
2007.

K. Hosokawa, I. Shimoyama, and H. Miura, “Two-dimensional micro-self-assembly
using the surface tension of water”, Sensors and Actuators A: Physical, vol. 57, no. 2,
pp. 117-125, 1996.

G. Aggarwal, Q. Cheng, M. H. Goldwasser, M.-Y. Kao, P. M. De Espanes, and R. T.
Schweller, “Complexities for generalized models of self-assembly”, SIAM Journal on
Computing, vol. 34, no. 6, pp. 1493-1515, 2005.

J. H. Reif, S. Sahu, and P. Yin, “Complexity of graph self-assembly in accretive systems
and self-destructible systems”, Theoretical Computer Science, vol. 412, no. 17, pp. 1592-
1605, 2011.

G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales”, Science, vol. 295, no.
5564, pp. 2418-2421, 2002.

M. Fialkowski, K. J. Bishop, R. Klajn, S. K. Smoukov, C. J. Campbell, and B. A. Grzybowski,
Principles and implementations of dissipative (dynamic) self-assembly, 2006.

B. Haghighat, M. Mastrangeli, G. Mermoud, E Schill, and A. Martinoli, “Fluid-mediated
stochastic self-assembly at centimetric and sub-millimetric scales: design, modeling,
and control”, Micromachines, vol. 7, no. 8, p. 138, 2016.

D. K. Eric, “Engines of creation. the coming era of nanotechnology”, 1986.

D. Kennedy and C. Norman, “What don’t we know?”, Science, vol. 309, no. 5731, pp. 75—
75, 2005.

G. M. Whitesides and M. Boncheva, “Beyond molecules: self-assembly of mesoscopic
and macroscopic components”, Proceedings of the National Academy of Sciences, vol.
99, no. 8, pp. 4769-4774, 2002.

R. Grol and M. Dorigo, “Self-assembly at the macroscopic scale”, Proceedings of the
IEEE, vol. 96, no. 9, pp. 1490-1508, 2008.

N. Bhalla, P. J. Bentley, and C. Jacob, “Mapping virtual self-assembly rules to physical
systems”, Unconventional Computing, vol. 167, 2007.

151

Bibliography

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

152

A. L. Christensen, O. Rehan, M. Dorigo, et al., “Morphology control in a multirobot
system”, IEEE Robotics & Automation Magazine, vol. 14, no. 4, pp. 18-25, 2007.

K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu, “Miche: modular shape formation by self-
disassembly”, The International Journal of Robotics Research, vol. 27, no. 3-4, pp. 345—
372, 2008.

E. Klavins, “Programmable self-assembly”, IEEE Control Systems, vol. 27, no. 4, pp. 43—
56, 2007.

S. Miyashita, M. Hadorn, and P. E. Hotz, “Water floating self-assembling agents”, in
KES International Symposium on Agent and Multi-Agent Systems: Technologies and
Applications, Springer, 2007, pp. 665-674.

G. Mermoud, M. Mastrangeli, U. Upadhyay, and A. Martinoli, “Real-time automated
modeling and control of self-assembling systems”, in IEEE International Conference
on Robotics and Automation, 2012, pp. 4266-4273.

R. Grof and M. Dorigo, “Evolution of solitary and group transport behaviors for au-
tonomous robots capable of self-assembling”, Adaptive Behavior, vol. 16, no. 5, pp. 285—
305, 2008.

R. O’Grady, A. L. Christensen, and M. Dorigo, “Self-sssembly and morphology control
in a swarm-bot”, in IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS), 2007, pp. 2551-2552.

R. O’Grady, R. GroB3, A. L. Christensen, E Mondada, M. Bonani, and M. Dorigo, “Perfor-
mance benefits of self-assembly in a swarm-bot”, in Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RS] International Conference on, IEEE, 2007, pp. 2381-2387.

S.Murata, K. Kakomura, and H. Kurokawa, “Toward a scalable modular robotic system”,
IEEE Robotics & Automation Magazine, vol. 14, no. 4, pp. 56-63, 2007.

S. Murata and H. Kurokawa, “Self-reconfigurable robots”, IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 71-78, 2007.

