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Abstract
In this thesis, we study systems of linear and/or non-linear stochastic heat equations and

fractional heat equations in spatial dimension 1 driven by space-time white noise. The main

topic is the study of hitting probabilities for the solutions to these systems.

We first study the properties of the probability density functions of the solution to non-linear

systems of stochastic fractional heat equations driven by multiplicative space-time white

noise. Using the techniques of Malliavin calculus, we prove that the one-point probability

density function of the solution is infinitely differentiable, uniformly bounded and positive

everywhere. Moreover, a Gaussian-type upper bound on the two-point probability density

function is obtained by a detailed analysis of the small eigenvalues of the Malliavin matrix.

We establish an optimal lower bound on hitting probabilities for the (non-Gaussian) solution,

which is as sharp as that for the Gaussian solution to a system of linear equations.

We develop a new method to study the upper bound on hitting probabilities, from the perspec-

tive of probability density functions. For the solution to the linear stochastic heat equation,

we prove that the random vector, which consists of the solution and the supremum of a linear

increment of the solution over a time segment, has an infinitely differentiable probability

density function. We derive a formula for this density and establish a Gaussian-type upper

bound. The smoothness property and Gaussian-type upper bound for the density of the

supremum of the solution over a space-time rectangle touching the t = 0 axis are also studied.

Furthermore, we extend these results to the solutions of systems of linear stochastic fractional

heat equations.

For a system of linear stochastic heat equations with Dirichlet boundary conditions, we present

a sufficient condition for certain sets to be hit with probability one.

Key words: hitting probabilities, stochastic (fractional) heat equation, Malliavin calculus,

probability density function, Gaussian-type upper bound, supremum of a Gaussian random

field, space-time white noise, capacity, Hausdorff measure.
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Résumé
Dans cette thèse, nous étudions des systèmes linéaires et/ou non-linéaires d’équations de la

chaleur stochastiques et d’équations de la chaleur fractionaires en dimension spatiale 1 régies

par un bruit blanc en temps et en espace. Le sujet principal est l’étude de la probabilité que

les solutions de ces systèmes visitent un ensemble donné.

Dans un premier temps, nous étudions les propriétés des fonctions de densité des solutions

des équations de la chaleur fractionnaires stochastiques régies par un bruit blanc multiplicatif.

En utilisant les techniques du calcul de Malliavin, nous prouvons que la fonction de densité

de la solution est infiniment différentiable, uniformément bornée et partout positive. De plus,

une borne supérieure de type gaussien est obtenue pour la densité conjointe grâce à une

étude détaillée des petites valeurs propres de la matrice de Malliavin. Pour la solution (non-

gaussienne), nous établissons une borne inférieure optimale sur les probabilités de visiter

un ensemble donné, qui est aussi précise que celle pour la solution gaussienne d’équations

linéaires.

Nous développons une nouvelle méthode pour étudier les bornes supérieures des probabilités

de visiter un ensemble, basée sur les fonctions de densité. Pour la solution du système linéaire

de la chaleur stochastique, nous montrons que le vecteur aléatoire, qui consiste en la solution

et le supremum d’un incrément linéaire de la solution dans un intervalle de temps, a une

fonction de densité infiniment différentiable. Nous donnons une formule pour cette densité

et établissons une borne supérieur de type gaussien pour celle-ci. La propriété de régularité

et la borne supérieure de type gaussien pour la densité du supremum de la solution dans un

rectangle en temps et espace qui touche l’axe t = 0 sont aussi étudiées. De plus, nous éten-

dons ces résultats à la solution de systèmes d’équations linéaires de la chaleur fractionnaires

stochastiques.

Pour un système d’équations linéaires de la chaleur stochastiques avec des conditions aux

bords de Dirichlet, nous présentons une condition suffisante pour que certains ensembles

soient visités avec probabilité un.

Mots cléfs : probabilités de visiter un ensemble, équation de la chaleur (fractionnaire) stochas-

tique, calcul de Malliavin, fonction de densité, borne supérieure de type gaussien, supremum

d’un champ aléatoire gaussien, bruit blanc en temps et espace, capacité, mesure de Hausdorff.
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1 Introduction

Stochastic partial differential equations (SPDEs) are a generalization of partial differential

equations, with terms that correspond to random external forces. Usually, the random external

force is taken to be space-time white noise. In many contexts, it is natural to consider systems

of such SPDEs. The white noise may be multidimensional and there is one SPDE for each

component of the solution. In this case, the components of the solution interact with each

other. This thesis studies certain properties of such systems of SPDEs.

1.1 Literature review

The solutions to systems of SPDEs arise as an important class of Rd -valued stochastic pro-

cesses. Potential theory is one important topic in the study of such stochastic processes. We

refer to [10, 37, 74] for potential theory for single-parameter processes and to [44] for mul-

tiparameter processes. In probabilistic potential theory, one basic question is to determine

whether a stochastic process visits, or hits, a fixed deterministic set A ⊂ Rd with positive

probability. We are interested in relating the hitting probabilities of the solution to various

geometric quantities, such as Hausdorff measure and capacity.

Let us recall the main existing results on hitting probabilities for some classical stochastic

processes. For example, the well-known theorem of Kakutani (see [44, Theorem 3.1.1, Chapter

10]) states that for a d-dimensional Brownian motion {B(t), t ≥ 0} starting at x ∈ Rd and for

any compact set A ⊂Rd with x �∈ A,

P{∃t > 0 such that B(t ) ∈ A} > 0 ⇐⇒ Capd−2(A) > 0,

where Capβ denotes the capacity with respect to the Newtonian β-kernel. This result was

extended to the Brownian sheet by Khoshnevisan and Shi [46]. Let W = {Wt , t ∈RN+ } denote an

Rd -valued Brownian sheet. They showed that for all M > 0 and 0 < a < b <∞, there exists a

1



Chapter 1. Introduction

finite positive constant C such that for all compact subsets A ⊆ [−M , M ]d ,

C−1Capd−2N (A) ≤ P{∃t ∈ [a,b]N : Wt ∈ A} ≤C Capd−2N (A).

Motivated by this, Dalang and Nualart [29] studied hitting probabilities for the solution to

the reduced hyperbolic SPDE on R2+ (essentially equivalent to the wave equation in spatial

dimension 1):

∂2X i
t

∂t1∂t2
=

d∑
j=1

σi j (Xt )
∂2W j

t

∂t1∂t2
+bi (Xt ),

where t = (t1, t2) ∈R2+, and X i
t = 0 if t1t2 = 0, for all 1 ≤ i ≤ d . There, Dalang and Nualart used

Malliavin calculus to show that there exists a finite positive constant K depending on b > a > 0

and M > 0 such that for all compact subsets A ⊆ [−M , M ]d ,

K −1Capd−4(A) ≤ P{∃t ∈ [a,b]2 : Xt ∈ A} ≤ K Capd−4(A).

In the context of systems of stochastic heat equations, consider the following system:

∂ui

∂t
(t , x) =Δui (t , x)+

d∑
j=1

σi j (u(t , x))Ẇ j (t , x)+bi (u(t , x)), (1.1.1)

for 1 ≤ i ≤ d , where (t , x) ∈ ]0,∞[×[0,1] and u := (u1, . . . ,ud ) with Neumann boundary condi-

tions. We set b = (bi ),σ= (σi j ). Let I ⊂ ]0,T ] and J ⊆ [0,1] be two compact intervals. We are

interested in the hitting probability P{u(I × J)∩ A �= �}, where u(I × J) denotes the range of

I × J under the random map (t , x) �→ u(t , x). In the case where the noise is additive, i.e., σ≡ Id,

b ≡ 0, Dalang, Khoshnevisan and Nualart [25] have established upper and lower bounds on

hitting probabilities for the Gaussian solution. They show that there exists c > 0 depending on

M , I , J with M > 0, such that, for all Borel sets A ⊆ [−M , M ]d ,

c−1Capd−6(A) ≤ P{u(I × J )∩ A �= �} ≤ c Hd−6(A), (1.1.2)

where Hβ denotes the β-dimensional Hausdorff measure. If the noise is multiplicative, i.e.,

σ and b are not constants (but are sufficiently regular), then using techniques of Malliavin

calculus, Dalang, Khoshnevisan and Nualart [26] have obtained upper and lower bounds on

hitting probabilities for the non-Gaussian solution, analogous to, but slightly different from,

(1.1.2). Indeed, they prove that there exists c > 0 depending on M , I , J ,η with M > 0,η> 0, such

that, for all Borel sets A ⊆ [−M , M ]d ,

c−1Capd+η−6(A) ≤ P{u(I × J )∩ A �= �} ≤ c Hd−η−6(A). (1.1.3)

Furthermore, these results have been extended to higher spatial dimensions driven by spatially

homogeneous noise in Dalang, Khoshnevisan and Nualart [27].

2



1.1. Literature review

This type of question has also been studied for systems of stochastic wave equations, in

particular, in higher spatial dimensions, by Dalang and Sanz-Solé [30] and [31]. We recall some

of their results. Consider the d-dimensional system of stochastic wave equations

(
∂2

∂t 2 −Δ

)
ui (t , x) =

d∑
j=1

σi , j (u(t , x))Ṁ j (t , x)+bi (u(t , x)), (t , x) ∈]0,T ]×Rk , (1.1.4)

for 1 ≤ i ≤ d , where the d-dimensional driving noise Ṁ is white in time with a spatially

homogeneous covariance given by the Riesz kernel f (x) = ‖x‖β, 0 <β< (2∧k). Let I and J be

two compact subsets of ]0,T ] and Rk , respectively. Fix M > 0 and η> 0. If σ is an invertible

matrix with constant entries, b ≡ 0 and k ∈N, Dalang and Sanz-Solé [30] proved that there

exists a positive constant c depending on I , J , M ,β,k and d , such that, for any Borel set

A ⊂ [−M , M ]d ,

c−1Capd− 2(k+1)
2−β

(A) ≤ P{u(I × J )∩ A �= �} ≤ c Hd− 2(k+1)
2−β

(A). (1.1.5)

If σ and b are not constants and satisfy some smoothness and Lipschitz conditions, Dalang

and Sanz-Solé [31] have established, for k ∈ {1,2,3}, that there exists a positive constant c

depending on I , J , M ,β,k,d and η, such that, for any Borel set A ⊂ [−M , M ]d ,

c−1Cap
d
(
1+ 4d

2−β
)
+η− 2(k+1)

2−β
(A) ≤ P{u(I × J )∩ A �= �} ≤ c Hd−η− 2(k+1)

2−β
(A) (1.1.6)

(their result applies to more general covariances than those given by a Riesz kernel). These

results were extended to the case of linear fractional colored noise by Clarke de la Cerda and

Tudor [22]. Hitting probabilities for the solutions to systems of elliptic stochastic equations

have been studied in Sanz-Solé and Viles [79]. For systems of linear stochastic fractional heat

equations in spatial dimension 1 driven by space-time white noise, the question of hitting

points was studied in Wu [84]. We also refer to Mueller and Tribe [62] for a (Gaussian) random

string, Dalang, Mueller and Zambotti [28] for a heat equation with reflection, and Nualart and

Viens [71] for a system of heat equations driven by an additive fractional Brownian motion.

We are also interested in studying the probability density function of the supremum of the

solution; see Chapter 4 for the detailed motivation. The question of smoothness of the density

of the supremum of a multiparameter Gaussian process dates back to the work of Florit and

Nualart [39], in which they establish a general criterion (see Theorem 1.5.5) for the smoothness

of the density assuming that the random vector is locally in D∞ and apply it to show that the

maximum of the Brownian sheet on a rectangle possesses an infinitely differentiable density.

Moreover, this method was applied to prove that the supremum of the fractional Brownian

motion has an infinitely differentiable density; see Lanjri Zadi and Nualart [55]. Some general

results on the regularity of the density of the maximum of Gaussian random fields have been

developed by Cirel’son [21], Pitt and Lanh [73], Weber [83], Lifshits [56, 57], Diebolt and Posse

[36] and Azaïs and Wschebor [4]. We also refer to Hayashi and Kohatsu-Higa [42] and Nakatsu

[63] for the smoothness of densities for diffusion processes.

3



Chapter 1. Introduction

1.2 Main results of the thesis

In this thesis, we study the following system of linear and/or non-linear stochastic heat

equations in spatial dimension 1 driven by space-time white noise:

∂ui

∂t
(t , x) = ∂2ui

∂x2 (t , x)+
d∑

j=1
σi j (u(t , x))Ẇ j (t , x)+bi (u(t , x)), t ∈R+, x ∈U , (1.2.1)

and its extension to the following system of stochastic fractional heat equations:

∂ui

∂t
(t , x) = x Dαui (t , x)+

d∑
j=1

σi j (u(t , x))Ẇ j (t , x)+bi (u(t , x)), t ∈R+, x ∈R, (1.2.2)

for 1 ≤ i ≤ d , where R+ := [0,∞[, U is equal to [0,1] or R, 1 <α< 2, u := (u1, . . . ,ud ), with initial

conditions u(0, x) = u0(x) for all x ∈ U , and Dirichlet or Neumann boundary conditions if

U = [0,1].

Our main topic is the study of hitting probabilities for the solutions to (1.2.1) and (1.2.2). As

we have seen from (1.1.2) and (1.1.3), the lower and upper bounds on hitting probabilities for

non-Gaussian solutions are not as sharp as those for Gaussian solutions; compare also (1.1.5)

and (1.1.6) for stochastic wave equations. Our main objective was to remove the η on the left-

and right-hand sides of (1.1.3).

In Chapter 2, we succeed in removing the η in the dimension of capacity in (1.1.3), and we

generalize these results to solutions of systems of stochastic fractional heat equations; see

our Theorem 2.1.4. The proof of the lower bound is essentially based on the analysis of the

one-point and two-point joint densities of the solution. In particular, the presence of η in

the dimension of capacity in (1.1.3) comes from a Gaussian-type upper bound on the joint

density of Z := (u(s, y),u(t , x)−u(s, y)); see [26, Theorem 1.1(c)]. In Theorem 2.1.1, we manage

to remove this η in the Gaussian-type upper bound on the joint density of Z , so that this

becomes the best possible upper bound, as in the Gaussian case. This requires a detailed

analysis of the small eigenvalues of the Malliavin matrix γZ of Z ; see Proposition 2.5.10. We

prove Proposition 2.5.10 by giving a better estimate on the Malliavin derivative of the solution;

see Lemma A.3.3, which, for a certain range of parameters, is an improvement of Morien [60,

Lemma 4.2]; see also Lemma A.3.2. This estimate is used in Lemma 2.5.4 to obtain a bound

on the integral terms in the Malliavin derivative of u (compare with [26, Lemma 6.11]), then

in Proposition 2.5.10 to bound negative moments of the smallest eigenvalue of the Malliavin

matrix (compare with [26, Proposition 6.9]), and finally in Proposition 2.5.8 and Theorem

2.5.13 to bound negative moments of the Malliavin matrix (compare with [26, Proposition 6.6]

and [26, Theorem 6.3]). This improves the result (1.1.3) of [26], and the method extends to

systems of stochastic fractional heat equations (1.2.2) for 1 <α≤ 2 with a unified proof.

In Chapter 3, we study the hitting probability of the Gaussian solution (σ≡ Id, b ≡ 0) satisfying

(1.2.1) on U = [0,1] with Dirichlet boundary conditions, from another perspective. In Theorem

4



1.2. Main results of the thesis

3.1.1, we show that for Borel sets A satisfying Capd−6(A) > 0,

P{u([0,∞[×[0,1])∩ A �= �} = 1. (1.2.3)

This is obtained by using the strong Markov property, a recurrence property when the solution

is viewed as parameterized only by time and taking values in the space of continuous functions,

and the lower bound on hitting probabilities in (1.1.2). Intuitively, the solution visits infinitely

many times a ball in the space of continuous functions with a large radius, and between

visits, it hits A with a probability bounded below by Capd−6(A) times a constant. Formally, we

are able to sum up these probabilities by using the strong Markov property and obtain this

probability one result.

We turn to considering the upper bound on hitting probabilities in (1.1.3) for the non-Gaussian

solution, which we expect should be consistent with the result for the Gaussian solution in

(1.1.2). We remark that, following the general approach for upper bounds on hitting proba-

bilities in [25], it is sufficient to bound appropriately the probability that the solution visits a

small ball within a small space-time region:

P

{
inf

(t ,x)∈Rn
k,l

|u(t , x)− z| ≤ 2−n

}
, (1.2.4)

where Rn
k,l is defined as in (4.1.3) (for simplicity, we consider here one single equation, i.e.,

d = 1). One possible way to estimate this probability is to study the regularity of the joint

probability density function of the random vector(
u(t n

k , xn
l ), sup

(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l )

)
, (1.2.5)

where the supremum of the solution appears, and to establish good bounds on this density

function; see the detailed description in Section 4.1 and Theorem 4.1.1 that motivates this

study.

In Chapter 4, we apply Theorem 1.5.5 of Florit and Nualart [39] to study the density of the

supremum of linear and rectangular increments of the solution to the linear stochastic heat

equation. In Theorem 4.2.1, we prove that the random vector(
u(s0, y0), sup

t∈[s0,s0+δ1]
(u(t , y0)−u(s0, y0))

)
(1.2.6)

has an infinitely differentiable density on R×]0,∞[. Furthermore, in Theorem 4.2.2, we estab-

lish a Gaussian-type upper bound on this density, which provides an alternative method to

study the upper bound on hitting probabilities of the solution. To achieve this, we present a

formula for this density using the integration by parts formula in Proposition 4.5.6. The main

technical effort to analyze this density is Proposition 4.6.2, in which we use the properties of

the divergence operator to estimate the Skorohod integral appearing in the formula for the

5
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density.

Finally, in Chapter 5, we extend the results of Chapter 4 to the solution of the linear stochas-

tic fractional heat equation. It is known that the fractional differential operator affects the

Hölder continuity of the solution. The smoothness of the densities of the supremum of linear

increments of the solution over a time segment and of the supremum of the solution over a

space-time rectangle still hold: see Theorem 5.1.1. Moreover, in Theorems 5.1.2 and 5.1.4, we

show how the corresponding Gaussian-type upper bounds on these densities depend on the

degree of the fractional differential operator x Dα in a consistent way.

1.3 Stochastic heat equation

In this section, we give a rigorous formulation for equations (1.2.1) and (1.2.2), following

Walsh [81]. Let Ẇ i = (Ẇ i (t , x))(t ,x)∈R+×U , i = 1, . . . ,d , be independent space-time white noises

defined on a probability space (Ω,F ,P). The space-time white noise Ẇ i is a distribution-

valued and centered Gaussian process with covariance

E[Ẇ (ϕ)Ẇ (ψ)] =
∫∞

0
d t

∫
U

d xϕ(t , x)ψ(t , x),

for ϕ,ψ ∈C∞
0 (R+×U ) (the space of infinitely differentiable functions with compact support in

R+×U ). For each t ≥ 0, we denote by B([0, t ]×U ) the collection of Borel sets on [0, t ]×U with

finite Lebesgue measure. The filtration generated by the space-time white noise is defined by

Ft =σ{Ẇ (A), A ∈B([0, t ]×U )}∨N , t ≥ 0, (1.3.1)

where N is the σ-field generated by P-null sets.

We assume that for all 1 ≤ i , j ≤ d , the functions bi , σi j : Rd →R are globally Lipschitz continu-

ous. We set b = (bi ), σ= (σi j ). The fractional differential operator Dα appearing in (1.2.2) will

be defined in Section 2.1. If U = [0,1], we impose Neumann or Dirichlet boundary conditions

on the solution.

A mild solution of (1.2.1) is a jointly measurable Rd -valued process u = {u(t , x), t ≥ 0, x ∈U },

adapted to the filtration (Ft )t≥0 defined in (1.3.1), such that for i ∈ {1, . . . ,d},

ui (t , x) =
∫t

0

∫
U

G(t − r, x, v)
d∑

j=1
σi j (u(r, v))W j (dr,d v)

+
∫t

0

∫
U

G(t − r, x, v)bi (u(r, v))dr d v +
∫

U
G(t , x, v)ui

0(v)d v, (1.3.2)

where G(t , x, v) denotes the Green kernel for the heat equation. A mild solution of (1.2.2) is a

jointly measurable Rd -valued process u = {u(t , x), t ≥ 0, x ∈R}, adapted to the filtration (Ft )t≥0

6



1.4. Notations for potential theory

defined in (1.3.1) with U =R, such that for i ∈ {1, . . . ,d},

ui (t , x) =
∫t

0

∫
R

Gα(t − r, x − v)
d∑

j=1
σi j (u(r, v))W j (dr,d v)

+
∫t

0

∫
R

Gα(t − r, x − v)bi (u(r, v))dr d v +
∫
R

Gα(t , x − v)ui
0(v)d v, (1.3.3)

where Gα(t , x) denotes the Green kernel for the fractional heat equation:{
∂
∂t G(t , x) = x DαG(t , x), t > 0, x ∈R,

G(0, x) = δ0(x),
(1.3.4)

where δ0 is the Dirac distribution.

If U = [0,1], in the case of Neumann boundary conditions, the Green kernel G(t , x, y) for the

heat equation is given by

G(t , x, y) = 1�
4πt

∑
n∈Z

(
exp

(
− (y −x −2n)2

4t

)
+exp

(
− (y +x −2n)2

4t

))
, (1.3.5)

or in the case of Dirichlet boundary conditions, by

G(t , x, y) = 1�
4πt

∑
n∈Z

(
exp

(
− (y −x −2n)2

4t

)
−exp

(
− (y +x −2n)2

4t

))
; (1.3.6)

see [6]. If U = R, the Green kernel G(t , x, y) (denoted by G(t , x − y)) for the heat equation

without boundary is given by

G(t , x) = 1�
4πt

exp

(
−x2

4t

)
. (1.3.7)

The Green kernel for the fractional heat equation is given via Fourier transform. We write

Gα(t , x, v) as Gα(t , x − v) and

Gα(t , x) = 1

2π

∫
R

exp(−iλx − t |λ|α)dλ. (1.3.8)

See the Appendix for the properties of this Green kernel.

1.4 Notations for potential theory

In this section, we recall some notations concerning potential theory, from [44]. For all Borel

sets F ⊆Rd , we define P(F ) to be the set of all probability measures with compact support

contained in F . For all integers k ≥ 1 and μ ∈P(Rk ), we let Iβ(μ) denote the β-dimensional

7
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energy of μ, that is,

Iβ(μ) :=
�

Kβ(‖x − y‖)μ(d x)μ(d y),

where ‖x‖ denotes the Euclidian norm of x ∈Rk ,

Kβ(r ) :=

⎧⎪⎨⎪⎩
r−β if β> 0,

log(N0/r ) if β= 0,

1 if β< 0,

(1.4.1)

and N0 is a sufficiently large constant determined according to the context. For example, in

Chapter 2, its value is specified in the proof of Lemmas 2.2.3 and 2.2.4.

For all β ∈R, integers k ≥ 1, and Borel sets F ⊆Rk , Capβ(F ) denotes the β-dimensional capacity

of F , that is,

Capβ(F ) :=
[

inf
μ∈P(F )

Iβ(μ)

]−1

,

where 1/∞ := 0. Note that if β< 0, then Capβ(·) ≡ 1.

Given β≥ 0, the β-dimensional Hausdorff measure of F is defined by

Hβ(F ) = lim
ε→0+ inf

{ ∞∑
i=1

(2ri )β : F ⊆
∞⋃

i=1
B(xi ,ri ),sup

i≥1
ri ≤ ε

}
.

When β< 0, we define Hβ(F ) to be infinite.

Throughout this thesis, for 1 <α≤ 2, we consider the following fractional parabolic metric: For

all s, t ∈ [0,∞[ and x, y ∈R,

Δα((t , x); (s, y)) := |t − s| α−1
α +|x − y |α−1. (1.4.2)

Clearly, this is a metric on R2 which generates the usual Euclidean topology on R2. We simply

write Δ instead of Δ2 when α= 2.

1.5 Elements of Malliavin calculus

In this section, we introduce, following Nualart [64] (see also [78]), some elements of Malliavin

calculus. Let W = {W (h),h ∈H } denote the isonormal Gaussian process (see [64, Definition

1.1.1]) associated with space-time white noise, where H is the Hilbert space L2([0,T ]×U ,Rd ).

Let S denote the class of smooth random variables of the form

G = g (W (h1), . . . ,W (hn)),

8



1.5. Elements of Malliavin calculus

where n ≥ 1, g ∈ C∞
p (Rn), the set of real-valued functions g such that g and all its partial

derivatives have at most polynomial growth and hi ∈H . Given G ∈S , its derivative is defined

to be the Rd -valued stochastic process DG = (Dt ,xG = (D (1)
t ,xG , . . . ,D (d)

t ,x G), (t , x) ∈ [0,T ]×U )

given by

Dt ,xG =
n∑

i=1
∂i g (W (h1), . . . ,W (hn))hi (t , x).

More generally, we can define the derivative Dk F of order k of F by setting

Dk
αG =

n∑
i1,...,ik=1

∂

∂xi1

· · · ∂

∂xik

g (W (h1), . . . ,W (hn))hi1 (α1)⊗·· ·⊗hik (αk ),

where α= (α1, . . . ,αk ), αi = (ti , xi ),1 ≤ i ≤ k and the notation ⊗ denotes the tensor product of

functions.

For p,k ≥ 1, the space Dk,p is the closure of S with respect to the seminorm ‖ ·‖p
k,p defined by

‖G‖p
k,p = E[|G|p ]+

k∑
j=1

E
[
‖D j G‖p

H ⊗ j

]
,

where

‖D j G‖2
H ⊗ j =

∫T

0
d t1

∫
U

d x1 · · ·
∫T

0
d t j

∫
U

d x j

(
Di1

t1,x1
· · ·Di j

t j ,x j
G

)2
.

We set D∞ =∩p≥1 ∩k≥1 D
k,p .

For any given Hilbert space V , the corresponding Sobolev space of V -valued random variables

can also be introduced. More precisely, let SV denote the family of V -valued smooth random

variables of the form

G =
n∑

j=1
G j v j , (v j ,G j ) ∈V ×S .

We define

DkG =
n∑

j=1
(DkG j )⊗ v j , k ≥ 1.

Then Dk is a closable operator from SV ⊂ Lp (Ω,V ) into Lp (Ω,H ⊗k ⊗V ) for any p ≥ 1. For

p,k ≥ 1, a seminorm is defined on SV by

‖G‖p
k,p,V = E

[‖G‖p
V

]+ k∑
j=1

E
[
‖D j G‖p

H ⊗ j⊗V

]
.

We denote by Dk,p (V ) the closure of SV with respect to the seminorm ‖·‖p
k,p,V . We set D∞(V ) =

9
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∩p≥1 ∩k≥1 D
k,p (V ).

The derivative operator D on L2(Ω) has an adjoint, termed the Skorohod integral and denoted

by δ, which is an unbounded and closed operator on L2(Ω,H ); see [64, Section 1.3]. Its

domain, denoted by Dom δ, is the set of elements u ∈ L2(Ω,H ) such that there exists a

constant c such that |E[〈DG ,u〉H ]| ≤ c‖G‖0,2, for any G ∈D1,2. If u ∈ Dom δ, then δ(u) is the

element of L2(Ω) characterized by the following duality relation:

E[G δ(u)] = E

[
d∑

i=1

∫T

0

∫
U

D ( j )
t ,xG u j (t , x)d td x

]
, for all G ∈D1,2.

A first application of Malliavin calculus is the following global criterion for existence and

smoothness of densities of probability laws.

Theorem 1.5.1 ([64, Proposition 2.1.5] or [78, Theorem 5.2]). Let F = (F 1, . . . ,F d ) be an Rd -

valued random vector satisfying the following two conditions:

(i) F ∈ (D∞)d ;

(ii) The Malliavin matrix of F defined by γF = (〈DF i ,DF j 〉H )1≤i , j≤d is invertible a.s. and

(detγF )−1 ∈ Lp (Ω) for all p ≥ 1.

Then the probability law of F has an infinitely differentiable density function.

A random vector F that satisfies conditions (i) and (ii) of Theorem 1.5.1 is said to be nondegen-

erate. For a nondegenerate random vector, the following integration by parts formula plays a

key role.

Proposition 1.5.2 ([65, Proposition 3.2.1] or [78, Propostion 5.4]). Let F = (F 1, . . . ,F d ) ∈ (D∞)d

be a nondegenerate random vector, let G ∈ D∞ and let g ∈ C∞
p (Rd ). Fix k ≥ 1. Then for any

multi-index α= (α1, . . . ,αk ) ∈ {1, . . . ,d}k , there is an element Hα(F,G) ∈D∞ such that

E[(∂αg (F )G)] = E[g (F )Hα(F,G)].

In fact, the random variables Hα(F,G) are recursively given by

Hα(F,G) = H(αk )(F, H(α1,...,αk−1)(F,G)),

H(i )(F,G) =
d∑

i=1
δ(G(γ−1

F )i , j DF j ).

Proposition 1.5.2 with G = 1 and α= (1, . . . ,d) implies the following expression for the density

of a nondegenerate random vector.

Corollary 1.5.3 ([65, Corollary 3.2.1]). Let F = (F 1, . . . ,F d ) ∈ (D∞)d be a nondegenerate random

vector and let pF (z) denote the density of F . Then for every subset σ of the set of indices {1, . . . ,d},

pF (z) = (−1)d−|σ|E[1{F i>zi ,i∈σ,F i<zi ,i �∈σ}H(1,...,d)(F,1)],

10



1.6. Summary of the thesis

where |σ| is the cardinality of σ, and, in agreement with Proposition 1.5.2,

H(1,...,d)(F,1) = δ((γ−1
F DF )dδ((γ−1

F DF )d−1δ(· · ·δ((γ−1
F DF )1) · · · ))).

The next result gives a criterion for uniform boundedness of the density of a nondegenerate

random vector.

Proposition 1.5.4 ([26, Proposition 3.4]). For all p > 1 and l ≥ 1, let c1 = c1(p) > 0 and c2 =
c2(l , p) ≥ 0 be fixed. Let F ∈ (D∞)d be a nondegenerate random vector such that

(a) E[(detγF )−p ] ≤ c1;

(b) E
[
‖Dl (F i )‖p

H ⊗l

]
≤ c2, i = 1, . . . ,d .

Then the density of F is uniformly bounded, and the bound does not depend on F but only on

the constants c1(p) and c2(l , p).

In order to handle random vectors whose components are not in D∞, we recall the following

general criterion for smoothness of densities established in [39].

Theorem 1.5.5 ([39, Theorem 2.1] or [64, Theorem 2.1.4]). Let F = (F 1, . . . ,F d ) be a random

vector whose components are in D1,2. Let A be an open subset of Rd . Suppose that there exist

H -valued random variables u j
A , j = 1, . . . ,d and a d ×d random matrix γA = (γi , j

A ) such that

(i) u j
A ∈D∞(H ) for all j = 1, . . . ,d,

(ii) γ
i , j
A ∈D∞ for all i , j = 1, . . . ,d, and |detγA|−1 ∈ Lp (Ω) for all p ≥ 1,

(iii) 〈DF i ,u j
A〉H = γ

i , j
A on {F ∈ A}, for all i , j = 1, . . . ,d.

Then the random vector possesses an infinitely differentiable density on the open set A.

A random vector F that satisfies the conditions in Theorem 1.5.5 is said to be locally nonde-

generate.

Throughout the thesis, the letters C ,c with or without index will denote generic positive

constants whose values may change from line to line, unless specified otherwise.

1.6 Summary of the thesis

In this section, we summarize the main contributions of this thesis.

1.6.1 Lower bound on hitting probabilities

Following the general approach in [25], the lower bounds in (1.1.2) and (1.1.3) are a con-

sequence of the following properties of the one-point and two-point joint probability den-

sity functions of the solution. Let pt ,x (·) and ps,y ;t ,x (·, ·) denote the densities of u(t , x) and

(u(s, y),u(t , x)) respectively.

11
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L1 For all M > 0, there exists a positive and finite constant C =C (I , J , M ,d) such that for all

z ∈ [−M , M ]d ,∫
I

d t
∫

J
d x pt ,x (z) ≥C . (1.6.1)

L2 For all M > 0, there exists c = c(I , J , M ,d) > 0 such that for all s, t ∈ I and x, y ∈ J with

(t , x) �= (s, y), and for every z1, z2 ∈ [−M , M ]d ,

ps,y ;t ,x (z1, z2) ≤ c

[|t − s|1/2 +|x − y |]β/2
exp

(
− ‖z1 − z2‖2

c (|t − s|1/2 +|x − y |)
)

. (1.6.2)

In the Gaussian case, i.e., σ≡ Id, b ≡ 0, the formulas for densities are given in terms of variance-

covariance matrix. We can analyze this variance-covariance matrix to obtain the estimate in

(1.6.2) with β= d .

In the case where the solution is not Gaussian, in other words, the entries ofσ are not constants,

we impose some regularity conditions onσ and b; see hypotheses P1 (or the weaker hypothesis

P1’) and P2 in Section 2.1. Using techniques of Malliavin calculus, Dalang, Khoshnevisan

and Nualart [26] showed that the estimate in (1.6.2) for non-Gaussian solutions holds with

β= d +η and with the constant c also depending on η.

The first contribution of this thesis is the sharpening of the estimate on the two-point density

of the non-Gaussian solution so that it has the same Gaussian-type upper bound as the two-

point density of the Gaussian solution. And then we extend this result to the solution of a

system of stochastic fractional heat equations (1 < α ≤ 2). In fact, we have established the

following properties on the densities of the solution to (1.3.3).

Theorem 1.6.1 (Theorem 2.1.1). Assume P1 and P2. Fix T > 0 and let I ⊂ ]0,T ] and J ⊂ R be

two fixed non-trivial compact intervals.

(a) The density pt ,x (z) is a smooth function in z and is uniformly bounded over z ∈Rd , t ∈ I

and x ∈ J .

(b) For all (t , x) ∈ ]0,T ]×R and z ∈Rd , the density pt ,x (z) is strictly positive.

(c) There exists c > 0 such that for all s, t ∈ I , x, y ∈ J with (s, y) �= (t , x) and z1, z2 ∈Rd ,

ps,y ;t ,x (z1, z2) ≤ c(|t − s| α−1
α +|x − y |α−1)−d/2 exp

(
− ‖z1 − z2‖2

c(|t − s| α−1
α +|x − y |α−1)

)
.

(1.6.3)

Moreover, we establish the following lower and upper bounds on hitting probabilities.

Theorem 1.6.2 (Theorem 2.1.4). Assume P1’ and P2. Fix T > 0, M > 0 and η> 0. Let I ⊂ ]0,T ]

and J ⊂R be two fixed non-trivial compact intervals.

(a) There exists c > 0 depending on I , J and M such that for all compact sets A ⊆ [−M , M ]d ,

P{u(I × J )∩ A �= �} ≥ c Capd− 2(α+1)
α−1

(A).
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(b) There exists C > 0 depending on I , J and η such that for all compact sets A ⊂Rd ,

P{u(I × J )∩ A �= �} ≤C Hd−η− 2(α+1)
α−1

(A).

In particular, in the case α= 2, which corresponds to the equation (1.3.2), the lower bound in

part (a) improves the lower bound in (1.1.3) and is best possible, in view of (1.1.2).

The estimate on the two-point density in (1.6.3) requires a detailed analysis of the behavior of

the Malliavin matrix of (u(s, y),u(t , x)). Since we are interested in how this density blows up

as (t , x) → (s, y), we have studied the density (denoted by pZ (·, ·)) of the random variable Z

defined by

Z := (u(s, y),u(t , x)−u(s, y)). (1.6.4)

These two densities ps,y ;t ,x (·, ·) and pZ (·, ·) are related by

ps,y ;t ,x (z1, z2) = pZ (z1, z2 − z1), z1, z2 ∈Rd .

Let γZ be the Malliavin matrix of Z . Note that γZ = ((γZ )m,l )m,l=1,...,2d is a symmetric 2d ×2d

random matrix with four d ×d blocs of the form

γZ =

⎛⎜⎜⎜⎜⎝
γ(1)

Z

... γ(2)
Z

· · · ... · · ·
γ(3)

Z

... γ(4)
Z

⎞⎟⎟⎟⎟⎠
where

γ(1)
Z = (〈

D(ui (s, y)),D(u j (s, y))
〉
H

)
i , j=1,...,d

,

γ(2)
Z = (〈

D(ui (s, y)),D(u j (t , x)−u j (s, y))
〉
H

)
i , j=1,...,d

,

γ(3)
Z = (〈

D(ui (t , x)−ui (s, y)),D(u j (s, y))
〉
H

)
i , j=1,...,d

,

γ(4)
Z = (〈

D(ui (t , x)−ui (s, y)),D(u j (t , x)−u j (s, y))
〉
H

)
i , j=1,...,d

.

Under the hypotheses P1’ and P2, Malliavin calculus provides a formula for the density pZ (·, ·).

Following the general approach in [26], the main effort is to estimate the negative moments of

the determinant of γZ . We have obtained the following

Proposition 1.6.3 (Proposition 2.5.8). Fix T > 0 and let I ⊂ ]0,T ] and J ⊂R be two fixed non-

trivial compact intervals. Assume P1’ and P2. There exists C depending on T such that for any

(s, y), (t , x) ∈ I × J , (s, y) �= (t , x), p > 1,

E
[
(detγZ )−p]1/p ≤C (|t − s| α−1

α +|x − y |α−1)−d . (1.6.5)
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In [26, Proposition 6.6 (a)], an extra exponent η appears in the estimate of the negative mo-

ments of the determinant of γZ ; there, the exponent d in (1.6.5) is replaced by d +η.

The main idea for the proof of Proposition 1.6.3 is to use a perturbation argument. Indeed, for

(t , x) close to (s, y), the random matrix γZ is close to

γ̄=

⎛⎜⎜⎜⎜⎝
γ(1)

Z

... 0

· · · ... · · ·
0

... 0

⎞⎟⎟⎟⎟⎠ .

We then expect that for (t , x) close to (s, y), there will be d large eigenvalues of γZ which will

contribute a factor of order 1 to the determinant of γZ , and d small eigenvalues of γZ , that

will each contribute a factor of order |t − s| α−1
α +|x − y |α−1 to the determinant of γZ .

Let us concentrate on the small eigenvalues. Since we are in the situation of negative moments,

we can use the smallest eigenvalue infξ∈R2d ξT γZξ of γZ to control the small eigenvalues. In

fact, we have proved the following

Proposition 1.6.4 (Proposition 2.5.10). Fix T > 0. Assume P1’ and P2. There exists C depending

on T such that for all s, t ∈ I ,0 ≤ t − s < 1, x, y ∈ J , (s, y) �= (t , x), and p > 1,

E

[(
inf

ξ=∈R2d
ξT γZξ

)−d p
]
≤C (|t − s| α−1

α +|x − y |α−1)−pd . (1.6.6)

The presence of η in the previous work [26] is due to their method of proof. We address

this problem by giving a better estimate on the Malliavin derivative of the solution; see the

following lemma, which is an improvement of Lemma 4.2 in [60].

Lemma 1.6.5 (Lemma A.3.3). Fix T > 0,c0 > 1 and 0 < γ0 < 1. For all q ≥ 1 there exists C > 0

such that for all T ≥ t ≥ s ≥ ε> 0 with t − s > c0ε
γ0 and x ∈R,

d∑
k,i=1

E

[(∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ui (t , x))
)2

)q]
≤Cε(1−γ0+γ0

α−1
α

)q .
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1.6. Summary of the thesis

1.6.2 Probability density function of the supremum

For the upper bound on hitting probabilities of the solution to (1.3.2), it suffices to estimate

appropriately the probability in (1.2.4). By the triangle inequality,

P

{
inf

(t ,x)∈Rn
k,l

|u(t , x)− z| ≤ 2−n

}

≤ P

{
|u(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

|u(t , x)−u(t n
k , xn

l )|
}

. (1.6.7)

Since the supremum of the absolute value of a continuous function is equal to either the

maximum of the function, or the minimum of the function times −1, the probability in (1.6.7)

is approximately equal to

2 ·P

{
|u(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l )

}
. (1.6.8)

Formally, the random variables u(t n
k , xn

l ) and sup(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l ) are not indepen-

dent, but from the perspective of probability density functions, we expect that the joint density

(denoted by pn(·, ·), whose existence needs to be proved) of the random vector in (1.2.5) is

bounded above by the product of the marginal densities of the components (times a constant).

The density of u(t n
k , xn

l ) is bounded uniformly over (t n
k , xn

l ); see [26, Theorem 1.1(a)] and our

Theorem 2.1.1(a). So the joint density of this random vector is dominated by the density of the

random variable sup(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l ).

To derive a satisfactory estimate for the density of sup(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l ), recall that the

probability density function of the maximum of Brownian motion max0≤t≤T B(t ) given by

z �→ 2�
2πT

exp

(−z2

2T

)
1]0,∞[(z).

Relating this formula to the fact that the sample paths of Brownian motion are almost 1
2 -Hölder

continuous suggests that the joint density pn(·, ·) should satisfy the following estimate:

pn(z1, z2) ≤ c√
(2−4n)1/2 +2−2n

exp

(
−z2

2

c
(
(2−4n)1/2 +2−2n

)) (1.6.9)

= c 2n exp

(
−z2

2

c 2−2n

)
, for all z1 ∈R, z2 > 0. (1.6.10)

We are aiming at obtaining an estimate as in (1.6.9) for the solution of (1.3.2). In this thesis, we

only consider the linear equation, i.e., σ≡ 1, b ≡ 0, in which case the solution is Gaussian. And

we consider the supremum of an increment in time of the solution over an interval (at a fixed

spatial position), and the supremum of the solution over a space-time rectangle that touches

15
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the t = 0 axis.

Fix two compact intervals I ⊂ ]0,T ] and J ⊂ ]0,1[ with positive length. Choose (s0, y0) ∈ I × J

and small positive numbers δ1, δ2. Set

F1 = u(s0, y0), F2 = sup
t∈[s0,s0+δ1]

(u(t , y0)−u(s0, y0)), F = (F1,F2), (1.6.11)

and

M0 = sup
(t ,x)∈[0,δ1]×[y0,y0+δ2]

u(t , x). (1.6.12)

Define the random variables uA = (u1
A ,u2

A), γA = (γi , j
A )1≤i , j≤2 and uĀ , γĀ as in Section 4.5.

We show that the random variables F and M0 are locally nondegenerate and therefore, by

Theorem 1.5.5, they have infinitely differentiable densities. Moreover, the integration by parts

formula established in the proof of Theorem 1.5.5 (see [64, Theorem 2.1.4]) leads us to a

formula for the density of each random variable. Then we use the properties of the divergence

operator to give a Gaussian-type upper bound on this (joint) density.

The main results concerning the upper bound on hitting probabilities in this thesis are the

following theorems, in which we refer to Chapter 4 for the definition of the random variables

and vectors uA , γA , uĀ and γĀ .

Theorem 1.6.6 (Theorem 4.2.1(a) and Theorem 4.2.2). Assume σ ≡ 1 and b ≡ 0. Fix I × J ⊂
]0,T ]×]0,1[.

(i) The random vector F in (1.6.11) possesses an infinitely differentiable density on R×]0,∞[

and the formula of the density is given by

p(z1, z2) = E
[

1{F1>z1,F2>z2}δ
(
u1

Aδ
(
u2

A/γ2,2
A

))]
, for all z1 ∈R, z2 > 0. (1.6.13)

(ii) There exists a constant c = c(I , J ) such that for all small δ1 > 0, and for z2 ≥ δ1/4
1 , z1 ∈R and

any (s0, y0) ∈ I × J ,

p(z1, z2) ≤ c√
δ1/2

1

exp

(
− z2

2

c δ1/2
1

)
(|z1|−

1
4 ∧1)exp(− z2

1

c
). (1.6.14)

The estimate in (1.6.14) is only valid for z2 ≥ δ1/4
1 . But this is sufficient to obtain the upper

bound on hitting probabilities: see Section 4.1.

Theorem 1.6.7 (Theorem 4.2.1(b) and Theorem 4.2.5). Assume σ≡ 1 and b ≡ 0. Fix J ⊂ ]0,1[.

(i) The random variable M0 in (1.6.12) possesses an infinitely differentiable density on ]0,∞[

and the formula of the density is given by

p0(z) = E
[
1{M0>z}δ

(
uĀ/γĀ

)]
, for all z > 0. (1.6.15)
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1.6. Summary of the thesis

(ii) There exists a constant c = c(T, J ) such that for all small δ1, δ2 > 0, and for z ≥ (δ1/2
1 +δ2)1/2

and any y0 ∈ J ,

p0(z) ≤ c√
δ1/2

1 +δ2

exp

(
− z2

c (δ1/2
1 +δ2)

)
. (1.6.16)

We give some explanation on the bound in (1.6.14) (the method to prove the bound in (1.6.16)

is the same). The bound in (1.6.14) follows from the formula for the density in (1.6.13) by

proceeding as follows. First, by Hölder’s inequality, we have

p(z1, z2) ≤ P{|F1| > |z1|}1/4P{F2 > z2}1/4‖δ(δ(u2
A/γ2,2

A )u1
A)‖L2(Ω). (1.6.17)

Since F1 is a Gaussian random variable, the estimate on the tail probability P{|F1| > |z1|}
corresponds to the factors involving the variable z1 in (1.6.14). Using Borell’s inequality, P{F2 >
z2}1/4 is bounded above by the exponential factor involving the variable z2 in (1.6.14). It

remains to prove that the L2(Ω)-norm of the random variable δ(δ(u2
A/γ2,2

A )u1
A) is bounded

above by δ−1/4
1 times a constant. We use the properties of the Skorohod integral δ to express

δ(δ(u2
A/γ2,2

A )u1
A) as

δ(δ(u2
A/γ2,2

A )u1
A) = T1 +T2 −T3 +T4 −T5 +T6,

where

T1 =
δ(u2

A)

γ2,2
A

δ(u1
A), T2 =

〈Dγ2,2
A ,u2

A〉H
(γ2,2

A )2
δ(u1

A), T3 = 1

γ2,2
A

〈Dδ(u2
A),u1

A〉H ,

T4 =
δ(u2

A)

(γ2,2
A )2

〈Dγ2,2
A ,u1

A〉H , T5 =
2〈Dγ2,2

A ,u2
A〉H

(γ2,2
A )3

〈Dγ2,2
A ,u1

A〉H ,

T6 = 1

(γ2,2
A )2

〈D〈Dγ2,2
A ,u2

A〉H ,u1
A〉H .

Due to our choice of uA and γA , the last three terms T4,T5 and T6 vanish. To estimate the

moments of the Skorohod integrals, for example δ(u2
A), one can use the Hölder’s inequality

for Malliavin norms (see [64, Proposition 1.5.7]), but the upper bound is not of the correct

order. To handle this problem, we use the fact that we have defined u2
A so that it is an adapted

process; in this case, the Skorohod integral δ(u2
A) coincides with a Walsh integral. Then we

apply Burkholder’s inequality to bound the moments of the three terms T1,T2,T3 respectively,

and each of them will give us the correct upper bound of the order δ−1/4
1 for all z2 ≥ δ1/4

1 . We

state the main technical effort to prove (1.6.14) as follows.

Proposition 1.6.8 (Proposition 4.6.2). (a) There exists cp > 0, not depending on (s0, y0) ∈ I × J ,

such that for all δ1 > 0 and for all z2 ≥ δ1/4
1 ,

‖Ti‖Lp (Ω) ≤ cp δ
−1/4
1 , for i ∈ {1,2,3}. (1.6.18)
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(b) T4,T5 and T6 vanish.

This entire procedure can be extended to the case of the linear stochastic fractional heat

equation (1.2.2). Let u solve linear stochastic fractional heat equation (1.2.2) with d = 1, σ≡
1, b ≡ 0 and let F and M0 be defined as in (1.6.11) and (1.6.12) respectively with this u.

Theorem 1.6.9 (Theorem 5.1.1(a) and Theorem 5.1.2). Assume σ ≡ 1 and b ≡ 0. Fix two

compact intervals I ⊂ ]0,T ] and J ⊂Rwith positive length. The random vector F has an infinitely

differentiable density on R×]0,∞[, denoted by (z1, z2) �→ p(z1, z2). And there exists a constant

c = c(I , J ) such that for all small δ1 > 0, and for z2 ≥ δ(α−1)/(2α)
1 , z1 ∈R and any (s0, y0) ∈ I × J ,

p(z1, z2) ≤ c√
δ(α−1)/α

1

exp

(
− z2

2

c δ(α−1)/α
1

)
(|z1|−

1
4 ∧1)exp

(
−z2

1

c

)
.

Theorem 1.6.10 (Theorem 5.1.1(b) and Theorem 5.1.4). Assume σ≡ 1 and b ≡ 0. Fix a compact

interval J ⊂ R with positive length. The random variable M0 has an infinitely differentiable

density on ]0,∞[, denoted by z �→ p0(z). And there exists a constant c = c(T, J) such that for all

small δ1, δ2 > 0, and for z ≥ (δ(α−1)/α
1 +δα−1

2 )1/2 and any y0 ∈ J ,

p0(z) ≤ c√
δ(α−1)/α

1 +δα−1
2

exp

(
− z2

c (δ(α−1)/α
1 +δα−1

2 )

)
.

Finally, we also study the supremum of certain increments of the solution over a space-time

rectangle. Define the random variable M by

M := sup
(t ,x)∈[0,T ]×[0,1]

(u(t , x)−u(t ,0)).

We apply Theorem 1.5.5 to prove the smoothness of the density of the random variable M for

the solution with Neumann boundary conditions. The method is different from that for the

random vector F defined in (1.6.11), and similar to the case of Brownian sheet.

Theorem 1.6.11 (Theorem 4.2.1(b)). In the case of Neumann boundary conditions, the random

variable M has an infinitely differentiable density on ]0,∞[.
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2 Hitting probabilities for systems of
stochastic heat equations with multi-
plicative noise

In this chapter, we study hitting probabilities for the solution to systems of non-linear stochas-

tic fractional heat equations. Using techniques of Malliavin calculus, we first derive the upper

bound on the one-point density of the solution u(t , x). Secondly, we prove the positivity of the

one-point density of the solution u(t , x). Furthermore, we establish the Gaussian-type upper

bound on the two-point density function of (u(t , x),u(s, y)), which corresponds exactly to the

best upper bound that is available in the case of Gaussian processes. From these results, we

deduce upper and lower bounds on hitting probabilities of the process {u(t , x) : (t , x) ∈R+×R},

in terms of Hausdorff measure and Newtonian capacity, respectively.

2.1 Introduction and main results

We consider a system of non-linear stochastic fractional heat equations with vanishing initial

conditions on the whole space R, that is,

∂ui

∂t
(t , x) = x Dαui (t , x)+

d∑
j=1

σi j (u(t , x))Ẇ j (t , x)+bi (u(t , x)), (2.1.1)

for 1 ≤ i ≤ d , t ∈ [0,T ], x ∈ R, where u := (u1, . . . ,ud ), with initial conditions u(0, x) = 0 for

all x ∈ R. Here, Ẇ := (Ẇ 1, . . . ,Ẇ d ) is a vector of d independent space-time white noises on

[0,T ]×R defined on a probability space (Ω,F ,P). The fractional differential operator Dα is

given by

Dαϕ(x) =F−1{−|λ|αF {ϕ(x);λ}; x}, (2.1.2)

where F denotes the Fourier transform. The fractional differential operator Dα coincides with

the fractional power of the Laplacian. When α= 2, it is Laplacian itself. For 1 <α< 2, it can
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also be represented by

Dαϕ(x) = cα

∫
R

ϕ(x + y)−ϕ(x)− yϕ′(x)

|y |1+α d y (2.1.3)

with certain positive constant cα depending only on α; see [33], [34], [50] and [17]. We refer to

[48] for additional equivalent definitions of Dα.

Consider the following three hypotheses on the coefficients of the system (2.1.1):

P1 The functions σi j and bi are bounded and infinitely differentiable with bounded partial

derivatives of all orders, for 1 ≤ i , j ≤ d .

P1’ The functions σi j and bi are infinitely differentiable with bounded partial derivatives of

all positive orders, and the σi j are bounded, for 1 ≤ i , j ≤ d .

P2 The matrix σ is uniformly elliptic, that is, ‖σ(x)ξ‖2 ≥ ρ2 > 0 for some ρ > 0, for all

x ∈Rd ,‖ξ‖ = 1.

Notice that hypothesis P1’ is weaker than hypothesis P1, since in P1’, the functions bi , i =
1, . . . ,d are not assumed to be bounded.

Recall from Section 1.3 that a mild solution of (2.1.1) is a jointly measurable Rd -valued process

u = {u(t , x), t ≥ 0, x ∈ R}, adapted to the filtration (Ft )t≥0 defined in (1.3.1), such that for

i ∈ {1, . . . ,d},

ui (t , x) =
∫t

0

∫
R

Gα(t − r, x − v)
d∑

j=1
σi j (u(r, v))W j (dr,d v)

+
∫t

0

∫
R

Gα(t − r, x − v)bi (u(r, v))dr d v, (2.1.4)

where the Green kernel Gα(t , x) is given in (1.3.8), and the stochastic integral in (2.1.4) is

interpreted as in [81]. In fact, to make sense of the stochastic integral in (2.1.4), the function

(r, v) �→ 1{r<t }Gα(t − r, x − v) must belongs to L2([0,T ]×R). This is why the requirement that

1 <α≤ 2 is needed; see also [17, 34].

The problems of existence, uniqueness and Hölder continuity of the solution to non-linear

stochastic fractional heat equations have been studied by many authors; see, e.g., [5, 12, 17, 34]

and the references therein. Adapting these results to the case d ≥ 1, one can show that there

exists a unique process u = {u(t , x), t ≥ 0, x ∈R} that is a mild solution of (2.1.1), such that for

any T > 0 and p ≥ 1,

sup
(t ,x)∈[0,T ]×R

E
[|ui (t , x)|p]<∞, i ∈ {1, . . . ,d}. (2.1.5)

Moreover, the following estimate holds for the moments of increments of the solution: for all

s, t ∈ [0,T ], x, y ∈R and p > 1,

E[‖u(t , x)−u(s, y)‖p ] ≤CT,p (Δα((t , x); (s, y)))p/2, (2.1.6)
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where Δα is the fractional parabolic metric defined in (1.4.2). We will also establish an analo-

gous estimate on the Hölder continuity of the Malliavin derivative of the solution; see Propo-

sition 2.5.2. We denote by Km = [0,m] × [−m,m] and βp = 1 − 2(α+1)
p(α−1) with p > 2(α+1)

α−1 . By

Kolmogorov’s continuity theorem (see [51, Theorem 1.4.1, p. 31] and [18, Proposition 4.2]), the

solution u has a continuous modification which we continue to denote by u that satisfies, for

all integers m and 0 ≤β<βp ,

E

⎡⎢⎣
⎛⎜⎝ sup

(t , x), (s, y) ∈ Km
(t , x) �= (s, y)

‖u(t , x)−u(s, y)‖
[|t − s|(α−1)/(2α) +|x − y |(α−1)/2]β

⎞⎟⎠
p⎤⎥⎦<∞. (2.1.7)

Let I ⊂ ]0,T ] and J ⊂ R be two fixed compact intervals with positive length. We choose m

sufficiently large so that I × J ⊂ Km .

Adapting the results from [12] to the case d ≥ 1, the Rd -valued random vector u(t , x) =
(u1(t , x), . . . ,ud (t , x)) admits a smooth probability density function, denoted by pt ,x (·) for

all (t , x) ∈ [0,T ]×R: see our Proposition 2.3.2. For (s, y) �= (t , x), let ps,y ;t ,x (·, ·) denote the joint

density function of the R2d -valued random vector

(u(s, y),u(t , x)) = (u1(s, y), . . . ,ud (s, y),u1(t , x), . . . ,ud (t , x)) (2.1.8)

(the existence of ps,y ;t ,x (·, ·) is a consequence of our Theorem 1.5.1, (2.3.4) and Proposition

2.5.8).

Theorem 2.1.1. Assume P1 and P2. Fix T > 0 and let I ⊂ ]0,T ] and J ⊂R be two fixed non-trivial

compact intervals.

(a) The density pt ,x (z) is a smooth function in z and is uniformly bounded over z ∈Rd , t ∈ I

and x ∈ J .

(b) For all (t , x) ∈ ]0,T ]×R and z ∈Rd , the density pt ,x (z) is strictly positive.

(c) There exists c > 0 such that for all s, t ∈ I , x, y ∈ J with (s, y) �= (t , x) and z1, z2 ∈Rd ,

ps,y ;t ,x (z1, z2) ≤ c(|t − s| α−1
α +|x − y |α−1)−d/2 exp

(
− ‖z1 − z2‖2

c(|t − s| α−1
α +|x − y |α−1)

)
.

(2.1.9)

Remark 2.1.2. (a) Theorem 2.1.1(a) remains valid under a slightly weaker version of P1, in

which the bi , σi j need not be bounded (but their derivatives of all positive orders are

bounded).

(b) Theorem 2.1.1(b) remains valid under P1’.

(c) With hypothesis P1 replaced by the slightly weaker version P1’ in Theorem 2.1.1, the

statements (a) and (b) remain valid and statement (c) is replaced by:
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(c’) There exists c > 0 such that for all s, t ∈ I , x, y ∈ J with (s, y) �= (t , x), z1, z2 ∈Rd and p ≥ 1,

ps,y ;t ,x (z1, z2) ≤ c(|t − s| α−1
α +|x − y |α−1)−d/2

[
|t − s| α−1

α +|x − y |α−1

‖z1 − z2‖2 ∧1

]p/(4d)

.

(2.1.10)

In fact, the boundedness of the functions bi = 0, i = 1, . . . ,d in hypothesis P1 is only used

when we derive the exponential factor on the right-hand side of (2.1.9) by applying Girsanov’s

theorem. However, under the hypothesis P1’, when bi is not bounded, Girsanov’s theorem

is no longer applicable. We establish (2.1.10) in Section 2.5.3 and, following [27, 31], show in

Section 2.2.3 that this estimate is also sufficient for our purposes.

Remark 2.1.3. The results of Theorem 2.1.1 and Remark 2.1.2 (as well as Theorems 2.1.4, 2.1.5

below) include the case α= 2, that is, they apply to the solutions of the stochastic heat equations

with Neumann or Dirichlet boundary conditions; see Remark 2.5.14.

We prove the smoothness and uniform boundedness of the one-point density (Theorem

2.1.1(a)) in Section 2.3. The proof of strict positivity of the one-point density (Theorem 2.1.1(b))

is given in Section 2.4.3. We present the Gaussian-type upper bound on the two-point density

(Theorem 2.1.1(c)) in Section 2.5.3.

Our main contribution is to obtain the Gaussian-type upper bound in (c), which is a significant

improvement of Theorem 1.1(c) in [26]. In fact, for the stochastic heat equation, the optimal

Gaussian-type upper bound holds when t = s, while an extra term η appears in the exponent

when t �= s; see Theorem 1.1 in Dalang, Khoshnevisan and Nualart [26]. We improve their

result by a detailed analysis of the small eigenvalues of the Malliavin matrix of (u(t , x),u(s, y))

as a function of (s, y, t , x). To be more precise, we achieve this by giving a better estimate on

the Malliavin derivative of the solution; see Lemma A.3.3, which is an improvement of Lemma

4.2 in Morien [60]; see the discussion in Section 1.2. We point out that the Gaussian-type

upper bound for the two-point joint density of the solution plays a crucial role in the study of

the lower bound on the hitting probabilities. The estimate in Theorem 2.1.1(c) leads to the

optimal lower bound for the hitting probability; see Theorem 2.1.4(a) below. The upper bound

in Theorem 2.1.4(b) is an extension to 1 <α≤ 2 of the corresponding result of [26, Theorem

1.2] for α= 2.

Using Theorem 2.1.1 together with results from Dalang, Khoshnevisan and Nualart [25], we

shall prove the following results for the hitting probabilities of the solution.

Theorem 2.1.4. Assume P1’ and P2. Fix T > 0, M > 0 and η> 0. Let I ⊂ ]0,T ] and J ⊂R be two

fixed non-trivial compact intervals.

(a) There exists c > 0 depending on I , J and M such that for all compact sets A ⊆ [−M , M ]d ,

P{u(I × J )∩ A �= �} ≥ c Capd− 2(α+1)
α−1

(A).
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(b) There exists C > 0 depending on I , J and η such that for all compact sets A ⊆Rd ,

P{u(I × J )∩ A �= �} ≤C Hd− 2(α+1)
α−1 −η(A).

If σ ≡ Id and b ≡ 0, by Theorem 7.6 in [85], the upper bound in Theorem 2.1.4(b) can be

improved to the best result available for the Gaussian case.

Theorem 2.1.5. Denote by v the solution of (2.1.1) with σ≡ Id and b ≡ 0. Fix T > 0. Let I ⊂ ]0,T ]

and J ⊂R be two fixed non-trivial compact intervals. There exists C > 0 depending on I and J

such that for all compact sets A ⊆Rd ,

P{v(I × J )∩ A �= �} ≤CHd− 2(α+1)
α−1

(A).

These two theorems are proved in the next section.

2.2 Proof of Theorems 2.1.4 and 2.1.5 (assuming Theorem 2.1.1)

In this section, we give the proof of Theorems 2.1.4 and 2.1.5 (assuming Theorem 2.1.1). The

organization of the proof is similar to Section 2 of [27].

2.2.1 Proof of Theorem 2.1.4(b)

We start by proving Theorem 2.1.4(b). For all positive integers n, set

t n
k := k2−

2nα
α−1 , xn

l := l2− 2n
α−1

and

I n
k = [t n

k , t n
k+1], J n

l = [xn
l , xn

l+1], Rn
k,l = I n

k × J n
l . (2.2.1)

By (2.1.7) we have

E

[
sup

(t ,x)∈Rn
k,l

‖u(t , x)−u(t n
k , xn

l )‖p

]
≤C 2−nβp , (2.2.2)

where β is chosen as in (2.1.7).

Lemma 2.2.1. Fix η> 0. There exists c > 0 such that for all z ∈Rd , n large and Rn
k,l ⊂ I × J ,

P
{

u(Rn
k,l )∩B(z,2−n) �= �

}
≤ c2−n(d−η). (2.2.3)

Proof. The proof follows along the same lines as [25, Theorem 3.3] by Theorem 2.1.1(a) and
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(2.2.2). We give its details for reader’s convenience. First, by the triangle inequality,

P
{

u(Rn
k,l )∩B(z,2−n) �= �

}
≤ P

{
‖u(t n

k , xn
l )− z‖ ≤ 2−n + sup

(t ,x)∈Rn
k,l

‖u(t , x)−u(t n
k , xn

l )‖
}

≤ P
{
‖u(t n

k , xn
l )− z‖ ≤ 2−n +2−n(d−η)/d

}
+P

{
sup

(t ,x)∈Rn
k,l

‖u(t , x)−u(t n
k , xn

l )‖ ≥ 2−n(d−η)/d

}
.

Using Theorem 2.1.1(a), the first probability above is bounded above by c̃2−n(d−η). We apply

Markov’s inequality to the second term above, and by (2.2.2), for all p ≥ 1,

P
{

u(Rn
k,l )∩B(z,2−n) �= �

}
≤ c̃2−n(d−η) +2np(d−η)/d E

[
sup

(t ,x)∈Rn
k,l

‖u(t , x)−u(t n
k , xn

l )‖p

]
≤ c̃2−n(d−η) + c̃2np(d−η)/d 2−npβ

= c̃2−n(d−η)(1+2np((d−η)/p+(d−η)/d−β))

≤ c2−n(d−η),

where the last inequality holds because we can choose p large enough and then β close to 1 so

that (d −η)/p + (d −η)/d −β≤ 0. �

Proof of Theorem 2.1.4(b). Fix ε ∈ ]0,1[ and n ∈N such that 2−n−1 < ε≤ 2−n , and write

P{u(I × J )∩B(z,ε) �= �} ≤
∑

(k,l ):Rn
k,l∩I×J �=�

P
{

u(Rn
k,l )∩B(z,2−n) �= �

}
.

The number of pairs (k, l ) involved in the sum is at most 2
2n(α+1)
α−1 times a constant. Lemma 2.2.1

implies that for all z ∈ A, η> 0 and large n,

P{u(I × J )∩B(z,ε) �= �} ≤ C̃ 2−n(d−η)2
2n(α+1)
α−1

≤Cεd− 2(α+1)
α−1 −η. (2.2.4)

Note that C does not depend on (n,ε). Therefore, (2.2.4) is valid for all ε ∈ ]0,1[.

Now we use a covering argument: Choose ε̃ ∈]0,1[ and let {Bi }i=1∞ be a sequence of open

balls in Rd with respective radii ri ∈ ]0, ε̃[ such that

A ⊆∪∞
i=1Bi and

∞∑
i=1

(2ri )d− 2(α+1)
α−1 −η ≤Hd− 2(α+1)

α−1 −η(A)+ ε̃. (2.2.5)

Because P{u(I × J )∩ A �= �} is at most
∑∞

i=1 P{u(I × J )∩Bi �= �}, the bounds in (2.2.4) and
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(2.2.5) together imply that

P{u(I × J )∩ A �= �} ≤C
(
Hd− 2(α+1)

α−1 −η(A)+ ε̃
)

. (2.2.6)

Let ε̃→ 0+ to conclude. �

2.2.2 Proof of Theorem 2.1.5

In the case b ≡ 1 and σ≡ Id , the components of v = (v1, . . . , vd ) are independent and identically

distributed.

Proposition 2.2.2. For any 0 < t0 < T , p ≥ 1 and K a compact set, there exists c1 = c1(p, t0,K ) >
0 such that for any t0 ≤ s ≤ t ≤ T, x, y ∈ K ,

E
[|v1(t , x)− v1(s, y)|p]≥ c1

(
|t − s| α−1

α +|x − y |α−1
)p/2

. (2.2.7)

Proof. The proof is similar to that of Proposition 2.1 of [27]. Since v is Gaussian, it is equivalent

to prove (2.2.7) for p = 2. By Ito’s isometry, we have

E
[|v1(t , x)− v1(s, y)|2]=∫t

s

∫
R

G2
α(t − r, x − v)d vdr

+
∫s

0

∫
R

(Gα(t − r, x − v)−Gα(s − r, y − v))2d vdr (2.2.8)

:= I1 + I2.

Case 1: t − s ≥ |x − y |α. In this case, by the semi-group property of the Green kernel (A.6) and

the scaling property of the Green kernel (A.2), we have

I1 + I2 ≥ I1 =
∫t

s
Gα(2(t − r ),0)dr =

∫t

s
(2(t − r ))−1/αGα(1,0)dr

= cα(t − s)
α−1
α ≥ cα

2

(
(t − s)

α−1
α +|x − y |α−1

)
.

Case 2: t − s ≤ |x − y |α. In this case, by the Plancherel theorem,

I1 + I2 ≥ I2 =
∫s

0

∫
R

(Gα(t − r, x − y + v)−Gα(s − r, v))2d vdr

= 1

2π

∫s

0

∫
R

∣∣∣e−(s−r )|λ|α −e−(t−r )|λ|αeiλ(x−y)
∣∣∣2

dλdr

= 1

2π

∫s

0

∫
R

e−2(s−r )|λ|α
∣∣∣1−e−(t−s)|λ|αeiλ(x−y)

∣∣∣2
dλdr.

We use the elementary inequality |1− r eiθ| ≥ 1
2 |1−eiθ|, valid for all r ∈ [0,1] and θ ∈R, to see
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that

I2 ≥
∫
R

1−e−2s|λ|α

8π|λ|α
∣∣∣1−eiλ(x−y)

∣∣∣2
dλ.

Because x− y ∈ K −K and K is compact, fix C > 0 such that |x− y | ≤C . When x �= y , we change

the variable by letting ξ= |x − y |λ and write e0 = (x − y)/|x − y | to see that the right-hand side

of the above inequality is equal to

|x − y |α−1
∫
R

1−e−2s|ξ|α/|x−y |α

8π|ξ|α
∣∣∣1−ei e0ξ

∣∣∣2
dξ≥ |x − y |α−1

∫
R

1−e−2s|ξ|α/Cα

8π|ξ|α
∣∣∣1−ei e0ξ

∣∣∣2
dξ

≥ |x − y |α−1
∫
R

1−e−2t0|ξ|α/Cα

8π|ξ|α
∣∣∣1−ei e0ξ

∣∣∣2
dξ.

