Parameter Determination of Sensor Stochastic Models under Covariate Dependency

Jan Skaloud1, Philipp Clausen1, Stéphane Guerrier2, and Samuel Orso3

1EPFL, École Polytechnique Fédérale de Lausanne, Switzerland
2PSU, Pennsylvania State University, US
3UNIGE, University of Geneva, Switzerland

EGU 2018, Vienna, Austria, April 9th, 2018
Noise Characterization via Allan / Wavelet Variance

Generalized Method of Wavelet Moments (GMWM)

GMWM Extensions for Covariate Dependencies
Analyzing a Signal

Types of Signals

- Oscillator
- Accelerometer
- Gravimeter
- Gyroscope
Analyzing a Signal

Types of Signals

- Oscillator
- Accelerometer
- Gravimeter
- Gyroscope

Stochastic characteristics of time series: $y_t, t \in \mathbb{N}$
Analysis of an Error Signal

State-space model

\[y_t = \omega t + u_t + \varepsilon_t \]

\[\varepsilon_t \overset{iid}{\sim} \mathcal{N}(0, \sigma_{WN}^2) \]

\[u_t = \phi u_{t-1} + \eta_t \]

\[\eta_t \overset{iid}{\sim} \mathcal{N}(0, \sigma_{AR(1)}^2) \]

\[\omega, \phi \in \mathbb{R} \]

Noise parameters

\[\theta = (\omega, \phi, \sigma_{AR(1)}^2, \sigma_{WN}^2) \]
Analysis of an Error Signal via Allan Variance

Drift

White Noise

AR(1)

Drift + White Noise + AR(1)

Allan Variance representation
Challenges

Existing methods:

- “Graphical” Allan Variance
 - Limited to a few models
 - (Proven as) not consistent in general
 - “Inefficient” (non-automated)
- MLE (with EM algorithm)
 - Computationally intensive
 - Diverges with “complex” models

Need of an estimator

- Complex time-series model
- Computational efficiency
- Robust to outliers
Main idea

- Usage of the Wavelet Variance (WV)
- Filter of the signal with the Wavelet Function
- Exploitation of the relationship existing between a model θ and its WV $\nu(\theta)$ (i.e. mapping $\theta \mapsto \nu(\theta)$).
- “Inverse” this mapping by minimizing some discrepancies between empirical (i.e. observed WV/AV $\hat{\nu}$) and the theoretical WV for a model $\nu(\theta)$.
GMWM Estimator

Definition
Solution of the following optimization problem with weighting matrix Ω

$$\hat{\theta} = \arg\min_{\theta \in \Theta} (\hat{\nu} - \nu(\theta))^T \Omega (\hat{\nu} - \nu(\theta))$$

Identifiable
$$\nu(\theta_1) = \nu(\theta_2) \quad \text{iff} \quad \theta_1 = \theta_2$$

Consistent
$$\hat{\theta} \xrightarrow{p} \theta_0$$

Asymptotically Normal
$$\sqrt{T} \left(\hat{\theta} - \theta_0 \right) \xrightarrow{p} \mathcal{N} \left(0, \Sigma \right)$$
Haar Wavelet Variance of DATASET:
navchip (Gyro. Y) - Duration: 3.5(h) @250(Hz)
GMWM Example: incomplete model

Haar Wavelet Variance of DATASET: navchip (Gyro. Y) - Duration: 3.5(h) @250(Hz)
GMWM Example: incomplete model cont.

Haar Wavelet Variance of DATASET:
navchip (Gyro. Y) - Duration: 3.5(h) @250(Hz)

Wavelet Variance $\nu [rad^2/s^2]$

Scale $\tau [s]$

- Empirical WV ν
- CI(ν, 0.95)
- GM
- WN
- QN
- Implied WV $\nu(\hat{\theta})$
GMWM Example: complete model

Haar Wavelet Variance of DATASET:
navchip (Gyro. Y) - Duration: 3.5(h) @250(Hz)
GMWM Example: covariate influence

MEMS IMU Gyroscope rotating at $30^\circ/s$ and $360^\circ/s$
Extension for Covariate Dependency

Definition
- **external process:** \(X_t, t \in \mathbb{N} \)
 - previous example: rotational speed
- **White Noise** process:
 \[
 V_t \overset{iid}{\sim} \mathcal{N}(0, \gamma^2)
 \]
- **Auto-Regressive** process of order 1:
 \[
 u_t = \phi \ u_{t-1} + \varepsilon
 \]
 \[
 \varepsilon \overset{iid}{\sim} \mathcal{N}(0, \eta^2)
 \]
Extension for Covariate Dependency