M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. Chirikjian,
“Modular self-reconfigurable robot systems [grand challenges of robotics]”, IEEE
Robotics & Automation Magazine, vol. 14, no. 1, pp. 43-52, 2007.

M. Yim, B. Shirmohammadi, J. Sastra, M. Park, M. Dugan, and C. J. Taylor, “Towards
robotic self-reassembly after explosion”, in IEEE/RS] International Conference on Intel-
ligent Robots and Systems (IROS), 2007, pp. 2767-2772.

V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson, “Evolved and designed self-
reproducing modular robotics”, IEEE Transactions on robotics, vol. 23, no. 2, pp. 308—
319, 2007.

M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in a thousand-
robot swarm”, Science, vol. 345, no. 6198, pp. 795-799, 2014.

Bibliography

(27]

(28]

(29]

(30]

(31]

[32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

K. Gilpin, K. Koyanagi, and D. Rus, “Making self-disassembling objects with multiple
components in the robot pebbles system”, in IEEE International Conference on Robotics
and Automation (ICRA), 2011, pp. 3614-3621.

J. W. Romanishin, K. Gilpin, S. Claici, and D. Rus, “3d m-blocks: self-reconfiguring
robots capable of locomotion via pivoting in three dimensions”, in IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 1925-1932.

M. Tolley and H. Lipson, “Programmable 3d stochastic fluidic assembly of cm-scale
modules”, in IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS), 2011, pp. 4366-4371.

M. Mastrangeli, E Schill, J. Goldowsky, H. Knapp, J. Brugger, and A. Martinoli, “Auto-
mated real-time control of fluidic self-assembly of microparticles”, in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2014, pp. 5860-5865.

V. N. Manoharan, M. T. Elsesser, and D. J. Pine, “Dense packing and symmetry in small
clusters of microspheres”, Science, vol. 301, no. 5632, pp. 483-487, 2003.

Z.Zhang and S. C. Glotzer, “Self-assembly of patchy particles”, Nano Letters, vol. 4, no.
8, pp. 1407-1413, 2004.

C. R. Iacovella, M. A. Horsch, Z. Zhang, and S. C. Glotzer, “Phase diagrams of self-
assembled mono-tethered nanospheres from molecular simulation and comparison
to surfactants”, Langmuir, vol. 21, no. 21, pp. 9488-9494, 2005.

K. Hosokawa, I. Shimoyama, and H. Miura, “Dynamics of self-assembling systems:
analogy with chemical kinetics”, Artificial Life, vol. 1, no. 4, pp. 413-427, 1994.

K. Saitou, “Conformational switching in self-assembling mechanical systems”, IEEE
Transactions on Robotics and Automation, vol. 15, no. 3, pp. 510-520, 1999.

P. W. Rothemund, N. Papadakis, and E. Winfree, “Algorithmic self-assembly of dna
sierpinski triangles”, PLoS biology, vol. 2, no. 12, e424, 2004.

D. Doty, “Theory of algorithmic self-assembly”, Communications of the ACM, vol. 55,
no. 12, pp. 78-88, 2012.

A. Martinoli, K. Easton, and W. Agassounon, “Modeling swarm robotic systems: a case
study in collaborative distributed manipulation”, The International Journal of Robotics
Research, vol. 23, no. 4-5, pp. 415-436, 2004.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems: Design, Modeling and
Optimization. Springer, 2013, vol. 93.

R. Grof3, M. Bonani, E Mondada, and M. Dorigo, “Autonomous self-assembly in swarm-
bots”, IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1115-1130, 2006.

T. Fukuda, T. Ueyama, and Y. Kawauchi, “Self-organization in cellular robotic sys-
tem(cebot) for space application with knowledge allocation method”, i-SAIRAS’90,
pp. 101-104, 1990.

153

Bibliography

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(501

(51]

[52]

(53]

[54]

[55]

[56]

154

M. Rubenstein, K. Payne, P. Will, and W.-M. Shen, “Docking among independent and
autonomous conro self-reconfigurable robots”, in IEEE International Conference on
Robotics and Automation (ICRA), IEEE, vol. 3, 2004, pp. 2877-2882.

M. Yim, Y. Zhang, K. Roufas, D. Duff, and C. Eldershaw, “Connecting and disconnecting
for chain self-reconfiguration with polybot”, IEEE/ASME Transactions on mechatronics,
vol. 7, no. 4, pp. 442-451, 2002.

