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Abstract

In this thesis, we study systems of linear and/or non-linear stochastic heat equations and
fractional heat equations in spatial dimension 1 driven by space-time white noise. The main
topic is the study of hitting probabilities for the solutions to these systems.

We first study the properties of the probability density functions of the solution to non-linear
systems of stochastic fractional heat equations driven by multiplicative space-time white
noise. Using the techniques of Malliavin calculus, we prove that the one-point probability
density function of the solution is infinitely differentiable, uniformly bounded and positive
everywhere. Moreover, a Gaussian-type upper bound on the two-point probability density
function is obtained by a detailed analysis of the small eigenvalues of the Malliavin matrix.
We establish an optimal lower bound on hitting probabilities for the (non-Gaussian) solution,
which is as sharp as that for the Gaussian solution to a system of linear equations.

We develop a new method to study the upper bound on hitting probabilities, from the perspec-
tive of probability density functions. For the solution to the linear stochastic heat equation,
we prove that the random vector, which consists of the solution and the supremum of a linear
increment of the solution over a time segment, has an infinitely differentiable probability
density function. We derive a formula for this density and establish a Gaussian-type upper
bound. The smoothness property and Gaussian-type upper bound for the density of the
supremum of the solution over a space-time rectangle touching the ¢ = 0 axis are also studied.
Furthermore, we extend these results to the solutions of systems of linear stochastic fractional
heat equations.

For a system of linear stochastic heat equations with Dirichlet boundary conditions, we present
a sufficient condition for certain sets to be hit with probability one.

Key words: hitting probabilities, stochastic (fractional) heat equation, Malliavin calculus,
probability density function, Gaussian-type upper bound, supremum of a Gaussian random
field, space-time white noise, capacity, Hausdorff measure.






Résumé

Dans cette thése, nous étudions des systemes linéaires et/ou non-linéaires d’équations de la
chaleur stochastiques et d’équations de la chaleur fractionaires en dimension spatiale 1 régies
par un bruit blanc en temps et en espace. Le sujet principal est 'étude de la probabilité que
les solutions de ces systémes visitent un ensemble donné.

Dans un premier temps, nous étudions les propriétés des fonctions de densité des solutions
des équations de la chaleur fractionnaires stochastiques régies par un bruit blanc multiplicatif.
En utilisant les techniques du calcul de Malliavin, nous prouvons que la fonction de densité
de la solution est infiniment différentiable, uniformément bornée et partout positive. De plus,
une borne supérieure de type gaussien est obtenue pour la densité conjointe grace a une
étude détaillée des petites valeurs propres de la matrice de Malliavin. Pour la solution (non-
gaussienne), nous établissons une borne inférieure optimale sur les probabilités de visiter
un ensemble donné, qui est aussi précise que celle pour la solution gaussienne d’équations
linéaires.

Nous développons une nouvelle méthode pour étudier les bornes supérieures des probabilités
de visiter un ensemble, basée sur les fonctions de densité. Pour la solution du systéme linéaire
de la chaleur stochastique, nous montrons que le vecteur aléatoire, qui consiste en la solution
et le supremum d'un incrément linéaire de la solution dans un intervalle de temps, a une
fonction de densité infiniment différentiable. Nous donnons une formule pour cette densité
et établissons une borne supérieur de type gaussien pour celle-ci. La propriété de régularité
etla borne supérieure de type gaussien pour la densité du supremum de la solution dans un
rectangle en temps et espace qui touche 'axe ¢ = 0 sont aussi étudiées. De plus, nous éten-
dons ces résultats a la solution de systéemes d’équations linéaires de la chaleur fractionnaires
stochastiques.

Pour un systeme d’équations linéaires de la chaleur stochastiques avec des conditions aux
bords de Dirichlet, nous présentons une condition suffisante pour que certains ensembles
soient visités avec probabilité un.

Mots cléfs : probabilités de visiter un ensemble, équation de la chaleur (fractionnaire) stochas-

tique, calcul de Malliavin, fonction de densité, borne supérieure de type gaussien, supremum
d’'un champ aléatoire gaussien, bruit blanc en temps et espace, capacité, mesure de Hausdorff.
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|} Introduction

Stochastic partial differential equations (SPDEs) are a generalization of partial differential
equations, with terms that correspond to random external forces. Usually, the random external
force is taken to be space-time white noise. In many contexts, it is natural to consider systems
of such SPDEs. The white noise may be multidimensional and there is one SPDE for each
component of the solution. In this case, the components of the solution interact with each
other. This thesis studies certain properties of such systems of SPDEs.

1.1 Literature review

The solutions to systems of SPDEs arise as an important class of R?-valued stochastic pro-
cesses. Potential theory is one important topic in the study of such stochastic processes. We
refer to [10, 37, 74] for potential theory for single-parameter processes and to [44] for mul-
tiparameter processes. In probabilistic potential theory, one basic question is to determine
whether a stochastic process visits, or hits, a fixed deterministic set A c R with positive
probability. We are interested in relating the hitting probabilities of the solution to various
geometric quantities, such as Hausdorff measure and capacity.

Let us recall the main existing results on hitting probabilities for some classical stochastic
processes. For example, the well-known theorem of Kakutani (see [44, Theorem 3.1.1, Chapter
10]) states that for a d-dimensional Brownian motion {B(t), t = 0} starting at x € R4 and for
any compact set A c R with x ¢ A,

P{3t>0suchthat B(f) e A} >0 <= Cap,_,(A) >0,

where Capg denotes the capacity with respect to the Newtonian f-kernel. This result was
extended to the Brownian sheet by Khoshnevisan and Shi [46]. Let W = {W;, t € Rﬂy } denote an
R4 -valued Brownian sheet. They showed that for all M >0 and 0 < a < b < oo, there exists a



Chapter 1. Introduction

finite positive constant C such that for all compact subsets A < [-M, M] d,
C‘1Capd_2N(A) <P@Etela, bV : W, e A} < CCap,_sn(A).

Motivated by this, Dalang and Nualart [29] studied hitting probabilities for the solution to
the reduced hyperbolic SPDE on R? (essentially equivalent to the wave equation in spatial
dimension 1):

*x; & *w/
= (X)) ———— + b; (Xy),
0t10t j;a”( [)atlatz + bi(Xi)

where t = (t1, ) € Ri, and X ; =0if 11, =0, forall 1 =i < d. There, Dalang and Nualart used
Malliavin calculus to show that there exists a finite positive constant K dependingon b > a >0
and M > 0 such that for all compact subsets A< [-M, M]d,

K 'Cap,_,(A) <P{3tea,bl*: X, € A} < KCap,_,(A).

In the context of systems of stochastic heat equations, consider the following system:

%(t’ x) = Aui(t, %)+ Y o (u(t, )W (t,x) + bi (u(t, x)), (1.1.1)

j=1

for 1 <i<d, where (¢,x) €]0,00[x[0,1] and u := (uy,..., ug4) with Neumann boundary condi-
tions. We set b = (b;),0 = (o). Let I <]0, T] and J < [0, 1] be two compact intervals. We are
interested in the hitting probability P{u(I x J) n A # @}, where u(I x J) denotes the range of
I x Junder the random map (¢, x) — u(t, x). In the case where the noise is additive, i.e., 0 =1d,
b =0, Dalang, Khoshnevisan and Nualart [25] have established upper and lower bounds on
hitting probabilities for the Gaussian solution. They show that there exists ¢ > 0 depending on
M, 1,] with M > 0, such that, for all Borel sets A < [-M, M]4,

¢ 'Capy_(A) <Plull x ) N A% B} < c.H#y_g(A), (1.1.2)

where 773 denotes the f-dimensional Hausdorff measure. If the noise is multiplicative, i.e.,
o and b are not constants (but are sufficiently regular), then using techniques of Malliavin
calculus, Dalang, Khoshnevisan and Nualart [26] have obtained upper and lower bounds on
hitting probabilities for the non-Gaussian solution, analogous to, but slightly different from,
(1.1.2). Indeed, they prove that there exists ¢ > 0 depending on M, I, J,n with M > 0,1 > 0, such
that, for all Borel sets A < [- M, M]4,

¢ 'Capyyy 6(A) SPul x )N A# @} < cHypyo(A). (1.1.3)

Furthermore, these results have been extended to higher spatial dimensions driven by spatially
homogeneous noise in Dalang, Khoshnevisan and Nualart [27].



1.1. Literature review

This type of question has also been studied for systems of stochastic wave equations, in
particular, in higher spatial dimensions, by Dalang and Sanz-Solé [30] and [31]. We recall some
of their results. Consider the d-dimensional system of stochastic wave equations

2 d ‘
9 A uit,x) = Y 0 j((t, X)) M (¢, %) + b; (u(t, X)), (t,x) €]0, T] x R, (1.1.4)
ot? s

for 1 < i < d, where the d-dimensional driving noise M is white in time with a spatially
homogeneous covariance given by the Riesz kernel f(x) = IIxIIﬁ ,0<B<(2Ak).LetIand J be
two compact subsets of 10, T'] and R, respectively. Fix M > 0 and 1 > 0. If o is an invertible
matrix with constant entries, b = 0 and k € N, Dalang and Sanz-Solé [30] proved that there
exists a positive constant ¢ depending on I,/, M, 8, k and d, such that, for any Borel set
Ac[-M, M4,

¢ 'Cap, 2w (A) <Plu(I x NN A# @} < cH) 2w (A). (1.1.5)
2-p 2-p

If o and b are not constants and satisfy some smoothness and Lipschitz conditions, Dalang
and Sanz-Solé [31] have established, for k € {1,2,3}, that there exists a positive constant ¢
depending on I, J, M, B, k, d and 1, such that, for any Borel set A c [-M, M]¢,

¢ Cap e (A) SPUT X NNAFE @) < 0 aen (4) (1.1.6)
2-p 2=

1+§¥%)+ﬁ
(their result applies to more general covariances than those given by a Riesz kernel). These
results were extended to the case of linear fractional colored noise by Clarke de la Cerda and
Tudor [22]. Hitting probabilities for the solutions to systems of elliptic stochastic equations
have been studied in Sanz-Solé and Viles [79]. For systems of linear stochastic fractional heat
equations in spatial dimension 1 driven by space-time white noise, the question of hitting
points was studied in Wu [84]. We also refer to Mueller and Tribe [62] for a (Gaussian) random
string, Dalang, Mueller and Zambotti [28] for a heat equation with reflection, and Nualart and
Viens [71] for a system of heat equations driven by an additive fractional Brownian motion.

We are also interested in studying the probability density function of the supremum of the
solution; see Chapter 4 for the detailed motivation. The question of smoothness of the density
of the supremum of a multiparameter Gaussian process dates back to the work of Florit and
Nualart [39], in which they establish a general criterion (see Theorem 1.5.5) for the smoothness
of the density assuming that the random vector is locally in D> and apply it to show that the
maximum of the Brownian sheet on a rectangle possesses an infinitely differentiable density.
Moreover, this method was applied to prove that the supremum of the fractional Brownian
motion has an infinitely differentiable density; see Lanjri Zadi and Nualart [55]. Some general
results on the regularity of the density of the maximum of Gaussian random fields have been
developed by Cirel'son [21], Pitt and Lanh [73], Weber [83], Lifshits [56, 57], Diebolt and Posse
[36] and Azais and Wschebor [4]. We also refer to Hayashi and Kohatsu-Higa [42] and Nakatsu
[63] for the smoothness of densities for diffusion processes.
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1.2 Main results of the thesis

In this thesis, we study the following system of linear and/or non-linear stochastic heat
equations in spatial dimension 1 driven by space-time white noise:

6u,~ azui d .
(t,x) = 5 (t,x)+ Z oij(u(t,x))Wf(t,x) +b;(u(t,x)), teR,, xeU, (1.2.1)
j=1

or 0x
and its extension to the following system of stochastic fractional heat equations:

ou; o d i
E(t’x) =,D%u;(t,x) + Zaij(u(t,x))W (t,x)+ b;i(u(t,x)), teR, xeR, (1.2.2)

j=1

for1<i<d,whereR; :=[0,00[, Uisequalto [0,1] or R, 1 < @ <2, u:= (uy,..., ug), with initial
conditions u(0, x) = up(x) for all x € U, and Dirichlet or Neumann boundary conditions if
U=10,1].

Our main topic is the study of hitting probabilities for the solutions to (1.2.1) and (1.2.2). As
we have seen from (1.1.2) and (1.1.3), the lower and upper bounds on hitting probabilities for
non-Gaussian solutions are not as sharp as those for Gaussian solutions; compare also (1.1.5)
and (1.1.6) for stochastic wave equations. Our main objective was to remove the 7 on the left-
and right-hand sides of (1.1.3).

In Chapter 2, we succeed in removing the 1 in the dimension of capacity in (1.1.3), and we
generalize these results to solutions of systems of stochastic fractional heat equations; see
our Theorem 2.1.4. The proof of the lower bound is essentially based on the analysis of the
one-point and two-point joint densities of the solution. In particular, the presence of 7 in
the dimension of capacity in (1.1.3) comes from a Gaussian-type upper bound on the joint
density of Z := (u(s, y), u(t, x) — u(s, y)); see [26, Theorem 1.1(c)]. In Theorem 2.1.1, we manage
to remove this 1 in the Gaussian-type upper bound on the joint density of Z, so that this
becomes the best possible upper bound, as in the Gaussian case. This requires a detailed
analysis of the small eigenvalues of the Malliavin matrix vy, of Z; see Proposition 2.5.10. We
prove Proposition 2.5.10 by giving a better estimate on the Malliavin derivative of the solution;
see Lemma A.3.3, which, for a certain range of parameters, is an improvement of Morien [60,
Lemma 4.2]; see also Lemma A.3.2. This estimate is used in Lemma 2.5.4 to obtain a bound
on the integral terms in the Malliavin derivative of u (compare with [26, Lemma 6.11]), then
in Proposition 2.5.10 to bound negative moments of the smallest eigenvalue of the Malliavin
matrix (compare with [26, Proposition 6.9]), and finally in Proposition 2.5.8 and Theorem
2.5.13 to bound negative moments of the Malliavin matrix (compare with [26, Proposition 6.6]
and [26, Theorem 6.3]). This improves the result (1.1.3) of [26], and the method extends to
systems of stochastic fractional heat equations (1.2.2) for 1 < a < 2 with a unified proof.

In Chapter 3, we study the hitting probability of the Gaussian solution (o =1d, b = 0) satisfying
(1.2.1) on U = [0, 1] with Dirichlet boundary conditions, from another perspective. In Theorem
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3.1.1, we show that for Borel sets A satisfying Cap,_g(A) >0,
P{u([0,00[x[0,1)NA# @} =1. (1.2.3)

This is obtained by using the strong Markov property, a recurrence property when the solution
is viewed as parameterized only by time and taking values in the space of continuous functions,
and the lower bound on hitting probabilities in (1.1.2). Intuitively, the solution visits infinitely
many times a ball in the space of continuous functions with a large radius, and between
visits, it hits A with a probability bounded below by Cap;_g(A) times a constant. Formally, we
are able to sum up these probabilities by using the strong Markov property and obtain this
probability one result.

We turn to considering the upper bound on hitting probabilities in (1.1.3) for the non-Gaussian
solution, which we expect should be consistent with the result for the Gaussian solution in
(1.1.2). We remark that, following the general approach for upper bounds on hitting proba-
bilities in [25], it is sufficient to bound appropriately the probability that the solution visits a
small ball within a small space-time region:

(t,x)ERZyl

P{ inf Iu(t,x)—ZISZ_”}, (1.2.4)

where R} | is defined as in (4.1.3) (for simplicity, we consider here one single equation, i.e.,
d = 1). One possible way to estimate this probability is to study the regularity of the joint
probability density function of the random vector

u(ty,x), sup u(t,x)—uty,x;)|, (1.2.5)
()R],

where the supremum of the solution appears, and to establish good bounds on this density
function; see the detailed description in Section 4.1 and Theorem 4.1.1 that motivates this
study.

In Chapter 4, we apply Theorem 1.5.5 of Florit and Nualart [39] to study the density of the
supremum of linear and rectangular increments of the solution to the linear stochastic heat
equation. In Theorem 4.2.1, we prove that the random vector

u(so, o), sup  (u(z, yo) — u(so, yo)) (1.2.6)
te[So,S0+01]

has an infinitely differentiable density on Rx]0,00[. Furthermore, in Theorem 4.2.2, we estab-
lish a Gaussian-type upper bound on this density, which provides an alternative method to
study the upper bound on hitting probabilities of the solution. To achieve this, we present a
formula for this density using the integration by parts formula in Proposition 4.5.6. The main
technical effort to analyze this density is Proposition 4.6.2, in which we use the properties of
the divergence operator to estimate the Skorohod integral appearing in the formula for the
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density.

Finally, in Chapter 5, we extend the results of Chapter 4 to the solution of the linear stochas-
tic fractional heat equation. It is known that the fractional differential operator affects the
Hoélder continuity of the solution. The smoothness of the densities of the supremum of linear
increments of the solution over a time segment and of the supremum of the solution over a
space-time rectangle still hold: see Theorem 5.1.1. Moreover, in Theorems 5.1.2 and 5.1.4, we
show how the corresponding Gaussian-type upper bounds on these densities depend on the
degree of the fractional differential operator ,D® in a consistent way.

1.3 Stochastic heat equation

In this section, we give a rigorous formulation for equations (1.2.1) and (1.2.2), following
Walsh [81]. Let Wi = (Wi(t, X)) ,0er, xu, L =1,...,d, be independent space-time white noises
defined on a probability space (Q,.%,P). The space-time white noise W is a distribution-
valued and centered Gaussian process with covariance

E[W (@)W ()] = fo dr fdeqo(t,x)w(t,x).

for ¢, ¥ € Ci° (R4 x U) (the space of infinitely differentiable functions with compact support in
R, x U). For each ¢ = 0, we denote by Z([0, t] x U) the collection of Borel sets on [0, ¢] x U with
finite Lebesgue measure. The filtration generated by the space-time white noise is defined by

Fr=0{W(A), Ac B(0,t] xU)} VA, =0, (1.3.1)

where A4 is the o-field generated by P-null sets.

We assume that for all 1 < i, j < d, the functions b;, 0 : R? — R are globally Lipschitz continu-
ous. We set b = (b;), 0 = (0;). The fractional differential operator D* appearing in (1.2.2) will
be defined in Section 2.1. If U = [0, 1], we impose Neumann or Dirichlet boundary conditions
on the solution.

A mild solution of (1.2.1) is a jointly measurable R4 -valued process u = {u(t,x),t=0,x € U},
adapted to the filtration (%) ;> defined in (1.3.1), such that for i € {1,...,d},

t d .
ui(t,x)=[ f G(t—r,x,v) )_ojurv)W/(dr,dv)
0 JU j=1

t .
+f f G(t—r,x,v)b;(u(r, v))drdv+f G(t, x, v)u(’)(v)dv, (1.3.2)
o Ju U

where G(t, x, v) denotes the Green kernel for the heat equation. A mild solution of (1.2.2) is a
jointly measurable R%-valued process u = {u(t, x), t = 0, x € R}, adapted to the filtration (%) ;>0
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defined in (1.3.1) with U = R, such thatfor i € {1,...,d},

¢ d ;
u,-(t,x):f fGa(t—r,x—v) o;julr,v)W/(dr,dv)
0 JR j=1

t .
+f fGa(t—r,x— v)b; (u(r, v))drdv+f Ga(t, x— V) uy(v)dv, (1.3.3)
0 JRr R

where G (¢, x) denotes the Green kernel for the fractional heat equation:

G(0,x) =6p(x), (1.3.4)

{ 2G(t,x) = «D*G(t,x), t>0,x€R,
where d is the Dirac distribution.

If U = [0, 1], in the case of Neumann boundary conditions, the Green kernel G(t, x, y) for the
heat equation is given by

Gt x,) = — (ex ( (y_x_2”)2)+ex ( (y+x_2")2)) (1.3.5)
V= Vs 2 P at P at ’ .
or in the case of Dirichlet boundary conditions, by
1 (y—x—2n)? (y+x-2n)?
Glt,x,7) = (exp (- 22 ) - L2 (13.6)
Y \/4]1;tn%:Z P 4t P 4t

see [6]. If U = R, the Green kernel G(t, x,y) (denoted by G(t, x — y)) for the heat equation
without boundary is given by

G(tx)—LeX (—x—z) (1.3.7)
) —\/m P ik 3.

The Green kernel for the fractional heat equation is given via Fourier transform. We write
Gy (t,x,v) as Go(t,x—v) and

1
Gy (t,x) = —f exp(—idx — t|IA|*)dA. (1.3.8)
27 JR

See the Appendix for the properties of this Green kernel.

1.4 Notations for potential theory

In this section, we recall some notations concerning potential theory, from [44]. For all Borel
sets F < R?, we define 22 (F) to be the set of all probability measures with compact support
contained in F. For all integers k > 1 and p € 22 (R¥), we let I s(1) denote the f-dimensional
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energy of y, that s,

Ip(p) = ffKﬁ(le—yll)u(dx)u(dy),

where | x|| denotes the Euclidian norm of x € R¥,

rp if >0,
Kp(r) := log(Ny/r) if p=0, (1.4.1)
1 if <0,

and Nj is a sufficiently large constant determined according to the context. For example, in
Chapter 2, its value is specified in the proof of Lemmas 2.2.3 and 2.2.4.