The integral above is a positive constant. Therefore, when t − s ≤ |x − y |α,

E
[|v1(t , x)− v1(s, y)|2]≥ c|x − y |α−1 ≥ c

2

(
|t − s| α−1

α +|x − y |α−1
)

.

Case 1 and case 2 together imply (2.2.7). �

Now we apply Theorem 7.6 in [85] to prove Theorem 2.1.5, which is similar to the proof of

Theorem 1.5 of [27]. It suffices to verify Conditions (C1) and (C2) of [85, Sect. 2.4, p.158] with

N = 2, H1 = α−1
2α , H2 = α−1

2 .

First, we observe that E[v1(t , x)2] = cαt
α−1
α (see (A.4)), which implies that there are positive

constants c1,c2 such that for all (t , x), (s, y) ∈ I × J ,

c1 ≤ E[v1(t , x)2] ≤ c2. (2.2.9)

By (2.2.7) and (2.1.6), there exist positive constants c3,c4 such that for all (t , x), (s, y) ∈ I × J ,

c3

(
|t − s| α−1

α +|x − y |α−1
)
≤ E

[|v1(t , x)− v1(s, y)|2]≤ c4

(
|t − s| α−1

α +|x − y |α−1
)

. (2.2.10)

Hence condition C1 is satisfied by (2.2.9) and (2.2.10). Similar to the argument in the proof

of Theorem 1.5 of [27], condition C2 holds by applying the fourth point of Remark 2.2 in [85],

since (t , x) �→ E[v1(t , x)] = cαt
α−1
α is continuous in I × J with continuous partial derivatives.

Therefore we have finished the proof of Theorem 2.1.5.

2.2.3 Proof of Theorem 2.1.4(a)

The proof is similar to that of Theorem 2.1(1) of [25]; see also [27, Sect 2.4], which requires the

following two lemmas analogous to [25, Lemma 2.2(1)] and [27, Lemma 2.3].

Lemma 2.2.3. Fix N > 0. There exists a finite and positive constant C1 =C1(I , J ,d , N ) such that
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for all a ∈ [0, N ],

∫
I

d t
∫

I
d s

∫
J

d x
∫

J
d y

e−a2/Δα((t ,x);(s,y))

Δd/2
α ((t , x); (s, y))

≤C1Kd− 2(α+1)
α−1

(a). (2.2.11)

Proof. The proof follows along the same lines as [25, Lemma 2.2(1)]. Using the change of

variables ũ = t − s (t fixed), ṽ = x − y (x fixed), we see that the integral on the left-hand side of

(2.2.11) is bounded above by

4|I ||J |
∫|I |

0
dũ

∫|J |

0
d ṽ (ũ

α−1
α + ṽα−1)−d/2 exp

(
− a2

ũ
α−1
α + ṽα−1

)
. (2.2.12)

Another change of variables [ũ = (ua2)α/(α−1), ṽ = (va2)1/(α−1)] implies that this is equal to

C a
2α+2
α−1 −d

∫|I |(α−1)/αa−2

0
du

∫|J |α−1a−2

0
d v

u1/(α−1)v (2−α)/(α−1)

(u + v)d/2
exp

(
− 1

u + v

)
. (2.2.13)

We pass to polar coordinates to deduce that the preceding is bounded above by

C a
2α+2
α−1 −d (I1 + I2(a)), (2.2.14)

where

I1 =
∫K̄ N−2

0
dρρ

2
α−1− d

2 exp(−c/ρ), (2.2.15)

I2(a) =
∫K̄ a−2

K̄ N−2
dρρ

2
α−1− d

2 , (2.2.16)

where K̄ = (|I |2(α−1)/α + |J |2(α−1))1/2. Clearly, I1 ≤ C < ∞. Moreover, if 2
α−1 − d

2 + 1 �= 0, i.e.
2(α+1)
α−1 �= d , then

I2(a) = K̄ (α+1)/(α−1)−d/2 ad−2(α+1)/(α−1) −N d−2(α+1)/(α−1)

(α+1)/(α−1)−d/2
. (2.2.17)

There are three separate cases to consider. (i) If 2(α+1)
α−1 < d , then I2(a) ≤C <∞ for all a ∈ [0, N ].

(ii) If 2(α+1)
α−1 > d , then I2(a) ≤ cad−2(α+1)/(α−1). (iii) If 2(α+1)

α−1 = d , then

I2(a) = 2(ln
1

a
+ ln N ). (2.2.18)

We combine these observations to conclude that the expression in (2.2.14) is bounded above

by C Kd− 2(α+1)
α−1

(a), provided that N0 in (1.4.1) is sufficient large. This completes the lemma. �

Lemma 2.2.4. For all N > 0 and p > 4d( d
2 − 2

α−1 −1). There exists a finite and positive constant

27



Chapter 2. Hitting probabilities for systems of stochastic heat equations with
multiplicative noise

C2 =C2(I , J ,d , N , p) such that for all a ∈ [0, N ],

∫
I

d t
∫

I
d s

∫
J

d x
∫

J
d y (|t − s| α−1

α +|x − y |α−1)−d/2

[
|t − s| α−1

α +|x − y |α−1

a2 ∧1

]p/(4d)

≤C2Kd− 2(α+1)
α−1

(a). (2.2.19)

Proof. Similar to the derivation of (2.2.13) by changing variables, the integral on the left-hand

side of (2.2.19) is equal to

C a
2α+2
α−1 −d

∫|I |(α−1)/αa−2

0
du

∫|J |α−1a−2

0
d v

u1/(α−1)v (2−α)/(α−1)

(u + v)d/2
[(u + v)∧1]p/(4d). (2.2.20)

Passing to the polar coordinates, this is bounded above by

C a
2α+2
α−1 −d (I1 + I2(a)), (2.2.21)

where

I1 =
∫K̄ N−2

0
dρρ

2
α−1− d

2 ρp/(4d),

I2(a) =
∫K̄ a−2

K̄ N−2
dρρ

2
α−1− d

2 ,

where the constant K̄ is given below (2.2.16). Clearly, I1 ≤C <∞ since 2
α−1 − d

2 + p
4d >−1 by

the hypothesis on p. The remainder of the proof is the same as that of Lemma 2.2.3. �

Proof of Theorem 2.1.4(a). The proof of this result follows along the same lines as the proof of

[25, Theorem 2.1(1)], therefore we will only sketch the steps that differ; see also the proof of

[27, Theorem 1.2(b)]. We need to replace their β−6 by d − 2(α+1)
α−1 .

We first note that our Theorem 2.1.1(a) and (b) indicate that

inf
‖z‖≤M

∫
I

d t
∫

J
d x pt ,x (z) ≥C > 0, (2.2.22)

which proves hypothesis A1’ of [25, Theorem 2.1(1)] (see [25, Remark 2.5(a)]).

Let us now follow the proof of [25, Theorem 2.1(1)]. Define, for all z ∈Rd and ε> 0, B̃(z,ε) :=
{y ∈Rd : |y − z| < ε}, where |z| := max1≤ j≤d |z j |, and

Jε(z) = 1

(2ε)d

∫
I

d t
∫

J
d x 1B̃(z,ε)(u(t , x)), (2.2.23)

as in [25, (2.28)].

Assume first that d < 2(α+1)
α−1 . Using Theorem 2.1.1(c) or Remark 2.1.2(c’), we find, instead of
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[25, (2.30)],

E[(Jε(z))2] ≤ c
∫

I
d t

∫
I

d s
∫

J
d x

∫
J

d y[Δα((t , x); (s, y))]−d/2.

The change of variables u = t − s (t fixed), v = x − y (x fixed), implies that the above integral is

bounded above by

C
∫|I |

0
du

∫|J |

0
d v

(
u

α−1
α + vα−1

)−d/2 ≤C ′
∫|I |

0
duΨ|J |,(α−1)d/2(u(α−1)d/(2α)), (2.2.24)

where Ψ is defined by

Ψa,ν(ρ) :=
∫a

0

d x

ρ+xν
,

for all a,ν,ρ > 0, as in (2.23) of [25]. Hence, by Lemma 2.3 of [25], for all ε> 0,

E
[
(Jε(z))2]≤C

∫|I |

0
du K1− 2

(α−1)d
(u(α−1)d/(2α)).

In order to bound the above integral, we consider three different cases: (i) If 0 < d < 2
α−1 , then

1− 2
(α−1)d < 0 and the integral equals |I |. (ii) If 2

α−1 < d < 2(α+1)
α−1 , then K1− 2

(α−1)d
(u(α−1)d/(2α)) =

u1/α−(α−1)d/(2α) and the integral is finite. (iii) If d = 2
α−1 , then K0(u1/α) = log(N0/u1/α) and the

integral is also finite. The remainder of the proof of Theorem 2.1.4(a) when d < 2(α+1)
α−1 follows

exactly as in [25, Theorem 2.1(1) Case 1].

Assume now that d > 2(α+1)
α−1 . Define, for all μ ∈P(A) and ε> 0,

Jε(μ) = 1

(2ε)d

∫
Rd

μ(d z)
∫

I
d t

∫
J

d x 1B̃(z,ε)(u(t , x)), (2.2.25)

as [25, (2.35)]. Fix μ ∈P(A) such that

Id− 2(α+1)
α−1

(μ) ≤ 2

Capd− 2(α+1)
α−1

(A)
.

Analogous to the proof of [25, (2.41)], we use Theorem 2.1.1(c) and Lemma 2.2.3 (or the

combination of Remark 2.1.2(c’) and Lemma 2.2.4), to see that for all ε> 0

E
[
(Jε(μ))2]≤C2Id− 2(α+1)

α−1
(μ) ≤ 2C2

Capd− 2(α+1)
α−1

(A)
.

The remainder of the proof of Theorem 2.1.4(a) when d > 2(α+1)
α−1 follows as in [25, Theorem

2.1(1) Case 2].

The case d = 2(α+1)
α−1 is proved exactly along the same lines as the proof of [25, Theorem 2.1(1)

Case 3], appealing to (2.2.22), Theorem 2.1.1(c) and Lemma 2.2.3 (or the combination of
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Remark 2.1.2(c’) and Lemma 2.2.4). �

2.3 Existence, smoothness and uniform boundedness of the one-

point density

In [12], the Malliavin differentiability and smoothness of the density of the solution to frac-

tional SPDEs driven by spatially correlated noise was established when d = 1. These can

also be applied to SPDEs driven by space-time white noise and the extension to d > 1 can

easily be done by working coordinate by coordinate. In particular, for any (t , x) ∈ [0,T ]×R,

i ,k ∈ {1, . . . ,d}, the derivative of ui (t , x) satisfies the system of equations

D (k)
r,v (ui (t , x)) =Gα(t − r, x − v)σi k (u(r, v))+ai (k,r, v, t , x), (2.3.1)

where

ai (k,r, v, t , x) =
d∑

j=1

∫t

r

∫
R

Gα(t −θ, x −η)D (k)
r,v (σi j (u(θ,η)))W j (dθ,dη)

+
∫t

r

∫
R

Gα(t −θ, x −η)D (k)
r,v (bi (u(θ,η)))dθdη, (2.3.2)

if r < t and D (k)
r,v (ui (t , x)) = 0 when r > t . Moreover, for any p > 1,m ≥ 1 and i ∈ {1, . . . ,d}, the

order m derivatives satisfies

sup
(t ,x)∈[0,T ]×R

E
[∥∥Dm(ui (t , x))

∥∥p
H ⊗m

]<∞, (2.3.3)

and by iterating the calculation which leads to (2.3.1), we see that Dm also satisfies the system

of stochastic partial differential equations which are analogous to the equations in Proposition

4.1 of [25]; see also [66, (6.29)]. In particular, for all (t , x) ∈ [0,T ]×R,

u(t , x) ∈ (D∞)d . (2.3.4)

Our objective in this section is to prove Theorem 2.1.1(a) by using Proposition 1.5.4. The next

result proves property (a) in Proposition 1.5.4 when F is replaced by u(t , x).

Proposition 2.3.1. Fix T > 0 and assume hypotheses P1’ and P2. Then, for any p ≥ 1,

E
[
(detγu(t ,x))

−p]
is uniformly bounded over (t , x) in any closed non-trivial rectangle I × J ⊂ ]0,T ]×R.

Proof. The proof follows along the same lines as [26, Proposition 4.2] by using Proposition

A.2.1; see also [27, Proposition 4.1]. The main differences are the exponents appearing in the
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estimate. Let (t , x) ∈ I × J be fixed. We write

detγu(t ,x) ≥
(

inf
ξ∈Rd

ξT γu(t ,x)ξ

)d

.

Let ξ ∈Rd with ‖ξ‖ = 1 and fix ε ∈]0,1[. Using (2.3.1) and the inequality

(a +b)2 ≥ 2

3
a2 −2b2, (2.3.5)

valid for all a,b ∈R, we see that

ξT γu(t ,x)ξ=
∫t

0
dr

∫
R

d v

∥∥∥∥∥ d∑
i=1

Dr,v (ui (t , x))ξi

∥∥∥∥∥
2

≥
∫t

t (1−ε)
dr

∫
R

d v

∥∥∥∥∥ d∑
i=1

Dr,v (ui (t , x))ξi

∥∥∥∥∥
2

≥ 2

3
I1 −2I2,

where

I1 =
∫t

t (1−ε)
dr

∫
R

d v
d∑

k=1

(
d∑

i=1
Gα(t − r, x − v)σi k (u(r, v))ξi

)2

,

I2 =
∫t

t (1−ε)
dr

∫
R

d v
d∑

k=1

(
d∑

i=1
ai (k,r, v, t , x)ξi

)2

,

and ai (k,r, v, t , x) is defined in (2.3.2). By hypothesis P2 and semi-group property of the Green

kernel (A.6),

I1 ≥ c
∫t

t (1−ε)

∫
R

G2
α(t − r, x − v)d vdr

= c
∫t

t (1−ε)
Gα(2(t − r ),0)dr

= c

2

∫2tε

0
Gα(r,0)dr = c ′(2tε)

α−1
α ≥ c ′′ε

α−1
α , (2.3.6)

where in the third equality we use (A.2) and the constants c, c ′ and c ′′ are uniform over

(t , x) ∈ I × J .

Next we apply Cauchy-Schwarz inequality to find that, for any q ≥ 1,

E

[
sup

ξ∈Rd :‖ξ‖=1
|I2|q

]
≤ c(E[|I21|q ]+E[|I22|q ]),
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where

I21 =
d∑

i , j ,k=1

∫t

t (1−ε)
dr

∫
R

d v

(∫t

r

∫
R

Gα(t −θ, x −η)D (k)
r,v (σi j (u(θ,η)))W j (dθ,dη)

)2

,

I22 =
d∑

i ,k=1

∫t

t (1−ε)
dr

∫
R

d v

(∫t

r

∫
R

Gα(t −θ, x −η)D (k)
r,v (bi (u(θ,η)))dθdη

)2

.

The estimates for the q-th moment of I21 and I22 are similar to those in [26, Proposition 4.2],

so we only present the differences here. By Burkholder’s inequality for martingales with values

in Hilbert space (Lemma A.3.1), and using P1’,

E[|I21|q ] ≤ c
d∑

k=1
E

[∣∣∣∣∣
∫t

t (1−ε)
dθ

∫
R

dηG2
α(t −θ, x −η)

∫t∧θ

t (1−ε)
dr

∫
R

d v
( d∑

l=1
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣∣
q]

.

By Hölder’s inequality with respect to the measure G2
α(t −θ, x −η)dθdη, we see that

E[|I21|q ] ≤C
d∑

k=1

∣∣∣∣∫t

t (1−ε)
dθ

∫
R

dηG2
α(t −θ, x −η)

∣∣∣∣q−1

×
∫t

t (1−ε)
dθ

∫
R

dηG2
α(t −θ, x −η)E

[∣∣∣∣∣
∫t∧θ

t (1−ε)
dr

∫
R

d v
( d∑

l=1
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣∣
q]

.

Lemma A.3.2 assures that

E[|I21|q ] ≤CT

∣∣∣∣∫t

t (1−ε)
dθ

∫
R

dηG2
α(t −θ, x −η)

∣∣∣∣q

ε(α−1)q/α

=CT

∣∣∣∣∫t

t (1−ε)
Gα(2(t −θ),0)dθ

∣∣∣∣q

ε(α−1)q/α

=C ′
T (2tε)(α−1)q/αε(α−1)q/α ≤C ′′

T ε
2(α−1)q/α,

where in the first inequality we use the semi-group property (A.6), in the second equality we

use (A.2) and the constants CT , C ′
T and C ′′

T are uniform over (t , x) ∈ I × J .

We next derive a similar bound for I22. First, we use Cauchy-Schwarz inequality with respect

to the measure Gα(t −θ, x −η)dθdη to see that

I22 ≤
d∑

i ,k=1

∫t

t (1−ε)
(t − r )dr

∫
R

d v
∫t

r

∫
R

Gα(t −θ, x −η)
(
D (k)

r,v (bi (u(θ,η)))
)2

dθdη

≤
d∑

i ,k=1
tε

∫t

t (1−ε)
dr

∫
R

d v
∫t

r

∫
R

Gα(t −θ, x −η)
(
D (k)

r,v (bi (u(θ,η)))
)2

dθdη.

Since the partial derivatives of bi are bounded, by Cauchy-Schwarz inequality and Fubini’s
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theorem,

E[|I22|q ] ≤ c
d∑

l ,k=1
(tε)q E

[∣∣∣∣∫t

t (1−ε)
dr

∫
R

d v
∫t

r

∫
R

Gα(t −θ, x −η)
(
D (k)

r,v (ul (θ,η))
)2

dθdη

∣∣∣∣q
]

= c
d∑

l ,k=1
(tε)q E

[∣∣∣∣∫t

t (1−ε)
dθ

∫
R

dηGα(t −θ, x −η)
∫t∧θ

t (1−ε)
dr

∫
R

d v

×
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q
]

.

Applying Hölder’s inequality with respect to the measure Gα(t −θ, x −η)dθdη,

E[|I22|q ] ≤ c
d∑

l ,k=1
(tε)q

∣∣∣∣∫t

t (1−ε)
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q−1

×
∫t

t (1−ε)
dθ

∫
R

dηGα(t −θ, x −η)E

[∣∣∣∣∫t∧θ

t (1−ε)
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q
]

.

Using Lemma A.3.2, this yields E[|I22|q ] ≤CT (tε)q (tε)q (tε)(α−1)q/α =CT (tε)(3−1/α)q .

Thus, we have proved that

E

[
sup

ξ∈Rd :‖ξ‖=1
|I2|q

]
≤CT ε

2(α−1)q/α, (2.3.7)

where the constant CT is clearly uniform over (t , x) ∈ I × J .

Finally, we apply Proposition A.2.1 with Z := inf‖ξ‖=1(ξT γu(t ,x)ξ),Y1,ε = Y2,ε = sup‖ξ‖=1 I2,ε0 =
1,α1 =α2 = (α−1)/α and β1 =β2 = 2(α−1)/α, to get

E
[
(detγu(t ,x))

−p]≤CT ,

where all the constants are independent of (t , x) ∈ I × J . �

In [12], the authors established the existence and smoothness of the density of the solution

of one single stochastic fractional partial differential equation driven by spatially correlated

noise. For a system of d equations driven by space-time white noise, we have the following

results.

Proposition 2.3.2. Assume P1’ and P2. Fix T > 0 and let I and J be compact intervals as in

Theorem 2.1.1. Then for any (t , x) ∈ ]0,T ]×R, u(t , x) is a nondegenerate random vector and its

density function is infinitely differentiable and uniformly bounded over z ∈Rd and (t , x) ∈ I × J .

Proof. The conclusions follow from Proposition 2.3.1 and (2.3.4) together with Theorem 1.5.1

and Proposition 1.5.4. �
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Proof of Theorem 2.1.1(a). This is an immediate consequence of Proposition 2.3.2. �

2.4 Strict positivity of the one-point density

The aim of this section is to prove the strict positivity of the one-point density of u stated in

Theorem 2.1.1(b). We will apply a criterion of strict positivity of density introduced by Bally

and Pardoux [7]. Before we give the proof of Theorem 2.1.1(b), let us review some existing

literature on the strict positivity of the densities of the solutions to SPDEs.

The first related paper is by Nualart [69], in which the author extended the criterion intro-

duced by Bally and Pardoux [7] and applied it to study the strict positivity of the densities of

solutions to systems of SPDEs driven by spatially homogeneous noise that is white in time.

The Gaussian-type lower bound on the density of the solution of the stochastic heat equation

was established by Kohatsu-Higa [49], in which the author generalized the lower bound esti-

mates for uniformly elliptic diffusion processes obtained by Kusuoka and Stroock [52, 53, 54].

Dalang, Khoshnevisan and Nualart [26] extended this result to the case of system of SPDEs.

The Gaussian-type lower bound for the density of the solution to single spatially homogeneous

SPDEs was obtained by D. Nualart and Quer-Sardanyons [67] in the case where σ is a constant,

and by E. Nualart and Quer-Sardanyons [70] in the non-linear case.

Recently, Chen, Hu and Nualart [19] have studied the strict positivity of densities for non-

linear stochastic fractional heat equations with measure-valued initial data and unbounded

diffusion coefficient. The criteria introduced by Bally and Pardoux [7] are no longer applicable

in their case and they develop a localized version. In our situation, the initial data and diffusion

coefficient do not bother us and we prefer to give a classical proof of the strict positivity of the

density.

For the stochastic wave equation in two spatial dimensions, the positivity of the density was

studied in [14]. In the case of hyperbolic SPDEs, points of positive density were studied by

Millet and Sanz-Solé [59]. We also mention that the strict positivity of the density for the

stochastic Cahn-Hilliard equation was studied by Cardon-Weber [13].

2.4.1 The criterion for strict positivity of density

For g = (g1, . . . , gd ) ∈H and z ∈Rd , we define W̃ j (t , x) =W j (t , x)+ z j
∫t

0

∫x
−∞ g j (s, y)d sd y . By

Girsanov’s Theorem, W̃ = (W̃ 1, · · · ,W̃ d ) is a standard Brownian sheet on the probability space

(Ω,F , P̃), where

d P̃

dP
(ω) = J (z)(ω), ω ∈Ω,
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where

J (z) = exp

(
−

d∑
j=1

z j

∫T

0

∫
R

g j (s, y)W j (d s,d y)− 1

2

d∑
j=1

z2
j

∫T

0

∫
R

g 2
j (s, y)d sd y

)
.

For any (t , x) ∈ [0,T ]×R, let ũz (t , x) be the solution to equation (2.1.4) with respect to the

Brownian sheet W̃ , that is, for i = 1, · · · ,d ,

ũz
i (t , x) =

∫t

0

∫
R

Gα(t − r, x − v)
d∑

j=1
σi j (ũz (r, v))W j (dr,d v)

+
d∑

j=1
z j

∫t

0

∫
R

Gα(t − r, x − v)σi j (ũz (r, v))g j (r, v)dr d v

+
∫t

0

∫
R

Gα(t − r, x − v)bi (ũz (r, v))dr d v.

Then the law of u under P coincides with the law of ũz under P̃.

Given a sequence {gn}n≥1 in H and z ∈Rd , let ũz
n(t , x) be the solution to equation (2.1.4) with

respect to the Brownian sheet W̃n , where

W̃ j
n (t , x) =W j (t , x)+ z j

∫t

0

∫x

−∞
gn j (s, y)d sd y.

That is, ũz
n(t , x) satisfies

ũz
ni (t , x) =

∫t

0

∫
R

Gα(t − r, x − v)
d∑

j=1
σi j (ũz

n(r, v))W j (dr,d v)

+
d∑

j=1
z j

∫t

0

∫
R

Gα(t − r, x − v)σi j (ũz
n(r, v))gn j (r, v)dr d v

+
∫t

0

∫
R

Gα(t − r, x − v)bi (ũz
n(r, v))dr d v. (2.4.1)

Define the d ×d matrix

ϕz
n(t , x) =

(
ϕz

n,i , j (t , x)
)

i , j
:=

(
∂

∂z j
ũz

ni (t , x)

)
i , j

and the Hessian matrix (which is a tensor of order 3) of the random vector ũz
n(t , x),

ψz
n(t , x) =

(
ψz

n,i , j ,m(t , x)
)

i , j ,m
:=

(
∂2

∂z j∂zm
ũz

n,i (t , x)

)
i , j ,m

.

We still use the notation ‖ ·‖ to denote the norm of an n ×n matrix A defined as

‖A‖ = sup
ξ∈Rn ,‖ξ‖=1

‖Aξ‖.
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We introduce the following conditions to study the strict positivity of the density pt ,x (·) of the

law of u(t , x). We say that y ∈Rd satisfies Ht,x(y) if:

Ht,x(y): there exists a sequence {gn}n≥1 in L2([0,T ]×R,Rd ) and positive constants c1,c2,r0 and

δ such that

(i) limsupn→∞ P
{
(‖u(t , x)− y‖ ≤ r )∩ (detϕ0

n(t , x) ≥ c1)
}> 0, for all r ∈ ]0,r0].

(ii) limn→∞ P
{
sup‖z‖≤δ(‖ϕz

n(t , x)‖+‖ψz
n(t , x)‖) ≤ c2

}= 1.

Assume that σ and b satisfy the conditions P1’ and P2.

The following theorem is an extension of the criterion by Bally and Pardoux [7] to systems of

equations; see also [69, Theorem 5.7]. We give a self-contained proof for reader’s convenience.

Theorem 2.4.1. Let (t , x) ∈ ]0,T ]×R and y ∈Rd be such that Ht,x(y) holds true. Then pt ,x (y) > 0.

Moreover, if Ht,x(y) holds on Supp(Pu(t ,x)), then pt ,x (·) is a strictly positive function on Rd .

Proof. We start proving the first statement of this theorem. Let y0 ∈Rd satisfy Ht,x(y0).

Let R and α be the constants in Lemma A.4.1 determined by δ and β with β = (1/c1)∨ c2.

Choose and fix r with 0 < r <α. We define Φn(z) = ũz
n(t , x) and

Λn = {‖u(t , x)− y0‖ ≤ r ∩ (detϕ0
n(t , x) ≥ 1/β)}

∩
{

sup
‖z‖≤δ

(‖ϕz
n(t , x)‖+‖ψz

n(t , x)‖) ≤β

}

It follows from (i), (ii) that there exists n ∈N such that

(iii) P(Λn) > 0.

From now on, n will also be fixed, such that (iii) holds. By Lemma A.4.1 for all ω ∈ Λn , the

mapping z �→Φn(z,ω) is a diffeomorphism between an open neighborhood Vn(ω) of 0 in Rd

contained in the ball B(0,R), and the ball B(u(t , x)(ω),α).

From Girsanov’s Theorem, for each z ∈ Rd and any f ∈ Bb(Rd ,R+) (the set of nonnegative

bounded Borel functions ),

E[ f (u(t , x))] = E[ f (ũz
n(t , x))Jn(z)] = E[ f (Φn(z))Jn(z)], (2.4.2)

where

Jn(z) = exp

(
−

d∑
j=1

z j

∫T

0

∫
R

gn j (s, y)W j (d s,d y)− 1

2

d∑
j=1

z2
j

∫T

0

∫
R

g 2
n j (s, y)d sd y

)
.

Let ψ(z) = (2π)−d/2 exp(−‖z‖2/2). From (2.4.2), we know that E[ f (Φn(z))Jn(z)] does not de-
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pend on z, so

E[ f (u(t , x))] =
∫
Rd

ψ(z)E[ f (Φn(z))Jn(z)]d z

≥ E

[∫
Rd

ψ(z) f (Φn(z))Jn(z)d z;Λn

]
≥ E

[∫
Vn

ψ(z) f (Φn(z))Jn(z)d z;Λn

]
= E

[∫
B(u(t ,x),α)

f (v)

(
ψ(z)Jn(z)

detϕz
n(t , x)

)∣∣∣∣
z=Φ−1

n (v)
d v ;Λn

]
(2.4.3)

≥
∫
Rd

f (v)θn(v)d v, (2.4.4)

where

θn(v) = E

[
h(‖u(t , x)− v‖)min

{
1B(u(t ,x),α)(v)

(
ψ(z)Jn(z)

detϕz
n(t , x)

)∣∣∣∣
z=Φ−1

n (v)
,1

}
;Λn

]
,

h : R+ �→ [0,1] is continuous and satisfies 1[0,r ] ≤ h ≤ 1[0,(r+α)/2]. In the equality (2.4.3), for

all ω ∈Λn the determinant det ϕz
n(t , x)(ω)

∣∣
z=Φ−1

n (v) with v ∈ B(u(t , x)(ω),α) is positive due to

(A.23). Using the fact that Λn ⊂ {‖u(t , x)− y0‖ ≤ r }, we know that h(‖u(t , x)− y0‖) = 1 on Λn .

Together with (iii), we have θn(y0) > 0.

By the definition of the function h, almost surely the function

v �→ h(‖u(t , x)− v‖)min

{
1B(u(t ,x),α)(v)

(
ψ(z)Jn(z)

detϕz
n(t , x)

)∣∣∣∣
z=Φ−1

n (v)
,1

}

is equal to 0 for v with ‖v −u(t , x)‖ > 2(r +α)/3 and equal to

h(‖u(t , x)− v‖)min

{(
ψ(z)Jn(z)

detϕz
n(t , x)

)∣∣∣∣
z=Φ−1

n (v)
,1

}

for v ∈ B(u(t , x),3(r +α)/4). Hence it is a.s. continuous and bounded by 1. By Lebesgue’s dom-

inated convergence theorem, θn is continuous. Let f (v) = 1
εd 1B(y0,ε)(v). Then (2.4.4) becomes

1

εd

∫
B(y0,ε)

pt ,x (v)d v ≥ 1

εd

∫
B(y0,ε)

θn(v)d v.

Since v �→ pt ,x (v) is continuous, letting ε→ 0, we have pt ,x (y0) ≥ θn(y0) > 0.

For the second statement, it suffices to deduce that Supp(Pu(t ,x)) =Rd from the first statement

of this theorem. Suppose that Supp(Pu(t ,x)) � Rd . Then we can find x1 ∈ Rd such that x1 �∈
Supp(Pu(t ,x)). Choose x2 ∈ Supp(Pu(t ,x)) and we can find a continuous curve {x(λ),λ ∈ [0,1]}

with x(0) = x2 and x(1) = x1. Denote λ∗ = sup{λ : x(λ) ∈ Supp(Pu(t ,x))}. Since x1 = x(1) �∈
Supp(Pu(t ,x)) and the complement of Supp(Pu(t ,x)) is an open set, it follows that λ∗ < 1. Then
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we have a sequence λn ↑ λ∗ such that x(λn) ∈ Supp(Pu(t ,x)) and we also know that x(λ) �∈
Supp(Pu(t ,x)) for λ∗ < λ ≤ 1. This means that x(λ∗) is on the boundary of Supp(Pu(t ,x)), and

since this set is closed, we conclude that x(λ∗) ∈ Supp(Pu(t ,x)). By the hypothesis that Ht,x(y)

holds on Supp(Pu(t ,x)) and the first statement, we know that pt ,x (x(λ∗)) > 0. Since the density

function is continuous, it implies that x(λ∗) is in the interior of Supp(Pu(t ,x)), which contradicts

with the fact that x(λ∗) is on the boundary of Supp(Pu(t ,x)). �

2.4.2 Finite uniform moments of ϕz
n,i , j and uniform Lp -continuity of ũz

n and ϕz
n

In this section, we give some preliminary computations needed in the proof of Theorem

2.1.1(b).

Consider the sequence {gn = (gn1, . . . , gnd )}n≥1 in H defined by

gn j (r, v) = v−1
n 1[t−2−n ,t ](r )Gα(t − r, x − v), n ≥ 1, j = 1, . . . ,d , (2.4.5)

where

vn :=
∫2−n

0

∫
R

G2
α(r, v)d vdr = α

α−1
2−1/αGα(1,0)2−n α−1

α

by the scaling property of the Green kernel (A.2).

Taking the derivative with respect to z j in the both sides of (2.4.1), we have

ϕz
n,i , j (t , x) =

∫t

0

∫
R

Gα(t − r, x − v)
d∑

m,l=1
∂mσi l (ũz

n(r, v))ϕz
n,m, j (r, v)W l (dr,d v)

+
∫t

0

∫
R

Gα(t − r, x − v)σi j (ũz
n(r, v))gn j (r, v)dr d v

+
d∑

m,l=1
zl

∫t

0

∫
R

Gα(t − r, x − v)∂mσi l (ũz
n(r, v))ϕz

n,m, j (r, v)gnl (r, v)dr d v

+
d∑

m=1

∫t

0

∫
R

Gα(t − r, x − v)∂mbi (ũz
n(r, v))ϕz

n,m, j (r, v)dr d v. (2.4.6)
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On the other hand, similar to (2.3.1), the Malliavin derivative D ( j )
r,v (ũz

n,i (t , x)) satisfies

D ( j )
r,v (ũz

n,i (t , x)) =
∫t

0

∫
R

Gα(t − s, x − y)
d∑

m,l=1
∂mσi l (ũz

n(s, y))D ( j )
r,v (ũz

n,m(s, y))W l (d s,d y)

+Gα(t − r, x − v)σi j (ũz
n(r, v))

+
d∑

m,l=1
zl

∫t

0

∫
R

Gα(t − s, x − y)∂mσi l (ũz
n(s, y))

×D ( j )
r,v (ũz

n,m(s, y))gnl (s, y)d sd y

+
d∑

m=1

∫t

0

∫
R

Gα(t − s, x − y)∂mbi (ũz
n(s, y))D ( j )

r,v (ũz
n,m(s, y))d sd y.

Comparing the above two equations we have

ϕz
n,i , j (t , x) =

∫t

0

∫
R

D ( j )
r,v (ũz

n,i (t , x))gn j (r, v)d vdr, 1 ≤ i , j ≤ d . (2.4.7)

Since

sup
(t ,x)∈[0,T ]×R

E

[(∫t

0

∫
R

[D ( j )
r,v (ũz

n,i (t , x))]2d vdr

)p/2
]
<∞

for any p > 1 (see for instance (2.3.3)), by the Cauchy-Schwarz inequality we have

sup
(s,y)∈[0,T ]×R

E[|ϕz
n,i , j (s, y)|p ] <∞. (2.4.8)

We improve (2.4.8) to a bound that is uniform in z for small z.

Lemma 2.4.2. There exists a constant Cp,T such that for p > 1, any large n and small δ,

sup
‖z‖≤δ

sup
(s,y)∈[0,T ]×R

E [|ϕz
n,i , j (s, y)|p ] ≤Cp,T . (2.4.9)

Proof. From (2.4.6) we obtain that

ϕz
n,i , j (t , x) =A z

n,i , j (t , x)+Bz
n,i , j (t , x)+C z

n,i , j (t , x)+D z
n,i , j (t , x), (2.4.10)
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where

A z
n,i , j (t , x) = v−1

n

∫2−n

0
dr

∫
R

d v σi j (ũz
n(t − r, v))G2

α(r, x − v),

Bz
n,i , j (t , x) =

∫t

t−2−n

∫
R

Gα(t − s, x − y)
d∑

l ,m=1
∂mσi l (ũz

n(s, y))ϕz
n,m, j (s, y)W l (d s,d y),

C z
n,i , j (t , x) =

d∑
l ,m=1

zl

∫t

t−2−n

∫
R

Gα(t − s, x − y)∂mσi l (ũz
n(s, y))ϕz

n,m, j (s, y)gnl (s, y)d yd s

=
d∑

l ,m=1
zl

∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)∂mσi l (ũz
n(s, y))ϕz

n,m, j (s, y)d yd s,

D z
n,i , j (t , x) =

∫t

t−2−n

∫
R

d∑
m=1

∂mbi (ũz
n(s, y))ϕz

n,m, j (s, y)Gα(t − s, x − y)d yd s.

Next we study upper bounds for the p-moments of the four terms on the right-hand side of

(2.4.10). For this, we assume that ‖z‖ ≤ δ for some δ> 0.

First we notice that by the choice of vn , there exists a constant K such that

|A z
n,i , j (t , x)| ≤ K , (2.4.11)

for all n, i , j , z and (t , x) since the functions σi j , i , j = 1, . . . ,d are bounded.

By Burkholder’s inequality, for p > 1

E[|Bz
n,i , j (t , x)|p ] ≤ cp E

[(∫t

t−2−n

∫
R

G2
α(t − s, x − y)

d∑
l ,m=1

(∂mσi l (ũz
n(s, y)))2

× (ϕz
n,m, j (s, y))2d sd y

) p
2

]
.

Since the partial derivatives of σi l are bounded, using Hölder’s inequality with respect to the

measure G2
α(t − s, x − y)d sd y , E[|Bz

n,i , j (t , x)|p ] is bounded above by

cp E

[∫t

t−2−n

∫
R

G2
α(t − s, x − y)

d∑
m=1

|ϕz
n,m, j (s, y)|p d sd y

]

×
(∫t

t−2−n

∫
R

G2
α(t − s, x − y)d yd s

) p
2 −1

≤ cp v
p
2 −1

n

∫t

t−2−n

∫
R

G2
α(t − s, x − y)

d∑
m=1

sup
(r,v)∈[0,T ]×R

E[|ϕz
n,m, j (r, v)|p ]d sd y

= cp v
p
2

n

d∑
m=1

sup
(s,y)∈[0,T ]×R

E[|ϕz
n,m, j (s, y)|p ]. (2.4.12)
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2.4. Strict positivity of the one-point density

By Hölder’s inequality with respect to the measure v−1
n G2

α(t − s, x − y)d sd y ,

E[|C z
n,i , j (t , x)|p ] ≤ cpδ

p E

[∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)
d∑

m=1
|ϕz

n,m, j (s, y)|p d sd y

]

×
(∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)d yd s

)p−1

≤ cpδ
p
∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)d sd y

×
d∑

m=1
sup

(r,v)∈[0,T ]×R
E[|ϕz

n,m, j (s, v)|p ]

= cpδ
p

d∑
m=1

sup
(s,y)∈[0,T ]×R

E[|ϕz
n,m, j (s, y)|p ]. (2.4.13)

Similarly, applying Hölder’s inequality with respect to the measure Gα(t − s, x − y)d sd y , we

have

E[|D z
n,i , j (t , x)|p ] ≤ cp E

[∫t

t−2−n

∫
R

Gα(t − s, x − y)
d∑

m=1
|ϕz

n,m, j (s, y)|p d sd y

]

×
(∫t

t−2−n

∫
R

Gα(t − s, x − y)d yd s

)p−1

≤ cp 2−n(p−1)
∫t

t−2−n

∫
R

Gα(t − s, x − y)d sd y

×
d∑

m=1
sup

(r,v)∈[0,T ]×R
E[|ϕz

n,m, j (r, v)|p ]

= cp 2−np
d∑

m=1
sup

(s,y)∈[0,T ]×R
E[|ϕz

n,m, j (s, y)|p ]. (2.4.14)

Now, substituting (2.4.11), (2.4.12), (2.4.13) and (2.4.14) into (2.4.10), we obtain that for all

p > 1,

d∑
m=1

E[|ϕz
n,m, j (t , x)|p ] ≤ Kp +cp,T (v

p
2

n +δp +2−np )
d∑

m=1
sup

(s,y)∈[0,T ]×R
E[|ϕz

n,m, j (s, y)|p ].

(2.4.15)

Thus choosing n large and δ small such that cp,T (v
p
2

n +δp +2−np ) ≤ 1
2 , we obtain from (2.4.8)

and the above inequality that there exists a constant Cp,T such that for any large n

sup
‖z‖≤δ

sup
(s,y)∈[0,T ]×R

E[|ϕz
n,i , j (s, y)|p ] ≤Cp,T .

�
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multiplicative noise

The following two lemmas give some estimates on the uniform Lp -continuity of ũz
n and ϕz

n in

z for small z.

Lemma 2.4.3. For δ small, there exists cp,T such that for any p ≥ 2 and z, z ′ with ‖z‖ ≤ δ,

‖z ′‖ ≤ δ

sup
(s,y)∈[0,T ]×R

E[‖ũz
n(s, y))− ũz ′

n (s, y)‖p ] ≤ cp,T ‖z − z ′‖p . (2.4.16)

Proof. Indeed, from (2.4.1) we have, for any p ≥ 2,

E[|ũz
ni (t , x))− ũz ′

ni (t , x)|p ]

≤ cp E

[∣∣∣∣∣
∫t

0

∫
R

Gα(t − r, x − v)
d∑

j=1
(σi j (ũz

n(r, v))−σi j (ũz ′
n (r, v)))W j (dr,d v)

∣∣∣∣∣
p]

+cp

d∑
j=1

|z j − z ′
j |p E

[∣∣∣∣∫t

0

∫
R

Gα(t − r, x − v)σi j (ũz
n(r, v))gn j (r, v)d vdr

∣∣∣∣p]

+cp

d∑
j=1

|z ′
j |p E

[∣∣∣∣∫t

0

∫
R

Gα(t − r, x − v)(σi j (ũz
n(r, v))−σi j (ũz ′

n (r, v)))

× gn j (r, v)d vdr

∣∣∣∣p]
+cp E

[∣∣∣∣∫t

0

∫
R

Gα(t − r, x − v)(bi (ũz
n(r, v))−bi (ũz ′

n (r, v)))d vdr

∣∣∣∣p]
:=A1 +A2 +A3 +A4. (2.4.17)

Using Burkholder’s inequality, the fact that the partial derivatives of σi j are bounded and

Hölder’s inequality with respect to the measure G2
α(t − r, x − v)dr d v ,

A1 ≤ cp E

[∣∣∣∣∫t

0

∫
R

G2
α(t − r, x − v)‖ũz

n(r, v)− ũz ′
n (r, v)‖2d vdr

∣∣∣∣p/2
]

≤ cp

(∫t

0

∫
R

G2
α(t − r, x − v)d vdr

)p/2−1

×
∫t

0

∫
R

G2
α(t − r, x − v)E

[
‖ũz

n(r, v)− ũz ′
n (r, v)‖p

]
d vdr

≤ cp

∫t

0

∫
R

G2
α(t − r, x − v)sup

y∈R
E
[
‖ũz

n(r, y)− ũz ′
n (r, y)‖p

]
d vdr

= cp

∫t

0
(t − r )−1/α sup

y∈R
E
[
‖ũz

n(r, y)− ũz ′
n (r, y)‖p

]
dr. (2.4.18)

Since the functions σi j , i , j = 1, . . . ,d , are bounded, by the definition of gn , it is clear that

A2 ≤ cp‖z − z ′‖p . (2.4.19)

Similarly, by Hölder’s inequality with respect to the probability measure v−1
n 1[t−2−n ,t ](r )G2

α(t −
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2.4. Strict positivity of the one-point density

r, x − v)dr d v ,

A3 ≤ cpδ
p
∫t

t−2−n
dr

∫
R

v−1
n G2

α(t − r, x − v)d v sup
y∈R

E
[
‖ũz

n(r, y)− ũz ′
n (r, y)‖p

]
≤ cpδ

p sup
(s,y)∈[0,T ]×R

E
[
‖ũz

n(s, y)− ũz ′
n (s, y)‖p

]
(2.4.20)

For the last term, using Hölder’s inequality with respect to the measure Gα(t − r, x −v)dr d v

and the fact that the partial derivatives of bi are bounded,

A4 ≤ cp

∫t

0
dr

∫
R

d vGα(t − r, x − v)E
[
‖ũz

n(r, v)− ũz ′
n (r, v)‖p

]
×

(∫t

0
dr

∫
R

d vGα(t − r, x − v)

)p−1

≤ cp T p−1
∫t

0
dr sup

y∈R
E
[
‖ũz

n(r, y)− ũz ′
n (r, y)‖p

]
(2.4.21)

From (2.4.18), (2.4.19), (2.4.20), (2.4.21) and (2.4.17), we have obtained that

sup
y∈R

E
[
‖ũz

n(t , y)− ũz ′
n (t , y)‖p

]
≤ cp,T ‖z − z ′‖p +cp,T δ

p sup
(s,y)∈[0,T ]×R

E[‖ũz
n(s, y)− ũz ′

n (s, y)‖p ]

+cp,T

∫t

0
dr ((t − r )−1/α+1)sup

y∈R
E
[
‖ũz

n(r, y)− ũz ′
n (r, y)‖p

]
.

By Gronwall’s lemma (see [23, Lemma 15]), we obtain

sup
(s,y)∈[0,T ]×R

E[‖ũz
n(s, y))− ũz ′

n (s, y)‖p ]

≤ cp,T ‖z − z ′‖p +cp,T δ
p sup

(s,y)∈[0,T ]×R
E[‖ũz

n(s, y)− ũz ′
n (s, y)‖p ].

We can choose δ small enough in the above inequality with cp,T δ
p < 1 so that (2.4.16) holds

with a different constant cp,T . �

Lemma 2.4.4. Let δ be small and n large enough so that (2.4.9) and (2.4.16) hold. Then for δ

small and n large there exists cp,T such that for any p > 1 and z, z ′ with ‖z‖ ≤ δ, ‖z ′‖ ≤ δ

sup
(s,y)∈[0,T ]×R

E
[
‖ϕz

n(s, y)−ϕz ′
n (s, y)‖p

]
≤ cp,T ‖z − z ′‖p . (2.4.22)

Proof. We adopt the notations A ,B,C ,D defined in the proof of Lemma 2.4.2. We first use

the Lipschitz property of σ together with (2.4.16), to obtain that

sup
(s,y)∈[0,T ]×R

E
[
‖A z

n (s, y)−A z ′
n (s, y)‖p

]
≤ cp,T ‖z − z ′‖p . (2.4.23)
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By hypothesis P1’ and Burkholder’s inequality, we know that, for any p > 1,

E[|Bz
n,i , j (t , x)−Bz ′

n,i , j (t , x)|p ]

≤ cp E

[∣∣∣∫t

t−2−n

∫
R

Gα(t − s, x − y)
d∑

l ,m=1
(∂mσi l (ũz

n(s, y))−∂mσi l (ũz ′
n (s, y)))

×ϕz
n,m, j (s, y)W l (d s,d y)

∣∣∣p
]

+cp E

[∣∣∣∫t

t−2−n

∫
R

Gα(t − s, x − y)
d∑

l ,m=1
∂mσi l (ũz ′

n (s, y))

× (ϕz
n,m, j (s, y)−ϕz ′

n,m, j (s, y))W l (d s,d y)
∣∣∣p

]

≤ cp E

[∣∣∣∣∣
∫t

t−2−n

∫
R

G2
α(t − s, x − y)‖ũz

n(s, y))− ũz ′
n (s, y)‖2

d∑
m=1

(ϕz
n,m, j (s, y))2d sd y

∣∣∣∣∣
p/2]

+cp E

[∣∣∣∣∣
∫t

t−2−n

∫
R

G2
α(t − s, x − y)

d∑
m=1

(ϕz
n,m, j (s, y)−ϕz ′

n,m, j (s, y))2d sd y

∣∣∣∣∣
p/2]

.

Using Hölder’s inequality with respect to the measure G2
α(t − s, x − y)d sd y twice, this is

bounded above by

cp v
p
2 −1

n

∫t

t−2−n

∫
R

G2
α(t − s, x − y)E

[
‖ũz

n(s, y))− ũz ′
n (s, y)‖p

d∑
m=1

|ϕz
n,m, j (s, y)|p

]
d sd y

+cp v
p
2 −1

n

∫t

t−2−n

∫
R

G2
α(t − s, x − y)

d∑
m=1

E
[
|ϕz

n,m, j (s, y)−ϕz ′
n,m, j (s, y)|p

]
d sd y

≤ cp v p/2
n

d∑
m=1

sup
‖z‖≤δ

sup
(s,y)∈[0,T ]×R

E
[
|ϕz

n,m, j (s, y)|2p
]1/2

× sup
(s,y)∈[0,T ]×R

E
[
‖ũz

n(s, y))− ũz ′
n (s, y)‖2p

]1/2

+cp v p/2
n

d∑
m=1

sup
(s,y)∈[0,T ]×R

E
[
|ϕz

n,m, j (s, y)−ϕz ′
n,m, j (s, y)|p

]
,

where we have used the Cauchy-Schwartz inequality. From (2.4.9), there exists a constant C ′
p,T

such that

d∑
m=1

sup
‖z‖≤δ

sup
(s,y)∈[0,T ]×R

E
[
|ϕz

n,m, j (s, y)|2p
]1/2 ≤C ′

p,T .
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Hence we obtain that

E
[
|Bz

n,i , j (t , x)−Bz ′
n,i , j (t , x)|p

]
≤ cp v p/2

n sup
(s,y)∈[0,T ]×R

E
[
‖ũz

n(s, y))− ũz ′
n (s, y)‖2p

]1/2

+cp v p/2
n

d∑
m=1

sup
(s,y)∈[0,T ]×R

E
[
|ϕz

n,m, j (s, y)−ϕz ′
n,m, j (s, y)|p

]
. (2.4.24)

Similarly, using hypothesis P1’ we have, for any p > 1,

E[|C z
n,i , j (t , x)−C z ′

n,i , j (t , x)|p ]

≤ cp

d∑
l ,m=1

|zl − z ′
l |p E

[∣∣∣∣∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)|ϕz
n,m, j (s, y)|d yd s

∣∣∣∣p]

+cp

d∑
l ,m=1

|z ′
l |p E

[∣∣∣∫t

t−2−n
d s

∫
R

d y v−1
n G2

α(t − s, x − y)

×
(
∂mσi l (ũz

n(s, y))ϕz
n,m, j (s, y)−∂mσi l (ũz ′

n (s, y))ϕz ′
n,m, j (s, y)

)∣∣∣p]
≤ cp

d∑
l ,m=1

|zl − z ′
l |p E

[∣∣∣∣∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)|ϕz
n,m, j (s, y)|d yd s

∣∣∣∣p]

+cpδ
p

d∑
m=1

E

[∣∣∣∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)‖ũz
n(s, y))− ũz ′

n (s, y)‖

×|ϕz
n,m, j (s, y)|d yd s

∣∣∣p
]

+cpδ
p

d∑
m=1

E

[∣∣∣∣∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)|ϕz
n,m, j (s, y)−ϕz ′

n,m, j (s, y)|d yd s

∣∣∣∣p]
.

Using Hölder’s inequality with respect to the probability measure v−1
n 1[t−2−n ,t ](r )G2

α(t − r, x −
v)dr d v three times and (2.4.9) twice, it is bounded above by

cp‖z − z ′‖p +cpδ
p sup

(s,y)∈[0,T ]×R
E[‖ũz

n(s, y))− ũz ′
n (s, y)‖2p ]1/2

+cpδ
p

d∑
m=1

sup
(s,y)∈[0,T ]×R

E
[
|ϕz

n,m, j (s, y)−ϕz ′
n,m, j (s, y)|p

]
. (2.4.25)
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Furthermore, by hypothesis P1’, for any p > 1,

E
[
|D z

n,i , j (t , x)−D z ′
n,i , j (t , x)|p

]
≤ cp E

[∣∣∣∫t

t−2−n

∫
R

d∑
m=1

|∂mbi (ũz
n(s, y))−∂mbi (ũz ′

n (s, y))|

× |ϕz
n,m, j (s, y)|Gα(t − s, x − y)d yd s

∣∣∣p
]

+cp E

[∣∣∣∫t

t−2−n

∫
R

d∑
m=1

|∂mbi (ũz ′
n (s, y))|

× |ϕz
n,m, j (s, y)−ϕz

n,m, j (s, y)|Gα(t − s, x − y)d yd s
∣∣∣p

]
≤ cp E

[∣∣∣∫t

t−2−n

∫
R
‖ũz

n(s, y)− ũz ′
n (s, y)‖

d∑
m=1

|ϕz
n,m, j (s, y)|Gα(t − s, x − y)d yd s

∣∣∣p
]

+cp E

[∣∣∣∫t

t−2−n

∫
R

d∑
m=1

|ϕz
n,m, j (s, y)−ϕz

n,m, j (s, y)|Gα(t − s, x − y)d yd s
∣∣∣p

]
.

Using Hölder’s inequality with respect to the measure Gα(t − s, x − y)d sd y twice, Cauchy-

Schwarz inequality and (2.4.9), it is bounded above by

cp 2−np sup
(s,y)∈[0,T ]×R

E[‖ũz
n(s, y))− ũz ′

n (s, y)‖2p ]1/2

+cp 2−np
d∑

m=1
sup

(s,y)∈[0,T ]×R
E
[
|ϕz

n,m, j (s, y)−ϕz ′
n,m, j (s, y)|p

]
. (2.4.26)

Comparing (2.4.23), (2.4.24), (2.4.25), (2.4.26) with (2.4.10) we have

sup
(s,y)∈[0,T ]×R

E
[
‖ϕz

n(s, y)−ϕz ′
n (s, y)‖p

]
≤ cp,T ‖z − z ′‖p +cp‖z − z ′‖p

+cp (v p/2
n +δp +2−np ) sup

(s,y)∈[0,T ]×R
E[‖ũz

n(s, y))− ũz ′
n (s, y)‖2p ]1/2

+cp (v p/2
n +δp +2−np ) sup

(s,y)∈[0,T ]×R
E
[
‖ϕz

n(s, y)−ϕz ′
n (s, y)‖p

]
.

Finally we choose n large and δ small in the above inequality such that cp (v p/2
n +δp +2−np ) < 1.

Then we obtain that

sup
(s,y)∈[0,T ]×R

E
[
‖ϕz

n(s, y)−ϕz ′
n (s, y)‖p

]
≤ cp‖z − z ′‖p +cp sup

(s,y)∈[0,T ]×R
E[‖ũz

n(s, y))− ũz ′
n (s, y)‖2p ]1/2.
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Therefore we have proved that

sup
(s,y)∈[0,T ]×R

E
[
‖ϕz

n(s, y)−ϕz ′
n (s, y)‖p

]
≤ cp,T ‖z − z ′‖p .

�

2.4.3 Proof of Theorem 2.1.1(b)

Let (t0, x0) ∈]0,T ] × R be fixed. By Theorem 2.4.1, we need to show that for any y0 ∈
Supp(Pu(t0,x0)), the assumptions (i) and (ii) of Ht0,x0 (y0) are satisfied.

We first verify assumption (i) of Ht0,x0 (y0).

From now on, we assume that n is large and δ is small so that (2.4.9), (2.4.16) and (2.4.22) are

satisfied.

Let z = 0 in (2.4.10) to get that

ϕ0
n,i , j (t0, x0) =A 0

n,i , j (t0, x0)+Rn,i , j (t0, x0), (2.4.27)

where Rn,i , j (t0, x0) =B0
n,i , j (t0, x0)+D0

n,i , j (t0, x0) satisfies that for any p > 1,

E[|Rn,i , j (t0, x0)|p ] ≤ cp,T (v
p
2

n +2−np ), (2.4.28)

by (2.4.12), (2.4.14) and (2.4.9). We now write

A 0
n,i , j (t0, x0) =σi j (u(t0, x0))+On,i , j (t0, x0),

where

On,i , j (t0, x0) = v−1
n

∫2−n

0

∫
R

(σi j (u(t0 − r, v))−σi j (u(t0, x0)))G2
α(r, x0 − v)d vdr

Using Minkowski’s inequality with respect to the probability measure v−1
n G2

α(r, x0 − v)d vdr

and the Lipschitz property of σ, we have that, for any p > 1,

E[|On,i , j (t0, x0)|p ] ≤ cp

∣∣∣∣∫2−n

0

∫
R

(E[|σi j (u(t0 − r, v))−σi j (u(t0, x0))|p ])
1
p

× v−1
n G2

α(r, x0 − v)d vdr

∣∣∣∣p

≤ cp

∣∣∣∣∫2−n

0

∫
R

(E[‖u(t0 − r, v)−u(t0, x0)‖p ])
1
p v−1

n G2
α(r, x0 − v)d vdr

∣∣∣∣p

.
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By the Lp -continuity of the solution (2.1.6), this is bounded above by

cp

∣∣∣∣∫2−n

0

∫
R

(
r

α−1
2α +|x0 − v | α−1

2

)
v−1

n G2
α(r, x0 − v)d vdr

∣∣∣∣p

≤ cp

∣∣∣∣∫2−n

0

∫
R

r
α−1
2α v−1

n G2
α(r, x0 − v)d vdr

∣∣∣∣p

+cp

∣∣∣∣∫2−n

0

∫
R
|x0 − v | α−1

2 v−1
n G2

α(r, x0 − v)d vdr

∣∣∣∣p

= cp

∣∣∣∣v−1
n

∫2−n

0
r

α−1
2α Gα(2r,0)dr

∣∣∣∣p

+cp

∣∣∣∣v−1
n

∫2−n

0

∫
R
|v | α−1

2 G2
α(r, v)d vdr

∣∣∣∣p

= cp

∣∣∣∣v−1
n

∫2−n

0
r

α−1
2α r−1/αdr

∣∣∣∣p

+cp

∣∣∣∣v−1
n

∫2−n

0

∫
R
|v | α−1

2 r−2/αG2
α(1,r−1/αv)d vdr

∣∣∣∣p

= cp v−p
n 2−np 3(α−1)

2α +cp

∣∣∣∣v−1
n

∫2−n

0

∫
R
|u| α−1

2 r
α−1
2α r−2/αr

1
α G2

α(1,u)dudr

∣∣∣∣p

= cp v−p
n 2−np 3(α−1)

2α +cp

∣∣∣∣v−1
n

∫2−n

0
r

α−3
2α dr

∫
R
|u| α−1

2 G2
α(1,u)du

∣∣∣∣p

≤ c ′p v−p
n 2−np 3(α−1)

2α = c ′p 2−np α−1
2α , (2.4.29)

where in the second equality we use the scaling property (A.2), in the third equality we change

the variable by u := r−1/αv and in the last inequality the integral
∫
R |u|

α−1
2 G2

α(1,u)du is finite

because of (A.5).

Now, as y0 ∈ Supp(Pu(t0,x0)), there exists r0 such that for all 0 < r ≤ r0,

P{u(t0, x0) ∈ B(y0;r )} > 0.

Hence, for all 0 < r ≤ r0,

P
{
(‖u(t0, x0)− y0‖ ≤ r )∩ (detσ(u(t0, x0)) ≥ 2c1)

}> 0,

where

c1 := 1

2

(
inf

z∈B̄(y0;r )
inf

‖ξ‖=1
‖σ(z)ξ‖2

)d

.

From the moment estimates (2.4.28) and (2.4.29) for Rn,i , j (t0, x0) and On,i , j (t0, x0), these

quantities converge to 0 in Lp , so that we can choose a subsequence {nk }k≥1 such that for any

1 ≤ i , j ≤ d , ϕ0
nk ,i , j (t0, x0) converges to σi j (u(t0, x0)) a.s. as k →∞, which by Fatou’s lemma

implies that

limsup
n→∞

P
{
(‖u(t0, x0)− y0‖ ≤ r )∩ (detϕ0

n(t0, x0) ≥ c1)
}> 0.

This proves (i) of Ht0,x0 (y0).

We next proceed to verify (ii) of Ht0,x0 (y0).
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We start proving that there exist c > 0 and δ> 0, such that

lim
n→∞P

{
sup
‖z‖≤δ

‖ϕz
n(t0, x0)‖ ≤ c

}
= 1. (2.4.30)

Observe from (2.4.10) and (2.4.11) that

‖ϕz
n(t0, x0)‖ ≤ K + sup

‖z‖≤δ
‖G z

n (t0, x0)‖, (2.4.31)

where G z
n (t0, x0) =Bz

n(t0, x0)+C z
n (t0, x0)+D z

n (t0, x0) satisfies that for any p > 1

sup
‖z‖≤δ

E[‖G z
n (t0, x0)‖p ] ≤ cp,T (v

p
2

n +δp +2−np ),

by (2.4.12), (2.4.13), (2.4.14) and (2.4.9).

For ‖z‖ < δ, let v z
n,i , j (1 ≤ i , j ≤ d) denote the solution of the affine equation

v z
n,i , j (t , x) =

d∑
l ,m=1

zl

∫t

t−2−n

∫
R

Gα(t − s, x − y)∂mσi l (ũz
n(s, y))v z

n,m, j (s, y)gnl (s, y)d yd s

+A z
n,i , j (t , x). (2.4.32)

For each n and z, equation (2.4.32) has a unique solution by Picard iteration. Define

I (v z
n,i , j ,ω)(t , x) =

d∑
l ,m=1

zl

∫t

t−2−n

∫
R

Gα(t − s, x − y)∂mσi l (ũz
n(s, y))v z

n,m, j (s, y)gnl (s, y)d yd s.

Since the derivative of σ is bounded, there exists a constant c such that

d∑
i , j=1

sup
n≥1

sup
‖z‖≤δ

sup
ω∈Ω

sup
(t ,x)∈[0,T ]×R

|I (v z
n,i , j ,ω)(t , x)|

≤ cδ
d∑

i , j=1
sup
n≥1

sup
‖z‖≤δ

sup
ω∈Ω

sup
(t ,x)∈[0,T ]×R

|v z
n,i , j (t , x)|. (2.4.33)

Let v z,0
n,i , j (t , x) :=A z

n,i , j (t , x). Then from (2.4.11) there exists a constant K such that

d∑
i , j=1

sup
n≥1

sup
‖z‖≤δ

sup
ω∈Ω

sup
(t ,x)∈[0,T ]×R

|v z,0
n,i , j (t , x)(ω)| ≤ K .

For each integer k ≥ 0, we define

v z,k+1
n,i , j (t , x)(ω) = I (v z,k

n,i , j ,ω)(t , x)+A z
n,i , j (t , x)(ω). (2.4.34)
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Suppose that for k ≥ 0, we have

d∑
i , j=1

sup
n≥1

sup
‖z‖≤δ

sup
ω∈Ω

sup
(t ,x)∈[0,T ]×R

|v z,k
n,i , j (t , x)(ω)| ≤ K +K

k∑
i=1

(cδ)i .

Then by (2.4.33) and (2.4.34), for k +1 we have

d∑
i , j=1

sup
n≥1

sup
‖z‖≤δ

sup
ω∈Ω

sup
(t ,x)∈[0,T ]×R

|v z,k+1
n,i , j (t , x)| ≤ K +cδ(K +K

k∑
i=1

(cδ)i = K +K
k+1∑
i=1

(cδ)i .

Choose δ small such that cδ< 1. Then, by induction, we obtain that

sup
k≥0

d∑
i , j=1

sup
n≥1

sup
‖z‖≤δ

sup
ω∈Ω

sup
(t ,x)∈[0,T ]×R

|v z,k
n,i , j (t , x)(ω)| ≤ K

1−cδ
. (2.4.35)

Since v z,k
n,i , j (t , x) converges to v z

n,i , j (t , x) as k →∞, from (2.4.35) there exists a constant C such

that

sup
n≥1

sup
‖z‖≤δ

sup
ω∈Ω

sup
(t ,x)∈[0,T ]×R

|v z
n,i , j (t , x)| ≤C . (2.4.36)

In order to establish uniform Lp -continuity of z �→ v z
n for small z, we use (2.4.23) and (2.4.36)

to get that, for ‖z‖ ≤ δ and ‖z ′‖ ≤ δ

E
[∣∣∣v z

n,i , j (t , x)− v z ′
n,i , j (t , x)

∣∣∣p]
≤ cp‖z − z ′‖p +cpδ

p
d∑

m=1
E

[∣∣∣∣∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)‖ũz
n(s, y))− ũz ′

n (s, y)‖d yd s

∣∣∣∣p]

+cpδ
p

d∑
m=1

E

[∣∣∣∣∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)|v z
n,m, j (s, y)− v z ′

n,m, j (s, y)|d yd s

∣∣∣∣p]

By Hölder’s inequality with respect to the measure v−1
n G2

α(t − s, x − y)d sd y and (2.4.16), this is

bounded above by

cp‖z − z ′‖p +c ′pδ
p‖z − z ′‖p

+cpδ
p

d∑
m=1

∫t

0
d s v−1

n 1[0,2−n ](t − s)(t − s)−1/α sup
y∈R

E
[
|v z

n,m, j (s, y)− v z ′
n,m, j (s, y)|p

]
≤ cp‖z − z ′‖p +c ′pδ

p‖z − z ′‖p

+cpδ
p

d∑
m=1

sup
(s,y)∈[0,T ]×R

E
[
|v z

n,m, j (s, y)− v z ′
n,m, j (s, y)|p

]
.

In the above inequality we can choose δ small enough so that cpδ
p < 1. Then for ‖z‖ ≤ δ and
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‖z ′‖ ≤ δ,

sup
(s,y)∈[0,T ]×R

E
[
‖v z

n(s, y)− v z ′
n (s, y)‖p

]
≤ cp,T ‖z − z ′‖p . (2.4.37)

Now we give some estimates on the moments of the difference between ϕz
n and v z

n . Comparing

(2.4.10) and (2.4.32), together with (2.4.12), (2.4.14) and (2.4.9) we have

E
[∣∣∣ϕz

n,i , j (t , x)− v z
n,i , j (t , x)

∣∣∣p]
≤ cpδ

p
d∑

m=1
E

[∣∣∣∣∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)|ϕz
n,m, j (s, y)− v z

n,m, j (s, y)|d yd s

∣∣∣∣p]
+cp,T (v

p
2

n +2−np ).

By Hölder’s inequality with respect to the measure v−1
n G2

α(t − s, x − y)d sd y , this is bounded

above by

cpδ
p

d∑
m=1

∫t

t−2−n

∫
R

v−1
n G2

α(t − s, x − y)E
[
|ϕz

n,m, j (s, y)− v z
n,m, j (s, y)|p

]
d yd s

+cp,T (v
p
2

n +2−np )

≤ cp,T (v
p
2

n +2−np )+cpδ
p

d∑
m=1

sup
(s,y)∈[0,T ]×R

E
[
|ϕz

n,m, j (s, y)− v z
n,m, j (s, y)|p

]
.

Choosing δ small enough, as we did before, we have

sup
‖z‖≤δ

sup
(s,y)∈[0,T ]×R

E
[‖ϕz

n(s, y)− v z
n(s, y)‖p]≤ cp,T (v

p
2

n +2−np ). (2.4.38)

For convenience, we denote X z
n(t0, x0) = ϕz

n(t0, x0)− v z
n(t0, x0). Then (2.4.22), (2.4.37) and

(2.4.38) indicate that for any p > d

E
[
‖X z

n(t0, x0)−X z ′
n (t0, x0)‖p

]
≤ cp,T ‖z − z ′‖p , (2.4.39)

sup
‖z‖≤δ

E
[‖X z

n(t0, x0)‖p]≤ cp,T (v
p
2

n +2−np ). (2.4.40)

Choose 0 < θ0 < 1−d/p. By (2.4.39) and the Kolmogorov’s continuity theorem (see [81, Corol-

lary 1.2]), we have

sup
n

E

[
sup
z �=z ′

‖X z
n(t0, x0)−X z ′

n (t0, x0)‖p

‖z − z ′‖θ0p

]
<∞, (2.4.41)

where the supn denotes the supremum over large enough n for which (2.4.9), (2.4.16) and

(2.4.22) are satisfied. For any ε> 0, we can choose {zi }k(ε)
i=1 ⊂ B̄(0,δ) (k(ε) is of the order δdε−d )
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such that for any z ∈ B̄(0,δ), there exists zi (z) ∈ {zi }k(ε)
i=1 satisfying ‖z − zi (z)‖ ≤ ε. And for each zi ,

from (2.4.40), we can choose a large number N such that for any n ≥ N

sup
1≤i≤k(ε)

E
[‖X zi

n (t0, x0)‖p]≤ ε/k(ε). (2.4.42)

Hence, for n ≥ N ,

E

[
sup
‖z‖≤δ

‖X z
n(t0, x0)‖p

]
≤ cp E

[
sup
‖z‖≤δ

(‖X z
n(t0, x0)−X

zi (z)
n (t0, x0)‖p +‖X

zi (z)
n (t0, x0)‖p)]

≤ cp E

[
sup

‖z‖≤δ,z �=zi (z)

‖X z
n(t0, x0)−X

zi (z)
n (t0, x0)‖p

‖z − zi (z)‖θ0p
‖z − zi (z)‖θ0p

]

+cp

k(ε)∑
i=1

E
[‖X zi

n (t0, x0)‖p]
≤ cpε

θ0p sup
n

E

[
sup
z �=z ′

‖X z
n(t0, x0)−X z ′

n (t0, x0)‖p

‖z − z ′‖θ0p

]
+cpε,

which implies that for any p > d

lim
n→∞E

[
sup
‖z‖≤δ

‖X z
n(t0, x0)‖p

]
= 0. (2.4.43)

From (2.4.36), we know that {sup‖z‖≤δ ‖X z
n(t0, x0)‖ ≤ C } ⊂ {sup‖z‖≤δ ‖ϕz

n(t0, x0)‖ ≤ 2C }. And

(2.4.43) implies that

lim
n→∞P

{
sup
‖z‖≤δ

‖X z
n(t0, x0)‖ >C

}
= 0.