Definition

- **external process**: $X_t, t \in \mathbb{N}$
 - ➤ previous example: rotational speed
- **White Noise** process:

 $$V_t | X_t \overset{iid}{\sim} \mathcal{N} (0, \gamma^2_t), \quad \gamma^2_t = g (s_1 + s_2 X_t)$$

- **Auto-Regressive** process of order 1:

 $$u_t = \phi \ u_{t-1} + \varepsilon$$

 $$\varepsilon \overset{iid}{\sim} \mathcal{N} (0, \eta^2)$$
Extension for Covariate Dependency

Definition

- external process: $X_t, t \in \mathbb{N}$
 - previous example: rotational speed
- *White Noise* process:
 $$V_t|X_t \overset{iid}{\sim} \mathcal{N} \left(0, \gamma_t^2\right), \quad \gamma_t^2 = g(\varsigma_1 + \varsigma_2 X_t)$$
- *Auto-Regressive* process of order 1:
 $$u_t|X_t = \phi_t u_{t-1} + \varepsilon_t, \quad \phi_t = h(\varphi_1 + \varphi_2 X_t),$$
 $$\varepsilon_t|X_t \overset{iid}{\sim} \mathcal{N} \left(0, \eta_t^2\right), \quad \eta_t^2 = k(\nu_1 + \nu_2 X_t)$$
Extension for Covariate Dependency

Definition

- **external process:** $X_t, t \in \mathbb{N}$
 - previous example: rotational speed
- **White Noise** process:

 \[V_t|X_t \overset{iid}{\sim} \mathcal{N}(0, \gamma_t^2) \text{,} \quad \gamma_t^2 = g(\varsigma_1 + \varsigma_2 X_t) \]

- **Auto-Regressive** process of order 1:

 \[u_t|X_t = \phi_t u_{t-1} + \varepsilon_t, \quad \phi_t = h(\varphi_1 + \varphi_2 X_t), \]

 \[\varepsilon_t|X_t \overset{iid}{\sim} \mathcal{N}(0, \eta_t^2) \text{,} \quad \eta_t^2 = k(\upsilon_1 + \upsilon_2 X_t) \]

Extended parameter vector

\[
\theta = \begin{bmatrix} \varsigma^T & \varphi_1^T & \ldots & \varphi_d^T & \upsilon_1^T & \ldots & \upsilon_d^T \end{bmatrix}^T \in \Theta
\]
Dynamic GMWM estimator

\[
\hat{\theta} = \underset{\theta \in \Theta}{\text{argmin}} \frac{1}{K} \sum_{k=1}^{K} \left\| \hat{\nu}_k - \nu(\theta, c_k) \right\|_{\hat{\Omega}_k}^2
\]

\(c_k\) explains the covariate influence on the WV of bin \(k\)
Dynamic GMWM estimator

\[\hat{\theta} = \arg\min_{\theta \in \Theta} \frac{1}{K} \sum_{k=1}^{K} \left\| \hat{\nu}_k - \nu(\theta, c_k) \right\|^2_{\hat{\Omega}_k} \]

c_k explains the covariate influence on the WV of bin k

And the properties?

Identifiable ✔

Consistent ✔

Asymptotically Normal ✔
MEMS IMU Gyroscope stochastic noise as a function of rotational speed
Conclusions

Properties

- Numerically stable
- Computationally efficient
- Covariate Dependency

Implementation
- Open-source package in statistical tool R
- Online web browser tool on ggmwm.smac-group.com
- Proofs in an upcoming publication

Application examples
- Rotational dynamics dependency: IEEE/ION PLANS 2018
- Temperature dependency: to be published with proofs
Conclusions

Properties

- Numerically stable
- Computationally efficient
- Covariate Dependency

And more...

- Implementation
 - opensource package in statistical tool R
 - online webbrowser tool on ggmwm.smac-group.com
- Proofs in an upcoming publication
- Application examples
 - rotational dynamics dependency: IEEE/ION PLANS 2018
 - temperature dependency: to be published with proofs
Thank you

Contacts

- jan.skaloud@epfl.ch
- philipp.clausen@epfl.ch
- stephane@psu.edu
- samuel.orso@unige.ch
- https://github.com/SMAC-group/GMWM

References

- Guerrier, S., Stebler, Y., Skaloud, J. and Victoria-Feser, M.-P. Limits of the Allan Variance and Optimal Tuning of Wavelet Variance based Estimators, 2013