Forall B € R, integers k = 1, and Borel sets F < R¥, Cap B (F) denotes the 3-dimensional capacity
of F, that is,

-1
Capg(F) :=

’

inf T
peng(F) pH)

where 1/00:= 0. Note that if § <0, then Capﬁ(~) =1.

Given f§ = 0, the -dimensional Hausdorff measure of F is defined by

oo o0
Hp(F) = lirgl inf{ Z(Zri)ﬁ:Fg J B(xj,ri),supr; < e}.
e—0+

i=1 i=1 i=1
When f§ < 0, we define .773(F) to be infinite.

Throughout this thesis, for 1 < a < 2, we consider the following fractional parabolic metric: For
all s,t€[0,00[ and x, y € R,

Aa((£,%);(5,9)) =t —s|T +]x— @\, (1.4.2)

Clearly, this is a metric on R? which generates the usual Euclidean topology on R?. We simply
write A instead of A, when a = 2.

1.5 Elements of Malliavin calculus

In this section, we introduce, following Nualart [64] (see also [78]), some elements of Malliavin
calculus. Let W = {W (h), h € ¢} denote the isonormal Gaussian process (see [64, Definition
1.1.1]) associated with space-time white noise, where .7 is the Hilbert space L2([0, T] x U, R%).
Let . denote the class of smooth random variables of the form

G = g(W(hl),.,W(hn)))



1.5. Elements of Malliavin calculus

wheren=>=1, ge %SO(R”), the set of real-valued functions g such that g and all its partial
derivatives have at most polynomial growth and h; € 7. Given G € ., its derivative is defined
to be the R%-valued stochastic process DG = (D ;G = (D%G,...,DE@ G),(t,x) € [0, T] x U)
given by

DixG=) 0;gW(hy),...,W(hp))h;(t,x).
i=1

More generally, we can define the derivative DX F of order k of F by setting
1 0
DtG= Y

il,...,ikzl

ax,-l ax,-k

where a = (ay,...,ax), a; = (t;,x;),1 < i < k and the notation ® denotes the tensor product of
functions.

For p, k > 1, the space D7 is the closure of .# with respect to the seminorm | - ”Z » defined by

k .
IGI} , =EIGIP1+ Y E[IDIGI,. |,
=1

where

. T T . ; 2
iz — . Aph ...pY
ID G||%mj_f0 dtlfdel fo dt]fde] (D§ Dy, 6]

We set D™ = Np=1 Ng=1 DkP.

For any given Hilbert space V, the corresponding Sobolev space of V-valued random variables
can also be introduced. More precisely, let . denote the family of V-valued smooth random
variables of the form

n
G= ZG]'V]', (Vj,Gj)EVXy.
=1

We define

n
D*G=Y (D*Gpev;, k=1.
j=1

Then DF is a closable operator from .y < LP(Q, V) into L” Q, #%k & V) for any p = 1. For
p, k=1, aseminorm is defined on .#y by

k )
IGI? ., =E[IGI}]+ Y E[ID/GI",.,. |
j=1

We denote by DF? (V) the closure of .#}, with respect to the seminorm ||- IIz o We set D*°(V) =
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Np=1Nk=1 DRP (V).

The derivative operator D on L?(Q) has an adjoint, termed the Skorohod integral and denoted
by &, which is an unbounded and closed operator on L?(Q,.7#); see [64, Section 1.3]. Its
domain, denoted by Dom §, is the set of elements u € L?(Q,.%#) such that there exists a
constant ¢ such that [E[{DG, u) 1| < c||Gllo,2, for any G € D"2. If u € Dom &, then & (u) is the
element of L?(Q) characterized by the following duality relation:

d T .
E[GSw)] =E Zfo fUD(t])G uj(t,x)drdx|, forall GeD"?,

X

A first application of Malliavin calculus is the following global criterion for existence and
smoothness of densities of probability laws.

Theorem 1.5.1 ([64, Proposition 2.1.5] or [78, Theorem 5.2]). Let F = (F,...,F%) be an R?-
valued random vector satisfying the following two conditions:
(i) Fe @)%
(ii) The Malliavin matrix of F defined by yr = ((DFi,DFj>jf)15i)]’5d is invertible a.s. and
(detyp)_1 eLP(Q) forallp =1.
Then the probability law of F has an infinitely differentiable density function.

A random vector F that satisfies conditions (i) and (ii) of Theorem 1.5.1 is said to be nondegen-
erate. For a nondegenerate random vector, the following integration by parts formula plays a
key role.

Proposition 1.5.2 ([65, Proposition 3.2.1] or [78, Propostion 5.4]). Let F = (F',...,F%) € (D)4
be a nondegenerate random vector, let G € D* and let g € CK;’O([R{d). Fix k = 1. Then for any
multi-index a = (ay, ...,ar) €1{1,...,d}¥, there is an element Hy (F,G) € D® such that

El(0.8(F)G)] = E[g(F)Hq (F, G)].
In fact, the random variables H, (F, G) are recursively given by

Hq(F,G) = Hia;)(F, Hq,
da

a1 (FG)),

.....

Hy(FEG) =

1

8(G(yz") i, DF).
1

Proposition 1.5.2 with G=1and a = (1,...,d) implies the following expression for the density
of a nondegenerate random vector.

Corollary 1.5.3 ([65, Corollary 3.2.1]). LetF = (F',...,F%) € (D)% be a nondegenerate random
vector and let pr(z) denote the density of F. Then for every subset o of the set of indices11,...,d},

.....

10



1.6. Summary of the thesis

where|o| is the cardinality of o, and, in agreement with Proposition 1.5.2,

Hy,..0(ED)=8((yz'DP)S((yz' DR 6 (--6(yg' DE)Y) --))).

The next result gives a criterion for uniform boundedness of the density of a nondegenerate
random vector.

Proposition 1.5.4 ([26, Proposition 3.4]). Forallp>1andl =1, letc; = c1(p) >0 and c, =
co(l, p) = 0 be fixed. Let F € (D)9 be a nondegenerate random vector such that

(@ El(detyp) Pl=c;

@ E(ID'(FHI",.,
Then the density of F is uniformly bounded, and the bound does not depend on F but only on
the constants ¢, (p) and c» (1, p).

< C, i=1,...,d.

In order to handle random vectors whose components are not in D*°, we recall the following
general criterion for smoothness of densities established in [39].

Theorem 1.5.5 ([39, Theorem 2.1] or [64, Theorem 2.1.4]). Let F = (F,...,F% be a random
vector whose components are in DV?. Let A be an open subset of R%. Suppose that there exist
J€ -valued random variables ui‘, j=1,...,d and ad x d random matrixy o = (7/2] ) such that

(i) ul, eD®A) forall j=1,...,d,
(ii) yi;j eD® foralli,j=1,...,d, and |dety 4|"' € LP(Q) forall p = 1,
(i) (DF iy p =y" on(Fe A}, foralli,j=1,...,d.

Then the random vector possesses an infinitely differentiable density on the open set A.

A random vector F that satisfies the conditions in Theorem 1.5.5 is said to be locally nonde-
generate.

Throughout the thesis, the letters C, ¢ with or without index will denote generic positive
constants whose values may change from line to line, unless specified otherwise.

1.6 Summary of the thesis

In this section, we summarize the main contributions of this thesis.

1.6.1 Lower bound on hitting probabilities

Following the general approach in [25], the lower bounds in (1.1.2) and (1.1.3) are a con-
sequence of the following properties of the one-point and two-point joint probability den-
sity functions of the solution. Let p; (-) and ps, y;1,x(-,-) denote the densities of u(z, x) and
(u(s, y), u(t, x)) respectively.

11
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L1 For all M > 0, there exists a positive and finite constant C = C(I, J, M, d) such that for all
ze[-M,M)?,

fdt[dxpt,x(z)zc. (1.6.1)
I J

L2 For all M > 0, there exists ¢ = ¢(I,J,M,d) > 0 such that for all s, € I and x, y € J with
(t,x) # (s,)), and for every z1, 22 € [-M, M4,

c exp|— lz1 — z2 1
(12— M2+ |x— y|]h2 c(t—s"2+|x-y

Ps,yinx(21,22) < (1.6.2)

In the Gaussian case, i.e., 0 = 1d, b = 0, the formulas for densities are given in terms of variance-
covariance matrix. We can analyze this variance-covariance matrix to obtain the estimate in
(1.6.2) with 8 =d.

In the case where the solution is not Gaussian, in other words, the entries of o are not constants,
we impose some regularity conditions on o and b; see hypotheses P1 (or the weaker hypothesis
P1’) and P2 in Section 2.1. Using techniques of Malliavin calculus, Dalang, Khoshnevisan
and Nualart [26] showed that the estimate in (1.6.2) for non-Gaussian solutions holds with
B = d +n and with the constant c also depending on 7.

The first contribution of this thesis is the sharpening of the estimate on the two-point density
of the non-Gaussian solution so that it has the same Gaussian-type upper bound as the two-
point density of the Gaussian solution. And then we extend this result to the solution of a
system of stochastic fractional heat equations (1 < a < 2). In fact, we have established the
following properties on the densities of the solution to (1.3.3).

Theorem 1.6.1 (Theorem 2.1.1). Assume P1 and P2. Fix T >0 and let1<]0,T] and J R be
two fixed non-trivial compact intervals.

(@) The density p; (z) is a smooth function in z and is uniformly bounded over z e R%, t € I
andxe€ J.

(b) Forall (t,x)€10,T] xR and z € R?, the density p; «(z) is strictly positive.
(c) There exists c >0 such that for all s, t € I, x,y € ] with (s, y) # (t,x) and z,, z; € R¢,

_ lz1 — 2|2
LIS

a=1 _
Psyirx(21,22) <c(|t—sl @ +]x—y|? = :
c(t=sla +[x—yl*1

(1.6.3)

Moreover, we establish the following lower and upper bounds on hitting probabilities.

Theorem 1.6.2 (Theorem 2.1.4). Assume P1’ and P2. Fix T >0,M >0 andn > 0. Let 1 ]0, T]
and J c R be two fixed non-trivial compact intervals.

(a) There exists ¢ >0 depending on I, ] and M such that for all compact sets A< [-M, M] d

PluIxN)nNnA#¢@}= cCapd_zmijln(A).

12



1.6. Summary of the thesis

(b) There exists C >0 depending on I, ] andn such that for all compact sets A R4,

Plu(Ix)NA# @} = C%_n_z(%n(A).

In particular, in the case a = 2, which corresponds to the equation (1.3.2), the lower bound in
part (a) improves the lower bound in (1.1.3) and is best possible, in view of (1.1.2).

The estimate on the two-point density in (1.6.3) requires a detailed analysis of the behavior of
the Malliavin matrix of (u(s, y), u(t, x)). Since we are interested in how this density blows up
as (t,x) — (s,y), we have studied the density (denoted by pz(:,-)) of the random variable Z
defined by

Z:=(u(s,y), u(t,x) — u(s,y)). (1.6.4)
These two densities ps y;;,x(-,-) and pz(-,-) are related by

d
Ps,yit.x(21,22) = pz (21,22 — z1), 21, 22 €R".

Let y z be the Malliavin matrix of Z. Note thatyz = (Y 2) m,1) m,1=1,...,24 1S @a symmetric 2d x 2d

.....

random matrix with four d x d blocs of the form

1 2)

Y, Yy
Yz=
Yg’) Y(Z4)
where
Yy = ((Di(s, ), D@j(s, 1)) 1) iy a»
Y9 = ((DCui(s, 1)), D(wj (6,0 = uj($, YD) o ); oy 4
Y9 = ((DCui(t,0) = ui(s, ), D@j (s, 1)) 1) iy g»
vy = (D, ) = ui(s, ), D (6, 2) = (5, ) ), 12y g

Under the hypotheses P1’ and P2, Malliavin calculus provides a formula for the density p 7 (-, ).
Following the general approach in [26], the main effort is to estimate the negative moments of
the determinant of y ;. We have obtained the following

Proposition 1.6.3 (Proposition 2.5.8). Fix T >0 and let I c]0,T] and J c R be two fixed non-
trivial compact intervals. Assume P1’ and P2. There exists C depending on T such that for any
&y, (Ex)elx],(s,)#(,x),p>1,

E[(dety) 1" <C(t—s|F +|x—y|*H) ™9 (1.6.5)

13
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In [26, Proposition 6.6 (a)], an extra exponent 1 appears in the estimate of the negative mo-
ments of the determinant of yz; there, the exponent d in (1.6.5) is replaced by d + 7.

The main idea for the proof of Proposition 1.6.3 is to use a perturbation argument. Indeed, for
(t,x) close to (s, y), the random matrix y ~ is close to

1 .
y(Z) 0
}7:
0 : 0

We then expect that for (z, x) close to (s, y), there will be d large eigenvalues of yz which will
contribute a factor of order 1 to the determinant of y 7, and d small eigenvalues of y 7, that
will each contribute a factor of order | — s| T4 |x— yl"‘_1 to the determinant of y .

Let us concentrate on the small eigenvalues. Since we are in the situation of negative moments,
we can use the smallest eigenvalue inf;cgea ¢ Ty 7& of y 7 to control the small eigenvalues. In
fact, we have proved the following

Proposition 1.6.4 (Proposition 2.5.10). Fix T > 0. Assume P1’ and P2. There exists C depending
on T such that foralls,te [,0<t—-s<1,x,y€],(s,y) #(t,x),and p>1,

E <C(t-s|% +|x—y|@ P, (1.6.6)

T ~dp
(Ezlgn_\fm& Yzé)

The presence of 1 in the previous work [26] is due to their method of proof. We address
this problem by giving a better estimate on the Malliavin derivative of the solution; see the
following lemma, which is an improvement of Lemma 4.2 in [60].

Lemma 1.6.5 (Lemma A.3.3). Fix T >0,co>1and0 <y <1. Forall g =1 there exists C >0
such thatforallT=t=s=e¢>0witht—s>cye’ and x € R,

d s q
Y E [([ ar [ av(pfwe.))
i s—€ R

k,i=1

< Ce(l—?’oﬂ’o%l)q'

14
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1.6.2 Probability density function of the supremum

For the upper bound on hitting probabilities of the solution to (1.3.2), it suffices to estimate
appropriately the probability in (1.2.4). By the triangle inequality,

P{ inf |u(t,x) -z 52_"}

(t.X)eR!,

<PJlu(ty,x)—zl<27"+ sup |u(t,x)—ult],x) ;. (1.6.7)
(t'x)ERZ,l

Since the supremum of the absolute value of a continuous function is equal to either the
maximum of the function, or the minimum of the function times —1, the probability in (1.6.7)
is approximately equal to

2-P{|u(t,’cl,xf)—z|52_”+ sup u(t,x)—u(t,?,xl”)}. (1.6.8)

(t.X)€R},

Formally, the random variables u(#, x}') and sup; e Ry, U, X) = u(z, x;') are not indepen-
dent, but from the perspective of probability density functions, we expect that the joint density
(denoted by p,(-,-), whose existence needs to be proved) of the random vector in (1.2.5) is
bounded above by the product of the marginal densities of the components (times a constant).
The density of u(¢?, xl") is bounded uniformly over (¢, xf); see [26, Theorem 1.1(a)] and our
Theorem 2.1.1(a). So the joint density of this random vector is dominated by the density of the
random variable SUP (s, ek?, u(t, x) —u(e), x;).

To derive a satisfactory estimate for the density of sup, ;)¢ R u(t, x) — u(ty, x}'), recall that the
probability density function of the maximum of Brownian motion maxy< ;<7 B(t) given by

2

o)
z— exp | ——| 10,00 (2)-

Relating this formula to the fact that the sample paths of Brownian motion are almost %-Ht')lder
continuous suggests that the joint density p,(:,-) should satisfy the following estimate:

2
c -25
, < 1.6.9
pn(Z1 ZZ) (2—4n)1/2+2—2n eXp(C((2—4n)1/2 +2—2n)) ( )
= c2"exp( 2_;), forall z; €eR, z, >0. (1.6.10)
c

We are aiming at obtaining an estimate as in (1.6.9) for the solution of (1.3.2). In this thesis, we
only consider the linear equation, i.e., 0 = 1, b = 0, in which case the solution is Gaussian. And
we consider the supremum of an increment in time of the solution over an interval (at a fixed
spatial position), and the supremum of the solution over a space-time rectangle that touches

15
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the ¢ = 0 axis.

Fix two compact intervals I ]0, T] and J <]0, 1 with positive length. Choose (sg, yo) € I x |
and small positive numbers 81, d2. Set

Fr=u(so,y0), Fo= sup (u(¢,y0) —u(so, o)), F=(F1,F), (1.6.11)
t€[50,50+61]
and
My = sup u(t,x). (1.6.12)

(£,)€[0,611 % [y0,Y0+02]

Define the random variables 1, = (ujlq, ui), YA = (Yiij)lsi,jsz and uj, y; as in Section 4.5.
We show that the random variables F and M) are locally nondegenerate and therefore, by
Theorem 1.5.5, they have infinitely differentiable densities. Moreover, the integration by parts
formula established in the proof of Theorem 1.5.5 (see [64, Theorem 2.1.4]) leads us to a
formula for the density of each random variable. Then we use the properties of the divergence
operator to give a Gaussian-type upper bound on this (joint) density.

The main results concerning the upper bound on hitting probabilities in this thesis are the
following theorems, in which we refer to Chapter 4 for the definition of the random variables
and vectors ua, Y4, uz and y 5.

Theorem 1.6.6 (Theorem 4.2.1(a) and Theorem 4.2.2). Assumeo =1andb=0. FixIx ] c

10, T1x]0, 1[.

(i) The random vector F in (1.6.11) possesses an infinitely differentiable density on Rx]0,00[
and the formula of the density is given by

p(z1,22) = E[l{F1>z1,F2>zZ}5 (uké (u‘?‘q/yiz))] , forall z; R, zp > 0. (1.6.13)

(ii) There exists a constant ¢ = c(I, ) such that for all small §, > 0, and for z, = 51'%, z; € R and
any (so,yo) € I x ],

2 2
Z2 _1 Zl
p(z1,22) < exp (_—05”2) (lz117% A l)exp(——C ). (1.6.14)

The estimate in (1.6.14) is only valid for z, = § }/ 4. But this is sufficient to obtain the upper
bound on hitting probabilities: see Section 4.1.

Theorem 1.6.7 (Theorem 4.2.1(b) and Theorem 4.2.5). Assumeo =1 and b=0. Fix J <]0,1][.
(i) The random variable My in (1.6.12) possesses an infinitely differentiable density on 10,00l
and the formula of the density is given by

po(2) = E[Limy>z6 (uzlyi)],  forall z>0. (1.6.15)

16



1.6. Summary of the thesis

(ii) There exists a constant ¢ = ¢(T, J) such that for all small 1, 62 > 0, and for z = (61/2 +8,)1/2
and any yo € J,

c z2
(2) < exp|— . (1.6.16)
Po ) 51/2 p( 6(5}/2+62))

We give some explanation on the bound in (1.6.14) (the method to prove the bound in (1.6.16)
is the same). The bound in (1.6.14) follows from the formula for the density in (1.6.13) by
proceeding as follows. First, by Holder’s inequality, we have

p(z1,22) < P{IF1| > |z [} *P{F2 > 2o M 166 (Wi 15 u 2 (1.6.17)

Since Fj is a Gaussian random variable, the estimate on the tail probability P{|F;| > |z [}
corresponds to the factors involving the variable z; in (1.6.14). Using Borell’s inequality, P{F, >

z,}1"* is bounded above by the exponential factor involving the Variable z in (1.6.14). It
remains to prove that the L?(Q)-norm of the random variable § (5 (u A/ y I u A) is bounded
above by 67 174 times a constant. We use the properties of the Skorohod integral § to express
6(6(uA/7/A )uA) as

6(5(MA/YA )uA)—T1+T2—T3+T4—T5+T6,

where
o(u?) (DY%2, u2) 1
Ty = —5-0(uy), Tp= —"5520=0)), Ty=—5(D6GA), wh)r,
A ) Ya
8(u3) 2DY5% ) e
Ty= — (DY o, Ts= —— 25522 (DY 52, ul) v,
(9% (5%

Ts = 1 <D<DYA »uA>jZ”;uA>%”
(y A 22

Due to our choice of u4 and vy 4, the last three terms Ty, T5 and Tg vanish. To estimate the
moments of the Skorohod integrals, for example 6§ (ui), one can use the Holder’s inequality
for Malliavin norms (see [64, Proposition 1.5.7]), but the upper bound is not of the correct
order. To handle this problem, we use the fact that we have defined ui so that it is an adapted
process; in this case, the Skorohod integral & (ui) coincides with a Walsh integral. Then we
apply Burkholder’s inequality to bound the moments of the three terms T4, T, T3 respectively,
and each of them will give us the correct upper bound of the order & 1‘” Yforall zp =0 i/ 4 We
state the main technical effort to prove (1.6.14) as follows.

Proposition 1.6.8 (Proposition 4.6.2). (a) There exists ¢, >0, not depending on (sy, yo) € I x ],
such that for all 5, > 0 and for all z, = 51'4,

5_1/4

ITill oy < cp67Y%, forie{1,2,3). (1.6.18)
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(b) Ty, Ts and Ty vanish.