S. Murata, K. Kakomura, and H. Kurokawa, “Docking experiments of a modular robot
by visual feedback”, in Intelligent Robots and Systems, 2006 IEEE/RS] International
Conference on, IEEE, 2006, pp. 625-630.

S. Griffith, D. Goldwater, and J. M. Jacobson, “Robotics: self-replication from random
parts”, Nature, vol. 437, no. 7059, p. 636, 2005.

P White, K. Kopanski, and H. Lipson, “Stochastic self-reconfigurable cellular robotics”,
in IEEE International Conference on Robotics and Automation (ICRA), vol. 3, 2004,
pp. 2888-2893.

P. White, V. Zykov,]J. Bongard, and H. Lipson, “Three dimensional stochastic recon-
figuration of modular robots.”, in Robotics: Science and Systems, Cambridge, 2005,
pp. 161-168.

K. Gilpin, A. Knaian, and D. Rus, “Robot pebbles: one centimeter modules for pro-
grammable matter through self-disassembly”, in IEEE International Conference on
Robotics and Automation (ICRA), 2010, pp. 2485-2492.

L. S. Penrose and R. Penrose, “A self-reproducing analogue”, Nature, vol. 179, no. 4571,
p- 1183, 1957.

N. Bhalla and P. J. Bentley, “Working towards self-assembling robots at all scales”, in
Proc. of the 3rd Int. Conf. on Autonomous Robots and Agents, 2006, pp. 617-622.

J. Breivik, “Self-organization of template-replicating polymers and the spontaneous
rise of genetic information”, Entropy, vol. 3, no. 4, pp. 273-279, 2001.

L. Jacot-Descombes, J. Brugger, and R. M. Gullo, “Fluid-mediated self-assembly of
mems micro-capsules for liquid encapsulation and release”, EPFL PhD Thesis, 2013.

H. Jacobson, “On models of reproduction”, American Scientist, vol. 46, no. 3, pp. 255—
284, 1958.

T. Fukuda, “Self organizing robots based on cell structures-cebot”, in IEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems (IROS), 1988, pp. 145-150.

T. Fukuda, T. Ueyama, and K. Sekiyama, “Distributed intelligent systems in cellular
robotics”, in Artificial intelligence in industrial decision making, control and automa-
tion, Springer, 1995, pp. 225-246.

C. Bererton and P. K. Khosla, “Towards a team of robots with repair capabilities: a visual
docking system”, in Experimental Robotics VII, Springer, 2001, pp. 333-342.

Bibliography

[57]

(58]

[59]

(60]

(61]

[62]

(63]

(64]

[65]

[66]

[67]

[68]

(69]

[70]

R. Grof3, E. Tuci, M. Dorigo, M. Bonani, and E Mondada, “Object transport by mod-
ular robots that self-assemble”, in IEEE International Conference on Robotics and
Automation (ICRA), 2006, pp. 2558-2564.

R. O’Grady, R. GroB3, E Mondada, M. Bonani, and M. Dorigo, “Self-assembly on de-
mand in a group of physical autonomous mobile robots navigating rough terrain”, in
European Conference on Artificial Life, 2005, pp. 272-281.

R. Grof§, M. Dorigo, and M. Yamakita, “Self-assembly of mobile robots-from swarm-
bot to super-mechano colony”, in International Conference of Intelligent Autonomous
Systems, 10S Press, 2006, pp. 487-496.

M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: a low cost scalable robot system for
collective behaviors”, in IEEE International Conference on Robotics and Automation
(ICRA), 2012, pp. 3293-3298.

S. Griffith, D. Goldwater, and J. Jacobson, “Self-replication from random parts”, Nature,
vol. 437, no. 7059, p. 636, 2005.

K.Lerman, A. Martinoli, and A. Galstyan, “A review of probabilistic macroscopic models
for swarm robotic systems”, in International Workshop on Swarm Robotics, 2004,
pp. 143-152.

S. Miyashita, M. Kessler, and M. Lungarella, “How morphology affects self-assembly
in a stochastic modular robot”, in IEEE International Conference on Robotics and
Automation, 2008, pp. 3533-3538.