Therefore, we have proved that

lim
n→∞P

{
sup
‖z‖≤δ

‖ϕz
n(t0, x0)‖ ≤ 2C

}
= 1.

The verification of (ii) of Ht0,x0 (y0) for ψn(t0, x0) is similar, so we only give the main steps.

Recall that

ψz
n,i , j ,m(t , x) = ∂2

∂z j∂zm
ũz

n,i (t , x).

Then we have that

ψz
n,i , j ,m(t , x) =

∫t

0
dr1

∫
R

d v1

∫t

0
dr2

∫
R

d v2D (m)
r2,v2

D ( j )
r1,v1

(ũz
n,i (t , x))gn j (r1, v1)gnm(r2, v2),

where the second-order Malliavin derivative satisfies the following linear stochastic differential
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equation:

D (m)
r2,v2

D ( j )
r1,v1

(ũz
n,i (t , x))

=Gα(t − r1, x − v1)D (m)
r2,v2

(σi j (ũz
n(r1, v1)))+Gα(t − r2, x − v2)D ( j )

r1,v1
(σi m(ũz

n(r2, v2)))

+
∫t

r1∨r2

∫
R

Gα(t − s, x − y)
d∑

l=1
D (m)

r2,v2
D ( j )

r1,v1
(σi l (ũz

n(s, y)))W̃ l (d s,d y)

+
∫t

r1∨r2

∫
R

Gα(t − s, x − y)D (m)
r2,v2

D ( j )
r1,v1

(bi (ũz
n(s, y)))d sd y.

Using the chain rule and the stochastic differential equation satisfied by the first Malliavin

derivative, we can compute the different terms of ψz
n,i , j ,m(t , x) as we did for ϕz

n,i , j (t , x), and

bound their p-th moments. Finally we estimates the p-th moments of the difference ψz
n(t , x)−

ψz ′
n (t , x) as we did for ϕz

n(t , x) in order to get the desired result.

We have verified the two assumptions of Ht0,x0 (y0) for any y0 ∈ Supp(Pu(t0,x0)). Therefore, the

conclusion of Theorem 2.1.1(b) follows from Theorem 2.4.1.

2.5 The Gaussian-type upper bound on the two-point density

The aim of this section is to prove Theorem 2.1.1(c). We will follow the general approach in [26,

Section 6]; see also [27, Section 5].

2.5.1 Technical lemmas and propositions

In this subsection, we present several technical lemmas and propositions, which will be used

for the analysis of the Malliavin matrix.

Lemma 2.5.1 ([17, Proposition 4.4]). For any s, t ∈ [0,T ], s ≤ t , and x, y ∈ R, there exists a

constant CT > 0 such that∫T

0

∫
R

(gα(r, v))2dr d v ≤CT (|t − s| α−1
α +|x − y |α−1),

where

gα(r, v) := gα
t ,x,s,y (r, v) = 1{r≤t }Gα(t − r, x − v)−1{r≤s}Gα(s − r, y − v).

The following result gives an estimate on the modulus of Lp -continuity of the derivative of the

increment, analogous to [26, Proposition 6.2], which is comparable to (2.1.6).

Proposition 2.5.2. For any p ≥ 2,m ≥ 1, there exists a constant Cp,T such that for all s, t ∈
[0,T ], s ≤ t , x, y ∈R,

E
[∥∥Dm(ui (t , x)−ui (s, y))

∥∥p
H ⊗m

]≤Cp,T (|t − s| α−1
α +|x − y |α−1)p/2, i = 1, . . . ,d . (2.5.1)
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Proof. The proof is slightly different from that of [26, Proposition 6.2] since the estimate for I3

in [26, Proposition 6.2] requires the Cauchy-Schwartz inequality, which is not applicable in

our situation because the Lebesgue measure of R is infinite.

Assume m = 1. Using (2.3.1), we see that, for any p ≥ 2,

E
[∥∥D(ui (t , x)−ui (s, y))

∥∥p
H

]≤ c
(
E
[|I1|p/2]+E

[|I2|p/2]+E
[|I3|p/2]+E

[|I4|p/2]) ,

(2.5.2)

where

I1 =
d∑

k=1

∫T

0
dr

∫
R

d v
(
gα(r, v)σi k (u(r, v))

)2 ,

I2 =
d∑

j ,k=1

∫T

0
dr

∫
R

d v

(∫T

0

∫
R

gα(θ,η)D (k)
r,v (σi j (u(θ,η)))W j (dθ,dη)

)2

,

I3 =
d∑

k=1

∫T

0
dr

∫
R

d v

(∫t−s

0

∫
R

Gα(t −θ, x −η)D (k)
r,v (bi (u(θ,η)))dθdη

)2

,

I4 =
d∑

k=1

∫T

0
dr

∫
R

d v
(∫s

0

∫
R

Gα(s −θ, y −η)

×D (k)
r,v (bi (u(t − s +θ, x − y +η))−bi (u(θ,η)))dθdη

)2
.

By hypothesis P1’ and Lemma 2.5.1,

E
[|I1|p/2]≤Cp,T (|t − s| α−1

α +|x − y |α−1)p/2. (2.5.3)

Using Burkholder’s inequality for Hilbert-space-valued martingales (Lemma A.3.1) and hy-

pothesis P1’, we obtain

E
[|I2|p/2]≤ c

d∑
k,l=1

E

[∣∣∣∣∫T

0
dθ

∫
R

dη (gα(θ,η))2
∫T

0
dr

∫
R

d v Θ2
k,l

∣∣∣∣p/2
]

,

whereΘk,l := D (k)
r,v (ul (θ,η)). By Hölder’s inequality with respect to the measure (gα(θ,η))2dθdη,

we see that this is bounded above by

c
d∑

k,l=1

∫T

0
dθ

∫
R

dη (gα(θ,η))2 sup
(θ,η)∈[0,T ]×R

E

[(∫T

0
dr

∫
R

d v Θ2
k,l

)p/2
]

×
(∫T

0

∫
R

(gα(θ,η))2dθdη

) p
2 −1

≤Cp,T (|t − s| α−1
α +|x − y |α−1)p/2, (2.5.4)

where we use (2.3.3) and Lemma 2.5.1. To estimate I3, we use Hölder’s inequality with respect
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to the measure Gα(t −θ, x −η)dθdη twice to get that

E
[|I3|p/2]≤Cp,T

d∑
k,l=1

(t − s)p/2E

[(∫t−s

0
dθ

∫
R

dηGα(t −θ, x −η)

×
∫T

0
dr

∫
R

d v Θ2
k,l

)p/2
]

≤Cp,T

d∑
k,l=1

(t − s)p/2
(∫t−s

0
dθ

∫
R

dηGα(t −θ, x −η)

) p
2 −1

×
∫t−s

0
dθ

∫
R

dηGα(t −θ, x −η) sup
(θ,η)∈[0,T ]×R

E

[[∫T

0
dr

∫
R

d v Θ2
k,l

]p/2
]

≤Cp,T (t − s)p , (2.5.5)

where in the last inequality we use (2.3.3). Using Hölder’s inequality with respect to the measure

Gα(t −θ, x −η)dθdη,

I4 ≤ c
d∑

k=1

∫T

0
dr

∫
R

d v
∫s

0
dθ

∫
R

dηGα(s −θ, y −η)

×
(
D (k)

r,v

(
bi (u(t − s +θ, x − y +η))−bi (u(θ,η))

))2

We apply the chain rule to compute D (k)
r,v bi (u(t − s +θ, x − y +η))−D (k)

r,v bi (u(θ,η)), subtract

and add the term b′
i (u(t − s+θ, x − y +η))D (k)

r,v u(θ,η) . Then by hypothesis P1’, this is bounded

above by

c
d∑

k,l=1

∫T

0
dr

∫
R

d v
∫s

0
dθ

∫
R

dηGα(s −θ, y −η)

×
(
D (k)

r,v (ul (t − s +θ, x − y +η)−ul (θ,η))
)2

+c
d∑

k,l=1

∫T

0
dr

∫
R

d v
∫s

0
dθ

∫
R

dηGα(s −θ, y −η)

× (
ul (t − s +θ, x − y +η)−ul (θ,η)

)2
Θ2

k,l

:= I41 + I42.

Using Hölder’s inequality with respect to the measure Gα(t −θ, x −η)dθdη and the Cauchy-
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Schwartz inequality, we have

E
[|I42|p/2]≤ c

d∑
k,l=1

(∫s

0
dθ

∫
R

dηGα(s −θ, y −η)

) p
2 −1

×
∫s

0
dθ

∫
R

dηGα(s −θ, y −η)

×E

[∣∣ul (t − s +θ, x − y +η)−ul (θ,η)
∣∣p

(∫T

0
dr

∫
R

d v Θ2
k,l

)p/2
]

≤ csp/2
d∑

k,l=1
sup

(θ,η)∈[0,T ]×R
E

[(∫T

0
dr

∫
R

d v Θ2
k,l

)p]1/2

× sup
(θ,η)∈[0,T ]×R

E
[∣∣ul (t − s +θ, x − y +η)−ul (θ,η)

∣∣2p
]1/2

≤Cp,T sp/2(|t − s| α−1
α +|x − y |α−1)p/2 (2.5.6)

where we use (2.3.3) and (2.1.6).

Denote

ϕ(h, z,θ) := sup
η∈R

d∑
k,l=1

E
[(∫T

0

∫
R

(
D (k)

r,v (ul (h +θ, z +η)−ul (θ,η))
)2

dr d v
) p

2
]

.

By Hölder’s inequality,

E
[|I41|p/2]≤ c

d∑
k,l=1

∫s

0

(∫
R

Gα(s −θ, y −η)dθdη

) p
2 −1

×
∫s

0
dθ

∫
R

dηGα(s −θ, y −η)

×E
[(∫T

0

∫
R

(D (k)
r,v (ul (t − s +θ, x − y +η)−ul (θ,η)))2dr d v

) p
2
]

≤Cp,T

∫s

0
ϕ(t − s, x − y,θ)dθ. (2.5.7)

Denote h = t − s and z = x − y . From (2.5.2)–(2.5.7), we conclude that for all h ≥ 0, z ∈ R,

s ∈ [0,T ] y ∈R and 1 ≤ i ≤ d ,

E
[∥∥D(ui (h + s, z + y)−ui (s, y))

∥∥p
H

]≤Cp,T (|h| α−1
α +|z|α−1)p/2 +Cp,T

∫s

0
ϕ(h, z,θ)dθ.

Taking the supremum over y ∈R on the left-hand side of the above inequality, we obtain that

for all h ≥ 0, z ∈R and s ∈ [0,T ],

ϕ(h, z, s) ≤Cp,T (|h| α−1
α +|z|α−1)p/2 +Cp,T

∫s

0
ϕ(h, z,θ)dθ.
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By Gronwall’s lemma (see [76, p.543]), we obtain that

sup
s∈[0,T ]

ϕ(h, z, s) ≤Cp,T (|h| α−1
α +|z|α−1)p/2,

which implies (2.5.1) with m = 1.

The case m > 1 follows along the same lines by using (2.3.3) and the stochastic partial differ-

ential equations satisfied by the iterated derivatives (see for example [26, Proposition 4.1]).

�

The following lemma is another version of [26, Lemma 6.11].

Lemma 2.5.3. Assume P1’. Fix T > 0, q ≥ 1. There exists a constant c = c(q,T ) ∈ ]0,∞[ such that

for every 0 < 2ε≤ s ≤ t ≤ T and x ∈R,

E

[(
d∑

k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, t , x)

)q]
≤ c(t − s +ε)(α−1)q/αε(α−1)q/α.

Proof. The proof follows the same lines as [26, Lemma 6.11]. Define

A :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, t , x).

From (2.3.2), we write

E
[|A|q]≤ c

(
E
[|A1|q

]+E
[|A2|q

])
,

where

A1 :=
d∑

i , j ,k=1

∫s

s−ε
dr

∫
R

d v

∣∣∣∣∫t

r

∫
R

Gα(t −θ, x −η)D (k)
r,v (σi j (u(θ,η)))W j (dθ,dη)

∣∣∣∣2

,

A2 :=
d∑

i ,k=1

∫s

s−ε
dr

∫
R

d v

∣∣∣∣∫t

r

∫
R

Gα(t −θ, x −η)D (k)
r,v (bi (u(θ,η)))dθdη

∣∣∣∣2

.

We bound the q-th moment of A1 and A2 separately.

As regards A1, thanks to hypothesis P1’, we apply Burkholder’s inequality for Hilbert-space-

valued martingales (Lemma A.3.1) to find that

E
[|A1|q

]≤ c
d∑

k,l=1
E

[∣∣∣∣∫t

s−ε
dθ

∫
R

dη

∫s

s−ε
dr

∫
R

d v Θ2
k,l

∣∣∣∣q]
, (2.5.8)

where

Θk,l := 1{θ>r }Gα(t −θ, x −η)D (k)
r,v (ul (θ,η)).
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We apply Hölder’s inequality with respect to the measure G2
α(t −θ, x −η)dθdη to find that

E
[|A1|q

]≤ c
d∑

k,l=1

(∫t

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)

)q−1

×
∫t

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)E

[∣∣∣∣∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
.

Since 2ε≤ s, we have for θ ∈ [s −ε, t ], s −ε≥ s ∧θ−ε≥ 0. Hence, by Lemma A.3.2,

E

[∣∣∣∣∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ E

[∣∣∣∣∫s∧θ

s∧θ−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ cε

α−1
α

q , (2.5.9)

where c ∈ ]0,∞[ does not depend on (θ,η, s, t ,ε, x). Therefore,

E
[|A1|q

]≤ c

(∫t

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)

)q

ε
α−1
α

q

= c(t − s +ε)
α−1
α

qε
α−1
α

q , (2.5.10)

where the calculation in the equality is due to (A.4).

Next we derive a similar bound for A2. By the Cauchy-Schwartz inequality with respect to the

measure Gα(t −θ, x −η)dθdη,

A2 ≤
d∑

i ,k=1

∫s

s−ε
dr

∫
R

d v (t − r )
∫t

r

∫
R

Gα(t −θ, x −η)
(
D (k)

r,v (bi (u(θ,η)))
)2

dθdη

≤
d∑

i ,k=1
(t − s +ε)

∫s

s−ε
dr

∫
R

d v
∫t

r

∫
R

Gα(t −θ, x −η)
(
D (k)

r,v (bi (u(θ,η)))
)2

dθdη.

By hypothesis P1’ and Fubini’s theorem,

E
[|A2|q

]≤ c(t − s +ε)q
d∑

k,l=1
E

[∣∣∣∫s

s−ε
dr

∫
R

d v
∫t

r
dθ

∫
R

dηGα(t −θ, x −η)

×
(
D (k)

r,v (ul (θ,η))
)2 ∣∣∣q

]
= c(t − s +ε)q

d∑
k,l=1

E

[∣∣∣∫t

s−ε
dθ

∫
R

dηGα(t −θ, x −η)

×
∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2 ∣∣∣q

]
. (2.5.11)
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We apply Hölder’s inequality with respect to the measure Gα(t −θ, x −η)dθdη to find that

E
[|A2|q

]≤ c(t − s +ε)q
d∑

k,l=1

∣∣∣∣∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q−1

×
∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)E

[∣∣∣∣∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]

≤ c(t − s +ε)q
∣∣∣∣∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q

ε
α−1
α

q

= c(t − s +ε)qεqε
α−1
α

q , (2.5.12)

where in the second inequality we use (2.5.9). Therefore (2.5.10) and (2.5.12) imply the result.

�

The following lemma is an improvement of Lemma 2.5.3 by using Lemma A.3.3. As we men-

tioned in Section 1.2, this is a key element in our improvement of the lower bound in (1.1.3).

Lemma 2.5.4. Assume P1’. Fix T > 0,c0 > 1 and 0 < γ0 < 1. For all q ≥ 1, there exists a constant

c = c(c0, q,T ) ∈ ]0,∞[ such that for every 0 < 2ε≤ s ≤ t ≤ T with t − s > c0ε
γ0 and x ∈R,

E

[(
d∑

k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, t , x)

)q]
≤ cεmin((1+γ0) α−1

α
,1−γ0+γ0

α−1
α

)q .

Proof. We use again the notations from the proof of Lemma 2.5.3. From (2.5.8) and (2.5.11),

we have

E
[|A1|q

]≤ c
d∑

k,l=1
E

[∣∣∣∣∫t

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)

∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ A11 + A12 + A13,

with

A11 := c
d∑

k,l=1
E

[∣∣∣∣∫s

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)

∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
,

A12 := c
d∑

k,l=1
E

[∣∣∣∣∫s+c0ε
γ0

s
dθ

∫
R

dηG2
α(t −θ, x −η)

∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
,

A13 := c
d∑

k,l=1
E

[∣∣∣∣∫t

s+c0εγ0
dθ

∫
R

dηG2
α(t −θ, x −η)

∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
,
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and

E
[|A2|q

]≤ c
d∑

k,l=1
E

[∣∣∣∫t

s−ε
dθ

∫
R

dηGα(t −θ, x −η)
∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2 ∣∣∣q

]
≤ A21 + A22 + A23,

with

A21 := c
d∑

k,l=1
E

[∣∣∣∣∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)
∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
,

A22 := c
d∑

k,l=1
E

[∣∣∣∣∫s+c0ε
γ0

s
dθ

∫
R

dηGα(t −θ, x −η)
∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
,

A23 := c
d∑

k,l=1
E

[∣∣∣∣∫t

s+c0εγ0
dθ

∫
R

dηGα(t −θ, x −η)
∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
.

We first bound E
[|A1|q

]
. We apply Hölder’s inequality with respect to the measure G2

α(t −θ, x−
η)dθdη to find that

E
[|A11|q

]≤ c
d∑

k,l=1

(∫s

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)

)q−1

×
∫s

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)E

[∣∣∣∣∫θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
.

For θ ∈ [s −ε, s], we have s −ε≥ θ−ε≥ 0. Hence by Lemma A.3.2,

E

[∣∣∣∣∫θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ E

[∣∣∣∣∫θ

θ−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ cε

α−1
α

q , (2.5.13)

where c ∈ ]0,∞[ does not depend on (θ,η, s, t ,ε, x). Therefore, by (A.4),

E
[|A11|q

]≤ cε
α−1
α

q
(∫s

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)

)q

= cε
α−1
α

q (
(t − s +ε)(α−1)/α− (t − s)(α−1)/α)q

≤ cε
α−1
α

qε(1−γ0+γ0
α−1
α

)q , (2.5.14)

where, in the last inequality, we perform the same calculation as in (A.18) under the as-

sumption t − s > c0ε
γ0 . Again, we apply Hölder’s inequality with respect to the measure
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G2
α(t −θ, x −η)dθdη to find that

E
[|A12|q

]≤ c
d∑

k,l=1

(∫s+c0ε
γ0

s
dθ

∫
R

dηG2
α(t −θ, x −η)

)q−1

×
∫s+c0ε

γ0

s
dθ

∫
R

dηG2
α(t −θ, x −η)E

[∣∣∣∣∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
.

Lemma A.3.2 implies that

d∑
k,l=1

E

[∣∣∣∣∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ cε

α−1
α

q ,

where c ∈ ]0,∞[ does not depend on (θ,η, s, t ,ε, x). Consequently,

E
[|A12|q

]≤ c

(∫s+c0ε
γ0

s
dθ

∫
R

dηG2
α(t −θ, x −η)

)q

ε
α−1
α

q

= c
(
(t − s)

α−1
α − (t − s −c0ε

γ0 )
α−1
α

)q
ε

α−1
α

q

≤ c
(
(c0ε

γ0 )
α−1
α − (c0ε

γ0 −c0ε
γ0 )

α−1
α

)q
ε

α−1
α

q

= c(c0ε
γ0 )

α−1
α

qε
α−1
α

q = c ′ε(1+γ0) α−1
α

q , (2.5.15)

where the second inequality is because the function x �→ x
α−1
α − (x − c0ε

γ0 )
α−1
α is decreasing on

[c0ε
γ0 ,∞[.

For A13, we have, by Hölder’s inequality with respect to the measure G2
α(t −θ, x −η)dθdη,

E
[|A13|q

]≤ c
d∑

k,l=1

(∫t

s+c0εγ0
dθ

∫
R

dηG2
α(t −θ, x −η)

)q−1

×
∫t

s+c0εγ0
dθ

∫
R

dηG2
α(t −θ, x −η)E

[∣∣∣∣∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
.

Lemma A.3.3 implies that for any θ ∈ ]s +c0ε
γ0 , t [,

d∑
k,l=1

E

[∣∣∣∣∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ cε(1−γ0+γ0

α−1
α

)q ,

where c ∈ ]0,∞[ does not depend on (θ,η, s, t ,ε, x). Thus, by (A.4),

E
[|A13|q

]≤ c

(∫t

s+c0εγ0
dθ

∫
R

dηG2
α(t −θ, x −η)

)q

ε(1−γ0+γ0
α−1
α

)q

= c(t − s −c0ε
γ0 )

α−1
α

qε(1−γ0+γ0
α−1
α

)q

≤ cε(1−γ0+γ0
α−1
α

)q . (2.5.16)
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We proceed to derive a similar bound for E
[|A2|q

]
. We apply Hölder’s inequality with respect

to the measure Gα(t −θ, x −η)dθdη to find that

E
[|A21|q

]≤ c
d∑

k,l=1

∣∣∣∣∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q−1

×
∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)E

[∣∣∣∣∫θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]

≤ c

∣∣∣∣∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q

ε
α−1
α

q

= cεqε
α−1
α

q = cε( α−1
α

+1)q , (2.5.17)

where in the second inequality we use (2.5.13). Similarly, we apply Hölder’s inequality with

respect to the measure Gα(t −θ, x −η)dθdη to find that

E
[|A22|q

]≤ c
d∑

k,l=1

∣∣∣∣∫s+c0ε
γ0

s
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q−1

×
∫s+c0ε

γ0

s
dθ

∫
R

dηGα(t −θ, x −η)E

[∣∣∣∣∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ c

∣∣∣∣∫s+c0ε
γ0

s
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q

ε
α−1
α

q

= c(c0ε
γ0 )qε

α−1
α

q = cε( α−1
α

+γ0)q , (2.5.18)

where in the second inequality we use Lemma A.3.2. For the last term, we use Hölder’s inequal-

ity with respect to the measure Gα(t −θ, x −η)dθdη to see that

E
[|A23|q

]≤ c
d∑

k,l=1

∣∣∣∣∫t

s+c0εγ0
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q−1

×
∫t

s+c0εγ0
dθ

∫
R

dηGα(t −θ, x −η)E

[∣∣∣∣∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

∣∣∣∣q]
≤ c

∣∣∣∣∫t

s+c0εγ0
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q

ε(1−γ0+γ0
α−1
α

)q

= c(t − s −c0ε
γ0 )qε(1−γ0+γ0

α−1
α

)q

≤ cε(1−γ0+γ0
α−1
α

)q , (2.5.19)

where in the second inequality we use Lemma A.3.3.

Finally, from (2.5.14), ( 2.5.15), (2.5.16), (2.5.17), (2.5.18) and (2.5.19), together with the choice

of γ0, we obtain the desired result. �

Remark 2.5.5. The result of Lemma 2.5.4 is also true for solutions of stochastic heat equations

with Neumann or Dirichlet boundary conditions since we can still apply the result of Lemma

A.3.3; see Remark A.3.4.
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2.5.2 Study of the Malliavin matrix

Let T > 0 be fixed. For s, t ∈ [0,T ], s ≤ t , and x, y ∈ R consider the 2d-dimensional random

vector

Z := (u(s, y),u(t , x)−u(s, y)). (2.5.20)

Let γZ be the Malliavin matrix of Z . Note that γZ = ((γZ )m,l )m,l=1,...,2d is a symmetric 2d ×2d

random matrix with four d ×d blocs of the form

γZ =

⎛⎜⎜⎜⎜⎝
γ(1)

Z

... γ(2)
Z

· · · ... · · ·
γ(3)

Z

... γ(4)
Z

⎞⎟⎟⎟⎟⎠
where

γ(1)
Z = (〈

D(ui (s, y)),D(u j (s, y))
〉
H

)
i , j=1,...,d

,

γ(2)
Z = (〈

D(ui (s, y)),D(u j (t , x)−u j (s, y))
〉
H

)
i , j=1,...,d

,

γ(3)
Z = (〈

D(ui (t , x)−ui (s, y)),D(u j (s, y))
〉
H

)
i , j=1,...,d

,

γ(4)
Z = (〈

D(ui (t , x)−ui (s, y)),D(u j (t , x)−u j (s, y))
〉
H

)
i , j=1,...,d

.

We let (1) denote the couples of {1, . . . ,d}× {1, . . . ,d}, (2) denote the couples of {1, . . . ,d}× {d +
1, . . . ,2d}, (3) denote the couples of {d + 1, . . . ,2d}× {1, . . . ,d} and (4) denote the couples of

{d +1, . . . ,2d}× {d +1, . . . ,2d}.

The next two results follow exactly along the same lines as [26, Propositions 6.5 and 6.7] using

(2.3.3) and Proposition 2.5.2, with Δ replaced by Δα. We omit the proofs.

Proposition 2.5.6. Fix T > 0 and let I and J be compact intervals as in Theorem 2.1.1. Let AZ

denote the cofactor matrix of γZ . Assuming P1’, for any (s, y), (t , x) ∈ I × J , (s, y) �= (t , x), p > 1,

E
[|(AZ )m,l |p

]1/p ≤

⎧⎪⎨⎪⎩
cp,T (|t − s| α−1

α +|x − y |α−1)d if (m, l ) ∈ (1),

cp,T (|t − s| α−1
α +|x − y |α−1)d− 1

2 if (m, l ) ∈ (2) or (3),

cp,T (|t − s| α−1
α +|x − y |α−1)d−1 if (m, l ) ∈ (4).

Proposition 2.5.7. Fix T > 0 and let I and J be compact intervals as in Theorem 2.1.1. Assuming

P1’, for any (s, y), (t , x) ∈ I × J , (s, y) �= (t , x), p > 1,

E
[
‖Dk (γZ )m,l‖p

]1/p ≤

⎧⎪⎨⎪⎩
ck,p,T if (m, l ) ∈ (1),

ck,p,T (|t − s| α−1
α +|x − y |α−1)

1
2 if (m, l ) ∈ (2) or (3),

ck,p,T (|t − s| α−1
α +|x − y |α−1) if (m, l ) ∈ (4).

The main technical effort in this subsection is the proof of the following proposition, which
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improves [26, Proposition 6.6(a)] and is why the η can be removed in the lower bound on

hitting probabilities.

Proposition 2.5.8. Fix T > 0 and let I and J be compact intervals as in Theorem 2.1.1. Assume

P1’ and P2. There exists C depending on T such that for any (s, y), (t , x) ∈ I × J , (s, y) �= (t , x), p >
1,

E
[
(detγZ )−p]1/p ≤C (|t − s| α−1

α +|x − y |α−1)−d . (2.5.21)

Proof. The proof has the same structure as that of [26, Proposition 6.6]; see also [27, Propositon

5.5]. We write

detγZ =
2d∏

i=1

(
ξi )T

γZξ
i , (2.5.22)

where ξ= {ξ1, . . . ,ξ2d } is an orthogonal basis of R2d consisting of eigenvectors of γZ .

We now carry out the perturbation argument of [26, Proposition 6.6]. Let 0 ∈Rd and consider

the spaces E1 = {(λ,0) : λ ∈Rd } and E2 = {(0,μ) : μ ∈Rd }. Each ξi can be written

ξi = (λi ,μi ) =βi (λ̃i ,0)+
√

1−β2
i (0, μ̃i ), (2.5.23)

where λi ,μi ∈ Rd , (λ̃i ,0) ∈ E1, (0, μ̃i ) ∈ E2, with ‖λ̃i‖ = ‖μ̃i‖ = 1 and 0 ≤ βi ≤ 1. In particular,

‖ξi‖2 = ‖λi‖2 +‖μi‖2 = 1.

For a fixed small β0, the result of [26, Lemma 6.8] gives us at least d eigenvectors ξ1, . . . ,ξd

satisfying βi ≥ β0, i = 1, . . . ,d , which we say have a "large projection on E1". We will show

that these will contribute a factor of order 1 to the product in (2.5.22). The at most d other

eigenvectors will each contribute a factor of order |t − s| α−1
α +|x − y |α−1, which we say have a

"small projection on E1".

Hence, by [26, Lemma 6.8] and Cauchy-Schwarz inequality, we can write

E
[
(detγZ )−p]1/p ≤ ∑

K⊂{1,...,2d},|K |=d

(
E

[
1AK

(∏
i∈K

(ξi )T γZξ
i

)−2p])1/(2p)

×
(

E

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝ inf
ξ= (λ,μ) ∈R2d :

‖λ‖2 +‖μ‖2 = 1

ξT γZξ

⎞⎟⎟⎟⎟⎟⎠
−2d p

⎤⎥⎥⎥⎥⎥⎥⎦
)1/(2p)

, (2.5.24)

where AK =∩i∈K {βi ≥β0}.

With this, Propositions 2.5.10 and 2.5.11 below will conclude the proof of Proposition 2.5.8. �
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Remark 2.5.9. As a consequence of Remark 2.5.12, we see that the result of Proposition 2.5.8 is

also true for the solutions of stochastic heat equations with Neumann or Dirichlet boundary

conditions.

Proposition 2.5.10. Fix T > 0. Assume P1’ and P2. There exists C depending on T such that for

all s, t ∈ I ,0 ≤ t − s < 1, x, y ∈ J , (s, y) �= (t , x), and p > 1,

E

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝ inf
ξ= (λ,μ) ∈R2d :

‖λ‖2 +‖μ‖2 = 1

ξT γZξ

⎞⎟⎟⎟⎟⎟⎠
−2d p

⎤⎥⎥⎥⎥⎥⎥⎦≤C (|t − s| α−1
α +|x − y |α−1)−2d p . (2.5.25)

We are going to apply Lemma 2.5.4 to prove this proposition. This is a significant improvement

over the proof of [26, Proposition 6.9] in which an extra exponent η appears.

Proposition 2.5.11. Assume P1’ and P2. Fix T > 0 and p > 1. Then there exists C = C (p,T )

such that for all s, t ∈ I with t ≥ s, x, y ∈ J , (s, y) �= (t , x),

E

[
1AK

(∏
i∈K

(ξi )T γZξ
i

)−p]
≤C , (2.5.26)

where AK is defined just below (2.5.24).

Proof of Proposition 2.5.10. Since γZ is a matrix of inner products, we can write

ξT γZξ=
d∑

k=1

∫T

0
dr

∫
R

d v
( d∑

i=1

(
λi D (k)

r,v (ui (s, y))+μi (D (k)
r,v (ui (t , x))−D (k)

r,v (ui (s, y)))
))2

.

From here on, the proof is divided into two cases.

Case 1. In the first case, we assume that t − s > 0 and |x − y |α ≤ t − s. Choose and fix an

ε ∈ ]0,δ(t − s)[, where 0 < δ< 1 is small but fixed; its specific value will be decided on later (see

the description above (2.5.29)). Then we may write

ξT γZξ≥ J1 + J2,

where

J1 :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
(λi −μi )[Gα(s − r, y − v)σi k (u(r, v))+ai (k,r, v, s, y)]+W

)2

,

J2 :=
d∑

k=1

∫t

t−ε
dr

∫
R

d v W 2,
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ai (k,r, v, s, y) is defined in (2.3.2) and

W :=
d∑

i=1
[μi Gα(t − r, x − v)σi k (u(r, v))+μi ai (k,r, v, t , x)].

Sub-case A: ε≤ δ(t − s)1/γ0 with 0 < γ0 < 1. In this case, by the elementary inequality (2.3.5),

J2 ≥ Ŷ1,ε−Y1,ε,

where

Ŷ1,ε := 2

3

d∑
k=1

∫t

t−ε
dr

∫
R

d v

(
d∑

i=1
μiσi k (u(r, v))

)2

G2
α(t − r, x − v),

Y1,ε := 2 sup
‖μ‖≤1

d∑
k=1

∫t

t−ε
dr

∫
R

d v

(
d∑

i=1
μi ai (k,r, v, t , x)

)2

.

In agreement with hypothesis P2 and by (A.4),

Ŷ1,ε ≥ c‖μ‖2
∫t

t−ε
dr

∫
R

d v G2
α(t − r, x − v)

= c‖μ‖2ε
α−1
α .

Next we apply Lemma 2.5.3 [with s := t ] to find that E
[|Y1,ε|q

]≤ cε
2α−2
α

q , for any q ≥ 1.

For J1, we find that

J1 ≥ Ŷ2,ε−Y2,ε,

where

Ŷ2,ε := 2

3

d∑
k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
(λi −μi )σi k (u(r, v))

)2

G2
α(s − r, y − v),

and

Y2,ε := 6(W1 +W2 +W3),
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where

W1 := sup
‖ξ‖=1

d∑
k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
μi Gα(t − r, x − v)σi k (u(r, v))

)2

,

W2 := sup
‖ξ‖=1

d∑
k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
(λi −μi )ai (k,r, v, s, y)

)2

,

W3 := sup
‖ξ‖=1

d∑
k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
μi ai (k,r, v, t , x)

)2

.

Hypothesis P2 implies that Ŷ2,ε ≥ c‖λ−μ‖εα−1
α . Next, we apply the Cauchy-Schwartz inequality

to find that, for any q ≥ 1,

E
[|W1|q

]≤ sup
‖ξ‖=1

‖μ‖2q ×E

[∣∣∣∣∣ d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
(σi k (u(r, v)))2G2

α(t − r, x − v)

∣∣∣∣∣
q]

.

Thanks to hypothesis P1’ and (A.4), this is bounded above by

c

∣∣∣∣∫s

s−ε
dr

∫
R

d v G2
α(t − r, x − v)

∣∣∣∣q

= c((t − s +ε)
α−1
α − (t − s)

α−1
α )q .

Since the function x �→ (x +ε)
α−1
α −x

α−1
α is decreasing on [0,∞[, under the assumption of this

sub-case, this is bounded above by

c
(
(δ−γ0εγ0 +ε)

α−1
α − (δ−γ0εγ0 )

α−1
α

)q = c(δ−γ0εγ0 )
α−1
α

q
(
(1+δγ0ε1−γ0 )

α−1
α −1

)q

≤ c(δ−γ0εγ0 )
α−1
α

q (δγ0ε1−γ0 (α−1)/α)q

= cε(1−γ0+γ0
α−1
α

)q ,

where we use the inequality (1+x)
α−1
α −1 ≤ α−1

α x, for all x ≥ 0.

In order to bound the q-th moment of W2, we use the Cauchy-Schwarz inequality to write

E
[|W2|q

]≤ sup
‖ξ‖=1

‖λ−μ‖2q ×E

[∣∣∣∣∣ d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, s, y)

∣∣∣∣∣
q]

≤ E

[∣∣∣∣∣ d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, s, y)

∣∣∣∣∣
q]

.

We apply Lemma 2.5.3 [with t := s] to find that E
[|W2|q

]≤ cε
2α−2
α

q .

Furthermore, under the assumption of this sub-case, by Lemma 2.5.4 we find that, for any
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q ≥ 1,

E
[|W3|q

]≤ sup
‖ξ‖=1

‖μ‖2q ×E

[∣∣∣∣∣ d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, t , x)

∣∣∣∣∣
q]

≤ cεmin((1+γ0) α−1
α

,1−γ0+γ0
α−1
α

)q .

The preceding bounds for W1,W2 and W3 prove, in conjunction, that

E
[|Y2,ε|q

]≤ cεmin((1+γ0) α−1
α

,1−γ0+γ0
α−1
α

)q .

Thus we have

J1 + J2 ≥ Ŷ1,ε+ Ŷ2,ε−Y1,ε−Y2,ε

≥ c(‖μ‖2 +‖λ−μ‖2)ε
α−1
α −Y1,ε−Y2,ε

≥ cε
α−1
α −Yε, (2.5.27)

where Yε := Y1,ε+Y2,ε satisfies

E
[|Yε|q

]≤ cεmin((1+γ0) α−1
α

,1−γ0+γ0
α−1
α

)q . (2.5.28)

Sub-case B: δ(t − s)1/γ0 < ε< δ(t − s). In this case, we are going to give a different estimate on

J1.

J1 ≥ Ỹε−4(W2 +W3),

where

Ỹε := 2

3

d∑
k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
[(λi −μi )Gα(s − r, y − v)+μi Gα(t − r, x − v)]σi k (u(r, v))

)2

.

Using the inequality

(a +b)2 ≥ a2 +b2 −2|ab|,

we see that

Ỹε ≥ Ŷ2,ε−|B (3)
1 |,
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where

B (3)
1 := 4

3

d∑
k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
(λi −μi )Gα(s − r, y − v)σi k (u(r, v))

)

×
(

d∑
i=1

μi Gα(t − r, x − v)σi k (u(r, v))

)
.

Hypothesis P1’ assures us that∣∣∣B (3)
1

∣∣∣≤ c
∫s

s−ε
dr

∫
R

d v Gα(s − r, y − v)Gα(t − r, x − v)

= c
∫s

s−ε
dr Gα(t + s −2r, x − y) = c

∫ε

0
dr Gα(t − s +2r, x − y),

where in the first equality we use the semi-group property of the Green kernel (A.6). Since for

any t > 0, the function x �→Gα(t , x) attains its maximum at 0, this is bounded above by

c
∫ε

0
dr Gα(t − s +2r,0) = c ′

∫ε

0
dr (t − s +2r )−

1
α

= c ′((t − s +2ε)
α−1
α − (t − s)

α−1
α )

= c ′ε
α−1
α ((

t − s

ε
+2)

α−1
α − (

t − s

ε
)
α−1
α )

≤ c ′ε
α−1
α ((1/δ+2)

α−1
α − (1/δ)

α−1
α ),

where the first equality is because of the scaling property of Green kernel (A.2) and in the

inequality we use the assumption ε< δ(t−s) and the fact that the function x �→ (x+2)
α−1
α −x

α−1
α

is decreasing on [0,∞[. Hence we have

J1 + J2 ≥ Ŷ1,ε+ Ŷ2,ε−
∣∣∣B (3)

1

∣∣∣−4W2 −4W3 −Y1,ε

≥ c(‖μ‖2 +‖λ−μ‖2)ε
α−1
α −c ′ε

α−1
α ((1/δ+2)

α−1
α − (1/δ)

α−1
α )−4W2 −4W3 −Y1,ε

≥ c0ε
α−1
α −c ′ε

α−1
α ((1/δ+2)

α−1
α − (1/δ)

α−1
α )−4W2 −4W3 −Y1,ε

We can choose δ small so that c0 > c ′((1/δ+2)
α−1
α − (1/δ)

α−1
α ) and therefore,

J1 + J2 ≥ cε
α−1
α −4W2 −4W3 −Y1,ε. (2.5.29)

In this sub-case,

E
[|W2|q

]≤ sup
‖ξ‖=1

‖λ−μ‖2q ×E

[∣∣∣∣∣ d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, s, y)

∣∣∣∣∣
q]

≤ E

[∣∣∣∣∣ d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, s, y)

∣∣∣∣∣
q]

.

We apply Lemma 2.5.3 to find that E
[|W2|q

]≤ cε
2α−2
α

q . Similarly, we find using Lemma 2.5.3
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and the assumption δ(t − s)1/γ0 < ε that

E
[|W3|q

]≤ sup
‖ξ‖=1

‖μ‖2q ×E

[∣∣∣∣∣ d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, t , x)

∣∣∣∣∣
q]

≤ c(t − s +ε)
α−1
α

qε
α−1
α

q

≤ c(δ−γ0εγ0 +ε)
α−1
α

qε
α−1
α

q

≤ cε(1+γ0) α−1
α

q .

Combine (2.5.27) and (2.5.29), we have for ε ∈ ]0,δ(t − s)[

inf
‖ξ‖=1

ξT γZξ≥ cε
α−1
α − Z̃ε, (2.5.30)

where

Z̃ε := Yε1{ε≤δ(t−s)1/γ0 } +4(W2 +W3 +Y1,ε)1{δ(t−s)1/γ0<ε<δ(t−s)}

and for all q ≥ 1,

E
[|Yε1{ε≤δ(t−s)1/γ0 }|q

]≤ cεmin((1+γ0) α−1
α

,1−γ0+γ0
α−1
α

)q , (2.5.31)

and

E
[|4(W2 +W3 +Y1,ε)1{δ(t−s)1/γ0<ε<δ(t−s)}|q

]≤ cε(1+γ0) α−1
α

q . (2.5.32)

We use Proposition A.2.1 to find that

E

[(
inf

‖ξ‖=1
ξT γZξ

)−2pd
]
≤ c (δ(t − s))−2pd α−1

α

= c ′(t − s)−2pd α−1
α

≤ c̃
[
|t − s| α−1

α +|x − y |α−1
]−2pd

,

whence follows the result in the case that |x − y |α ≤ t − s < 1.

Case 2. Now we work on the second case where |x − y | > 0 and |x − y |α ≥ t − s ≥ 0. Let ε> 0 be

such that (1+β)ε
1
α < 1

2 |x − y |, where β> 0 is large but fixed; its specific value will be decided

on later (see the explanation for (2.5.45) and (2.5.46)). Then

ξT γZξ≥ I1 + I2,
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where

I1 :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v(ϕ1 +ϕ2)2,

I2 :=
d∑

k=1

∫t

(t−ε)∨s
dr

∫
R

d vϕ2
2,

and

ϕ1 :=
d∑

i=1
(λi −μi )[Gα(s − r, y − v)σi k (u(r, v))+ai (k,r, v, s, y)],

ϕ2 :=
d∑

i=1
[μi Gα(t − r, x − v)σi k (u(r, v))+μi ai (k,r, v, t , x)].

From here on, Case 2 is divided into two further sub-cases.

Sub-Case A. Suppose, in addition, that ε≥ δ(t − s), where δ is chosen as in case 1. In this case,

we are going to prove that

inf
‖ξ‖=1

ξT γZξ≥ cε
α−1
α −Z1,ε, (2.5.33)

where for all q ≥ 1,

E
[|Z1,ε|q

]≤ c(q)ε
2α−2
α

q . (2.5.34)

Indeed, by the elementary inequality (2.3.5) we find that

I1 ≥ 2

3
Ã1 −B (1)

1 −B (2)
1 ,

where

Ã1 :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
[(λi −μi )Gα(s − r, y − v)+μi Gα(t − r, x − v)]σi k (u(r, v))

)2

,

B (1)
1 := 4‖λ−μ‖2

d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, s, y), (2.5.35)

B (2)
1 := 4‖μ‖2

d∑
k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, t , x). (2.5.36)

Using the inequality

(a +b)2 ≥ a2 +b2 −2|ab|,

71



Chapter 2. Hitting probabilities for systems of stochastic heat equations with
multiplicative noise

we see that

Ã1 ≥ A1 + A2 −|B (3)
1 |,

where

A1 :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
(λi −μi )Gα(s − r, y − v)σi k (u(r, v))

)2

,

A2 :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
μi Gα(t − r, x − v)σi k (u(r, v))

)2

,

B (3)
1 := 2

d∑
k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
(λi −μi )Gα(s − r, y − v)σi k (u(r, v))

)

×
(

d∑
i=1

μi Gα(t − r, x − v)σi k (u(r, v))

)
.

We can combine terms to find that

I1 ≥ 2

3
(A1 + A2)− (B (1)

1 +B (2)
1 +|B (3)

1 |).

Moreover, we appeal to the elementary inequality (2.3.5) to find that

I2 ≥ 2

3
A3 −B2,

where

A3 :=
d∑

k=1

∫t

(t−ε)∨s
dr

∫
R

d v

(
d∑

i=1
μi Gα(t − r, x − v)σi k (u(r, v)

)2

,

B2 := 2
d∑

k=1

∫t

(t−ε)∨s
dr

∫
R

d v

(
d∑

i=1
μi ai (k,r, v, t , x)

)2

. (2.5.37)

By hypothesis P2 and using (A.4) three times,

A1 + A2 + A3 ≥ ρ2
(
‖λ−μ‖2

∫s

s−ε
dr

∫
R

d v G2
α(s − r, y − v)

+‖μ‖2
∫s

s−ε
dr

∫
R

d v G2
α(t − r, x − v)

+‖μ‖2
∫t

(t−ε)∨s
dr

∫
R

d v G2
α(t − r, x − v)

)
= cρ2

(
‖λ−μ‖2ε

α−1
α +‖μ‖2

(
(t − s +ε)

α−1
α − (t − s)

α−1
α + (t − ((t −ε)∨ s))

α−1
α

))
= cρ2

(
‖λ−μ‖2ε

α−1
α +‖μ‖2

(
(t − s +ε)

α−1
α − (t − s)

α−1
α + ((t − s)∧ε)

α−1
α

))
= cρ2ε

α−1
α

(
‖λ−μ‖2 +‖μ‖2

(
(

t − s

ε
+1)

α−1
α − (

t − s

ε
)
α−1
α + ((

t − s

ε
)∧1)

α−1
α

))
.
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Denote ζ(x) := (x +1)
α−1
α −x

α−1
α + (x ∧1)

α−1
α , x ∈ [0,∞[. Then it is obvious to see that

ĉ0 := min
0≤x<∞ζ(x) > 0. (2.5.38)

Thus we have

A1 + A2 + A3 ≥ cρ2ε
α−1
α

(
‖λ−μ‖2 +c0‖μ‖2

)
≥ cε

α−1
α .

We are aiming for (2.5.33), and propose to bound the absolute moments of B (i )
1 , i = 1,2,3 and

B2, separately. According to Lemma 2.5.3 with s = t ,

E

[
sup
‖ξ‖=1

|B2|q
]
≤ c(q)ε

2α−2
α

q . (2.5.39)

Next we bound the absolute moments of B (i )
1 , i = 1,2,3. Using Lemma 2.5.3, with t = s, we find

that for all q ≥ 1,

E

[
sup
‖ξ‖=1

|B (1)
1 |q

]
≤ cε

2α−2
α

q . (2.5.40)

In the same way, we see that

E

[
sup
‖ξ‖=1

|B (2)
1 |q

]
≤ c(t − s +ε)

α−1
α

qε
α−1
α

q . (2.5.41)

Since we are in the sub-case A where t − s ≤ δ−1ε, we obtain the following:

E

[
sup
‖ξ‖=1

|B (2)
1 |q

]
≤ cε

2α−2
α

q . (2.5.42)

We can combine (2.5.40) and (2.5.42) as follows:

E

[
sup
‖ξ‖=1

(
B (1)

1 +B (2)
1

)q
]
≤ c(q)ε

2α−2
α

q . (2.5.43)

Finally, we turn to bounding the absolute moments of B (3)
1 . Hypothesis P1’ assures us that

∣∣∣B (3)
1

∣∣∣≤ c
∫s

s−ε
dr

∫
R

d v Gα(s − r, y − v)Gα(t − r, x − v)

= c
∫s

s−ε
dr Gα(t + s −2r, x − y) = c

∫ε

0
dr Gα(t − s +2r, x − y),

thanks to the semi-group property. When α= 2, we can follow the arguments on page 414 of
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[26] to find that

∣∣∣B (3)
1

∣∣∣≤ cε1/2Ψ(β), where Ψ(β) :=β

∫6/β2

0
z−1/2e−1/z d z. (2.5.44)

Thus,

inf
‖ξ‖=1

ξT γZξ≥ 2

3
(A1 + A2 + A3)−

(
B (1)

1 +B (2)
1 +

∣∣∣B (3)
1

∣∣∣+B2

)
≥ c1ε

1/2 −c2Ψ(β)ε1/2 −Z1,ε,

where Z1,ε := B (1)
1 +B (2)

1 +B2 satisfies E[|Z1,ε|q ] ≤ c1(q)ε
2α−2
α

q . Because limν→∞Ψ(ν) = 0, we can

choose β so large that c2Ψ(β) ≤ c1/4 for the c1 and c2 of the preceding displayed equation.

This yields,

inf
‖ξ‖=1

ξT γZξ≥ cε1/2 −Z1,ε. (2.5.45)

When 1 <α< 2, by the scaling property (A.2), and (A.5), we have∣∣∣B (3)
1

∣∣∣≤ c
∫ε

0
dr (t − s +2r )−1/αGα(1, (x − y)(t − s +2r )−1/α)

≤ cKα

∫ε

0

(t − s +2r )−1/α

1+ ∣∣(x − y)(t − s +2r )−1/α
∣∣1+α dr

≤ cKα

∫ε

0

(t − s +2r )−1/α∣∣(x − y)(t − s +2r )−1/α
∣∣1+α dr

= cKα|x − y |−1−α
∫ε

0
(t − s +2r )dr = cKα|x − y |−1−α[(t − s)ε+ε2].

Since t − s ≤ |x − y |α, this is bounded above by

cKα(|x − y |−1ε+|x − y |−1−αε2)

≤ cKα

(
1

(1+β)
ε

α−1
α + 1

(1+β)1+α ε
2−(1+α)/α

)
= cKα

(
1

(1+β)
+ 1

(1+β)1+α

)
ε

α−1
α .

Therefore, for 1 <α≤ 2, we can choose and fix β large enough so that

inf
‖ξ‖=1

ξT γZξ≥ cε
α−1
α −Z1,ε, (2.5.46)

where for all q ≥ 1,

E
[|Z1,ε|q

]≤ c(q)ε
2α−2
α

q ,

as in (2.5.33) and (2.5.34).
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Sub-case B. In this final (sub-) case we suppose that ε < δ(t − s) ≤ δ|x − y |α. Choose and fix

0 < ε< δ(t − s). During the course of our proof of Case 1, we established the following:

inf
‖ξ‖=1

ξT γZξ≥ cε
α−1
α − Z̃ε, (2.5.47)

where, for all q ≥ 1,

E
[|Z̃ε|q

]≤ cεmin((1+γ0) α−1
α

,1−γ0+γ0
α−1
α

)q

(see (2.5.31) and (2.5.32)).

Combine Sub-Cases A and B, and, in particular, (2.5.33) and (2.5.47), to find that for all

0 < ε< 2−α(1+β)−α|x − y |α,

inf
‖ξ‖=1

ξT γZξ≥ cε
α−1
α − (Z̃ε1{ε<δ(t−s)} +Z1,ε1{t−s≤δ−1ε}).

Because of this and (2.5.34), Proposition A.2.1 implies that

E

[(
inf

‖ξ‖=1
ξT γZξ

)−2pd
]
≤ c|x − y |α(−2d p)( α−1

α
)

≤ c
(|x − y |α+|t − s|)( α−1

α
)(−2d p)

≤ c
(
|t − s| α−1

α +|x − y |α−1
)−2d p

.

This completes the proof of Proposition 2.5.10. �

Remark 2.5.12. From the proof of Proposition 2.5.10, we see that (2.5.25) is also valid for the

solutions of stochastic heat equations with Neumann or Dirichlet boundary conditions, since

we can still apply the result of Lemma 2.5.4; see Remark 2.5.5.

Proof of Proposition 2.5.11. The proof follows along the same lines as those of [26, Proposition

6.13].

Let 0 < ε < s ≤ t . We fix i0 ∈ {1, . . . ,2d} and write λ̃i0 = (λ̃i0
1 , . . . , λ̃i0

d ) and μ̃i0 = (μ̃i0
1 , . . . , μ̃i0

d ). We

look at (ξi0 )T γZξ
i0 on the event {βi0 ≥β0}. As in the proof of Proposition 2.5.10 and using the

75



Chapter 2. Hitting probabilities for systems of stochastic heat equations with
multiplicative noise

notation from (2.5.23), this is bounded below by

d∑
k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1

[(
βi0 λ̃

i0

i Gα(s − r, y − v)

+ μ̃
i0

i

√
1−β2

i0
(Gα(t − r, x − v)−Gα(s − r, y − v))

)
σi k (u(r, v))

+βi0 λ̃
i0

i ai (k,r, v, s, y)

+ μ̃
i0

i

√
1−β2

i0
(ai (k,r, v, t , x)−ai (k,r, v, s, y))

])2

+
d∑

k=1

∫t

s∨(t−ε)
dr

∫
R

d v

(
d∑

i=1

[
μ̃

i0

i

√
1−β2

i0
Gα(t − r, x − v)σi k (u(r, v))

+ μ̃
i0

i

√
1−β2

i0
ai (k,r, v, t , x)

])2

. (2.5.48)

We seek lower bounds for this expression for 0 < ε< ε0 where ε0 ∈ ]0, 1
2 [ is fixed. In the remainder

of this proof, we will use the generic notation β, λ̃ and μ̃ for the realizations βi0 (ω), λ̃i0 (ω), and

μ̃i0 (ω). The proof follows the structure of [26, Proposition 6.13].

Case 1 t−s ≤ ε. Then, by the elementary inequality (2.3.5), the expression in (2.5.48) is bounded

below by

2

3
( f1(s, t ,ε,β, λ̃, μ̃, x, y)+ f2(s, t ,ε,β, λ̃, μ̃, x, y))−2Iε,

where, from hypothesis P2,

f1 ≥ cρ2
∫s

s−ε
dr

∫
R

d v
∥∥∥βλ̃Gα(s − r, y − v)

+
√

1−β2μ̃(Gα(t − r, x − v)−Gα(s − r, y − v))
∥∥∥2

, (2.5.49)

f2 ≥ cρ2
∫t

s∨(t−ε)
dr

∫
R

d v

∥∥∥∥μ̃√
1−β2Gα(t − r, x − v)

∥∥∥∥2

(2.5.50)

and Iε = 3(I1,ε+ I2,ε+ I3,ε), where

I1,ε :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1

[
βλ̃i − μ̃i

√
1−β2

]
ai (k,r, v, s, y)

)2

,

I2,ε :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
μ̃i

√
1−β2ai (k,r, v, t , x)

)2

,

I3,ε :=
d∑

k=1

∫t

t−ε
dr

∫
R

d v

(
d∑

i=1
μ̃i

√
1−β2ai (k,r, v, t , x)

)2

.

There are obvious similarities between the term I1,ε and B (1)
1 in (2.5.35). However, we must
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keep in mind that β, λ̃ and μ̃ are the realizations of βi0 , λ̃i0 , and μ̃i0 . Therefore,

I1,ε :=
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1

[
βλ̃i − μ̃i

√
1−β2

]
ai (k,r, v, s, y)

)2

≤C
d∑

k=1

∫s

s−ε
dr

∫
R

d v
d∑

i=1
a2

i (k,r, v, s, y).

Then, we apply the same method that was used to bound E[|B (1)
1 |q ] to deduce that E[|I1,ε|q ] ≤

c(q)ε
2α−2
α

q . Similarly, since I2,ε is similar to B (2)
1 from (2.5.36) and t − s ≤ ε, we see using (2.5.41)

that E[|I2,ε|q ] ≤ c(q)ε
2α−2
α

q . Finally, using the similarity between I3,ε and B2 in (2.5.37), we see

that E[|I3,ε|q ] ≤ c(q)ε
2α−2
α

q .

We claim that for every β0 > 0, there exists ε0 > 0 and c0 > 0 such that

f1 + f2 ≥ c0ε
α−1
α for all β ∈ [β0,1], ε ∈ ]0,ε0], s, t ∈ [0,T ], x, y ∈R. (2.5.51)

Using this for the β0 from [26, Lemma 6.8] with α0 replace by β0, this will imply in particular

that for ε≥ t − s,

(ξi0 )T γZξ
i0 ≥ c0ε

α−1
α −2Iε, (2.5.52)

where E[|Iε|q ] ≤ c(q)ε
2α−2
α

q .

Let g1(s, t ,ε,β, λ̃, μ̃, x, y) and g2(s, t ,ε,β, λ̃, μ̃, x, y) be defined by the same expressions as the

right-hand sides of (2.5.49) and (2.5.50).

Observe that g1 ≥ 0, g2 ≥ 0, and if g1 = 0, then for all r ∈ [s −ε, s[ and v ∈R,∥∥∥βλ̃Gα(s − r, y − v)+
√

1−β2μ̃(Gα(t − r, x − v)−Gα(s − r, y − v))
∥∥∥= 0. (2.5.53)

If, in addition, λ̃= μ̃, then we get that for all v ∈R,(
β−

√
1−β2

)
Gα(s − r, y − v)+

√
1−β2Gα(t − r, x − v) = 0.

We take Fourier transforms to deduce from this that for all ξ ∈R,(
β−

√
1−β2

)
eiξy =−

√
1−β2eiξx e(s−t )|ξ|α .

If x = y , then it follows that s = t and β−
√

1−β2 =−
√

1−β2, that is, β= 0. Hence,

if β �= 0, x = y and λ̃= μ̃, then g1 > 0. (2.5.54)

We shall make use of this observation shortly.
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Because ‖λ̃‖ = ‖μ̃‖ = 1, f1 is bounded below by

cρ2
∫s

s−ε
dr

∫
R

d v
(
β2G2

α(s − r, y − v))+ (
1−β2) (Gα(t − r, x − v)−Gα(s − r, y − v))2

+2β
√

1−β2Gα(s − r, y − v))(Gα(t − r, x − v)−Gα(s − r, y − v))(λ̃ · μ̃)
)

= cρ2
∫s

s−ε
dr

∫
R

d v
((
β−

√
1−β2

)2
G2

α(s − r, y − v)+ (
1−β2)G2

α(t − r, x − v)

+2
(
β−

√
1−β2

)√
1−β2Gα(s − r, y − v)Gα(t − r, x − v)

+2β
√

1−β2Gα(s − r, y − v))(Gα(t − r, x − v)−Gα(s − r, y − v))(λ̃ · μ̃−1)
)
.

By the semi-group property (A.6), we set h := t − s and change the variables to obtain the

following bound:

f1 ≥ cρ2
∫ε

0
dr

((
β−

√
1−β2

)2
Gα(2r,0)+ (

1−β2)Gα(2h +2r,0)

+2
(
β−

√
1−β2

)√
1−β2Gα(h +2r, x − y)

+2β
√

1−β2(Gα(h +2r, x − y)−Gα(2r,0))(λ̃ · μ̃−1)
)
.

Since by the scaling property of Green kernel (A.2) and Lemma A.1.1(i),

Gα(h +2r, x − y) = (h +2r )−1/αGα(1, (h +2r )−1/α(x − y))

≤ (h +2r )−1/αGα(1,0)

≤ (2r )−1/αGα(1,0) =Gα(2r,0),

together with λ̃ · μ̃−1 ≤ 0 it implies that

f1 ≥ cρ2ĝ1,

where

ĝ1 := ĝ1(h,ε,β, x, y)

=
∫ε

0
dr

((
β−

√
1−β2

)2
Gα(2r,0)+ (

1−β2)Gα(2h +2r,0)

+2
(
β−

√
1−β2

)√
1−β2Gα(h +2r, x − y)

)
.

Therefore,

ĝ1 =
∫ε

0
dr

((
β−

√
1−β2

)2
r− 1

α 2− 1
α Gα(1,0)+ (

1−β2) (h + r )−
1
α 2− 1

α Gα(1,0)

+2
(
β−

√
1−β2

)√
1−β2Gα(h +2r, x − y)

)
.
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On the other hand,

f2 ≥ cρ2
∫ε∧(t−s)

0
dr (1−β2)Gα(2r,0) = cρ2ĝ2,

where

ĝ2 :=
∫ε∧h

0
dr (1−β2)Gα(2r,0) = (1−β2)

α

α−1
2− 1

α Gα(1,0)(ε∧h)
α−1
α .

Finally, we conclude that

f1 + f2 ≥ cρ2(ĝ1 + ĝ2)

= cρ2

(
α

α−1
2− 1

α Gα(1,0)

((
β−

√
1−β2

)2
ε

α−1
α

+ (
1−β2)((h +ε)

α−1
α −h

α−1
α + (ε∧h)

α−1
α

))
+2

(
β−

√
1−β2

)√
1−β2

∫ε

0
dr Gα(h +2r, x − y)

)
. (2.5.55)

Now we consider two different sub-cases.

Sub-case (i). Suppose β−
√

1−β2 ≥ 0, that is, β≥ 2−1/2. Then

ε−
α−1
α (ĝ1 + ĝ2) ≥φ1

(
β,

h

ε

)
,

where

φ1(β, z) := α

α−1
2− 1

α Gα(1,0)
((
β−

√
1−β2

)2 + (
1−β2)((z +1)

α−1
α − z

α−1
α + (z ∧1)

α−1
α

))
.

Clearly,

inf
β≥2−1/2

inf
z≥0

φ1(β, z) ≥ inf
β≥2−1/2

α

α−1
2− 1

α Gα(1,0)

((
β−

√
1−β2

)2

+ ĉ0
(
1−β2))

>φ0 > 0,

where the value of ĉ0 is specified in (2.5.38). Thus,

inf
β≥2−1/2,h≥0,0<ε≤ε0

ε−
α−1
α (ĝ1 + ĝ2) > 0.

Sub-case (ii). Now we consider the case where β−
√

1−β2 < 0, that is, β< 2−1/2. In this case,

from (2.5.55), we see that

ε−
α−1
α (ĝ1 + ĝ2) ≥ψ1

(
β,

h

ε

)
,
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where

ψ1(β, z) := α

α−1
2− 1

α Gα(1,0)

((
β−

√
1−β2

)2 +
(
1−β2

)(
(z +1)

α−1
α − z

α−1
α + (z ∧1)

α−1
α

)
−2

(√
1−β2 −β

)√
1−β2

(( z

2
+1

) α−1
α −

( z

2

) α−1
α

))
.

Note that ψ1(β, z) > 0 if β �= 0: this corresponds to the observation made in (2.5.54). Denote

cα := α
α−1 2− 1

α Gα(1,0). For z ≥ 1, we have

ψ1(β, z) ≥ cα

[(
β−

√
1−β2

)2 +
(
1−β2

)
−2

(√
1−β2 −β

)√
1−β2

((3

2

) α−1
α −

(1

2

) α−1
α

)]
≥ cα

(
1−

(3

2

) α−1
α +

(1

2

) α−1
α

)[(
β−

√
1−β2

)2 +
(
1−β2

)]
≥ c̄0,

where in the second inequality we use the elementary inequality 2ab ≤ a2 +b2. Then

inf
β∈[β0,2−1/2]

inf
z≥0

ψ1(β, z) ≥ min

{
c̄0, inf

β∈[β0,2−1/2]
inf

z∈[0,1]
ψ1(β, z)

}
≥ cβ0 > 0.

This concludes the proof of the claim ( 2.5.51).

Case 2 t − s > ε. In accord with (2.5.48), we are interested in

inf
1≥β≥β0

(ξi0 )T γZξ
i0 := min(E1,ε,E2,ε),

where

E1,ε := inf
β0≤β≤

�
1−εη

(ξi0 )T γZξ
i0 ,

E2,ε := inf�
1−εη≤β≤1

(ξi0 )T γZξ
i0 .

Clearly,

E1,ε ≥ 2

3
f2 −2I3,ε.

Since β≤�
1−εη is equivalent to

√
1−β2 ≥ εη/2, we use hypothesis P2 to deduce that

f2 ≥ cρ2εηdr
∫t

t−ε

∫
R

d v G2
α(t − r, x − v) = c ′ρ2ε

α−1
α

+η

Therefore,

E1,ε ≥ c ′ρ2ε
α−1
α

+η−2I3,ε,
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and we have seen that I3,ε has the desirable property E[|I3,ε|q ] ≤ c(q)ε
2α−2
α

q .

In order to estimate E2,ε, we observe using (2.5.48) that

E2,ε ≥ 2

3
f̃1 − J̃1,ε− J̃2,ε− J̃3,ε− J̃4,ε,

where

f̃1 ≥β2
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
λ̃iσi k (u(r, v))

)2

G2
α(s − r, y − v),

J̃1,ε = 8
(
1−β2) d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
μ̃iσi k (u(r, v))

)2

G2
α(t − r, x − v),

J̃2,ε = 8
(
1−β2) d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
μ̃iσi k (u(r, v))

)2

G2
α(s − r, y − v),

J̃3,ε = 8
d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1

(
βλ̃i − μ̃i

√
1−β2

)
ai (k,r, v, s, y)

)2

,

J̃4,ε = 8
(
1−β2) d∑

k=1

∫s

s−ε
dr

∫
R

d v

(
d∑

i=1
μ̃i ai (k,r, v, t , x)

)2

,

Because β2 ≥ 1−εη and ε≤ ε0 ≤ 1
2 , hypothesis P2 implies that f̃1 ≥ cε

α−1
α . On the other hand,

since 1−β2 ≤ εη, we can use hypothesis P1’ and (A.4) to see that

E
[∣∣ J̃1,ε

∣∣q]≤ c(q)εqη
(∫s

s−ε
dr

∫
R

d v G2
α(t − r, x − v)

)q

= c(q)εqη((t − s +ε)
α−1
α − (t − s)

α−1
α )q

≤ c(q)εqη((ε+ε)
α−1
α −ε

α−1
α )q = c(q)ε( α−1

α
+η)q ,

where the second inequality is due to the fact that the function x �→ (x + ε)
α−1
α − x

α−1
α is de-

creasing on [0,∞[. Similarly, we have E[| J̃2,ε|q ] ≤ c(q)ε( α−1
α

+η)q . The term J̃3,ε is equal to 8I1,ε,

so E[| J̃3,ε|q ] ≤ cε
2α−2
α

q , and J̃4,ε is similar to B (2)
1 from (2.5.36), so we find using (2.5.42) that

E
[∣∣ J̃4,ε

∣∣q]≤ cεqη(t − s +ε)
α−1
α

qε
α−1
α

q ≤ cε( α−1
α

+η)q .

We conclude that when t−s > ε, then E2,ε ≥ cε
α−1
α − J̃ε, where E[| J̃ε|q ] ≤ c(q)ε( α−1

α
+η)q . Therefore,

when t − s > ε,

1{βi0≥β0}(ξ
i0 )T γZξ

i0 ≥ 1{βi0≥β0} min
(
cρ2ε

α−1
α

+η−2I3,ε,cε
α−1
α − J̃ε

)
.
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Putting together the results of Case 1 and Case 2, we see that for 0 < ε≤ ε0,

1{βi0≥β0}(ξ
i0 )T γZξ

i0 ≥ 1{βi0≥β0}Z ,

where

Z = min
(
cρ2ε

α−1
α

+η−2I3,ε,cε
α−1
α −2Iε1{ε≥t−s} − J̃ε1{ε<t−s}

)
.

Note that all the constants are independent of i0. Taking into account the bounds on moments

of I3,ε, Iε and J̃ε, and then using Proposition A.2.1, we deduce that for all p ≥ 1, there is C > 0

such that

E
[

1{βi0≥β0}

(
(ξi0 )T γZξ

i0

)−p]
≤ E

[
1{βi0≥β0}Z−p

]
≤ E[Z−p ] ≤C .

Since this applies to any p ≥ 1, we can use Hölder’s inequality to deduce (2.5.26). This proves

Proposition 2.5.11. �

2.5.3 Proof of Theorem 2.1.1(c) and Remark 2.1.2(c’)

Fix two compact intervals I and J as in Theorem 2.1.1. Let (s, y), (t , x) ∈ I × J , s ≤ t , (s, y) �= (t , x),

and z1, z2 ∈Rd . Let Z be as in (2.5.20) and let pZ be the density of Z . Then

ps,y ;t ,x (z1, z2) = pZ (z1, z2 − z1).

Apply Corollary 1.5.3 with σ= {i ∈ {1, . . . ,d} : zi
2 − zi

1 ≥ 0} and Hölder’s inequality to see that

pZ (z1, z2 − z1) ≤
d∏

i=1

(
P
{
|ui (t , x)−ui (s, y)| > |zi

1 − zi
2|
}) 1

2d

×‖H(1,...,2d)(Z ,1)‖0,2. (2.5.56)

Therefore, in order to prove the desired results of Theorem 2.1.1(c) and Remark 2.1.2(c’), it

suffices to prove that:

‖H(1,...,2d)(Z ,1)‖0,2 ≤ cT (|t − s| α−1
α +|x − y |α−1)−d/2, (2.5.57)

and

d∏
i=1

(
P
{
|ui (t , x)−ui (s, y)| > |zi

1 − zi
2|
}) 1

2d ≤ c exp

(
− ‖z1 − z2‖2

cT (|t − s| α−1
α +|x − y |α−1)

)
(2.5.58)

under the hypothesis P1, and

d∏
i=1

(
P
{
|ui (t , x)−ui (s, y)| > |zi

1 − zi
2|
}) 1

2d ≤ c

[
|t − s| α−1

α +|x − y |α−1

‖z1 − z2‖2 ∧1

]p/(4d)

(2.5.59)
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under the hypothesis P1’.