This entire procedure can be extended to the case of the linear stochastic fractional heat
equation (1.2.2). Let u solve linear stochastic fractional heat equation (1.2.2) withd =1, 0 =
1, b=0andlet F and M, be defined as in (1.6.11) and (1.6.12) respectively with this u.

Theorem 1.6.9 (Theorem 5.1.1(a) and Theorem 5.1.2). Assume o = 1 and b = 0. Fix two
compactintervals I <10, T] and J c R with positive length. The random vector F has an infinitely
differentiable density on Rx]0,00[, denoted by (z1,z2) — p(z1, z2). And there exists a constant
¢ = c(l,]) such that for all small 5, > 0, and for z, = 6 *"V'?Y 2, e R and any (so, yo) € I x J,

2

—C  exp|-—2__|qal i Al)ex i
[sla—D/a P cag"“”/“ ! I
1

Theorem 1.6.10 (Theorem 5.1.1(b) and Theorem 5.1.4). Assumeo =1 and b = 0. Fix a compact
interval ] c R with positive length. The random variable My has an infinitely differentiable
density on 10,00(, denoted by z — py(z). And there exists a constant c = c(T, ]) such that for all
small 8y, 8, >0, and for z = (5% + 6412 and any y € J,

p(zl) ZZ) =

pol(z) =

c exp z
Xp | — .
[plaDia a1 c@@ Ve 5oy

Finally, we also study the supremum of certain increments of the solution over a space-time
rectangle. Define the random variable M by

M := sup (u(t, x) —u(t,0)).
(t,x)€[0,T1x[0,1]

We apply Theorem 1.5.5 to prove the smoothness of the density of the random variable M for
the solution with Neumann boundary conditions. The method is different from that for the
random vector F defined in (1.6.11), and similar to the case of Brownian sheet.

Theorem 1.6.11 (Theorem 4.2.1(b)). In the case of Neumann boundary conditions, the random
variable M has an infinitely differentiable density on 10,00].
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4 Hitting probabilities for systems of
stochastic heat equations with multi-
plicative noise

In this chapter, we study hitting probabilities for the solution to systems of non-linear stochas-
tic fractional heat equations. Using techniques of Malliavin calculus, we first derive the upper
bound on the one-point density of the solution u(t, x). Secondly, we prove the positivity of the
one-point density of the solution u(¢, x). Furthermore, we establish the Gaussian-type upper
bound on the two-point density function of (u(t, x), u(s, y)), which corresponds exactly to the
best upper bound that is available in the case of Gaussian processes. From these results, we
deduce upper and lower bounds on hitting probabilities of the process {u(f, x) : (£, x) € R xR},
in terms of Hausdorff measure and Newtonian capacity, respectively.

2.1 Introduction and main results

We consider a system of non-linear stochastic fractional heat equations with vanishing initial
conditions on the whole space R, that is,

au,- a d .

E(t’ x) =D u;(t,x) + Z o;j(u(t, X)) W/ (t,x) + b; (u(t, x)), (2.1.1)

j=1

forl<i=<dtel0,T],x € R, where u := (u,...,u;), with initial conditions ©(0, x) = 0 for
all x € R. Here, W := (W',...,W¥) is a vector of d independent space-time white noises on
[0, T] x R defined on a probability space (Q, %, P). The fractional differential operator D¢ is
given by

D%p(x) = .F H—~|A"F {p(x); A}; x}, 2.1.2)

where .# denotes the Fourier transform. The fractional differential operator D* coincides with
the fractional power of the Laplacian. When a =2, it is Laplacian itself. For 1 < @ <2, it can
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also be represented by

D“(p(x):caf SRt G UG 2.1.3)
R

|y|1+a

with certain positive constant ¢, depending only on a; see [33], [34], [50] and [17]. We refer to
[48] for additional equivalent definitions of D“.

Consider the following three hypotheses on the coefficients of the system (2.1.1):

P1 The functions 0;; and b; are bounded and infinitely differentiable with bounded partial
derivatives of all orders, for 1 < i, j < d.

P1’ The functions o;; and b; are infinitely differentiable with bounded partial derivatives of
all positive orders, and the o;; are bounded, for1 < i, j <d.

P2 The matrix o is uniformly elliptic, that is, |o(x)¢[|? = p? > 0 for some p > 0, for all
xeR% ¢ =1.

Notice that hypothesis P1’ is weaker than hypothesis P1, since in P1’, the functions b;, i =
1,...,d are not assumed to be bounded.

Recall from Section 1.3 that a mild solution of (2.1.1) is a jointly measurable R?-valued process
u = {u(t,x),t = 0,x € R}, adapted to the filtration (¥;);>o defined in (1.3.1), such that for
iefl,...,d},

t d .
ui(t,x)zf fGa(t—r,x—v) oj(ulr, )W/ (dr,dv)
0 JR j=1

I3
+f fGa(t—r,x—v)bi(u(r, v))drduv, (2.1.4)
0 JR

where the Green kernel G,(t, x) is given in (1.3.8), and the stochastic integral in (2.1.4) is
interpreted as in [81]. In fact, to make sense of the stochastic integral in (2.1.4), the function
(r,v) = 1< 3 Go (t — 1, x — v) must belongs to L%([0, T] x R). This is why the requirement that
1 < a <2isneeded; see also [17, 34].

The problems of existence, uniqueness and Holder continuity of the solution to non-linear
stochastic fractional heat equations have been studied by many authors; see, e.g., [5, 12, 17, 34]
and the references therein. Adapting these results to the case d = 1, one can show that there
exists a unique process u = {u(t, x), t = 0, x € R} that is a mild solution of (2.1.1), such that for
any T>0and p=1,

sup  E[lui(t,01P] <00, i€fl,...,d}. (2.1.5)
(£,0€[0, T xR

Moreover, the following estimate holds for the moments of increments of the solution: for all
s5,te€[0,T],x,yeRand p>1,

Ellu(t, %) - u(s, IP] < Cr,p(Ag (£, 0; (5, y))P'2, (2.1.6)
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2.1. Introduction and main results

where A is the fractional parabolic metric defined in (1.4.2). We will also establish an analo-
gous estimate on the Hélder continuity of the Malliavin derivative of the solution; see Propo-
sition 2.5.2. We denote by K, = [0,m] x [-m,m] and B, = 1 — ’27((?;11)) with p > 2@l By
Kolmogorov’s continuity theorem (see [51, Theorem 1.4.1, p. 31] and [18, Proposition 4.2]), the

solution u has a continuous modification which we continue to denote by u that satisfies, for
all integers mand 0 < 5 < 8,

p

. sup ll(t, %) — uls, y)li < oo 2.1.7)
() (5,30 € K [| f— sl(a—l)/(Za) + |x_ y|((l—1)/2]ﬁ . N

(t,x) #(s,y)

Let I c]0,T] and J < R be two fixed compact intervals with positive length. We choose m
sufficiently large so that I x J < K.

Adapting the results from [12] to the case d = 1, the R4-valued random vector u(t,x) =
(u1(t,x),...,uq(t,x)) admits a smooth probability density function, denoted by p; .(-) for
all (¢, x) € [0, T] x R: see our Proposition 2.3.2. For (s, y) # (¢, x), let ps y;; x(-,-) denote the joint
density function of the R??-valued random vector

(u(s,y), u(t,x)) = (u1(s, ), ..., uq(s, ), u1 (¢, x),..., ugq(t, x)) (2.1.8)

(the existence of Ps,y;t,x () is a consequence of our Theorem 1.5.1, (2.3.4) and Proposition
2.5.8).

Theorem 2.1.1. Assume P1and P2. Fix T >0 and letI )0, T] and J < R be two fixed non-trivial
compact intervals.

(@) The density p; x(2) is a smooth function in z and is uniformly bounded over z € R%, t € I
andxe€ J.

(b) Forall (t,x)€10,T] xR and z € R%, the density p; () is strictly positive.

(c) There exists c >0 such that for all s,t € I, x,y € J with (s, y) # (t,x) and z1, z, € R%,

2
1y-dr2 lz1 — 2zl

a-1 _
Psyitx(21,22) <c(t—sl @ +[x—y¥ exp |-

c(t—sT +]x—yla1))
(2.1.9)

Remark 2.1.2. (a) Theorem 2.1.1(a) remains valid under a slightly weaker version of P1, in
which the b;, 0;j need not be bounded (but their derivatives of all positive orders are
bounded).

(b) Theorem 2.1.1(b) remains valid under P1I’.

(c) With hypothesis P1 replaced by the slightly weaker version P1’ in Theorem 2.1.1, the
statements (a) and (b) remain valid and statement (c) is replaced by:
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(c)) There exists c >0 such that forall s,t € I,x,y € ] with (s,y) # (t,x), 21,22 € R and p=1,

pl4d)

a-1
lt—sl'a +]x—y/* !
dl2 y Al

a—l)—

a-1
Ps,yitx(21,22) <c([t—s| @ +[x—y]|
21 — 2217

(2.1.10)

In fact, the boundedness of the functions b; = 0,i = 1,...,d in hypothesis P1 is only used
when we derive the exponential factor on the right-hand side of (2.1.9) by applying Girsanov’s
theorem. However, under the hypothesis P1’, when b; is not bounded, Girsanov’s theorem
is no longer applicable. We establish (2.1.10) in Section 2.5.3 and, following [27, 31], show in
Section 2.2.3 that this estimate is also sufficient for our purposes.

Remark 2.1.3. The results of Theorem 2.1.1 and Remark 2.1.2 (as well as Theorems 2.1.4, 2.1.5
below) include the case a = 2, that is, they apply to the solutions of the stochastic heat equations
with Neumann or Dirichlet boundary conditions; see Remark 2.5.14.

We prove the smoothness and uniform boundedness of the one-point density (Theorem
2.1.1(a)) in Section 2.3. The proof of strict positivity of the one-point density (Theorem 2.1.1(b))
is given in Section 2.4.3. We present the Gaussian-type upper bound on the two-point density
(Theorem 2.1.1(c)) in Section 2.5.3.

Our main contribution is to obtain the Gaussian-type upper bound in (c), which is a significant
improvement of Theorem 1.1(c) in [26]. In fact, for the stochastic heat equation, the optimal
Gaussian-type upper bound holds when ¢ = s, while an extra term 7 appears in the exponent
when ¢ # s; see Theorem 1.1 in Dalang, Khoshnevisan and Nualart [26]. We improve their
result by a detailed analysis of the small eigenvalues of the Malliavin matrix of (u(t, x), u(s, y))
as a function of (s, y, £, x). To be more precise, we achieve this by giving a better estimate on
the Malliavin derivative of the solution; see Lemma A.3.3, which is an improvement of Lemma
4.2 in Morien [60]; see the discussion in Section 1.2. We point out that the Gaussian-type
upper bound for the two-point joint density of the solution plays a crucial role in the study of
the lower bound on the hitting probabilities. The estimate in Theorem 2.1.1(c) leads to the
optimal lower bound for the hitting probability; see Theorem 2.1.4(a) below. The upper bound
in Theorem 2.1.4(b) is an extension to 1 < a < 2 of the corresponding result of [26, Theorem
1.2] fora =2.

Using Theorem 2.1.1 together with results from Dalang, Khoshnevisan and Nualart [25], we
shall prove the following results for the hitting probabilities of the solution.

Theorem 2.1.4. Assume P1’and P2. Fix T >0,M >0 andn >0. Let I 10, T] and ] <R be two
fixed non-trivial compact intervals.

(a) There exists ¢ >0 depending on I, ] and M such that for all compact sets A< [-M, M] d

PluIx)nA# @} = cCapd_zmijln(A).
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2.2. Proof of Theorems 2.1.4 and 2.1.5 (assuming Theorem 2.1.1)

(b) There exists C >0 depending on I, ] andn such that for all compact sets A < R4,

Plu(Ix )N A# @} Sct%ﬂd_z(aijln_ (A).

n

If 0 =1d and b = 0, by Theorem 7.6 in [85], the upper bound in Theorem 2.1.4(b) can be
improved to the best result available for the Gaussian case.

Theorem 2.1.5. Denote by v the solution of (2.1.1) witho = Idandb=0. Fix T > 0. Let [ ]0, T
and ] < R be two fixed non-trivial compact intervals. There exists C > 0 depending on I and |
such that for all compact sets A< RY,

Plv(Ix )N A# @} < CH 2w (A).

a-1

These two theorems are proved in the next section.

2.2 Proof of Theorems 2.1.4 and 2.1.5 (assuming Theorem 2.1.1)

In this section, we give the proof of Theorems 2.1.4 and 2.1.5 (assuming Theorem 2.1.1). The
organization of the proof is similar to Section 2 of [27].

2.2.1 Proofof Theorem 2.1.4(b)

We start by proving Theorem 2.1.4(b). For all positive integers n, set
1y = k2”@, x) = 127w
and

=1 e, TP =l RE =18 %) 2.2.1)

By (2.1.7) we have

E

sup |lu(t,x)— u(t,':,xln)llp] <C27"Pp, (2.2.2)

(t,X)€RY,
where § is chosen as in (2.1.7).

Lemma 2.2.1. Fixn > 0. There exists ¢ > 0 such that for all z € R?, n large and R}, cIx],

P{u(RE )N B(z,27" # ¢ < c2 "D, (2.2.3)

Proof. The proof follows along the same lines as [25, Theorem 3.3] by Theorem 2.1.1(a) and
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(2.2.2). We give its details for reader’s convenience. First, by the triangle inequality,

P{uRl )nB(z2" # 0} < P{ lulel, x) —zl <27+ sup fu(t,x) - u(r,';,x?)n}

(t.X)ERY,

< P{llutef, x]) - 2l 27"+ 27wl

+P{ sup ||u(l‘,x)—u(t]?,x?)||Zz—n(d—n)/d}.

(£.X)€RY,

Using Theorem 2.1.1(a), the first probability above is bounded above by ¢27"4~" We apply
Markov’s inequality to the second term above, and by (2.2.2), forall p =1,

P{u(R} )N B(z,2™™ # 8}

< g2~md=m 4 pnpld-nldg | gy lu(t, x) = ult?, xHIP

(t.x)eR?,

< go~md=n 4 zonpld-n)/do-npf
= g2~ nd=1) (1 4 pnp(@d-n)/p+(d-n)/d-p)

< c27ndm,

where the last inequality holds because we can choose p large enough and then f close to 1 so
that(d-n)/p+d—-n)/d-p=<0. |

Proof of Theorem 2.1.4(b). Fixe €]0,1[ and n € N such that 27*"! <€ < 27", and write

PlulxNnBe el Y PluRl)nBz2"#0}.
(k,D):R! A Ix J#0

The number of pairs (k, I) involved in the sum is at most 22no(ﬂn times a constant. Lemma 2.2.1
implies that for all z€ A, n > 0 and large n,

2n(a+1)

P{u(l x )N B(z,€) # @} < C2 @My~

_2(a+l) _

< Ce% a1 M, (2.2.4)

Note that C does not depend on (n,€). Therefore, (2.2.4) is valid for all € €]0, 1[.

Now we use a covering argument: Choose € €]0,1[ and let {B;},_, 0o be a sequence of open
balls in R? with respective radii r; €]0,é[ such that
(o]

Acu® B; and Y 2r)?
i=1

2(a+1)

a1 < %_ 2@ty _, (A) +E€. (2.2.5)
a-1

Because P{u(l x J)Nn A # @} is at most Z‘;ZIP{u(I x J)N B; # ¢}, the bounds in (2.2.4) and
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2.2. Proof of Theorems 2.1.4 and 2.1.5 (assuming Theorem 2.1.1)

(2.2.5) together imply that
Plull x )N A# 9} = C(H_saen_, (A)+é). (2.2.6)

Leté — 0" to conclude. O

2.2.2 Proof of Theorem 2.1.5

Inthe case b=1and o = I, the components of v = (vy,..., v;4) are independent and identically
distributed.

Proposition 2.2.2. Forany0< 1ty < T, p=1 and K a compact set, there exists c; = ¢ (p, tp, K) >
0 such that foranyty<s<t<T,x,yeKk,

a-1 _1\P/2
Elloi (6,0 = ni(s, 7] = e (e =51 +1x =177 (227

Proof. The proofis similar to that of Proposition 2.1 of [27]. Since v is Gaussian, it is equivalent
to prove (2.2.7) for p = 2. By Ito’s isometry, we have

t
E[lvl(t;x)_vl(S,J/)|2]:[ [RGi(t—r,x—v)dvdr

N
+f f(Ga(t—r,x—v)—Ga(s—r,y— v)2dvdr (2.2.8)
0 JR

=L+ 1.

Case 1: t — s = |x — y|®. In this case, by the semi-group property of the Green kernel (A.6) and
the scaling property of the Green kernel (A.2), we have

3 t
11+12211=f Ga(2(t—r),0)dr:f @(t—r) V96, (1,00dr
S S
a-1 C a=1 _
—cy(t—9)"T z?‘”((t—s) @ +lx—yl® 1).

Case 2: 1 — s < |x — y|%. In this case, by the Plancherel theorem,

S
11+12212=f f(Ga(t—r,x—y+ v)—Ga(s—r,v))zdvdr
0o JR

(s a « ; 2
:_f f‘e‘“‘”"” _ o t=IAl eul(x—y)‘ dddr
2 Jo Jr

1 s P
:_/ /e—Z(S—r)I/II
2n Jo Jr

We use the elementary inequality |1 — ref| > %Il — 9|, valid for all r € [0,1] and 0 € R, to see

Y 2
1—e 9 e”“x_y)) dAdr.
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that

— p2slAl® . 2
L [ 128" |- e[ ga,
R 87A|¥

Because x — y € K— K and K is compact, fix C > 0 such that |x — y| < C. When x # y, we change
the variable by letting ¢ = |x — y|A and write eg = (x — ¥)/|x — y| to see that the right-hand side
of the above inequality is equal to

1 — e-2sI¢1%/1x-y1® 2 1 — g-2ské1erce 2
|x— |“_1f ’1—6"305 dé=|x—- Ia_lf —’l—ele‘)‘r dé
Y 87| T emige
l_e—2f0\§|a/ca . 2
> |x_y|a—1f - |1_el€o§ dé.
R 8ml¢|?
The integral above is a positive constant. Therefore, when ¢ — s < |x — y|%,
c a- _
E[lvi(t,0) - vi(s, Y] = clx—y* ' = > (It—SITl +lx—yl* 1).
Case 1 and case 2 together imply (2.2.7). O

Now we apply Theorem 7.6 in [85] to prove Theorem 2.1.5, which is similar to the proof of
Theorem 1.5 of [27]. It suffices to verify Conditions (C1) and (C2) of [85, Sect. 2.4, p.158] with
N=2,H =% H, =41,

2a°

First, we observe that E[v; (£, x)?] = cq tanl (see (A.4)), which implies that there are positive
constants cy, ¢; such that for all (¢, x),(s,y) € I x ],

a <E[v(t, 0% < c. (2.2.9)
By (2.2.7) and (2.1.6), there exist positive constants cs, ¢4 such that for all (¢, x),(s,y) € I x ],
a-1 a—1 2 a1 a-1
03(|t—s| @ +]x—yl )sE[Ivl(t,x)—vl(s,y)l ]sa;(lt—sl @ +]x—yl ) (2.2.10)

Hence condition C1 is satisfied by (2.2.9) and (2.2.10). Similar to the argument in the proof
of Theorem 1.5 of [27], condition C2 holds by applying the fourth point of Remark 2.2 in [85],
since (t, x) — E[v1(t, x)] = ¢4 t°% is continuous in I x J with continuous partial derivatives.

Therefore we have finished the proof of Theorem 2.1.5.

2.2.3 Proofof Theorem 2.1.4(a)

The proof is similar to that of Theorem 2.1(1) of [25]; see also [27, Sect 2.4], which requires the
following two lemmas analogous to [25, Lemma 2.2(1)] and [27, Lemma 2.3].

Lemma 2.2.3. Fix N > 0. There exists a finite and positive constant C, = C1(I, ], d, N) such that
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forallace[0,N],

e—azlAa((t,x);(s,y))
fdtfdsfdxfdy = <K, 2@ (@). (2.2.11)
roJr T AR (8 x5, p)) a1

Proof. The proof follows along the same lines as [25, Lemma 2.2(1)]. Using the change of
variables @i = t — s (¢ fixed), ¥ = x — y (x fixed), we see that the integral on the left-hand side of
(2.2.11) is bounded above by

I I . L aro a2
4|I||]|[ di| do@'s +o% " exp(—a_l—). (2.2.12)
0 0 e +pol
Another change of variables [ii = (ua®)®'@=b 5= (pg?)l/a-1) implies that this is equal to
2a+2_d |I|(a—1)/aa—2 |]|a—l (1_2 ul/(a—l) v(2—a)/(a—1)
Ca a1 du dv exp|— . (2.2.13)
0 0 (u+v)d2 u+v

We pass to polar coordinates to deduce that the preceding is bounded above by

2a+2 _ g
Caot1 (1 + Ir(a)), (2.2.14)
where
KN~2 y 4
L :f dppa1-zexp(—c/p), (2.2.15)
0
Ka™ y 4
I(a) = f dopa1i-z, (2.2.16)
RN-2

where K = ([I]2@ " D/a 4 |j2la-1)yl/2, Clearly, I} = C < oo. Moreover, if % - g +1#0,ie.
2(a+1)
a1 ?f d, then

d-2(a+1)/(@-1) _ pyd-2(a+1)/(a-1)

I(q) = fatD/@-1-dr2 4 . 2.2.17
2(@) (@+D)/(a-1)—dl2 (2217

There are three separate cases to consider. (i) If % <d,then Ih(a) <C<ooforall ac[0,N].