T. Hogg, “Coordinating microscopic robots in viscous fluids”, Autonomous Agents and
Multi-Agent Systems, vol. 14, no. 3, pp. 271-305, 2007.

L. Matthey, S. Berman, and V. Kumar, “Stochastic strategies for a swarm robotic as-
sembly system”, in IEEE International Conference on Robotics and Automation (ICRA),
2009, pp. 1953-1958.

D. T. Gillespie, “Stochastic simulation of chemical kinetics”, Annu. Rev. Phys. Chem.,
vol. 58, pp. 35-55, 2007.

B. Haghighat, E. Droz, and A. Martinoli, “Lily: a miniature floating robotic platform for
programmable stochastic self-assembly”, in IEEE International Conference on Robotics
and Automation (ICRA), 2015, pp. 1941-1948.

B. Haghighat and A. Martinoli, “Characterization and validation of a novel robotic
system for fluid-mediated programmable stochastic self-assembly”, in IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2778-2783.

B. Haghighat, R. Thandiackal, M. Mordig, and A. Martinoli, “Probabilistic modeling of
programmable stochastic self-assembly of robotic modules”, in IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 4656-4663.

B. Haghighat and A. Martinoli, “Automatic synthesis of rulesets for programmable
stochastic self-assembly of rotationally symmetric robotic modules”, Swarm Intelli-
gence, vol. 11, no. 3-4, pp. 243-270, 2017.

155

Bibliography

[71]

[72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

156

B. Haghighat, B. Platerrier, L. Waegeli, and A. Martinoli, “Synthesizing rulesets for
programmable robotic self-assembly: a case study using floating miniaturized robots”,
in International Conference on Swarm Intelligence (ANTS), vol. 9882 of LNCS, 2016,
pp- 197-209.

B. Haghighat and A. Martinoli, “A rule synthesis algorithm for programmable stochastic
self-assembly of robotic modules”, in Proceedings of the 13th Int. Symp. on Distributed
Autonomous Robotic Systems (DARS), vol. 6, 2018, pp. 329-343.

I. O’Hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi, T. Tosun, J. Greco, J. Seo, M.
Turpin, V. Kumar, et al., “Self-assembly of a swarm of autonomous boats into floating
structures”, in Robotics and Automation (ICRA), 2014 IEEE International Conference
on, IEEE, 2014, pp. 1234-1240.

R. C. Merkle and R. A. Freitas Jr, Kinematic self-replicating machines. Landes Bioscience,
2004.

T. Hogg, “Robust self-assembly using highly designable structures”, Nanotechnology,
vol. 10, no. 3, p. 300, 1999.

V. Sariola, Q. Zhou, and H. N. Koivo, “Hybrid microhandling: a unified view of robotic
handling and self-assembly”, Journal of Micro-Nano Mechatronics, vol. 4, no. 1-2, p. 5,
2008.

M. A. Hsieh, V. Kumar, and L. Chaimowicz, “Decentralized controllers for shape gener-
ation with robotic swarms”, Robotica, vol. 26, no. 5, pp. 691-701, 2008.

K. Gilpin and D. Rus, “Modular robot systems”, IEEE robotics & automation magazine,
vol. 17, no. 3, pp. 38-55, 2010.

M. Tolley and H. Lipson, “Fluidic manipulation for scalable stochastic 3d assembly of
modular robots”, in IEEE International Conference on Robotics and Automation (ICRA),
2010, pp. 2473-2478.

A. Knaian, “Electropermanent magnetic connectors and actuators: devices and their
application in programmable matter”, PhD thesis, Massachusetts Institute of Technol-
ogy, 2010.

K. Stoy and D. Brandt, “Efficient enumeration of modular robot configurations and
shapes”, in IEEE/RS] International Conference on Intelligent Robots and Systems (IROS),
2013, pp. 4296-4301.

G. Mermoud, L. Matthey, W. Evans, and A. Martinoli, “Aggregation-mediated collec-
tive perception and action in a group of miniature robots”, in The 9th International
Conference on Autonomous Agents and Multiagent Systems, vol. 2, 2010, pp. 599-606.