The proof of (2.5.58) under the hypothesis P1 is essentially the same as that of [26, (6.2)], with

Δ replaced by Δα, by using Lemma 2.5.1, the exponential martingale inequality [64, (A.5)] and

Girsanov theorem. As for the proof of (2.5.59) under the hypothesis P1’, it is analogous to that

of [27, Theorem 1.6(b)]. We first observe that (2.5.59) holds when ‖z1 − z2‖ = 0, since

|t − s| α−1
α +|x − y |α−1

‖z1 − z2‖2 ∧1 = 1,

for (t , x) �= (s, y). Assume now that ‖z1 − z2‖ �= 0. Then there is i ∈ {1, . . . ,d}, and we may as well

assume that i = 1, such that 0 < |z1
1 − z1

2 | = maxi=1,...,d |zi
1 − zi

2|. Then

d∏
i=1

(
P
{
|ui (t , x)−ui (s, y)| > |zi

1 − zi
2|
}) 1

2d ≤ (
P
{|u1(t , x)−u1(s, y)| > |z1

1 − z1
2 |
}) 1

2d .

Using Chebyshev’s inequality and (2.1.6), we see that this is bounded above by

c

[
|t − s| α−1

α +|x − y |α−1

|z1
1 − z1

2 |2
∧1

]p/(4d)

≤ c̃

[
|t − s| α−1

α +|x − y |α−1

‖z1 − z2‖2 ∧1

]p/(4d)

.

We turn to proving (2.5.57), which requires the following estimate on inverse of the matrix γZ .

Theorem 2.5.13. Fix T > 0. Assume P1’ and P2. Let I and J be compact intervals as in Theorem

2.1.1. For any (s, y), (t , x) ∈ I × J , s ≤ t , (s, y) �= (t , x),k ≥ 0 and p > 1,

E
[
‖(γZ )−1

m,l‖k,p

]
≤

⎧⎪⎨⎪⎩
ck,p,T if (m, l ) ∈ (1),

ck,p,T (|t − s| α−1
α +|x − y |α−1)−

1
2 if (m, l ) ∈ (2) or (3),

ck,p,T (|t − s| α−1
α +|x − y |α−1)−1 if (m, l ) ∈ (4).

(2.5.60)

Proof. As in the proof of [26, Theorem 6.3], we shall use Propositions 2.5.6, 2.5.7 and 2.5.8.

When k = 0, the result is a consequence of the estimates of Propositions 2.5.6 and 2.5.8, using

the fact that the inverse of a matrix is the inverse of its determinant multiplied by its cofactor

matrix.

For k ≥ 1, we proceed recursively as in the proof of [26, Theorem 6.3], using Proposition 2.5.7

instead of Proposition 2.5.6. �

Proof of (2.5.57). The proof is similar to that of [26, (6.3)] by using the continuity of the Skoro-

hod integral δ (see [64, Proposition 3.2.1] and [65, (1.11) and p.131]) and Hölder’s inequality

for Malliavin norms (see [82, Proposition 1.10, p.50]); the main difference is that Δ is replaced

by Δα. Comparing with the estimate in [26, (6.3)], we are able to remove the extra exponent η

because of the correct estimate on the inverse of the matrix γZ in Theorem 2.5.13. �
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Remark 2.5.14. We conclude this chapter by remarking that (2.5.57) is also valid for the solu-

tions of stochastic heat equations with Neumann or Dirichlet boundary conditions, since the

result of Theorem 2.5.13 is still true in that case by applying Proposition 2.5.8; see Remark 2.5.9.
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3 Hitting probability for stochastic heat
equations with additive noise

In this chapter, we study the hitting probabilities of the solution to a system of linear stochastic

heat equations with Dirichlet boundary conditions. We will show that for any bounded Borel

set with positive d−6-dimensional capacity, the solution visits this set almost surely. The strong

Markov property and the recurrence property of the solution considered as a one-parameter

process indexed by time are used.

3.1 Introduction and main result

In this chapter, we consider a special case of equations (1.2.1) with σ≡ Id, b ≡ 0 and U = [0,1].

That is, we consider the following system of linear stochastic partial differential equations:

∂ui

∂t
(t , x) = ∂2ui

∂x2 (t , x)+Ẇ i (t , x), (3.1.1)

for 1 ≤ i ≤ d , t ∈ [0,∞[ and x ∈ [0,1], where u := (u1, · · · ,ud ), with initial conditions u(0, x) =
u0(x) for all x ∈ [0,1] satisfying u0(·) ∈C ([0,1],Rd ), and Dirichlet boundary conditions

u(t ,0) = u(t ,1) = 0, for all t ≥ 0.

We assume there exist d independent copies of Brownian bridge {B i
0(x) : 0 ≤ x ≤ 1} for 1 ≤ i ≤ d ,

which are independent of the space-time white noise Ẇ . Set

ũ0 =
�

2

2
(B 1

0 , · · · ,B d
0 ).

For t ≥ 0, let Ft =σ{W (s, x), ũ0(x), s ∈ [0, t ], x ∈ [0,1]}∨N , where N is the σ-field generated by

P-null sets. . We say that u is a solution of (3.1.1) if u is adapted to (Ft )t≥0 and if for i ∈ {1, · · · ,d},

t ∈ ]0,∞[ and x ∈ [0,1],

ui (t , x) =
∫t

0

∫1

0
G(t − r, x, v)W i (dr,d v)+

∫1

0
G(t , x, v)ui

0(v)d v, (3.1.2)
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where the Green kernel G(t , x, y) is given in (1.3.6) and also has the following equivalent

expression

G(t , x, y) =
∞∑

k=1
e−π

2k2tφk (x)φk (y) (3.1.3)

with φk (x) :=�
2sin(kπx); see, for example, [6] and [81].

For the hitting probabilities of the solution {u(t , x)}(t ,x)∈[0,∞[×[0,1] with vanishing initial condi-

tions, the upper and lower bounds were established by Dalang, Khoshnevisan and Nualart

[25], in terms of respectively Hausdorff measure and Newtonian capacity. There, they show

that there exists c > 0 depending on M , I , J with M > 0, and I ⊂ ]0,∞[, J ⊂ ]0,1[ be non-trivial

compact intervals, such that for all Borel sets A ⊆ [−M , M ]d ,

c−1Capd−6(A) ≤ P{u(I × J )∩ A �= �} ≤ cHd−6(A).

Our goal is to establish the following probability one result.

Theorem 3.1.1. For any bounded Borel set A ⊆Rd with positive (d −6)-dimensional capacity,

the random field {u(t , x)}(t ,x)∈[0,∞[×[0,1], starting with any initial value u0(·) ∈C ([0,1],Rd ), visits

this set A almost surely.

We denote by E := {ϕ(·) ∈C ([0,1],Rd ) : ϕ(0) =ϕ(1) = 0} equipped with the norm

‖ϕ(·)‖∞ := sup
0≤v≤1

sup
1≤i≤d

|ϕi (v)|.

Denote the metric on the space E by

ρ(a,b) := ‖a −b‖∞, for a,b ∈ E . (3.1.4)

Without loss of generality, we assume ‖u0(·)‖∞ ≤ N and A ⊆ [−N , N ]d for some N > 0. As

a two-parameter random field, some estimates on the probability density functions of the

solution {u(t , x)}(t ,x)∈[0,∞[×[0,1] were given in [25], from which they derived the upper and lower

bounds on hitting probabilities. On the other hand, if we view the solution parameterized

only by time and taking values in E , it will possess the strong Markov property. The definition

of transition semigroup and construction of canonical Markov systems will be presented in

Section 3.2. In Section 3.3, we show that the solution, as a Markov process, converges to an

invariant distribution and therefore has a recurrence property. Intuitively, the recurrence

property implies that the solution visits infinite many times A with a positive probability. In

Section 3.4, we show that the lower bound on hitting probabilities still holds if the solution

starts from a non-vanishing initial value, which extends the corresponding results in [25]. We

finally give the proof of Theorem 3.1.1 in Section 3.5.
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3.2 Strong Markov property

The strong Markov property and the invariant distribution of the solution to (3.1.1) are well

known facts; see, e.g., [81] and [32]. We still give a self-contained proof for reader’s convenience.

We refer to [8] for the terminology of Markov processes.

As a two-parameter Gaussian process, the trajectories (t , x) �→ u(t , x) are jointly continuous.

Hence t �→ u(t , ·) is continuous in E . We denote by uu0(·)(t , ·) to specify that the solution starts

from u0(·). And denote by B(E),Bb(E) and Cb(E) the Borel σ-field, the set of bounded Borel

measurable functions and the set of bounded continuous functions on E , respectively. In what

follows, we will introduce the transition semigroup associated with the process and construct

the Markov system associated with the transition semigroup.

For t ≥ 0, u0(·) ∈ E and Γ ∈B(E), we define

Pt (u0(·),Γ) := P{uu0(·)(t , ·) ∈ Γ}.

It is obvious to see that Γ �→ Pt (u0(·),Γ) is a probability measure on B(E) and P0(u0(·),Γ) =
1Γ(u0(·)). Then, for f ∈Bb(E),

Pt f (u0(·)) :=
∫

E
f (u)Pt (u0(·),du) = E[ f (uu0(·)(t , ·))].

Proposition 3.2.1. For t ≥ 0 and f ∈Cb(E), u0(·) �→ Pt f (u0(·)) is continuous on E.

Proof. Let (u0n(·))n≥1 be a sequence converging to u0(·) in E . From equation (3.1.2) we have

‖uu0n (·)(t , ·)−uu0(·)(t , ·)‖∞ = sup
0≤x≤1

sup
1≤i≤d

∣∣∣∣∫1

0
G(t , x, v)(ui

0n(v)−ui
0(v))d v

∣∣∣∣
≤ sup

0≤v≤1
sup

1≤i≤d
|ui

0n(v)−ui
0(v)| = ‖u0n(·)−u0(·)‖∞,

which implies that lim
n→∞Pt f (u0n(·)) = Pt f (u0(·)) by the dominated convergence theorem. �

The property of (Pt )t≥0 in Proposition 3.2.1 is a variant on the Feller property; see [8, p.161].

The indicator function u0(·) �→ 1Γ(u0(·)) of an open set Γ can be approximated by bounded

continuous function. To see this, we define a sequence of continuous functions on E by

fn(a) := min(1,nρ(a,Γc )).

Then it is clear that

lim
n→∞ fn(a) = 1Γ(a), for all a ∈ E ,
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which implies that

lim
n→∞Pt fn(u0(·)) = Pt (u0(·),Γ), for all a ∈ E

by the dominated convergence theorem. Hence, we see that u0(·) �→ Pt (u0(·),Γ) is measurable.

Furthermore, by the monotone class theorem, u0(·) �→ Pt (u0(·),Γ) is measurable for all Γ ∈
B(E), which implies that (u0(·),Γ) �→ Pt (u0(·),Γ) is a transition kernel on (E ,B(E)).

We next show that (Pt )t≥0 satisfies the Markovian transition semigroup property.

Proposition 3.2.2 (Markov property). For s, t ≥ 0, u0(·) ∈ E and f ∈Bb(E), we have

E[ f (uu0(·)(t + s, ·))|Fs] = Pt f (uu0(·)(s, ·)). (3.2.1)

Proof. We verify the equality (3.2.1) by the following calculations. First,

E[ f (uu0(·)(t + s, ·))|Fs](ω)

= E

[
f

(∫t+s

0

∫1

0
G(t + s − r, ·, v)W (dr,d v)+

∫1

0
G(t + s, ·, v)u0(v)d v

)∣∣Fs

]
(ω)

= E

[
f

(∫t+s

s

∫1

0
G(t + s − r, ·, v)W (dr,d v)+

∫s

0

∫1

0
G(t + s − r, ·, v)W (dr,d v)

+
∫1

0
G(t + s, ·, v)u0(v)d v

)∣∣Fs

]
(ω).

Since the random variable
∫s

0

∫1
0 G(t + s − r, ·, v)W (dr,d v) is measurable with Fs while∫t+s

s

∫1
0 G(t + s − r, ·, v)W (dr,d v) independent of Fs , this is equal to∫

Ω
P(dω̃) f

(∫t+s

s

∫1

0
G(t + s − r, ·, v)W (dr,d v)(ω̃)

+
∫s

0

∫1

0
G(t + s − r, ·, v)W (dr,d v)(ω)+

∫1

0
G(t + s, ·, v)u0(v)d v

)
=

∫
Ω

P(dω̃) f

(∫t

0

∫1

0
G(t − r, ·, v)W (dr,d v)(ω̃)

+
∫s

0

∫1

0
G(t + s − r, ·, v)W (dr,d v)(ω)+

∫1

0
G(t + s, ·, v)u0(v)d v

)
,

where the notation P(dω̃) means we are taking the expectation of the random variable ω̃ �→∫t+s
s

∫1
0 G(t + s − r, ·, v)W (dr,d v)(ω̃), and in the equality, we use the fact that the random

variable
∫t+s

s

∫1
0 G(t+s−r, ·, v)W (dr,d v)(ω̃) has the same law as

∫t
0

∫1
0 G(t−r, ·, v)W (dr,d v)(ω̃).
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Furthermore, by the semi-group property of G , this is equal to∫
Ω

P(dω̃) f

(∫t

0

∫1

0
G(t − r, ·, v)W (dr,d v)(ω̃)

+
∫s

0

∫1

0

(∫1

0
G(t , ·, z)G(s − r, z, v)d z

)
W (dr,d v)(ω)

+
∫1

0

(∫1

0
G(t , ·, z)G(s, z, v)d z

)
u0(v)d v

)
=

∫
Ω

P(dω̃) f

(∫t

0

∫1

0
G(t − r, ·, v)W (dr,d v)(ω̃)

+
∫1

0
d z G(t , ·, z)

(∫s

0

∫1

0
G(s − r, z, v)W (dr,d v)(ω)+

∫1

0
G(s, z, v)u0(v)d v

))
=

∫
Ω

P(dω̃) f

(∫t

0

∫1

0
G(t − r, ·, v)W (dr,d v)(ω̃)+

∫1

0
G(t , ·, z)uu0(·)(s, z)(ω)d z

)
= Pt f (uu0(·)(s, ·)(ω)),

where the first equality holds by the stochastic Fubini theorem (see [24, Chapter 1, Theorem

5.30] or [81, Theorem 2.6 ]) since the condition of the stochastic Fubini theorem can be

verified: ∫∫∫∫
[0,1]×[0,1]×[0,s]×[0,1]

G(t , ·, z)G(s − r, z, v)G(t , ·, z)G(s − r, z, ṽ)δ{v=ṽ}d vd ṽdr d z

=
7

[0,1]×[0,s]×[0,1]

G2(t , ·, z)G2(s − r, z, v)d vdr d z

=
�

[0,s]×[0,1]

G2(t , ·, z)G(2(s − r ), z, z)dr d z

≤C
�

[0,s]×[0,1]

G2(t , ·, z)
1�

2(s − r )
dr d z

≤C

√
s

t
<∞.

�

From (3.2.1), it is easy to derive the Markovian semigroup property:

Pt+s f (u0(·)) = E[ f (uu0(·)(t + s, ·))]

= E[E[ f (uu0(·)(t + s, ·))|Fs]]

= E[Pt f (uu0(·)(s, ·))] = PsPt f (u0(·)).

Let Ω̃ := C ([0,∞[,E) be the space of continuous functions from [0,∞[ to E . For a generic

element ω̃ ∈ Ω̃, we write ω̃(t , ·) to indicate the value at t , and the second variable appears
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since ω̃(t , ·) ∈C ([0,1],Rd ). Set ũ(t , ·)(ω̃) := ω̃(t , ·), which means that ũ(t , x)(ω̃) = ω̃(t , x), for all

x ∈ [0,1]. Define

F̃ 0
t :=σ{ũ(s, ·) : s ≤ t } and F̃ 0

∞ := ∨
t≥0

F̃ 0
t .

We define the law of the process u = {uu0(·)(t , ·) : t ≥ 0} on (Ω̃,F̃ 0∞) by

Pu0(·)(ũ ∈ A) := P{uu0(·) ∈ A}, for u0(·) ∈ E , A ∈ F̃ 0
∞, (3.2.2)

which is determined uniquely by

Pu0(·){ũ(t1, ·) ∈ B1, . . . , ũ(tn , ·) ∈ Bn} = P{uu0(·)(t1, ·) ∈ B1, . . . ,uu0(·)(tn , ·) ∈ Bn} (3.2.3)

for any n ≥ 1, B1, . . . ,Bn ∈ B(E), and t1, . . . , tn ≥ 0. We denote by Eu0(·) the corresponding

expectation with respect to the probability Pu0(·). From (3.2.3), we know that u0(·) �→ Pu0(·)(A)

is measurable for A ∈ F̃ 0∞. Together with (3.2.1), we have, for f ∈Bb(E),

Eu0(·)[ f (ũ(t + s, ·))|F̃ 0
s ] = Eũ(s,·)[ f (ũ(t , ·))] = Pt f (ũ(s, ·)), Pu0(·) a.s. (3.2.4)

Let N be the collection of sets that are Pu0(·)-null for every u0(·) ∈ E . Define

F̃t :=σ{F̃ 0
t ∪N } and F̃∞ := ∨

t≥0
F̃t .

Since the process {ũ(t , ·) : t ≥ 0} has the Markov property (3.2.4) and the semigroup (Pt )t≥0 has

the Feller property (i.e., Proposition 3.2.1), by Proposition 20.7 of [8], we know that the filtration

(F̃t )t≥0 is right continuous. Furthermore we have the following strong Markov property.

Theorem 3.2.3 (Strong Markov property). Suppose T is a finite stopping time with respect to

(F̃t )t≥0 and Y is bounded and measurable with respect to F̃∞. Then

Eu0(·)[Y ◦θT |F̃T ] = Eũu0(·)(T,·)[Y ], (3.2.5)

where (θt )t≥0 is the shift operator defined by

θt ω̃(s, x) := ω̃(t + s, x), for ω̃ ∈ Ω̃, (s, x) ∈ [0,∞[×[0,1].

Proof. The proof is similar to that of Theorem 20.9 in [8, p.164], since only the Feller property

in Proposition 3.2.1 and Markov property in (3.2.4) are needed. �
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3.3 Invariant distribution

For any t ≥ 0, and a probability measure μ on B(E), we set

P∗
t μ(Γ) :=

∫
E

Pt (u,Γ)μ(du), Γ ∈B(E).

We call μ an invariant distribution with respect to (Pt )t≥0 if

P∗
t μ=μ for each t ≥ 0. (3.3.1)

Recall that the covariance of each component of the process {ũ0(x) : 0 ≤ x ≤ 1} is given by

E[ũi
0(x)ũi

0(y)]) = 1

2
(x ∧ y −x y). (3.3.2)

We denote the law of ũ0 on E by μ.

Proposition 3.3.1. μ is an invariant distribution with respect to the transition semigroup

(Pt )t≥0.

Proof. Fix t > 0. We assume that u(t , ·) starts from ũ0. Then the law of u(t , ·) on E is P∗
t μ, since

for f ∈Bb(E),

E[ f (uũ0 (t , ·))] =
∫

E
E[ f (uu0(·)(t , ·))]μ(d(u0(·))) =

∫
E

Pt f (u0(·))μ(d(u0(·))).

Clearly, the process {u(t , x) : 0 ≤ x ≤ 1} is a continuous Gaussian process. So we only need to

check that the component process {ui (t , x) : 0 ≤ x ≤ 1} also has the covariance given by (3.3.2).

We denote by

vi (t , x) :=
∫t

0

∫1

0
G(t − r, x, v)W i (dr,d v) =

∞∑
k=1

φk (x)Ak
t , (3.3.3)

where, from (3.1.3),

Ak
t :=

∫t

0

∫1

0
e−π

2k2(t−s)φk (v)W i (d s,d v), (3.3.4)

with variance

Var(Ak
t ) =

∫t

0
d s

∫1

0
d v e−2π2k2sφ2

k (v) = (1−e−2π2k2t )/(2π2k2).

Let

μi (t , x) :=
∫1

0
G(t , x, v)ũi

0(v)d v =
∞∑

k=1
e−π

2k2tφk (x)C k , (3.3.5)
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where

C k :=
∫1

0
φk (v)ũi

0(v)d v. (3.3.6)

Then we have

E[vi (t , x)vi (t , y)] = E
[ ∞∑

k=1
φk (x)Ak

t

∞∑
n=1

φn(y)An
t

]
=

∞∑
k=1

1−e−2π2k2t

2π2k2 φk (x)φk (y). (3.3.7)

And

E[μi (t , x)μi (t , y)] = E
[ ∞∑

k=1
e−π

2k2tφk (x)C k
∞∑

n=1
e−π

2n2tφn(y)C n]
=

∞∑
k,n=1

e−π
2(k2+n2)tφk (x)φn(y)E[C kC n]

=
∞∑

k=1

e−2π2k2t

2π2k2 φk (x)φk (y), (3.3.8)

where the last equality is based on the following identity (as a consequence of [8, (6.1)]):

∫1

0

∫1

0
sin(kπz)sin(nπv)(z ∧ v − zv)d zd v =

{
0 k �= n,
1

2π2k2 k = n.

Since ui (t , x) = vi (t , x)+μi (t , x), vi (t , x) and μi (t , x) are independent mutually, from equalities

(3.3.7) and (3.3.8), we obtain that

E[ui (t , x)ui (t , y)] =
∞∑

k=1

1

2π2k2 φk (x)φk (y) = 1

2
(x ∧ y −x y),

where the last equality follows from [8, (6.1)]. The proof is complete. �

We give some estimates on the moments of the increments of the solution. By [60, Lemma

A.1], there exists c > 0 such that, for all x, y ∈ [0,1], t ≥ 0,

E[(vi (t , x)− vi (t , y))2] =
∫t

0

∫1

0
(G(t − r, x, v)−G(t − r, y, v))2d vdr

≤ c|x − y |. (3.3.9)
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And for all t ≥ 1, x, y ∈ [0,1]

|μi (t , x)−μi (t , y)| =
∣∣∣∣∣
∫1

0

∞∑
k=1

e−π
2k2t (φk (x)−φk (y))φk (v)ui

0(v)d v

∣∣∣∣∣
≤ 2N

∞∑
k=1

e−π
2k2t |sin(kπx)− sin(kπy)|

≤ 2Nπ
∞∑

k=1
ke−π

2k2 |x − y | ≤ c|x − y |. (3.3.10)

Lemma 3.3.2. For all t ≥ 1, p ≥ 1 and δ sufficiently small, there exists cp > 0 such that

E

⎡⎣ sup
|x−y | 1

2 ≤δ
|ui (t , x)−ui (t , y)|p

⎤⎦≤ cpδ
p lnp (1+ 1

δ4 ). (3.3.11)

Proof. The proof is similar to that of [25, Lemma 4.5] by applying Proposition A.1 in [25]. We

define

S := [0,1], ρ(x, y) := |x − y |1/2, μ(d x) := d x,

Ψ(x) := e |x| −1, p(x) = x, f (x) := ui (t , x),

Ct :=
∫

S

∫
S
Ψ

(
f (x)− f (y)

p(ρ(x, y))

)
μ(d x)μ(d y),

C 1
t :=

∫
S

∫
S

exp

( | f (x)− f (y)|
p(ρ(x, y))

)
μ(d x)μ(d y).

Then Ct ≤C 1
t and C 1

t ≥ 1. By (3.3.9) and (3.3.10), for all t ≥ 1,

E[Ct ] ≤ E[C 1
t ]

= E

[∫
S

d x
∫

S
d y exp

( |ui (t , x)−ui (t , y)|
|x − y |1/2

)]
= E

[∫
S

d x
∫

S
d y exp

( |vi (t , x)− vi (t , y)+μi (t , x)−μi (t , y)|
|x − y |1/2

)]
≤ c

∫
S

d x
∫

S
d y E

[
exp

( |vi (t , x)− vi (t , y)|
|x − y |1/2

)]
= c

∫
S

d x
∫

S
d y exp

(
E[|vi (t , x)− vi (t , y)|2]

2|x − y |
)
<C ,
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where, in the second inequality, we have used (3.3.10). Then from [25, (A.3)], we have

E

⎡⎣ sup
|x−y | 1

2 ≤δ
|ui (t , x)−ui (t , y)|p

⎤⎦≤ 10p E

[(∫2δ

0
du ln

(
1+ Ct

[μ(Bρ(x,u/4))]2

))p]

= 10p E

[(∫2δ

0
du ln

(
1+ Ct

c1u4

))p]

≤ 10p (2δ)p−1E

[∫2δ

0
du lnp

(
1+ C 1

t

c1u4

)]

Since C 1
t (ω) ≥ 1 for all t ≥ 1 and ω ∈Ω, we can choose δ small enough such that C 1

t /(c1u4) ≥
ep−1 −1 holds for all u ∈ ]0,2δ[, t ≥ 1 and ω ∈Ω. Since the function x �→ lnp (1+ x) is concave

on [ep−1 −1,∞[, by Jensen’s inequality, this is bounded above by

10p (2δ)p−1
∫2δ

0
du lnp

(
1+ E[C 1

t ]

c1u4

)
≤ 10p (2δ)p−1

∫2δ

0
du lnp

(
1+ C

c1u4

)
≤ c10p (2δ)p−1δ lnp (1+ 1

δ4 )

= cpδ
p lnp (1+ 1

δ4 ),

where the second inequality is due to

lim
δ→0

∫δ
0 lnp (

1+1/u4
)

du

δ lnp (1+1/δ4)
= 1

by l’Hôpital’s rule. This completes the proof. �

Proposition 3.3.3. Fix u0(·) ∈ E and let u solve (3.1.1) with Dirichlet boundary conditions.

Then the law of u(t , ·) converges weakly to the invariant measure μ as t →∞, or equivalently,

lim
t→∞Pt f (u0(·)) =μ( f ) :=

∫
E

f (u)μ(du), (3.3.12)

for any initial value u0(·) ∈ E and f ∈Cb(E).

Proof. Since the components are independent, it suffices to prove that ui (t , ·) converges

weakly to the law of {
�

2
2 B i

0(x) : 0 ≤ x ≤ 1} on C ([0,1],R), as t →∞.

We will appeal to Theorem 7.5 in [9] to prove the weak convergence. We first prove the conver-

gence of finite dimensional distributions, i.e.,

(ui (t , x1), . . . ,ui (t , xk ))
d−→ (

�
2

2
B i

0(x1), . . . ,

�
2

2
B i

0(xk )), as t →∞ (3.3.13)

holds for all x1, . . . , xk . The random vector (ui (t , x1), . . . ,ui (t , xk )) is Gaussian, and its charac-
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teristic function is determined by the mean and variance/covariance which satisfy

mean(ui (t , xm)) =μi (t , xm) =
∞∑

k=1
e−π

2k2tφk (xm)C k → 0, as t →∞,

where Ck is defined in (3.3.6), and

Cov(ui (t , xm),ui (t , xn)) = E[vi (t , xm)vi (t , xn)]

=
∞∑

k=1

1−e−2π2k2t

2π2k2 φk (xm)φk (xn),

converges to, as t →∞,

∞∑
k=1

1

2π2k2 φk (xm)φk (xn) = 1

2
(xm ∧xn −xm xn) = 1

2
E[B i

0(xm)B i
0(xn)]

for 1 ≤ m,n ≤ k, where the first equality follows from [8, (6.1)]. This implies (3.3.13).

From (3.3.11), we use Chebyshev’s inequality to obtain that for any positive ε,

lim
δ→0

limsup
t→∞

P

{
sup

|x−y |≤δ
|ui (t , x)−ui (t , y)| ≥ ε

}
= 0, (3.3.14)

which verifies the second condition for weak convergence in [9, Theorem 7.5]. Hence, we have

proved the proposition. �

Remark 3.3.4. In the case of Neumann boundary conditions, the Green kernel is given by

G(t , x, y) = 1+2
∞∑

k=1
e−π

2k2t cos(kπx)cos(kπy);

see [81, p. 323-326], or [25, (4.16)]. In this case, by the semi-group property of the Green kernel

(A.6), the second moment of the solution is equal to

E[u(t , x)2] =
∫t

0

∫1

0
G2(t − r, x, v)d vdr =

∫t

0
G(2r, x, x)dr

= t +2
∞∑

k=1
cos2(kπx)

∫t

0
e−2π2k2r dr

= t +
∞∑

k=1

1−e−2π2k2t

k2π2 cos2(kπx),

which converges to ∞, as t →∞. Hence, we do not expect that the law of the solution to (3.1.1)

with Neumann boundary conditions converges to a limit as t →∞.

We denote by B(0,R) (B̄(0,R)) the open (closed) ball of radius R > 0 centered at 0 in E , B(0,R)c

the complement of B(0,R) and ∂B(0,R) the boundary of B(0,R).
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From [9, (9.39)], we have

P

{
sup

0≤x≤1
|B i

0(x)| ≤ R

}
= 1+2

∞∑
k=1

(−1)k e−2k2R2
, for all R > 0, (3.3.15)

which implies that the distribution of the random variable sup0≤x≤1 |B i
0(x)| has a probability

density function with respect to one-dimensional Lebesgue measure. Hence the random

vector(
sup

0≤x≤1
|B 1

0 (x)|, . . . , sup
0≤x≤1

|B d
0 (x)|

)
has a density with respect to d-dimensional Lebesgue measure, which implies that

P

{
sup

1≤i≤d
sup

0≤x≤1
|B i

0(x)| = R

}
= 0. (3.3.16)

Therefore, we have μ(∂B(0,R)) = 0 for any R > 0. On the other hand, we observe that the

distribution function defined by

F (R) := P

{
sup

0≤x≤1
|B i

0(x)| ≤ R

}
= 1+2

∞∑
k=1

(−1)k e−2k2R2
, (3.3.17)

takes values in ]0,1[ for all R > 0. To see this, first from the expression of the alternating series

in (3.3.17), it is clear that F (R) < 1 for all R > 0. To prove that the distribution function F is

strictly positive, we denote

B i
0(x) = B(x)−xB(1), x ∈ [0,1],

where {B(x) : x ∈ [0,1]} is a standard Brownian motion. Then by the triangle inequality,

F (R) ≥ P

{
sup

0≤x≤1
|B(x)|+ |B(1)| ≤ R

}
≥ P

{
sup

0≤x≤1
|B(x)| ≤ R/2

}
= H(R/2),

where

H(x) = 4

π

∞∑
k=0

(−1)k

2k +1
exp

[
− (2k +1)2π2

8x2

]
, for x > 0

denotes the distribution function of the supremum of the absolute value of Brownian motion;

see [20, p.233]. It is clear from the expression of the function H that H(x) > 0 for all x > 0.

Hence we have proved μ(B(0,R)) > 0.

By the equivalent statements of weak convergence (see [9, Theorem 2.1]), from (3.3.12), we
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obtain that

lim
t→∞Pt ((u0(·),B(0,R)) =μ(B(0,R)) > 0, for all u0(·) ∈ E . (3.3.18)

Owing to Corollary 3.4.6 of [32], we get the following result on the recurrence property of the

solution.

Theorem 3.3.5. The Markov process (Ω̃,F̃t , ũ(t , ·),Pu0(·),Pt ,θt ) is recurrent with respect to

B(0,R) for any R > 0, i.e., for any u0(·) ∈ E,

Pu0(·){ũ(t , ·) ∈ B(0,R), for an unbounded set of t > 0} = 1. (3.3.19)

Remark 3.3.6. We remark that the Markov process (Ω̃,F̃t , ũ(t , ·),Pu0(·),Pt ,θt ) is also recurrent

with respect to B(0,R)c for any R > 0, and the proof follows similarly with that of Theorem 3.3.5.

3.4 Lower bound on the hitting probability for solutions with a

bounded initial value

We first recall the hypotheses and consequence of Theorem 2.1(1) in [25].

Theorem 3.4.1 ([25, Theorem 2.1(1)]). Fix two compact intervals I ⊂ ]0,∞[ and J ⊂ ]0,1[. Sup-

pose that {v(t , x)}(t ,x)∈I×J is a two-parameter continuous random field with values in Rd , such

that (v(t , x), v(s, y)) has a joint probability density function pt ,x;s,y (·, ·), for all s, t ∈ I and x, y ∈ J

with (t , x) �= (s, y). We denote by pt ,x (·) the density function of v(t , x). Assume the following

hypotheses:

A1 For all M > 0, there exists a positive and finite constant C =C (I , J , M ,d) such that for all

(t , x) ∈ I × J and all z ∈ [−M , M ]d ,

pt ,x (z) ≥C . (3.4.1)

A2 There exists β> 0 such that for all M > 0, there exists c = c(I , J , M ,d) > 0 such that for all

s, t ∈ I and x, y ∈ J with (t , x) �= (s, y), and for every z1, z2 ∈ [−M , M ]d ,

pt ,x;s,y (z1, z2) ≤ c

[Δ((t , x); (s, y))]β/2
exp

(
− ‖z1 − z2‖2

cΔ((t , x); (s, y))

)
. (3.4.2)

Then the following statement holds.

(1) Fix M > 0. There exists a positive and finite constant a = a(I , J ,β, M ,d) such that for all

Borel sets A ⊆ [−M , M ]d ,

P{v(I × J )∩ A �= �} ≥ a Capβ−6(A). (3.4.3)

From now on, we assume

I = [1,2] and J = [1/4,1/2].
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As in (3.3.3) and (3.3.5), we still denote by, respectively, {v(t , x)}(t ,x)∈I×J the random part,

and {μ(t , x)}(t ,x)∈I×J non-random part of the solution {u(t , x)}(t ,x)∈I×J to (3.1.2) starting from

u0(·) ∈ B̄(0, N ) for some N > 0.

By Proposition 4.1 of [25], the probability of visiting A for {v(t , x)}(t ,x)∈I×J has the lower bound

in (3.4.3) with β= d . We claim that the lower bound also holds for {u(t , x)}(t ,x)∈I×J , where the

constant will depend additionally on N , but not on the specific choice of u0(·).

Lemma 3.4.2. For any M , N > 0, there exists a finite positive constant a = a(I , J , N , M ,d) such

that for all Borel sets A ⊆ [−M , M ]d , and for all u0(·) ∈ B̄(0, N ),

P{uu0(·)(I × J )∩ A �= �} ≥ a Capd−6(A), (3.4.4)

and equivalently,

Pu0(·){ũ(I × J )∩ A �= �} ≥ a Capd−6(A) (3.4.5)

Proof. In order to prove (3.4.4), by Theorem 3.4.1, it suffices to prove that hypotheses A1 and

A2 are satisfied for {u(t , x)}(t ,x)∈I×J , where the constants depend additionally on N , but not on

the specific choice of u0(·). We add the superscripts u or v to the probability density functions

to indicate to which random field they correspond.

Verification of A1. Fix M > 0 and let z ∈ [−M , M ]d . Then for all (t , x) ∈ I × J , the probability

density function of u(t , x) is given by

pu
t ,x (z) = 1

(2πσ2
t ,x )d/2

exp

(
−‖z −μ(t , x)‖2

2σ2
t ,x

)
, (3.4.6)

where

σ2
t ,x := Var(ui (t , x)) =

∫t

0
dr

∫1

0
d v (G(t − r, x, v))2. (3.4.7)

Since (t , x) �→ vi (t , x) is L2 continuous by (4.11) of [25], it follows that the function (t , x) �→σt ,x

achieves its minimum ρ1 > 0 and its maximum ρ2 <∞ over I × J . Thus

pu
t ,x (z) ≥ 1

(2πρ2
2)d/2

exp

(
−−(M 2 +N 2)d

2ρ2
1

)
,

which proves A1.

Verification of A2. First, we give some estimates on the regularity of the function (t , x) �→μ(t , x)

on I × J .

Case 1: s = t , x �= y . From (3.3.10), there exists a constant c such that for all t ∈ I , x, y ∈ J ,
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1 ≤ i ≤ d ,

|μi (t , x)−μi (t , y)| ≤ c|x − y |. (3.4.8)

Case 2: x = y, s < t .

|μi (t , x)−μi (s, x)| =
∣∣∣∣∣
∫1

0

∞∑
k=1

(e−π
2k2t −e−π

2k2s)φk (x)φk (v)ui
0(v)d v

∣∣∣∣∣
≤

∫1

0

∞∑
k=1

e−π
2k2s |1−e−π

2k2(t−s)| |φk (x)φk (v)ui
0(v)|d v

≤ 2N
∞∑

k=1
e−π

2k2 |1−e−π
2k2(t−s)|.

By the inequality 0 ≤ 1−e−x ≤ min(x,1), for all x > 0, this is bounded above by

2N
∞∑

k=1
e−π

2k2
min(π2k2(t − s),1)

= 2N (e−π
2

min(π2(t − s),1)+
∞∑

k=2
e−π

2k2
min(π2k2(t − s),1)).

Using the fact that the function x �→ e−π
2x min(π2x(t − s),1) is nonincreasing on [1,∞[ for any

s, t with s < t , this is bounded above by

2N
(
c1(t − s)+

∫∞

1
e−π

2r 2
min(π2r 2(t − s),1)dr

)
= 2N

(
c1(t − s)+

∫ 1
π
�

t−s

1
e−π

2r 2
π2r 2(t − s)dr +

∫∞
1

π
�

t−s

e−π
2r 2

dr
)

≤ 2N
(
c1(t − s)+ (t − s)

∫∞

1
e−π

2r 2
π2r 2dr +π

�
t − s

∫∞
1

π
�

t−s

r e−π
2r 2

dr
)

≤ 2N (c1(t − s)+c2(t − s)+c3
�

t − se−
1

t−s )

≤ c̃|t − s|, (3.4.9)

where the last inequality is because that the inequality
�

xe−1/x ≤ x is valid for all x > 0.

Hence, (3.4.8) and (3.4.9) together imply that there exists a constant c such that for all s, t ∈ I ,

x, y ∈ J , 1 ≤ i ≤ d ,

(μi
t ,x −μi

s,y )2 ≤ c((t − s)2 + (x − y)2). (3.4.10)

Using the upper bound on the joint probability density function of (v(t , x), v(s, y)) (see of [25,

(2.3) and Theorem 4.6]), the elementary equality (a −b)2 ≥ 1
2 a2 −b2 and (3.4.10), we obtain
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that

pu
t ,x;s,y (z1, z2) = pv

t ,x;s,y (z1 −μ(t , x), z2 −μ(s, y))

≤ c

[Δ((t , x); (s, y))]d/2
exp

(
−‖z1 −μ(t , x)− z2 +μ(s, y)‖2

cΔ((t , x); (s, y))

)

≤ c

[Δ((t , x); (s, y))]d/2
exp

(
−

1
2‖z1 − z2‖2 −‖μ(t , x)−μ(s, y)‖2

cΔ((t , x); (s, y))

)

≤ c̃

[Δ((t , x); (s, y))]d/2
exp

(
− ‖z1 − z2‖2

c̃Δ((t , x); (s, y))

)
, (3.4.11)

which proves A2.

Therefore, the lower bound on hitting probability in (3.4.4) follows from the result of Theorem

3.4.1. Finally, the statement (3.4.5) is a consequence of (3.4.4) and (3.2.2). �

3.5 Proof of Theorem 3.1.1

We first state a result on hitting probability for general Markov processes, which will be used

to prove Theorem 3.1.1.

Proposition 3.5.1. Let (Ω,Ft , X (t ),θt ,Px )t≥0,x∈E be a continuous Markov system taking values

on the Banach space E , which has the strong Markov property. Fix K > N > 0 and A ⊂ E .

Suppose that the process {X (t ) : t ≥ 0} is recurrent with respect to B(0, N ) and B̄(0,K )c , and that

there exists a positive constant c = c(N ,K ,A ) such that for all x ∈ B̄(0, N ),

Px {∃t ∈ [0,T1], s.t. X (t ) ∈A } ≥ c, (3.5.1)

where T1 := inf{t ≥ 0 : ‖X (t )‖ > K }. Then for any x ∈ B̄(0, N ),

Px {∃t ≥ 0, s.t. X (t ) ∈A } = 1. (3.5.2)

Proof. By the recurrence property, we define inductively two sequences of finite stopping

times (Tk )k≥0 and (Sk )k≥0, as follows. Let T0 = S0 = 0, and for k ≥ 1,

Tk = inf{t ≥ Sk−1 : ‖X (t )‖ > K }, Sk = inf{t ≥ Tk : ‖X (t )‖ < N },

which satisfy that Tk = Sk−1 +T1 ◦θSk−1 .
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For each k ≥ 1, we set Ak := {X ([Sk−1,Tk ])∩A �= �}. By the strong Markov property,

Px {Ak |FSk−1 } = Px {∃t ∈ [Sk−1,Tk ], s.t. X (t ) ∈A |FSk−1 }

= Px {∃t ∈ [Sk−1,Sk−1 +T1 ◦θSk−1 ], s.t. X (t ) ∈A |FSk−1 }

= Px {∃t ∈ [0,T1 ◦θSk−1 ], s.t. X (t +Sk−1) ∈A |FSk−1 }

= Ex [1{∃t∈[0,T1], s.t. X (t )∈A } ◦θSk−1 |FSk−1 ]

= EX (Sk−1)[1{∃t∈[0,T1], s.t. X (t )∈A }] ≥ c, (3.5.3)

where the inequality is due to (3.5.1). Therefore, for any integer n ≥ 1,

Px {∃t ≥ 0, s.t. X (t ) ∈A } ≥ Px

(
n⋃

k=1
Ak

)

= 1−Px

(
n⋂

k=1
A c

k

)

= 1−Ex

[(
n−1∏
k=1

1A c
k

)
Px {A c

n |FSn−1 }

]

= 1−Ex

[(
n−1∏
k=1

1A c
k

)
(1−Px {An |FSn−1 })

]

≥ 1− (1−c)Ex

[
n−1∏
k=1

1A c
k

]
≥ 1− (1−c)n , (3.5.4)

where we repeat the argument to get the last inequality. Letting n →∞, we obtain (3.5.2). �

Proof of Theorem 3.1.1. We assume that u0(·) ∈ B̄(0, N ) and A ⊆ [−N , N ]d for some N > 0, as

mentioned in Section 3.1. First, we give an estimate on the following tail probability. For any

K > N ,

P

{
sup

0≤t≤2
‖uu0(·)(t , ·)‖∞ ≥ K

}
≤

d∑
i=1

P

{
sup

0≤t≤2
sup

0≤x≤1
|ui (t , x)| ≥ K

}

=
d∑

i=1
P

{
sup

0≤t≤2
sup

0≤x≤1
|vi (t , x)+μi (t , x)| ≥ K

}
≤ d P

{
sup

0≤t≤2
sup

0≤x≤1
|vi (t , x)| ≥ K −N

}
. (3.5.5)

Since (t , x) �→ vi (t , x) is continuous almost surely, we have

lim
K→∞

P

{
sup

0≤t≤2
sup

0≤x≤1
|vi (t , x)| ≥ K −N

}
= 0.
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Then we can choose sufficiently large K , depending only on N , such that

P

{
sup

0≤t≤2
‖uu0(·)(t , ·)‖∞ ≥ K

}
≤ 1

2
a Capd−6(A),

or, equivalently,

Pu0(·)
{

sup
0≤t≤2

‖ũ(t , ·)‖∞ ≥ K

}
≤ 1

2
a Capd−6(A), (3.5.6)

uniformly for all u0(·) with ‖u0(·)‖∞ ≤ N , where the constant a = a(I , J , N , N ,d) is specified in

(3.4.4).

Define A := {ϕ(·) ∈ E : ∃x ∈ [0,1] s.t. ϕ(x) ∈ A}. Since

P{uu0(·)([0,∞[×[0,1])∩ A �= �} = Pu0(·){ũ([0,∞[×[0,1])∩ A �= �}

= Pu0(·){∃t ≥ 0, s.t. ũ(t , ·)∩A �= �},

by Proposition 3.5.1, it suffices to verify that the estimate for the hitting probability in (3.5.1)

holds for the process {ũ(t , ·) : t ≥ 0}. Indeed,

Pu0(·){∃t ∈ [0,T1], s.t. ũ(t , ·) ∈A }

= Pu0(·){∃(t , x) ∈ [0,T1]× [0,1], s.t. ũ(t , x) ∈ A}

≥ Pu0(·)
{

{∃(t , x) ∈ [0,T1]× [0,1], s.t. ũ(t , x) ∈ A}∩
{

sup
0≤t≤2

‖ũ(t , ·)‖∞ ≤ K

}}
≥ Pu0(·)

{
{∃(t , x) ∈ [1,2]× [1/4,1/2], s.t. ũ(t , x) ∈ A}∩

{
sup

0≤t≤2
‖ũ(t , ·)‖∞ ≤ K

}}
≥ Pu0(·){∃(t , x) ∈ [1,2]× [1/4,1/2], s.t. ũ(t , x) ∈ A}−Pu0(·)

{
sup

0≤t≤2
‖ũ(t , ·)‖∞ ≥ K

}
≥ 1

2
a Capd−6(A), (3.5.7)

where the last inequality follows from (3.4.5) and (3.5.6). Hence the assumption in (3.5.1) is

satisfied and we complete the proof of Theorem 3.1.1. �
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4 On the density of the supremum of
the solution to the stochastic heat
equation

In this chapter, we first develop a general criterion for an upper bound on hitting probabilities.

This criterion involves a condition on the probability density function of the supremum of

a random field over a rectangle or a segment. Motivated by this, we study the regularity of

the probability density function of the supremum over a time interval of the solution to the

linear stochastic heat equation. Using a general criterion for the smoothness of densities for

locally nondegenerate random variables, we establish the smoothness of the joint density of

the random vector whose components are the solution and the supremum of an increment in

time of the solution over an interval (at a fixed spatial position). Applying the properties of

the divergence operator, we give a Gaussian-type upper bound on this joint density, which

presents a close connection with the Hölder-continuity properties of the solution. We also

derive the smoothness property and a Gaussian-type upper bound for the density of the

supremum of the solution over a space-time rectangle that touches the t = 0 axis. In the

case of Neumann boundary conditions, the smoothness of the density of the supremum of

rectangular increments from the origin of the solution is also proved.

4.1 Introduction and motivation

For a real-valued Gaussian random field {X (t) : t ∈ I }, where I is a parameter set, defined

on a probability space (Ω,F ,P), the distribution function of the supremum of this random

field, or the excursion probability P{supt∈I X (t) ≥ a}, has been investigated extensively; see,

for example, [1, 2, 72] and references therein. In general, finding a formula for the distribution

function of the supremum of a stochastic process is an almost impossible task, let alone for

its probability density function, which is much less studied than the probability distribution

function. We first review some of the literature on the study of regularity of the probability

density function of the supremum of a stochastic process.

We begin with Gaussian processes. Let {X (t ) : t ∈ I } be a separable, centered and real-valued

Gaussian process define on the canonical probability space (B(I ),Ft ,P), where I is a compact
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Chapter 4. On the density of the supremum of the solution to the stochastic heat
equation

set of Rn , B(I ) is the space of Borel functions on I and X (t)(ω) := ωt for ω ∈ B(I ). Denote

M := supt∈I X (t), F (x) := P{M ≤ x}, F−(x) := P{M < x} and a0 := inf{x : F−(x) > 0}. It is clear

that M is a measurable convex function on B(I ). From Cirel’son [21], assuming that M <∞
a.s., then F− is continuous except possibly at a0. And the density F ′−(x) exists except perhaps

on a countable set where it may have jumps downward. Moreover, if E[X (t )2] does not depend

on t , then F− is continuous everywhere and F ′− is continuous except possibly at a0 where it

may have a finite jump. In the review of Cirel’son [21] in Mathematical Reviews, Dudley gives

a another proof of the result that F ′ exists and is continuous except for downward jumps:

According to Borell [11, Corollary 2.1],

P∗(λA+ (1−λ)B) ≥ P(A)λP(B)1−λ,

for A,B measurable, 0 ≤λ≤ 1, where P∗ is the inner measure of P, and then

F (λx + (1−λ)y) = P{M ≤λx + (1−λ)y}

≥ P∗{M ≤λx + (1−λ)y}

≥ P∗{λ{M ≤ x}+ (1−λ){M ≤ y}}

≥ P{M ≤ x}λP{M ≤ y}1−λ = F (x)λF (y)1−λ.

Hence F is logarithmically concave, which shows that F ′ exists and is continuous except for a

countable number of downward jumps.

Pitt and Lanh [73] showed, under very general conditions, that the distribution function F is

absolutely continuous with a bounded density. Following the idea of Pitt and Lanh [73], Weber

[83] gave an a upper bound on the probability density function of the supremum of certain

Gaussian processes. Further developments have been given by many authors, among which

we mention Lifshits [56, 57]. We also refer to Diebolt and Posse [36] and Azaïs and Wschebor

[4, Chapter 7] and references therein for more information on the regularity of the density of

the maximum of smooth Gaussian random fields.

In [64, Proposition 2.1.11], a criterion for the absolute continuity property of the distribution

function of the supremum of a continuous process is given in terms of the Malliavin derivative

of this process. Moreover, a general criterion is established for the smoothness of the probabil-

ity density function for locally nondegenerate random variables; see [39, Theorem 2.1] and

[64, Theorem 2.1.4].

We are interested in the properties of the probability density function of the supremum of the

solutions to SPDEs. On the other hand, the density of the supremum of the solution is related

to the study of upper bounds on hitting probabilities for these solutions, as we now explain.

As we have seen in Chapter 2, the upper bound on hitting probabilities for the solution

to a system of non-linear stochastic (fractional) heat equations is not as sharp as that for

linear stochastic (fractional) heat equations; see [25, Theorem 4.6], [26, Theorem 1.2] and our

Theorems 2.1.4, 2.1.5. This is because for the non-Gaussian solution, the upper bound on the
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4.1. Introduction and motivation

probability of visiting small balls within a small space-time region is not of the same order as

for the Gaussian solution; see [25, Theorem 3.3], [25, Proposition 4.4] and our Lemma 2.2.1.

Let us study this probability of visiting small balls from another point of view. For simplicity,

we denote by u the solution to one single equation (1.2.1) (i.e., d = 1) with vanishing initial

data, that is,

∂u

∂t
(t , x) = ∂2u

∂x2 (t , x)+σ(u(t , x))Ẇ (t , x)+b(u(t , x)), (4.1.1)

where the coefficients σ and b satisfy the hypotheses P1 (or P1’) and P2 in Chapter 2. We

would like to give an estimate on the following probability of visiting small balls:

P

{
inf

(t ,x)∈Rn
k,l

|u(t , x)− z| ≤ 2−n

}
, (4.1.2)

where

Rn
k,l := [k2−4n , (k +1)2−4n]× [l 2−2n , (l +1)2−2n]. (4.1.3)

By the triangle inequality, this probability is bounded above by

P

{
|u(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

|u(t , x)−u(t n
k , xn

l )|
}

. (4.1.4)

For the Gaussian solution (i. e., σ≡ 1, b ≡ 0), Dalang, Nualart and Khoshnevisan [25] derive a

formula similar to (4.1.4) by using the Gaussian property of the solution and introducing two

independent random variables; see the proof of [25, Proposition 4.4]. This is not applicable in

the non-Gaussian case.

Since the supremum of the absolute value of a continuous function is equal to either the

maximum of this function, or the minimum of this function times −1, the probability in (4.1.4)

is approximately equal to

2 ·P

{
|u(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l )

}
. (4.1.5)

Even though the random variables u(t n
k , xn

l ) and sup(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l ) are not inde-

pendent, from the perspective of probability density functions, we expect that the joint

density (denoted by pn(·, ·), whose existence needs to be proved) of the random vector

(u(t n
k , xn

l ),sup(t ,x)∈Rn
k,l

u(t , x) − u(t n
k , xn

l )) is bounded above by a constant times the prod-

uct of the marginal densities of the components. Notice that the density of u(t n
k , xn

l ) is

bounded uniformly over (t n
k , xn

l ). We expect that the joint density of the random vector

(u(t n
k , xn

l ),sup(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l )) is controlled by the density of the random variable

sup(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l ).
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Chapter 4. On the density of the supremum of the solution to the stochastic heat
equation

To derive a satisfactory estimate for the density of sup(t ,x)∈Rn
k,l

u(t , x)−u(t n
k , xn

l ), recall that the

probability density function of the maximum of Brownian motion max0≤t≤T B(t ) is given by

z �→ 2�
2πT

exp

(−z2

2T

)
1[0,∞[(z).

Relating this formula to the fact that the sample paths of Brownian motion are almost 1
2 -Hölder

continuous suggests that the joint density pn(·, ·) should satisfy the following bound:

pn(z1, z2) ≤ c√
(2−4n)1/2 +2−2n

exp

(
−z2

2

c
(
(2−4n)1/2 +2−2n

)) (4.1.6)

= c2n exp

(
z2

2

c2−2n

)
, for all z1 ∈R, z2 > 0. (4.1.7)

If we apply the Gaussian-type upper bound on the density in (4.1.7) and calculate the proba-

bility in (4.1.5), it will give us the correct upper bound on the probability of hitting small balls,

as in the Gaussian case.

Motivated by the above discussion, we establish the following general criterion for an upper

bound on hitting probabilities from the perspective of probability density functions, which is

comparable to [25, Theorem 3.3].

Let v = (v1, . . . , vd ) = {v(t , x), (t , x) ∈ R+ ×R} be a random field on Rd with i.i.d. components.

Fix H1 > 0, H2 > 0 and T > 0. Let I ⊂ ]0,T ] and J ⊂R be two compact intervals.

Theorem 4.1.1. Assume that the probability density function pt ,x (z) of v1(t , x) is bounded

uniformly over (t , x) ∈ I × J and z ∈R.

(1) Suppose that there exists a constant c = c(I , J) such that for all (s0, y0) ∈ I × J , δ1 and δ2

sufficiently small, the random vectors(
v1(s0, y0), sup

(t ,x)∈[s0,s0+δ1]×[y0,y0+δ2]
(v1(t , x)− v1(s0, y0))

)
, (4.1.8)

and (
−v1(s0, y0), sup

(t ,x)∈[s0,s0+δ1]×[y0,y0+δ2]
(−v1(t , x)− (−v1(s0, y0)))

)
(4.1.9)

have joint probability density functions, denoted by p+
δ1,δ2

(·, ·) and p−
δ1,δ2

(·, ·) respectively,

which satisfy that

p±
δ1,δ2

(z1, z2) ≤ c

δ
H1
1 +δ

H2
2

exp

⎛⎜⎝ −z2
2

c
(
δ

H1
1 +δ

H2
2

)2

⎞⎟⎠ , for all z1 ∈R, z2 ≥ δ
H1
1 +δ

H2
2 .

(4.1.10)
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Then there exists a constant C =C (I , J ) such that for all compact sets A ⊂Rd ,

P{v(I × J )∩ A �= �} ≤C Hd−H−1
1 −H−1

2
(A). (4.1.11)

(2) Suppose that there exists a constant c = c(I , J ) such that for all (s0, y0) ∈ I × J , δ1 sufficiently

small, the random vectors(
v1(s0, y0), sup

t∈[s0,s0+δ1]
(v1(t , y0)− v1(s0, y0))

)
, (4.1.12)

and (
−v1(s0, y0), sup

t∈[s0,s0+δ1]
(−v1(t , y0)− (−v1(s0, y0)))

)
(4.1.13)

have joint probability density functions, denoted by p+
δ1

(·, ·) and p−
δ1

(·, ·) respectively, which

satisfy that

p±
δ1

(z1, z2) ≤ c

δ
H1
1

exp

(
−z2

2

c δ2H1
1

)
, for all z1 ∈R, z2 ≥ δ

H1
1 . (4.1.14)

Then there exists a constant C =C (I , J) such that for all compact sets A ⊂ Rd and for every

y0 ∈ J ,

P{v(I × {y0})∩ A �= �} ≤C Hd−H−1
1

(A). (4.1.15)

Remark 4.1.2. (a) In order to obtain the upper bound on hitting probability in (4.1.11), it is

sufficient to have the estimate on the joint density in (4.1.10) with δ1 = δ
H2/H1
2 ; see the proof

below, in particular, the choice of δ1 and δ2 in (4.1.18).

(b) In some cases, the estimates for p−
δ1,δ2

and p−
δ1

are a consequence of (4.1.10) and (4.1.14)

for p+
δ1,δ2

and p+
δ1

, respectively. For example, let v1 be the solution to (4.1.1). Then −v1 is

a solution to (4.1.1) with the coefficients σ replaced by −σ(−·) and b replaced by −b(−·).

Since the functions −σ(−·) and −b(−·) also satisfy the hypotheses P1 (or P1’) and P2, the

probability density functions of the random vectors defined in (4.1.9) and (4.1.13), which are

p−
δ1,δ2

(·, ·) and/or p−
δ1

(·, ·), will also satisfy the estimates in (4.1.10) and (4.1.14), respectively,

provided p+
δ1,δ2

(·, ·) and/or p+
δ1

(·, ·) do.

Proof of Theorem 4.1.1. We change slightly the notations in (2.2.1) to denote, for all positive

integers n,

t n
k := k2−nH−1

1 , xn
l := l2−nH−1

2

and

I n
k = [t n

k , t n
k+1], J n

l = [xn
l , xn

l+1], Rn
k,l = I n

k × J n
l .
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Following the previous discussion, we have

P

{
inf

(t ,x)∈Rn
k,l

|v1(t , x)− z| ≤ 2−n

}

≤ P

{
|v1(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

|v1(t , x)− v1(t n
k , xn

l )|
}

≤ P

{
|v1(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

v1(t , x)− v1(t n
k , xn

l )

}

+P

{
|v1(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

(−v1(t , x)+ v1(t n
k , xn

l ))

}

= P

{
|v1(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

v1(t , x)− v1(t n
k , xn

l )

}

+P

{
|− v1(t n

k , xn
l )+ z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

(−v1(t , x)− (−v1(t n
k , xn

l )))

}
. (4.1.16)

We will show, using (4.1.10) for p+
δ1,δ2

(·, ·), that the first probability on the right-hand side of

(4.1.16) is bounded by 2−n times a constant, and the estimate for the second one is similar by

using (4.1.10) for p−
δ1,δ2

. In fact, this probability is bounded above by

P

({
|v1(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

v1(t , x)− v1(t n
k , xn

l )

}

∩
{

sup
(t ,x)∈Rn

k,l

v1(t , x)− v1(t n
k , xn

l ) ≥ 2 ·2−n
})

+P
{|v1(t n

k , xn
l )− z| ≤ 3 ·2−n}

. (4.1.17)

For the first probability in (4.1.17), we apply the assumption (4.1.10) with

δ1 = 2−nH−1
1 and δ2 = 2−nH−1

2 (4.1.18)

to see that it is equal to∫∞

2·2−n
d z2

∫z2+2−n+z

−z2−2−n+z
d z1p+

δ1,δ2
(z1, z2) ≤ c

∫∞

2·2−n
d z2

∫z2+2−n+z

−z2−2−n+z
d z1 2ne−

z2
2

c2−2n

= 2c 2n
∫∞

2·2−n
(z2 +2−n)e−

z2
2

c2−2n d z2 = c ′2−n

(4.1.19)

where the last equality holds by changing variables (z2 = 2−n z̃2) to calculate the integral.

Since the density of v1(t n
k , xn

l ) is bounded uniformly for (t n
k , xn

l ) ∈ I × J , the second probability

in (4.1.17) is bounded above by 2−n times a constant. Together with (4.1.17) and (4.1.19), we
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have obtained that

P

{
|v1(t n

k , xn
l )− z| ≤ 2−n + sup

(t ,x)∈Rn
k,l

v1(t , x)− v1(t n
k , xn

l )

}
≤ c2−n . (4.1.20)

Hence, we conclude that

P

{
inf

(t ,x)∈Rn
k,l

|v1(t , x)− z| ≤ 2−n

}
≤ c2−n , (4.1.21)

which implies

P

{
inf

(t ,x)∈Rn
k,l

‖v(t , x)− z‖ ≤ 2−n

}
≤ c 2−dn . (4.1.22)

Now we use the estimate in (4.1.22) to prove Theorem 4.1.1(1), using the arguments in the

proof of Theorem 2.1.4(b). Assume that d −H−1
1 −H−1

2 ≥ 0, otherwise, there is nothing to prove.

Fix ε ∈ ]0,1[ and n ∈N such that 2−n−1 < ε≤ 2−n , and write

P{v(I × J )∩B(z,ε) �= �} ≤
∑

(k,l ):Rn
k,l∩I×J �=�

P
{

v(Rn
k,l )∩B(z,2−n) �= �

}
.

The number of pairs (k, l ) involved in the sum is at most 2n(H−1
1 +H−1

2 ) times a constant. The

bound (4.1.22) implies that for all z ∈ A and large n,

P{v(I × J )∩B(z,ε) �= �} ≤ C̃ 2−nd 2n(H−1
1 +H−1

2 )

≤Cεd−H−1
1 −H−1

2 . (4.1.23)

Note that C does not depend on (n,ε). Therefore, (4.1.23) is valid for all ε ∈ ]0,1[.

Now we use a covering argument: Choose ε̃ ∈ ]0,1[ and let {Bi }i=1∞ be a sequence of open

balls in Rd with respective radii ri ∈ ]0, ε̃[ such that

A ⊆∪∞
i=1Bi and

∞∑
i=1

(2ri )d−H−1
1 −H−1

2 ≤Hd−H−1
1 −H−1

2
(A)+ ε̃. (4.1.24)

Because P{v(I × J )∩ A �= �} is at most
∑∞

i=1 P{v(I × J )∩Bi �= �}, the bounds in (4.1.23) and

(4.1.24) together imply that

P{v(I × J )∩ A �= �} ≤C
(
Hd−H−1

1 −H−1
2

(A)+ ε̃
)

. (4.1.25)

Letting ε̃→ 0+, we obtain (4.1.11).

In order to prove Theorem 4.1.1(2), we assume that d −H−1
1 ≥ 0. Similar to the derivation for
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(4.1.22), using (4.1.14), we have

P

{
inf

t∈I n
k

‖v(t , y0)− z‖ ≤ 2−n

}
≤ c 2−dn , (4.1.26)

where the constant c does not depend on y0 ∈ J nor n. Fix ε ∈ ]0,1[ and n ∈ N such that

2−n−1 < ε≤ 2−n . Then, by (4.1.26),

P
{

v(I × {y0})∩B(z,ε) �= �}≤ ∑
k:I n

k ∩I �=�
P
{

v(I n
k × {y0})∩B(z,2−n) �= �}

≤C 2nH−1
1 2−dn

≤ C̃εd−H−1
1 .

Now use a covering argument, as we did to prove (1), which completes the proof of Theorem

4.1.1(2). �

4.2 Main results

We would like to verify that the assumptions in Theorem 4.1.1 hold for solutions to stochastic

heat equations. We will only consider here the linear case, where the solution is Gaussian. We

consider equation (4.1.1) with σ ≡ 1, b ≡ 0, that is, we consider the linear stochastic heat

equation

∂u

∂t
(t , x) = ∂2u

∂x2 (t , x)+Ẇ (t , x), (4.2.1)

for t ∈ [0,∞[ and x ∈ [0,1], with initial condition u(0, x) = 0 for all x ∈ [0,1], and either Neumann

or Dirichlet boundary conditions.

By definition, the solution is

u(t , x) =
∫t

0

∫1

0
G(t − r, x, v)W (dr,d v), (4.2.2)

where the Green kernel G(t , x, y) is given in (1.3.5) and (1.3.6), respectively.

We assume that the process {u(t , x) : (t , x) ∈ [0,∞[×[0,1]} given by (4.2.2) is the jointly continu-

ous version (see (2.1.7)), which is almost 1
4 -Hölder continuous in time and almost 1

2 -Hölder

continuous in space. In fact, for any p ≥ 1,(t , x), (s, y) ∈ [0,T ]× [0,1], there exists a constant

C =C (p,T ) such that

E[|u(t , x)−u(s, y)|p ] ≤C (|t − s|1/2 +|x − y |)p/2; (4.2.3)

see also (2.1.6).
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Choose two non-trivial compact intervals I ⊂ [0,T ] and J ⊂ [0,1]. In the case of Dirichlet

boundary conditions, we assume that J ⊂ ]0,1[. Choose δ1 > 0 and (s0, y0) ∈ I × J . For t ∈ [0,T ],

we denote

ū(t , y0) = u(t , y0)−u(s0, y0). (4.2.4)

Set

F1 = u(s0, y0), F2 = sup
t∈[s0,s0+δ1]

ū(t , y0) and F = (F1,F2). (4.2.5)

Choose δ2 > 0 such that [y0, y0 +δ2] ⊂ [0,1]; in the case of Dirichlet boundary conditions, we

assume that [y0, y0 +δ2] ⊂ ]0,1[ (open interval). Denote by M0 the global supremum of u over

[0,δ1]× [y0, y0 +δ2]:

M0 = sup
(t ,x)∈[0,δ1]×[y0,y0+δ2]

u(t , x). (4.2.6)

We will also consider the random variable

û(t , x) = u(t , x)−u(t ,0), (4.2.7)

and set

M = sup
(t ,x)∈[0,T ]×[0,1]

û(t , x). (4.2.8)

Our goal is to give some estimates on the joint probability density function of F , which cor-

responds to (4.1.14) in Theorem 4.1.1, and on the probability density function of M0. At the

same time, we also want to know if the random variables F and M0 have infinitely differen-

tiable densities. Malliavin calculus is a tool to study the smoothness of random variables (see

Theorem 1.5.1). It is clear that the first component of F belongs to D∞. We will show that F2

belongs to D1,2 in Lemma 4.4.4. However, we do not expect that F2 belongs to D∞. The same

problem arises for M0 and M . This means we can not apply the results in Theorem 1.5.1 and

Corollary 1.5.3 directly.

Florit and Nualart [39] established a general criterion (Theorem 1.5.5) for smoothness of the

density assuming that the components of the random vector only belong to D1,2. According to

Theorem 1.5.5, instead of imposing nondegeneracy conditions on the Malliavin matrix, it is

sufficient to assume that there exist some smooth random directions such that the derivatives

of the components of the random vector along those directions form a smooth matrix whose

determinant has negative moments of all orders. We will make use of these results to prove

the smoothness of the densities of the random variables F , M0 and M .

We first state the results on the smoothness of the densities of these random variables.

Theorem 4.2.1. (a) For all (s0, y0) ∈ ]0,T ]× J and δ1 > 0, the random vector F has an infinitely
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differentiable density on R×]0,∞[ and if y0 ∈ ]0,1[, then F2 > 0 a.s. When s0 = 0, F1 vanishes

identically but F2 takes values in ]0,∞[ a.s. and has an infinitely differentiable density on

]0,∞[.

(b) For all y0 ∈ [0,1], δ1 > 0 and δ2 > 0 with [y0, y0 +δ2] ⊂ [0,1] ([y0, y0 +δ2] ⊂ ]0,1[ in the case

of Dirichlet boundary conditions), the random variable M0 takes values in ]0,∞[ and has an

infinitely differentiable density on ]0,∞[.

(c) In the case of Neumann boundary conditions, the random variable M takes values in ]0,∞[

and has an infinitely differentiable density on ]0,∞[.

Statements (a) and (b) of this theorem will be proved in Section 4.5. The method to prove

statement (c) is different from that of (a) and (b). We will prove statement (c) in Section 4.8.

In the proof of Theorem 1.5.5 (see [64, Theorem 2.1.4]), the integration by parts formula

provides us with a formula for the density of the random vector F , from which we are able

to analyze the behavior of the density. We remark that choice of uA in Theorem 1.5.5 is not

unique. We will choose a suitable adapted process so that the Skorohod integral coincides

with the Walsh integral and hence we can use Burkholder’s inequality instead of Hölder’s

inequality for Malliavin norms (see [82, Proposition 1.10, p.50]) to estimate the moments of

this stochastic integral. This will allow us to give a Gaussian-type upper bound on this density.