(i) If 294D > g, then I (a) < cad-2@ D@D (jjj) 1f 2841 = g then

L(a) =2(lné +InN). (2.2.18)

We combine these observations to conclude that the expression in (2.2.14) is bounded above
by CK,_2a+n (@), provided that Ny in (1.4.1) is sufficient large. This completes the lemma. [J

a-1

Lemma2.2.4. Forall N >0 andp > 4d (g - ﬁ —1). There exists a finite and positive constant
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C, =Cy(1,],d, N, p) such that forall a € [0, N],

t— o a-1
fdtfdsfdxfdy(” 1%+ x— yoh iz | st +|x W

< C2Ky_zin (). (2.2.19)

pl4d)

Proof. Similar to the derivation of (2.2.13) by changing variables, the integral on the left-hand
side of (2.2.19) is equal to

Caszlz_d[
0

Passing to the polar coordinates, this is bounded above by

|I|(a71)/aa72

*ta? o Ua-]) ,e-a)/(a-1)
duf dv [(w+v) A1PIED, (2.2.20)
0 (u+ v)4/2

Ca at (Il + L (a)), (2.2.21)

where

Ka s 4
Iz(d)zf_ dppa-i-z,
KN-2

where the constant K is given below (2.2.16). Clearly, I; < C < oo since % - ‘51 + % > —1 by

the hypothesis on p. The remainder of the proof is the same as that of Lemma 2.2.3. U

Proof of Theorem 2.1.4(a). The proof of this result follows along the same lines as the proof of
[25, Theorem 2.1(1)], therefore we will only sketch the steps that differ; see also the proof of
[27, Theorem 1.2(b)]. We need to replace their §—6 by d — 2ol

a-1

We first note that our Theorem 2.1.1(a) and (b) indicate that
inf fdtf dxp;x(z2)=C>0, (2.2.22)
lzismJr Jy

which proves hypothesis A1’ of [25, Theorem 2.1(1)] (see [25, Remark 2.5(a)]).

Let us now follow the proof of [25, Theorem 2.1(1)]. Define, for all z € R? and € > 0, B(z,€) :=
{ye R : |y — zl <€}, where |z| := max; < j<41zjl, and

Je(2) =

o0 d/dtf dx 1, (ult,x), (2.2.23)

asin [25, (2.28)].

Assume first that d < % Using Theorem 2.1.1(c) or Remark 2.1.2(c’), we find, instead of
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2.2. Proof of Theorems 2.1.4 and 2.1.5 (assuming Theorem 2.1.1)

(25, (2.30)],
El(Je(2))?] <c f dt f ds f dx f dy[Aq((t,x); (s, )12,
1 I J J

The change of variables u = ¢ — s (¢ fixed), v = x — y (x fixed), implies that the above integral is
bounded above by

o Ul o _ar i
cf du | dv (uT1 + u“‘l) <C' | du¥ @ nap@® V4 e0) (2.2.24)
0 0 0

where V¥ is defined by

¥ ()__f“ dx
ﬂ,Vp - 0 p+xvr

forall a,v,p >0, as in (2.23) of [25]. Hence, by Lemma 2.3 of [25], for all € > 0,

1
E[Ue(@)?]<C [ duK, . (u@Dd/@a)
0

(a-1)d
In order to bound the above integral, we consider three different cases: (i) If 0 < d < _=5, then

1- = 1 =g <0 and the integral equals |I|. (ii) If 2= 2 7 < d < 2(‘”1) , then K, _ E (u(“ 1)"”(2"‘)) =

ul/a-(@=Ddl2a) apnd the integral is finite. (iii) Ifd =2, then Ko(u““) = log(NO/u““) and the
integral is also finite. The remainder of the proof of Theorem 2.1.4(a) when d < 2(‘”1 follows

exactly as in [25, Theorem 2.1(1) Case 1].

Assume now that d > ““) . Define, forall p e &(A) and € > 0,

1
Je () = wa u(dz)fldtf]dxlg(zye)(u(t,x)), (2.2.25)

as [25, (2.35)]. Fix u € £ (A) such that

I, 2+ <—.
d— 2(:1711) W Capd_ 2a+1) (A)
a-1

Analogous to the proof of [25, (2.41)], we use Theorem 2.1.1(c) and Lemma 2.2.3 (or the
combination of Remark 2.1.2(c’) and Lemma 2.2.4), to see that for alle > 0

2Cy

, _ 26
E[Ue(w)?] = Coly_zwen (W) < Cap, 2w (A)

The remainder of the proof of Theorem 2.1.4(a) when d > ‘”l) follows as in [25, Theorem
2.1(1) Case 2].

The case d = % is proved exactly along the same lines as the proof of [25, Theorem 2.1(1)
Case 3], appealing to (2.2.22), Theorem 2.1.1(c) and Lemma 2.2.3 (or the combination of
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Remark 2.1.2(c’) and Lemma 2.2.4). ]

2.3 Existence, smoothness and uniform boundedness of the one-
point density

In [12], the Malliavin differentiability and smoothness of the density of the solution to frac-
tional SPDEs driven by spatially correlated noise was established when d = 1. These can
also be applied to SPDEs driven by space-time white noise and the extension to d > 1 can
easily be done by working coordinate by coordinate. In particular, for any (¢, x) € [0, T] x R,
i,kefl,...,d}, the derivative of u;(t, x) satisfies the system of equations

D(rﬁz(ui(t’ X)) =Go(t—r,x—=v)oir(u(r,v)) +a;(k, vt x), (2.3.1)

where

d t .

i=1Jr JR
t

+ f f Ga(t—0,x-n) DY (b; (u®,m)d0dn, (2.3.2)
r JR

if r < tand D%(ui(t, x)) =0 when r > t. Moreover, forany p>1,m=1and i €{1,...,d}, the
order m derivatives satisfies

sup  E[|D™(ui(t,x)]|" o] <00, (2.3.3)
(£,x)€[0, T xR

and by iterating the calculation which leads to (2.3.1), we see that D" also satisfies the system
of stochastic partial differential equations which are analogous to the equations in Proposition
4.1 of [25]; see also [66, (6.29)]. In particular, for all (#,x) € [0, T] x R,

u(t,x) € ()4, (2.3.4)

Our objective in this section is to prove Theorem 2.1.1(a) by using Proposition 1.5.4. The next
result proves property (a) in Proposition 1.5.4 when F is replaced by u(t, x).

Proposition 2.3.1. Fix T > 0 and assume hypotheses P1’ and P2. Then, forany p = 1,
E[(detyu(,x) "]

is uniformly bounded over (t, x) in any closed non-trivial rectangle I x ] 10, T x R.

Proof. The proof follows along the same lines as [26, Proposition 4.2] by using Proposition

A.2.1; see also [27, Proposition 4.1]. The main differences are the exponents appearing in the
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estimate. Let (¢, x) € I x J be fixed. We write
d
detyy(z,x = ( inf fTYM(t,x)f) .
eR4
Let & € R with ||€]| = 1 and fix € €]0,1[. Using (2.3.1) and the inequality

2
(a+b)?= gaz—zbz, (2.3.5)

valid for all a, b € R, we see that

t
Y uinné = f dr f dv
0 R

t
2/ drf dv
) R

2

d
Z Dy, (ui(t,%))§;
i=1

2
- 2

d
Z Dy, (u;(t,x))¢;
i=1

where
" d (d 2
I =f drf dvz (Z Go(t—r,x—v)o;r(ul(r, U))fi) ,
t(1-e) R k=1 \i=1
t d d
[zzf drf dv) (>
t(1-e) R k=1 \i=1

and a;(k,r, v, t,x) is defined in (2.3.2). By hypothesis P2 and semi-group property of the Green
kernel (A.6),

2
a;(k,r,v, t,x)fi) ,

t
Ilch fGi(t—r,x—v)dvdr
t1-e) JR

t
= cf Ga2(t—71),0)dr
t(1—e)

a-1

c 2te a1
= Efo Go(r,0)dr =c'2te) @ =ce a , (2.3.6)

where in the third equality we use (A.2) and the constants ¢, ¢’ and ¢’ are uniform over
(t,x)elIx].

Next we apply Cauchy-Schwarz inequality to find that, forany g = 1,

E| sup |L|7|<c(Elllal+ElL2l),

{eREEII=1
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where
d . 2
= Y f drfdu(f fca(r 0,x- n)D&{%(aij(u(e,n)))Wf(de,dn)),
i,j,k=1Jt(1-€)
d 2
Ip= Y f drf dy(f fGa(t 6,x— n)D(k>(bi(u(e,n)))d6dn) .
ik=1J1(1-¢€) R

The estimates for the g-th moment of I,; and I», are similar to those in [26, Proposition 4.2],
so we only present the differences here. By Burkholder’s inequality for martingales with values

zq]_

in Hilbert space (Lemma A.3.1), and using P1’,

d tAO
Elll111<c) E f(l )d@fdnGz(t 6,x—1) . )drfdu Y DX w0,m))
t(l—e t €

k=1

By Holder’s inequality with respect to the measure G (¢ — 6, x —n)d0dn, we see that

f dednGz(t 0,x—1)
t(1—e)

IO d
f drfRdv > DOy 6,m))
t

(1-¢) =1

d q-1
E[|I;17] < CZ
k=

xf dHfdnGz(t 0,x—-nE
t(1-¢)

|

Lemma A.3.2 assures that

f do f dnG?
t(1-e)

t
f Ga(Z(t—H),O)dH

1-¢€)
—C (2t€)(a 1)q/a (a— 1)q/a<CH 2(a— l)q/a

El| 1191 <Cr cla-Nala

(a-1)qgla

:CT €

where in the first inequality we use the semi-group property (A.6), in the second equality we
use (A.2) and the constants Cr, C’T and C;} are uniform over (t,x) € I x J.

We next derive a similar bound for I,. First, we use Cauchy-Schwarz inequality with respect
to the measure Gy (t -6, x —1)dfOdn to see that

2
Dy < ;1 . 6)(t—r)drfdvf fG (t—0,x— n)(D(k)(bi(u(H,Tl)))) dfdn

d

< tef drfdv/ fGa(t 0,x— 17)(D(k)(bi(u(ﬁ,n))))szdn.
ik=1 1-¢)

Since the partial derivatives of b; are bounded, by Cauchy-Schwarz inequality and Fubini’s
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theorem,

d
E(lI»|"<c ) (te)E
L,k=1

d
=c ) (t6)9E
Lk=1

t t 2 q
f drfdv/ /Ga(t—H,x—n)(D(rf‘,ﬁ(ul(e,n))) den‘
t(l1—e) R r JR

t tnG
f de dnGe(t—0,x—n) drf dv
t(1-¢) R t(1-€) R

q

x (D;{g(u,(e,m))z

Applying Holder’s inequality with respect to the measure G, (t -0, x —n)d0dn,

d r q-1
B[z ¢ ) (te)? f dG[dnGa(t—H,x—n)
Lk=1 t(1—e) R
t N0 2|4
x[ d@f dnGe(t—0,x —mE f drfdv(Dgfcg(u,(e,n))) .
t(l-e) R t(1-e€) R

Using Lemma A.3.2, this yields E[|I,3|7] < Cr(te)9(te)9(te) * 14/ = Cp(1e) B~V M4,

Thus, we have proved that

E| sup |L|7|<Cpe?@Vala (2.3.7)

SeR:)IE]=1

where the constant Cr is clearly uniform over (¢,x) € I x J.

Finally, we apply Proposition A.2.1 with Z := infj -, ((fTYu(t,x)f), Vie = Yo, =supyg =1 I2,€0 =
lL,aij=az2=(a¢—-1)/aand B, = B2 =2(a—-1)/a, to get

E[(detyu,0) ] <Cr,

where all the constants are independent of (¢, x) € I x J. O

In [12], the authors established the existence and smoothness of the density of the solution
of one single stochastic fractional partial differential equation driven by spatially correlated
noise. For a system of d equations driven by space-time white noise, we have the following
results.

Proposition 2.3.2. Assume P1’ and P2. Fix T > 0 and let I and ] be compact intervals as in
Theorem 2.1.1. Then for any (t,x) €10, T] x R, u(t, x) is a nondegenerate random vector and its
density function is infinitely differentiable and uniformly bounded over z € R* and (t,x) € I x J.

Proof. The conclusions follow from Proposition 2.3.1 and (2.3.4) together with Theorem 1.5.1
and Proposition 1.5.4. O
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Proof of Theorem 2.1.1(a). This is an immediate consequence of Proposition 2.3.2. U

2.4 Strict positivity of the one-point density

The aim of this section is to prove the strict positivity of the one-point density of u stated in
Theorem 2.1.1(b). We will apply a criterion of strict positivity of density introduced by Bally
and Pardoux [7]. Before we give the proof of Theorem 2.1.1(b), let us review some existing
literature on the strict positivity of the densities of the solutions to SPDEs.

The first related paper is by Nualart [69], in which the author extended the criterion intro-
duced by Bally and Pardoux [7] and applied it to study the strict positivity of the densities of
solutions to systems of SPDEs driven by spatially homogeneous noise that is white in time.
The Gaussian-type lower bound on the density of the solution of the stochastic heat equation
was established by Kohatsu-Higa [49], in which the author generalized the lower bound esti-
mates for uniformly elliptic diffusion processes obtained by Kusuoka and Stroock [52, 53, 54].
Dalang, Khoshnevisan and Nualart [26] extended this result to the case of system of SPDEs.
The Gaussian-type lower bound for the density of the solution to single spatially homogeneous
SPDEs was obtained by D. Nualart and Quer-Sardanyons [67] in the case where ¢ is a constant,
and by E. Nualart and Quer-Sardanyons [70] in the non-linear case.

Recently, Chen, Hu and Nualart [19] have studied the strict positivity of densities for non-
linear stochastic fractional heat equations with measure-valued initial data and unbounded
diffusion coefficient. The criteria introduced by Bally and Pardoux [7] are no longer applicable
in their case and they develop a localized version. In our situation, the initial data and diffusion
coefficient do not bother us and we prefer to give a classical proof of the strict positivity of the
density.

For the stochastic wave equation in two spatial dimensions, the positivity of the density was
studied in [14]. In the case of hyperbolic SPDEs, points of positive density were studied by
Millet and Sanz-Solé [59]. We also mention that the strict positivity of the density for the
stochastic Cahn-Hilliard equation was studied by Cardon-Weber [13].

2.4.1 The criterion for strict positivity of density

For g = (g1,...,84) € 7 and z € R, we define W/ (t,x) = W/ (t,x) + zZj fotf_xoo gj(s,y)dsdy. By
Girsanov’s Theorem, W = (W!,... W4) is a standard Brownian sheet on the probability space
(Q, F,P), where

d_f’( ) =J(2)(w), we2
de_ 2)(w), w ,
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where

d T
](Z):exp(—sz/0 ng](s y)WJ(dS,dy)——Z f fg](s y)dsdy)
j=1

For any (¢, x) € [0, T] x R, let &i*(t, x) be the solution to equation (2.1.4) with respect to the
Brownian sheet W, that is, fori = 1,---, d,

i(t, x) = ffGa(t rx— U)ZU,J( 2(r, )W/ (dr,dv)

+szf fGa(f—r,X—U)Uij(ftz(n v)gj(r,v)drdv
j=1 0 JR

t
+f fGa(t—r,x—v)b,-(ﬁz(r, v)drdv.

0 Jr

Then the law of u under P coincides with the law of #? under P.

Given a sequence {g};>1 in Z and z € R%, let it7 (¢, x) be the solution to equation (2.1.4) with
respect to the Brownian sheet W,,, where

. , tpx
W,{(t,x)=W](t,x)+ij0f gnj(s,y)dsdy.

That s, @7 (¢, x) satisfies
t d .
i (t,x) :f f Ga(t—r1,x—v) )_ 0@ (r,v) W/ (dr,dv)
0 JR j=1

d t
+szf fGa(t—r’x_V)Uij(ﬁfl(r, v))gnj(r, v)drdv
j=1 0 JR

t
+f fGa(t—r,x—v)bi(ﬁfl(r,v))drdv. (2.4.1)
0o Jr

Define the d x d matrix
60 = (7, (0] = 9 &%)
(pn ’ (pn l ] l,] 6 ] nl l)j
and the Hessian matrix (which is a tensor of order 3) of the random vector @, (¢, x),

2

020z,

Va0 = (Vi (60, = ( i (1, x))

i,j,m
We still use the notation || - || to denote the norm of an »n x n matrix A defined as
A= sup [AS].
¢eRM,|1¢]I=1
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We introduce the following conditions to study the strict positivity of the density p;,.(:) of the
law of u(t, x). We say that y € R? satisfies Hyx(y) if:

H; x(y): there exists a sequence {g,},>1 in Lz([O, T xR, IRd) and positive constants ¢y, ¢z, 1o and
6 such that

(i) limsup,_ . P{(lu(t,x) -yl <r)n(detg®(t,x) = c1)} >0, forall r €10, rol.

(i) 1imy oo P{supy <595 (&, ) + 195 (2, X)) < cof = 1.

Assume that o and b satisfy the conditions P1’ and P2.

The following theorem is an extension of the criterion by Bally and Pardoux [7] to systems of
equations; see also [69, Theorem 5.7]. We give a self-contained proof for reader’s convenience.

Theorem 2.4.1. Let(t,x) €10, TIxRandy e R% be such thatHx(y) holds true. Then p;,x(y) > 0.
Moreover, if Hex(y) holds on Supp(Py:.x), then p; () is a strictly positive function on R%.

Proof. We start proving the first statement of this theorem. Let y, € R? satisfy Hex(yo).

Let R and a be the constants in Lemma A.4.1 determined by 6 and g with g = (1/¢1) V c».
Choose and fix r with 0 < r < a. We define ®,(z) = @i5(¢, x) and

n={lu(t,x) = yoll = r 0 (det) (r,x) = 1/p)}

N { sup (lo%(t, 01l + llys (8, 01D < [3}
lzll<é

It follows from (i), (ii) that there exists 7 € N such that
(iii) P(A ) > 0.

From now on, n will also be fixed, such that (iii) holds. By Lemma A.4.1 for all w € A, the
mapping z — ®,(z, ) is a diffefomorphism between an open neighborhood V() of 0 in R?
contained in the ball B(0, R), and the ball B(u(t, x)(w), ).

From Girsanov’s Theorem, for each z € R4 and any f € %b(ﬂ%d,ﬂh) (the set of nonnegative
bounded Borel functions ),

E[f (u(t, )] = E[f (@5, (t, ) Jn(2)] = E[f (@4 (2) Jn(2)], (2.4.2)

where

d T . 14 T
]n(Z)zexp(—jZ:lz,-fO ngnj(s,y)Wf(ds,dy)—Ej;Z?fo ng,zl,-(sry)dSCiY)-

Let y(2) = (2m)~ %2 exp(—|z||>/2). From (2.4.2), we know that E[f(®,,(2))],,(z)] does not de-
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pend on z, so
E[f(u(t,x))] = fRdw(Z)E[f@n(Z))]n(Z)]dZ
zE fRdw(Z)f(@n(Z))]n(Z)dz;An

S E fv W(2) f(@n(2) Tn(2)dz; A

v (2)Jn(2) )

=E _ duv; A 2.4.3
fB(u(t,x),a)f(U)(dew’%(l‘,x) 2=®; (v) v | )

2[ fWo,(w)dv, (2.4.4)
Rd

where
. v (2)Jn(2) )
Bn =E|h L, x)— 1Bu(t,x),a TN 1 05A0],
(v) (e, x) VII)rnln{ B(u(t,x),0) (V) (deupfl(t,x) ot }

h: R4y — [0,1] is continuous and satisfies 1j9,,] < h < 1{,(r+q)/2]- In the equality (2.4.3), for
all w € A, the determinant det @7 (¢, x) (w) |Z:¢;1(U) with v € B(u(t, x) (w), @) is positive due to
(A.23). Using the fact that A, < {||u(t, x) — yoll < r}, we know that h(||u(t,x) — yoll) =1 on Ay,
Together with (iii), we have 6, (yy) > 0.

By the definition of the function &, almost surely the function

7=, (v)

is equal to 0 for v with ||v — u(t, x)|| > 2(r + @)/3 and equal to

,1}
=07 (1)

for v e B(u(t,x),3(r + a)/4). Hence it is a.s. continuous and bounded by 1. By Lebesgue’s dom-

v h(lu(t,x) - V||)min{13(u(t,x),a)(v) (M)

detg?(t, x)

Rl (e, x) - Vll)min{ ( (2] (2) )

det (¢, x)

inated convergence theorem, 8, is continuous. Let f(v) = eid 1B(y,¢) (V). Then (2.4.4) becomes

1

1
od )Pt,x(v)dvz— 0, dv.

B(yo,€ e B(yo,€)

Since v — p; x(v) is continuous, letting € — 0, we have p;, . (yo) = 0,(y0) > 0.