T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and A. Martinoli, “Swistrack-a
flexible open source tracking software for multi-agent systems”, in IEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2008, pp. 4004-4010.

N. Napp, S. Burden, and E. Klavins, “Setpoint regulation for stochastically interacting
robots”, Autonomous Robots, vol. 30, no. 1, pp. 57-71, 2011.

Bibliography

(85]

(86]

(87]

(88]

(89]

[90]

[91]

(92]

(93]

[94]

[95]

[96]

[97]

(98]
[99]

T. P. Pavlic, S. Wilson, G. P. Kumar, and S. Berman, “Control of stochastic boundary
coverage by multirobot systems”, Journal of Dynamic Systems, Measurement, and
Control, vol. 137, no. 3, p. 034 504, 2015.

O. Michel, “Webots: professional mobile robot simulation”, Advanced Robotic Systems,
vol. 1, no. 1, pp. 39-42, 2004.

W. Agassounon, A. Martinolij, and K. Easton, “Macroscopic modeling of aggregation
experiments using embodied agents in teams of constant and time-varying sizes”,
Autonomous Robots, vol. 17, no. 2-3, pp. 163-192, 2004.

N. Correll and A. Martinoli, “Modeling and designing self-organized aggregation in a
swarm of miniature robots”, The International Journal of Robotics Research, vol. 30, no.
5, pp. 615-626, 2011.

N. Correll and H. Hamann, “Probabilistic modeling of swarming systems”, in Springer
Handbook of Computational Intelligence, 2015, pp. 1423-1432.

E. Di Mario, G. Mermoud, M. Mastrangeli, and A. Martinoli, “A trajectory-based cali-
bration method for stochastic motion models”, in IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS), 2011, pp. 4341-4347.

D. Frenkel and B. Smit, “Understanding molecular simulation: from algorithms to
applications (academic, san diego, 2002)”, pp. 63-107, 1997.

M. Fox and J. Shamma, “Probabilistic performance guarantees for distributed self-
assembly”, IEEE Transactions on Automatic Control, vol. 60, no. 12, pp. 3180-3194,
2015.

N. Napp, S. Burden, and E. Klavins, “The statistical dynamics of programmed self-
assembly”, in IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2006, pp. 1469-1476.

E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-organizing robotic
systems”, IEEE Transactions on Automatic Control, vol. 51, no. 6, pp. 949-962, 2006.

M. Asadpour, M. H. Z. Ashtiani, A. Sproewitz, and A. Ijspeert, “Graph signature for
self-reconfiguration planning of modules with symmetry”, in IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), IEEE, 2009, pp. 5295-5300.

K. Golestan, M. Asadpour, and H. Moradi, “A new graph signature calculation method
based on power centrality for modular robots”, in International Symposium Distributed
Autonomous Robotic Systems (DARS), 2013, pp. 505-516.

V. Ganesan and M. Chitre, “On stochastic self-assembly of underwater robots”, IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 251-258, 2016.

G. Mermoud, Stochastic Reactive Distributed Robotic Systems. Springer, 2014.

N. Napp, D. Thorsley, and E. Klavins, “Hidden markov models for non-well-mixed
reaction networks”, in 2009 American Control Conference, 2009, pp. 737-744.

157

Bibliography

[100]

[101]

[102]

(103]

[104]

[105]

[106]

[107]

[108]

158

T. W. Mather and M. Ani Hsieh, “Macroscopic modeling of stochastic deployment poli-
cies with time delays for robot ensembles”, International Journal of Robotics Research,
vol. 30, no. 5, pp. 590-600, 2011.

D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions”, The Journal
of Physical Chemistry, vol. 81, no. 25, pp. 2340-2361, 1977.

P. W. K. Rothemund, Theory and experiments in algorithmic self-assembly. University
of Southern California, 2001.

J. 1. Lathrop, J. H. Lutz, and S. M. Summers, “Strict self-assembly of discrete sierpinski
triangles”, Theoretical Computer Science, vol. 410, no. 4-5, pp. 384-405, 2009.

N. Bhalla, P. J. Bentley, and C. Jacob, “Evolving physical self-assembling systems in
two-dimensions”, in International Conference on Evolvable Systems, Springer, 2010,
pp. 381-392.