In order to estimate the density of F , we assume I × J ⊂ ]0,T ]×]0,1[. Assume that there are

constants c1,C1 such that

0 < c1 < I := inf{s : s ∈ I } and Ī := sup{s : s ∈ I } <C1 < T +1. (4.2.9)

Assume also that there are constants c2,C2 such that

0 < c2 < J := inf{y : y ∈ J } and J̄ := sup{y : y ∈ J } <C2 < 1. (4.2.10)

Choose δ1 ∈ ]0,1[ small enough so that

s0 +δ1 ∈ I and δ1/2
1 < min

{
J −c2, (C2 − J̄ )/2

}
; (4.2.11)

see Figure 4.1.

Denote (z1, z2) �→ p(z1, z2) the probability density function of random vector F with δ1 satisfy-

ing the conditions in (4.2.11) (the existence of p(·, ·) is assured by Theorem 4.2.1(a)).

Theorem 4.2.2. Assume I × J ⊂ ]0,T ]×]0,1[. There exists a positive constant c = c(I , J ) such that
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0

t

y0 −δ1/2
1

y0

y0 +2δ1/2
1c2

C2 1

T

c1

C1

s0

s0 +δ1

I

J

Figure 4.1 – Illustration of conditions (4.2.9)–(4.2.11)

for all δ1 > 0 satisfying (4.2.11), and for all z2 ≥ δ1/4
1 , z1 ∈R and any (s0, y0) ∈ I × J ,

p(z1, z2) ≤ c√
δ1/2

1

exp

(
− z2

2

c δ1/2
1

)
(|z1|−1/4 ∧1)exp(−z2

1/c) (4.2.12)

≤ c√
δ1/2

1

exp

(
− z2

2

c δ1/2
1

)
. (4.2.13)

The proof of this theorem will be presented in Section 4.6. Note that (4.2.13) is an immedi-

ate consequence of (4.2.12). As a consequence of Theorems 4.2.1 and 4.2.2, we deduce the

following.

Corollary 4.2.3. Let I and J be as above (4.2.4). The random variable F2 has an infinitely

differentiable density on ]0,∞[, denoted by z2 �→ pF2 (z2) . Suppose that I × J ⊂ ]0,T ]×]0,1[. Then

there exists a positive constant c = c(I , J) such that for all δ1 > 0 satisfying (4.2.11), and for all

z2 ≥ δ1/4
1 and any (s0, y0) ∈ I × J ,

pF2 (z2) ≤ c√
δ1/2

1

exp

(
− z2

2

c δ1/2
1

)
. (4.2.14)

Remark 4.2.4. By Theorem 4.2.2 and Remark 4.1.2(b), the assumption (4.1.14) of Theorem

4.1.1 is satisfied for the solution to (4.2.1) with H1 = 1
4 . Therefore, Theorem 4.2.2 provides an

alternative proof of [25, Theorem 3.1(3)] with β= d for the upper bound on hitting probabilities

at a fixed spatial position.

We will also give a Gaussian-type upper bound on the density of M0 under the assumption
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0

t

y0 − (δ1/2
1 +δ2)

y0 y0 +δ2

y0 +2(δ1/2
1 +δ2)

c2

C2

1

T

C̄1

δ1

(δ1/2
1 +δ2)2

J

Figure 4.2 – Illustration of condition (4.2.15)

y0 ∈ J ⊂ ]0,1[. Choose a positive constant C̄1 with C̄1 < T . Let c2, C2 be chosen as in (4.2.10).

Choose δ1, δ2 ∈ ]0,1[ small enough so that

y0 +δ2 ∈ J , (δ1/2
1 +δ2)2 < C̄1 and δ1/2

1 +δ2 < min
{

J −c2, (C2 − J̄ )/2
}

; (4.2.15)

see Figure 4.2.

Denote z �→ p0(z) the probability density function of random variable M0 with δ1, δ2 satisfying

the conditions in (4.2.15) (the existence of p0(·) is assured by Theorem 4.2.1(b)).

Theorem 4.2.5. Assume J ⊂ ]0,1[. There exists a finite positive constant c = c(T, J ) such that for

all δ1, δ2 satisfying the conditions in (4.2.15), for all y0 ∈ J and z ≥ (δ1/2
1 +δ2)1/2,

p0(z) ≤ c√
δ1/2

1 +δ2

exp

(
− z2

c (δ1/2
1 +δ2)

)
. (4.2.16)

The proof of Theorem 4.2.5 will be presented in Section 4.7.

4.3 Preliminaries

In this section, we assume that I and J are as above (4.2.4) and we will introduce two families

of random variables to control the value of the random variable F2 and M0, respectively. For

this purpose, we will give some estimates on the rectangular increments of the solution.

114



4.3. Preliminaries

Choose an integer p0 and γ0 ∈R such that

p0 > γ0 > 4. (4.3.1)

For r ∈ [s0, s0 +δ1], define the following family of random variables:

Yr :=
∫

[s0,r ]2

(u(t , y0)−u(s, y0))2p0

|t − s|γ0/2
d sd t . (4.3.2)

By (4.2.3) and the choice of p0,γ0 in (4.3.1),∫
[s0,r ]2

E[(u(t , y0)−u(s, y0))2p0 ]

|t − s|γ0/2
d sd t ≤ c

∫
[s0,r ]2

|t − s|p0/2

|t − s|γ0/2
d sd t <∞. (4.3.3)

Hence for all r ∈ [s0, s0+δ1], the random variable Yr is finite a.s. Moreover, by Hölder’s inequal-

ity and (4.2.3), for any p ≥ 1, there exists a constant cp , not depending on (s0, y0) ∈ [0,T ]×[0,1],

such that for all r ∈ [s0, s0 +δ1],

E[|Yr |p ] ≤ (r − s0)2(p−1)
∫

[s0,r ]2

E[|u(t , y0)−u(s, y0)|2p0p ]

|t − s|γ0p/2
d sd t

≤ cp (r − s0)2(p−1)
∫

[s0,r ]2

|t − s|p0p/2

|t − s|γ0p/2
d sd t

≤ cp (r − s0)2pδ
(p0−γ0)p/2
1 . (4.3.4)

The following result shows that the family of random variables {Yr : r ∈ [s0, s0+δ1]} can control

the value of the supremum F2.

Lemma 4.3.1. There exists a finite positive constant c, not depending on (s0, y0) ∈ [0,T ]× [0,1],

such that for any a > 0, for all δ1 > 0 and for all r ∈ [s0, s0 +δ1],

Yr ≤ R := c a2p0δ
−(γ0−4)/2
1 ⇒ sup

t∈[s0,r ]
|ū(t , y0)| ≤ a. (4.3.5)

Proof. We first apply the Garsia, Rodemich, and Rumsey lemma (see Lemma A.6.1) with

S := [s0,r ], ρ(t , s) := |t − s|1/2, μ(d t ) := d t ,

Ψ(x) := x2p0 , p(x) := x
γ0

2p0 and f := u(·, y0).
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By (A.34), we deduce that for all t , s ∈ [s0,r ],

|u(t , y0)−u(s, y0)| ≤ 10
∫2ρ(t ,s)

0

Y
1

2p0
r

[μ(Bρ(s,u/4))]1/p0
u

γ0
2p0

−1du

≤ c1 Y
1

2p0
r

∫2ρ(t ,s)

0
u− 2

p0 u
γ0

2p0
−1du

= c2 |t − s|
γ0−4
4p0 Y

1
2p0

r

≤ c2δ

γ0−4
4p0

1 Y
1

2p0
r ,

where we have used (4.3.1); the constants c1, c2 do not depend on r , nor on (s0, y0) ∈ [0,T ]×
[0,1]. Assuming Yr ≤ R, letting s = s0 in the above inequality and choosing a suitable constant

in the definition of R, we obtain that

sup
t∈[s0,r ]

|ū(t , y0)| ≤ δ
(γ0−4)/(4p0)
1 (a2p0δ

−(γ0−4)/2
1 )1/(2p0) = a.

�

We will also introduce a family of random variables to control the value of the supremum M0.

We first give an estimate on the rectangular increments of the solution.

Lemma 4.3.2. There exists a constant CT such that for any θ ∈ ]0, 1
2 [ and (t , s, x, y) ∈ [0,T ]2 ×

[0,1]2,

E[(u(t , x)+u(s, y)−u(t , y)−u(s, x))2] ≤CT |t − s| 1
2 ∧|x − y |

≤CT |t − s| 1
2−θ|x − y |2θ. (4.3.6)

Proof. The second inequality is trivial. To prove the first inequality, on the one hand, by (4.2.3),

E[(u(t , x)+u(s, y)−u(t , y)−u(s, x))2]

≤ 2E[(u(t , x)−u(s, x))2]+2E[(u(s, y)−u(t , y))2]

≤CT |t − s| 1
2 . (4.3.7)

On the other hand, using (4.2.3) again, we have

E[(u(t , x)+u(s, y)−u(t , y)−u(s, x))2]

≤ 2E[(u(t , x)−u(t , y))2]+2E[(u(s, x)−u(s, y))2]

≤CT |x − y |. (4.3.8)

Hence (4.3.7) and (4.3.8) establish (4.3.6). �
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o

γ2

γ1
1

2p0

γ0−1
4p0

1
2p0

γ0−1
2p0

Figure 4.3 – Illustration of (4.3.11) and (4.3.12)

From now on, we fix θ ∈]0, 1
2 [ and set

θ1 = 1

2
−θ, θ2 = 2θ. (4.3.9)

By the isometry and Lemma 4.3.2, since Du(t , x) = 1{·<t }G(t −·, x,∗),

‖D(u(t , x)+u(s, y)−u(t , y)−u(s, x))‖2
H = E[(u(t , x)+u(s, y)−u(t , y)−u(s, x))2]

≤CT |t − s|θ1 |x − y |θ2 , (4.3.10)

for any (t , s, x, y) ∈ [0,T ]2 × [0,1]2.

Let p0 and γ0 be defined as in (4.3.1). Let θ1 and θ2 be defined as in (4.3.9). We assume that p0

is sufficiently large so that there exist γ1, γ2 such that

1

2p0
< γ1 < θ1/2− 1

2p0
,

1

2p0
< γ2 < θ2/2− 1

2p0
, (4.3.11)

and

2γ1 +γ2 = γ0 −1

2p0
; (4.3.12)

see Figure 4.3. Denote

δ := δ1/2
1 +δ2, Δ• := δ2 and Δ∗ := δ∧ (1− y0). (4.3.13)

For r ∈ [0,Δ•], we define

Y0(r ) :=
∫

[0,r ]2

(u(t , y0)−u(s, y0))2p0

|t − s|γ0/2
d sd t , (4.3.14)
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and

Y1(r ) :=
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y
(u(t , x)+u(s, y)−u(t , y)−u(s, x))2p0

|t − s|1+2p0γ1 |x − y |1+2p0γ2
. (4.3.15)

By Lemma 4.3.2, the choice of γ1, γ2 in (4.3.11) and the Gaussian property of the solution,∫
[0,r ]2

d td s
∫

[y0,y0+Δ∗]2
d xd y

E[(u(t , x)+u(s, y)−u(t , y)−u(s, x))2p0 ]

|t − s|1+2p0γ1 |x − y |1+2p0γ2

≤ c
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y
|t − s|p0θ1 |x − y |p0θ2

|t − s|1+2p0γ1 |x − y |1+2p0γ2
<∞.

Hence for all r ∈ [0,Δ•], the random variable Y1(r ) is finite a.s. Moreover, by Hölder’s inequality

and (4.3.10), for any p ≥ 1, there exists a constant cp , not depending on y0 ∈ [0,1], such that

for any r ∈ [0,Δ•],

E[|Y1(r )|p ] ≤ (rΔ∗)2(p−1)
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y

× E[|u(t , x)+u(s, y)−u(t , y)−u(s, x)|2p0p ]

|t − s|p(1+2p0γ1)|x − y |p(1+2p0γ2)

≤ cp (rΔ∗)2(p−1)
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y

× |t − s|p0pθ1 |x − y |p0pθ2

|t − s|p(1+2p0γ1)|x − y |p(1+2p0γ2)

≤ cp (rΔ∗)2pΔ
p(p0θ1−(1+2p0γ1))
• Δ

p(p0θ2−(1+2p0γ2))
∗

≤ cp r 2pδp(2p0θ1−2(1+2p0γ1))δp(p0θ2−(1+2p0γ2)+2)

= cp r 2pδp(p0(2θ1+θ2)−2p0(2γ1+γ2)−1)

= cp r 2pδp(p0−γ0), (4.3.16)

where in the last inequality we use (4.3.13), and in the second equality we use (4.3.12) and the

fact that 2θ1 +θ2 = 1 from the definition of θ1, θ2 in (4.3.9).

For r ∈ [0,Δ•], set

Ȳr := Y0(r )+Y1(r ). (4.3.17)

By (4.3.16) and the calculation in (4.3.4), for any p ≥ 1, there exists a constant cp , not depending

on y0 ∈ [0,1], such that for any r ∈ [0,Δ•],

E[|Ȳr )|p ] ≤ cp r 2pδp(p0−γ0). (4.3.18)

To see that the family of random variables {Ȳr : r ∈ [0,Δ•]} controls the value of the supremum

of M0, we need to use the Garsia, Rodemich, and Rumsey lemma for Banach space valued

functions (see [64, Lemma A.3.1] and our Lemma A.6.2). Indeed, we will write, for (t , x) ∈
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[0,T ]× [0,1],

u(t , x) = ǔ(t , x)+u(t , y0), (4.3.19)

where

ǔ(t , x) = u(t , x)−u(t , y0). (4.3.20)

For fixed t , ǔ(t ,∗) belongs to the Banach space Ep,γ[y0, y0 +Δ∗] which we now define.

For an integer p, an arbitrary γ ∈ ] 1
2p ,1[ and a continuous function f defined on [a,b], we

define the Hölder seminorm

‖ f ‖p,γ :=
(∫

[a,b]2

| f (x)− f (y)|2p

|x − y |1+2pγ d xd y

) 1
2p

. (4.3.21)

Ep,γ[a,b] denotes the space of continuous functions vanishing at a and having a finite ‖ · ‖p,γ

norm. We omit [a,b] if this interval is clear from the context. Each element of Ep,γ turns out

to be Hölder continuous. Indeed, we apply the Garsia, Rodemich and Rumsey lemma (see

Lemma A.6.2) to the real-valued function f with Ψ(x) = x2p , p(x) = x(1+2pγ)/(2p),d = 1 to get

that there exists a constant c such that for all x, y ∈ [a,b],

| f (x)− f (y)| ≤ c |x − y |γ− 1
2p ‖ f ‖p,γ.

Moreover, as a fractional Sobolev space, Ep,γ[a,b] is a separable Banach space; see [35, Propo-

sition 4.24].

Since for any ε > 0, a.s., for any fixed t , the function x �→ ǔ(t , x) is 1
2 − ε-Hölder continuous,

it follows that ǔ(t ,∗) belongs to the Banach space Ep0,γ2 [y0, y0 +Δ∗] with p0, γ2 as defined

in (4.3.1) and (4.3.11). We establish the following lemma to study the continuity of the map

t �→ ǔ(t ,∗) in the Banach space Ep0,γ2 [y0, y0 +Δ∗].

Lemma 4.3.3. For any 0 < ξ< θ1/2 and 0 < η< θ2/2, there exists a random variable C that is

a.s. finite such that a.s., for all (t , s, x, y) ∈ [0,T ]2 × [0,1]2,

|u(t , x)+u(s, y)−u(t , y)−u(s, x)| ≤C |t − s|ξ|x − y |η. (4.3.22)

Remark 4.3.4. This property is also established in [43, Theorem 5.2].

Proof of Lemma 4.3.3. Let û = {û(t , x) : (t , x) ∈ [0,∞[×[0,1]} be the random field defined in

(4.2.7).

We choose p, γ̄2 such that ξ< θ1/2− 1
2p and η+ 1

2p < γ̄2 < θ2/2− 1
2p . Let Ep,γ̄2 [0,1] be the space

of continuous functions defined on [0,1] vanishing at 0 and having a finite ‖·‖p,γ̄2 norm. Since

a.s., for any t ∈ [0,T ], x �→ û(t , x) is almost 1
2 -Hölder continuous, we see that û(t ,∗) belongs to
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Ep,γ̄2 . Moreover, by (4.3.6), for any s, t ∈ [0,T ],

E[‖û(t ,∗)− û(s,∗)‖2p
p,γ̄2

] =
∫

[0,1]2

E[|u(t , x)+u(s, y)−u(t , y)−u(s, x)|2p ]

|x − y |1+2pγ̄2
d xd y

≤CT |t − s|θ1p
∫

[0,1]2

|x − y |θ2p

|x − y |1+2pγ̄2
d xd y

≤CT |t − s|θ1p .

We apply the Kolmogorov continuity theorem (see [76, Theorem 2.1]) to see that the process

{û(t ,∗) : t ∈ [0,T ]} has a continuous version {ũ(t ,∗) : t ∈ [0,T ]} with values in Ep,γ̄2 , which

is θ1
2 − 1

2p − ε-Hölder continuous for small ε such that θ1
2 − 1

2p − ε > ξ, namely, there exists a

random variable C , finite almost surely, such that a.s. for any s, t ∈ [0,T ],

‖ũ(t ,∗)− ũ(s,∗)‖p,γ̄2 ≤C |t − s|
θ1
2 − 1

2p −ε.

Hence we have for any s, t ∈ [0,T ],∫
[0,1]2

|ũ(t , x)− ũ(s, x)− ũ(t , y)+ ũ(s, y)|2p

|x − y |1+2pγ̄2
d xd y ≤C |t − s|(

θ1
2 − 1

2p −ε)2p .

We apply the Garsia, Rodemich and Rumsey lemma (see Lemma A.6.2) to the real-valued

function x �→ ũ(t , x)− ũ(s, x) with Ψ(x) = x2p , p(x) = x(1+2pγ̄2)/(2p),d = 1, to get that for any

(t , s, x, y) ∈ [0,T ]2 × [0,1]2,

|ũ(t , x)− ũ(s, x)− ũ(t , y)+ ũ(s, y)| ≤C |t − s|
θ1
2 − 1

2p −ε|x − y |γ̄2− 1
2p

≤C |t − s|ξ|x − y |η. (4.3.23)

Letting y = 0 in (4.3.23), we obtain

|ũ(t , x)− ũ(s, x)| ≤C |t − s|ξ. (4.3.24)

Fix (s, y) ∈ [0,T ]× [0,1]. Using the triangle inequality,

|ũ(t , x)− ũ(s, y)| ≤ |ũ(t , x)− ũ(s, x)|+ |ũ(s, x)− ũ(s, y)|,

which converges to 0 as (t , x) → (s, y) by (4.3.24) and the fact that x �→ ũ(s, x) is continuous

since ũ(s,∗) ∈ Ep,γ̄2 . Therefore, a.s., (t , x) �→ ũ(t , x) is continuous. Together with the fact that for

any t ∈ [0,T ], P{û(t ,∗) = ũ(t ,∗)} = 1, we obtain that the processes {û(t , x) : (t , x) ∈ [0,T ]× [0,1]}

and {ũ(t , x) : (t , x) ∈ [0,T ]× [0,1]} are indistinguishable and hence (4.3.23) implies (4.3.22). �

Choose ξ, η as in Lemma 4.3.3 such that η> γ2 +1/(2p0), which is possible by (4.3.11). Then,
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by (4.3.22),

‖ǔ(t ,∗)− ǔ(s,∗)‖2p0
p0,γ2

=
∫

[y0,y0+Δ∗]2

(u(t , x)+u(s, y)−u(t , y)−u(s, x))2p0

|x − y |1+2p0γ2
d xd y

≤C |t − s|2p0ξ
∫

[y0,y0+Δ∗]2
|x − y |2p0η−1−2p0γ2 d xd y

≤C |t − s|2p0ξ (4.3.25)

since 2p0η−1−2p0γ2 > 0, which shows that a.s., t �→ ǔ(t ,∗) is continuous in Ep0,γ2 [y0, y0+Δ∗]

(the space of continuous functions defined on [y0, y0 +Δ∗] vanishing at y0 and having a finite

‖ · ‖p0,γ2 norm). Similarly, we can prove that a.s., x �→ u(·, x) is continuous in Ep0,γ1 [0,T ] (the

space of continuous functions defined on [0,T ] vanishing at 0 and having a finite ‖ · ‖p0,γ1

norm), where γ1, p0 are defined in (4.3.11) and (4.3.1).

As a consequence of Lemma 4.3.3, we can write, for r ∈ [0,Δ•],

Y1(r ) =
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y
(u(t , x)+u(s, y)−u(t , y)−u(s, x))2p0

|t − s|1+2p0γ1 |x − y |1+2p0γ2

=
∫

[0,r ]2

‖ǔ(t ,∗)− ǔ(s,∗)‖2p0
p0,γ2

|t − s|1+2p0γ1
d td s. (4.3.26)

We are now ready to show that the family of random variables {Ȳr : r ∈ [0,Δ•]} defined in

(4.3.17) controls the value of the supremum of M0.

Lemma 4.3.5. There exists a finite positive constant c, not depending on y0 ∈ [0,1], such that

for any ā > 0, δ1 > 0, δ2 > 0 and for all r ∈ [0,Δ•],

Ȳr ≤ R̄ := c ā2p0δ4−γ0 ⇒ sup
(t ,x)∈[0,r ]×[y0,y0+δ2]

|u(t , x)| ≤ ā. (4.3.27)

Proof. Assuming Y0(r ) ≤ R̄ , similar to the proof of Lemma 4.3.1, by the Garsia, Rodemich and

Rumsey lemma (see Lemma A.6.1), we deduce that for all t , s ∈ [0,r ],

|u(t , y0)−u(s, y0)| ≤ c ′ |t − s|
γ0−4
4p0 Y0(r )

1
2p0

≤ c1Δ

γ0−4
4p0• Y0(r )

1
2p0 = c1δ

γ0−4
2p0 Y0(r )

1
2p0 , (4.3.28)

where the constant c1 does not depend on r , nor on y0 ∈ [0,1]. Letting s = 0 in (4.3.28), we

obtain

sup
t∈[0,r ]

|u(t , y0)| ≤ c1δ
γ0−4
2p0 Y0(r )

1
2p0 ≤ c1δ

γ0−4
2p0 R̄

1
2p0 . (4.3.29)
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Hence we can choose a suitable constant c in the definition of R̄ in (4.3.27) so that

sup
t∈[0,r ]

|u(t , y0)| ≤ ā

2
. (4.3.30)

Assuming Y1(r ) ≤ R̄, from the expression of Y1(r ) in (4.3.26), we first apply the Garsia, Ro-

demich, and Rumsey lemma (see Lemma A.6.2) to the Ep0,γ2 [y0, y0 +Δ∗]-valued function

s �→ ǔ(s,∗) with Ψ(x) = x2p0 , p(x) = x(1+2p0γ1)/(2p0) to deduce that there exists a constant c2

such that for all t , s ∈ [0,r ],

‖ǔ(t ,∗)− ǔ(s,∗)‖p0,γ2 ≤ c ′ Y1(r )
1

2p0

∫2|t−s|

0
x− 1

p0 x
1+2p0γ1

2p0
−1d x

= c2 Y1(r )
1

2p0 |t − s|
2p0γ1−1

2p0

≤ c2 Y1(r )
1

2p0 Δ

2p0γ1−1
2p0• = c2 Y1(r )

1
2p0 δ

2(2p0γ1−1)
2p0 . (4.3.31)

Letting s = 0, we obtain for all t ∈ [0,r ],

‖ǔ(t ,∗)‖2p0
p0,γ2

≤ c2 Y1(r )δ2(2p0γ1−1).

Applying the same lemma to the real-valued function x �→ ǔ(t , x) (t is now fixed) with Ψ(x) =
x2p0 , p(x) = x(1+2p0γ2)/(2p0), we obtain

|ǔ(t , x)− ǔ(t , y)| ≤ c3 Y1(r )
1

2p0 δ
2(2p0γ1−1)

2p0 |x − y |
2p0γ2−1

2p0 ,

for all x, y ∈ [y0, y0 +Δ∗]. Letting y = y0 we obtain that for all (t , x) ∈ [0,r ]× [y0, y0 +Δ∗],

|u(t , x)−u(t , y0)| ≤ c3 Y1(r )
1

2p0 δ
2(2p0γ1−1)

2p0 Δ

2p0γ2−1
2p0∗

≤ c3 Y1(r )
1

2p0 δ
2(2p0γ1−1)

2p0 δ
2p0γ2−1

2p0

= c3 Y1(r )
1

2p0 δ
γ0−4
2p0 ,

where in the second inequality we use (4.3.13), and the equality is due to (4.3.12). In particular,

this implies that

sup
(t ,x)∈[0,r ]×[y0,y0+δ2]

|u(t , x)−u(t , y0)| ≤ c3 Y1(r )
1

2p0 δ
γ0−4
2p0 . (4.3.32)

We can choose the constant c in the definition of R̄ in (4.3.27) small so that (4.3.30) holds and

sup
(t ,x)∈[0,r ]×[y0,y0+δ2]

|u(t , x)−u(t , y0)| ≤ ā

2
. (4.3.33)

Hence, by (4.3.30), (4.3.33) and the triangle inequality, we obtain (4.3.27). �
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We conclude this section by introducing a result on the uniqueness of the solution to heat

equation with boundary conditions, which will be used when we check the condition (iii) of

Theorem 1.5.5.

Let f : [0,∞[ �→ R be a differentiable function with continuous derivative satisfying f (0) = 0.

Let g ∈C∞([0,1]) satisfy the same boundary conditions as the Green kernel. We define

A(t , x) =
∫t

0

∫1

0
G(t − r, x, v)

(
∂

∂r
− ∂

∂v2

)
( f (r )g (v))d vdr, t > 0, x ∈ [0,1],

A(0, x) = 0, x ∈ [0,1].

Lemma 4.3.6. The function A is well-defined and we have A(t , x) = f (t)g (x) for all (t , x) ∈
[0,∞[×[0,1].

Proof. It is clear that the function A is well-defined since both the Green kernel and the

function (r, v) �→
(
∂
∂r − ∂

∂v2

)
( f (r )g (v)) belong to L2([0,T ]× [0,1]). From the definition of the

function A, we see that A solves the inhomogeneous heat equation, that is, A satisfies(
∂

∂t
− ∂

∂x2

)
A(t , x) =

(
∂

∂t
− ∂

∂x2

)
( f (t )g (x)), (4.3.34)

the same boundary conditions as the Green kernel and vanishing initial condition. On the

other hand, the function f (·)g (∗) also satisfies (4.3.34) with A(t , x) replaced by f (t )g (x) and

the same boundary and initial conditions. By the uniqueness of the solution to heat equation

on bounded domains (see [38, Theorem 5, p.57]), we have A = f (·)g (∗). �

4.4 Malliavin derivatives of F2, M0 and M

In this section, we recall some results on the suprema F2, M0 and M in (4.2.5)–(4.2.8), in order

to apply Theorem 1.5.5 and to prove Theorems 4.2.1, 4.2.2 and 4.2.5.

First, we state the 0-1 law for the germ σ-algebra generated by the Brownian sheet that appears

in equation (4.2.1). Define Ft :=σ{W (s, x) : s ≤ t ,0 ≤ x ≤ 1} and F+
t := ⋂

s>t
Fs .

Lemma 4.4.1. For any set B ∈F+
0 ,P(B) ∈ {0,1}.

Proof. For any x, y ∈ [0,1],r ≥ 0 and t > s ≥ 0, we know that W (r +t , x)−W (t , x) is independent

of W (s, y). Hence W (r +t , x)−W (t , x) is independent of Fs . Furthermore we have W (r +t , x)−
W (t , x) is independent of F+

s . In particular, for any r ≥ 0, t > 0 and x ∈ [0,1], W (r + t , x)−
W (t , x) is independent of F+

0 . Since

W (r, x) = lim
t↓0

(W (r + t , x)−W (t , x)),
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we obtain that W (r, x) is independent of F+
0 . Therefore for any r > 0, Fr is independent of

F+
0 , which implies F+

0 is independent of itself. Hence, for any B ∈F+
0 ,

P(B) = P(B ∩B) = P(B)2,

which implies that P(B) ∈ {0,1}. �

Lemma 4.4.2. (a) With probability one, the sample path of the process {ū(t , y0) : t ∈ [s0, s0+δ1]}

achieves its supremum at a unique point in [s0, s0 +δ1], denoted by S. If (s0, y0) ∈ [0,T ]×]0,1[,

we have F2 > 0 a.s.

(b) With probability one, M0 > 0 and the sample path of the process {u(t , x) : (t , x) ∈ [0,δ1]×
[y0, y0 +δ2]} achieves its supremum at a unique point in ]0,δ1]× [y0, y0 +δ2], denoted by

(S̄, X̄ ).

(c) With probability one, M > 0 and the sample path of the process {û(t , x) : (t , x) ∈ [0,T ]×[0,1]}

achieves its supremum at a unique point in ]0,T ]×]0,1], denoted by (Ŝ, X̂ ).

Proof. The first statement of (a) follows from [47, Lemma 2.6 ], since for t , s ∈ [s0, s0 +δ1] with

t �= s,

E[|ū(t , y0)− ū(s, y0)|2] = E[|u(t , y0)−u(s, y0)|2] �= 0,

by Lemma A.5.3. In order to prove the second statement of (a), we denote {ũ(t , x) : (t , x) ∈
[s0, s0 +δ1]× [y0, y0 +δ2]} the solution to (4.2.1) on the whole space. If s0 = 0, it is clear that

F2 > 0 a.s. by using the 0-1 law in Lemma 4.4.1; see also the proof for M0 > 0 a.s. below. If s0 > 0,

by [45, p.23, (3.9)], we see that

sup
t∈[s0,s0+δ1]

ũ(t , y0)− ũ(s0, y0) > 0 a.s.

Since the the processes {u(t , x) : (t , x) ∈ [s0, s0 +δ1]× [y0, y0 +δ2]} and {ũ(t , x) : (t , x) ∈ [s0, s0 +
δ1]× [y0, y0 +δ2]} are mutually absolute continuous by [62, Corollary 4], we conclude that

F2 > 0, a.s.

We turn to proving the statement (b). Fix x ∈ [y0, y0 +δ2]. It is clear that

{M0 > 0} = { sup
(t ,x)∈[0,δ1]×[y0,y0+δ2]

u(t , x) > 0} ⊃ limsup
tn↓0

{u(tn , x) > 0}. (4.4.1)

On the other hand, we know that

limsup
tn↓0

{u(tn , x) > 0} ∈F+
0 (4.4.2)
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and

P
{

limsup
tn↓0

{u(tn , x) > 0}
}
≥ limsup

tn↓0
P{u(tn , x) > 0} = 1

2
, (4.4.3)

since for every n, u(tn , x) is a centered Gaussian random variable and P{u(tn , x) > 0} = 1
2 .

Hence by Lemma 4.4.1, we obtain that

P
{

limsup
tn↓0

{u(tn , x) > 0}
}
= 1, (4.4.4)

which establishes that M0 > 0 almost surely. Furthermore, for any (t , x), (s, y) ∈ ]0,δ1]×[y0, y0+
δ2] with (t , x) �= (s, y), by Lemma A.5.3,

E[|u(t , x)−u(s, y)|2] �= 0,

which yields the conclusion of statement (b) by [47, Lemma 2.6 ].

We proceed to prove statement (c). In the case of Dirichlet boundary conditions, since u(t ,0) ≡
0 for any t ≥ 0, we can repeat the proof of statement (b) to see that M > 0 almost surely. In the

case of Neumann boundary conditions, fix t > 0. We follow [25, (4.22)] to write

u(t , x) =�
2

∞∑
k=1

cos(kπx)ξk
t rk +

∞∑
k=1

cos(kπx)

kπ
ξk

t +
�

tξ0
t

:= R(x)+ B̂(x)+�
tξ0

t ,

where {ξk
t }∞k=0 is an i.i.d. sequence of standard Gaussian random variables and

rk := (1−exp(−2π2k2t ))1/2 −1�
2πk

.

We proceed to prove that almost surely x �→ R(x) is differentiable on [0,1]. By Fubini’s theorem,

we see that

E

[ ∞∑
k=1

k|ξk
t | |rk |

]
=

∞∑
k=1

kE[|ξk
t ||rk | ≤ c

∞∑
k=1

k|rk | <∞,

where the last sum is finite because |rk | = O(k−1 exp(−2π2k2t)) as k → ∞. Hence we have

almost surely

∞∑
k=1

k|ξk
t | |rk | <∞. (4.4.5)

We denote Rn(x) :=∑n
k=1 cos(kπx)ξk

t rk . By (4.4.5), we know that, almost surely, Rn converges

to R uniformly on [0,1]. Furthermore R ′
n(x) =∑n

k=1−kπsin(kπx)ξk
t rk and using (4.4.5) again,

we see that almost surely, R ′
n converges to x �→ ∑∞

k=1−kπsin(kπx)ξk
t rk uniformly on [0,1].

Hence by [77, Theorem 7.17], we obtain that almost surely, x �→ R(x) is differentiable, and, for
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x ∈ [0,1],

R ′(x) =
∞∑

k=1
−kπsin(kπx)ξk

t rk .

Now recall that from [81, Exercise 3.9, p.326], the standard Brownian motion {W (x) : x ∈ [0,1]}

has the expansion

W (x) = 1�
3
ξ0 +

∞∑
k=1

�
2

kπ
ξk cos(kπx),

where {ξk }∞k=1 are i.i.d N (0,1) (ξ0 is also N (0,1), but not independent of the other ξk ). By the

non-differentiability property of Brownian motion (see [61, Theorem 1.27]), we have

limsup
x↓0

W (x)−W (0)

x −0
=+∞, a.s.,

which implies

limsup
x↓0

B̂(x)− B̂(0)

x −0
=+∞ a.s.

Therefore, we have

limsup
x↓0

u(t , x)−u(t ,0)

x −0
=+∞, a.s.,

which implies

sup
0≤x≤1

(u(t , x)−u(t ,0)) > 0 a.s. (4.4.6)

Hence M > 0 a.s.

Now we need to prove that the sample path of the process {û(t , x) : (t , x) ∈ [0,T ]×[0,1]} achieves

its supremum uniquely on [0,T ]× [0,1]. Since M > 0 a.s., by [47, Lemma 2.6 ], it suffices to

check that for any (t , x), (s, y) in ]0,T ]×]0,1] ( ]0,T ]×]0,1[ in the case of Dirichlet boundary

conditions) with (t , x) �= (s, y),

E[|u(t , x)−u(t ,0)−u(s, y)+u(s,0)|2] �= 0.

This is a consequence of Lemma A.5.3. Therefore, we have finished the proof. �

Remark 4.4.3. The process {Bx : x ∈ [0,1]} defined in (4.21) of [25] is not a standard Brownian

motion. But we know that there exists a constant c such that for all x, y ∈ [0,1],

E[|Bx −By |2] ≥ c|x − y |,
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which is sufficient for (4.25) of [25].

Lemma 4.4.4. The random variables M0, M and F2 belong to D1,2 and

DM0 = 1{·<S̄}G(S̄ −·, X̄ ,∗), (4.4.7)

DM = 1{·<Ŝ}G(Ŝ −·, X̂ ,∗)−1{·<Ŝ}G(Ŝ −·,0,∗), (4.4.8)

DF2 = 1{·<S}G(S −·, y0,∗)−1{·<s0}G(s0 −·, y0,∗), (4.4.9)

where the random variables S̄, X̄ , Ŝ, X̂ and S are defined in Lemma 4.4.2.

Remark 4.4.5. The function (t , x) �→ 1{·<t }G(t − ·, x,∗) (we use the notation · to denote the

time variable and ∗ for the space variable) from [0,T ]× [0,1] into H is continuous by the

argument below (4.4.13). Therefore, 1{·<S̄}G(S̄ −·, X̄ ,∗) is the random element of H obtained by

composition of the random vector ω �→ (S̄(ω), X̄ (ω)) and this continuous function.

Proof of Lemma 4.4.4. It is similar to the proof for the Brownian sheet; see [64, Lemma 2.1.9].

We only prove (4.4.8). The proofs of (4.4.7) and (4.4.9) are similar.

Let {(tk , xk )}∞k=1 be a dense subset of [0,T ]× [0,1]. Define

Mn := max{û(t1, x1), . . . , û(tn , xn)}.

Then Mn converges to M almost surely as n →∞. Borell’s inequality (see (2.4) in [1]) implies

that for any q ≥ 2,

E

[
sup

(t ,x)∈[0,T ]×[0,1]
|û(t , x)|q

]
<∞,

which indicates that Mn converges to M in L2(Ω) as n →∞ by Lemma A.6.3. Furthermore

Mn belongs to D1,2 by Proposition 1.2.4 of [64] since the function ϕn : Rn → R defined by

ϕn(x1, . . . , xn) = max{x1, . . . , xn} is Lipschitz. We define

An
1 := {û(t1, x1) = Mn},

An
2 := {û(t1, x1) �= Mn , û(t2, x2) = Mn},

...

An
k := {û(t1, x1) �= Mn , . . . , û(tk−1, xk−1) �= Mn , û(tk , xk ) = Mn}.

Then it is easy to see that

An
k ∩ An

m =�, if k �= m,

and because almost surely the maximum is attained at a unique point, we have

P{∪n
k=1 An

k } = 1,
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and

Mn =
n∑

k=1
1An

k
û(tk , xk ), a.s.

On the set An
k , we have Mn − û(tk , xk ) = 0 almost surely. By the local property of the operator

D (see Proposition 1.3.16 in [64]), we have D(Mn − û(tk , xk )) = 0 almost surely on the set An
k .

Hence we have

DMn =
n∑

k=1
1An

k
Dû(tk , xk )

=
n∑

k=1
1An

k
(1{·<tk }G(tk −·, xk ,∗)−1{·<tk }G(tk −·,0,∗))

= 1{·<Sn }G(Sn −·, Xn ,∗)−1{·<Sn }G(Sn −·,0,∗), (4.4.10)

where (Sn , Xn) is the unique point such that Mn = û(Sn , Xn). Since for any (t , x) ∈ [0,T ]× [0,1],

‖1{·<t }G(t −·, x,∗)‖2
H = E[u(t , x)2] ≤ cT , (4.4.11)

we have

sup
n≥1

E[‖DMn‖2
H ] ≤ 2sup

n≥1

n∑
k=1

P{An
k }(‖1{·<tk }G(tk −·, xk ,∗)‖2

H +‖1{·<tk }G(tk −·,0,∗)‖2
H )

≤ c. (4.4.12)

Hence from Lemma 1.2.3 in [64], we know that M belongs to D1,2 and DMn converges to M in

the weak topology of L2(Ω,H ). In other words, for any G ∈ L2(Ω,H ),

lim
n→∞E[〈DMn ,G〉H ] = E[〈DM ,G〉H ]. (4.4.13)

On the other hand, since for any (t , x), (s, y) ∈ [0,T ]× [0,1], by (4.2.3),

‖D(u(t , x)−u(s, y))‖2
H = ‖1{·<t }G(t −·, x,∗)−1{·<s}G(s −·, y,∗)‖2

H

= E[|u(t , x)−u(s, y)|2] (4.4.14)

≤CT (|t − s|1/2 +|x − y |),

we see that the function (t , x) �→ Du(t , x) = 1{·<t }G(t−·, x,∗) from [0,T ]×[0,1] into H is contin-

uous. Furthermore, because the random vector (Sn , Xn) converges to (Ŝ, X̂ ) almost surely, the

measurable function ω �→ 1{·<Sn (ω)}G(Sn(ω)− ·, Xn(ω),∗) converges to ω �→ 1{·<Ŝ(ω)}G(Ŝ(ω)−
·, X̂ (ω),∗) in H almost surely, and the measurable function ω �→ 1{·<Sn (ω)}G(Sn(ω)− ·,0,∗)

converges to ω �→ 1{·<Ŝ(ω)}G(Ŝ(ω)−·,0,∗) in H almost surely. Hence for any G ∈ L2(Ω,H ), we
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have

lim
n→∞〈1{·<Sn }G(Sn −·, Xn ,∗)−1{·<Sn }G(Sn −·,0,∗),G〉H

= 〈1{·<Ŝ}G(Ŝ −·, X̂ ,∗)−1{·<Ŝ}G(Ŝ −·,0,∗),G〉H , a.s. (4.4.15)

By (4.4.10) and (4.4.11),

sup
n≥1

E[〈1{·<Sn }G(Sn −·, Xn ,∗)−1{·<Sn }G(Sn −·,0,∗),G〉2
H ]

≤ 2sup
n≥1

n∑
k=1

E
[

1An
k

(〈1{·<tk }G(tk −·, xk ,∗),G〉2
H +〈1{·<tk }G(tk −·,0,∗),G〉2

H

)]
≤ 2sup

n≥1

n∑
k=1

E
[

1An
k

(‖1{·<tk }G(tk −·, xk ,∗)‖2
H +‖1{·<tk }G(tk −·,0,∗)‖2

H

)‖G‖2
H

]
≤ c E[‖G‖2

H ] <∞. (4.4.16)

Hence (4.4.15), (4.4.16) and Lemma A.6.3 imply that

lim
n→∞E[〈DMn ,G〉H ] = lim

n→∞E[〈1{·<Sn }G(Sn −·, Xn ,∗)−1{·<Sn }G(Sn −·,0,∗),G〉H ]

= E[〈1{·<Ŝ}G(Ŝ −·, X̂ ,∗)−1{·<Ŝ}G(Ŝ −·,0,∗),G〉H ]. (4.4.17)

Comparing (4.4.13) and (4.4.17), we obtain that almost surely,

DM = 1{·<Ŝ}G(Ŝ −·, X̂ ,∗)−1{·<Ŝ}G(Ŝ −·,0,∗).

�

4.5 Smoothness of the densities

In this section, we suppose that I and J are as above (4.2.4) and we are going to introduce

the random variables needed for Theorem 1.5.5 and prove they satisfy the conditions therein.

We start by establishing the smoothness of the random variables {Yr : r ∈ [s0, s0 +δ1]} and

{Ȳr : r ∈ [0,Δ•]} defined in (4.3.2) and (4.3.17) respectively.

For simplicity of notation, we denote

u(1]s,t ]×]y,x]) := u(t , x)+u(s, y)−u(t , y)−u(s, x),

and

Du(t , x; s, y) := D(u(t , x)+u(s, y)−u(t , y)−u(s, x))

for (t , s, x, y) ∈ [0,T ]2 × [0,1]2.
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Lemma 4.5.1. (a) For any r ∈ [s0, s0 +δ1], Yr belongs to D∞ and for any integer l ,

Dl Yr =
∫

[s0,r ]2
d td s

2p0(2p0 −1) · · · (2p0 − l +1)

|t − s|γ0/2

× (u(t , y0)−u(s, y0))2p0−l (D(u(t , y0)−u(s, y0)))⊗l .

(4.5.1)

(b) For any r ∈ [0,Δ•], Ȳr belongs to D∞ and for any integer l ,

Dl Ȳr =
∫

[0,r ]2
d td s

2p0(2p0 −1) · · · (2p0 − l +1)

|t − s|γ0/2

× (u(t , y0)−u(s, y0))2p0−l (D(u(t , y0)−u(s, y0)))⊗l

+
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y
2p0(2p0 −1) · · · (2p0 − l +1)

|t − s|1+2p0γ1 |x − y |1+2p0γ2

×u(1]s,t ]×]y,x])
2p0−l (Du(t , x; s, y))⊗l . (4.5.2)

Proof. We start by proving (a). We define the random function

h(t , s) =
{

(u(t ,y0)−u(s,y0))2p0

|t−s|γ0/2 if t �= s;

0 otherwise.

By the Hölder continuity of the solution (see (2.1.7)) and (4.3.1), we know that a.s., the function

h is continuous and bounded on [0,T ]2. For k ≥ 1, we denote ti = si = s0 + r−s0
k i (we omit the

dependence on k for convenience) and

Xk = (r − s0)2k−2
k−1∑

i , j=0

(u(ti , y0)−u(s j , y0))2p0

|ti − s j |γ0/2
.

Here we assume that

(u(ti , y0)−u(s j , y0))2p0

|ti − s j |γ0/2
= 0 if ti = s j .

As the Riemann sum of Yr , Xk converges to Yr a.s. as k → ∞. For any q ≥ 1, by Hölder’s

inequality,

E[|Xk |q ] ≤ ck−2q k2(q−1)
k−1∑

i , j=0

E[(u(ti , y0)−u(s j , y0))2p0q ]

|ti − s j |γ0/2

≤ ck−2
k−1∑

i , j=0

|ti − s j |p0q/2

|ti − s j |γ0q/2

≤ c̃k−2
k−1∑

i , j=0
1 = c̃,

where the last inequality is due to choice of p0,γ0 in (4.3.1). Applying Lemma A.6.3, we see
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that Xk converges to Yr in Lq (Ω) as k →∞ for any q > 1. By the chain rule,

D Xk = (r − s0)2k−2
k−1∑

i , j=0

2p0(u(ti , y0)−u(s j , y0))2p0−1

|ti − s j |γ0/2
(D(u(ti , y0)−u(s j , y0))),

which converges almost surely to the Bochner integral∫
[s0,r ]2

d td s
2p0(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0/2
(D(u(t , y0)−u(s, y0)))

by using the continuity of the map (t , x) �→ Du(t , x) = 1{·<t }G(t −·, x,∗) from [0,T ]× [0,1] to

H . Furthermore, by Hölder’s inequality, for any q ≥ 1,

E[‖D Xk‖q
H ] ≤ ck−2q k2(q−1)

k−1∑
i , j=0

E[|u(ti , y0)−u(s j , y0)|q(2p0−1)]

|ti − s j |γ0q/2
‖D(u(ti , y0)−u(s j , y0))‖q

H .

By (4.2.3) and the isometry (4.4.14), this is bounded above by

c̃k−2q k2(q−1)
k−1∑

i , j=0

|ti − s j |(2p0−1)q/4+q/4

|ti − s j |γ0q/2

= c̃k−2q k2(q−1)
k−1∑

i , j=0

|ti − s j |p0q/2

|ti − s j |γ0q/2

≤ c̄k−2
k−1∑

i , j=0
1 = c̄.

We apply Lemma A.6.3 again to see that D Xk converges to the Bochner integral∫
[s0,r ]2

d td s
2p0(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0/2
(D(u(t , y0)−u(s, y0)))

in Lq (Ω;H ) for any q ≥ 1. Since the Malliavin derivative is closable (see [64, Proposition

1.2.1]), we obtain that

DYr =
∫

[s0,r ]2
d td s

2p0(u(t , y0)−u(s, y0))2p0−1

(|t − s|γ0/2
(D(u(t , y0)−u(s, y0))) (4.5.3)

and Yr ∈∩q≥1D
1,q . We can repeat the above procedure to obtain that Yr ∈D∞ and the equality

(4.5.1).

The proof of (b) is similar. The main difference is the Malliavin derivative of the second term

Y1(r ) in the definition of Ȳr . For simplicity of notation, we only prove the smoothness of the

random variable

Y (1) =
∫

[0,1]4

(u(t , x)+u(s, y)−u(t , y)−u(s, x))2p0

|t − s|1+2p0γ1 |x − y |1+2p0γ2
d sd td yd x. (4.5.4)
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We define

h̄(t , s, x, y) =
{

u(1]s,t ]×]y,x])2p0

|t−s|1+2p0γ1 |x−y |1+2p0γ2
if t �= s and x �= y ;

0 otherwise.

Applying Lemma 4.3.3 with γ1 + 1
2p0

< ξ < θ1/2,γ2 + 1
2p0

< η < θ2/2 so that almost surely

the function h̄ is continuous and bounded on [0,T ]2 × [0,1]2. Similar to the proof of (a), we

discretize Y (1) by

X̄k = k−4
k−1∑

i , j ,m,n=0

u(1]s j ,ti ]×]yn ,xm ])2p0

|ti − s j |1+2p0γ1 |xm − yn |1+2p0γ2
,

where ti = si = xi = yi = i
k , i = 1, . . . ,k (we omit the dependence on k for convenience). Here

we assume that

u(1]s j ,ti ]×]yn ,xm ])2p0

|ti − s j |1+2p0γ1 |xm − yn |1+2p0γ2
= 0, if ti = s j or xm = yn .

Similar to the arguments in the proof of (a), using (4.3.6), (4.3.10) and Lemma A.6.3 we have

that X̄k converges to Y (1) in Lq (Ω) as k →∞ for any q > 1. Furthermore, We can prove that

D X̄k converges to the Bochner integral

∫
[0,1]4

2p0u(1]s,t ]×]y,x])2p0−1Du(t , x; s, y)

|t − s|1+2p0γ1 |x − y |1+2p0γ2
d sd td yd x

in Lq (Ω;H ) as k →∞ for any q ≥ 1. Since the Malliavin derivative is closable, we have

DY (1) =
∫

[0,1]4

2p0u(1]s,t ]×]y,x])2p0−1Du(t , x; s, y)

|t − s|1+2p0γ1 |x − y |1+2p0γ2
d sd td yd x (4.5.5)

and Y (1) ∈∩q≥1D
1,q . We repeat the above procedure to conclude that Y (1) ∈D∞ and for any

integer l ,

Dl Y (1) =
∫

[0,1]4

2p0(2p0 −1) · · · (2p0 − l +1)u(1]s,t ]×]y,x])2p0−l (Du(t , x; s, y))⊗l

|t − s|1+2p0γ1 |x − y |1+2p0γ2
d sd td yd x.

�

Moreover, we have the following estimates on moments of the Malliavin derivatives of the

random variables {Yr , r ∈ [s0, s0 +δ1]} and {Ȳr , r ∈ [0,Δ•]}.

Lemma 4.5.2. (a) For any p ≥ 1, there exists a constant cp , not depending on (s0, y0) ∈ [0,T ]×
[0,1], such that for all δ1 > 0 and for all r ∈ [s0, s0 +δ1],

E[‖DYr ‖p
H ] ≤ cp (r − s0)2pδ

(p0−γ0)p/2
1 . (4.5.6)
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(b) For any p ≥ 1, there exists a constant cp , not depending on y0 ∈ [0,1], such that for all

r ∈ [0,Δ•],

E[‖DȲr ‖p
H ] ≤ cp r 2pδ(p0−γ0)p . (4.5.7)

Proof. We first prove (4.5.6). By Lemma 4.5.1(a),

DYr = 2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0/2
D(u(t , y0)−u(s, y0)), (4.5.8)

and for any p ≥ 1, by Hölder’s inequality,

E[‖DYr ‖p
H ] ≤ cp

(∫
[s0,r ]2

d sd t

)p−1 ∫
[s0,r ]2

d sd t
E
[|(u(t , y0)−u(s, y0))|(2p0−1)p

]
|t − s|γ0p/2

×‖D(u(t , y0)−u(s, y0))‖p
H . (4.5.9)

Since

‖D(u(t , x)−u(s, y))‖2
H = E[|u(t , x)−u(s, y)|2] (4.5.10)

(see also the isometry (4.4.14)), by (4.2.3), we see that (4.5.9) is bounded above by

cp (r − s0)2(p−1)
∫

[s0,r ]2
d sd t |t − s|p(p0−γ0)/2

≤ cp (r − s0)2pδ
(p0−γ0)p/2
1 , (4.5.11)

as desired.

To prove (b), it suffices to estimate the moments of DY1(r ) since the estimate for the moments

of DY0(r ) is similar to the proof of (a). Indeed, by (4.5.2),

DY1(r ) = 2p0

∫
[0,r ]2

d td s
∫

[y0,y0+Δ∗]2
d xd y

u(1]s,t ]×]y,x])2p0−1Du(t , x; s, y)

|t − s|1+2p0γ1 |x − y |1+2p0γ2
,
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and for any p ≥ 1, by Hölder’s inequality,

E[‖DY1(r )‖p
H ] ≤ cp (rΔ∗)2(p−1)

∫
[0,r ]2

d td s
∫

[y0,y0+Δ∗]2
d xd y

× E[|u(1]s,t ]×]y,x])|(2p0−1)p ]‖Du(t , x; s, y)‖p
H

|t − s|(1+2p0γ1)p |x − y |(1+2p0γ2)p

≤ cp (rΔ∗)2(p−1)
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y

× |t − s|p0pθ1 |x − y |p0pθ2

|t − s|p(1+2p0γ1)|x − y |p(1+2p0γ2)

≤ cp (rΔ∗)2pΔ
p(p0θ1−(1+2p0γ1))
• Δ

p(p0θ2−(1+2p0γ2))
∗

≤ cp r 2pδp(2p0θ1−2(1+2p0γ1))δp(p0θ2−(1+2p0γ2)+2)

= cp r 2pδp(p0(2θ1+θ2)−2p0(2γ1+γ2)−1) = cp r 2pδp(p0−γ0), (4.5.12)

where the in the second inequality we use (4.3.10), and the derivation of the last equality

follows the same reason as that of (4.3.16).

Therefore, we have finished the proof. �

Furthermore, it is clear that for any integer i and p ≥ 1,

sup
r∈[s0,s0+δ1]

E
[
‖Di Yr ‖p

H ⊗i

]
<∞, (4.5.13)

and

sup
r∈[0,Δ•]

E
[
‖Di Ȳr ‖p

H ⊗i

]
<∞. (4.5.14)

We proceed to introduce the random variables needed for Theorem 1.5.5 to study the smooth-

ness of densities of the random variables F and M0. We define the function ψ0 : R+ → [0,1] as

an infinitely differentiable function such that

ψ0(x) =

⎧⎪⎨⎪⎩
0 if x > 1;

ψ0(x) ∈ [0,1] if x ∈ [ 1
2 ,1],

1 if x ≤ 1
2 .

(4.5.15)

We first introduce the random variables needed to prove the smoothness of density of F . For

(z1, z2) ∈R×]0,∞[, set

a = z2/2 and A =R×]a,∞[. (4.5.16)
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Let R = R(z2,δ1) be defined as in Lemma 4.3.1 for the specific value of a in (4.5.16). Define

ψ(x) :=ψ0(x/R) so that ψ(x) =

⎧⎪⎨⎪⎩
0 if x > R;

ψ(x) ∈ [0,1] if x ∈ [ R
2 ,R],

1 if x ≤ R
2

(4.5.17)

and

‖ψ′‖∞ := sup
x∈R

|ψ′(x)| ≤ c R−1 (4.5.18)

for a certain constant c not depending on z2.

If I × J ⊂ ]0,T ]×]0,1[, let c1, C1, c2, C2 be as in (4.2.9) and (4.2.10), and f0 : R �→ [0,1] be an

infinitely differentiable function supported in [c1/2,(C1 +T )/2] such that f0(t ) = 1, for all t ∈
[c1,C1]. Let g0 : R �→ [0,1] be an infinitely differentiable function supported in [c2/2,(C2 +1)/2]

such that g0(x) = 1, for all x ∈ [c2,C2]. In the case of Neumann boundary conditions, if I ⊂ ]0,T ]

and y0 = 0 ∈ J ⊂ [0,1], we define g0 to be an infinitely differentiable function with compact

support such that g0(0) = 1 and satisfies the same Neumann boundary conditions.

We define the H -valued random variable u1
A evaluated at (r, v) by

u1
A(r, v) =

(
∂

∂r
− ∂2

∂v2

)
( f0(r )g0(v)). (4.5.19)

In the case I × J ⊂ ]0,T ]×]0,1[, from the choice of the functions f0 and g0, we see that there

exists a constant c such that for all (s0, y0) ∈ I × J ,

‖u1
A‖H ≤ c. (4.5.20)

Let φ0 : R �→ [0,1] be an infinitely differentiable function supported in [−1,2] such that φ0(v) =
1, for all v ∈ [0,1].

For y0 ∈ J ⊂ [0,1], we define φδ1 as an infinitely differentiable function with compact support

such that φδ1 (y0) = 1 and satisfies the same boundary conditions at 0 and 1 as the Green kernel.

In particular, if J ⊂ ]0,1[ and δ1 satisfies the conditions in (4.2.11), then we choose the function

φδ1 in the following way:

φδ1 (v) :=φ0

(
v − y0

δ1/2
1

)
, v ∈ [0,1], (4.5.21)

so that, for some constant c,

|φ′
δ1

(v)| ≤ c δ−1/2
1 and |φ′′

δ1
(v)| ≤ c δ−1

1 , for all v ∈ [0,1]. (4.5.22)
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Set

H(r, v) :=φδ1 (v)
∫r

s0

ψ(Ya)d a, (r, v) ∈ [s0, s0 +δ1]× [0,1]. (4.5.23)

We define the H -valued random variable u2
A evaluated at (r, v) by

u2
A(r, v) =

{ (
∂
∂r − ∂2

∂v2

)
H(r, v) if (r, v) ∈ ]s0, s0 +δ1]× [0,1];

0 otherwise.
(4.5.24)

Finally, we define the random matrix γA = (γi , j
A )1≤i , j≤2 by

γA =
(

1 0

0
∫s0+δ1

s0
ψ(Yr )dr

)
. (4.5.25)

If s0 = 0 ∈ I ⊂ [0,T ], we only consider the random variables F2, u2
A and γ2,2

A defined in (4.2.5),

(4.5.24) and (4.5.25) with s0 = 0, respectively.

We next introduce the random variables needed to prove the smoothness of density of M0. For

z ∈ ]0,∞[, set

ā = z/2 and Ā =]ā,∞[. (4.5.26)

Let R̄ = R̄(z,δ) be defined as in Lemma 4.3.5 for the specific value of ā in (4.5.26). Define

ψ̄(x) :=ψ0(x/R̄) so that ψ̄(x) =

⎧⎪⎨⎪⎩
0 if x > R̄;

ψ(x) ∈ [0,1] if x ∈ [ R̄
2 , R̄],

1 if x ≤ R̄
2

(4.5.27)

and

‖ψ̄′‖∞ := sup
x∈R

|ψ̄′(x)| ≤ c R̄−1 (4.5.28)

for a certain constant c not depending on z.

We define φ̄δ as an infinitely differentiable function with compact support such that

φ̄δ(v) = 1, for all v ∈ [y0, y0 +δ2] (4.5.29)

and satisfies the same boundary conditions at 0 and 1 as the Green kernel. In particular, if

J ⊂ ]0,1[ and δ1, δ2 satisfy the conditions in (4.2.15), we choose the function φ̄δ in the following

way:

φ̄δ(v) :=φ0

(v − y0

δ

)
, v ∈ [0,1], (4.5.30)
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where the function φ0 is specified below (4.5.20), so that for some constant c,

|φ̄′
δ(v)| ≤ c δ−1 and |φ̄′′

δ(v)| ≤ c δ−2, for all v ∈ [0,1]. (4.5.31)

Set

H̄(r, v) := φ̄δ(v)
∫r

0
ψ̄(Ȳa)d a, (r, v) ∈ [0,Δ•]× [0,1], (4.5.32)

where {Ȳr : r ∈ [0,Δ•]} is defined in (4.3.17). We define the H -valued random variable uĀ

evaluated at (r, v) by

uĀ(r, v) =
{ (

∂
∂r − ∂2

∂v2

)
H̄(r, v) if (r, v) ∈ ]0,Δ•]× [0,1];

0 otherwise.
(4.5.33)

Finally, we define the random variable

γĀ =
∫Δ•

0
ψ̄(Ȳr )dr. (4.5.34)

We now prove the smoothness of these random variables, as required in Theorem 1.5.5.

Lemma 4.5.3. For i , j ∈ {1,2}, ui
A ∈D∞(H ), γi , j

A ∈D∞ and uĀ ∈D∞(H ), γĀ ∈D∞.

Proof. We first prove that γ2,2
A ∈ D∞. Similar to the proof of Lemma 4.5.1, we discretize the

integral by setting

Xn := δ1

n

n∑
k=1

ψ(Ys0+kδ1/n)

for n ≥ 1. Since r �→ Yr is continuous, Xn converges to γ2,2
A a.s. as n → ∞. By dominated

convergence theorem, for any p ≥ 1, Xn converges to γ2,2
A in Lp (Ω) as n →∞. By the chain

rule, we know that Xn ∈D∞ and

D Xn = δ1

n

n∑
k=1

ψ′(Ys0+kδ1/n)DYs0+kδ1/n ,

which converges a.s. to the Bochner integral
∫s0+δ1

s0
ψ′(Yr )DYr dr as n →∞ since r �→ DYr is

continuous. For any q ≥ 1, by Hölder’s inequality,

E[‖D Xn‖q
H ] ≤ cn−q nq−1

n∑
k=1

E[‖DYs0+kδ1/n‖q
H ]

≤ cn−q nq−1
n∑

k=1
sup

r∈[s0,s0+δ1]
E
[‖DYr ‖q

H

]≤ c,

where the last inequality follows from (4.5.13). We apply Lemma A.6.3 to see that D Xn con-
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verges to the Bochner integral
∫s0+δ1

s0
ψ′(Yr )DYr dr in Lq (Ω;H ) for any q ≥ 1. Since the Malli-

avin derivative is closable (see [64, Proposition 1.2.1]), we obtain that

Dγ2,2
A =

∫s0+δ1

s0

ψ′(Yr )DYr dr (4.5.35)

and γ2,2
A ∈ ⋂

q≥1D
1,q . In order to prove that γ2,2

A ∈ D∞, we can repeat this procedure and it

remains to prove that for any q, j ≥ 1,

sup
r∈[s0,s0+δ1]

E[‖D jψ(Yr )‖q
H ⊗ j ] <∞. (4.5.36)

In order to prove (4.5.36), we use the Faà di Bruno formula (see formula [24.1.2] in [3]), we

have

D jψ(Yr ) =
j∑

n=1
ψ(n)(Yr )

∑
i ,li :

∑ j
i=1 li=n,

∑ j
i=1 i li= j

j⊗
i=1

1

i !

(
Di Yr

li !

)⊗li

, (4.5.37)

where both
⊗

and ⊗ denote the tensor product of functions. Set

Λr =ψ(n)(Yr )
j⊗

i=1

(
Di Yr

)⊗li
. (4.5.38)

We have

‖Λr ‖H ⊗ j ≤ c
j∏

i=1
‖Di Yr ‖li

H ⊗i . (4.5.39)

Then (4.5.37), (4.5.38), (4.5.39) and (4.5.13) give us (4.5.36). Hence γ2,2
A belongs to D∞.

We can prove γĀ ∈D∞ similarly by discretization and using (4.5.14).

We proceed to prove that u2
A ∈D∞(H ). By the definition of u2

A in (4.5.24), we can write

u2
A(r, v) =ψ(Yr )1[s0,s0+δ1](r )φδ1 (v)−1[s0,s0+δ1](r )φ′′

δ1
(v)

∫r

s0

ψ(Ya)d a

:= u21
A (r, v)−u22

A (r, v). (4.5.40)

We first prove that u21
A ∈D∞(H ). For n ≥ 1, we define

Y 1
n (r, v) :=

n∑
k=1

ψ(Ys0+δ1k/n)1[s0+δ1(k−1)/n,s0+δ1k/n](r )φδ1 (v).

For almost every (ω,r, v) ∈Ω× [0,T ]× [0,1], Y 1
n (r, v) converges to u21

A (r, v) as n →∞. By the

dominated convergence theorem, Y 1
n converges to u21

A in Lp (Ω;H ) for any p ≥ 1 as n →∞.

Since for any r ∈ [s0, s0 +δ1],Yr ∈ D∞, by (4.5.36) and chain rule, we know that for any r ∈
[s0, s0 +δ1],ψ(Yr ) ∈D∞.
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We claim that if Z ∈ D∞ and h ∈ H , then Z h belongs to D∞(H ). To see this, it suffices to

prove that for any integer k ≥ 1 and p ≥ 1, Z h belongs to Dk,p (H ). Since Z ∈D∞, we choose

a sequence of smooth random variables (Zn)n≥1 converging to Z in Dk,p as n →∞. By the

definition of the norm ‖ ·‖k,p,H , (Znh)n≥1 is a Cauchy sequence in Dk,p (H ), which converges

to a limit in Dk,p (H ), say Z̃ . On the other hand, it is obvious to see Znh converges to Z h in

L2(Ω,H ) as n →∞. Hence Z h = Z̃ ∈Dk,p (H ).

Applying this claim we see that Y 1
n belongs to D∞(H ) and

DY 1
n (·,∗) =

n∑
k=1

Dψ(Ys0+δ1k/n)1[s0+δ1(k−1)/n,s0+δ1k/n](·)φδ1 (∗).

For almost every (ω,r, v) ∈Ω× [0,T ]× [0,1], DY 1
n (r, v) converges to Dψ(Yr )1[s0,s0+δ1](r )φδ1 (v)

as n →∞ since r �→ Dψ(Yr ) is continuous. Moreover, by Hölder’s inequality, for any q ≥ 1,

E

[∫T

0

∫1

0
‖DY 1

n (r, v)‖q
H dr d v

]
=

n∑
k=1

E

[∫s0+kδ1/n

s0+(k−1)δ1/n
‖Dψ(Ys0+δ1k/n)‖q

H dr

]∫1

0
φ

q
δ1

(v)d v

≤ c
n∑

k=1

∫s0+kδ1/n

s0+(k−1)δ1/n
sup

r∈[s0,s0+δ1]
E
[‖DYr ‖q

H

]
dr

≤ c,

where the last inequality follows from (4.5.13). Applying Lemma A.6.3 (with the measure space

replaced by (Ω× [0,T ]× [0,1],P×λ2), where λ2 is the Lebesgue measure on [0,T ]× [0,1]), we

have for any q ≥ 1,

lim
n→∞E

[∫T

0

∫1

0
‖DY 1

n (r, v)−Dψ(Yr )1[s0,s0+δ1](r )φδ1 (v)‖q
H dr d v

]
= 0,

which implies

lim
n→∞E

[(∫T

0

∫1

0
‖DY 1

n (r, v)−Dψ(Yr )1[s0,s0+δ1](r )φδ1 (v)‖2
H dr d v

)q/2
]
= 0.

Thus for any q ≥ 1, DY 1
n (·,∗) converges to Dψ(Y·)1[s0,s0+δ1](·)φδ1 (∗) in Lq (Ω,H ⊗2) as n →∞.

Since D is closable, we obtain

Du21
A (·,∗) = Dψ(Y·)1[s0,s0+δ1](·)φδ1 (∗).

We repeat this procedure and apply (4.5.36) to conclude u21
A ∈D∞(H ).

The proof for u22
A ∈D∞(H ) is similar. We discretize u22

A (r, v) by

Y 2
n (r, v) :=

n∑
k=1

∫s0+kδ1/n

s0

ψ(Ya)d a1[s0+(k−1)δ1/n,s0+kδ1/n](r )φ′′
δ1

(v).

In fact, the proof of γ2,2
A ∈D∞ indicates that for any r ∈ [s0, s0 +δ1],

∫r
s0
ψ(Ya)d a ∈D∞. Hence
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applying the claim again, we see that Y 2
n ∈ D∞(H ). Similarly, we apply (4.5.36) again to

conclude u22
A ∈D∞(H ).

The proof of uĀ ∈D∞(H ) is similar. �

The following results gives some estimates on the Lp (Ω)-norm of (γ2,2
A )−1 and γ−1

Ā
.

Lemma 4.5.4. (a) The random variable γ2,2
A has finite negative moments of all orders. Further-

more, for any p ≥ 1, there exists a constant cp , not depending on (s0, y0) ∈ I × J , such that for

all small δ1 > 0 and for z2 ≥ δ1/4
1 ,

‖(γ2,2
A )−1‖Lp (Ω) ≤ cp δ

−1
1 . (4.5.41)

(b) The random variable γĀ has finite negative moments of all orders. Furthermore, for any

p ≥ 1, there exists a constant cp , not depending on y0 ∈ J , such that for all small δ1, δ2 > 0

and for z ≥ (δ1/2
1 +δ2)1/2,

‖γ−1
Ā
‖Lp (Ω) ≤ cp (δ1/2

1 +δ2)−2. (4.5.42)

Proof. We start by proving (a). By the definition of the function ψ,

γ2,2
A ≥

∫s0+δ1

s0

1{Yr ≤ R
2 }dr := X̄ .