For the second statement, it suffices to deduce that Supp(Py;,x) = R4 from the first statement
of this theorem. Suppose that Supp(Py;,x)) S R?. Then we can find x; € R? such that x; ¢
Supp(Py(s,x)- Choose x; € Supp(P,;,x)) and we can find a continuous curve {x(1),A € [0,1]}
with x(0) = x2 and x(1) = x;. Denote A. = sup{A : x(1) € Supp(Py(,x)}. Since x; = x(1) ¢
Supp(Py(s,x) and the complement of Supp(P,(;,x)) is an open set, it follows that A, < 1. Then
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we have a sequence 1, 1 1. such that x(1,) € Supp(P,(,x)) and we also know that x(1) ¢
Supp(Py(s,x) for 1, < A < 1. This means that x(A1,) is on the boundary of Supp(P,,x)), and
since this set is closed, we conclude that x(A.) € Supp(P (). By the hypothesis that Hix(y)
holds on Supp(P,(;,x)) and the first statement, we know that p; »(x(1.)) > 0. Since the density
function is continuous, it implies that x(A,) is in the interior of Supp (P,;,x)), which contradicts
with the fact that x(1.) is on the boundary of Supp (P ;,x))- (]

2.4.2 Finite uniform moments of ¢7 . j and uniform L”-continuity of 7% and ¢?

In this section, we give some preliminary computations needed in the proof of Theorem
2.1.1(b).

Consider the sequence {g, = (gn1,..-,&nd)}ln=1 in JZ defined by
gnj(r,v)= v;ll[t_z—n,t](r)Ga(t— nx—-v),nzl, j=1,...,d, (2.4.5)

where
2 2 a -1/ -net
Un :=[ fGa(r, vydvdr = ——=2""%G4(1,0027" @
o Jr a-1

by the scaling property of the Green kernel (A.2).
Taking the derivative with respect to z; in the both sides of (2.4.1), we have
d

t
wfl,,-,,-(t,X)=f0 fRGa(t—r,x—v) Y. Omoi(in(r, v))(pﬁym,j(r,v)W’(dr,dv)

m,l=1

t
+[ [Ga(t—r,x—v)oij(ﬁfl(r,U))gnj(r,v)drdv
0 Jr

d t
+ ) Zlfo fRGa(t—r,x—v)ama,-l(ﬂfl(r, v))(pfl’m’j(r, V)gn(r,v)drdv

m,l=1
d t

+ Zf fGa(t—r,x—v)ambi(ﬁfl(r, V)P;, (1 V)drdv. (2.4.6)
m=1J0 JR Y
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On the other hand, similar to (2.3.1), the Malliavin derivative D(r]l),(ﬂfl l.(t, X)) satisfies

. t d .
Dsf,),(ﬂfl’i(t,x))zfo fRGa(t—S’X—J’) > am(Tiz(ﬁZ(s,J/))D(r,],),(ftiym(s,y))Wl(ds,dy)

m,l=1
+Gq(t—1,x— )0 (r,v)

d t
+ zlf fRGa(t—s,x—y)dmail(aZ(s,y))
0

m,l=1

x DY@ (5, 1) gnis, y)dsdy

d t .
+y f fR G (£ =8, x— Y)0mbi (@ (s, Y)) DY) (@2 ,,(s, y)) dsdly.
m=1J0
Comparing the above two equations we have
)
(pfz,i,j(t’ X) :fo [RDr']U(afui(t’ x)gnj(r,v)dvdr, 1<i,j<d. (2.4.7)

Since

<00

t , pl2
(f f[Di{i(agi(t,x))]zdudr)
0 JR ’

for any p > 1 (see for instance (2.3.3)), by the Cauchy-Schwarz inequality we have

sup E
(t,x)€[0, T xR

sup  Ellg,; (s, 11"l <oo. (2.4.8)
(5,0, T1xR

We improve (2.4.8) to a bound that is uniform in z for small z.

Lemma 2.4.2. There exists a constant Cp 1 such that for p > 1, any large n and small 5,

sup  sup  Ellgy; (s IP1=Cpr. (2.4.9)
llzll<6 (s,)€[0, T xR

Proof. From (2.4.6) we obtain that

@ (6 =7 () + B (X0 (8,x) + Dy (1), (2.4.10)

n,i,j n,i,j n,i,j
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where
2-n
Ay (6x)= v, f drfRdvaij(ai(t—r, V)G (r,x— 1),

d
B, %) = ft . nfGa(t—s,x—y) > oG (s, Y@y, (s, Y)W (ds,dy),

[,m=1

t
f f Ga(t=$,X=y)0m0 i1(l5, (8, PP}, 1 (5 V) 8ni(s, y)d yds
t

(4, %) = Z <]

I,m=1

d

I,m=1

ﬂl]

t
fz fU;IG(ZX(I—s,x—y)émail(ﬁi(s,y))cpfl’m,j(s,y)dyds
t- n
nl](t X) = ft , nfR Z Ombi (u (s, y))(pnm](s VGa(t—s,x—y)dyds.

Next we study upper bounds for the p-moments of the four terms on the right-hand side of
(2.4.10). For this, we assume that || z|| < § for some 6 >0

First we notice that by the choice of v,, there exists a constant K such that
(2.4.11)

|y (LXK,
.,d are bounded.

forall n, 1, j, z and (¢, x) since the functions 0;;,i,j =1

By Burkholder’s inequality, for p > 1

(1, x)|p]<cpE[ f . sz(t $,X—Y) Z Omo i1 (T (s, Y)))?
t n

I,m=1

z
|'%)nz]

p
X (9% i (S y))zdsdy) ’

Since the partial derivatives of o;; are bounded, using Holder’s inequality with respect to the
(t,x)|P] is bounded above by

measure G2(t —s,x— y)dsdy, E I,%’fl i

fz sz(t S, X— J’)Z |‘an](3 y)Ipdsdy]
t n

t 2-1
[z_nfGi(t—s,x—y)dyds)

P_q 2 d
o Up f fG (t—s,x-y) > sup
t—2n m=1(r,v)el0, TI xR

cpE

Ellg7, p,j(n0)IP1dsdy

(2.4.12)

=ch£2 sup  Ellg7 , (s ).
m=1(s,y)€[0,TIxR
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By Holder’s inequality with respect to the measure v, ' G2(t —s,x — y)dsdy,

E(|E); (£, 011 < c,0PE

n,i,j

t d
f f v, Got=5,x=y) Y 195, (s, )P dsdy
-2 JR vyl

t
X(f fv,;lGi(t—s,x—y)dyds
t-2n JR

t
SCpépft 27ﬂva,;1Gi(t—s,x—y)dsdy
d

x Y sup Ellg7, (5 0IP]
m=1(rv)el0,T]xR

d

=cpd” ). sup  Ellg; (s IFL. (2.4.13)
m=1(s,)€[0,T]xR

p-1

Similarly, applying Holder’s inequality with respect to the measure G, (t — s, x — y)dsdy, we
have

El|Z;,

p
nyi’j(t,x)l I=cyE

t d
[ fGa(t—S,X—J/) > I(pﬁymyj(s,y)l”dsdy]
t-2-n JR m=1

t p-1
x(/ fGa(t—s,x—y)dyds)
—2-7JR

t
5cp2‘”‘l"”f fGa(t—s,x—y)dsdy
t—2-n Jr

d

x Y sup Ellg5, . (1 0)IP]
m=1(rv)el0,T]xR

d
=cp2 " Y. sup  Elgj , (s 0Pl (2.4.14)
m=1(s,y)€[0,T]xR

Now, substituting (2.4.11), (2.4.12), (2.4.13) and (2.4.14) into (2.4.10), we obtain that for all
p>1,

d P d
Z E[I(pfl’m’j(t,x)w] <K, +cpr(v; +6P +27"P) Z sup E[Iip,z%m,j(s,y)W]-
m=1 m=1(s)€l0, TTxR

(2.4.15)

r
Thus choosing n large and 6 small such that ¢y, 7(v;; +6” +27"P) < %, we obtain from (2.4.8)
and the above inequality that there exists a constant C), 1 such that for any large n

sup sup E“(Pfl,i,j(s; J/)|p] =< Cp,T'
llz<6 (s,y)€l0, T1xR
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The following two lemmas give some estimates on the uniform L”-continuity of i and ¢% in
z for small z.

Lemma 2.4.3. For 6 small, there exists c,, v such that for any p = 2 and z,z' with ||z|| < 6,
Iz'Il <&

sup @ (s,y) — @2 (s, PIPI < cprllz—2'11P. (2.4.16)
(5,)€l0, T xR

Proof. Indeed, from (2.4.1) we have, for any p = 2,

El@Z,(t,x)) — &%, (t, x)|P]
p

<cpE ffG“ (t—rx- U)Z(O',]( (r,v))—aij(ﬂfl’(r,v)))Wj(dr,dv)

p
+cp2|z]—z PE

‘f [G“ (t—r,x— U)U,](u (r,v))gnj(r,v)dvdr

+cp_ZIIZ}I”E Uo fRGa(t—r,x—v)(aij(ﬁi(r,v))—aij(ﬂfl'(r,v)))
Jj=

p
x gnj(r,v)dvdr

+¢pE

t ) P
UfGa(t—r,x—v)(bi(ﬁﬁ(r,v))—bi(ftﬁ(r,v)))dvdr ]
0 JR

=+ Gy + oy + ). (2.4.17)

Using Burkholder’s inequality, the fact that the partial derivatives of ¢;; are bounded and
Holder’s inequality with respect to the measure G2 (¢t —r,x— v)drdv,

p/z]

- ﬂg(r, v)llp] dvdr

i < cpyE

t !
U fGi(t—r,x—u)nafl(r, v) - @ (r,v)|*dvdr
0 JR

t pl2—1
scp(fo fRGi(t—r,x—v)dvdr)
t
x[ fGé
0 Jr

t !
Scpfo fRGi(t—nx v)supE[llu (r,y)—a;(r,y)||P]dvdr

YER
! -1/
0 YER

Since the functions 0,1, j = 1,...,d, are bounded, by the definition of g, it is clear that

i (r,y) ||P] dr. 2.4.18)

b < cpllz—2|IP. (2.4.19)
Similarly, by Hélder’s inequality with respect to the probability measure v}, 1(;_p-n ¢ (r) G2 (¢ —
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2.4. Strict positivity of the one-point density

rnx—v)drdv,

[ !
%sop(‘)"”[ drf U,zlGi(t—r,x—v)dvsupE[llftfl(r,y)—ﬁfl rnyIP
f—o-n R yeR

<c,6” sup E [Ilﬁfl(s, ) - L?Z’(S, y)llp] (2.4.20)
(s,)El0, TTxR

For the last term, using Holder’s inequality with respect to the measure G, (t —r,x— v)drdv
and the fact that the partial derivatives of b; are bounded,

t !
@7450,,[0 drfRdvGa(t—r,x— v)E[IIﬁﬁ(r, v)—aﬁ(r,v)llp]

t p-1
x(f drf dvGa(t—r,x—v))
0 R

t !
< cpT”_lf drsupE [||a;(r,y) — @, y)||P] (2.4.21)
0 YER

From (2.4.18), (2.4.19), (2.4.20), (2.4.21) and (2.4.17), we have obtained that
supE |51, y) - @ (£, )|
yeR

<cprlliz=2' 1P +cpr6?  sup  Elllig(s,y) - i, (s, 1)11P]
(5,y)€l0, T xR

t !
+ cp,Tf dr((t—r) V% +1)supE [II i (ry)—u; (nylP|.
0 YER

By Gronwall’s lemma (see [23, Lemma 15]), we obtain

sup  E[lldg(s, ) — i (s, )P
(5,)€[0, T xR
<cprllz—2' P +cpré?  sup  Ellag(s,y)— g (s, »IPL.
(s,)€l0, TTxR

We can choose 6 small enough in the above inequality with ¢, 767 <1 so that (2.4.16) holds
with a different constant ¢, 7. O

Lemma 2.4.4. Let§ be small and n large enough so that (2.4.9) and (2.4.16) hold. Then for 6
small and n large there exists c,, T such that for any p > 1 and z,z' with ||z| <96, |12’ <6

sup  E|lg5(s, ) -5 s IP| <cprlz—2|P. (2.4.22)
(5,)€l0, T xR

Proof. We adopt the notations <7, %, ¢, 7 defined in the proof of Lemma 2.4.2. We first use
the Lipschitz property of o together with (2.4.16), to obtain that

sup  E|Il7(s,y) -7 (5, )P <cprllz—2'|P. (2.4.23)
(5,)€l0, T xR
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By hypothesis P1’ and Burkholder’s inequality, we know that, for any p > 1,

B[\ %7 . .(t,x)— B~ . (t,%)|P]

n,i,j n,i,j

t d
<cyE ‘f , RGa(t—S,x—y) Z (0moi1(@5(s,¥)) = 0mo i (2 (s, 1))
t_ —n

I, m=1

p
><<pfl,m,j(s,y)Wl(ds,dy)’ ]

t d
+cpE[|f 2 fRGa(t—s,x—y) Y B0 (2 (5,9))
t_ -n

I,m=1

! p
< (@ i (V) = 9F (5 YIW (s, dy)| ]
pl2
<cpE

t d
ft fR Ga(t—s,x— Y a5(s, 1) — % (s, )12 Zl(wi,m, (s y)?dsdy
m=

_2771
p/2]

Using Holder’s inequality with respect to the measure G2(t —s,x — y)dsdy twice, this is
bounded above by

P_q t 2
Cply f fGa(t—s,x—y)E
-2 JR

B—l t d
+cpuy; f fGi(t—s,x—y)ZE
t—=2""JR m=1

+cpE

t d
Gat—sx=y) Y (9%, (s -5, (s y)’dsdy
-2 JR o1 i

d
&% s, ) — @z (s, P Zl |95, (S5 y)l’”} dsdy
m=

|¢fl,m,j(s' V- (szr'm,j(s» y)I’”] dsdy

da 1/2
12
<cpvh ") sup sup E |<pfl’m’j(s,y)|2”]

m=1lzl<6 (5,y)€[0, TIxR

EASDEEAC y)IIZp]UZ
n\ n )

x sup E
(5,)€[0, T xR

d
p/2 !
+CpUpy ), SUp E[|(,Dfl,m,j(s,y)—(szmyj(s,yﬂp],
m=1(s,y)€[0, TTxR

where we have used the Cauchy-Schwartz inequality. From (2.4.9), there exists a constant C;J T
such that
d

. 2p 1/2 ,
Z sup sup E |(,0,,'m,j(8,y)| SCP,T.
m=1zll<6 (s,y)€[0, TTxR
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2.4. Strict positivity of the one-point density

Hence we obtain that

E

\ B~ (1, x) — B~ .(t,x)lp]

n,i,j n,i,j

, 3 . 1/2
<cpup  sup  E[l(s, ) - @ 5, 917

(5,y)€l0, T xR
/2 d 4
+cpvy ). sup  E [Iwi,m,j(s, N =Prm (S y)Ip]. (2.4.24)

m=1(s,y)€[0,TIxR

Similarly, using hypothesis P1’ we have, for any p > 1,

BIGE, (6,0~ %7, (,0)P]
d t | o P
<cp Z Izl—z“PE U fv,; Ga(t—s,x—y)l(p,zl,m,j(s,y)ldyds
I,m=1 =27"JR
d t
+ep Y. IZEIPE”f dsf dyv,'G3(t-s,x—y)
I,m=1 =2 R

~ ~ ! 14
x (dmaﬂ(uﬁ(s, NP, 1Y) = 0m0 i1 (5, (5, VI3, i () y)) | ]

d p
!
<cp ) lz —zllpE[

I,m=1

t
f fV#Gi(t—S,x—y)ltpfl,m,j(s,y)ldyds
=2""JR

d t )
+cp0P Y E |f fvglGi(t—s,x—y)llaZ(s,y))—aZ (s

=l t—2-n JR

2 p
x Itpn'm'j(s,y)ldyds|

d t , p
+cp6” Z E f fRv;lGi(t—s,x—y)l(pflymyj(s,y)—(pz_m,j(s,y)ldyds

m=1 =271

Using Hélder’s inequality with respect to the probability measure v;,'1(;,—-n (1) G2 (t =1, x —
v)drdv three times and (2.4.9) twice, it is bounded above by

cpllz—=2 1P +c,8P  sup  El@E(s,y) — @5 (s, pIIPP1H?
(5,)€[0, TT1xR
d !
+cp06P Z sup E I(pflymyj(s,y)—(pz,m,j(s,y)lp . (2.4.25)

m=1(s,y)€[0, TIxR
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Furthermore, by hypothesis P1’, for any p > 1,

E(1Z2, (600~ 22, ;601

n,i,j
t da _, g
< cpE|| > 10mbi (85, 7)) — Ombi (55 (5, )]
t=2"" Rm:l
p
x|<pfl,m,j(s,y)IGa(t—s,x—y)dyd5| ]
t da )
+yE |f 2 fRZ 10mbi (@ (5, )]
1=27"JR ;=1
p
X Iqo;m,j(s,y)—wfl,m,j(s,y)lGa(t—s,x—y)dyd3| ]
t , d p
<cpE |f f||izfl(s,y)—a; Y 195, .(s,y)lGa(t—s,x—y)dde|
-2 Jr m=
t da p
+cpE |f f Yo19E s —9h -(S,y)IGa(t—S,x—y)dJ’dS| :
-2 Jr gy M i

Using Holder’s inequality with respect to the measure G4 (t — s, x — y)dsdy twice, Cauchy-
Schwarz inequality and (2.4.9), it is bounded above by

p2 " sup  EINGE(s, ) - @ (5, )PP
(s,)€l0, TIxR

d

+cp2"P ) sup E[I(pi,m,j(s,y)—(pfl’,m,j(s,ynp. (2.4.26)
m=1(s,y)€[0,TIxR

Comparing (2.4.23), (2.4.24), (2.4.25), (2.4.26) with (2.4.10) we have

195, ) = 7 (5, VI

sup E
(s,)€l0, TIxR
<cprlz—2' P +cpllz—2'|IP
/2 _ _ 2
+ep(vy “+6P+27"P)  sup  E[lai(s,y) - @ (s, p)l
(5,0, TI1xR

2p11/2
17P]

/2 — ’
+ep(Wh " +8P+27"P)  sup  E|li(s,y) -5 (s nIP|.
(5,Y)€[0, TI1xR

Finally we choose 7 large and § small in the above inequality such that cp(v,’ﬁ7 21 5P 42 Py < 1.

Then we obtain that

sup  E|llgZ(s,y)— @5 (s, I
(s,)El0, TTxR

<cpllz—2IP+c, sup  Elldi(s,y) - @z (s, y)I*P1M2.
(5,)€l0, T xR
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2.4. Strict positivity of the one-point density

Therefore we have proved that

sup  E|loh(s, 1) —@h s IP | <cprlz—2I°.
(5,)€l0, T1xR

2.4.3 Proof of Theorem 2.1.1(b)

Let (o, x0) €]0,T] x R be fixed. By Theorem 2.4.1, we need to show that for any yy €
Supp (P (s, %)), the assumptions (i) and (ii) of Hy, x, (y0) are satisfied.

We first verify assumption (i) of Hy, x, (30).

From now on, we assume that 7 is large and ¢ is small so that (2.4.9), (2.4.16) and (2.4.22) are
satisfied.

Let z=01n (2.4.10) to get that
<P(,)1'i,j(l‘0,xo) = le,?,,-yj(to,xo) +%n,i,j (1o, Xo), (2.4.27)

where %y, ;, j(to, Xo) = ,%’%l.‘j(tg, Xo) + @g,i,j(to’ Xo) satisfies that for any p > 1,

P
El|%Zn,i,j(to, x0)IP1 < cp, (v +27"P), (2.4.28)
by (2.4.12), (2.4.14) and (2.4.9). We now write
%I’?,l.,]‘(to’ xO) = Ul](u(t()) xO)) + ﬁn,i,j(t(b xO)y
where

2-n
Ohn,i,j(t, Xo) = vglfo fR(Uz‘j(u(tO_ r,v)) — 01 (u(ty, X0))) G (1, X0 — v)dvdr

Using Minkowski’s inequality with respect to the probability measure v;,! G2 (r, xo — v)dvdr
and the Lipschitz property of o, we have that, for any p > 1,

27" 1
El|Op,i,j(to, x0)IP1 = ¢p fo fR(E[IUz’j(u(to—r, v)) =0 (ulto, x0)) "1 »

p
x U, G2 (r, X0 — v)dvdr

p

2*”
Scpfo fR(E[IIu(to—r,v)—u(to,xO)II”])%U;IGi(r,xo—v)dvdr
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By the LP-continuity of the solution (2.1.6), this is bounded above by

p

2 a-l a-l —1,2
Cp re +|xo—vl z |v, Gg(r,xo—v)dvdr
0 R

p

2—71
a1
=Cp f fl’zfl Uani(r,xo—v)dvdr
0o Jr

p

2-”
a-1 _
+c,,,f0 fmlxo—vl 2 vani(r,xo—v)dvdr

2™ a-1 p 2™ a—=1 P
=cp v;lf rz Gg2r,0)dr| +cp v,;lf fIUITGi(r,U)dvdr
0 0o Jr
2™ a-1 P 2™ a—=1 P
=cp v,_llf rarVegr +cp v;lf /IvlTr_Z/“Gi(l,r_”“v)dvdr
0 0o Jr
2n p
—PA—npdla=l _ a-1l a-1 _ 1
=cpv, 27"ty ynlf flul 2 rar 2% G2, wdudr
0o Jr
2 p
—P A—npda=l _ a=3 a-1
=cpv, 27"ty ynlf I drflul 2 GA(1, wdu
0 R
I —Po—np3el I o—np%l
< Cpln 2 2a :cpZ 2a (2.4.29)

where in the second equality we use the scaling property (A.2), in the third equality we change

the variable by u:= r /%y and in the last inequality the integral Jrlul o G2 (1, w)du is finite

because of (A.5).