N. Bhalla, P J. Bentley, P. D. Vize, and C. Jacob, “Programming and evolving physical self-
assembling systems in three dimensions”, Natural Computing, vol. 11, no. 3, pp. 475-
498, 2012.

E. Klavins, “Automatic synthesis of controllers for distributed assembly and formation
forming”, in IEEE International Conference on Robotics and Automation (ICRA), 2002,
pp. 3296-3302.

M. J. Fox and J. S. Shamma, “Communication, convergence, and stochastic stability
in self-assembly”, in IEEE International Conference on Decision and Control, 2010,
pp. 7245-7250.

E. Klavins, S. Burden, and N. Napp, “Optimal rules for programmed stochastic self-
assembly”, in Proceedings of Robotics: Science and Systems, Philadelphia, USA, 2006.

Curriculum Vitae

Bahar Haghighat

Education

2012-2018

2010-2012

2006-2010

Ph.D. in Robotics, Control, and Intelligent Systems
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

M.Sc. in Electrical Engineering, Digital Electronics
Sharif University of Technology (SUT), Tehran, Iran

B.Sc. in Electrical Engineering and Physics (Double-Major)
Sharif University of Technology (SUT), Tehran, Iran

Honors and Awards

2017
2017
2017
2012
2012
2011
2009
2006
2006

Swiss National Science Foundation (SNSF) Early Postdoc Mobility fellowship
Winner of the 3rd jury prize at the Three Minute Thesis competition at EPFL
Winner of the public prize at the Pitch Your Impact competition at EPFL
Ranked 1st among ~20 M.Sc. students of Digital Electronics

Ranked 2nd among ~100 M.Sc. students of Electrical Engineering

Sharif University of Technology Ph.D. studies scholarship

Sharif University of Technology M.Sc. studies scholarship

Iran National Elites Foundation B.Sc. studies scholarship

Ranked 33rd among ~400,000 students in national university entrance exam

159

Bibliography

Publications

Journal Articles

1. B. Haghighat, A. Martinoli. “Automatic Synthesis of Rulesets for Programmable Stochastic

Self-Assembly of Robotic Modules” In Swarm Intelligence Journal, 2017.

B. Haghighat, M. Masterangeli, G. Mermoud, E Schill, A. Martinoli. “Fluid-Mediated Stochastic
Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control” In
Micromachines Journal, Special Issue on Building by Self-Assembly, 2016.

I. Esmaili, S. Bagheri, B. Haghighat. “An Optimal Hardware Implementation for Active Learning
Method Based on Memristor Crossbar Structures.” In IEEE Systems Journal, 2014.

Refereed Conferences

1

. B. Haghighat, A. Martinoli. “On Probabilistic Modeling of Programmable Stochastic Self-
Assembly of Robotic Modules” In IEEE International Conference on Intelligent Robots and
Systems (IROS), Vancouver, Canada, 2017.

. B. Haghighat, A. Martinoli. “A Rule Synthesis Algorithm for Programmable Stochastic Self-
Assembly of Robotic Modules” In International Symposium on Distributed Autonomous Robotic
Systems (DARS), London, UK, 2016.

B. Haghighat, B. Platerrier, L. Waegeli, A. Martinoli. “Synthesizing Rulesets for Programmable
Self-Assembly of Robots: A Case Study on Floating Miniaturized Robots” In International Confer-
ence on Swarm Intelligence (ANTS), Brussels, Belgium, 2016.

B. Haghighat, A. Martinoli. “Characterization and Validation of a Novel Robotic System for
Fluid-Mediated Programmable Stochastic Self-Assembly.” In IEEE International Conference on
Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016.

B. Haghighat, E. Droz and A. Martinoli. “Lily: A Miniature Floating Robotic Platform for Pro-
grammable Stochastic Self-Assembly.” In IEEE International Conference on Robotics and Au-
tomation (ICRA), Seattle, Washington, USA, 2015.

B. Haghighat, S. Bagheri, and M. Firouzi. “A Novel Method for Function Approximation in
Reinforcement Learning.” In International Conference on Contemporary Issues in Computer
and Information Sciences (CICIS), Zanjan, Iran, 2012.