For ε< δ1 and any q ≥ 1, since r �→ Yr is increasing, we have

P{X̄ < ε} ≤ P{Ys0+ε ≥ R/2}

≤ (2/R)q E[|Ys0+ε|q ] ≤ cq R−qε2qδ
(p0−γ0)q/2
1 , (4.5.43)

where in the second inequality we use Markov’s inequality, and the last inequality is because

of (4.3.4). This shows that the random variable γ2,2
A has finite negative moments of all orders

by Lemma 4.4 in Chapter 3 of [24]. Moreover, for any p ≥ 1 and q > p/2,

E[X̄ −p ] = p
∫∞

0
y p−1P(X̄ −1 > y)d y

= p
∫δ−1

1

0
y p−1P(X̄ −1 > y)d y +p

∫∞

δ−1
1

y p−1P(X̄ −1 > y)d y

≤ c δ−p
1 +cR−qδ

(p0−γ0)q/2
1

∫∞

δ−1
1

y p−1 y−2q d y

= c δ−p
1 +cR−qδ

(p0−γ0+4)q/2−p
1 .

Using the definition of R in (4.3.5), this is equal to

c δ−p
1

(
1+a−2p0qδ

(γ0−4)q/2
1 δ

(p0−γ0+4)q/2
1

)
.
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Under the assumption z2 ≥ δ1/4
1 , by (4.5.16), this is bounded above by

c δ−p
1

(
1+δ

− 1
4×2p0q

1 δ
(γ0−4)q/2
1 δ

(p0−γ0+4)q/2
1

)
= 2c δ−p

1 ,

which implies (4.5.41).

We proceed to prove (b). Similarly, by the definition of the function ψ̄,

γĀ ≥
∫Δ•

0
1{Ȳr ≤ R̄

2 }dr := X̃ .

For any 0 < ε<Δ•, since r �→ Ȳr is increasing,

P{X̃ < ε} ≤ P{Ȳε ≥ R̄/2}

≤ (2/R̄)q E[Ȳ q
ε ] ≤ cq R̄−q ε2qδ(p0−γ0)q , (4.5.44)

where, in the last inequality, we use (4.3.18). Hence the random variable γĀ has finite negative

moments of all orders. Moreover, for any p ≥ 1 and q > p/2,

E[X̃ −p ] = p
∫∞

0
y p−1P(X̃ −1 > y)d y

= p
∫Δ−1

•

0
y p−1P(X̃ −1 > y)d y +p

∫∞

Δ−1•
y p−1P(X̃ −1 > y)d y

≤ c Δ−p
• +cR̄−qδ(p0−γ0)q

∫∞

Δ−1•
y p−1 y−2q d y

= c Δ−p
• +cR̄−qδ(p0−γ0)qΔ

2q−p
• .

Using the definition of R̄ in (4.3.27), this is equal to

c Δ−p
•

(
1+ ā−2p0qδ−(4−γ0)qδ(p0−γ0)qΔ

2q
•

)
.

Under the assumption z ≥ δ1/2 = (δ1/2
1 +δ2)1/2, by (4.5.26) and (4.3.13), this is bounded above

by

c Δ−p
•

(
1+δ−

1
2×2p0qδ−(4−γ0)qδ(p0−γ0)qΔ

2q
•

)
= 2c Δ−p

• ,

which implies (4.5.42). �

Now we are ready to verify that the random variables introduced above satisfy the condition

(iii) of Theorem 1.5.5.

Lemma 4.5.5. (a) On the event {F ∈ A} = {F2 > a}, we have 〈DFi ,u j
A〉H = γ

i , j
A for i , j ∈ {1,2}.

(b) On the event {M0 ∈ Ā} = {M0 > ā}, 〈DM0,uĀ〉H = γĀ .
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Proof. We first prove (a). If s0 > 0, by the definitions of u1
A in (4.5.19) and of the functions f0,

g0, and Lemma 4.3.6, we have that

〈DF1,u1
A〉H =

∫s0

0

∫1

0
G(s0 − r, y0, v)

(
∂

∂r
− ∂2

∂v2

)
( f0(r )g0(v))dr d v (4.5.45)

= f0(s0)g0(y0) = 1 = γ1,1
A .

Second, from the definition of u2
A in (4.5.24), it is obvious that

〈DF1,u2
A〉H =

∫s0

0

∫1

0
G(s0 − r, y0, v)

(
∂

∂r
− ∂2

∂v2

)
H(r, v)1{s0<r≤s0+δ1}dr d v = 0. (4.5.46)

By Lemmas 4.4.4 and 4.3.6,

〈DF2,u1
A〉H =

∫S

0

∫1

0
G(S − r, y0, v)

(
∂

∂r
− ∂2

∂v2

)
( f0(r )g0(v))dr d v

−
∫s0

0

∫1

0
G(s0 − r, y0, v)

(
∂

∂r
− ∂2

∂v2

)
( f0(r )g0(v))dr d v (4.5.47)

= f0(S)g0(y0)− f0(s0)g0(y0) = 1−1 = 0.

Furthermore, by Lemma 4.3.6, for both cases s0 > 0 and s0 = 0,

〈DF2,u2
A〉H =

∫S

0
dr

∫1

0
d v G(S − r, y0, v)u2

A(r, v)−
∫s0

0
dr

∫1

0
d v G(s0 − r, y0, v)u2

A(r, v)

=
∫S

s0

dr
∫1

0
d v G(S − r, y0, v)

(
∂

∂r
− ∂2

∂v2

)
H(r, v)−0

=
∫S−s0

0
dr

∫1

0
d v G(S − s0 − r, y0, v)

(
∂

∂r
− ∂2

∂v2

)
H(s0 + r, v)

= H(S, y0). (4.5.48)

Therefore,

〈DF2,u2
A〉H =φδ1 (y0)

∫S

s0

ψ(Yr )dr =
∫S

s0

ψ(Yr )dr (4.5.49)

where, in the second equality, we use the fact that φδ1 (y0) = 1. Moreover, on the event {F ∈ A} =
{F2 > a}, we observe that if r > S ≥ s0, then ψ(Yr ) = 0. Otherwise, we would have ψ(Yr ) > 0,

hence Yr ≤ R for some r > S, and by Lemma 4.3.1, this implies that

F2 = ū(S, y0) = sup
t∈[s0,r ]

ū(t , y0) ≤ a < F2,

which is a contradiction. Hence, on {F ∈ A} = {F2 > a}, the last integral in (4.5.49) is equal to∫s0+δ1

s0

ψ(Yr )dr = γ2,2
A .
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This completes the proof of (a).

We now prove (b). By Lemma 4.4.4,

〈DM0,uĀ〉H = 〈1{·<S̄}(G(S̄ −·, X̄ ,∗),uĀ〉H

=
∫S̄

0

∫1

0
G(S̄ − r, X̄ , v)

(
∂

∂r
− ∂2

∂v2

)
H̄(r, v)d vdr

= H̄(S̄, X̄ ) = φ̄δ(X̄ )
∫S̄

0
ψ̄(Ȳr )dr. (4.5.50)

Since X̄ ∈ [y0, y0 +δ2], by the definition of the function φ̄δ, it implies that φ̄δ(X̄ ) ≡ 1.Hence,

〈DM0,uĀ〉H =
∫S̄

0
ψ̄(Ȳr )dr.

On the event {M0 > ā}, for r > S̄, we have ψ̄(Ȳr ) = 0. Otherwise, we would have ψ̄(Ȳr ) > 0,

hence Ȳr ≤ R̄ and by Lemma 4.3.5 this implies that

M0 = u(S̄, X̄ ) = sup
(t ,x)∈[0,r ]×[y0,y0+δ2]

u(t , x) ≤ ā < M0,

which is a contradiction. Therefore, on the event {M0 ∈ Ā},

〈DM0,uĀ〉H =
∫Δ•

0
ψ̄(Ȳr )dr = γĀ .

This proves (b). �

Proof of Theorem 4.2.1(a). The strict positivity of F2 has been proved in Lemma 4.4.2(a). For

(s0, y0) ∈ I × J ⊂ [0,T ]× [0,1] with s0 > 0, by Lemmas 4.5.3, 4.5.4(a), 4.5.5(a) and Theorem 1.5.5,

the random vector F has an infinitely differentiable density on R×]z2/2,∞[. Since the choice of

z2 is arbitrary, the random vector F possesses an infinitely differentiable density on R×]0,∞[.

Using the same argument, if s0 = 0, then the random variable F2 has an infinitely differentiable

density on ]0,∞[. �

Proof of Theorem 4.2.1(b). The strict positivity of M0 has been proved in Lemma 4.4.2(b). The

proof of smoothness of the density of M0 is similar to that of Theorem 4.2.1(a) by using

Lemmas 4.5.3, 4.5.4(b), 4.5.5(b) and Theorem 1.5.5. �

We now derive the expression for the probability density functions of F and M0 from the

integration by parts formula; see [64, (2.25)]

Proposition 4.5.6. (a) The probability density function of F at (z1, z2) ∈R×]0,∞[ is given by

p(z1, z2) = E
[

1{F1>z1,F2>z2}δ
(
u1

Aδ
(
u2

A/γ2,2
A

))]
. (4.5.51)
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(b) The probability density function of M0 at z ∈ ]0,∞[ is given by

p0(z) = E[1{M0>z}δ(uĀ/γĀ)]. (4.5.52)

Proof. We first derive the formula (4.5.52). Let κ̃z : R �→ [0,1] be an infinitely differentiable

function such that κ̃z (x) = 0 for all x ≤ 2z
3 and κ̃z (x) = 1 for all x ≥ 3z

4 . Define G0 = κ̃(M0).

Consider ā and Ā as in (4.5.26). It is clear that on the set {M0 �∈ Ā}, we have G0 = 0.

Let f be a function in the space C∞
0 (R) of infinitely differentiable functions with compact

support. Set ϕ(x) =∫x
−∞ f (y)d y . On {M0 ∈ Ā}, by the chain rule of Malliavin derivative (see [64,

Proposition 1.2.3]) and Lemma 4.5.5(b), we have

〈Dϕ(M0),uĀ〉H =ϕ′(M0)〈DM0,uĀ〉H =ϕ′(M0)γĀ .

Hence,

ϕ′(M0) = 〈Dϕ(M0),uĀ/γĀ〉H .

Since G0 = 0 on the set {M0 �∈ Ā}, we obtain

G0ϕ
′(M0) =G0〈Dϕ(M0),uĀ/γĀ〉H .

Taking expectations on both sides of the above equation and using the duality relationship

between the derivative and the divergence operators we get

E[G0ϕ
′(M0)] = E[ϕ(M0)δ(G0uĀ/γĀ)]. (4.5.53)

Using the fact that

ϕ(M0) =
∫M0

−∞
ϕ′(y)d y (4.5.54)

and Fubini’s theorem, we obtain that

E[G0ϕ
′(M0)] =

∫
R
ϕ′(y)E[1{M0>y}δ(G0uĀ/γĀ)]d y, (4.5.55)

and equivalently,

E[G0 f (M0)] =
∫
R

f (y)E[1{M0>y}δ(G0uĀ/γĀ)]d y. (4.5.56)

Since G0 = 1 on the set {M0 ≥ 3z
4 }, this implies that for any y ∈ ] 3z

4 ,∞[, the density function of

M0 at y is given by

p0(y) = E[1{M0>y}δ(G0uĀ/γĀ)].
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In particular,

p0(z) = E[1{M0>z}δ(G0uĀ/γĀ)].

Since G0 = 1 on the set {M0 > z}, by the local property of δ (see [64, Proposition 1.3.15]), we

obtain

p0(z) = E[1{M0>z}δ(uĀ/γĀ)].

We now derive the formula (4.5.51). Let κz2 : R �→ [0,1] be an infinitely differentiable function

such that κz2 (x) = 0 for all x ≤ 2z2
3 and κz2 (x) = 1 for all x ≥ 3z2

4 . Define κ̄(y1, y2) = κz2 (y2) and

G = κ̄(F ). Consider a and A as in (4.5.16). It is clear that on the set {F �∈ A}, we have G = 0.

Let g be a function in the space C∞
0 (R2) of infinitely differentiable functions with compact

support. Set

ϕ(x1, x2) =
∫x1

−∞

∫x2

−∞
g (y1, y2)d y1d y2. (4.5.57)

On {F ∈ A}, by the chain rule of Malliavin derivative (see [64, Proposition 1.2.3]) and Lemma

4.5.5(a), we have

〈D∂1ϕ(F ),u j
A〉H =

2∑
i=1

∂1iϕ(F )〈DFi ,u j
A〉H =

2∑
i=1

∂1iϕ(F )γi , j
A ,

where the notation ∂1i means we take the partial derivative with respect to the first variable

and then take the partial derivative with respect to the i th variable. Consequently,

∂12ϕ(F ) =
2∑

k=1
〈D∂1ϕ(F ),uk

A〉H (γ−1
A )k,2.

Since G = 0 on the set {F �∈ A}, we obtain

G∂12ϕ(F ) =
2∑

k=1
G〈D∂1ϕ(F ),uk

A〉H (γ−1
A )k,2.

Taking expectations on both sides of the above equation and using the duality relationship

between the derivative and the divergence operators we get

E[G∂12ϕ(F )] = E[∂1ϕ(F )δ(
2∑

k=1
Guk

A(γ−1
A )k,2)]. (4.5.58)

We denote

Ḡ = δ(
2∑

k=1
Guk

A(γ−1
A )k,2).
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Since G = 0 on the set {F �∈ A}, the local property of δ (see [64, Proposition 1.3.15]) implies that

Ḡ = 0 on the set {F �∈ A}. On the other hand, on {F ∈ A}, by the chain rule and Lemma 4.5.5,

〈Dϕ(F ),u j
A〉H =

2∑
i=1

∂iϕ(F )〈DFi ,u j
A〉H =

2∑
i=1

∂iϕ(F )γi , j
A ,

which implies that on {F ∈ A},

∂1ϕ(F ) =
2∑

n=1
〈Dϕ(F ),un

A〉H (γ−1
A )n,1.

Multiplying both sides of the above equality by Ḡ , we obtain

Ḡ∂1ϕ(F ) =
2∑

n=1
Ḡ〈Dϕ(F ),un

A〉H (γ−1
A )n,1. (4.5.59)

We substitute (4.5.59) into (4.5.58) and we obtain

E[G∂12ϕ(F )] = E

[
2∑

n=1
Ḡ〈Dϕ(F ),un

A〉H (γ−1
A )n,1

]

= E

[
ϕ(F )δ

(
2∑

n=1
Ḡun

A(γ−1
A )n,1

)]

= E

[
ϕ(F )δ

(
2∑

n=1
δ

(
2∑

k=1
Guk

A(γ−1
A )k,2

)
un

A(γ−1
A )n,1

)]
.

Since (γ−1
A )1,1 = 1 and (γ−1

A )1,2 = (γ−1
A )2,1 = 0 by (4.5.25), this is equal to

E
[
ϕ(F )δ(δ(Gu2

A(γ−1
A )2,2)u1

A(γ−1
A )1,1)

]= E[ϕ(F )δ(δ(Gu2
A/γ2,2

A )u1
A)].

Using the fact that

ϕ(F ) =
∫F1

−∞

∫F2

−∞
∂12ϕ(y1, y2)d y1d y2 (4.5.60)

and Fubini’s theorem, we obtain that

E[G∂12ϕ(F )] =
∫
R2
∂12ϕ(y1, y2)E[1{F1>y1,F2>y2}δ(δ(Gu2

A/γ2,2
A )u1

A)]d y1d y2, (4.5.61)

and equivalently,

E[Gg (F )] =
∫
R2

g (y1, y2)E[1{F1>y1,F2>y2}δ(δ(Gu2
A/γ2,2

A )u1
A)]d y1d y2. (4.5.62)

Since G = 1 on the set {F ∈ R× [ 3z2
4 ,∞[}, this implies that for any (y1, y2) ∈ R×] 3z2

4 ,∞[, the
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density function of F at (y1, y2) is given by

p(y1, y2) = E[1{F1>y1,F2>y2}δ(δ(Gu2
A/γ2,2

A )u1
A)].

In particular,

p(z1, z2) = E[1{F1>z1,F2>z2}δ(δ(Gu2
A/γ2,2

A )u1
A)].

Since G = 1 on the set {F2 > z2}, by the local property of δ (see [64, Proposition 1.3.15]), we

obtain

p(z1, z2) = E[1{F1>z1,F2>z2}δ(δ(u2
A/γ2,2

A )u1
A)].

�

Remark 4.5.7. In the proof of Proposition 4.5.6, if we use the fact that

ϕ(F ) =−
∫+∞

F1

∫F2

−∞
∂12ϕ(y1, y2)d y2d y1

instead of (4.5.60), we obtain another formula for the joint density:

p(z1, z2) =−E[1{F1<z1,F2>z2}δ(δ(u2
A/γ2,2

A )u1
A)]. (4.5.63)

4.6 Gaussian-type upper bound on the density of F

In this section, we fix I × J ⊂ ]0,T ]×]0,1[ and assume that δ1 satisfies the conditions in (4.2.11).

We derive an estimate on the density of F from the formula obtained in the previous section.

This estimate will prove Theorem 4.2.2.

First, from (4.5.51) and applying Hölder’s inequality, for z1 ≥ 0,

p(z1, z2) ≤ P{F1 > z1}1/4P{F2 > z2}1/4‖δ(δ(u2
A/γ2,2

A )u1
A)‖L2(Ω). (4.6.1)

On the other hand, if z1 < 0, applying Hölder’s inequality to (4.5.63), we have

p(z1, z2) ≤ P{F1 < z1}1/4P{F2 > z2}1/4‖δ(δ(u2
A/γ2,2

A )u1
A)‖L2(Ω). (4.6.2)

Combining (4.6.1) and (4.6.2), we obtain that, for all (z1, z2) ∈R×]0,∞[,

p(z1, z2) ≤ P{|F1| > |z1|}1/4P{F2 > z2}1/4‖δ(δ(u2
A/γ2,2

A )u1
A)‖L2(Ω). (4.6.3)

In what follows, we use the properties of the Skorohod integral δ to express δ(δ(u2
A/γ2,2

A )u1
A).
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Lemma 4.6.1.

δ(δ(u2
A/γ2,2

A )u1
A) = T1 +T2 −T3 +T4 −T5 +T6, (4.6.4)

where

T1 =
δ(u2

A)

γ2,2
A

δ(u1
A), T2 =

〈Dγ2,2
A ,u2

A〉H
(γ2,2

A )2
δ(u1

A), T3 = 1

γ2,2
A

〈Dδ(u2
A),u1

A〉H , (4.6.5)

T4 =
δ(u2

A)

(γ2,2
A )2

〈Dγ2,2
A ,u1

A〉H , T5 =
2〈Dγ2,2

A ,u2
A〉H

(γ2,2
A )3

〈Dγ2,2
A ,u1

A〉H , (4.6.6)

T6 = 1

(γ2,2
A )2

〈D〈Dγ2,2
A ,u2

A〉H ,u1
A〉H . (4.6.7)

Proof. First, by [64, (1.48)],

δ(δ(u2
A/γ2,2

A )u1
A) = δ(u2

A/γ2,2
A )δ(u1

A)−〈Dδ(u2
A/γ2,2

A ),u1
A〉H . (4.6.8)

We use [64, (1.48)] again to write

δ(u2
A/γ2,2

A ) = δ(u2
A)/γ2,2

A +〈Dγ2,2
A ,u2

A〉H /(γ2,2
A )2. (4.6.9)

Hence the first term on the right-hand side of (4.6.8) is equal to

δ(u2
A/γ2,2

A )δ(u1
A) = δ(u2

A)

γ2,2
A

δ(u1
A)+ 〈Dγ2,2

A ,u2
A〉H

(γ2,2
A )2

δ(u1
A). (4.6.10)

For the second term on the right-hand side of (4.6.8), we apply (4.6.9) to obtain that

Dδ(u2
A/γ2,2

A ) = D(δ(u2
A)/γ2,2

A )−D(〈Dγ2,2
A ,u2

A〉H /(γ2,2
A )2)

= Dδ(u2
A)

γ2,2
A

− δ(u2
A)Dγ2,2

A

(γ2,2
A )2

− D〈Dγ2,2
A ,u2

A〉H
(γ2,2

A )2
+ 2〈Dγ2,2

A ,u2
A〉H Dγ2,2

A

(γ2,2
A )3

.

(4.6.11)

Therefore the second term on the right-hand side of (4.6.8) can be written as

−〈Dδ(u2
A/γ2,2

A ),u1
A〉H =− 1

γ2,2
A

〈Dδ(u2
A),u1

A〉H − 2〈Dγ2,2
A ,u2

A〉H
(γ2,2

A )3
〈Dγ2,2

A ,u1
A〉H

+ δ(u2
A)

(γ2,2
A )2

〈Dγ2,2
A ,u1

A〉H + 1

(γ2,2
A )2

〈D〈Dγ2,2
A ,u2

A〉H ,u1
A〉H .

(4.6.12)
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Putting (4.6.10) and (4.6.12) together, we obtain (4.6.4). �

Proposition 4.6.2. (a) For any p ≥ 2, there exists cp > 0, not depending on (s0, y0) ∈ I × J , such

that for all small δ1 > 0, and for all z2 ≥ δ1/4
1 ,

‖Ti‖Lp (Ω) ≤ cp δ
−1/4
1 , for i ∈ {1,2,3}. (4.6.13)

(b) T4,T5 and T6 vanish.

An immediate consequence of Lemma 4.6.1 and Proposition 4.6.2 is the following.

Proposition 4.6.3. There exists a finite positive constant c, not depending on (s0, y0) ∈ I × J ,

such that for all small δ1 > 0 and for all z2 ≥ δ1/4
1 ,

‖δ(δ(u2
A/γ2,2

A )u1
A)‖L2(Ω) ≤ c δ−1/4

1 . (4.6.14)

The proof of Proposition 4.6.2 is divided into the following two subsections.

4.6.1 Proof of Proposition 4.6.2(a)

Throughout Section 4.6.1, we assume that

z2 ≥ δ1/4
1 . (4.6.15)

Recalling the definition of R in (4.3.5), under the assumption (4.6.15), we see from (4.5.16) that

R−1 = c−1a−2p0δ
(γ0−4)/2
1 = c ′z−2p0

2 δ
(γ0−4)/2
1

≤ cδ(γ0−p0−4)/2
1 . (4.6.16)

We will make use of this in the estimates below.

We first give an estimate for the moments of T1. In order to estimate the moments of the

Skorohod integral δ(u2
A), we extend Proposition 1.3.11 of [64] to multiparameter adapted

processes, as mentioned in [64, p.45].

We denote by L2
a the closed subspace of L2(Ω× [0,T ]× [0,1]) formed by those processes which

are adapted to the filtration {Fs :=σ{W (t , x) : t ≤ s, x ∈ [0,1]}, s ∈ [0,T ]}.

Proposition 4.6.4. L2
a ⊂ Dom δ and the operator δ restricted to L2

a coincides with the Walsh

integral, that is, for u ∈ L2
a

δ(u) =
∫T

0

∫1

0
u(r, v)W (dr,d v) (4.6.17)

Proof. We follow the proof of [64, Proposition 1.3.11]. Define Z (t , x) = Y 1]a,b](t )1B (x) where
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the random variable Y is square integrable and measurable with respect to Fa and B is a

bounded interval. We first prove that (4.6.17) holds for Z . Since a square integrable random

variable can be approximated by random variables in D1,2 and δ is closed, we can assume

Y ∈D1,2. Using [64, (1.48) and Corollary 1.2.1], we have

δ(Y 1]a,b](t )1B (x)) = Y W (]a,b]×B) =
∫T

0

∫1

0
Z (r, v)W (dr,d v). (4.6.18)

Since the linear span of the random variables of the same type as Z is dense in L2
a (see [16,

Proposition 3.1]), we can find a sequence {Zn}n≥1 converging to u in L2(Ω× [0,T ]× [0,1]) and

δ(Zn) =
∫T

0

∫1

0
Zn(r, v)W (dr,d v). (4.6.19)

By Itô’s isometry, we know that
∫T

0

∫1
0 Zn(r, v)W (dr,d v) converges to

∫T
0

∫1
0 u(r, v)W (dr,d v) in

L2(Ω) as n →∞. Since δ is closed, this implies u ∈ Dom δ along with (4.6.17). �

Proposition 4.6.4 enables us to use properties of Walsh integrals to estimate the Lp (Ω)-norm

of δ(u2
A), as in the following lemma.

Lemma 4.6.5. For any p ≥ 2, there exists a constant cp , not depending on (s0, y0) ∈ I × J , such

that for all δ1 > 0,

‖δ(u2
A)‖Lp (Ω) ≤ cpδ

3/4
1 . (4.6.20)

Proof. From (4.5.40), we know that for (r, v) ∈ [s0, s0 +δ1]× [0,1],

u2
A(r, v) =φδ1 (v)ψ(Yr )−φ′′

δ1
(v)

∫r

s0

ψ(Ya)d a.

Since u2
A is adapted, by Proposition 4.6.4, we have

δ(u2
A) =

∫s0+δ1

s0

∫1

0
φδ1 (v)ψ(Yr )W (dr,d v)−

∫s0+δ1

s0

∫1

0
W (dr,d v)φ′′

δ1
(v)

∫r

s0

ψ(Ya)d a.

(4.6.21)

For the first term on the right-hand side of (4.6.21), by Burkholder’s inequality, for any p ≥ 2,
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since 0 ≤ψ≤ 1,∣∣∣∣∣∣∣∣∫s0+δ1

s0

∫1

0
φδ1 (v)ψ(Yr )W (dr,d v)

∣∣∣∣∣∣∣∣p

Lp (Ω)

≤ cp E

[(∫s0+δ1

s0

∫1

0
φ2
δ1

(v)ψ2(Yr )dr d v

)p/2]

≤ cpδ
p/2
1

(∫1

0
φ2
δ1

(v)d v

)p/2

≤ cpδ
p/2
1 δ

p/4
1 = cpδ

3p/4
1 . (4.6.22)

For the second term on the right-hand side of (4.6.21), similarly, by Burkholder’s inequality,

for any p ≥ 2, since 0 ≤ψ≤ 1,∣∣∣∣∣∣∣∣∫s0+δ1

s0

∫1

0
W (dr,d v)φ′′

δ1
(v)

∫r

s0

ψ(Ya)d a

∣∣∣∣∣∣∣∣p

Lp (Ω)

≤ cp E

[(∫s0+δ1

s0

dr
∫1

0
d v(φ′′

δ1
(v))2

(∫r

s0

ψ(Ya)d a

)2)p/2]

≤ cP

(∫s0+δ1

s0

(r − s0)2dr

)p/2 (∫1

0
(φ′′

δ1
(v))2d v

)p/2

≤ cpδ
3p/2
1

(∫y0+2δ1/2
1

y0−δ1/2
1

δ−2
1 d v

)p/2

= cpδ
3p/2
1 δ

−3p/4
1 = cpδ

3p/4
1 , (4.6.23)

where, in the third inequality, we use (4.5.22). Hence (4.6.20) follows from (4.6.21), (4.6.22) and

(4.6.23). �

By (4.5.20), for any p ≥ 1,

‖δ(u1
A)‖Lp (Ω) = cp

(∫T

0

∫1

0
(u1

A(r, v))2dr d v

)1/2

≤ c ′p . (4.6.24)

From (4.5.41), (4.6.20) and (4.6.24), using Hölder’s inequality, we obtain that for all p ≥ 2

‖T1‖Lp (Ω) ≤ cpδ
−1
1 δ3/4

1 = cpδ
−1/4
1 . (4.6.25)

This proves the statement (a) of Proposition 4.6.2 for i = 1.

Next, we show that the estimate in Proposition 4.6.2(a) holds for T2.

We first use the formula (4.5.40) to give an estimate on the H -norm of u2
A . By definition, since
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0 ≤ψ≤ 1,

‖u2
A‖2

H ≤ 2
∫s0+δ1

s0

dr
∫1

0
d v ψ(Yr )2φ2

δ1
(v)

+2
∫s0+δ1

s0

dr
∫1

0
d v(φ′′

δ1
(v))2

(∫r

s0

ψ(Ya)d a

)2

≤ 2δ1

∫y0+2δ1/2
1

y0−δ1/2
1

d v +2c
∫s0+δ1

s0

(r − s0)2dr
∫y0+2δ1/2

1

y0−δ1/2
1

δ−2
1 d v

= c δ3/2
1 +c δ3

1δ
−3/2
1

= 2c δ3/2
1 , (4.6.26)

where in the second inequality we use (4.5.22).

Lemma 4.6.6. For any p ≥ 1, there exists a constant cp , not depending on (s0, y0) ∈ I × J , such

that for all δ1 > 0,

‖〈Dγ2,2
A ,u2

A〉H ‖Lp (Ω) ≤ cpδ
7/4
1 . (4.6.27)

Proof. Taking the Malliavin derivative of γ2,2
A , we have

〈Dγ2,2
A ,u2

A〉H =
∫s0+δ1

s0

ψ′(Yr )〈DYr ,u2
A〉H dr.

By Hölder’s inequality, (4.5.18) and (4.6.26), for any p ≥ 1,

E
[
|〈Dγ2,2

A ,u2
A〉H |p

]
≤ ‖ψ′‖p

∞δ
p−1
1

∫s0+δ1

s0

E[|〈DYr ,u2
A〉H |p ]dr

≤ cp R−pδ
p−1
1

∫s0+δ1

s0

E[‖DYr ‖p
H ‖u2

A‖p
H ]dr

≤ cp R−pδ
p−1+3p/4
1

∫s0+δ1

s0

E[‖DYr ‖p
H ]dr.

Using Lemma 4.5.2(a), this is bounded above by

cp R−pδ
p−1+3p/4
1 δ

(p0−γ0)p/2
1

∫s0+δ1

s0

(r − s0)2p dr

= cp R−pδ
p−1+3p/4
1 δ

(p0−γ0)p/2
1 δ

2p+1
1

≤ cpδ
(γ0−p0−4)p/2
1 δ

p−1+3p/4
1 δ

(p0−γ0)p/2
1 δ

2p+1
1

= cpδ
7p/4
1 ,

where, in the inequality, we use (4.6.16). �
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By (4.5.41), (4.6.24) and (4.6.27), using Hölder’s inequality, we obtain that for any p ≥ 1

‖T2‖Lp (Ω) ≤ cpδ
−2
1 δ7/4

1 = cpδ
−1/4
1 . (4.6.28)

This proves the statement (a) of Proposition 4.6.2 for i = 2.

We proceed to give an estimate on the moments of T3.

Using (4.6.21), we take the Malliavin derivative of δ(u2
A) and write

Dξ,ηδ(u2
A) = 1[s0,s0+δ1](ξ)ψ(Yξ)φδ1 (η)−1[s0,s0+δ1](ξ)φ′′

δ1
(η)

∫ξ

s0

ψ(Ya)d a

+
∫s0+δ1

s0

∫1

0
φδ1 (v)ψ′(Yr )Dξ,ηYr W (dr,d v)

−
∫s0+δ1

s0

∫1

0
W (dr,d v)φ′′

δ1
(v)

∫r

s0

ψ′(Ya)Dξ,ηYa d a. (4.6.29)

It is clear that the inner product of the first two terms on the right-hand side of (4.6.29) and u1
A

is equal to 〈u2
A ,u1

A〉H . By the stochastic Fubini theorem (see [24, Chapter 1, Theorem 5.30] or

[81, Theorem 2.6]), we see that the inner product of the third term on the right-hand side of

(4.6.29) and u1
A is equal to

∫s0+δ1

s0

∫1

0
φδ1 (v)ψ′(Yr )〈DYr ,u1

A〉H W (dr,d v), (4.6.30)

since the condition of the stochastic Fubini theorem can be verified:

E

[∫s0+δ1

s0

dξ

∫1

0
dη |u1

A(ξ,η)|
∫s0+δ1

s0

dr
∫1

0
d v φ2

δ1
(v)(ψ′(Yr ))2(Dξ,ηYr )2

]
≤ cE

[∫s0+δ1

s0

dξ

∫1

0
dη

∫s0+δ1

s0

(Dξ,ηYr )2dr

]
≤ cδ1 sup

r∈[s0,s0+δ1]
E
[‖DYr ‖2

H

]<∞,

where the last inequality is due to (4.5.13). Similarly, the inner product of the last term on the

right-hand side of (4.6.29) and u1
A is equal to

∫s0+δ1

s0

∫1

0
W (dr,d v)φ′′

δ1
(v)

∫r

s0

ψ′(Ya)〈DYa ,u1
A〉H d a. (4.6.31)
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Therefore, by (4.6.29), (4.6.30) and (4.6.31), we write

〈Dδ(u2
A),u1

A〉H = 〈u2
A ,u1

A〉H +
∫s0+δ1

s0

∫1

0
ψ′(Yr )〈DYr ,u1

A〉H φδ1 (v)W (dr,d v)

−
∫s0+δ1

s0

∫1

0
W (dr,d v)φ′′

δ1,δ2
(v)

∫r

s0

d aψ′(Ya)〈DYa ,u1
A〉H

:= T̄31 + T̄32 − T̄33. (4.6.32)

From (4.6.26) and (4.5.20), it is easy to see that for any p ≥ 1,

‖T̄31‖Lp (Ω) ≤ cpδ
3/4
1 . (4.6.33)

By Burkholder’s inequality and using (4.5.18) and (4.5.20), we have for any p ≥ 2,

E[|T̄32|p ] ≤ cp E

[(∫s0+δ1

s0

∫1

0
ψ′(Yr )2〈DYr ,u1

A〉2
H φ2

δ1
(v)dr d v

)p/2]

≤ cp R−p E

[(∫s0+δ1

s0

‖DYr ‖2
H dr

∫1

0
φ2
δ1

(v)d v

)p/2]

= cp R−p
(∫1

0
φ2
δ1

(v)d v

)p/2

E

[(∫s0+δ1

s0

‖DYr ‖2
H dr

)p/2]
. (4.6.34)

By Hölder’s inequality and (4.5.6), we see that (4.6.34) is bounded above by

cp R−pδ
p/4
1 δ

p/2−1
1

∫s0+δ1

s0

E[‖DYr ‖p
H ]dr

≤ cp R−pδ
p/4
1 δ

p/2−1
1 δ

(p0−γ0)p/2
1

∫s0+δ1

s0

(r − s0)2p dr

= cp R−pδ
(2(p0−γ0)+11)p/4
1

≤ cpδ
(γ0−p0−4)p/2
1 δ

(2(p0−γ0)+11)p/4
1 = cpδ

3p/4
1 , (4.6.35)

where in the last inequality we use (4.6.16).

We now give an estimate on the moments of T̄33. By Burkholder’s inequality and using (4.5.18)

and (4.5.20), we see that for any p ≥ 2,

E[|T̄33|p ] ≤ cp E

[(∫s0+δ1

s0

∫1

0

(∫r

s0

ψ′(Ya)〈DYa ,u1
A〉H d a

)2

(φ′′
δ1

(v))2dr d v

)p/2]

≤ cp R−p
(∫1

0
(φ′′

δ1
(v))2d v

)p/2

E

[(∫s0+δ1

s0

(∫r

s0

‖DYa‖H d a

)2

dr

)p/2]
. (4.6.36)
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Using Hölder’s inequality twice and (4.5.22), (4.6.36) is bounded above by

cp R−pδ
−3p/4
1 E

[(∫s0+δ1

s0

dr (r − s0)
∫r

s0

‖DYa‖2
H d a

)p/2]

≤ cp R−pδ
−3p/4
1

(∫s0+δ1

s0

dr
∫r

s0

d a

)p/2−1 ∫s0+δ1

s0

dr (r − s0)p/2
∫r

s0

E[‖DYa‖p
H ]d a.

(4.6.37)

Applying the estimate in (4.5.6), (4.6.37) is bounded above by

cp R−pδ
−3p/4
1 δ

p−2
1 δ

(p0−γ0)p/2
1

∫s0+δ1

s0

dr (r − s0)p/2
∫r

s0

(a − s0)2p d a

= cp R−pδ
(2(p0−γ0)+11)p/4
1

≤ cpδ
(γ0−p0−4)p/2
1 δ

(2(p0−γ0)+11)p/4
1 = cpδ

3p/4
1 , (4.6.38)

where in the inequality we use (4.6.16).

Therefore, by (4.6.33),(4.6.35), (4.6.38) and (4.5.41), we have obtained that for any p ≥ 2,

‖T3‖Lp (Ω) ≤ cpδ
−1/4
1 . (4.6.39)

This proves the statement (a) of Proposition 4.6.2 for i = 3.

Therefore, we have finished the proof of Proposition 4.6.2(a).

4.6.2 Proof of Proposition 4.6.2(b)

We are going to show that the three terms T4, T5 and T6 are equal to zero. First, we apply

Lemma 4.3.6 to see that for any t , s ∈ [s0, s0 +δ1],

〈D(u(t , y0)−u(s, y0)),u1
A〉H =

∫T

0

∫1

0
(1{r<t }Gα(t − r, y0, v)−1{r<s}Gα(s − r, y0, v))

×
(
∂

∂r
− ∂2

∂v2

)
( f0(r )g0(v))dr d v

= f0(t )g0(x)− f0(s)g0(y0) = 1−1 = 0. (4.6.40)

by the definition of the functions f0 and g0. Furthermore, by (4.5.8) and (4.6.40), we know that

for r ∈ [s0, s0 +δ1],

〈DYr ,u1
A〉H = 2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0/2
〈D(u(t , y0)−u(s, y0)),u1

A〉H
= 0. (4.6.41)
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Hence, by (4.5.35),

〈Dγ2,2
A ,u1

A〉H =
∫y0+δ1

s0

ψ′(Yr )〈DYr ,u1
A〉H dr = 0, (4.6.42)

which implies that T4 = T5 = 0.

We proceed to prove that T6 vanishes. Similar to (4.6.40), for any t , s ∈ [s0, s0 +δ1],

〈D(u(t , y0)−u(s, y0)),u2
A〉H

=
∫s0+δ1

s0

dr
∫1

0
d v(1{r<t }G(t − r, y0, v)−1{r<s}G(s − r, y0, v))

(
∂

∂r
− ∂2

∂v2

)
H(r, v)

= H(t , y0)−H(s, y0). (4.6.43)

Hence, by (4.5.1), for r ∈ [s0, s0 +δ1],

〈DYr ,u2
A〉H = 2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0/2
〈D(u(t , y0)−u(s, y0)),u2

A〉H

= 2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0/2
(H(t , y0)−H(s, y0))

= 2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0/2

∫t

s
ψ(Ya)d a, (4.6.44)

where in the last equality we use the definition of the function (t , x) �→ H(t , x). And moreover,

〈D〈DYr ,u2
A〉H ,u1

A〉H

= 2p0(2p0 −1)
∫

[s0,r ]2
d sd t

(u(t , y0)−u(s, y0))2p0−2

|t − s|γ0/2

×〈D(u(t , y0)−u(s, y0)),u1
A〉H

∫t

s
ψ(Ya)d a

+2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0/2

∫t

s
ψ′(Ya)〈DYa ,u1

A〉H d a

= 0+0 = 0, (4.6.45)

where, on the right-hand side of the equality, the first term vanishes due to (4.6.40) and the

second term vanishes because of (4.6.41). Therefore, by definition of γ2,2
A ,

〈D〈Dγ2,2
A ,u2

A〉H ,u1
A〉H =

〈
D

∫s0+δ1

s0

ψ′(Yr )〈DYr ,u2
A〉H dr,u1

A

〉
H

=
∫s0+δ1

s0

ψ′′(Yr )〈DYr ,u1
A〉H 〈DYr ,u2

A〉H dr

+
∫s0+δ1

s0

ψ′(Yr )〈D〈DYr ,u2
A〉H ,u1

A〉H dr

= 0, (4.6.46)
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which implies T6 = 0.

This proves the statement (b) of Proposition 4.6.2.

4.6.3 Estimates for the tail probabilities

Lemma 4.6.7. There exists a finite positive constant c, not depending on (s0, y0) ∈ I × J , such

that for all z1 ∈R,

P{|F1| > |z1|} ≤ c (|z1|−1 ∧1)e−z2
1 /c , (4.6.47)

and for all δ1 > 0 and z2 > 0,

P{F2 > z2} ≤ c exp

(
− z2

2

c δ1/2
1

)
. (4.6.48)

Proof. We first bound P{|F1| > |z1|}. Since the variance of u(s0, y0) is bounded above and

below by positive constants uniformly over (s0, y0) ∈ I × J (see [25, (4.5)]), there are constants

c1,c2,c3,c4 independent of (s0, y0) ∈ I × J such that for all z1 ∈R

P{|F1| > |z1|} ≤ c1

∫+∞

|z1|
e−y2/c2 d y ≤ c3(|z1|−1 ∧1)e−z2

1 /c4 , (4.6.49)

where the last inequality holds because for |z1| ≥ 1 we apply the inequality in [61, Lemma

12.9], and for |z1| < 1 we use the fact that c1
∫∞
|z1| e

−y2/c2 d y ≤ c1
∫∞

0 e−y2/c2 d y = c ′ ≤ c3e−1/c4 ≤
c3e−z2

1 /c4 . This proves (4.6.47).

We denote

σ2 := sup
t∈[s0,s0+δ1]

E[ū(t , y0)2].

From (4.2.3), we have σ2 ≤C δ1/2
1 . On the other hand, by [25, (4.50)], we have

E[F2] ≤ E

[
sup

t∈[s0,s0+δ1]
|u(t , y0)−u(s0, y0)|

]

≤ E

[
sup

[Δ((t ,x);(s0,y0))]1/2≤δ1/4
1

|u(t , x)−u(s0, y0)|
]

≤ c δ1/4
1 . (4.6.50)
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Applying Borell’s inequality (see [1, (2.6)]), for all z2 > c δ1/4
1 (here c is the constant in (4.6.50)),

P{F2 > z2} ≤ 2exp
(−(z2 −E[F2])2/(2σ2)

)≤ 2exp
(−(z2 −E[F2])2/(2Cδ1/2

1 )
)

≤ 2exp
(−(2z2

2/3−2E[F2]2)/(2Cδ1/2
1 )

)
= 2exp

(−z2
2/(3Cδ1/2

1 )
)

exp
(
E[F2]2/(Cδ1/2

1 )
)

≤ 2ec2/C exp
(−z2

2/(3Cδ1/2
1 )

)
= c̄ exp

(−z2
2/(3Cδ1/2

1 )
)

. (4.6.51)

Since for 0 ≤ z2 ≤ cδ1/4
1 ,

exp
(−z2

2/(3Cδ1/2
1 )

)≥ e−
c2

3C ,

we can find a constant c̃ such that for all z2 > 0,

P{F2 > z2} ≤ c̃ exp
(−z2

2/(3Cδ1/2
1 )

)
. (4.6.52)

This proves (4.6.48). �

Finally, we prove Theorem 4.2.2.

Proof of Theorem 4.2.2. This follows from (4.6.3), (4.6.47), (4.6.48) and (4.6.14). �

4.7 Gaussian-type upper bound on the density of M0

In this section, we assume J ⊂ ]0,1[ and δ1, δ2 satisfy the conditions in (4.2.15).

From the formula for the probability density function of M0 in (4.5.52), by the Cauchy-

Schwartz inequality,

p0(z) ≤ P{M0 > z}1/2‖δ(uĀ/γĀ)‖L2(Ω). (4.7.1)

Proposition 4.7.1. (a) There exists a finite positive constant c, not depending on y0 ∈ J , such

that for all small δ1, δ2 > 0 and for all z ≥ (δ1/2
1 +δ2)1/2,

‖δ(uĀ/γĀ)‖L2(Ω) ≤ c (δ1/2
1 +δ2)−1/2. (4.7.2)

(b) There exists a finite positive constant c, not depending on y0 ∈ J , such that for all δ1, δ2 > 0

and for all z > 0,

P{M0 > z} ≤ c exp

(
− z2

c (δ1/2
1 +δ2)

)
. (4.7.3)
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Proof of Theorem 4.2.5. This is an immediate consequence of (4.7.1) and Proposition 4.7.1. �

The proof of Proposition 4.7.1 is given in the following two subsections.

4.7.1 Proof of Proposition 4.7.1(a)

Throughout this section, we assume that

z ≥ (δ1/2
1 +δ2)1/2 = δ1/2. (4.7.4)

Recalling the definition of R̄ in (4.3.27), under the assumption (4.7.4), we see from (4.5.26) that

R̄−1 = c−1ā−2p0δγ0−4 = c ′z−2p0δγ0−4

≤ c δγ0−p0−4. (4.7.5)

In order to prove Proposition 4.7.1(a), we need the following several lemmas. Recall the

definition of uĀ in (4.5.33).

Lemma 4.7.2. For any p ≥ 2, there exists a constant cp , not depending on y0 ∈ J , such that for

all δ1, δ2 > 0,

‖δ(uĀ)‖Lp (Ω) ≤ cp δ
3/2. (4.7.6)

Proof. The proof is similar to that of Lemma 4.6.5. Since uĀ is adapted, by Proposition 4.6.4,

we have

δ(uĀ) =
∫Δ•

0

∫1

0
φ̄δ(v)ψ̄(Ȳr )W (dr,d v)−

∫Δ•

0

∫1

0
W (dr,d v)φ̄′′

δ(v)
∫r

0
ψ̄(Ȳa)d a. (4.7.7)

For the first term on the right-hand side of (4.7.7), by Burkholder’s inequality, for any p ≥ 2,

since 0 ≤ ψ̄≤ 1,

∣∣∣∣∣∣∣∣∫Δ•

0

∫1

0
φ̄δ(v)ψ̄(Ȳr )W (dr,d v)

∣∣∣∣∣∣∣∣p

Lp (Ω)
≤ cp E

[(∫Δ•

0

∫1

0
φ̄2
δ(v)ψ̄2(Ȳr )dr d v

)p/2
]

≤ cpΔ
p/2
•

(∫1

0
φ̄2
δ(v)d v

)p/2

≤ cpΔ
p/2
• δp/2 = cpδ

3p/2. (4.7.8)

For the second term on the right-hand side of (4.7.7), similarly, by Burkholder’s inequality, for
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any p ≥ 2, since 0 ≤ ψ̄≤ 1,∣∣∣∣∣∣∣∣∫Δ•

0

∫1

0
W (dr,d v) φ̄′′

δ(v)
∫r

0
ψ̄(Ȳa)d a

∣∣∣∣∣∣∣∣p

Lp (Ω)

≤ cp E

[(∫Δ•

0
dr

∫1

0
d v (φ̄′′

δ(v))2
(∫r

0
ψ̄(Ȳa)d a

)2)p/2]

≤ cP

(∫Δ•

0
r 2dr

)p/2 (∫1

0
(φ̄′′

δ(v))2d v

)p/2

≤ cpΔ
3p/2
•

(∫y0+2δ

y0−δ
δ−4d v

)p/2

= cpΔ
3p/2
• δ−3p/2 = cpδ

3p/2, (4.7.9)

where, in the third inequality, we use (4.5.31). Hence, (4.7.7), (4.7.8) and (4.7.9) prove the

lemma. �

Lemma 4.7.3. There exists a constant c, not depending on y0 ∈ J , such that for all δ1, δ2 > 0,

‖uĀ‖H ≤ c δ3/2. (4.7.10)

Proof. The proof is similar to that of (4.6.26). By the definition of uĀ ,

‖uĀ‖2
H ≤ 2

∫Δ•

0
dr

∫1

0
d v ψ̄(Ȳr )2φ̄2

δ(v)+2
∫Δ•

0
dr

∫1

0
d v (φ̄′′

δ(v))2
(∫r

0
ψ̄(Ȳa)d a

)2

≤ 2Δ•
∫y0+2δ

y0−δ
d v +2c

∫Δ•

0
r 2dr

∫y0+2δ

y0−δ
δ−4d v

= c δ3 +c Δ3
•δ

−3

= 2c δ3, (4.7.11)

where, in the second inequality, we use (4.5.31). �

Lemma 4.7.4. For any p ≥ 2, there exists a constant cp , not depending on y0 ∈ J , such that for

all δ1, δ2 > 0,

‖〈DγĀ ,uĀ〉H ‖Lp (Ω) ≤ c δ7/2. (4.7.12)

Proof. The proof is similar to that of Lemma 4.6.6. Taking the Malliavin derivative of γĀ , we

have

〈DγĀ ,uĀ〉H =
∫Δ•

0
ψ̄′(Ȳr )〈DȲr ,uĀ〉H dr.
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By Hölder’s inequality, (4.5.28) and (4.7.11), for any p ≥ 1,

E
[|〈DγĀ ,uĀ〉H |p]≤ ‖ψ̄′‖p

∞Δ
p−1
•

∫Δ•

0
E[|〈DȲr ,uĀ〉H |p ]dr

≤ cp R̄−pΔ
p−1
•

∫Δ•

0
E[‖DȲr ‖p

H ‖uĀ‖p
H ]dr

≤ cp R̄−pΔ
p−1+3p/4
•

∫Δ•

0
E[‖DȲr ‖p

H ]dr.

Applying (4.5.7), this is bounded above by

cp R−pΔ
p−1+3p/4
• δ(p0−γ0)q

∫Δ•

0
r 2p dr

= cp R−pΔ
p−1+3p/4
• δ(p0−γ0)pΔ

2p+1
•

≤ cpδ
(γ0−p0−4)pΔ

p−1+3p/4
• δ(p0−γ0)pΔ

2p+1
•

= cpδ
7p/2,

where, in the inequality, we use (4.7.5). �

Proof of Proposition 4.7.1(a). Using the property of Skorohod integral δ (see [64, (1.48)]),

δ(uĀ/γĀ) = δ(uĀ)

γĀ
+ 〈DγĀ ,uĀ〉H

γ2
Ā

:= I1 + I2. (4.7.13)

By Lemmas 4.7.2 and 4.5.4(b),

‖I1‖L2(Ω) ≤ c δ3/2δ−2 = c δ−1/2. (4.7.14)

By Lemmas 4.7.4 and 4.5.4(b),

‖I2‖L2(Ω) ≤ c δ7/2δ−4 = c δ−1/2. (4.7.15)

Therefore, (4.7.13), (4.7.14) and (4.7.15) establish (4.7.2). �

4.7.2 Proof of Proposition 4.7.1(b)

Proof of Proposition 4.7.1(b). The proof is similar to that of (4.6.48). We denote

σ2
0 := sup

(t ,x)∈[0,δ1]×[y0,y0+δ2]
E[u(t , x)2].
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From (4.2.3), we have σ2
0 ≤C (δ1/2

1 +δ2). On the other hand, by [25, (4.50)], we have

E[M0] ≤ E

[
sup

(t ,x)∈[0,δ1]×[y0,y0+δ2]
|u(t , x)|

]

≤ E

[
sup

[Δ((t ,x);(0,y0))]1/2≤(δ1/2
1 +δ2)1/2

|u(t , x)|
]

≤ c (δ1/2
1 +δ2)1/2. (4.7.16)

Applying Borell’s inequality (see [1, (2.6)]), for all z > c (δ1/2
1 +δ2)1/2 (here c is the constant in

(4.7.16)),

P{M0 > z} ≤ 2exp
(−(z −E[M0])2/(2σ2

0)
)≤ 2exp

(−(z −E[M0])2/(2C (δ1/2
1 +δ2))

)
≤ 2exp

(−(2z2/3−2E[M0]2)/(2C (δ1/2
1 +δ2))

)
= 2exp

(−z2/(3C (δ1/2
1 +δ2))

)
exp

(
E[M0]2/(C (δ1/2

1 +δ2))
)

≤ 2ec2/C exp
(−z2/(3C (δ1/2

1 +δ2))
)

= c̄ exp
(−z2/(3C (δ1/2

1 +δ2))
)

. (4.7.17)

Since for 0 ≤ z ≤ c (δ1/2
1 +δ2)1/2,

exp
(−z2/(3C (δ1/2

1 +δ2))
)≥ e−

c2

3C ,

we can find a constant c̃ such that for all z > 0,

P{F2 > z} ≤ c̃ exp
(−z2/(3C (δ1/2

1 +δ2))
)

. (4.7.18)

This proves (4.7.3). �

Remark 4.7.5. The results of Theorem 4.2.1(a), (b) and Theorems 4.2.2, 4.2.5 also hold for the

solution without boundary (x ∈ R). This is because in the definition of the random variables

H and H̄ in (4.5.23) and (5.3.17), the functions φδ1 and φ̄δ are compactly supported and C∞

and the boundary conditions do not affect the smoothness of ui
A ,γi , j

A , i , j ∈ {1,2} and uĀ , γĀ in

Lemma 4.5.3. And the equalities (4.5.45), (4.5.46), (4.5.47), (4.5.48) and (4.5.50) in the proof of

Lemma 4.5.5 still hold with [0,1] replaced by R. Furthermore, the formulas and estimates in

(4.5.51), (4.5.52), (4.5.63), (4.6.3), (4.6.4), (4.6.49) and (4.7.13) are generic, no matter with or

without boundary conditions. Moreover, the boundary conditions do not change the estimates

in (4.5.41), (4.5.6), (4.6.26), (4.6.34), (4.6.36), (4.7.6), (4.7.10) and (4.7.12). Furthermore, the

equalities (4.6.40), (4.6.41), (4.6.44), (4.6.45) and (4.6.46) remain the same. In the end, the

estimates (4.6.50) and (4.7.16) still hold for the solution of the equation without boundary (we

can redo the proof of [25, (4.50)] line by line). This will be done in more detail in Lemma 5.4.6.
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4.8 Proof of Theorem 4.2.1(c)

The aim of this section is to prove the smoothness of the density of the random variable M

defined in (4.2.8), in the case of Neumann boundary conditions. We will apply the criterion

of Theorem 1.5.5 to establish this result. In other words, we will construct random variables

satisfying the locally nondegeneracy conditions in Theorem 1.5.5. The approach is similar to

the case of Brownian sheet (see [39]), and is slightly different from the method in Section 4.5.

Choose and fix γ1,γ2 and an integer p such that

1

2p
< γ1 < θ1/2− 1

2p
and

1

2p
< γ2 < θ2/2− 1

2p
. (4.8.1)

Recall the definition of the random variables {û(t , x) : (t , x) ∈ [0,T ]× [0,1]} in (4.2.7). By (4.3.22)

we know that a.s. t �→ û(t , ·) is continuous in Ep,γ2 [0,1] and x �→ û(·, x) is continuous in

Ep,γ1 [0,T ].

We define two families of random variables:

Y 1(σ) :=
∫

[0,σ]2

‖û(s,∗)− û(s′,∗)‖2p
p,γ2

|s − s′|1+2pγ1
d sd s′

=
∫

[0,σ]2
d sd s′

∫
[0,1]2

d xd x ′ (u(s, x)−u(s, x ′)−u(s′, x)+u(s′, x ′))2p

|s − s′|1+2pγ1 |x −x ′|1+2pγ2
(4.8.2)

and

Y 2(τ) :=
∫

[0,τ]2

‖û(·, x)− û(·, x ′)‖2p
p,γ1

|x −x ′|1+2pγ2
d xd x ′

=
∫

[0,τ]2
d xd x ′

∫
[0,T ]2

d sd s′
(u(s, x)−u(s, x ′)−u(s′, x)+u(s′, x ′))2p

|s − s′|1+2pγ1 |x −x ′|1+2pγ2
, (4.8.3)

where (σ,τ) ∈ [0,T ]× [0,1]. Set

Yσ,τ = Y 1(σ)+Y 2(τ), (4.8.4)

for (σ,τ) ∈ [0,T ]× [0,1]. The following lemma is analogous to Lemma 4.3.1 and Lemma 4.3.5.

Lemma 4.8.1. For any a > 0, there exists a constant R, depending on a, p,γ1 and γ2, such that

for all (σ,τ) ∈ [0,T ]× [0,1],

Yσ,τ ≤ R ⇒ sup
(t ,x)∈([0,σ]×[0,1])∪([0,T ]×[0,τ])

|û(t , x)| ≤ a. (4.8.5)

Proof. In order to establish this property, we first apply the Garsia, Rodemich and Rumsey

lemma (see Lemma A.6.2) to the Ep,γ2 [0,1]-valued function s �→ û(s,∗) with Ψ(x) = x2p , p(x) =
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x(1+2pγ1)/(2p),d = 1. From this lemma, and assuming Y 1(σ) ≤ R, we deduce, as in (4.3.31), that

‖û(s,∗)− û(s′,∗)‖2p
p,γ2

≤ cp,γ1 R|s − s′|2pγ1−1

for all s, s′ ∈ [0,σ]. Hence, with s′ = 0, we get

‖û(s,∗)‖2p
p,γ2

≤ cp,γ1 R

for all s ∈ [0,σ]. Applying the same lemma to the real-valued function x �→ û(s, x) (s is now

fixed) with Ψ(x) = x2p , p(x) = x(1+2pγ2)/(2p), we obtain

|û(s, x)− û(s, x ′)|2p ≤ cp,γ2 cp,γ1 R|x −x ′|2pγ2−1

for all x, x ′ ∈ [0,1]. Hence, letting x ′ = 0, we obtain

sup
0≤t≤σ,0≤x≤1

|û(t , x)| ≤ c
1

2p
p,γ1

c
1

2p
p,γ2

R
1

2p .

Similarly, focusing on Y 2(τ), we can prove that

sup
0≤t≤T,0≤x≤τ

|û(t , x)| ≤ c
1

2p
p,γ1

c
1

2p
p,γ2

R
1

2p ,

and it suffices to choose R in such a way that c
1

2p
p,γ1

c
1

2p
p,γ2

R
1

2p < a. �

We next prove the smoothness of the two families of random variables defined in (4.8.2) and

(4.8.3).

Lemma 4.8.2. For any (σ,τ) ∈ [0,T ]× [0,1], Y 1(σ) and Y 2(τ) belong to D∞. For any integer l ,

Dl Y 1(1) =
∫

[0,1]4

2p(2p −1) · · · (2p − l +1)u(1]s,t ]×]y,x])2p−l (Du(t , x; s, y))⊗l

|t − s|1+2pγ1 |x − y |1+2pγ2
d sd td yd x.

(4.8.6)

Proof. The proof follows the same lines as that of Lemma 4.5.1(b). �

As a consequence of Lemma 4.8.2, for any (r, v) ∈ [0,T ]× [0,1],

DY 1(r ) = 2p
∫

[0,r ]2
d td s

∫
[0,1]2

d xd y
u(1]s,t ]×]y,x])2p−1Du(t , x; s, y)

|t − s|1+2pγ1 |x − y |1+2pγ2
, (4.8.7)

DY 2(v) = 2p
∫

[0,v]2
d xd y

∫
[0,T ]2

d sd t
u(1]s,t ]×]y,x])2p−1Du(t , x; s, y)

|t − s|1+2pγ1 |x − y |1+2pγ2
, (4.8.8)
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and for any integer i ,

Di Yr,v = ci

∫
[0,r ]2

d td s
∫

[0,1]2
d xd y

u(1]s,t ]×]y,x])2p−i (Du(t , x; s, y))⊗i

|t − s|1+2pγ1 |x − y |1+2pγ2

+ci

∫
[0,v]2

d xd y
∫

[0,T ]2
d sd t

u(1]s,t ]×]y,x])2p−i (Du(t , x; s, y))⊗i

|t − s|1+2pγ1 |x − y |1+2pγ2
, (4.8.9)

Hence for any (r, v) ∈ [0,T ]× [0,1],

‖Di Yr,v‖H ⊗i ≤ 2ci

∫
[0,T ]2

d sd t
∫

[0,1]2
d xd y

|u(1]s,t ]×]y,x])|2p−i‖(Du(t , x; s, y))⊗i‖H ⊗i

|t − s|1+2pγ1 |x − y |1+2pγ2
,

(4.8.10)

which implies that for any q ≥ 1

sup
(r,v)∈[0,T ]×[0,1]

E
[
‖Di Yr,v‖q

H ⊗i

]
≤ cq

∫
[0,T ]2

d sd t
∫

[0,1]2
d xd y

E
[|u(1]s,t ]×]y,x])|q(2p−i )

]‖(Du(t , x; s, y))⊗i‖q
H ⊗i

|t − s|q(1+2pγ1)|x − y |q(1+2pγ2)

≤ cq

∫
[0,T ]2

d sd t
∫

[0,1]2
d xd y

‖Du(t , x; s, y)‖q(2p−i )+qi
H

|t − s|q(1+2pγ1)|x − y |q(1+2pγ2)

≤ cq

∫
[0,T ]2

d sd t
∫

[0,1]2
d xd y

|t − s|pqθ1 |x − y |pqθ2

|t − s|q(1+2pγ1)|x − y |q(1+2pγ2)
≤ cq , (4.8.11)

where, in the second inequality, we use again the fact that a centered Gaussian random variable

X ∼ N (0,σ2) has the property E[|X |k ] = ckσ
k .

For any a > 0 and set A =]a,∞[. Let ψ : R+ → [0,1] be the infinitely differentiable function

defined in (4.5.17) where R is the constant appearing in Lemma 4.8.1 determined by a, p,γ1,γ2.

We define the H -valued random variable λA evaluated at (r, v) by

λA(r, v) :=
(
∂

∂r
− ∂2

∂v2

)∫r

0

∫v

0
b(1−b)ψ(Ya,b)dbd a

=
∫v

0
b(1−b)ψ(Yr,b)db − (1−2v)

∫r

0
ψ(Ya,v )d a

− v(1− v)
dY 2(v)

d v

∫r

0
ψ′(Ya,v )d a

:=λ1
A(r, v)−λ2

A(r, v)−λ3
A(r, v). (4.8.12)

Lemma 4.8.3. λA belongs to D∞(H ).

Proof. The proof is similar to that of Lemma 4.5.3. We start by proving λ1
A is Malliavin differen-
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tiable. For each integer k ≥ 1, we define the Riemann sum of λ1
A by

X 1
k (r, v) :=

k∑
i , j=1

∫(i−1)/k

0
b(1−b)ψ(Y( j−1)T /k,b)db 1[ ( j−1)T

k , j T
k ](r )1[ i−1

k , i
k ](v).

As the proof of u2
A ∈D∞(H ) in Lemma 4.5.3, we can show that X 1

k converges to λ1
A in Lq (Ω,H )

as k →∞ for any q ≥ 1. Moreover, by (4.8.11) and Lemma A.6.3, D X 1
k converges to the Bochner

integral
∫∗

0 b(1−b)Dψ(Y·,b)db in Lq (Ω,H ⊗2) as k →∞ for any q ≥ 1. Since D is closable, we

have

Dλ1
A =

∫∗

0
b(1−b)Dψ(Y·,b)db.

In order to prove λ1
A ∈D∞(H ) we can repeat this procedure and it remains to prove for any

q, j ≥ 1,

sup
k≥1

E

[∫T

0

∫1

0
||D j X 1

k (r, v)||q
H ⊗ j d vdr

]
<∞, (4.8.13)

which follows from

sup
(a,b)∈[0,T ]×[0,1]

E
[
||D jψ(Ya,b)||q

H ⊗ j

]
<∞. (4.8.14)

The proof of (4.8.14) is the same as that of (4.5.36) by using Faà di Bruno formula and (4.8.11).

Similarly, we can prove that λ2
A ∈D∞(H ) and it remains to prove that λ3

A belongs to D∞(H ).

For each k ≥ 1, we denote vi = (i −1)/k,r j = ( j −1)T /k. We discretize λ3
A by

Yk (r, v) :=
k∑

i , j=1
2vi (1− vi )

∫vi

0
d x

∫
[0,T ]2

d sd t
u(1]s,t ]×]x,vi ])2p

|t − s|1+2pγ1 |vi −x|1+2pγ2

×
∫r j

0
ψ′(Ya,vi )d a 1[vi ,vi+1](v)1[r j ,r j+1](r ).

For almost every (ω,r, v) ∈ Ω× [0,T ]× [0,1], Yk (r, v) converges to λ3
A(r, v) as k → ∞. Using

Hölder’s inequality and Lemma 4.3.2, we can show that for any q ≥ 1,

sup
k≥1

E

[∫T

0

∫1

0
|Yk (r, v)|q d vdr

]
<∞,

which implies, by Lemma A.6.3 (with the measure space replaced by (Ω× [0,T ]× [0,1],P×λ2)),

lim
k→∞

E

[∫T

0

∫1

0
|Yk (r, v)−λ3

A(r, v)|q d vdr

]
= 0
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and consequently,

lim
k→∞

E

[(∫T

0

∫1

0
|Yk (r, v)−λ3

A(r, v)|2d vdr

)q/2
]
= 0.

Thus Yk converges to λ3
A in Lq (Ω,H ) as k →∞ for any q ≥ 1. Moreover,

DYk (r, v) =
k∑

i , j=1
4pvi (1− vi )

∫vi

0
d x

∫
[0,T ]2

d sd t
u(1]s,t ]×]x,vi ])2p−1Du(t , vi ; s, x)

|t − s|1+2pγ1 |vi −x|1+2pγ2

×
∫r j

0
ψ′(Ya,vi )d a 1[vi ,vi+1](v)1[r j ,r j+1](r )

+
k∑

i , j=1
2vi (1− vi )

∫vi

0
d x

∫
[0,T ]2

d sd t
u(1]s,t ]×]x,vi ])2p

|t − s|1+2pγ1 |vi −x|1+2pγ2

×
∫r j

0
Dψ′(Ya,vi )d a 1[vi ,vi+1](v)1[r j ,r j+1](r ),

which converges to the Bochner integral

Z (r, v) := 4pv(1− v)
∫v

0
d x

∫
[0,T ]2

d sd t
u(1]s,t ]×]x,v])2p−1Du(t , v ; s, x)

|t − s|1+2pγ1 |v −x|1+2pγ2

∫r

0
ψ′(Ya,v )d a

+2v(1− v)
∫v

0
d x

∫
[0,T ]2

d sd t
u(1]s,t ]×]x,v])2p

|t − s|1+2pγ1 |v −x|1+2pγ2

∫r

0
Dψ′(Ya,v )d a

in H as k →∞ for almost every (ω,r, v) ∈Ω× [0,T ]× [0,1]. Since

‖DYk (r, v)‖H ≤ c
k∑

i , j=1

∫1

0
d x

∫
[0,T ]2

d sd t
|u(1]s,t ]×]x,vi ])|2p−1‖Du(t , vi ; s, x)‖H

|t − s|1+2pγ1 |vi −x|1+2pγ2

×1[vi ,vi+1](v)1[r j ,r j+1](r )

+c
k∑

i , j=1

∫1

0
d x

∫
[0,T ]2

d sd t
u(1]s,t ]×]x,vi ])2p

|t − s|1+2pγ1 |vi −x|1+2pγ2

×
∫T

0
‖DYa,vi ‖H d a 1[vi ,vi+1](v)1[r j ,r j+1](r ),
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for any q ≥ 1,

E

[∫T

0

∫1

0
‖DYk (r, v)‖q

H d vdr

]
≤ cq

k∑
i , j=1

∫T

0

∫1

0
1[vi ,vi+1](v)1[r j ,r j+1](r )d vdr

×E

[∣∣∣∣∫1

0
d x

∫
[0,T ]2

d sd t
|u(1]s,t ]×]x,vi ])|2p−1‖Du(t , vi ; s, x)‖H

|t − s|1+2pγ1 |vi −x|1+2pγ2

∣∣∣∣q]

+cq

k∑
i , j=1

∫T

0

∫1

0
1[vi ,vi+1](v)1[r j ,r j+1](r )d vdr

×E

[∣∣∣∣∫T

0
d a

∫1

0
d x

∫
[0,T ]2

d sd t
u(1]s,t ]×]x,vi ])2p‖DYa,vi ‖H

|t − s|1+2pγ1 |vi −x|1+2pγ2

∣∣∣∣q]

≤ cq k−2
k∑

i , j=1
E

[∣∣∣∣∫1

0
d x

∫
[0,T ]2

d sd t
|u(1]s,t ]×]x,vi ])|2p−1‖Du(t , vi ; s, x)‖H

|t − s|1+2pγ1 |vi −x|1+2pγ2

∣∣∣∣q]

+cq k−2
k∑

i , j=1
E

[∣∣∣∣∫T

0
d a

∫1

0
d x

∫
[0,T ]2

d sd t
u(1]s,t ]×]x,vi ])2p‖DYa,vi ‖H

|t − s|1+2pγ1 |vi −x|1+2pγ2

∣∣∣∣q]
.

Using Hölder’s inequality and Cauchy-Schwarz inequality, this is bounded above by

cq k−2
k∑

i , j=1

∫1

0
d x

∫
[0,T ]2

d sd t
E
[|u(1]s,t ]×]x,vi ])|q(2p−1)

]‖Du(t , vi ; s, x)‖q
H

|t − s|1+2pγ1 |vi −x|1+2pγ2

+cq k−2
k∑

i , j=1

∫T

0
d a

∫1

0
d x

∫
[0,T ]2

d sd t
E
[
u(1]s,t ]×]x,vi ])4qp

]1/2
E
[
‖DYa,vi ‖2q

H

]1/2

|t − s|1+2pγ1 |vi −x|1+2pγ2
.