Now, as yy € Supp(Pu(4,x,)), there exists r such that for all 0 < r < ro,
P{u(to, x0) € B(yo; 1)} > 0.

Hence, forall 0 < r < ry,
P{(llu(to, x0) = yoll < ) N (deto (u(ty, X0)) = 2¢1)} >0,

where

d

1
c:==| inf inf |o(2)¢)?
2 zeB(yp;r) I611=1

From the moment estimates (2.4.28) and (2.4.29) for %y, ; j(ty, Xo) and Oy ; j(to, Xo), these
quantities converge to 0 in L?, so that we can choose a subsequence {n;};>; such that for any
1<i,j=<d,¢°

i j(l‘o, Xo) converges to g;;(u(fy, X)) a.s. as k — oo, which by Fatou’s lemma
implies that

limsup P{(ll u(t, x0) — yoll 1) N (det® (to, xo) = c)} > 0.

n—oo

This proves (i) of Hy, x, (Jo).

We next proceed to verify (ii) of Hy, x, (Vo).
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We start proving that there exist ¢ > 0 and 6 > 0, such that

lim P< sup [l¢5(to, x0)ll <cp=1. (2.4.30)
=00 | zl=6

Observe from (2.4.10) and (2.4.11) that

o7 (to, x0) | < K+ sup 19,5 (to, xo)l, (2.4.31)
lzll<6

where 97 (ty, xo) = B (1o, Xo) + €7 (1o, X0) + D} (1o, Xo) satisfies that for any p > 1

4
sup E[I97 (t0, x0)IIP] < cp,7(vy; +6P +27"P),
lzll<6

by (2.4.12), (2.4.13), (2.4.14) and (2.4.9).

For ||z| < 0, let vn i (1 =1, j<d)denote the solution of the affine equation

Uy i (6 X) = = lzlf[ , f Ga(t = $,X = y)0m0 i1l (s, Yy 1, (5, V) 8ni(s, y)d yds
+oy; (). (2.4.32)

For each n and z, equation (2.4.32) has a unique solution by Picard iteration. Define

d t
I(vn,],w)(t X) = Z Z’ft_z,nfRGw(t_S’x_J’)amail(f‘rzz(s'J’))Vlzq,m,j(s,y)gnl(&y)dyds-

I,m=1

Since the derivative of o is bounded, there exists a constant ¢ such that

d
Z sup sup sup sup II(vnl],a))(t,x)l
i,j=1 n=1 | z||=8 weQ (£,x)€[0, TIxR
d
<cd Z sup sup sup sup [v? Vi j(t x)|. (2.4.33)

i,j=1 121 |2] <6 weQ (£,x)€[0, TIxR

Let v°° (t,x) =%, .(t,x). Then from (2.4.11) there exists a constant K such that

n,i,j n,i,j
d
> supsupsup sup [vZ) (5,0 @) <K.
P21 n=1 Izl=s we (nvel0, TR
For each integer k = 0, we define
v (1 x) () = TWPF L w) (1, x) + 7, (1,%) (). (2.4.34)
n i,j n,di,j’ n,i,j o
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Suppose that for k = 0, we have

d k ,
Z sup sup sup sup Ivfl’];j(t, X)(w)| < K+KZ(C5)’.

i,j=1nz1|z||<6 we (£,x)€[0, TTxR i=1

Then by (2.4.33) and (2.4.34), for k + 1 we have

d k _ k+1 _

) sup sup sup  sup Ivfl”l.c}'.l(t,x)l <K+c§(K+K) (c6)' =K+K ) (ch)'.
i,j=1n=z1||z||s6 weQ (£, 0€[0,TIxR " i=1 i=1

Choose 6 small such that ¢d < 1. Then, by induction, we obtain that
d K
z,k

sup Z sup sup sup  sup |v,; (W)= —. (2.4.35)
k=0 j,j=1 n=1 ||z]|<6 weQ (t,x)€[0, TIxR bl 1-c¢cb

Since ”ZI; i (%, x) converges to VZ ; ].( t,x) as k — oo, from (2.4.35) there exists a constant C such
that

sup sup sup  sup Ivzij(t, x)| = C. (2.4.36)
nz1 ||z)|<é weQ (t,x)el0, TIxR

In order to establish uniform L”-continuity of z— v for small z, we use (2.4.23) and (2.4.36)
to get that, for ||z|| <§ and |2/ <&

E

/ p
Z Z
vn)i’j(t,x)—vnyi’j(t,x)) ]

d p
!
< cpllz—2'|1P +¢po” ZIE
m=

t
|| ot et s ey, - s piayds
12"

p

t !
f f v;lGi(t— s,x—y)lvf,'m'j(s,y) - vflym’j(s, wldyds
=277 JR

d
+cp6P ) E
m=1

By Hélder’s inequality with respect to the measure v;,! G2 (¢ — s, x — y)dsdy and (2.4.16), this is
bounded above by

! / /
cpllz=2'NIP +c,0Pllz = 2"1P

d t /
+cp6P Y. | dsv, 1920 (t—s)(t—s)"1/® su[RI?E [Ivzvm‘j(s,y) = Vo, j S DIP
m=1 ye

/ / /
<cpllz—z ||p+cp6p||z—z (L
d

+cp6P Y. sup E[Ivﬁ'm'j(s,y)— Vrzz,m,j(&y)lp].
m=1(s,y)€[0,TIxR

In the above inequality we can choose 6 small enough so that c,6 P < 1. Then for || z|| < and
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12’ <9,

sup  E|IIvi(s,y) - 2 (s, )P <cprlz—2". (2.4.37)
(5,)€l0, TIxR

Now we give some estimates on the moments of the difference between ¢% and v7. Comparing
(2.4.10) and (2.4.32), together with (2.4.12), (2.4.14) and (2.4.9) we have

E|

p
(pfl,i,j(t’x) - Vz,i,j(t'x)’ ]
p

t
[ [ o etk 10315 i 5,y
-2 JR o m,

d
<cy6” ) E
m=1
g —-n
+cp,r(v; +27"P).

By Holder's inequality with respect to the measure v,,' G2 (t — s, x — y)dsdy, this is bounded
above by

d ot
cp6” Zf fv,;lGﬁ(t—s,x—y)E
m=1Ji-2n Jr

P
+prT(l)n2 +2 np)

97, 10, (5 9) = VE 1 (5, 9)IP| dyds

d

p
< cpr(wi +27") 40" Y. sup  Elgf,, (s 1) = V5, (s I
m=1(s,y)€[0,TIxR

Choosing 6 small enough, as we did before, we have

14
sup sup E[lg5(s,y) = vp(s, IP] < epr(vn +27"). (2.4.38)
llzll<6 (s,y)€l0, T1xR

For convenience, we denote X7 (fy, xo) = ¢%(to, xo) — v5 (%o, Xo). Then (2.4.22), (2.4.37) and
(2.4.38) indicate that for any p > d

E|I1X; (o, x0) = X (0, 50) 17| < 7112 = 2117, (2.4.39)
B
sup E[I1 X7 (t0, x0)IP] < cp,r (v +27"P). (2.4.40)
lzll<6

Choose 0 <0y < 1—d/p. By (2.4.39) and the Kolmogorov’s continuity theorem (see [81, Corol-
lary 1.2]), we have

I XZ (£, X0) — XZ (to, X0) |”
sup

< 00, 2.4.41
i lz— 2/||6oP * (2441

supE
n

where the sup,, denotes the supremum over large enough » for which (2.4.9), (2.4.16) and

(2.4.22) are satisfied. For any € > 0, we can choose {zi}ffl) < B(0,0) (k(e) is of the order 6%~ %)
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such that for any z € B(0, ), there exists Zi(z) € {zi}ffl) satisfying ||z — z;(z |l < €. And for each z;,
from (2.4.40), we can choose a large number N such that forany n> N

sup E[I X5 (t0, x0)IIP] < €/ k(). (2.4.42)
1<i<k(e)

Hence, for n = N,

E| sup IIXZ(f, x0)I” | < cpE | sup (I XZ(to, x0) — X' (Lo, %0) ¥ + 1 X" (£o, X0) 1P
llzll<é lzll<é
I1XZ (1o, X0) — X' (1o, X0) 1P
<c,E sup . = 5 Iz = zig %P
lzll<8,2#zi() |z = zj(z)lI0P
k(e)
Zi
+cp Y B[IX5 (10, x0)17]
i=1
I1XZ (o, %0) — XZ (Lo, x0) |17
< cpe®P supE | sup —~ Ll Z 070 Cpe,
n z#7 |z — z'||00P
which implies that for any p > d
lim E | sup [ XZ (%, x0)lI” | =0. (2.4.43)
o0 |zl

From (2.4.36), we know that {sup ;<5 | X}; (%, Xo) | < C} < {sup ;<5 ll¢;, (%0, X0) | < 2C}. And
(2.4.43) implies that

lim P{ sup 1 X; (5, x0)l > C} = 0.

n—oo
lzll<6

Therefore, we have proved that

lim P{ sup llg% (to, xo)ll < ZC} =1.

n—oo
lzll<6

The verification of (ii) of Hy, x,(30) for ¥, (f, xo) is similar, so we only give the main steps.
Recall that

2

0zj0zm

v im0 = iz (1, ).

Then we have that

t t .
w;)i,j,m(l‘,x)=f0 dﬁfRdVlfO drszdeD(erizDg?yl(ﬂz,i(t,x))gnj(ﬁ,Vl)gnm(rz,vz),

where the second-order Malliavin derivative satisfies the following linear stochastic differential
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equation:
(m) () [~z
DrZyVZDrlrvl (un,i(t’ X))

= Ga(t—11,x—v1)DU), (04 (@2(r1, 1)) + Ga(t — T2, X = U2) DY, (0 13 (G5 (2, V2)))

t d . -
+[ [ Gate=six= Y D, DI (0t ts, 0 ds, dy)
rnvr JR =1
t .
+f fGa(t—s,x—y)D&Zl,),ZD(r{?UI(bi(a;(s,y)))dsdy.
rnvr, JR

Using the chain rule and the stochastic differential equation satisfied by the first Malliavin

.. . 2 . 2
derivative, we can compute the different terms of ¢ i, m(t, x) as we did for ¢ nij (t,x), and

bound their p-th moments. Finally we estimates the p-th moments of the difference v (¢, x) —
1//51/ (t,x) as we did for @7 (¢, x) in order to get the desired result.

We have verified the two assumptions of Hy, x, (Vo) for any yo € Supp (P4, x,))- Therefore, the
conclusion of Theorem 2.1.1(b) follows from Theorem 2.4.1.

2.5 The Gaussian-type upper bound on the two-point density

The aim of this section is to prove Theorem 2.1.1(c). We will follow the general approach in [26,
Section 6]; see also [27, Section 5].

2.5.1 Technical lemmas and propositions

In this subsection, we present several technical lemmas and propositions, which will be used
for the analysis of the Malliavin matrix.

Lemma 2.5.1 ([17, Proposition 4.4]). For any s,t € [0,T],s < t, and x,y € R, there exists a
constant Ct > 0 such that

T -1
f f(ga(r,v))zdrdeCT(lt—SIT+|x—yI“_1),
0 R

where

8a (V)= 81y sy V) = 1<y Ga(t =1, x = V) = 119 Ga (s =1,y = V).

The following result gives an estimate on the modulus of L”-continuity of the derivative of the
increment, analogous to [26, Proposition 6.2], which is comparable to (2.1.6).

Proposition 2.5.2. For any p = 2, m = 1, there exists a constant Cy 1 such that for all s, t €
0, T,s<t,x,yeR,

E[|D™ wi(t, ) = ui (5, )| Y] < Cpr(t=sIE +1x=y® )2, i=1,..,d. (@25.1)
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Proof. The proofis slightly different from that of [26, Proposition 6.2] since the estimate for I3
in [26, Proposition 6.2] requires the Cauchy-Schwartz inequality, which is not applicable in
our situation because the Lebesgue measure of R is infinite.

Assume m = 1. Using (2.3.1), we see that, for any p = 2,

E[|Dwi(t,x) = ui(s, )5, ] < c(E[ILIP] +E[|IP"?] + E[I51P'%] + E[|14P?]),

(2.5.2)
where
d T ,
h= Zf dr[ dv(ga(r, V)0 (ur, v)7,
k=170 R
d T T . . 2
L= ) f drf d”(f fga(grn)D(r,lz(Uij(u(Q»n)))W](da,dn)) ,
jk=1 0 R 0 JR
d T t—s 2
=Y | dr dv(f fGa(t—9,x—n)D(,{“,}(bi(u(e,n)))dedn) ,
k=170 R 0 R
d T s
Iy = dr[dv[fG(s—G,—)
4 kZ::1 0 0 (0 R Y y—n
2
xD%(bi(u(t—s+8,x—y+n))—bi(u(9,n)))dedn) ,
By hypothesis P1’ and Lemma 2.5.1,
E[INIP2] < Cpr(t =5l +[x—y/*™HP". (2.5.3)

Using Burkholder’s inequality for Hilbert-space-valued martingales (Lemma A.3.1) and hy-

pothesis P1’, we obtain
T T
U dﬂfdn(ga(e,n))zf drfdu@il
0 R 0 R ’

where O ; := ng,g (u;(0,m)). By Holder’s inequality with respect to the measure (g, (0, 1]))2 dodn,

we see that this is bounded above by
T pl2
drf dve? )
[ feavet

d pl2
E[|LIP?|<c ) E
k=1

d T
c Z | dt9f[Rdn(g,,((G,n))2 sup E

k,[=1 @,mel0, TIxR
T -1
x ( f f (ga(H,n))szdn)
0 R
<Cprt—sc +lx—y*HP?, (2.5.4)

where we use (2.3.3) and Lemma 2.5.1. To estimate I3, we use Holder’s inequality with respect
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to the measure G4 (t -0, x —n)dOdn twice to get that

d
E[I1P2] < Cpr Y (t-5)P%E
k,l=1

[—s
(f dHf dnGe(t—6,x—1)
0 R
T pl2
X drf dv®e?
L R k,l)
d t—s
<Cpr Z (t—S)p/Z(f d@f dT)Ga(t—H,x—n))
k=1 0 R
t-s T pl2
xf d@fdnGa(t—Q,x—n) sup E f drf dv@il]
0 R ©,mel0, TIxR 0 R '

< Cpr(t—s)?, (2.5.5)

-1

[S1aS]

where in the last inequality we use (2.3.3). Using Hélder’s inequality with respect to the measure
Gq(t—0,x—-n)d0dn,

d T N
I4SCZf drfdvf dHf dnGy(s—0,y—n)
k=1Y0 R 0 R
x (D(rk,} (bi(u(t—s+60,x—y+m) - bi(u(9,17))))2

We apply the chain rule to compute D% bi(u(t—s+6,x—y+n))— D%bi(u(B,n)), subtract

and add the term b/ (u(t—s+0,x~y+ n))D(,fC,Z u(0,n) . Then by hypothesis P1’, this is bounded
above by

da T N
c ) drfdvf d@f dnGa(s—0,y—1n)
k=170 R 0 R

2
x (D(r{?(ul(t—s+0,x—y+n) - ul(e,n)))

d T N
+c ). dr/dvf d@fdnGa(s—B,y—n)
k,1=1Y0 R 0 R

x(u(t—s+0,x—y+mn) - ul(B,n))ZGi’l

= 141 + 142.

Using Holder’s inequality with respect to the measure G, (f — 6, x —1)d6dn and the Cauchy-
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Schwartz inequality, we have

d s £
E[lI21P?]<c Y (f d@fdnGa(s—H,y—n))Z
k,1=1\JO R

S
Xf dHf dnGe(s—0,y—n)
0 R

T pl2
|ul(t—s+9,x—y+n)—ul(G,n)|p(f drfRdUG?CJ)
0

T ) 14
drfdv@)
[} ar [ avet,

x  sup E[|u1(t—s+9,x—y+n)—ul(9,n)|2p
@,mel0, TIxR

< Cprs"2 (-5l +]x—y|* P2 (2.5.6)

x E

1/2

d
< csP? Z sup E
k,1=1(0,m€l0,TIxR
]1/2

where we use (2.3.3) and (2.1.6).

Denote

(SIS

d T 2
¢(h,z,0):=sup Z E[(/ f(ngz(ul(h+0,z+n)—ul(B,n))) drdv)
neR k,1=1 o Jrt 7

By Holder’s inequality,

p
Pl

d s
E[lInl"?]<c Y (f Ga(s—B,y—n)den)
k=170 \JR

S
x[ d@f dnGe(s—0,y—n)
0 R

(SIS

T
x E (f f(D‘,fcg(ul(t—ere,x—ym)—u,(e,n)))zdrdu)
0 R

|

N
< Cp,TfO @(t—s,x—y,0)do. (2.5.7)

Denote h = t—s and z = x — y. From (2.5.2)—(2.5.7), we conclude that forall # =0, z € R,
sel0,TlyeRand1=<i=<d,

_ N
E[|D(uith+s,z+y) - ui(s, )|, < Cpr(h“E +121% P2 4 c,,,Tf ¢(h,z,0)de.
0

Taking the supremum over y € R on the left-hand side of the above inequality, we obtain that
forallh=0,zeRand s€ [0, T],

_ S
¢p(h,z,s) < Cp,T(lth] +z|*HP2 4 Cp,T/ ¢(h,z,0)do.
0
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By Gronwall’s lemma (see [76, p.543]), we obtain that

a-1
sup ¢@(h,z,5)<Cpr(hl'e +|z|* P2,
se[0,T]

which implies (2.5.1) with m = 1.

The case m > 1 follows along the same lines by using (2.3.3) and the stochastic partial differ-
ential equations satisfied by the iterated derivatives (see for example [26, Proposition 4.1]).
O

The following lemma is another version of [26, Lemma 6.11].

Lemma 2.5.3. Assume PI’. Fix T >0, q = 1. There exists a constant ¢ = c(q, T) €]0,00[ such that
forevery0<2e<s<t<TandxeR,

a—l)q/ae(a—l)q/a

E Sc(t—s+e)(

d s d q
Z dar dUZﬂi(krryyyt)x)
k=1Js-€ R =1

Proof. The proof follows the same lines as [26, Lemma 6.11]. Define
d s d
A:= dr | dv a(krv,t%).
k=1Vs—¢€ R =1

From (2.3.2), we write
E[IAI7] < c(E[IA117] + E[1A219]),

where

2

’

t .
f fGa(t—H,x—n)Dﬁfﬁ(Uu(u(G,n)))W’(dG,dn)
r JR

d s
Ay f drf dv
i, j,k=1Y5—€ R

1]

d N
Y drf dv
S—€ R

i,k=1

2
Az!

t
ffGa(t—B,x—n)D(rny)(bi(u(B,n)))dBdn
r JR

We bound the g-th moment of A; and A, separately.

Asregards Aj, thanks to hypothesis P1’, we apply Burkholder’s inequality for Hilbert-space-
valued martingales (Lemma A.3.1) to find that

t N
f defdnf drfdv@il
s—€ R s—€ R ’

E[lAl9])<c ) E[ q], (2.5.8)

k=1

where

Ok,1:= Lgsr Ga(t—0,x— D) (u;0,m).
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We apply Holder’s inequality with respect to the measure G (¢ — 60, x —1)d0dn to find that

E[lAl7] ¢ i (f

k=1

t
xf defdnGg(t—e,x—n)E
s—€ R

t q-1
defdnGi(t—e,x—n))
€ R

SAO 2 q
f drf dv (DB ©,m) ’ ]
s—€ R

Since 2¢ < s, we have for 0 € [s—¢, t], s—e = sA0 —e = 0. Hence, by Lemma A.3.2,

q

SAO 2
ef|[ ar [ av(pfuao.m)
s—€ R

q

IA

E

SAO 2
| ar [ av(puao.m)
sAO—¢ R

a-1

<ce S, (2.5.9)

where c €]0,00[ does not depend on (0,1, s, £, €, x). Therefore,

t
E[lAllq]se(f dHf dnGi(t—B,x—n))
s—€ R

a-1 a-1
=c(t—s+e) a e a 9,

a=1

q
ead

(2.5.10)

where the calculation in the equality is due to (A.4).