Review Service

—

N oo o s w b

160

. IEEE International Conference on Robotics and Automation (ICRA)

. IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS)
International Symposium on Distributed Autonomous Robotic Systems (DARS)
American Control Conference (ACC)

Swarm Intelligence Journal

Autonomous Robots Journal

IEEE Intelligent Systems Journal

Bibliography

Project Supervision

1.

Hala Khodr, Internship Project (Summer 2017)
Experimental Study of Self-Assembly with Lily Robots

Hala Khodr, Semester Project (Spring 2017)
Optimization of Ruleset Controllers for Programmable Self-Assembly of Lily Robots

. Maximilian Mordig, Semester Project (Fall 2016)

Model-Based Control of Programmable Self-Assembly of Lily Robots

. Matthias Ruegg, Semester Project (Fall 2016)

Development and Experimental Evaluation of a Software Framework for the Lily Robots

Brice Platerrier, Semester Project (Fall 2015)
Distributed Assembly Algorithm Design and Experimental Evaluation for the Lily Robots

Luca Brusatin, Master Thesis (Spring 2015), Co-supervised with Self-Organizing Systems Re-
search Group at Harvard University
Distributed Algorithms on a Thousand Robot Swarm

Loic Waegeli, Semester Project (Spring 2015)
Distributed Assembly Algorithm Design and Experimental Evaluation for the Lily Robots

Beat Geissmann, Semester Project (Spring 2014)
Communication and Computation Board Design for Self-Assembling Floating Miniature Robots

Alexandre Cherpillod, Semester Project (Fall 2013)
Centimeter-Scale Water-Floating Robots for Studying Self-Assembly

Languages
Persian native
English fluent
French proficient
German proficient
Personal Details
Date of birth: 1 July 1988
Citizenship: Iran
Email: haghighat.bahar@gmail.com

161

	Acknowledgements
	Abstract (English/Français/Deutsch)
	I Introduction
	Self-Assembly
	Definition
	Natural Instances
	Principles
	Outlook

	Engineered Self-Assembling Systems
	Overview
	Mechatronic Characteristics
	Analysis Methods and Modeling
	Synthesis Methods and Control

	Scope of this Thesis
	Objectives and Outline
	Contributions

	II System Design
	Introduction
	Related Work
	Problem Statement

	Lily Robotic Module
	External Shell
	Printed Circuit Board
	Electro-Permanent Magnetic Latches
	Designing EPM Latches
	Building EPM Latches
	EPM Switching Circuitry
	EPM Communication Circuitry

	Powering the Lily
	Power Circuitry
	Charging

	Communication and Sensing
	Radio Communication
	Inter-Robot Communication

	Firmware
	Wireless Programming

	Experimental Setup
	Setup Design
	Setup Characterization

	Conclusion

	III Modeling Self-Assembly
	Introduction
	Related Work
	Problem Statement

	Submicroscopic Model
	Designing the Model
	Calibrating the Model
	Mean Squared Displacement Metric
	Parameter Optimization

	Microscopic Model
	Graph grammars for Self-Assembly of Bodiless Modules
	Graph Grammars for Self-Assembly of Robotic Modules
	Random Pairwise Interactions
	Shape Recognition
	Running the Model

	Macroscopic Model
	Introduction
	Markovian Models for Programmable Self-Assembly
	Developing Markov Models
	Evaluating Well-Mixed Condition
	Developing Hidden Markov Models

	Conclusion

	IV Controlling Self-Assembly
	Introduction
	Related Work
	Problem Statement

	Synthesizing Self-Assembly Rules
	Extended Rules for Self-Assembly of Robotic Modules
	Singleton and Linchpin for Self-Assembly of Bodiless Modules
	SingletonR and LinchpinR for Self-Assembly of Robotic Modules
	Synthesized Rulesets for Lily Robotic Modules
	Simulation Tools
	Experiments and results

	Synthesizing Parallel Rules
	GS-RGS: A New Synthesis Algorithm
	Stage I: Grow Subtrees (GS)
	Stage II: Re-Group Subtrees (RGS)

	Synthesized Rulesets for Lily Robotic Modules
	Experiments and Results

	Conclusion

	V Conclusion
	Conclusion and Outlook
	Summary of Contributions
	Discussion and Future Work

	Glossary
	Bibliography
	Curriculum Vitae