By Lemma 4.3.2 and (4.8.11), this is bounded above by

c ′q k−2
k∑

i , j=1
1+c ′q k−2

k∑
i , j=1

1 = 2c ′q .

Applying Lemma A.6.3 (with the measure space replaced by (Ω× [0,T ]× [0,1],P×λ2)), we have

for any q ≥ 1

lim
k→∞

E

[∫T

0

∫1

0
||DYk (r, v)−Z (r, v)||qH dr d v

]
= 0,

which implies

lim
k→∞

E

[(∫T

0

∫1

0
||DYk (r, v)−Z (r, v)||2H dr d v

)q/2
]
= 0.

Thus DYk converges to Z in Lq (Ω,H ⊗2) as k →∞ for any q ≥ 1. Since D is closable, we obtain

that λ3
A is Malliavin differentiable and Dλ3

A = Z . We can repeat this procedure to conclude
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that λ3
A ∈D∞(H ). The proof is complete. �

Now we are ready to prove the main result of this section.

Proof of Theorem 4.2.1(c). Fix a > 0 and set A = ]a,∞[. Define the following two random vari-

ables:

Sa = inf{t ≥ 0 : sup
0≤s≤t ,0≤y≤1

û(s, y) > a}

and

Xa = inf{x ≥ 0 : sup
0≤s≤T,0≤y≤x

û(s, y) > a}.

Note that (Sa , Xa) ≤ (Ŝ, X̂ ) on the set {M > a}, where (Ŝ, X̂ ) is the point where the maximum is

uniquely attained in [0,T ]× [0,1].

We claim that the random element λA introduced in (4.8.12) and the random variable

G A =
∫T

0

∫1

0
v(1− v)ψ(Yr,v )d vdr

satisfy the conditions of Theorem 1.5.5. First, λA belongs to D∞(H ) by Lemma 4.8.3. Moreover,

on the set {M > a}, we have

ψ(Yr,v ) = 0 if (r, v) �∈ [0,Sa]× [0, Xa]. (4.8.15)

Indeed, if ψ(Yr,v ) �= 0, then Yr,v ≤ R by definition of ψ and from (4.8.5) this would imply

sup(t ,x)∈([0,r ]×[0,1])∪([0,T ]×[0,v]) û(t , x) ≤ a, and, hence, r ≤ Sa , v ≤ Xa , which is contradictory.

Consequently, on {M > a}, by (4.4.8), we obtain

〈DM ,λA〉H = 〈1{·<Ŝ}(G(Ŝ −·, X̂ ,∗)−G(Ŝ −·,0,∗)),λA〉H

=
∫Ŝ

0

∫1

0
(G(Ŝ − r, X̂ , v)−G(Ŝ − r,0, v))λA(r, v)d vdr

=
∫Ŝ

0
dr

∫1

0
d v(G(Ŝ − r, X̂ , v)−G(Ŝ − r,0, v))

×
(
∂

∂r
− ∂2

∂v2

)∫r

0

∫v

0
b(1−b)ψ(Ya,b)dbd a.

Since the function (r, v) �→∫r
0

∫v
0 b(1−b)ψ(Ya,b)dbd a satisfies the Neumann boundary condi-

169



Chapter 4. On the density of the supremum of the solution to the stochastic heat
equation

tions, applying Lemma 4.3.6, this is equal to

∫Ŝ

0

∫X̂

0
v(1− v)ψ(Yr,v )d vdr −

∫Ŝ

0

∫0

0
v(1− v)ψ(Yr,v )d vdr

=
∫Ŝ

0

∫X̂

0
v(1− v)ψ(Yr,v )d vdr =

∫T

0

∫1

0
v(1− v)ψ(Yr,v )d vdr =G A , (4.8.16)

where the second last equality holds from the observation in (4.8.15).

By discretization, the proof of G A ∈D∞ is similar to that of γ2,2
A ∈D∞, as we did in Lemma 4.5.3.

So it remains to prove that G−1
A has finite moments of all orders. Indeed, we have

G A =
∫T

0

∫1

0
v(1− v)ψ(Yr,v )d vdr

≥
∫T

0

∫1

0
v(1− v)1{Yr,v< R

2 }d vdr ≥
∫T

0
dr 1{Y 1(r )< R

4 }

∫1

0
d v v(1− v)1{Y 2(v)< R

4 }

=λ1{r ∈ [0,T ] : Y 1(r ) < R/4}
∫1

0
v(1− v)1{Y 2(v)< R

4 }d v, (4.8.17)

where λ1 denotes the one-dimensional Lebesgue measure. For any 0 < ε< T , we get

P{λ1{r ∈ [0,T ] : Y 1(r ) < R/4} < ε}

≤ P{Y 1(ε) ≥ R/4} = P

{∫
[0,ε]2

||u(s,∗)−u(s′,∗)||2p
p,γ2

|s − s′|1+2pγ1
d sd s′ ≥ R/4

}
.

For any q ≥ 1, by Markov’s inequality, this is bounded above by

(4/R)q E

⎡⎣∣∣∣∣∣
∫

[0,ε]2

||û(s,∗)− û(s′,∗)||2p
p,γ2

|s − s′|1+2pγ1
d sd s′

∣∣∣∣∣
q⎤⎦

≤ (4/R)qε2(q−1)
∫

[0,ε]2
d sd s′

∫
[0,1]2

d xd x ′ E
[|u(1]s,s′]×]x,x ′])|2pq

]
|s − s′|q(1+2pγ1)|x −x ′|q(1+2pγ2)

≤ cqε
2q (4.8.18)

for some positive constant cq . By Lemma 4.4 in Chapter 3 of [24], we know that the random

variable λ1{r ∈ [0,T ] : Y 1(r ) < R/4} has finite negative moments of all orders. It remains to

prove the random variable
∫1

0 v(1− v)1{Y 2(v)< R
4 }d v also has finite negative moments of all
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orders. For any 0 < ε< 1/36, we have

P

{∫1

0
v(1− v)1{Y 2(v)< R

4 }d v < ε

}
≤ P

{∫1/2

�
ε

v(1− v)1{Y 2(v)< R
4 }d v < ε

}
≤ P

{�
ε

2

∫1/2

�
ε

1{Y 2(v)< R
4 }d v < ε

}
= P

{∫1/2

�
ε

1{Y 2(v)< R
4 }d v < 2

�
ε

}
= P

{∫1/2

0
1{Y 2(v)< R

4 }d v < 2
�
ε+

∫�
ε

0
1{Y 2(v)< R

4 }d v

}

≤ P

{∫1/2

0
1{Y 2(v)< R

4 }d v < 3
�
ε

}
≤ P

{
Y 2(3

�
ε) ≥ R/4

}
= P

{∫
[0,3

�
ε]2

||û(·, x)− û(·, x ′)||2p
p,γ1

|x −x ′|1+2pγ2
d xd x ′ ≥ R

4

}
.

For any q ≥ 1, by Markov’s inequality, this is bounded above by

(4/R)q E

⎡⎣∣∣∣∣∣
∫

[0,3
�
ε]2

||û(·, x)− û(·, x ′)||2p
p,γ1

|x −x ′|1+2pγ2
d xd x ′

∣∣∣∣∣
q⎤⎦

≤ (4/R)q (3T
�
ε)2(q−1)

∫
[0,3

�
ε]2

d xd x ′
∫

[0,T ]2
d sd s′

E
[|u(1]s,s′]×]x,x ′])|2pq

]
|s − s′|q(1+2pγ1)|x −x ′|q(1+2pγ2)

≤ cqε
q . (4.8.19)

Again, we use [24, Chapter 3, Lemma 4.4] to obtain that the random variable
∫1

0 v(1 −
v)1{Y 2(v)< R

4 }d v has finite negative moments of all orders, which completes the proof of Theo-

rem 4.2.1(c). �

Remark 4.8.4. (a) In the case of Dirichlet boundary conditions, we do not know if M has a

smooth density. This is because in the definition of the random variable λA in (4.8.12), the

function (r, v) �→ ∫r
0

∫v
0 b(1−b)ψ(Ya,b)dbd a satisfies the Neumann boundary conditions,

while in the case of Dirichlet boundary conditions, we are not able to construct a function

that satisfies the Dirichlet boundary conditions.

(b) Even with Neumann boundary conditions, the method we use does not give a Gaussian-

type upper bound on the density of M. This is because in our method the family of random

variables {λA(r, v) : (r, v) ∈ [0,T ]× [0,1]} defined in (4.8.12) is not adapted to the filtration

and we cannot use Burkholder’s inequality to estimate the Skorohod integral, as we did in

Sections 4.6 and 4.7.
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5 Extension to the linear stochastic
fractional heat equation

In this chapter, we extend some of the results of the previous chapter to the solution of a linear

stochastic fractional heat equation. When the heat operator is replaced by the fractional heat

operator, the Hölder continuity of the solution changes accordingly. However, the method

of the proof for smoothness of the density and the estimate for the Gaussian-type upper

bound on the density remain the same. This Gaussian-type upper bound highlights again the

connection between the density and the Hölder continuity properties of the solution.

5.1 Introduction and main results

In this chapter, we consider a special case of equations (1.2.2) with α ∈ ]1,2[, σ≡ Id, b ≡ 0 and

d = 1. That is, we consider the following linear stochastic fractional heat equation

∂u

∂t
(t , x) = x Dαu(t , x)+Ẇ (t , x), (5.1.1)

for t ∈ [0,∞[ and x ∈ R, with initial condition u(0, x) = 0, for all x ∈ R. The definition of the

fractional differential operator Dα is given in (2.1.2) and (2.1.3).

By definition, the solution of (5.1.1) is

u(t , x) =
∫t

0

∫
R

Gα(t − r, x − v)W (dr,d v), (5.1.2)

where Gα(·,∗) is the fundamental solution of the Cauchy problem

∂

∂t
G(t , x) = x DαG(t , x), t > 0, x ∈R,

G(0, x) = δ0(x),
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where δ0 is the Dirac distribution. An expression for Gα(·,∗) is

Gα(t , x) = 1

2π

∫
R

exp(−iλx − t |λ|α)dλ. (5.1.3)

We assume the process {u(t , x) : (t , x) ∈ [0,∞[×R} given by (5.1.2) is the jointly continuous

version, which is almost α−1
2α -Hölder continuous in time and almost α−1

2 -Hölder continuous in

space. In fact, there exists a constant C =C (p,T ) such that for any p ≥ 1,(t , x), (s, y) ∈ [0,T ]×R,

E[|u(t , x)−u(s, y)|p ] ≤C (|t − s| α−1
α +|x − y |α−1)p/2; (5.1.4)

see (2.1.6).

We adopt the same notations as in Chapter 4. Choose two non-trivial compact intervals

I ⊂ [0,T ] and J ⊂R. Choose (s0, y0) ∈ I × J and δ1 > 0. For t ∈ [0,T ], we denote

ū(t , y0) = u(t , y0)−u(s0, y0). (5.1.5)

Set

F1 = u(s0, y0), F2 = sup
t∈[s0,s0+δ1]

ū(t , y0) and F = (F1,F2). (5.1.6)

Choose δ2 > 0. Denote by M0 the global supremum of u over [0,δ1]× [y0, y0 +δ2]:

M0 = sup
(t ,x)∈[0,δ1]×[y0,y0+δ2]

u(t , x). (5.1.7)

Similar to the Theorem 4.2.1, we establish the smoothness of the probability density functions

of the random variables F and M0.

Theorem 5.1.1. (a) For all (s0, y0) ∈ ]0,T ]×R and δ1 > 0, the random vector F takes values

in R×]0,∞[ a.s. and has an infinitely differentiable density on R×]0,∞[. When s0 = 0, F1

vanishes identically but F2 takes values in ]0,∞[ a.s. and has an infinitely differentiable

density on ]0,∞[.

(b) For all y0 ∈R, δ1 > 0 and δ2 > 0, the random variable M0 takes values in ]0,∞[ a.s. and has

an infinitely differentiable density on ]0,∞[.

We will prove Theorem 5.1.1 in Section 5.3. The method is the same as that in Chapter 4: we

will use Theorem 1.5.5. The fractional heat operator is a non-local operator, and this makes

a difference here. For example, the inner product of the random elements in the condition

Theorem 1.5.5(iii) gives a formula for the solution of an inhomogeneous heat equation. For the

heat equation with Neumann or Dirichlet boundary conditions, uniqueness of the solution

holds, while for heat equation on the whole space, uniqueness of the solution fails in general

(see for example [40, p. 145]). Fortunately, we are able to overcome this problem because of
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0

t

x
y0 −δ1/α

1

y0

y0 +2δ1/α
1

c2 C2

T

c1

C1

s0

s0 +δ1 I

J

Figure 5.1 – Illustration of conditions (5.1.8)–(5.1.10)

the choice of the functions f0, g0 and φ0 in Section 5.3.

We will also establish Gaussian-type upper bounds on the probability density functions of the

random variables F and M0.

Assume I × J ⊂ ]0,T ]×R. Assume that there are constants c1,C1 such that

0 < c1 < I := inf{s : s ∈ I } and Ī := sup{s : s ∈ I } <C1 < T +1. (5.1.8)

Assume also that there are constants c2,C2 such that

c2 < J := inf{y : y ∈ J } and C2 > J̄ := sup{y : y ∈ J }. (5.1.9)

Assume that δ1 is small enough so that

s0 +δ1 ∈ I , and δ1/α
1 < min

{
J −c2, (C2 − J̄ )/2

}
; (5.1.10)

see Figure 5.1.

Denote (z1, z2) �→ p(z1, z2) the probability density function of the random vector F .

Theorem 5.1.2. Assume I × J ⊂ ]0,T ]×R. There exists a constant c = c(I , J) such that for all
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δ1 > 0 satisfying (5.1.10), for all z2 ≥ δ(α−1)/(2α)
1 , z1 ∈R and any (s0, y0) ∈ I × J ,

p(z1, z2) ≤ c√
δ(α−1)/α

1

exp

(
− z2

2

c δ(α−1)/α
1

)
(|z1|−

1
4 ∧1)exp

(
−z2

1

c

)
(5.1.11)

≤ c√
δ(α−1)/α

1

exp

(
− z2

2

c δ(α−1)/α
1

)
. (5.1.12)

We will prove Theorem 5.1.2 in Section 5.4.

Remark 5.1.3. Note that (5.1.11) implies (5.1.12) directly. By Theorem 5.1.2(b) and Remark

4.1.2(b), the assumption (4.1.14) is satisfied for the solution to (5.1.1) with H1 = α−1
2α . Therefore,

there exists a constant C =C (I , J ) such that for all compact sets A ⊂Rd and for every y0 ∈ J ,

P{v(I × {y0})∩ A �= �} ≤C Hd− 2α
α−1

(A), (5.1.13)

where the components of the random field v = (v1, . . . , vd ) are independent copies of the solution

u to (5.1.1).

To establish the Gaussian-type upper bound on the density of the random variable M0, we

introduce some notation for simplicity. Denote

δ := δ(α−1)/α
1 +δα−1

2 , Δ• := δ
α

α−1 , and Δ∗ := δ
1

α−1 . (5.1.14)

Choose a positive constant C̄1 with C̄1 < T . Let c2, C2 be chosen as in (5.1.9). Assume that

δ1,δ2 ∈ ]0,1[ are small enough so that

y0 +δ2 ∈ J , Δ• < C̄1 and Δ∗ < min
{

J −c2, (C2 − J̄ )/2
}

; (5.1.15)

see Figure 5.2.

Denote z �→ p0(z) the probability density function of random variable M0.

Theorem 5.1.4. Assume J ⊂R. There exists a finite positive constant c = c(T, J ) such that for all

δ1, δ2 satisfying the conditions in (5.1.15), for all y0 ∈ J and z ≥ (δ(α−1)/α
1 +δα−1

2 )1/2,

p0(z) ≤ c√
δ(α−1)/α

1 +δα−1
2

exp

(
− z2

c (δ(α−1)/α
1 +δα−1

2 )

)
. (5.1.16)

The proof of Theorem 5.1.4 will be presented in Section 5.5.
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0

t

x
y0 −Δ∗ y0 y0 +δ2

y0 +2Δ∗c2

C2

T

C̄1

δ1

Δ•

J

Figure 5.2 – Illustration of condition (5.1.15)

5.2 Preliminaries

In this section, we first present a result, analogous to [45, Theorem 3.3(1)], on the local behavior

of the solution in time, which will be used to prove the strict positivity of F2.

Proposition 5.2.1. Fix y0 ∈R. There exists a fractional Brownian motion {Xt : t ≥ 0} with Hurst

index H := α−1
2α , such that

u(t , y0)− (π(α−1))1/2Γ(1/α)−1/2X (t ), t ≥ 0 (5.2.1)

defines a mean-zero Gaussian process with a version that is continuous on [0,∞[ and infinitely

differentiable on ]0,∞[. As a consequence, for all t > 0, and y0 ∈R,

limsup
ε↓0

u(t +ε, y0)−u(t , y0)

ε(α−1)/(2α)
�

2lnln(1/ε)
= (π(α−1))−1/2Γ(1/α)1/2 a.s. (5.2.2)

Remark 5.2.2. Similar result on the local behavior of the solution in space has been established

in [41, Corollary 1.2 and Proposition 3.1]; see also [45, Theorem 3.3(2)].

Proof of Proposition 5.2.1. The structure of this proof is similar to that of [45, Theorem 3.3(1)].

From (5.1.2), for t , ε> 0,

E[(u(t +ε, y0)−u(t , y0))2] =
∫t

0

∫
R

(Gα(t +ε− r, y0 − v)−Gα(t − r, y0 − v))2d vdr

+
∫t+ε

t

∫
R

G2
α(t +ε− r, y0 − v)d vdr

:= J1 + J2. (5.2.3)

177



Chapter 5. Extension to the linear stochastic fractional heat equation

Using the semi-group property of the Green kernel (Lemma A.1.1(ii)), we see that

J2 =
∫t+ε

t
Gα(2(t +ε− r ),0)dr

=
∫ε

0
Gα(2r,0)dr

= Γ(1/α)

π(α−1)
·2−1/αε

α−1
α . (5.2.4)

As for the term J1, we have

J1 =
∫t

0

∫
R

(Gα(ε+ r, v)−Gα(r, v))2d vdr. (5.2.5)

Before we evaluate J1, we first compute the following integral:∫∞

0

∫
R

(Gα(ε+ r, v)−Gα(r, v))2d vdr = 1

2π

∫∞

0
dr

∫
R

d v
∣∣∣e−(r+ε)|v |α −e−r |v |α

∣∣∣2

= 1

π

∫∞

0
dr

∫∞

0
d v e−2r vα

∣∣∣1−e−εvα
∣∣∣2

= 1

2π

∫∞

0

(
1−e−εvα)2

vα
d v

= 1

2π
ε

α−1
α

∫∞

0

(
1−e−vα)2

vα
d v, (5.2.6)

where, in the first equality, we use the Plancherel theorem. The last integral in (5.2.6) is equal

to 2Γ(1/α)
α−1 (1−2−1/α) by changing variable [z = vα]; see also the calculation the proof of Lemma

A.1 in [45]. Therefore,

J1 = Γ(1/α)

π(α−1)
(1−2−1/α)ε

α−1
α −

∫∞

t

∫
R

(Gα(ε+ r, v)−Gα(r, v))2d vdr. (5.2.7)

Combining (5.2.3), (5.2.4) and (5.2.7), we obtain that

E[(u(t +ε, y0)−u(t , y0))2] = Γ(1/α)

π(α−1)
ε

α−1
α −

∫∞

t

∫
R

(Gα(ε+ r, v)−Gα(r, v))2d vdr. (5.2.8)

In order to understand the last integral, let η denote a white noise on R that is independent of

the space-time white noise Ẇ , and consider the Gaussian process {Tt : t ≥ 0} defined by

Tt := 1�
4π

∫
R

1−e−t |z|α

|z|α/2
η(d z), t ≥ 0.

This is a well-defined mean-zero Wiener integral process, T0 = 0, and

Var(Tt ) = 1

4π

∫
R

(
1−e−t |z|α

|z|α/2

)2

d z <∞ for all t > 0.
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Note that

E[(Tt+ε−Tt )2] = 1

4π

∫
R

(
e−t |z|α −e−(t+ε)|z|α

|z|α/2

)2

d z

= 1

4π

∫
R

e−2t |z|α
(

1−e−ε|z|
α

|z|α/2

)2

d z

= 1

2π

∫∞

t
d s e−2s|z|α

∫
R

d z
(
1−e−ε|z|

α
)2

= 1

2π

∫∞

t
d s

∫
R

d z
∣∣∣e−(s+ε)|z|α −e−s|z|α

∣∣∣2

=
∫∞

t

∫
R

(Gα(ε+ s, z)−Gα(s, z))2d zd s, (5.2.9)

where, in the last inequality, we again use the Plancherel theorem. Since T and u are indepen-

dent, by (5.2.8) and (5.2.9), we have

E[(u(t +ε, y0)+Tt+ε−u(t , y0)−Tt )2] = Γ(1/α)

π(α−1)
ε

α−1
α . (5.2.10)

Therefore, since u(0, y0) ≡ 0 ≡ T0, we have proved that {Xt : t ≥ 0} is a fractional Brownian

motion {Xt : t ≥ 0} with Hurst index H := α−1
2α , where

Xt := (π(α−1))1/2Γ(1/α)−1/2(u(t , y0)+Tt ), t ≥ 0. (5.2.11)

It remains to prove that the process {Tt : t ≥ 0} has a version that is continuous on [0,∞[ and

infinitely differentiable on ]0,∞[. The proof follows along the same lines as that of [45, Lemma

3.6]. We give the proof for the convenience of the reader. First, for t , s ≥ 0,

E[(Tt −Ts)2] = 1

4π

∫
R

(
e−s|z|α −e−t |z|α

|z|α/2

)2

d z

≤
∫
R

(
1−e−|t−s| |z|α

|z|α/2

)2

d z

= |t − s| α−1
α

∫
R

(
1−e−|z|

α

|z|α/2

)2

d z.

Applying the Kolmogorov continuity theorem, we see that T has a version that is Hölder

continuous with exponent (α−1)/(2α)−ε for all small ε> 0.
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Next, we consider the case that t > 0, and define for all n ≥ 1,

T (n)
t := 1�

4π

∫
R

∂n

∂t n

(
1−e−t |z|α

|z|α/2

)
η(d z)

= (−1)n+1

�
4π

∫
R
|z|αn−α/2e−t |z|αη(d z).

Since the integrand belongs to L2(R), {T (n)
t : t > 0} is a well-defined mean-zero Gaussian

process. Furthermore, for every t , s > 0,

E

[(
T (n)

t −T (n)
s

)2
]
= 1

4π

∫
R
|z|2αn−α

∣∣∣e−s|z|α −e−t |z|α
∣∣∣2

d z

= 1

4π

∫
R
|z|2αn−αe−2(s∧t )|z|α

∣∣∣1−e−|t−s| |z|α
∣∣∣2

d z

≤ |t − s|2
4π

∫
R
|z|2αn+αe−2(s∧t )|z|αd z,

where, in the last inequality, we use that 1−e−θ ≤ θ for all θ ≥ 0. It follows from the Kolmogorov

continuity theorem that every T (n) is continuous on ]0,∞[ [up to a version].

If ϕ ∈ C∞
0 (]0,∞[) (the space of infinitely differentiable functions with compact support on

]0,∞[), then we apply the stochastic Fubini theorem (see [24, Chapter 1, Theorem 5.30] or [81,

Theorem 2.6]), to see that, a.s.,∫∞

0
T (n)

t ϕt d t = 1�
4π

∫
R
η(d z)

∫∞

0
d t

∂n

∂t n

(
1−e−t |z|α

|z|α/2

)
ϕt

= (−1)n

�
4π

∫
R
η(d z)

∫∞

0
d t

(
1−e−t |z|α

|z|α/2

)
∂n

∂t n ϕt ,

thanks to integration by parts. A second appeal to the stochastic Fubini theorem yields∫∞

0
T (n)

t ϕt d t = (−1)n
∫∞

0
Tt

∂n

∂t n ϕt d t a.s.

That is, T (n)
t is the weak n-fold derivative of Tt for all t > 0. Since T (n) is continuous on ]0,∞[

for all n, this shows that in fact T (n)
t is a.s. the ordinary n-fold derivative of T at t . Therefore,

{Tt : t ≥ 0} has a version that is infinitely differentiable on ]0,∞[.

Finally, (5.2.2) follows from the representation (5.2.1) and the law of the iterated logarithm for

fractional Brownian motion (see [45, Theorem 2.11]). �

We next show some properties of the rectangular increments of the solution, analogous to

Lemmas 4.3.2 and 4.3.3.

Lemma 5.2.3. There exists a constant CT such that for any θ ∈ ]0, α−1
α [ and (t , s, x, y) ∈ [0,T ]2 ×
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R2,

E[(u(t , x)+u(s, y)−u(t , y)−u(s, x))2] ≤CT |t − s| α−1
α ∧|x − y |α−1

≤CT |t − s| α−1
α

−θ|x − y |αθ. (5.2.12)

Proof. The proof follows the same lines as the proof of Lemma 4.3.2 by using (5.1.4). �

From now on, we fix θ ∈]0, α−1
α [ and set

θ1 = α−1

α
−θ, θ2 =αθ. (5.2.13)

By the isometry and Lemma 5.2.3,

‖D(u(t , x)+u(s, y)−u(t , y)−u(s, x))‖2
H = E[(u(t , x)+u(s, y)−u(t , y)−u(s, x))2]

≤CT |t − s|θ1 |x − y |θ2 , (5.2.14)

for any (t , s, x, y) ∈ [0,T ]2 ×R2.

Lemma 5.2.4. For any 0 < ξ< θ1/2 and 0 < η< θ2/2, there exists a random variable C which is

a.s. finite and depends on T and the length of the interval L such that a.s., for all (t , s, x, y) ∈
[0,T ]2 × [a,b]2 with [a,b] ⊆ L,

|u(t , x)+u(s, y)−u(t , y)−u(s, x)| ≤C |t − s|ξ|x − y |η. (5.2.15)

Proof. The proof follows the same lines as that of Lemma 4.3.3 with the interval [0,1] replaced

by [a,b]. For (t , x) ∈ [0,∞[×R, we denote

û(t , x) = u(t , x)−u(t , a). (5.2.16)

We choose p, γ̄2 such that ξ< θ1/2− 1
2p and η+ 1

2p < γ̄2 < θ2/2− 1
2p . Let Ep,γ̄2 [a,b] be the space

of continuous functions defined on [a,b] vanishing at a and having a finite ‖ · ‖p,γ̄2 norm (see

Section 4.3 for the definition of Ep,γ̄2 [a,b] and ‖ ·‖p,γ̄2 ).

Since a.s., for any t ∈ [0,T ], x �→ û(t , x) is almost α−1
2 -Hölder continuous, we see that û(t ,∗)

belongs to Ep,γ̄2 [a,b]. Moreover, by (5.2.12), for any s, t ∈ [0,T ],

E[‖û(t ,∗)− û(s,∗)‖2p
p,γ̄2

] =
∫

[a,b]2

E[|u(t , x)+u(s, y)−u(t , y)−u(s, x)|2p ]

|x − y |1+2pγ̄2
d xd y

≤CT |t − s|θ1p
∫

[a,b]2

|x − y |θ2p

|x − y |1+2pγ̄2
d xd y

≤CT |t − s|θ1p ,
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where the constant CT depends only on T and the length of the interval [a,b]. We apply the

Kolmogorov continuity theorem (see [76, Theorem 2.1]) to see that the process {û(t ,∗) : t ∈
[0,T ]} has a continuous version {ũ(t ,∗) : t ∈ [0,T ]} with values in Ep,γ̄2 , which is θ1

2 − 1
2p − ε-

Hölder continuous for small ε such that θ1
2 − 1

2p −ε> ξ, namely, there exists a random variable

C , finite almost surely, such that a.s. for any s, t ∈ [0,T ],

‖ũ(t ,∗)− ũ(s,∗)‖p,γ̄2 ≤C |t − s|
θ1
2 − 1

2p −ε.

Hence we have for any s, t ∈ [0,T ],∫
[a,b]2

|ũ(t , x)− ũ(s, x)− ũ(t , y)+ ũ(s, y)|2p

|x − y |1+2pγ̄2
d xd y ≤C |t − s|(

θ1
2 − 1

2p −ε)2p .

We apply the Garsia, Rodemich and Rumsey lemma (see Lemma A.6.2) to the real-valued

function x �→ ũ(t , x)− ũ(s, x) with Ψ(x) = x2p , p(x) = x(1+2pγ̄2)/(2p),d = 1, to get that for any

(t , s, x, y) ∈ [0,T ]2 × [a,b]2,

|ũ(t , x)− ũ(s, x)− ũ(t , y)+ ũ(s, y)| ≤C |t − s|
θ1
2 − 1

2p −ε|x − y |γ̄2− 1
2p

≤ C̃ |t − s|ξ|x − y |η, (5.2.17)

where C̃ depends on the length of the interval [a,b]. Letting y = a in (5.2.17), we obtain

|ũ(t , x)− ũ(s, x)| ≤C ′|t − s|ξ, (5.2.18)

where C ′ depends on the length of the interval [a,b].

Fix (s, y) ∈ [0,T ]× [a,b]. Using the triangle inequality,

|ũ(t , x)− ũ(s, y)| ≤ |ũ(t , x)− ũ(s, x)|+ |ũ(s, x)− ũ(s, y)|,

which converges to 0 as (t , x) → (s, y) by (5.2.18) and the fact that x �→ ũ(s, x) is continuous

since ũ(s,∗) ∈ Ep,γ̄2 . Therefore, a.s., (t , x) �→ ũ(t , x) is continuous. Together with the fact that for

any t ∈ [0,T ], P{û(t ,∗) = ũ(t ,∗)} = 1, we obtain that the processes {û(t , x) : (t , x) ∈ [0,T ]×[a,b]}

and {ũ(t , x) : (t , x) ∈ [0,T ]× [a,b]} are indistinguishable and hence (5.2.17) implies (5.2.15). �

Choose an integer p0 and γ0 ∈R such that

p0 > γ0 > 2α

α−1
. (5.2.19)

We assume that p0 is sufficient large so that there exist γ1, γ2 such that

1

2p0
< γ1 < θ1/2− 1

2p0
,

1

2p0
< γ2 < θ2/2− 1

2p0
, (5.2.20)
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0

γ2

γ1
1

2p0

(γ0−1)(α−1)
2p0α

1
2p0

(γ0−1)(α−1)
2p0

Figure 5.3 – Illustration of (5.2.20) and (5.2.21)

where θ1, θ2 are defined in (5.2.13), and

αγ1

α−1
+ γ2

α−1
= γ0 −1

2p0
; (5.2.21)

see Figure 5.3.

We introduce the following family of random variables, which can control the value of the

supremum F2. For r ∈ [s0, s0 +δ1], we define

Yr :=
∫

[s0,r ]2

(u(t , y0)−u(s, y0))2p0

|t − s|(α−1)γ0/α
d sd t . (5.2.22)

By Hölder’s inequality and (5.1.4), there exists a constant cp , not depending on (s0, y0) ∈
[0,T ]×R, such that for any p ≥ 1, and for all r ∈ [s0, s0 +δ1],

E[|Yr |p ] ≤ (r − s0)2(p−1)
∫

[s0,r ]2

E[|u(t , y0)−u(s, y0)|2p0p ]

|t − s|(α−1)γ0p/α
d sd t

≤ cp (r − s0)2(p−1)
∫

[s0,r ]2

|t − s|(α−1)p0p/α

|t − s|(α−1)γ0p/α
d sd t

≤ cp (r − s0)2pδ
(α−1)(p0−γ0)p/α
1 . (5.2.23)

Similar to Lemma 4.5.1(a), we know that Yr ∈D∞, r ∈ [s0, s0 +δ1] and for any integer l ,

Dl Yr =
∫

[s0,r ]2
d td s

2p0(2p0 −1) · · · (2p0 − l +1)

|t − s|(α−1)γ0/α

× (u(t , y0)−u(s, y0))2p0−l (D(u(t , y0)−u(s, y0)))⊗l . (5.2.24)

Moreover, we have the following estimate on the moment of the Malliavin derivative of Yr .
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Lemma 5.2.5. For any p ≥ 1, there exists a constant cp , not depending on (s0, y0) ∈ [0,T ]×R,

such that for all δ1 > 0 and for all r ∈ [s0, s0 +δ1],

E[‖DYr ‖p
H ] ≤ cp (r − s0)2pδ

(p0−γ0)(α−1)p/α
1 . (5.2.25)

Proof. From (5.2.24), we know that

DYr = 2p0

∫
[s0,r ]2

d sd t
(u(t , x0)−u(s, y0))2p0−1

|t − s|γ0(α−1)/α
D(u(t , y0)−u(s, y0))

and by Hölder’s inequality,

E[‖DYr ‖p
H ] ≤ cp

(∫
[s0,r ]2

d sd t

)p−1 ∫
[s0,r ]2

d sd t
E
[|(u(t , y0)−u(s, y0))|(2p0−1)p

]
|t − s|γ0p(α−1)/α

×‖D(u(t , y0)−u(s, y0))‖p
H . (5.2.26)

Since

‖D(u(t , x)−u(s, y))‖H = ‖u(t , x)−u(s, y)‖L2(Ω) (5.2.27)

≤C (|t − s| α−1
α +|x − y |α−1)1/2

by (5.1.4), we see that (5.2.26) is bounded above by

cp ((r − s0)2)p−1
∫

[s0,r ]2
d sd t |t − s|(p0−γ0)(α−1)p/α

≤ cp (r − s0)2pδ
(p0−γ0)(α−1)p/α
1 , (5.2.28)

which completes the proof. �

Furthermore, we have for any integer l and q ≥ 1,

sup
r∈[s0,s0+δ1]

E
[
‖Dl Yr ‖q

H ⊗l

]
<∞. (5.2.29)

Lemma 5.2.6. There exists a finite positive constant c, not depending on (s0, y0) ∈ [0,T ]×R,

such that for any a > 0, and for all r ∈ [s0, s0 +δ1],

Yr ≤ R := c a2p0δ
2−γ0(α−1)/α
1 ⇒ sup

t∈[s0,r ]
|ū(t , y0)| ≤ a. (5.2.30)

Proof. The proof is similar to that of Lemma 4.3.1. We first apply the Garsia, Rodemich, and
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Rumsey lemma (see Lemma A.6.1) with

S := [s0,r ], ρ(t , s) := |t − s| α−1
α , μ(d t ) := d t ,

Ψ(x) := x2p0 , p(x) := xγ0/(2p0) and f := u(·, y0).

From (A.34), and assuming Yr ≤ R, we deduce that for all t , s ∈ [s0,r ],

|u(t , y0)−u(s, y0)| ≤ 10
∫2ρ(t ,s)

0

Y
1

2p0
r

[μ(Bρ(s,u/4))]1/p0
u

γ0
2p0

−1du

≤ c1Y
1

2p0
r

∫2ρ(t ,s)

0
u− α

(α−1)p0 u
γ0

2p0
−1du

= c2(|t − s|(α−1)/α)
γ0

2p0
− α

(α−1)p0 Y
1

2p0
r

≤ c2δ

γ0(α−1)
2p0α

− 1
p0

1 R
1

2p0 , (5.2.31)

where we have used (5.2.19); the constants c1, c2 do not depend on r , nor on (s0, y0) ∈ [0,T ]×R.

Letting s = s0 in the above inequality and choosing a suitable constant in the definition of R,

we obtain that

sup
t∈[s0,r ]

|ū(t , y0)| ≤ a.

�

Recall the definition of the space Ep0,γ2 [y0, y0 +Δ∗] in Section 4.3, i.e., the space of continuous

functions defined on [y0, y0 +Δ∗] vanishing at y0 and having a finite ‖ ·‖p0,γ2 norm defined in

(4.3.21). For (t , x) ∈ [0,T ]×R, we denote

ǔ(t , x) = u(t , x)−u(t , y0). (5.2.32)

Choose ξ, η as in Lemma 5.2.4 such that η> γ2 +1/(2p0), which is possible by (5.2.20). Then,

by (5.2.15),

‖ǔ(t ,∗)− ǔ(s,∗)‖2p0
p0,γ2

=
∫

[y0,y0+Δ∗]2

(u(t , x)+u(s, y)−u(t , y)−u(s, x))2p0

|x − y |1+2p0γ2
d xd y

≤C |t − s|2p0ξ
∫

[y0,y0+Δ∗]2
|x − y |2p0η−1−2p0γ2 d xd y

≤C |t − s|2p0ξ (5.2.33)

since 2p0η−1−2p0γ2 > 0, which implies that a.s. t �→ ǔ(t ,∗) is continuous in Ep0,γ2 [y0, y0+Δ∗].

We next introduce a family of random variables, which can control the value of the supremum

M0.
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For r ∈ [0,Δ•], we define

Y0(r ) :=
∫

[0,r ]2

(u(t , y0)−u(s, y0))2p0

|t − s|(α−1)γ0/α
d sd t , (5.2.34)

and

Y1(r ) :=
∫

[0,r ]2

‖ǔ(t ,∗)− ǔ(s,∗)‖2p0
p0,γ2

|t − s|1+2p0γ1
d td s

=
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y
(u(t , x)+u(s, y)−u(t , y)−u(s, x))2p0

|t − s|1+2p0γ1 |x − y |1+2p0γ2
. (5.2.35)

Similar to the calculation in (4.3.16), by Hölder’s inequality and (5.2.12), we see that there

exists a constant cp , not depending on y0 ∈R, such that for any p ≥ 1 and for any r ∈ [0,Δ•],

E[|Y1(r )|p ] ≤ cp (rΔ∗)2pΔ
p(p0θ1−(1+2p0γ1))
• Δ

p(p0θ2−(1+2p0γ2))
∗

= cp r 2pδp(p0θ1−(1+2p0γ1))α/(α−1)δp(p0θ2−(1+2p0γ2)+2)/(α−1)

= cp r 2pδp(p0(
αθ1
α−1+

θ2
α−1 )−2p0(

αγ1
α−1+

γ2
α−1 )−1)

= cp r 2pδp(p0−γ0), (5.2.36)

where in the first equality we use (5.1.14), in the third equality we use (5.2.21) and the fact that
αθ1
α−1 + θ2

α−1 = 1 by the definition of θ1, θ2 in (5.2.13).

For r ∈ [0,Δ•], set

Ȳr := Y0(r )+Y1(r ). (5.2.37)

By (5.2.36) and the calculation in (5.2.23), for any p ≥ 1, there exists a constant cp , not depend-

ing on y0 ∈R, such that for any r ∈ [0,Δ•],

E[|Ȳr )|p ] ≤ cp r 2pδp(p0−γ0). (5.2.38)

Similar to Lemma 4.5.1(b), we know that Ȳr ∈D∞ for r ∈ [0,Δ•], and for any integer l ,

Dl Ȳr = Dl Y0(r )+Dl Y1(r )

=
∫

[0,r ]2
d td s

2p0(2p0 −1) · · · (2p0 − l +1)

|t − s|(α−1)γ0/α

× (u(t , y0)−u(s, y0))2p0−l (D(u(t , y0)−u(s, y0)))⊗l

+
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y
2p0(2p0 −1) · · · (2p0 − l +1)

|t − s|1+2p0γ1 |x − y |1+2p0γ2

×u(1]s,t ]×]y,x])
2p0−l (Du(t , x; s, y))⊗l . (5.2.39)

We proceed to give an estimate on the moment of DȲr , analogous to (4.5.7).
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Lemma 5.2.7. For any p ≥ 1, there exists a constant cp , not depending on y0 ∈R, such that for

all r ∈ [0,Δ•],

E[‖DȲr ‖p
H ] ≤ cp r 2pδ(p0−γ0)p . (5.2.40)

Furthermore, for any integer l and q ≥ 1,

sup
r∈[0,Δ•]

E
[
‖Dl Ȳr ‖q

H ⊗l

]
<∞. (5.2.41)

Proof. We focus on estimate on the moment of DY1(r ) since the estimate on the moment of

DY0(r ) is essentially the same as that of DY (r ) in the proof of Lemma 5.2.5. From (5.2.39),

DY1(r ) = 2p0

∫
[0,r ]2

d td s
∫

[y0,y0+Δ∗]2
d xd y

u(1]s,t ]×]y,x])2p0−1Du(t , x; s, y)

|t − s|1+2p0γ1 |x − y |1+2p0γ2
,

and for any p ≥ 1, by Hölder’s inequality,

E[‖DY1(r )‖p
H ] ≤ cp (rΔ∗)2(p−1)

∫
[0,r ]2

d td s
∫

[y0,y0+Δ∗]2
d xd y

× E[|u(1]s,t ]×]y,x])|(2p0−1)p ]‖Du(t , x; s, y)‖p
H

|t − s|(1+2p0γ1)p |x − y |(1+2p0γ2)p

≤ cp (rΔ∗)2(p−1)
∫

[0,r ]2
d td s

∫
[y0,y0+Δ∗]2

d xd y

× |t − s|p0pθ1 |x − y |p0pθ2

|t − s|p(1+2p0γ1)|x − y |p(1+2p0γ2)

≤ cp (rΔ∗)2pΔ
p(p0θ1−(1+2p0γ1))
• Δ

p(p0θ2−(1+2p0γ2))
∗

= cp r 2pδp(p0θ1−(1+2p0γ1))α/(α−1)δp(p0θ2−(1+2p0γ2)+2)/(α−1)

= cp r 2pδp(p0(
αθ1
α−1+

θ2
α−1 )−2p0(

αγ1
α−1+

γ2
α−1 )−1)

= cp r 2pδp(p0−γ0), (5.2.42)

where in the second inequality we use (5.2.14), in the first equality we use (5.1.14), in the third

equality we use (5.2.21) and the fact that αθ1
α−1 + θ2

α−1 = 1 by the definition of θ1, θ2 in (5.2.13).

Property (5.2.41) follows from (5.2.39) and a calculation similar to (5.2.42). �

Lemma 5.2.8. There exists a finite positive constant c, not depending on y0 ∈R, such that for

any ā > 0, δ1 > 0, δ2 > 0 and for all r ∈ [0,Δ•],

Ȳr ≤ R̄ := c ā2p0δ
2α
α−1−γ0 ⇒ sup

(t ,x)∈[0,r ]×[y0,y0+δ2]
|u(t , x)| ≤ ā. (5.2.43)

Proof. The proof is similar to that of Lemma 4.3.5.
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Assuming Y0(r ) ≤ R̄, by the Garsia, Rodemich, and Rumsey lemma (see Lemma A.6.1), we

deduce, as in (5.2.31), that for all t , s ∈ [0,r ],

|u(t , y0)−u(s, y0)| ≤ c1 (|t − s|(α−1)/α)
γ0

2p0
− α

(α−1)p0 Y0(r )
1

2p0

≤ c1Δ

γ0(α−1)
2αp0

− 1
p0• Y0(r )

1
2p0 = c1δ

γ0
2p0

− α
(α−1)p0 Y0(r )

1
2p0 , (5.2.44)

where the constant c1 does not depend on r , nor on y0 ∈R. Letting s = 0 in (5.2.44), we obtain

sup
t∈[0,r ]

|u(t , y0)| ≤ c1δ
γ0

2p0
− α

(α−1)p0 Y0(r )
1

2p0 ≤ c1δ
γ0

2p0
− α

(α−1)p0 R̄
1

2p0 . (5.2.45)

Hence we can choose a suitable constant c in the definition of R̄ in (5.2.43) so that

sup
t∈[0,r ]

|u(t , y0)| ≤ ā

2
. (5.2.46)

Assuming Y1(r ) ≤ R̄, from the expression of Y1(r ) in (5.2.35), we first apply the Garsia, Ro-

demich, and Rumsey lemma (see Lemma A.6.2) to the Ep0,γ2 [y0, y0 +Δ∗]-valued function

s �→ ǔ(s,∗) with Ψ(x) = x2p0 , p(x) = x(1+2p0γ1)/(2p0),d = 1 to deduce, as in (4.3.31), that there

exists a constant c2 such that for all t , s ∈ [0,r ],

‖ǔ(t ,∗)− ǔ(s,∗)‖p0,γ2 ≤ c ′ Y1(r )
1

2p0

∫2|t−s|

0
x− 1

p0 x
1+2p0γ1

2p0
−1d x

= c2 Y1(r )
1

2p0 |t − s|
2p0γ1−1

2p0

≤ c2 Y1(r )
1

2p0 Δ

2p0γ1−1
2p0• = c2 Y1(r )

1
2p0 δ

α(2p0γ1−1)
2(α−1)p0 .

Letting s = 0, we obtain for all t ∈ [0,r ],

‖ǔ(t ,∗)‖2p0
p0,γ2

≤ c2 Y1(r )δ(2p0γ1−1)α/(α−1).

Applying the same lemma to the real-valued function x �→ ǔ(t , x) (t is now fixed) with Ψ(x) =
x2p0 , p(x) = x(1+2p0γ2)/(2p0), we obtain

|ǔ(t , x)− ǔ(t , y)| ≤ c3 Y1(r )
1

2p0 δ
α(2p0γ1−1)

2(α−1)p0 |x − y |
2p0γ2−1

2p0

for all x, y ∈ [y0, y0 +Δ∗]. Letting y = y0 we obtain that for all (t , x) ∈ [0,r ]× [y0, y0 +Δ∗],

|u(t , x)−u(t , y0)| ≤ c3 Y1(r )
1

2p0 δ
α(2p0γ1−1)

2(α−1)p0 Δ

2p0γ2−1
2p0∗

= c3 Y1(r )
1

2p0 δ
α(2p0γ1−1)

2(α−1)p0 δ
2p0γ2−1
2(α−1)p0

= c3 Y1(r )
1

2p0 δ
γ0

2p0
− α

p0(α−1) ,

where in the first equality we use (5.1.14), and the second equality is due to (5.2.21). In partic-
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ular, this implies that

sup
(t ,x)∈[0,r ]×[y0,y0+δ2]

|u(t , x)−u(t , y0)| ≤ c3 Y1(r )
1

2p0 δ
γ0

2p0
− α

p0(α−1) . (5.2.47)

We can choose the constant c in the definition of R̄ in (5.2.43) small so that (5.2.46) holds and

sup
(t ,x)∈[0,r ]×[y0,y0+δ2]

|u(t , x)−u(t , y0)| ≤ ā

2
. (5.2.48)

Hence, by (5.2.46), (5.2.48) and the triangle inequality, we obtain (5.2.43). �

We conclude this section by presenting a technical result on the uniqueness of the solution to

the fractional heat equation, which will allow us later on to verify the conditions in Theorem

1.5.5(iii). We first check that the fractional differential operator Dα maps C∞
0 (R) into the space

of infinitely differentiable functions with finite moment of all orders.

Lemma 5.2.9. For g ∈C∞
0 (R), Dαg belongs to C∞(R)∩Lp (R), for all p ≥ 1.

Proof. By definition,

Dαg (x) = cα

∫
R

g (x + y)− g (x)− y g ′(x)

|y |1+α d y

= cα

∫
|y |≤1

g (x + y)− g (x)− y g ′(x)

|y |1+α d y +cα

∫
|y |>1

g (x + y)− g (x)− y g ′(x)

|y |1+α d y

:= g1(x)+ g2(x).

We just prove that the function g1 is in C∞(R) and the proof for g2 is similar. By the remainder

formula in Taylor’s expansion,

|g ′(x + y)− g ′(x)− y g ′′(x)| ≤ 1

2
sup
x∈R

|g (3)(x)|y2.

Since 1 <α< 2, we have∫
|y |≤1

y2

|y |1+α d y <∞.

Applying the dominated convergence theorem (see [75, Theorem 5, Chapter 5]), we can differ-

entiate under the integral sign for the function g1. Hence g1 is differentiable. We can repeat

this argument to conclude that g1 is infinitely differentiable. Similarly, g2 is also infinitely

differentiable.

In order to prove that Dαg belongs to Lp (R), it suffices to prove that the function x �→∫
|y |>1

g (x+y)
|y |1+α d y belongs to Lp (R) since the other parts of Dαg are infinitely differentiable and
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compactly supported. By Hölder’s inequality and Fubini’s theorem,∫
R

∣∣∣∣∫|y |>1

|g (x + y)|
|y |1+α d y

∣∣∣∣p

d x ≤
∣∣∣∣∫|y |>1

1

|y |1+α d y

∣∣∣∣p−1 ∫
R

∫
|y |>1

|g (x + y)|p
|y |1+α d yd x

= c
∫
|y |>1

d y
1

|y |1+α
∫
R
|g (x + y)|p d x

= c
∫
|y |>1

1

|y |1+α d y
∫
R
|g (x)|p d x <∞,

which completes the proof. �

Let g ∈ C∞
0 (R) and f : [0,∞[ �→ R be a differentiable function with continuous derivative

satisfying f (0) = 0. We define

A(t , x) =
∫t

0

∫
R

Gα(t − r, x − v)

(
∂

∂r
− v Dα

)
( f (r )g (v))d vdr, t > 0, x ∈R,

A(0, x) = 0, x ∈R.

Lemma 5.2.10. The function A is well-defined and we have A(t , x) = f (t)g (x), for all (t , x) ∈
[0,∞[×R.

Proof. By Lemma 5.2.9, the function

(r, v) �→
(
∂

∂r
− v Dα

)
( f (r )g (v))

belongs to L2([0,T ]×R), and so does the Green kernel. Hence A is well-defined. Fix t > 0. We

are going to use the L1-Fourier transform to prove this identity. For this, we first show that∫
R
|A(t , x)|d x <∞. (5.2.49)

Indeed, by Fubini’s theorem,∫
R
|A(t , x)|d x ≤

∫
R

d x
∫t

0
dr

∫
R

d v Gα(t − r, x − v)| f ′(r )| |g (v)|

+
∫
R

d x
∫t

0
dr

∫
R

d v Gα(t − r, x − v)| f (r )| |Dαg (v)|

≤ c
∫t

0
dr

∫
R

d v |g (v)|
∫
R

Gα(t − r, x − v)d x

+c
∫t

0
dr

∫
R

d v |Dαg (v)|
∫
R

Gα(t − r, x − v)d x

= ct
∫
R

(|g (v)|+ |Dαg (v)|)d v <∞,
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where the last inequality is due to Lemma 5.2.9. Therefore, by Fubini’s theorem,

F A(t , ·)(ξ) =
∫
R

e−i xξA(t , x)d x

=
∫
R

d x e−i xξ
∫t

0
dr

∫
R

d v Gα(t − r, x − v)[ f ′(r )g (v)− f (r )Dαg (v)]

=
∫t

0
dr

∫
R

d v

(∫
R

e−i xξGα(t − r, x − v)d x

)
[ f ′(r )g (v)− f (r )Dαg (v)].

Using the Fourier transform of the Green kernel (see (5.1.3)), the above integral is equal to∫t

0
dr

∫
R

d v e−i vξe−(t−r )|ξ|α [ f ′(r )g (v)− f (r )Dαg (v)]

=
∫t

0
dr e−(t−r )|ξ|α [ f ′(r )F g (ξ)− f (r )F (Dαg )(ξ)]

=
∫t

0
dr e−(t−r )|ξ|α [ f ′(r )F g (ξ)+ f (r )|ξ|αF g (ξ)]

=F g (ξ)
∫t

0
e−(t−r )|ξ|α f ′(r )dr +|ξ|αF g (ξ)

∫t

0
e−(t−r )|ξ|α f (r )dr, (5.2.50)

where in the second equality we use (2.1.2). Integrating by parts, the first integral in (5.2.50) is

equal to

F g (ξ)( f (t )− f (0)e−t |ξ|α)−|ξ|αF g (ξ)
∫t

0
e−(t−r )|ξ|α f (r )dr

=F g (ξ) f (t )−|ξ|αF g (ξ)
∫t

0
e−(t−r )|ξ|α f (r )dr

since f (0) = 0, which implies that

F A(t , ·)(ξ) = f (t )F g (ξ) =F ( f (t )g (·))(ξ). (5.2.51)

Hence for every t > 0, A(t , x) = f (t)g (x) for almost every x ∈ R. On the other hand, by the

Cauchy-Schwarz inequality and (4.2.3),

|A(t , x)− A(t , y)| ≤
∫t

0
dr

∫
R

d v |Gα(t − r, x − v)−Gα(t − r, y − v)|

× | f ′(r )g (v)− f (r )Dαg (v)|

≤ c

(∫t

0

∫
R
|Gα(t − r, x − v)−Gα(t − r, y − v)|2d vdr

)1/2

×
(∫

R
(|g (v)|+ |Dαg (v)|)2d v

)1/2

≤ c|x − y |(α−1)/2,

which shows that for every t > 0, the function x �→ A(t , x) is continuous. Hence A(t , x) =
f (t )g (x) for all (t , x) ∈ [0,∞[×R. �
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5.3 Smoothness of the densities

It is clear that the first component of F in (5.1.6) belongs to D∞. For the second component of

F and the random variable M0, we have the following result.

Lemma 5.3.1. (a) The random variable F2 takes values in ]0,∞[ a.s. Moreover, it belongs to

D1,2 and

DF2 = 1{·<S}Gα(S −·, y0 −∗)−1{·<s0}Gα(s0 −·, y0 −∗), (5.3.1)

where S ∈ ]s0, s0 +δ1] is the unique point where the maximum that defines F2 is attained.

(b) The random variable M0 takes values in ]0,∞[ a.s. and belongs to D1,2, and

DM0 = 1{·<S̄}Gα(S̄ −·, X̄ −∗), (5.3.2)

where (S̄, X̄ ) ∈ ]0,δ1]× [y0, y0 +δ2] is the unique point where the maximum that defines M0 is

attained.

Proof. First, the strict positivity of F2 (when s0 = 0) and M0 is a consequence of the 0-1 law;

see also the arguments in the proof of Lemma 4.4.2. When s0 > 0, (5.2.2) implies that F2 > 0 a.s.

The proof of (5.3.1) and (5.3.2) is similar to that of Lemma 4.4.4. We have to show that the

maximums F2 and M0 are attained at a unique point almost surely. For the random variable

F2, by [47, Lemma 2.6 ], it suffices to check that for any t , s ∈ ]0,∞[ with t �= s,

E[|u(t , y0)−u(s, y0)|2] > 0. (5.3.3)

Assuming t > s without loss of generality, by (A.2),

E[|u(t , y0)−u(s, y0)|2] ≥
∫t

s

∫
R

G2
α(t − r, y0 − v)d vdr

=
∫t−s

0
Gα(2r,0)dr = cα(t − s)

α−1
α > 0.

Therefore, the maximum F2 is attained at a unique point in [s0, s0 +δ1] almost surely. The

proof of (5.3.1) is similar to that of (4.4.9).

For the random variable M0, by [47, Lemma 2.6 ], it suffices to check that for any (t , x), (s, y) ∈
]0,∞[×R with (t , x) �= (s, y)

E[|u(t , x)−u(s, y)|2] > 0. (5.3.4)

192



5.3. Smoothness of the densities

If t �= s, assuming t > s without loss of generality, we have

E[|u(t , x)−u(s, y)|2] ≥
∫t

s

∫
R

G2
α(t − r, x − v)d vdr

=
∫t−s

0
Gα(2r,0)dr = cα(t − s)

α−1
α > 0,

by (A.2). If t = s, x �= y , by the Plancherel theorem, we have

E[|u(t , x)−u(t , y)|2] =
∫t

0

∫
R

(Gα(t − r, x − v)−Gα(t − r, y − v))2d vdr

=
∫t

0

∫
R

(Gα(r, v)−Gα(r, y −x + v))2d vdr

= 1

2π

∫t

0

∫
R

e−2r |λ|α
∣∣∣1−eiλ(x−y)

∣∣∣2
dλdr > 0,

since the Lebesgue measure of {λ : 1−eiλ(x−y) = 0} is zero. �

We proceed to construct the random variables needed for Theorem 1.5.5. For (z1, z2) ∈
R×]0,∞[, set

a = z2/2 and A =R×]a,∞[. (5.3.5)

Let ψ : R �→ 1 be the infinitely differentiable function defined in (4.5.17), where R is defined in

Lemma 5.2.6 with a as in (5.3.5). Hence we have

‖ψ′‖∞ := sup
x∈R

|ψ′(x)| ≤ c R−1 (5.3.6)

for a certain constant c not depending on z2.

If I × J ⊂ ]0,T ]×R, let c1, C1, c2, C2 be as in (5.1.8) and (5.1.9) and f0 : R �→ [0,1] be an infinitely

differentiable function supported in [c1/2,(C1 +1)/2] such that f0(t ) = 1, for all t ∈ [c1,C1]. Let

g0 : R �→ [0,1] be an infinitely differentiable function supported in [c2 −1,C2 +1] such that

g0(x) = 1, for all x ∈ [c2,C2]. We define the H -valued random variable u1
A evaluated at (r, v) by

u1
A(r, v) =

(
∂

∂r
− v Dα

)
( f0(r )g0(v)). (5.3.7)

By Lemma 5.2.9 and the definition of the functions f0 and g0, there exists constant c such that

for all (s0, y0) ∈ I × J ⊂ ]0,T ]×R,

‖u1
A‖H ≤ c. (5.3.8)
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We define the function φδ1 as

φδ1 (v) :=φ0

(
v − y0

δ1/α
1

)
, for all v ∈R, (5.3.9)

where, as below (4.5.20), φ0 : R �→ [0,1] is an infinitely differentiable function supported in

[−1,2] such that φ0(v) = 1, for all v ∈ [0,1]. Set

H(r, v) :=φδ1 (v)
∫r

s0

ψ(Ya)d a, (r, v) ∈ [s0, s0 +δ1]×R. (5.3.10)

We define the H -valued random variables u2
A evaluated at (r, v) by

u2
A(r, v) =

{ (
∂
∂r − v Dα

)
H(r, v) if (r, v) ∈ ]s0, s0 +δ1]×R;

0 otherwise.
(5.3.11)

Finally, we define the random matrix γA = (γi , j
A )1≤i , j≤2 by

γA =
(

1 0

0
∫s0+δ1

s0
ψ(Yr )dr

)
. (5.3.12)

If s0 = 0 ∈ I ⊂ [0,T ], we only consider the random variables F2, u2
A and γ2,2

A defined in (5.1.6),

(5.3.11) and (5.3.12) with s0 = 0, respectively.

We next introduce the random variables needed to prove the smoothness of density of M0. For

z ∈ ]0,∞[, set

ā = z/2 and Ā =]ā,∞[. (5.3.13)

Let ψ̄ : R �→ 1 be the infinitely differentiable function defined in (4.5.27), where R̄ is defined in

Lemma 5.2.8 with ā as in (5.3.13). Hence we have

‖ψ̄′‖∞ := sup
x∈R

|ψ̄′(x)| ≤ c R̄−1 (5.3.14)

for a certain constant c not depending on z.

We define the function φ̄δ by

φ̄δ(v) :=φ0

(
v − y0

Δ∗

)
=φ0

(
v − y0

δ1/(α−1)

)
, v ∈R, (5.3.15)

where the function φ0 is specified below (5.3.9), so that for some constant c,

|φ̄′
δ(v)| ≤ c δ−

1
α−1 and |φ̄′′

δ(v)| ≤ c δ−
2

α−1 , for all v ∈R. (5.3.16)
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Set

H̄(r, v) := φ̄δ(v)
∫r

0
ψ̄(Ȳa)d a, (r, v) ∈ [0,Δ•]× [0,1], (5.3.17)

where {Ȳr : r ∈ [0,Δ•]} is defined in (5.2.37). We define the H -valued random variable uĀ

evaluated at (r, v) by

uĀ(r, v) =
{ (

∂
∂r − v Dα

)
H̄(r, v) if (r, v) ∈ ]0,Δ•]×R;

0 otherwise.
(5.3.18)

Finally, we define the random variable

γĀ =
∫Δ•

0
ψ̄(Ȳr )dr. (5.3.19)

The random variables introduced above are smooth, as required in Theorem 1.5.5.

Lemma 5.3.2. For i , j ∈ {1,2}, ui
A ∈D∞(H ), γi , j

A ∈D∞ and uĀ ∈D∞(H ), γĀ ∈D∞.

Proof. The proof is similar to that of Lemma 4.5.3. First, by discretization and (5.2.29), we see

that γ2,2
A belongs to D∞. On the other hand, we write

u2
A(r, v) =ψ(Yr )1[s0,s0+δ1](r )φδ1 (v)−1[s0,s0+δ1](r )Dαφδ1 (v)

∫r

s0

ψ(Ya)d a. (5.3.20)

Since v �→ Dαφδ1 (v) belongs to Lp (R) for all p ≥ 1 by Lemma 5.2.9, we can use the same

argument as in the proof of Lemma 4.5.3, to see that the discretization of u2
A converges to u2

A

in Lp (Ω,H ) for any p ≥ 1, and its Malliavin derivative converges to Du2
A in Lp (Ω,H ⊗2) for

any p ≥ 1. We repeat this procedure and conclude that u2
A belongs to D∞(H ).

Similarly, we can show that uĀ ∈D∞(H ) and γĀ ∈D∞. �

In the following, we check that the random variables defined above satisfy the conditions in

Theorem 1.5.5(iii).

Lemma 5.3.3. (a) On the event {F ∈ A} = {F2 > a}, we have 〈DFi ,u j
A〉H = γ

i , j
A for i , j ∈ {1,2}.

(b) On the event {M0 ∈ Ā} = {M0 > ā}, 〈DM0,uĀ〉H = γĀ .

Proof. We start by proving (a). If s0 > 0, by Lemma 5.2.10, we have

〈DF1,u1
A〉H =

∫s0

0

∫
R

Gα(s0 − r, y0 − v)

(
∂

∂r
− v Dα

)
( f0(r )g0(v))dr d v

= f0(s0)g0(y0) = 1 = γ1,1
A .
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Obviously,

〈DF1,u2
A〉H =

∫s0

0

∫
R

Gα(s0 − r, y0 − v)

(
∂

∂r
− v Dα

)
H(r, v)1{s0<r≤s0+δ1}dr d v = 0.

Moreover, using Lemmas 5.3.1(a) and 5.2.10, we have

〈DF2,u1
A〉H =

∫S

0

∫
R

Gα(S − r, y0 − v)

(
∂

∂r
− v Dα

)
( f0(r )g0(v))dr d v

−
∫s0

0

∫
R

Gα(s0 − r, y0 − v)

(
∂

∂r
− v Dα

)
( f0(r )g0(v))dr d v

= f0(S)g0(y0)− f0(s0)g0(y0) = 1−1 = 0,

where the last equality is due to the definition of the function f0 and g0 since S ∈ [s0, s0 +δ1].

Furthermore, for both cases s0 > 0 and s0 = 0,

〈DF2,u2
A〉H =

∫S

0
dr

∫
R

d v Gα(S − r, y0 − v)u2
A(r, v)

−
∫s0

0
dr

∫
R

d v Gα(s0 − r, y0 − v)u2
A(r, v)

=
∫S

s0

dr
∫
R

d vGα(S − r, y0 − v)

(
∂

∂r
− v Dα

)
H(r, v)

=
∫S−s0

0
dr

∫
R

d vGα(S − s0 − r, y0 − v)

(
∂

∂r
− v Dα

)
H(r + s0, v)

= H(S, y0),

where the last equality follows from Lemma 5.2.10 by using the fact that H(s0, v) = 0 for all

v ∈R. Therefore,

〈DF2,u2
A〉H =φδ1 (y0)

∫S

s0

ψ(Yr )dr =
∫S

s0

ψ(Yr )dr, (5.3.21)

where in the second equality we use the fact φδ1 (y0) = 1. Moreover, on the event {F ∈ A} =
{F2 > a}, we observe that if r > S, then ψ(Yr ) = 0. Otherwise we would have ψ(Yr ) > 0, hence

Yr ≤ R, and by Lemma 5.2.6, this would imply that

F2 = ū(S, y0) = sup
t∈[s0,r ]

ū(t , y0) ≤ a < F2,

which is a contradiction. Hence on {F ∈ A}, the last integral in (5.3.21) is equal to∫s0+δ1

s0

ψ(Yr )dr = γ2,2
A .
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We proceed to prove (b). By Lemma 5.3.1,

〈DM0,uĀ〉H = 〈1{·<S̄}(Gα(S̄ −·, X̄ −∗),uĀ〉H

=
∫S̄

0

∫
R

Gα(S̄ − r, X̄ − v)

(
∂

∂r
− v Dα

)
H̄(r, v)d vdr

= H̄(S̄, X̄ ) = φ̄δ(X̄ )
∫S̄

0
ψ̄(Ȳr )dr. (5.3.22)

Since X̄ ∈ [y0, y0 +δ2], by the definition of the function φ̄δ, it implies that φ̄δ(X̄ ) ≡ 1.Hence,

〈DM0,uĀ〉H =
∫S̄

0
ψ̄(Ȳr )dr.

On the event {M0 > ā}, for r > S̄, we have ψ̄(Ȳr ) = 0. Otherwise, we would have ψ̄(Ȳr ) > 0,

hence Ȳr ≤ R̄ and by Lemma 5.2.8 this implies that

M0 = u(S̄, X̄ ) = sup
(t ,x)∈[0,r ]×[y0,y0+δ2]

u(t , x) ≤ ā < M0,

which is a contradiction. Therefore, on the event {M0 ∈ Ā},

〈DM0,uĀ〉H =
∫Δ•

0
ψ̄(Ȳr )dr = γĀ .

This completes the proof. �

The last ingredient for the smoothness of the densities of F and M0 is the finite negative

moments of γ2,2
A and γĀ .

Lemma 5.3.4. (a) The random variable γ2,2
A has finite negative moments of all orders. Further-

more, for any p ≥ 1, there exists a constant cp , not depending on (s0, y0) ∈ I × J , such that for

all δ1 > 0 and for all z2 ≥ δ(α−1)/(2α)
1 ,

‖(γ2,2
A )−1‖Lp (Ω) ≤ cp δ

−1
1 . (5.3.23)

(b) The random variable γĀ has finite negative moments of all orders. Furthermore, for any

p ≥ 1, there exists a constant cp , not depending on y0 ∈ J , such that for all small δ1, δ2 > 0

and for z ≥ (δ(α−1)/α
1 +δα−1

2 )1/2,

‖γ−1
Ā
‖Lp (Ω) ≤ cp (δ(α−1)/α

1 +δα−1
2 )−

α
α−1 . (5.3.24)

Proof. The proof is similar to that of Lemma 4.5.4. We need to pay attention to the exponents

in the calculation.
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We first prove (a). By the definition of the function ψ,

γ2,2
A ≥

∫s0+δ1

s0

1{Yr ≤ R
2 }dr := X̄ .

For 0 < ε< δ1 and any q ≥ 1, since r �→ Yr is increasing, we have

P{X̄ < ε} ≤ P{Ys0+ε ≥ R/2}

≤ (2/R)q E[|Ys0+ε|q ] ≤ cq R−qε2qδ
(p0−γ0)(α−1)q/α
1 ,

where in the second inequality we use (5.2.23). which shows that the random variable γ2,2
A has

finite negative moments of all orders by [24, Chapter 3, Lemma 4.4]. Moreover, for any p ≥ 1

and q > p
2 ,

E[X̄ −p ] = p
∫∞

0
y p−1P(X̄ −1 > y)d y

= p
∫1/δ1

0
y p−1P(X̄ −1 > y)d y +p

∫∞

1/δ1

y p−1P(X̄ −1 > y)d y

≤ cp
1

δ
p
1

+cp R−qδ
(p0−γ0)(α−1)q/α
1

∫∞

1/δ1

y p−1 y−2q d y

= cpδ
−p
1 +cp R−qδ

(p0−γ0)(α−1)q/α
1 δ

2q−p
1

= cpδ
−p
1

(
1+R−qδ

(p0−γ0)(α−1)q/α
1 δ

2q
1

)
= cpδ

−p
1

(
1+a−2p0qδ

γ0(α−1)q/α−2q
1 δ

(p0−γ0)(α−1)q/α
1 δ

2q
1

)
,

where the last equality uses the definition of R in (5.2.30). Using (5.3.5) and the assumption

z2 ≥ δ(α−1)/(2α)
1 , this is bounded above by

cpδ
−p
1

(
1+δ

α−1
2α ×(−2p0q)

1 δ
γ0(α−1)q/α−2q
1 δ

(p0−γ0)(α−1)q/α
1 δ

2q
1

)
= cpδ

−p
1 .