Next we derive a similar bound for A,. By the Cauchy-Schwartz inequality with respect to the

measure Gy (t—0,x—n)d0dn,

d
Ay < 2:

i,k=1

d
< ) (t—s+e)
i k=1

By hypothesis P1’ and Fubini’s theorem,

E[lA2l9] =c(t-s+e)? ) E
k,l=1

E
1

=c(t—s+e)
k

M=

58

s t 2
drf dv(t—r)f fGa(r—e,x—n) (D) i@,y dodn
s—€ R r JR

N t 2
drf dvf fGa(t—H,x—n) (D(,fc,f(bi(u(e,n)))) dodn.
s—€ R r JR

s t
f drfdvf dHfdnGa(t—B,x—n)
s—€ R r R

< (D%(ul(e,n)))z |"]

t
f d@fdnGa(t—G,x—Tl)
S—€ R

snB
xf drf dv(Dﬁf“,l(ul(H,n)))zﬂ. (2.5.11)
s—€ R
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We apply Hélder’s inequality with respect to the measure G, (£ — 0, x —1n)d0dn to find that
d

E[lAl7] sct—s+e)7 )
k,l=1

S
Xf dHf adnGe(t—0,x—mE
s—€ R

f def dn Gy

—c(t—s+e)9e9ec q, (2.5.12)

s q-1
f dHf A1 Ga(t—0,x-1)
S—€ R

)14
drfdv (,fcﬁ(uz(H,n))) ‘ ]

<c(t—s+e)1

where in the second inequality we use (2.5.9). Therefore (2.5.10) and (2.5.12) imply the result.
O

The following lemma is an improvement of Lemma 2.5.3 by using Lemma A.3.3. As we men-
tioned in Section 1.2, this is a key element in our improvement of the lower bound in (1.1.3).

Lemma 2.5.4. Assume PI’. Fix T >0,co >1 and0 <y < 1. Forall q =1, there exists a constant
c=c(co, g, T) €]0,00[ such that for every0 <2e <s<t<T witht— s> coe’ and x € R,

min((1+yo) <, 1-Yo+y0 %) q

d ps d q
Y drf dea?(k,r,v,t,x) <ce
k=1Js—e  JR 5

Proof. We use again the notations from the proof of Lemma 2.5.3. From (2.5.8) and (2.5.11),
we have
q]

d
E[lA1l7]<c ) E
k,l=1

t SAO
dﬁf dnGi(t—G,x—n)[ drf dv D(k (uy(0, n)))
—€ R S—€ R

<A+ A+ A,

with

d

s SAO
Anpi=c ) E f dG[ dnGi(t—G,x—n)[ drf dv( (k)(ul(H 17)))
s—€ R s—€ R

k,l=1
d

s+coe’0 sAO
Api=c Y E f defdnGi(r—e,x—n)f drf dv D”c (10, n)))
k=1 S R s—€ R

d

2
Aizi=c Y E [ d@f dnG(t—6,x— n)f drf dv D(k)(ul(e,n)))
k=1 S+coe’0

219

1

q
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and
d t SAO 219
E[|42<c Y E d@f dnGa(t—e,x—n)f drf dv(Di{Cg(u,(e,n))) |
k=1 —€ R s—€ R
< Ag1 + A2 + Ags,
with

[ ps sAB
Api=c Y E f defRdnGa(t—e,x—n)f erdv(Dﬁfg(ul(B,n)))
S—€ S—€

k,l=1

2 "]
[ ps+coe?® sAO P 219
Api=c Y E fs deRdnGa(t—H,x—n)fs_e drfRdv(D(r,Z(ul(G,n))) ‘ ,

k=1
2 ‘f]

We first bound E [| A;|7]. We apply Holder’s inequality with respect to the measure G2 (t-6,x—
1)dOdn to find that

d
Agi=c ) E f d@fdnGa(t 0,x— n)f drf dv D(k)(ul(H,n)))
k=1 S+CpeY0

d q-1
E[lAnl?]=sc ), (f dﬁf dnG4(t—0,x— n))

k=1
q

xf d@fdnGz(t 0,x-nE

2
drf dv (D), 1)
For 6 € [s—¢,s], we have s—e€ =60 —e¢ = 0. Hence by Lemma A.3.2,

0 214
[ ar [ av(pBeu©.m) ]
0-¢ R

<ce'T Y, (2.5.13)

2q
<E

drf dv D(k)(ul(H,n)))

where c €]0,00[ does not depend on (8,1, s, t, €, x). Therefore, by (A.4),

a-— s q
E[|A11] SCWI”U d@f dnGi(t—H,x—n))
S—€ R
= CgaT_lﬁl ((t— S+€)(oc—1)/a —(t- s)(a—l)/a)q

a-1 a-1
<ce @ 1070+ 5)q, (2.5.14)

where, in the last inequality, we perform the same calculation as in (A.18) under the as-
sumption ¢ —s > cpe’. Again, we apply Holder’s inequality with respect to the measure
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G%(tr—0,x—mn)d0dn to find that
d s+coe”0 q-1
E[lAl] ¢ ), ([ d@f dnGi(t—H,x—n))
s R

k,l=1
S+Coe’0 s 2
x[ d@f dncﬁ(t—e,x—n)E[f drf dv(Dng,j(u,(e,n)))
s R S—€ R

1

Lemma A.3.2 implies that

f drfdu(D&f“,i(ul(e,n)))z
s—€ R

where c €]0,00[ does not depend on (6,17, s, t,€, x). Consequently,

> k| '

k=1

a-1

S+coe0 q
E[lA1217] sc(f d@f dnGi(t—Q,x—n)) €ad
s R

a-1

a-1 a-1\9
=c((t—s) @ —(t—s—cpe’) ) eald

q a-1

a1l a-1
sc((coey") @ —(coe’® —cpe’) @ ) ead

a—1 a-1 a-1
=c(coe’) @ 9ea 9= ¢l tr0) 7 a, (2.5.15)

where the second inequality is because the function x — x « — (x—cpe’®) « is decreasing on
[coe”?, o0l.

For A;3, we have, by Hélder’s inequality with respect to the measure Gi(t -0,x—-n)d0dn,

d t q-1
E[lAi317) <c ) U d@fRdnGi(r—e,x—n))

k=1 \stepero
s 2
| ar [ av(puae.m)
s—€ R

t q
xf d@f dnci(z—e,x—n)E[ ]
s R

+coer0

Lemma A.3.3 implies that for any 0 €]s + cye??, £],

s q
f drf du(Dﬁ{C;(u,(e,n)))z’
s—€ R

where ¢ €]0,00[ does not depend on (8,7, s, t,€, x). Thus, by (A.4),

-1
< ceArtrg)a

S g

k,l=

t q "
E[lA13]9] < C(f d@f dnGi(t—Q,x_n)) O O Rl
s R

+Cp€eY0

=c(t—s— COE?’U)[IT_ICIEU—YO‘FYO“T_])CI

< CE(I—Y0+Y0aT_1)CI_ (2.5.16)

61



Chapter 2. Hitting probabilities for systems of stochastic heat equations with
multiplicative noise

We proceed to derive a similar bound for E [|A2|7]. We apply Holder’s inequality with respect
to the measure G4 (t -6, x —1)dfOdn to find that

a s q-1
E[lAnlT]<c ) f dG[RdnGa(t—B,x—n)‘
S§—€

k,l=1

s 0 219
xf d@fdnGa(t—H,x—n)E f drf du(D‘,{“;(u,(e,n))) ’
s—€ R s—€ R
S q a-1
sef d@f dnGe(t—0,x—m)| € « 9
s—€ R
= cele"T 4 = ce(aT_l“)q, (2.5.17)

where in the second inequality we use (2.5.13). Similarly, we apply Holder’s inequality with
respect to the measure G, (¢t — 6, x —1)dOdn to find that

d s+coel0 q-1
E[lA2l]<c ), f d@fdnGa(t—H,x—n)
k=11 R
S+coel0 s 214
xf d@fdnGa(t—B,x—n)E f drfdu(Dgﬁi(u,(e,n)))
s R s—€ R
S+coel0 q a1
SC[ d@f dnGue(t—0,x—m| e a 1
s R
= c(coeyo)qew7167 = ce(a71+7°)‘7, (2.5.18)

where in the second inequality we use Lemma A.3.2. For the last term, we use Holder’s inequal-
ity with respect to the measure G, (f — 0, x —1)d0dn to see that

d

E[lAxl9] <c Z
k,l=1

t
xf d@fdnGa(t—H,x—n)E
s R

+Cp€e’0

t q-1
f d@fdnGa(t—Q,x—ﬂ)
s R

+CoeT0
s 2
f drf dv (D ©,m)
Ss—€ R

q
170+ %) q

q

=c

t
f def A1 Ga(t—0,x—1)
s R

+co€e’0

a-1
< cell=Y0+Y0 7)11’ (2.5.19)
where in the second inequality we use Lemma A.3.3.

Finally, from (2.5.14), (2.5.15), (2.5.16), (2.5.17), (2.5.18) and (2.5.19), together with the choice
of yo, we obtain the desired result. (]

Remark 2.5.5. The result of Lemma 2.5.4 is also true for solutions of stochastic heat equations
with Neumann or Dirichlet boundary conditions since we can still apply the result of Lemma

A.3.3; see Remark A.3.4.

62



2.5. The Gaussian-type upper bound on the two-point density

2.5.2 Study of the Malliavin matrix

Let T > 0 be fixed. For 5,1 € [0, T],s < t, and x, y € R consider the 2d-dimensional random
vector

Z = (u(s,y), u(t, x) — u(s, y)). (2.5.20)

Let y z be the Malliavin matrix of Z. Note that yz = (Y z) m,1) m,1=1,...,24 1S @a symmetric 2d x 2d

.....

random matrix with four d x d blocs of the form

1 2

Yz ¢ Yz
Yz= :
Yg) Y(Z4)
where
vy = (D@ils, ). Dwj(s.90) 1), iy av
vY = ((Dwils, y), Dy (t,x) =5, 90) 1), iy g
S = (D, x) = ui(s, ), Dwj(s, 1)) ) iy a»
Y = (D, ) = ui(s, ), D (6,0 = w5, 1)) 1) iy g

We let (1) denote the couples of {1,...,d} x {1,...,d}, (2) denote the couples of {1,...,d} x {d +
1,...,2d}, (3) denote the couples of {d +1,...,2d} x {1,...,d} and (4) denote the couples of
{d+1,....2d} x{d+1,...,2d}.

The next two results follow exactly along the same lines as [26, Propositions 6.5 and 6.7] using
(2.3.3) and Proposition 2.5.2, with A replaced by A,. We omit the proofs.

Proposition 2.5.6. Fix T >0 and let I and ] be compact intervals as in Theorem 2.1.1. Let Az
denote the cofactor matrix of y z. Assuming P1’, for any (s, y), (t,x) € I x J, (s, ) # (t,x),p > 1,

cpr(lt—sIC +1x—y@ 9  if(m, e D),
a—1 1
E[|(AZ)m,l|p]1/p <3 cpr(t=sl’a +lx—y1*H92 if(m, )€ 2) or(3),
cpr(t—s1c +1x—y@ a1 if(m, D) € @).

Proposition 2.5.7. Fix T > 0 and let I and ] be compact intervals as in Theorem 2.1.1. Assuming
P’ forany (s, y),(t,x) € I x ],(s,y) # (£, x),p> 1,

1/[7 Ck,p,T l:f(m) l) € (1)1
a=1 1 .
E[ID*y Dmil?| " =% ciprlt=sa +|x—-y1® Dz if(m,]) e (2) or (3),
a-1 .
cpr(t—sl'a +lx=yl* Y if(m,D)e@.

The main technical effort in this subsection is the proof of the following proposition, which
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improves [26, Proposition 6.6(a)] and is why the n can be removed in the lower bound on
hitting probabilities.

Proposition 2.5.8. Fix T >0 and let I and ] be compact intervals as in Theorem 2.1.1. Assume
PI’and P2. There exists C depending on T such that for any (s,y),(t,x) € I x ], (s,y) # (£,X),p >
1,

E[dety ) "] = C(t—sIF +]x—y|® )4 (2.5.21)

Proof. The proof has the same structure as that of [26, Proposition 6.6]; see also [27, Propositon
5.5]. We write

2d ,
detyz =[] () yz&, (2.5.22)

i=1
where ¢ = {£1,...,£24) is an orthogonal basis of R*? consisting of eigenvectors of y .

We now carry out the perturbation argument of [26, Proposition 6.6]. Let 0 € R? and consider
the spaces E; = {(1,0): 1 € R%} and E, = {(0, i) : £ € R%}. Each &’ can be written

¢'= (A uh = B0+ /1- 20,41, (2.5.28)

where A, ul € R4, (11,0) € Ey, (0, i) € E,, with ||| = |@]l = 1 and 0 < ; < 1. In particular,
IEHN2 = AT + |12 = 1.

For a fixed small B, the result of [26, Lemma 6.8] gives us at least d eigenvectors ¢, ..., ¢ d
satisfying B; = Bo,i = 1,...,d, which we say have a "large projection on E;". We will show
that these will contribute a factor of order 1 to the product in (2.5.22). The at most d other

|(x—1

a-1
eigenvectors will each contribute a factor of order | —s| « +|x— y|* ", which we say have a

"small projection on E;".

Hence, by [26, Lemma 6.8] and Cauchy-Schwarz inequality, we can write

)1/(210)

—2p
E[(dety,)"]"" < IAK(H(fi)TYZfi)

¢
K<fl,...,2d}, K|=d

ieK
—2dp ]
1/2p)
x (E inf Ely & ) , (2.5.24)
E=(\p e R
IANZ + [l =1

where Ax = NiexiBi = Pol-

With this, Propositions 2.5.10 and 2.5.11 below will conclude the proof of Proposition 2.5.8. []
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2.5. The Gaussian-type upper bound on the two-point density

Remark 2.5.9. As a consequence of Remark 2.5.12, we see that the result of Proposition 2.5.8 is
also true for the solutions of stochastic heat equations with Neumann or Dirichlet boundary
conditions.

Proposition 2.5.10. Fix T > 0. Assume P1’ and P2. There exists C depending on T such that for
alls,te,0<st—-s<1l,x,ye],(s,y) #(t,x),and p >1,

-2dp]
E inf Ty 4é < C(t—s|T +x—y|@Y)=2dp, (2.5.25)

E=(p e R
IAIZ + el =1

We are going to apply Lemma 2.5.4 to prove this proposition. This is a significant improvement
over the proof of [26, Proposition 6.9] in which an extra exponent n appears.

Proposition 2.5.11. Assume P1’ and P2. Fix T > 0 and p > 1. Then there exists C = C(p, T)
such that foralls,te I witht=s,x,y€ J,(s,y) # (¢, x),

E <C, (2.5.26)

-p
IAK(H(fi)TYZfi)
ieK

where Ak is defined just below (2.5.24).

Proof of Proposition 2.5.10. Since y 7 is a matrix of inner products, we can write
T Lot < k k k 2
§yzé=), fo drf[R av( Y. (LD wits, ) + (DX wi(t, 1) = DX wits, )
k=1 i=1
From here on, the proof is divided into two cases.

Case 1. In the first case, we assume that t —s > 0 and |x — y|* < ¢t —s. Choose and fix an
€€]0,6(t—s)[, where 0 < 4 < 1 is small but fixed; its specific value will be decided on later (see
the description above (2.5.29)). Then we may write

fTYZf =1+

where

2

d s d
L= drfdV(Z(/li—/ui)[Ga(s—r,y—v)aik(u(r, v)+aik,r,v,s,M+W|,
k=1Ys—¢€ R i=1

d t
=) drf dvWw?,
k=1J1t-€ R

65



Chapter 2. Hitting probabilities for systems of stochastic heat equations with
multiplicative noise

a;(k,r,v,s,y) is defined in (2.3.2) and

d
W =) [uiGa(t — 1, x = V)0 (u(r, V) + pia; (k, 1, v, t, X))
i=1

Sub-case A: € < §(t — s)'/70 with 0 < yq < 1. In this case, by the elementary inequality (2.3.5),

2
Z o ik (u(r, V))) G2(t—r1,x— ),

:‘<>
)
|
()JI[\J
QU
H
~
(")
QU
~
Q..
<
A
I QU

2
Yie:=2 sup ft drfdv(z,ula,(krv,tx))
€

<1 k=1
In agreement with hypothesis P2 and by (A.4),
A ¢
Y1,eZC||M||2 drfdvGi(t—r,x—v)
t—e€ R
el
=cllul®ee .
Next we apply Lemma 2.5.3 [with s:= ] to find that E[| Y1 ¢|7] < ce”T4, for any g =1.

For J;, we find that

s d 2
f drf dv(Z(M—ﬂi)Uik(u(r, )| Gi(s—ry-v),
s—€ R

i=1

and

YZ,e = 6(W1 + Wg + Wg),
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where

d 2
Wy = sup f dr/ dv| Y wiGel(t—rx—v)o(ulr, v))) )
IEI=1k=1s=€ i=1

4 2
W, := sup f drf dv Z(/li—ui)di(k,r,l/,s,y)) )
IEl=1k=1s-€

W3 := sup f drf dv
IEl=1k=1s-€

Hypothesis P2 implies that ¥ . > c[|A— ,uIIe « Next we apply the Cauchy-Schwartz inequality
to find that, forany g = 1,
q]

2
uiai(k,r,v, t,x)) .

1 g O

EHMGW]<SupHquxE
|ElI=1

Zl dﬁ/dVZXUMWUwM)G%t—rx V)
k=

Thanks to hypothesis P1’ and (A.4), this is bounded above by

s q
f drf dvGi(t—r,x—1)
s—€ R

Since the function x — (x+€) « —x « isdecreasing on [0,00[, under the assumption of this

c :c((t—s+€)a771—(t—s)a771)‘7.

sub-case, this is bounded above by

c ((5—?’0670 +€)“T_l _ (5—)’06}’0)“7_1)(1 — 6(5—}’06}’0)“7_167 ((1 +5Y0€1—70)a7_1 _ 1)0]

< 0(6—706}’0)"7_1q(57’061—}’0(a —1)/a)?

— CE(I_YO"'YO“T_])q'

where we use the inequality (1 + x) « —1<21y forall x=0.

In order to bound the g-th moment of W5, we use the Cauchy-Schwarz inequality to write

q
E[|W2|7] < sup A - pul*? xE
¢l=1

Z drfdea(krvsy)

Lk

N
drf dvz a;(k,r,v,5,)
- R =1
We apply Lemma 2.5.3 [with ¢ := s] to find that E [|W;|7] < ce“ T d,

Furthermore, under the assumption of this sub-case, by Lemma 2.5.4 we find that, for any
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q=1,
) d s d 5 1
E[|Ws]9] < sup [|u1% x E drf dv) a;(k,1,v,t,x)
lél=1 k=1Jsme IR =l
< cemin(+y0) S 1-y0+y0 51 g

The preceding bounds for Wy, W, and W3 prove, in conjunction, that

E[|Ya,el7] < ce™nO70 G 170410 55ha

Thus we have

NhthzYietYoc—Yic— Yo

2 2, &1
c(lpl®+IA-pl9)e s =Y e— Yo,

a-1

>cea —Y, (2.5.27)
where Y, := Y} . + Y, . satisfies

a-1

E[|Ye|9] < cemn(+70) 5 1-y0+ 7055 (2.5.28)
Sub-case B: 5(t — s)1/Y0 < e < §(t — s). In this case, we are going to give a different estimate on
Ji.

J1= Ye—4(Ws + Wa),

where

o d ps d 2
Ye::§Zf drfRdv(Z[(/li—,ui)Ga(s—r,y—v)+p,~Ga(t—r,x—v)]aik(u(r, )| .
=1Js—€ i=1

Using the inequality
(a+b)? = a®+ b*>-2|ab|,
we see that

Vo=V~ 1BY),
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where

d
BY .= f drf dv(Z()Li—,ui)Ga(s—r,y—V)Uik(u(r, )
3k 1Js-e =

(Z 1iGa(t—r,x—v)o i (u(r, v))).
i=1
Hypothesis P1’ assures us that

S
|B§3)’ sof drfRdvGa(s—r,y—U)Ga(t—r,x—v)
SSG €
:cf era(t+s—2r,x—y):cf drGe(t—s+2r,x-y),
s—€ 0

where in the first equality we use the semi-group property of the Green kernel (A.6). Since for
any ¢ > 0, the function x — G (¢, x) attains its maximum at 0, this is bounded above by
€ € 1
c/ dr Gg(t—s+2r,0) = c’f dr(t—s+2r)"«
0 0
=c/((t—s+26) T —(t—9)T)
— S a-1

=ce'c ((—+2) a —(—) a)

<ce'T (16+2) T —(1/6)T),

where the first equality is because of the scaling property of Green kernel (A.2) and in the
inequality we use the assumption € < § (¢ —s) and the fact that the function x — (x+2) o waf1

is decreasing on [0, c0[. Hence we have

Ji+J2= Vet o= | B - aws - aws - vi
a-1 a-1 a-1 a-1
Sc(lul? +IA—plP)e e —cea (1/6+2) a —(1/8) « ) —4Wo —4W3 -V} ¢
> coe s — e T (1/6+2)F —(1/8) T ) —4Ws —4W5 — Yy

We can choose § small so that ¢y > ¢/ ((1/6 +2) T (1/6) an1) and therefore,

Ji+Jo=ce's —AWs—4W5 — Yy . (2.5.29)

ql

In this sub-case,

N

d
Z vy akrv,sy)
i=1

k=1 R
q}

We apply Lemma 2.5.3 to find that E[|W5]] < ce a4, Similarly, we find using Lemma 2.5.3

E[IW,|7] < sup IA—ull*7 < E
1€lI=1

N
drf deaf(k,r, v,$Y)
—€ R =1
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and the assumption 6 (¢ — )17 < ¢ that

d q

E[IW3|7] < sup [|ul®9 xE
l¢l=1

s da
drf dvy_ a;(k,r,v,t,x)
1Js-€ R =1

a-1 a-1
<c(t-s+e) a« dead

k=

a=1

a1, a1
<c(6 e’ +e) @ Yea i

< ce1H105q,
Combine (2.5.27) and (2.5.29), we have fore €]0,5(¢t — s)[

||§F£1§TYZE > ces - 7, (2.5.30)

where

Z(:' = Y(:'I{ES(S(I—S)”YO} + 4(W2 + W3 + YLE)1{5(t—s)1/7’0<€<5(t—s)}
andforallg=1,
a-1

. a=1
E[IYeliezs(r—gimoyl 7] < ce™n U0 e imvorr05a0q, (2.5.31)

and
a-1
E[14(Wa + W3 + Y1,0) 15— g cecsir—sy|7] < ce 7071, (2.5.32)

We use Proposition A.2.1 to find that

<c(@(t—ys)2PdT

—2pd
=Lt €772

. T
[ nt €7yt

_opda-l
:C%t—s)ZPda

—2pd

|a—1
)

a-1
< E[II—SIT +lx—y
whence follows the result in the case that |[x— y|* < t—s< 1.