Therefore, we have proved (5.3.23).

We proceed to prove (b). Similarly, by the definition of the function ψ̄,

γĀ ≥
∫Δ•

0
1{Ȳr ≤ R̄

2 }dr := X̃ .

For any 0 < ε<Δ•, since r �→ Ȳr is increasing,

P{X̃ < ε} ≤ P{Ȳε ≥ R̄/2}

≤ (2/R̄)q E[Ȳ q
ε ] ≤ cq R̄−q ε2qδ(p0−γ0)q , (5.3.25)

where, in the last inequality, we use (5.2.38). Hence the random variable γĀ has finite negative
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moments of all orders. Moreover, for any p ≥ 1 and q > p/2,

E[X̃ −p ] = p
∫∞

0
y p−1P(X̃ −1 > y)d y

= p
∫Δ−1

•

0
y p−1P(X̃ −1 > y)d y +p

∫∞

Δ−1•
y p−1P(X̃ −1 > y)d y

≤ c Δ−p
• +cR̄−qδ(p0−γ0)q

∫∞

Δ−1•
y p−1 y−2q d y

= c Δ−p
• +cR̄−qδ(p0−γ0)qΔ

2q−p
• .

Using the definition of R̄ in (5.2.43), this is equal to

c Δ−p
•

(
1+ ā−2p0qδ−( 2α

α−1−γ0)qδ(p0−γ0)qΔ
2q
•

)
.

Under the assumption z ≥ δ1/2 = (δ(α−1)/α
1 +δα−1

2 )1/2, by (5.3.13) and (5.1.14), this is bounded

above by

c Δ−p
•

(
1+δ−

1
2×2p0qδ−( 2α

α−1−γ0)qδ(p0−γ0)qΔ
2q
•

)
= 2c Δ−p

• ,

which implies (5.3.24). �

Proof of Theorem 5.1.1(a). The positivity of F2 has been proved in Lemmas 5.3.1(a). For

(s0, y0) ∈ I × J ⊂ [0,T ]×R with s0 > 0, by Lemmas 5.3.1(a), 5.3.2, 5.3.3(a) and 5.3.4(a), the

random vector uA and the random matrix γA introduced in this section satisfy the conditions

in Theorem 1.5.5. Hence the random vector F possesses an infinitely differentiable density

on R×]z2/2,∞[. Since the choice of z2 is arbitrary, it has an infinitely differentiable density

on R×]0,∞[. Similarly, if s0 = 0, we apply these lemmas for u2
A and γ2,2

A and Theorem 1.5.5 to

conclude that the random variable F2 has an infinitely differentiable density on ]0,∞[. �

Proof of Theorem 5.1.1(b). The proof is similar to that of Theorem 5.1.1(a) by using Lemmas

5.3.1(b), 5.3.2, 5.3.3(b), 5.3.4(b) and Theorem 1.5.5. �

Proposition 5.3.5. (a) The probability density function of F at (z1, z2) ∈R×]0,∞[ is given by

p(z1, z2) = E
[

1{F1>z1,F2>z2}δ
(
u1

Aδ
(
u2

A/γ2,2
A

))]
(5.3.26)

=−E[1{F1<z1,F2>z2}δ(δ(u2
A/γ2,2

A )u1
A)]. (5.3.27)

(b) The probability density function of M0 at z ∈]0,∞[ is given by

p0(z) = E[1{M0>z}δ(uĀ/γĀ)]. (5.3.28)

Proof. The proof is exactly the same as that of Proposition 4.5.6 and Remark 4.5.7. �
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5.4 Gaussian-type upper bound on the density of F

In this section, we fix I × J ⊂ ]0,T ]×R and assume that δ1 is small enough so that the conditions

in (5.1.10) hold. Similar to the derivation of (4.6.3), we can bound the density of F by

p(z1, z2) ≤ P{|F1| > |z1|}1/4P{F2 > z2}1/4‖δ(δ(u2
A/γ2,2

A )u1
A)‖L2(Ω). (5.4.1)

As in Lemma 4.6.1, we have the following.

Lemma 5.4.1.

δ(δ(u2
A/γ2,2

A )u1
A) := T1 +T2 −T3 +T4 −T5 +T6, (5.4.2)

where

T1 =
δ(u2

A)

γ2,2
A

δ(u1
A), T2 =

〈Dγ2,2
A ,u2

A〉H
(γ2,2

A )2
δ(u1

A), T3 = 1

γ2,2
A

〈Dδ(u2
A),u1

A〉H , (5.4.3)

T4 =
δ(u2

A)

(γ2,2
A )2

〈Dγ2,2
A ,u1

A〉H , T5 =
2〈Dγ2,2

A ,u2
A〉H

(γ2,2
A )3

〈Dγ2,2
A ,u1

A〉H , (5.4.4)

T6 = 1

(γ2,2
A )2

〈D〈Dγ2,2
A ,u2

A〉H ,u1
A〉H . (5.4.5)

Proof. The proof is identical to that of Lemma 4.6.1. �

In the remainder of the this section, we follow the same path as in Section 4.6. The main

difference is that the exponents are expressed in terms of α.

Proposition 5.4.2. (a) For any p ≥ 2, there exists cp > 0, not depending on (s0, y0) ∈ I × J , such

that for all δ1 > 0 and for all z2 ≥ δ(α−1)/(2α)
1 ,

‖Ti‖Lp (Ω) ≤ cp δ
(1−α)/(2α)
1 , for i ∈ {1,2,3}. (5.4.6)

(b) T4,T5 and T6 vanish.

As an immediate consequence of Lemma 5.4.1 and Proposition 5.4.2, we obtain the following.

Proposition 5.4.3. There exists a finite positive constant c, not depending on (s0, y0) ∈ I × J ,

such that for all δ1 > 0 and for all z2 ≥ δ(α−1)/(2α)
1 ,

‖δ(δ(u2
A/γ2,2

A )u1
A)‖L2(Ω) ≤ c δ(1−α)/(2α)

1 . (5.4.7)

The proof of Proposition 5.4.2 is divided into two subsections. Throughout the remainder of

200



5.4. Gaussian-type upper bound on the density of F

Section 5.4, we assume that

z2 ≥ δ(α−1)/(2α)
1 . (5.4.8)

Recalling the definition of R in (5.2.30), under the assumption (5.4.8), we see from (5.3.5) that

R−1 = c−1a−2p0δ
γ0(α−1)/α−2
1 = c ′z−2p0

2 δ
γ0(α−1)/α−2
1

≤ c δ(γ0−p0)(α−1)/α−2
1 . (5.4.9)

5.4.1 Proof of Proposition 5.4.2(a)

We first give an estimate on the moments of T1.

We denote by L2
a the closed subspace of L2(Ω× [0,T ]×R) formed by those processes which

are adapted to the filtration {Ft :=σ{W (s, x) : s ≤ t , x ∈R}, t ∈ [0,T ]}.

Lemma 5.4.4. For any p ≥ 1, there exists a constant cp , not depending on (s0, y0) ∈ I × J , such

that for all δ1 > 0,

‖δ(u2
A)‖Lp (Ω) ≤ cpδ

(1+α)/(2α)
1 . (5.4.10)

Proof. From the definition of u2
A , for (r, v) ∈ [s0, s0 +δ1]×R,

u2
A(r, v) =φδ1 (v)ψ(Yr )−Dαφδ1 (v)

∫r

s0

ψ(Ya)d a.

Since u2
A is adapted to {Ft : t ∈ [0,T ]}, by Proposition 4.6.4, we have

δ(u2
A) =

∫s0+δ1

s0

∫
R
φδ1 (v)ψ(Yr )W (dr,d v)−

∫s0+δ1

s0

∫
R

W (dr,d v)Dαφδ1 (v)
∫r

s0

ψ(Ya)d a.

(5.4.11)

Using Burkholder’s inequality, for any p ≥ 1, since 0 ≤ψ≤ 1,∣∣∣∣∣∣∣∣∫s0+δ1

s0

∫
R
φδ1 (v)ψ(Yr )W (dr,d v)

∣∣∣∣∣∣∣∣p

Lp (Ω)

≤ cp E

[(∫s0+δ1

s0

∫
R
φ2
δ1

(v)ψ2(Yr )d vdr

)p/2]

≤ cpδ
p/2
1

(∫
R
φ2
δ1

(v)d v

)p/2

≤ cpδ
p/2
1 δ

p/(2α)
1 = cpδ

(1+α)p/(2α)
1 . (5.4.12)

In order to estimate the second integral on the right-hand side of (5.4.11), we determine the
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dependence on δ1 of the L2(R)-norm of Dαφδ1 :

‖Dαφδ1‖2
L2(R) = c2

α

∫
R

d x

(∫
R

φδ1 (x + y)−φδ1 (x)− yφ′
δ1

(x)

|y |1+α d y

)2

= c2
α

∫
R

d x

(∫
R

φ0((x + y − y0)/δ1/α
1 )−φ0((x − y0)/δ1/α

1 )− yφ′
0((x − y0)/δ1/α

1 )/δ1/α
1

|y |1+α d y

)2

= c2
αδ

1/α
1

∫
R

d x̄

(∫
R

φ0(x̄ + ȳ)−φ0(x̄)− ȳφ′
0(x̄)

|δ1/α
1 ȳ |1+α δ1/α

1 d ȳ

)2

= c2
αδ

(1−2α)/α
1

∫
R

d x̄

(∫
R

φ0(x̄ + ȳ)−φ0(x̄)− ȳφ′
0(x̄)

|ȳ |1+α d ȳ

)2

= cδ(1−2α)/α
1 , (5.4.13)

where in the third equality we change the variables by letting x = δ1/α
1 x̄ + y0 and y = δ1/α

1 ȳ .

Now we apply (5.4.13) to estimate that, by Burkholder’s inequality, for any p ≥ 2, since 0 ≤ψ≤
1, ∣∣∣∣∣∣∣∣∫s0+δ1

s0

∫
R

W (dr,d v)Dαφδ1 (v)
∫r

s0

ψ(Ya)d a

∣∣∣∣∣∣∣∣p

Lp (Ω)

≤ cp E

[(∫s0+δ1

s0

dr
∫
R

d v(Dαφδ1 (v))2
(∫r

s0

ψ(Ya)d a

)2)p/2]

≤ cp

(∫s0+δ1

s0

(r − s0)2dr

)p/2 (∫
R

(Dαφδ1 (v))2d v

)p/2

≤ cpδ
3p/2
1 δ

(1−2α)p/(2α)
1 = cpδ

(1+α)p/(2α)
1 . (5.4.14)

Hence (5.4.11), (5.4.12) and (5.4.14) imply (5.4.10). �

Furthermore, from (5.3.8), for any p ≥ 1, there exist a constant cp such that for all (s0, y0) ∈ I × J ,

‖δ(u1
A)‖Lp (Ω) = cp‖u1

A‖H ≤ c ′p . (5.4.15)

By (5.3.23), (5.4.10) and (5.4.15), using Hölder’s inequality, we obtain that for all p ≥ 2

‖T1‖Lp (Ω) ≤ cpδ
−1
1 δ(1+α)/(2α)

1 = cpδ
(1−α)/(2α)
1 . (5.4.16)

This proves the statement (a) of Proposition 5.4.2 for i = 1.

We next give an estimate on the moments of T2.
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5.4. Gaussian-type upper bound on the density of F

We first give an estimate on the H -norm of u2
A . By definition,

‖u2
A‖2

H ≤ 2
∫s0+δ1

s0

dr
∫
R

d v ψ(Yr )2φ2
δ1

(v)+2
∫s0+δ1

s0

dr
∫
R

d v (Dαφδ1 (v))2
∣∣∣∣∫r

s0

ψ(Ya)d a

∣∣∣∣2

≤ 2δ1

∫y0+2δ1/α
1

y0−δ1/α
1

d v +c δ(1−2α)/α
1

∫s0+δ1

s0

(r − s0)2dr

= c δ1δ
1/α
1 +c δ3

1δ
(1−2α)/α
1 = 2c δ(1+α)/α

1 , (5.4.17)

where, in the second inequality, we use (5.4.13).

Lemma 5.4.5. For any p ≥ 1, there exists a constant cp , not depending on (s0, y0) ∈ I × J , such

that for all δ1 > 0,

‖〈Dγ2,2
A ,u2

A〉H ‖Lp (Ω) ≤ cpδ
(1+3α)/(2α)
1 . (5.4.18)

Proof. Taking the Malliavin derivative of γ2,2
A , we have

〈Dγ2,2
A ,u2

A〉H =
∫s0+δ1

s0

ψ′(Yr )〈DYr ,u2
A〉H dr.

By Hölder’s inequality and (5.4.17), for any p ≥ 1,

E
[
|〈Dγ2,2

A ,u2
A〉H |p

]
≤ ‖ψ′‖p

∞δ
p−1
1

∫s0+δ1

s0

E[|〈DYr ,u2
A〉H |p ]dr

≤ cp R−pδ
p−1
1

∫s0+δ1

s0

E[‖DYr ‖p
H ‖u2

A‖p
H ]dr

≤ cp R−pδ
p−1
1 δ

(1+α)p/(2α)
1

∫s0+δ1

s0

E[‖DYr ‖p
H ]dr.

Using (5.2.25), this is bounded above by

cp R−pδ
p−1
1 δ

(1+α)p/(2α)
1 δ

(p0−γ0)(α−1)p/α
1

∫s0+δ1

s0

(r − s0)2p dr

= cp R−pδ
p−1+2p+1+(1+α)p/(2α)+(p0−γ0)(α−1)p/α
1

≤ cpδ
((γ0−p0)(α−1)/α−2)p
1 δ

p−1+2p+1+(1+α)p/(2α)+(p0−γ0)(α−1)p/α
1

= cpδ
(1+3α)p/(2α)
1 ,

where, in the inequality, we use (5.4.9). �

By (5.3.23), (5.4.15) and (5.4.18), using Hölder’s inequality, we obtain for any p ≥ 1,

‖T2‖Lp (Ω) ≤ cp δ
−2
1 δ(1+3α)/(2α)

1 = cp δ
(1−α)/(2α)
1 . (5.4.19)

This proves the statement (a) of Proposition 5.4.2 for i = 2.
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We proceed to estimate the moments of T3.

Similar to the calculation in Section 4.6.1, by the properties of the derivative and divergence

operator and the stochastic Fubini theorem (see [24, Chapter 1, Theorem 5.30] or [81, Theorem

2.6]), we write

〈Dδ(u2
A),u1

A〉H = 〈u2
A ,u1

A〉H +
∫s0+δ1

s0

∫
R
ψ′(Yr )〈DYr ,u1

A〉H φδ1 (v)W (dr,d v)

−
∫s0+δ1

s0

∫
R

W (dr,d v)Dαφδ1 (v)
∫r

s0

d aψ′(Ya)〈DYa ,u1
A〉H

:= T̄31 + T̄32 − T̄33. (5.4.20)

From (5.4.17) and (5.3.8), it is easy to see that for any p ≥ 1,

‖T̄31‖Lp (Ω) ≤ cpδ
(1+α)/(2α)
1 . (5.4.21)

By Burkholder’s inequality and using (5.3.6) and (5.3.8), we have for any p ≥ 2,

E[|T̄32|p ] ≤ cp E

[(∫s0+δ1

s0

∫
R
ψ′(Yr )2〈DYr ,u1

A〉2
H φ2

δ1
(v)dr d v

)p/2]

≤ cp R−p E

[(∫s0+δ1

s0

‖DYr ‖2
H dr

∫
R
φ2
δ1

(v)d v

)p/2]

= cp R−p
(∫

R
φ2
δ1

(v)d v

)p/2

E

[(∫s0+δ1

s0

‖DYr ‖2
H dr

)p/2]
. (5.4.22)

By Hölder’s inequality, we see that (5.4.22) is bounded above by

cp R−pδ
p/(2α)
1 δ

p/2−1
1

∫s0+δ1

s0

E[‖DYr ‖p
H ]dr

≤ cp R−pδ
p/(2α)
1 δ

p/2−1
1 δ

(p0−γ0)(α−1)p/α
1

∫s0+δ1

s0

(r − s0)2p dr

= cp R−pδ
p/(2α)+5p/2+(p0−γ0)(α−1)p/α
1

≤ cpδ
((γ0−p0)(α−1)/α−2)p
1 δ

p/(2α)+5p/2+(p0−γ0)(α−1)p/α
1

= cpδ
(1+α)p/(2α)
1 , (5.4.23)

where, in the first inequality we use (5.2.25), and in the second inequality we use (5.4.9).

We now give an estimate on the moments of T̄33. By Burkholder’s inequality and using (5.3.6)
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and (5.3.8), we see that for any p ≥ 2,

E[|T̄33|p ] ≤ cp E

[(∫s0+δ1

s0

∫
R

(∫r

s0

ψ′(Ya)〈DYa ,u1
A〉H d a

)2

(Dαφδ1 (v))2dr d v

)p/2]

≤ cp R−p
(∫

R
(Dαφδ1 (v))2d v

)p/2

E

[(∫s0+δ1

s0

(∫r

s0

‖DYa‖H d a

)2

dr

)p/2]
.

(5.4.24)

By (5.4.13) and using Hölder’s inequality twice, we see that (5.4.24) is bounded above by

cp R−pδ
(1−2α)p/(2α)
1 E

[(∫s0+δ1

s0

dr (r − s0)
∫r

s0

‖DYa‖2
H d a

)p/2]

≤ cp R−pδ
(1−2α)p/(2α)
1

(∫s0+δ1

s0

dr
∫r

s0

d a

)p/2−1 ∫s0+δ1

s0

dr (r − s0)p/2
∫r

s0

E[‖DYa‖p
H ]d a.

(5.4.25)

Applying the estimate in (5.2.25), we obtain that (5.4.25) is bounded above by

cp R−pδ
(1−2α)p/(2α)
1 δ

p−2
1 δ

(p0−γ0)(α−1)p/α
1

∫s0+δ1

s0

dr (r − s0)p/2
∫r

s0

(a − s0)2p d a

= cp R−pδ
(1−2α)p/(2α)
1 δ

p−2
1 δ

(p0−γ0)(α−1)p/α
1 δ

2+5p/2
1

≤ cpδ
((γ0−p0)(α−1)/α−2)p
1 δ

(1−2α)p/(2α)
1 δ

p−2
1 δ

(p0−γ0)(α−1)p/α
1 δ

2+5p/2
1

= cpδ
(1+α)p/(2α)
1 , (5.4.26)

where, in the inequality, we use (5.4.9).

Therefore, by (5.4.21),(5.4.23), (5.4.26) and (5.3.23), we have obtained that for any p ≥ 2,

‖T3‖Lp (Ω) ≤ cp δ
−1
1 δ(1+α)/(2α)

1 = cp δ
(1−α)/(2α)
1 . (5.4.27)

This proves the statement (a) of Proposition 5.4.2 for i = 3.

Therefore, we have finished the proof of Proposition 5.4.2(a).

5.4.2 Proof of Proposition 5.4.2(b)

As in Section 4.6.2, we are going to show that the three terms T4, T5 and T6 are equal to zero.

First, we observe that for any t , s ∈ [s0, s0 +δ1], by Lemma 5.2.10 and the definition of the
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functions f0 and g0,

〈D(u(t , y0)−u(s, y0)),u1
A〉H =

∫T

0

∫
R

(1{r<t }Gα(t − r, y0 − v)−1{r<s}Gα(s − r, y0 − v))

×
(
∂

∂r
− v Dα

)
( f0(r )g0(v))dr d v

= f0(t )g0(y0)− f0(s)g0(y0) = 0. (5.4.28)

By (5.2.24) and (5.4.28), we know that for r ∈ [s0, s0 +δ1],

〈DYr ,u1
A〉H = 2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0(α−1)/α
〈D(u(t , y0)−u(s, y0)),u1

A〉H
= 0. (5.4.29)

Hence,

〈Dγ2,2
A ,u1

A〉H =
∫y0+δ1

s0

ψ′(Yr )〈DYr ,u1
A〉H dr = 0, (5.4.30)

which implies T4 = T5 = 0.

We proceed to prove that T6 vanishes. Similar to (5.4.28), for any t , s ∈ [s0, s0 +δ1],

〈D(u(t , y0)−u(s, y0)),u2
A〉H =

∫s0+δ1

s0

dr
∫1

0
d v

(
1{r<t }G(t − r, y0 − v)

−1{r<s}G(s − r, y0 − v)
)( ∂

∂r
− v Dα

)
H(r, v)

= H(t , y0)−H(s, y0)

=φδ1 (y0)
∫t

s0

ψ(Ya)d a −φδ1 (y0)
∫s

s0

ψ(Ya)d a

=
∫t

s
ψ(Ya)d a, (5.4.31)

where the last equality is due to the definition of the function φδ1 . Hence, for r ∈ [s0, s0 +δ1],

〈DYr ,u2
A〉H = 2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0(α−1)/α
〈D(u(t , y0)−u(s, y0)),u2

A〉H

= 2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0(α−1)/α

∫t

s
ψ(Ya)d a. (5.4.32)
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Moreover,

〈D〈DYr ,u2
A〉H ,u1

A〉H = 2p0(2p0 −1)
∫

[s0,r ]2
d sd t

(u(t , y0)−u(s, y0))2p0−2

|t − s|γ0(α−1)/α

×〈D(u(t , y0)−u(s, y0)),u1
A〉H

∫t

s
ψ(Ya)d a

+2p0

∫
[s0,r ]2

d sd t
(u(t , y0)−u(s, y0))2p0−1

|t − s|γ0(α−1)/α

×
∫t

s
ψ′(Ya)〈DYa ,u1

A〉H d a

= 0+0 = 0, (5.4.33)

where the first term vanishes due to (5.4.28) and the second term vanishes because of (5.4.29).

Therefore,

〈D〈Dγ2,2
A ,u2

A〉H ,u1
A〉H =

〈
D

∫s0+δ1

s0

ψ′(Yr )〈DYr ,u2
A〉H dr,u1

A

〉
H

=
∫s0+δ1

s0

ψ′′(Yr )〈DYr ,u1
A〉H 〈DYr ,u2

A〉H dr

+
∫s0+δ1

s0

ψ′(Yr )〈D〈DYr ,u2
A〉H ,u1

A〉H dr

= 0, (5.4.34)

which implies T6 = 0.

This proves the statement (b) of Proposition 5.4.2.

5.4.3 Estimates for the tail probabilities

In order to bound the tail probability P{F2 > z2}, we first give an estimate on the moments of

the supremum of |u(s, y)−u(s0, y0)|, analogous to Lemma 4.5 in [25].

Lemma 5.4.6. For α ∈ ]1,2] and for all p ≥ 1, there exists Ap,α > 0 such that for all ε> 0 and all

(t , x) fixed,

E

[
sup

[Δα((t ,x);(s,y))]1/2≤ε
|u(t , x)−u(s, y)|p

]
≤ Ap,αε

p . (5.4.35)

Proof. The proof is very similar to that of [25, Lemma 4.5] by applying Proposition A.1 of [25]

with

S := Sε = {(s, y) : [Δα((t , x); (s, y))]1/2 < ε}, ρ((t , x), (s, y)) := [Δα((t , x); (s, y))]1/2,

μ(d td x) := d td x, Ψ(x) := e |x| −1, p(x) := x and f := u.
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Chapter 5. Extension to the linear stochastic fractional heat equation

We denote

C =
∫

Sε

dr d ȳ
∫

Sε

d sd y

[
exp

(
|u(r, ȳ)−u(s, y)|

(|r − s| α−1
α +|ȳ − y |α−1)1/2

)
−1

]
,

C 1 =
∫

Sε

dr d ȳ
∫

Sε

d sd y exp

(
|u(r, ȳ)−u(s, y)|

(|r − s| α−1
α +|ȳ − y |α−1)1/2

)
.

Then it is obvious to see that C <C 1 and there exists a constant c > 0 such that for all ω ∈Ω,

C 1(ω) ≥ c ε4(α+1)/(α−1). (5.4.36)

Furthermore, by (5.1.4),

E[C ] ≤ E[C 1]

= E

[∫
Sε

dr d ȳ
∫

Sε

d sd y exp

(
|u(r, ȳ)−u(s, y)|

(|r − s| α−1
α +|ȳ − y |α−1)1/2

)]
≤ c0ε

4(α+1)/(α−1). (5.4.37)

In accord with [25, Proposition A.1], and by application of Hölder’s inequality,

E

[
sup

[Δα((t ,x);(s,y))]1/2≤ε
|u(t , x)−u(s, y)|p

]

≤ 10p E

[(∫2ε

0
du ln

(
1+ C

[μ(Bρ((t , x),u/4))]2

))p]
= 10p E

[(∫2ε

0
du ln

(
1+ C

c1u4(α+1)/(α−1)

))p]
≤ 10p (2ε)p−1

∫2ε

0
du E

[
lnp

(
1+ C

c1u4(α+1)/(α−1)

)]
≤ 10p (2ε)p−1

∫2ε

0
du E

[
lnp

(
1+ C 1

c1u4(α+1)/(α−1)

)]
≤ 10p (2ε)p−1

∫2ε

0
du E

[
lnp

(
1+ cpC 1

c1u4(α+1)/(α−1)

)]
, (5.4.38)

where by (5.4.36) the constant cp > 1 is chosen such that for all 0 < u < 2ε and ω ∈Ω,

cpC 1(ω)

c1u4(α+1)/(α−1)
≥ ep−1 −1. (5.4.39)

Since the function x �→ lnp (1+x) is concave on [ep−1 −1,∞[, we apply Jensen’s inequality to
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5.4. Gaussian-type upper bound on the density of F

bound (5.4.38) above by

10p (2ε)p−1
∫2ε

0
du lnp

(
1+ cp E[C 1]

c1u4(1+α)/(α−1)

)

≤ 10p (2ε)p−1
∫2ε

0
du lnp

(
1+ c0cp

c1

( ε
u

)4(α+1)/(α−1)
)

= 10p 2p−1εp
∫∞

1/2
du u−2 lnp

(
1+ c0cp

c1
u4(α+1)/(α−1)

)
= Ap,αε

p , (5.4.40)

as desired. �

Lemma 5.4.7. There exists a finite positive constant c, not depending on (s0, y0) ∈ I × J , such

that for all z1 ∈R,

P{|F1| > |z1|} ≤ c (|z1|−1 ∧1)e−z2
1 /c , (5.4.41)

and for all δ1 > 0 and for all z2 > 0,

P{F2 > z2} ≤ c exp

(
− z2

2

c δ(α−1)/α
1

)
. (5.4.42)

Proof. The estimate for P{|F1| > |z1|} is similar to (4.6.47) since the variance of u(s0, y0) is

bounded above and below by positive constants uniformly for (s0, y0) ∈ I × J .

We denote

σ2
α := sup

t∈[s0,s0+δ1]
E[ū(t , y0)2].

By (5.1.4), we have σ2
α ≤Cδ(α−1)/α

1 . On the other hand, by Lemma 5.4.6 we know that

E[F2] ≤ E

[
sup

t∈[s0,s0+δ1]
|u(t , y0)−u(s0, y0)|

]

≤ E

⎡⎣ sup
[Δα((t ,x);(s0,y0))]1/2≤δ(α−1)/(2α)

1

|u(t , x)−u(s0, y0)|
⎤⎦

≤ c δ(α−1)/(2α)
1 . (5.4.43)

Applying Borell’s inequality (see [1, (2.6)]) for all z2 > c δ(α−1)/(2α)
1 (here c is the constant in
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Chapter 5. Extension to the linear stochastic fractional heat equation

(5.4.43)),

P{F2 > z2} ≤ 2exp
(−(z2 −E[F2])2/(2σ2

α)
)≤ 2exp

(
−(z2 −E[F2])2/(2Cδ(α−1)/α

1 )
)

≤ 2exp
(
−(2z2

2/3−2E[F2]2)(2Cδ(α−1)/α
1 )

)
= 2exp

(
−z2

2/(3Cδ(α−1)/α
1 )

)
exp

(
E[F2]2/(Cδ(α−1)/α

1 )
)

≤ 2ec2/C exp
(
−z2

2/(3Cδ(α−1)/α
1 )

)
= c̄ exp

(
−z2

2/(3Cδ(α−1)/α
1 )

)
. (5.4.44)

Since for 0 ≤ z2 ≤ c δ(α−1)/(2α)
1 ,

exp
(
−z2

2/(3Cδ(α−1)/α
1 )

)
≥ e−

c2

3C ,

we can find a constant c̃ such that for all z2 > 0,

P{F2 > z2} ≤ c̃ exp
(
−z2

2/(3Cδ(α−1)/α
1 )

)
. (5.4.45)

This proves (5.4.42). �

Proof of Theorem 5.1.2. This follows from (5.4.41), (5.4.42), (5.4.7) and (5.4.1). �

5.5 Gaussian-type upper bound on the density of M0

The structure of this section is similar to that of Section 4.7. In this section, we assume that δ1,

δ2 satisfy the conditions in (5.1.15).

From the formula for the probability density function of M0 in (5.3.28), by the Cauchy-

Schwartz inequality,

p0(z) ≤ P{M0 > z}1/2‖δ(uĀ/γĀ)‖L2(Ω). (5.5.1)

Proposition 5.5.1. (a) There exists a finite positive constant c, not depending on y0 ∈ J , such

that for all small δ1, δ2 > 0 and for all z ≥ (δ(α−1)/α
1 +δα−1

2 )1/2,

‖δ(uĀ/γĀ)‖L2(Ω) ≤ c (δ(α−1)/α
1 +δα−1

2 )−1/2. (5.5.2)

(b) There exists a finite positive constant c, not depending on y0 ∈ J , such that for all δ1, δ2 > 0

and for all z > 0,

P{M0 > z} ≤ c exp

(
− z2

c (δ(α−1)/α
1 +δα−1

2 )

)
. (5.5.3)

210



5.5. Gaussian-type upper bound on the density of M0

Proof of Theorem 5.1.4. This is an immediate consequence of (5.5.1) and Proposition 5.5.1. �

The proof of Proposition 5.5.1 is given in the following two subsections.

5.5.1 Proof of Proposition 5.5.1(a)

Throughout this section, we assume that

z ≥ (δ(α−1)/α
1 +δα−1

2 )1/2 = δ1/2. (5.5.4)

Recalling the definition of R̄ in (5.2.43), under the assumption (5.5.4), we see from (5.3.13) that

R̄−1 = c−1ā−2p0δγ0− 2α
α−1 = c ′z−2p0δγ0− 2α

α−1

≤ c δγ0−p0− 2α
α−1 . (5.5.5)

In order to prove Proposition 5.5.1(a), we need the following several lemmas. Recall the

definition of uĀ in (5.3.18).

Lemma 5.5.2. For any p ≥ 2, there exists a constant cp , not depending on y0 ∈ J , such that for

all δ1, δ2 > 0,

‖δ(uĀ)‖Lp (Ω) ≤ cp δ
α+1

2(α−1) . (5.5.6)

Proof. The proof is similar to that of Lemma 5.4.4. Since uĀ is adapted, by Proposition 4.6.4,

we have

δ(uĀ) =
∫Δ•

0

∫
R
φ̄δ(v)ψ̄(Ȳr )W (dr,d v)−

∫Δ•

0

∫
R

W (dr,d v)Dαφ̄δ(v)
∫r

0
ψ̄(Ȳa)d a. (5.5.7)

For the first term on the right-hand side of (5.5.7), by Burkholder’s inequality, for any p ≥ 2,

since 0 ≤ ψ̄≤ 1,

∣∣∣∣∣∣∣∣∫Δ•

0

∫
R
φ̄δ(v)ψ̄(Ȳr )W (dr,d v)

∣∣∣∣∣∣∣∣p

Lp (Ω)
≤ cp E

[(∫Δ•

0

∫
R
φ̄2
δ(v)ψ̄2(Ȳr )dr d v

)p/2
]

≤ cpΔ
p/2
•

(∫
R
φ̄2
δ(v)d v

)p/2

≤ cpΔ
p/2
• δ

p
2(α−1) = cpδ

p(α+1)
2(α−1) , (5.5.8)

where in the third inequality, we have used the definition of φ̄δ in (5.3.15). For the second term

on the right-hand side of (5.5.7), we first observe that

‖Dαφ̄δ‖2
L2(R) = c δ

1−2α
α−1 (5.5.9)
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Chapter 5. Extension to the linear stochastic fractional heat equation

by the same argument as in (5.4.13), replacing δ1/α
1 by δ1/(α−1).

Applying Burkholder’s inequality, for any p ≥ 2, since 0 ≤ ψ̄≤ 1,∣∣∣∣∣∣∣∣∫Δ•

0

∫
R

W (dr,d v)Dαφ̄δ(v)
∫r

0
ψ̄(Ȳa)d a

∣∣∣∣∣∣∣∣p

Lp (Ω)

≤ cp E

[(∫Δ•

0
dr

∫
R

d v (Dαφ̄δ(v))2
(∫r

0
ψ̄(Ȳa)d a

)2)p/2]

≤ cP

(∫Δ•

0
r 2dr

)p/2 (∫
R

(Dαφ̄δ(v))2d v

)p/2

= cpΔ
3p/2
• δ

p(1−2α)
2(α−1) = cpδ

p(α+1)
2(α−1) , (5.5.10)

where, in the first equality, we use (5.5.9). Hence, (5.5.7), (5.5.8) and (5.5.10) establish this

lemma. �

Lemma 5.5.3. There exists a constant c, not depending on y0 ∈ J , such that for all δ1, δ2 > 0,

‖uĀ‖H ≤ c δ
α+1

2(α−1) . (5.5.11)

Proof. The proof is similar to that of (5.4.17). By the definition of uĀ ,

‖uĀ‖2
H ≤ 2

∫Δ•

0
dr

∫
R

d v ψ̄(Ȳr )2φ̄2
δ(v)+2

∫Δ•

0
dr

∫
R

d v (Dαφ̄δ(v))2
(∫r

0
ψ̄(Ȳa)d a

)2

≤ 2Δ•
∫y0+2δ1/(α−1)

y0−δ1/(α−1)
d v +2c

∫Δ•

0
r 2dr

∫
R

(Dαφ̄δ(v))2d v

= c δ
α+1
α−1 +c Δ3

•δ
1−2α
α−1

= 2c δ
α+1
α−1 , (5.5.12)

where, in the first inequality, we use (5.5.9). �

Lemma 5.5.4. For any p ≥ 2, there exists a constant cp , not depending on y0 ∈ J , such that for

all δ1, δ2 > 0,

‖〈DγĀ ,uĀ〉H ‖Lp (Ω) ≤ c δ
3α+1

2(α−1) . (5.5.13)

Proof. The proof is similar to that of Lemma 5.4.5. Taking the Malliavin derivative of γĀ , we

have

〈DγĀ ,uĀ〉H =
∫Δ•

0
ψ̄′(Ȳr )〈DȲr ,uĀ〉H dr.
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5.5. Gaussian-type upper bound on the density of M0

By Hölder’s inequality, (5.3.14) and (5.5.12), for any p ≥ 1,

E
[|〈DγĀ ,uĀ〉H |p]≤ ‖ψ̄′‖p

∞Δ
p−1
•

∫Δ•

0
E[|〈DȲr ,uĀ〉H |p ]dr

≤ cp R̄−pΔ
p−1
•

∫Δ•

0
E[‖DȲr ‖p

H ‖uĀ‖p
H ]dr

≤ cp R̄−pΔ
p−1
• δ

p(α+1)
2(α−1)

∫Δ•

0
E[‖DȲr ‖p

H ]dr.

Applying (5.2.40), this is bounded above by

cp R−pΔ
p−1
• δ

p(α+1)
2(α−1) δ(p0−γ0)p

∫Δ•

0
r 2p dr

= cp R−pΔ
p−1
• δ

p(α+1)
2(α−1) δ(p0−γ0)pΔ

2p+1
•

≤ cpδ
(γ0−p0−2α/(α−1))pΔ

p−1
• δ

p(α+1)
2(α−1) δ(p0−γ0)pΔ

2p+1
•

= cpδ
(3α+1)p
2(α−1) ,

where, in the inequality, we use (5.5.5). �

Proof of Proposition 5.5.1(a). Using the property of Skorohod integral δ (see [64, (1.48)]),

δ(uĀ/γĀ) = δ(uĀ)

γĀ
+ 〈DγĀ ,uĀ〉H

γ2
Ā

:= I1 + I2. (5.5.14)

By Lemmas 5.5.2 and 5.3.4(b),

‖I1‖L2(Ω) ≤ c δ
α+1

2(α−1) δ−
α

α−1 = c δ−1/2. (5.5.15)

By Lemmas 5.5.4 and 5.3.4(b),

‖I2‖L2(Ω) ≤ c δ
3α+1

2(α−1) δ−
2α
α−1 = c δ−1/2. (5.5.16)

Therefore, (5.5.14), (5.5.15) and (5.5.16) establish (5.5.2). �

5.5.2 Proof of Proposition 5.5.1(b)

Proof of Proposition 5.5.1(b). The proof is similar to that of (4.7.3). We denote

σ2
0 := sup

(t ,x)∈[0,δ1]×[y0,y0+δ2]
E[u(t , x)2].
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From (5.1.4), we have σ2
0 ≤C (δ(α−1)/α

1 +δα−1
2 ). On the other hand, by Lemma 5.4.6, we have

E[M0] ≤ E

[
sup

(t ,x)∈[0,δ1]×[y0,y0+δ2]
|u(t , x)|

]

≤ E

⎡⎣ sup
[Δα((t ,x);(0,y0))]1/2≤(δ(α−1)/α

1 +δα−1
2 )1/2

|u(t , x)|
⎤⎦

≤ c (δ(α−1)/α
1 +δα−1

2 )1/2. (5.5.17)

Applying Borell’s inequality (see [1, (2.6)]), for all z > c (δ(α−1)/α
1 +δα−1

2 )1/2 (here c is the constant

in (5.5.17)),

P{M0 > z} ≤ 2exp
(−(z −E[M0])2/(2σ2

0)
)≤ 2exp

(
−(z −E[M0])2/(2C (δ(α−1)/α

1 +δα−1
2 ))

)
≤ 2exp

(
−(2z2/3−2E[M0]2)/(2C (δ(α−1)/α

1 +δα−1
2 ))

)
= 2exp

(
−z2/(3C (δ(α−1)/α

1 +δα−1
2 ))

)
exp

(
E[M0]2/(C (δ(α−1)/α

1 +δα−1
2 ))

)
≤ 2ec2/C exp

(
−z2/(3C (δ(α−1)/α

1 +δα−1
2 ))

)
= c̄ exp

(
−z2/(3C (δ(α−1)/α

1 +δα−1
2 ))

)
. (5.5.18)

Since for 0 ≤ z ≤ c (δ(α−1)/α
1 +δα−1

2 )1/2,

exp
(
−z2/(3C (δ(α−1)/α

1 +δα−1
2 ))

)
≥ e−

c2

3C ,

we can find a constant c̃ such that for all z > 0,

P{F2 > z} ≤ c̃ exp
(
−z2/(3C (δ(α−1)/α

1 +δα−1
2 ))

)
. (5.5.19)

This proves (5.5.3). �
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A An appendix

A.1 Properties of Green kernel

In this appendix, we first present some properties of the Green kernel of the fractional heat

equation (1.3.4), which are available in [17], [34], [84] and [6].

Lemma A.1.1. For α ∈]1,2], the Green kernel has the following properties.

(i) Gα(t , x) is positive for all (t , x) ∈ ]0,∞[×R. For every fixed t ≥ 0, the unique mode of the

function x �→Gα(t , x) is located at x = 0. And∫
R

Gα(t , x)d x = 1. (A.1)

(ii) Scaling property:

Gα(t , x) = t−1/αGα(1, t−1/αx). (A.2)

In particular,

Gα(t ,0) = t−1/αGα(1,0) with Gα(1,0) = Γ(1/α)

πα
, (A.3)

where Γ is Euler’s Gamma function (see [61, p.80]).

(iii) There exists a positive constant cα depending on α such that∫b

a

∫
R

G2
α(t − r, x − v)d vdr = cα

(
(t −a)

α−1
α − (t −b)

α−1
α

)
, a ≤ b ≤ t . (A.4)

(iv) For α ∈ ]1,2[, there exists a constant Kα such that for all x ∈R,

0 <Gα(1, x) ≤ Kα(1+|x|α+1)−1. (A.5)
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(v) Semi-group property: for any t , s ∈ ]0,∞[ and x, y ∈U ,∫
U

Gα(t , x − v)Gα(s, y − v)d v =Gα(t + s, x, y). (A.6)

A.2 Negative moments of random variables

The next proposition is used many times to bound negative moments of a random variable.

Proposition A.2.1 ([26, Propositon 3.5]). Suppose Z ≥ 0 is a random variable for which we can

find ε0 ∈ ]0,1[, processes {Yi ,ε}ε∈]0,1[, and constants c > 0 and 0 ≤α2 ≤α1 with the property that

Z ≥ min(cεα1 −Y1,ε,cεα2 −Y2,ε) for all ε ∈ ]0,ε0[. Also suppose that we can find βi >αi (i = 1,2),

not depending on ε0, such that

C (q) := sup
0<ε<1

max

(
E[|Y1,ε|q ]

εqβ1
,

E[|Y2,ε|q ]

εqβ2

)
<∞ for all q ≥ 1.

Then for all p ≥ 1, there exists a constant c ′p ∈ ]0,∞[, not depending on ε0, such that

E[|Z |−p ] ≤ c ′pε
−pα1

0 .

A.3 Extension of [60, Lemma 4.2]

We first recall Burkholder’s inequality for Hilbert-space-valued martingales; see also [7,

Eq.(4.18)] and [26, Lemma 7.6].

Lemma A.3.1 ([58, E.2. p. 212]). Let Hs,y be a predictable L2(([0, t ]×R)m ,dα)-valued process,

where m ≥ 1 and dα denotes Lebesgue measure. Then, for any p ≥ 1, there exists C > 0 such that

E

⎡⎣∣∣∣∣∣∣
∫

([0,t ]×R)m

(∫t

0

∫
R

Hs,y (α)W (d s,d y)

)2

dα

∣∣∣∣∣∣
p⎤⎦≤C E

⎡⎣∣∣∣∣∣∣
∫t

0

∫
R

⎛⎝ ∫
([0,t ]×R)m

H 2
s,y (α)dα

⎞⎠d yd s

∣∣∣∣∣∣
p⎤⎦ .

The next result is another version of Morien [60, Lemma 4.2] for the solution of SPDE (2.1.1)

without boundary.

Lemma A.3.2. Assume P1. For all q ≥ 1,T > 0 there exists C > 0 such that for all T ≥ t ≥ s ≥ ε> 0

and x ∈R,

d∑
k,i=1

E

[(∫s

s−ε
dr

∫
R

d v
∣∣∣D (k)

r,v (ui (t , x))
∣∣∣2

)q]
≤Cε(α−1)q/α.
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Proof. The proof follows the same lines as [60, Lemma 4.2]. We define

Hi (t , x) := E

[(∫s

s−ε
dr

∫
R

d v
∣∣∣D (k)

r,v (ui (t , x))
∣∣∣2

)q]
, (A.7)

and

Ks(t ) :=
d∑

i=1
sup

s≤λ≤t
sup
y∈R

Hi (λ, y) (A.8)

which are finite by (2.3.3). Thanks to formula (2.3.1), we have

Hi (t , x) ≤ c

(∫s

s−ε
dr

∫
R

d v G2
α(t − r, x − v)

)q

+c
d∑

j=1
E

[[∫s

s−ε
dr

∫
R

d v
(∫t

r

∫
R

Gα(t −θ, x −η)

×D (k)
r,v (σi j (u(θ,η)))W j (dθ,dη)

)2]q
]

+cE

[[∫s

s−ε
dr

∫
R

d v

(∫t

r

∫
R

Gα(t −θ, x −η)D (k)
r,v (bi (u(θ,η)))dθdη

)2
]q]

:= A+B +C . (A.9)

By (A.4), we see that∫s

s−ε
dr

∫
R

d v G2
α(t − r, x − v) = c((t − s +ε)

α−1
α − (t − s)

α−1
α )

≤ c ′ε
α−1
α , (A.10)

since the function x �→ (x +ε)(α−1)/α−x(α−1)/α is decreasing on [0,∞[. This implies that

A ≤ cqε
(α−1)q/α. (A.11)

Using Burkholder’s inequality for Hilbert-space-valued martingales (Lemma A.3.1) first, and

then the Cauchy-Schwarz inequality together with the fact that the partial derivatives of σi j
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are bounded, we obtain

B ≤ c
d∑

j=1
E

[[∫t

s−ε
dθ

∫
R

dη

∫s∧θ

s−ε

∫
R

G2
α(t −θ, x −η)

(
D (k)

r,v (σi j (u(θ,η)))
)2

dr d v
]q

]

≤ c
d∑

l=1
E

[[∫t

s−ε
dθ

∫
R

dη

∫s∧θ

s−ε

∫
R

G2
α(t −θ, x −η)

(
D (k)

r,v (ul (θ,η))
)2

dr d v

]q]

= c
d∑

l=1
E

[[∫s

s−ε
dθ

∫
R

dη

∫s∧θ

s−ε

∫
R

G2
α(t −θ, x −η)

(
D (k)

r,v (ul (θ,η))
)2

dr d v

]q]

+c
d∑

l=1
E

[[∫t

s
dθ

∫
R

dη

∫s∧θ

s−ε

∫
R

G2
α(t −θ, x −η)

(
D (k)

r,v (ul (θ,η))
)2

dr d v

]q]
:= B1 +B2. (A.12)

We now apply Hölder’s inequality with respect to the measure G2
α(t −θ, x−η)dθdη to find that

B1 ≤ c
d∑

l=1

∣∣∣∣∫s

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)

∣∣∣∣q−1

×
∫s

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)E

[(∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

)q]

≤ c

∣∣∣∣∫s

s−ε
dθ

∫
R

dηG2
α(t −θ, x −η)

∣∣∣∣q

× sup
(θ,η)∈[0,T ]×R

E

[(∫T

0
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

)q]
≤ cε(α−1)q/α, (A.13)

where the last inequality follows from (A.10) and (2.3.3). Again, applying Hölder’s inequality

with respect to the measure G2
α(t −θ, x −η)dθdη, we see that

B2 ≤ c

∣∣∣∣∫t

s
dθ

∫
R

dηG2
α(t −θ, x −η)

∣∣∣∣q−1

×
∫t

s
dθ

∫
R

dηG2
α(t −θ, x −η)

d∑
l=1

E

[(∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

)q]
≤ c(t − s)

α−1
α

(q−1)
∫t

s
dθ

∫
R

dηG2
α(t −θ, x −η)Ks(θ)

≤ c
∫t

s
(t −θ)−

1
α Ks(θ)dθ. (A.14)

We handle the third term in (A.9) in a similar way. First, by the Cauchy-Schwarz inequality
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with respect to the measure Gα(t −θ, x −η)dθdη, we have

C ≤ cE

[[∫s

s−ε
dr

∫
R

d v
∫t

r

∫
R

Gα(t −θ, x −η)
d∑

l=1

(
D (k)

r,v (ul (θ,η))
)2

dθdη

]q]

= cE

[[∫t

s−ε
dθ

∫
R

dη

∫s∧θ

s−ε
dr

∫
R

d v Gα(t −θ, x −η)
d∑

l=1

(
D (k)

r,v (ul (θ,η))
)2

]q]

≤ cE

[[∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)
d∑

l=1

∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

]q]

+cE

[[∫t

s
dθ

∫
R

dηGα(t −θ, x −η)
d∑

l=1

∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

]q]
:=C1 +C2. (A.15)

By Hölder’s inequality with respect to the measure Gα(t −θ, x −η)dθdη,

C1 ≤ c

∣∣∣∣∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q−1

×
∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)
d∑

l=1
E

[(∫s∧θ

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

)q]

≤ c

∣∣∣∣∫s

s−ε
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q

×
d∑

l=1
sup

(θ,η)∈[0,T ]×R
E

[(∫T

0
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

)q]
≤ cεq ≤ cε(α−1)q/α, (A.16)

where in the third inequality we use (A.1) and (2.3.3). Similarly,

C2 ≤ c

∣∣∣∣∫t

s
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q−1

×
∫t

s
dθ

∫
R

dηGα(t −θ, x −η)
d∑

l=1
E

[(∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ul (θ,η))
)2

)q]

≤ c

∣∣∣∣∫t

s
dθ

∫
R

dηGα(t −θ, x −η)

∣∣∣∣q−1 ∫t

s
dθ

∫
R

dηGα(t −θ, x −η)Ks(θ)

≤ c
∫t

s
Ks(θ)dθ. (A.17)

Finally, we put (A.9) and (A.11)–(A.17) together and obtain that

Ks(t ) ≤ cε(α−1)q/α+c
∫t

s
(1+ (t −θ)−

1
α )Ks(θ)dθ

≤ cε(α−1)q/α+ c
∫t

s
(t −θ)−

1
α Ks(θ)dθ.
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Define K s(λ) := Ks(λ+ s). From the above inequality we have

K s(t − s) ≤ cε(α−1)q/α+ c
∫t−s

0
(t − s −θ)−

1
α K s(θ)dθ.

By Gronwall’s lemma [23, Lemma 15], we have

Ks(t ) = K s(t − s) ≤ cε(α−1)q/α, for all s ≤ t .

�

The following lemma is a refinement of Lemma A.3.2.

Lemma A.3.3. Fix T > 0,c0 > 1 and 0 < γ0 < 1. For all q ≥ 1 there exists C > 0 such that for all

T ≥ t ≥ s ≥ ε> 0 with t − s > c0ε
γ0 and x ∈R,

d∑
k,i=1

E

[(∫s

s−ε
dr

∫
R

d v
(
D (k)

r,v (ui (t , x))
)2

)q]
≤Cε(1−γ0+γ0

α−1
α

)q .

Proof. We still use the notations as in the proof of Lemma A.3.2. First, under the condition

t − s > c0ε
γ0 , using (A.4), we have∫s

s−ε
dr

∫
R

d v G2
α(t − r, x − v) = c((t − s +ε)

α−1
α − (t − s)

α−1
α )

≤ c((c0ε
γ0 +ε)

α−1
α − (c0ε

γ0 )
α−1
α )

= c(c0ε
γ0 )

α−1
α ((1+ 1

c0
ε1−γ0 )

α−1
α −1)

≤ c(c0ε
γ0 )

α−1
α

1

c0
ε1−γ0

α−1

α

= c
α−1

α
c
− 1

α

0 ε(1−γ0+γ0
α−1
α

), (A.18)

where the first inequality is because the function x �→ (x + ε)
α−1
α − x

α−1
α is decreasing on

[c0ε
γ0 ,∞[, and the second inequality is due to (1+ x)

α−1
α − 1 ≤ α−1

α x, for all x ≥ 0. This im-

plies that

A ≤ cε(1−γ0+γ0
α−1
α

)q . (A.19)

Using (A.18) instead of (A.10), we see that

B1 ≤ cε(1−γ0+γ0
α−1
α

)q . (A.20)

Due to the choice of γ0 and by (A.16), we have

C1 ≤ cεq ≤ cε(1−γ0+γ0
α−1
α

)q . (A.21)
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The estimates for other terms remain the same as in the proof of Lemma A.3.2. Therefore, we

have obtained that

Ks(t ) ≤ cε(1−γ0+γ0
α−1
α

)q +c
∫t

s
(1+ (t −θ)−

1
α )Ks(θ)dθ

≤ cε(1−γ0+γ0
α−1
α

)q + c
∫t

s
(t −θ)−

1
α Ks(θ)dθ.

Applying Gronwall’s lemma ([23, Lemma 15]), we have

Ks(t ) ≤ cε(1−γ0+γ0
α−1
α

)q , for all s ≤ t .

�

Remark A.3.4. The result of Lemma A.3.3 is also valid for the solutions of stochastic heat

equations with Neumann or Dirichlet boundary conditions in which case α= 2. This is because

the Green kernel of heat equation with Neumann or Dirichlet boundary conditions shares

similar properties with the Green kernel of fractional heat equation, which enables us to derive

the same estimates as in (A.18), (A.19), (A.20) and (A.21) for the solutions of stochastic heat

equations with Neumann or Dirichlet boundary conditions.

A.4 Quantitative version of the inverse function theorem

The following lemma is another version of the inverse function theorem. We give its proof for

reader’s convenience.

Lemma A.4.1 ([7, Lemma 3.2] and [69, Lemma 5.6]). For any β> 1, δ> 0, there exist constants

R,α> 0 such that any mapping Φ : Rd �→Rd satisfying

|detΦ′(0)| ≥ 1

β
and sup

‖z‖≤δ
(‖Φ′(z)‖+‖Φ′′(z)‖) ≤β. (A.22)

is a diffeomorphism from a neighborhood of 0 contained in the ball B(0,R) onto the ball

B(Φ(0),α), and

inf
‖z‖≤R

detΦ′(z) ≥ 1

2β
. (A.23)

Proof. The proof is similar to that of [77, Theorem 9.24]. First, we introduce an inequality for

d ×d invertible matrix A (see [80]), that is,

‖A−1‖|det A| ≤ (2d −1)‖A‖d−1. (A.24)
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We apply (A.24) with A =Φ′(0)−1 to see that

‖Φ′(0)−1‖ ≤ 2d −1

|detΦ′(0)| ‖Φ
′(0)‖d−1 ≤ (2d −1)βd . (A.25)

We can choose δ0 = δ0(β,δ) small enough so that δ0 < δ and for any differentiable func-

tion f : Rd �→ Rd satisfying det f ′(0) ≥ 1/β and sup‖z‖≤δ(‖ f (z)‖ + ‖ f ′(z)‖) ≤ β, we have

inf‖z‖≤δ0 det f ′(z) ≥ 1
2β . This is possible because the mapping z �→ det f ′(z) is differentiable

and its derivative can be bounded in terms of β, and then we can apply the mean value

theorem. Choose R = 1
4(2d−1)βd+1 ∧ δ0

2 . Then for any function Φ satisfying (A.22), we have

inf‖z‖≤R detΦ′(z) ≥ 1
2β .

For each function Φ satisfying (A.22) and y ∈Rd , we associate a function ϕ, defined by

ϕ(x) = x +Φ′(0)−1(y −Φ(x)), x ∈Rd . (A.26)

Note that Φ(x) = y if and only if x is a fixed point of ϕ.

Since ϕ′(x) = I −Φ′(0)−1Φ′(x) =Φ′(0)−1(Φ′(0)−Φ′(x)), then (A.25) and the mean value theorem

imply that for any x ∈ B(0,R),

‖ϕ′(x)‖ ≤ ‖Φ′(0)−1‖ ‖Φ′(0)−Φ′(x))‖
≤ (2d −1)βd sup

‖z‖≤δ
‖Φ′′(z)‖‖x‖

≤ (2d −1)βdβR ≤ 1

2
.

Hence

‖ϕ(x1)−ϕ(x2)‖ ≤ 1

2
‖x1 −x2‖, x1, x2 ∈ B(0,R). (A.27)

By the contraction mapping theorem, ϕ has at most one fixed point in B(0,R), so that Φ(x) = y

for at most one x ∈ B(0,R). Thus Φ is one-to-one from B(0,R) to Φ(B(0,R)).

Let us prove Φ(B(0,R)) is open. Pick y0 ∈Φ(B(0,R)). Then y0 =Φ(x0) for some x0 ∈ B(0,R). Let

B0 be an open ball with center at x0 and radius r0 > 0 so small that its closure B̄0 lies in B(0,R).

We will show that y ∈Φ(B(0,R)) whenever ‖y − y0‖ <λr0 with λ= 1
2(2d−1)βd .

Fix y such that ‖y − y0‖ <λr0. With ϕ as in (A.26),

‖ϕ(x0)−x0‖ = ‖Φ′(0)−1(y − y0)‖ < ‖Φ′(0)−1‖λr0

≤ (2d −1)βdλr0 = r0

2
,
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where the second inequality uses (A.25). If x ∈ B̄0, it therefore follows from (A.27) that

‖ϕ(x)−x0‖ ≤ ‖ϕ(x)−ϕ(x0)‖+‖ϕ(x0)−x0‖
< 1

2
‖x −x0‖+ r0

2
≤ r0.

Hence ϕ(x) ∈ B0.

It follows in addition that ϕ is a contraction of B̄0 into B̄0. Being a closed subset of Rd , B̄0 is

complete. Then the contraction mapping theorem implies that ϕ has a fixed point x ∈ B̄0. For

this x,Φ(x) = y . Thus y ∈Φ(B̄0) ⊂Φ(B(0,R)).

Denoteα= R
4(2d−1)βd . We are going to repeat the above arguments to show that for any mapping

Φ satisfying (A.22), B(Φ(0),α) ⊂Φ(B(0,R)).

Fix y such that ‖y −Φ(0)‖ <α. Then by (A.25),

‖ϕ(0)‖ = ‖Φ′(0)−1(y −Φ(0))‖ < ‖Φ′(0)−1‖α≤ (2d −1)βdα= R

4
.

If x ∈ B̄(0, R
2 ), it follows from (A.27) that

‖ϕ(x)‖ ≤ ‖ϕ(x)−ϕ(0)‖+‖ϕ(0)‖

< 1

2
‖x‖+ R

4
≤ R

2
.

Hence ϕ(x) ∈ B̄(0, R
2 ).

Thus ϕ is a contraction of B̄(0, R
2 ) into B̄(0, R

2 ). Therefore ϕ has a unique fixed point x ∈ B̄(0, R
2 ).

Thus y =Φ(x) ∈Φ(B̄(0, R
2 )) ⊂Φ(B(0,R)).

Next we prove that the inverse function Φ−1 is differentiable from B(Φ(0),α) to Φ−1(B(Φ(0),α)).

Pick ȳ ∈ B(Φ(0),α), ȳ + k ∈ B(Φ(0),α). Then there exist x̄ ∈ Φ−1(B(Φ(0),α)), x̄ + h ∈
Φ−1(B(Φ(0),α)) so that ȳ =Φ(x̄), ȳ +k =Φ(x̄ +h). With ϕ as in (A.26),

ϕ(x̄ +h)−ϕ(x̄) = h +Φ′(0)−1(Φ(x̄)−Φ(x̄ +h)) = h −Φ′(0)−1k.

By (A.27), ‖h −Φ′(0)−1k‖ ≤ 1
2‖h‖. Hence ‖Φ′(0)−1k‖ ≥ 1

2‖h‖, and then from (A.25),

‖h‖ ≤ 2‖Φ′(0)−1‖‖k‖ ≤ 2(2d −1)βd‖k‖. (A.28)

We point out that (A.28) implies that the inverse function Φ−1 is continuous from B(Φ(0),α) to

Φ−1(B(Φ(0),α)). By (A.23), Φ′(x̄) has an inverse, say Tx̄ . Since

Φ−1(ȳ +k)−Φ−1(ȳ)−Tx̄ k = h −Tx̄ k =−Tx̄ (Φ(x̄ +h)−Φ(x̄)−Φ′(x̄)h),
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then inequality (A.28) implies

‖Φ−1(ȳ +k)−Φ−1(ȳ)−Tx̄ k‖
‖k‖ ≤ 2(2d −1)βd‖Tx̄‖‖Φ(x̄ +h)−Φ(x̄)−Φ′(x̄)h‖

‖h‖ .

As k → 0, (A.28) shows that h → 0. The right-hand side of the above inequality thus tends

to 0. Hence the same is true of the left. We have thus proved Φ−1 is differentiable at any

ȳ ∈ B(Φ(0),α) and

dΦ−1(y)

d y

∣∣∣∣
y=ȳ

= {Φ′(Φ−1(ȳ))}−1.

So we have proved that Φ is a diffeomorphism from Φ−1(B(Φ(0),α)) ⊂ B(0,R) onto the ball

B(Φ(0),α). �

A.5 A linear independence property of the Gaussian solution

In this section, we show that for any integer n, the random variables u(t1, x1), . . . ,u(tn , xn)

are linearly independent in L2(Ω), where (ti , xi ) ∈ ]0,∞]× [0,1] and (ti , xi ) �= (t j , x j ) if i �= j

for i , j ∈ {1, . . . ,n} (in the case of Dirichlet boundary conditions we assume xi ∈ ]0,1[ ) are the

solution of (4.2.1).

Lemma A.5.1. For any t > 0, xi ∈ [0,1] (in the case of Dirichlet boundary conditions we assume

xi ∈ ]0,1[ ) and xi �= x j for i , j ∈ {1, . . . ,n}, the covariance matrix of the Gaussian random vector

(u(t , x1), . . . ,u(t , xn)) is positive definite.

Proof. It suffices to prove that the smallest eigenvalue of the covariance matrix is positive. Let
1
4 min

i �= j
|xi −x j |2 > ε> 0 and ξ ∈Rn with ‖ξ‖ = 1. Then

n∑
i , j=1

ξi Cov(u(t , xi ),u(t , x j ))ξ j =
∫t

0

∫1

0

(
n∑

i=1
ξi G(t − r, xi , v)

)2

dr d v

≥
n∑

j=1

∫t

t−ε

∫x j+
�
ε

x j−
�
ε

(
n∑

i=1
ξi G(t − r, xi , v)

)2

dr d v

≥ 2

3
I 2
ε (ξ)−2I 1

ε (ξ),

where

I 2
ε (ξ) =

n∑
j=1

∫t

t−ε

∫x j+
�
ε

x j−
�
ε
ξ2

j G2(t − r, x j , v)dr d v,

I 1
ε (ξ) =

n∑
j=1

∫t

t−ε

∫x j+
�
ε

x j−
�
ε

(
n∑

i �= j
ξi G(t − r, xi , v)

)2

dr d v.
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By [7, ( A.3)], there exists a constant c1 such that

inf
‖ξ‖=1

I 2
ε (ξ) =

∫t

t−ε

∫x j+
�
ε

x j−
�
ε

G2(t − r, x j , v)dr d v ≥ c1
�
ε. (A.29)

Using Cauchy-Schwarz’s inequality and the fact G(t − r, x, v) ≤ c�
2π(t−r )

exp
(−|x − v |2/2(t − r )

)
(see for example [7, (A.1)]), we have

sup
‖ξ‖=1

I 1
ε (ξ) ≤

n∑
j=1

n∑
i �= j

∫t

t−ε

∫x j+
�
ε

x j−
�
ε

G2(t − r, xi , v)dr d v

≤ c
n∑

j=1

n∑
i �= j

∫t

t−ε

∫x j+
�
ε

x j−
�
ε

1

2π(t − r )
exp

(−|xi − v |2/(t − r )
)

dr d v

≤ c
n∑

j=1

n∑
i �= j

∫t

t−ε

∫x j+
�
ε

x j−
�
ε

1

2π(t − r )
exp

(
−min

i �= j
|xi −x j |2/4(t − r )

)
dr d v

≤ c
�
ε

∫ε

0

1

r
exp

(
−min

i �= j
|xi −x j |2/(4r )

)
dr. (A.30)

Combining (A.29) and (A.30), we have

inf
‖ξ‖=1

n∑
i , j=1

ξi Cov(u(t , xi ),u(t , x j ))ξ j ≥
�
ε

(
c1 −c

∫ε

0

1

r
exp

(
−min

i �= j
|xi −x j |2/(4r )

)
dr

)
.

Since lim
ε→0

∫ε
0

1
r exp

(
−min

i �= j
|xi −x j |2/(4r )

)
dr = 0, there exists a positive constant ρ0 such that

inf
‖ξ‖=1

n∑
i , j=1

ξi Cov(u(t , xi ),u(t , x j ))ξ j ≥ ρ0.

�

Remark A.5.2. Since Cov(u(t , xi ),u(t , x j )) = 1
2

∫2t
0 G(r, xi , x j )dr , Lemma A.5.1 is equivalent to

saying that the matrix with entries
∫2t

0 G(r, xi , x j )dr is positive definite.

Lemma A.5.3. For (ti , xi ) ∈ ]0,∞[×[0,1] (in the case of Dirichlet boundary conditions we assume

xi ∈ ]0,1[ ), i = 1, . . . ,n with (ti , xi ) �= (t j , x j ) for i �= j , the covariance matrix of the Gaussian

random vector (u(t1, x1), . . . ,u(tn , xn)) is positive definite. In particular, if (a1, . . . , an) �= (0, . . . ,0),

then

E

[(
n∑

i=1
ai u(ti , xi )

)2]
> 0.

Proof. We can assume the random vector (u(t1, x1), . . . ,u(tn , xn)) is of the form

(u(t1, x1
1), . . . ,u(t1, x1

n1
), . . . ,u(tk , xk

1 ), . . . ,u(tk , xk
nk

))
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such that
∑k

i=1 ni = n and t1 > t2 > ·· · > tk . Suppose there exists ξ ∈Rn such that

n∑
i , j=1

ξi Cov(u(ti , xi ),u(t j , x j ))ξ j = 0,

which is equivalent to

E

[(∫t1

0

∫1

0

n∑
i=1

ξi 1{r<ti }G(ti − r, xi , v)W (dr,d v)

)2]
= 0. (A.31)

By the property of Itô integral, this implies that

∫t1

t2

∫1

0

(
n1∑

i=1
ξi G(t1 − r, x1

i , v)

)2

dr d v = 0,

which means that

1

2

n1∑
i , j=1

ξiξ j

∫2(t1−t2)

0
G(r, x1

i , x1
j )dr = 0.

By Remark A.5.2, we have ξ1 = ·· · = ξn1 = 0. We substitute ξ1 = ·· · = ξn1 = 0 into (A.31) to obtain

that

E

[(∫t2

0

∫1

0

n∑
i=n1+1

ξi 1{r<ti }G(ti − r, xi , v)W (dr,d v)

)2]
= 0. (A.32)

Using again the property of Itô integral, (A.32) implies that

∫t2

t3

∫1

0

(
n2∑

i=n1+1
ξi G(t2 − r, x2

i , v)

)2

dr d v = 0,

which means that

1

2

n2∑
i , j=n1+1

ξiξ j

∫2(t2−t3)

0
G(r, x2

i , x2
j )dr = 0.

By Remark A.5.2, we have ξn1+1 = ·· · = ξn2 = 0. We repeat this argument and conclude ξ= 0. �

A.6 The Garsia, Rodemich and Rumsey lemma

In this section, we present two versions of the Garsia, Rodemich and Rumsey lemma.

Lemma A.6.1 ([25, Proposition A.1]). Let (S,ρ) be a metric space, μ a Radon measure on S, and

Ψ : R→R+ an even and convex function with Ψ(0) = 0, Ψ(∞) =∞ and Ψ is strictly increasing

on R+. Suppose p : [0,∞[→R+ is continuous and strictly increasing, with p(0) = 0. Define, for
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any continuous function f : S →R,

C :=
�

Ψ

(
f (x)− f (y)

p(ρ(x, y))

)
μ(d x)μ(d y). (A.33)

Let Bρ(s,r ) denote the open ρ-ball of radius r > 0 about s ∈ S. Then, for all s, t ∈ S,

| f (t )− f (s)| ≤ 5
∫2ρ(s,t )

0

[
Ψ−1

(
C

[μ(Bρ(s,u/4))]2

)
+Ψ−1

(
C

[μ(Bρ(t ,u/4))]2

)]
p(du). (A.34)

We often use the following variant for functions with values in a Banach space.

Lemma A.6.2 ([64, Lemma A.3.1]). Let p,Ψ : R+ → R+ be continuous and strictly increasing

functions vanishing at zero and such that limt↑∞Ψ(t) = ∞. Suppose that φ : Rd → E is a

continuous function with values in a separable Banach space (E ,‖ · ‖). Denote by B the open

ball in Rd centered at x0 with radius r . Then, provided

Γ=
∫

B

∫
B
Ψ

(‖φ(t )−φ(s)‖
p(|t − s|)

)
d sd t <∞,

it holds, for all s, t ∈ B,

‖φ(t )−φ(s)‖ ≤ 8
∫2|t−s|

0
Ψ−1

(
4d+1Γ

λd u2d

)
p(du),

where λd is a universal constant depending only on d.

To conclude the appendix, we cite the following lemma, which is a consequence of [20, Theo-

rems 4.5.2 and 4.5.4].

Lemma A.6.3. Let {Xk }∞k=1 and X be random variables taking values in some Hilbert space H

such Xk converges almost surely to X as k →∞ and supk≥1 E[‖Xk‖q
H ] <∞ for some q > 0. Then

for any 0 < r < q, X ∈ Lr (Ω, H) and

lim
k→∞

E[‖Xk −X ‖r
H ] = 0.
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