Case 2. Now we work on the second case where [x—y|>0and |[x—y|* = t—s=0.Lete > 0be
such that (1 + ﬁ)ei < %Ix — y|, where 8 > 0 is large but fixed; its specific value will be decided
on later (see the explanation for (2.5.45) and (2.5.46)). Then

yzé=h+D,
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where

d s
I := Z drf dv(p) +¢2)%,
k=1Ys—€ R

d pt
L= Zf dr[dvcp%,
k=1Y({—€)Vs R

and

d
@1:= Y A —p)Gals— 1,y — V)0 (ur, V) + a;(k, 1, v, 5, y)],
i=1
d
@2:= Y [WiGa(t —1,x = V)i (u(r, v) + pia;(k, 1, v, £, ).
i=1

From here on, Case 2 is divided into two further sub-cases.

Sub-Case A. Suppose, in addition, that € = (¢ — s), where 6 is chosen as in case 1. In this case,
we are going to prove that

” gllflfTY sE2ce'T — Zy, (2.5.33)

where forall g = 1,
E[1Z1617] < c(q)e = 7. (2.5.34)

Indeed, by the elementary inequality (2.3.5) we find that

where
B d s d 2
A= Z/ drfRdv(Z[(ﬂli—ui)Ga(S—r,y— V) +1iGe(t—1,x—V)ok(u(r,v) | ,
k=1Js-¢ i=1
da N d
B i=4)A-ul* Y. drf vy a(k,nv,sy), (2.5.35)
k=1vS5-€ R i=1
d s da
B® :=4ul* Yy drf dvy_ a(k,r,v,t,x). (2.5.36)
k=1Js—¢ JR =]

Using the inequality

(a+ l?)2 > a® +b2—2|ab|,

71



Chapter 2. Hitting probabilities for systems of stochastic heat equations with

multiplicative noise

we see that
Ay = A+ Ay —|BY),

where

d ps d 2
Al = Z dr[R (Z /1 ﬂl)Gar(S T, y_ V)Uik(u(r; V))) )

—1Js-€

QU

da N 2
A=y drf (Z iGa(t—r,x— V)0 (u(r, v))) )
k=1Ys—€ R
d s da
BY:=2) drf dv(Z(/l,- — i) Ga(s—1y—v)ox(ulr, V)))
k=1Ys—€ R i=1

d
X (Z wiGa(t—1,x—v)0o i (u(r, V)))-

i=1

We can combine terms to find that
2
= 2 (A1 + Ag) - B" +B® +BY)).
Moreover, we appeal to the elementary inequality (2.3.5) to find that
2
I = §A3 — By,

where

2
Az = Zf fdl’(z,uzGa(t rx—v)o;(u(r, v))
d t 2
By 1=22f drf dV(Z,uiai(k,r,v,t,x)) .
( R i=1

k=1Y({E—€)Vs

By hypothesis P2 and using (A.4) three times,
N
A1+A2+A32p2(|M—p||2f dr[ dvGi(s—r,y—v)
s—€ R
N
+||u||2f drf dvGi(t—r,x— v)
s—€ R

t
+||u||2f drf dvGE(t=r1,x—v)
t—e)Vvs R

(2.5.37)

=cp (lel pl?e’s +IIuII2((t—s+6)%—(t—S)%+(t—((t—€)VS))%))

:Cp2(||/1—ﬂ”2€i + ||/~t”2((t_s'i-e)o%1 _(t_s)%l +((t—S)A€)%))

a-1 r—s
cple’ (|M—u||2+ ||u||2(<7
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a-1 a-1 a-1 o, . .
Denote {(x):=(x+1) @ —x « +(xA1l) «,x€[0,00[. Then itis obvious to see that

Co:= min {(x)>0. (2.5.38)

0<x<oco

Thus we have

a-1
A1+ Ay + A3 = cple « (lel—ull2 +00||uII2)

a-1

>ce o .

We are aiming for (2.5.33), and propose to bound the absolute moments of B(i), i=1,2,3 and
B, separately. According to Lemma 2.5.3 with s = ¢,

2a-2
E| sup |Bz|7| <c(q)e « 9. (2.5.39)

€1=1

Next we bound the absolute moments of B%’.), i=1,2,3. Using Lemma 2.5.3, with ¢ = s, we find
thatforallg=1,

E

sup IB{DIq} < e T, (2.5.40)
Isli=1

In the same way, we see that

a-1

E| sup IBiz)lq <c(t—s+e) @9, (2.5.41)

I¢li=1

Since we are in the sub-case A where ¢ — s < § !¢, we obtain the following:

2a-2

E|sup BP|7| <cea 9. (2.5.42)

I¢li=1

We can combine (2.5.40) and (2.5.42) as follows:

q a-
E|sup (B{"+BP)"| < c(ge™c 1. (2.5.43)

Igli=1

Finally, we turn to bounding the absolute moments of BF). Hypothesis P1’ assures us that

S
|B§3)’ so[ drfRdvGa(s—r,y—U)Ga(t—r,x—v)
S—€
N €
:cf era(t+s—2r,x—y):c[ dr Gg(t—s+2r,x-y),
s—€ 0

thanks to the semi-group property. When a = 2, we can follow the arguments on page 414 of
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[26] to find that

6/p?
|BY| < ce™w(p), where Ww(p):=p fo 212 dz. (2.5.44)
Thus,
2
inf €TyzE2 S+ A v Ay~ (B + B+ 87|+ By
=1

1/2 172
=cie '’ —cVY(Pe ' =21,

where Z)  := Bil) + B{Z) + B, satisfies E[| Z) ¢|9] < ¢} (q)e%". Because lim,_.o, ¥ (v) = 0, we can
choose S so large that ¢, ¥ (B) < c1/4 for the ¢; and ¢, of the preceding displayed equation.
This yields,

IIgi‘ﬁlfl nyzé > cell? - L. (2.5.45)

When 1 < a < 2, by the scaling property (A.2), and (A.5), we have

€
ERE cf dr(t—s+2r) "M% Ga(1, (x— y) (£ — s +2r) 1%
0

€ (t—s+2r)~ Ve

= cKq l+a
0 1+|(x=y)(t—s+2r)"1e|
€ (t—s+2r)~Va

= cKq 1+a

0 [(x=y(r—s+2r)~1e|

€
= cKalx—yI_l_“f (t—s+2r)dr = cKglx—y|" 7 [(t - s)e +€2].
0
Since ¢ — s < |x— y|%, this is bounded above by

cKo(x =yl te+x -y 1%

a+p’ " Turpre

1 N 1 )al
a+p a+pia)

<cKy

]. a-1 ].
62—(1+a)/a)

= CKa

Therefore, for 1 < @ <2, we can choose and fix § large enough so that

inf Ty E 2 e’ — Zye, (2.5.46)

where forall g =1,
2a-2
E[|1Z1l7] < c(qe« 1,

asin (2.5.33) and (2.5.34).
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Sub-case B. In this final (sub-) case we suppose that € < §(¢ — s) < §|x — y|*. Choose and fix
0 <e < 6(t—s). During the course of our proof of Case 1, we established the following:

||girﬁlf1€TYZ€ >ce's — 7, (2.5.47)

where, forall g =1,

E[1Z17] < ceMn((L+y0) 2 1-yo+y0 22 q

(see (2.5.31) and (2.5.32)).

Combine Sub-Cases A and B, and, in particular, (2.5.33) and (2.5.47), to find that for all
0<e<27%0+pB) Yx-yl%

. T a-1 5
||éﬁl—fl€ yzézce © —(Zelie<s(t-s) + Z1,elir—s<s-1¢))-

Because of this and (2.5.34), Proposition A.2.1 implies that

T “2pd 2dp)(2=L
E (”sitﬁlflf YZ‘() < clx— y|*24PED)
a1y
SC(|x_y|a+|t_S|)(a)( de)
a— -2dp
sc(lt—s|71+|x—y|“’1) .
This completes the proof of Proposition 2.5.10. O

Remark 2.5.12. From the proof of Proposition 2.5.10, we see that (2.5.25) is also valid for the
solutions of stochastic heat equations with Neumann or Dirichlet boundary conditions, since
we can still apply the result of Lemma 2.5.4; see Remark 2.5.5.

Proof of Proposition 2.5.11. The proof follows along the same lines as those of [26, Proposition
6.13].

LetO<e<s<t Wefix g€ {1,...,2d} and write 1 = (A),..., 1) and i = (a?,..., i). We

look at (¢°) Ty z&% on the event {;, = Bo}. As in the proof of Proposition 2.5.10 and using the
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notation from (2.5.23), this is bounded below by

d s d .
Y dr[ dv(z [(,BiOAEOGa(S—r»y_V)
k=1Js—¢ R i=1

~ o

+ 1
+ ,Bio;lﬁ"ai(k, nys,y)

1- % (Ga(t—1,x~0) = Gals—1,y = V)))Uik(u(r, V)

2
+ 12\ /1- B2 (ai(k,r,v,1,%) - ai(k, 1, v, y))] )

d t d .
+ drfdv 0\ /1= B2 Ga(t—1,x = V)0 (u(r, V)
kglj;‘\/(t—e) R (lzzl [:uz ﬁl(] a ik
2
+ﬂ§0‘/1—,5%0ai(k,r, v, t,x)]) . (2.5.48)

We seek lower bounds for this expression for 0 < € < ey where €y €]0, % [is fixed. In the remainder
of this proof, we will use the generic notation 8, A and /i for the realizations iy (@), A (), and
fi’ (w). The proof follows the structure of [26, Proposition 6.13].

Case 1 1—s <. Then, by the elementary inequality (2.3.5), the expression in (2.5.48) is bounded
below by

2 ~ ~
g(f](sr tyerﬁ»/’t:ﬂ»x»y) +f2(s» tye»ﬁ»/’tv,a»xyy)) _21(-,‘:

where, from hypothesis P2,

s ~
h chzf drf dv“ﬁ/lGa(s—r,y—v)
s—€ R

/1= BR(Ge(t—1,%— 1) — Gal(s— T,y — 1)) ”2 (2.5.49)

t 2
= szf dr/ dv
svir—e)  Jr

and I =3(I ¢ + Io ¢ + I3¢), where
d s d B
Le:= Z drf dv Z [ﬁ/li—ﬁi\/l—ﬁz
k=17s—€ R i=1
d s
L= drf dv ii\/1-B2a;(k,r,v,t,x)
2,€ 162::1 e i Hi ﬁ i
ljl\/ 1 —ﬁzal(ky v, t»x))

There are obvious similarities between the term I  and Bin in (2.5.35). However, we must

g\/1-p2Ga(t—1,x—1) (2.5.50)

2
a;(k,r,v, s,y)) ,
2

2

d
2
i=1
d
)3
i=1

d ot
Lei=) drf dv
k=1Y1t-€ R
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2.5. The Gaussian-type upper bound on the two-point density

keep in mind that 8, 1 and i are the realizations of 8 io» Afo, and i, Therefore,

BA; - fi\/1- B2

d s d
<C). drf vy a:(k,nv,sy).
k=1Js-¢ JR 5

2
ai(k,r,v,s, y))

d s d
I e:= Z drf dv(z
k=1Js—¢€ R i=1

Then, we apply the same method that was used to bound E[IBiU |9] to deduce that E[|; ¢|7] <
c(q)e%q. Similarly, since I is similar to Biz) from (2.5.36) and ¢ — s < €, we see using (2.5.41)
that E[|¢|7] < c(q)e% 9. Finally, using the similarity between I3 and B, in (2.5.37), we see
that E[|I3]9] < c(g)e @ 9.

We claim that for every By > 0, there exists €9 > 0 and ¢y > 0 such that
fi+ fo=coe’e forall Be [Bo, 1], €€]0,e0], s, L€ [0, T1, X, y €R. (2.5.51)

Using this for the f( from [26, Lemma 6.8] with ag replace by Sy, this will imply in particular
thatfore=r-s,

inT o o 25
(") yzE™ = coe 21, (2.5.52)

where E[|[c|7] < c(q)e & 9.

Let g1(s, t,€, 8,4, i, x,¥) and g (s, t,€, B, A, fi, x, ¥) be defined by the same expressions as the
right-hand sides of (2.5.49) and (2.5.50).

Observe that g1 20,82, =0, and if g1 =0, thenforall r € [s—¢,s[and v € R,

||ﬁ/iGa(s— 1y =)+ /1= BAGalt—T,%— ) - Gals— 1,y — 1) || ~0. (2.5.53)
If, in addition, A = i1, then we get that for all v € R,

(,B— M) Ga(s—1,y—v)+1/1-pB2Gu(t—r,x—v) =0.
We take Fourier transforms to deduce from this that for all { € R,

(ﬁ_ " _ﬁz) ety = — 1= preftrel=nll"

If x = y, then it follows that s = t and §— /1 — 2 = —/1 - B2, that is, § = 0. Hence,

if #0,x=yand A = i, then g > 0. (2.5.54)

We shall make use of this observation shortly.
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Because ||1] = Izl =1, f1 is bounded below by
N
cpzf drfRdv(ﬂzGi(s—r,y—v))+(1—,62) (Ga(t—1,x—v) = Ga(s—1,y— 1))?
S—€
+2B1/1=B%Gy(s—1,y—1)(Gq (t—rx—v)—Ga(s—r,y—v))(/1~ﬁ))
_cpf drfdv 1- ﬁz) G2 (s—-ny-v+(1 ﬁ)Gi(t—r,x—v)

+2(,6—\/1—,32) 1-B2Ga(s—1,y—1)Ga(t—1,x— 1)

+2B\/1=%Ga(s—1,y =) (Gt —1,x— V) — Gg(s—T1,y — v))(/i-ﬁ—l)).

By the semi-group property (A.6), we set h := t — s and change the variables to obtain the
following bound:

fiz cpzfoedr((ﬁ— V1 —ﬁz)zGa(Zr,O) +(1= %) Go(2h+21,0)

+2(,B—\/1—,32) 1-B°Ga(h+2r,x-y)

+281/1 = B2(Ga(h+27, X — y) — Go (21, 0) (1 - fi - 1)).
Since by the scaling property of Green kernel (A.2) and Lemma A.1.1(i),

Goh+2r,x—y) = (h+2r) Y9G, (1, (h+2r) V%x-y)
<(h+2n7%G,(1,0)
<217 Y9G, (1,0) = G4 (21,0),

together with A- i — 1 < 0 it implies that
fizep’d,
where

&1:=8&1(hep,x,y)
€ 2
:f dr((ﬁ— 1—;32) Ga(21,0) + (1 - B2) Go(2h +27,0)
0

+2(ﬁ— 1 —ﬁ2) l—ﬁzGa(h+2r,x—y)).

Therefore,

g1=j:dr((,6—\/1—ﬁ2)2 5270 Gy (1,0) + (1- 2) (h+ 1) 5275 G4 (1,0)
+2(ﬁ—\/1—ﬁ2) l—ﬁzGa(h+2r,x—y)).
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2.5. The Gaussian-type upper bound on the two-point density

On the other hand,
eN(L—S)
f= cpzfo dr(1-B?)Ga(2r,0) = cp? g,
where
EAh a 1 a—1
& :=f dr(1-B?)G.(2r,0) = (1 —ﬁz)—lz_EGa(l,O)(E/\ h)«.
0 a—
Finally, we conclude that
fitfozcp®(Gr+8)
2 -
—¢p (—Z_Ga(l 0)((/3— V1 —ﬁz) s

+(1-p)(+e)T —haal+(€/\h)aal))

+2(/3—\/1_ﬁ2)‘ /1_ﬁ2f()€dr(;a(h+2r,x—y)). (2.5.55)

Now we consider two different sub-cases.
Sub-case (i). Suppose f— /1 — 2 =0, thatis, § =271/2. Then
S D h
€« (gl+82)2(/>1(/3rz)»
where
2 a-1 a-1 a—1
& s - — B2 — B2 o —za e
61(B,2) = 12 Ga(1, 0)((/3 V1 ﬁ) +(1 ﬁ)((z+1) 2T +(zA1) ))

Clearly,

a 1
inf inf¢,(B,2) = 1q1j/2ﬁ2 ctGa(l,O)((,B V1= /32) +6(1 ,52))

,3>2 1/2 z=0

> (p() >0,
where the value of ¢ is specified in (2.5.38). Thus,

inf €T (81+82) > 0.

B=2"12 h>0,0<e<ey

Sub-case (ii). Now we consider the case where f— /1 — 2 <0, that is, § < 2712 1n this case,
from (2.5.55), we see that

_al o h
€ @ (gl+gz)21/’1(ﬂ,z)»
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where
WI(,B;Z) = aiz_;‘Ga(l,O)((ﬁ— \/ 1—,32)2+ (l—ﬁz)((z+ 1)0[771 —z%l +(zA 1)“771)

S AR )

Note that v (B, z) > 0 if § # 0: this corresponds to the observation made in (2.5.54). Denote
Cq = %ZﬁGa(l,O). For z = 1, we have

0.0 | (5= 1=5) (1) -2 1= - 1= ((3) 7 -(3))]
= a[1-B) 7+ ()7~ + -7) 20

where in the second inequality we use the elementary inequality 2ab < a? + b®. Then

sel ﬁlg,lszm] infy,(f,2) 2 mm{Co,ﬁE[ ﬁlor’lsz] . é[réfllwl(ﬁ, Z)}
= Cg, > 0.

This concludes the proof of the claim (2.5.51).

Case 2 t — s > €. In accord with (2.5.48), we are interested in

inf )Ty, &0 .= min(Eye, En ),
lzﬁzﬁ0€ vz<& 1,60 L2

where
Epe:=  inf (0T b,
Bo<P=v1-¢l
Eye:= _inf  (§0)Ty &0,
1-e"<p=<1
Clearly,

2
Eie= gfz —2I3.
Since 8 < v/1-€' is equivalent to /1 — 2 = €2, we use hypothesis P2 to deduce that

t _
ngsze”drf fRdvGi(t—r,x—v):c'pzeTl“’
t—e

Therefore,

a=1

Erezcpe’s -2,
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2.5. The Gaussian-type upper bound on the two-point density

and we have seen that I3 . has the desirable property E[| I3 ¢|7] < c(q)e%q.

In order to estimate Ej ., we observe using (2.5.48) that

Eyez=—fi—J1e—Joe—J3,e = Jae,

[SSRIN\S

where

d s d 2
flzﬁ?-];l S_edrfRdv(;iiaik(u(r,v))) Gi(s—ny-),
2

fioi(u(r, )| Gi(t—r,x— 1),

I~

d S
Jie=8(1-6%) Y drfdv(

k=1v5¢€ R i
2

;o i (u(r, v) Gi(s— nLy-—u)),

gt

d s
Joe=8(1-84)Y drfdv(
k=1Ys—€ R i
_ d ps d 5 2
J3e=8Y drf dv(z(ﬁfli—ﬂi\/1—}52)%(’6%1&8»3’)) :
k=17s-¢€ R i=1

d ps d 2
Jie=8(1-p%) Y drf dv(Zﬁiai(k,r, v, t,X)) )
k=1Ys—€ R i=1

a=-1

Because f2>1-¢"ande<ep < %, hypothesis P2 implies that f; = ce @ . On the other hand,

since 1 — ,62 < €', we can use hypothesis P1’ and (A.4) to see that

s q
E[|]~1,e|q]Sc(q)eq”(f drf dvG2(t—r1,x—)
S—€ R

= C(q)e‘”’((t—s+e)an1 —(t- s)“T’l)ﬂ/

a=1

< c(@eP(e+6) T —e"T)T = c(q)eT M,
where the second inequality is due to the fact that the function x — (x + ) s —x'a is de-
creasing on [0,00[. Similarly, we have E[|j2y€|q] < c(q)e(%+n)q. The term ]~3,€ is equal to 81 ¢,
SO E[|j3’€|q] < ce%q, and ]~4,e is similar to Bﬁz) from (2.5.36), so we find using (2.5.42) that

~ a-1 a-1 a-1
E [|]4,€|q] <ce(t—s+e)a e a9<cea M,

We conclude that when t—s > ¢, then E, , = 66%1 —J., where E[|],|9] < c(q)e(%+n)q. Therefore,
when t—s>e,

. . . a-1 a-1
l{ﬁiozﬁo}(élo)TYZélo = l{ﬁiozﬁo}mln (sze a —2I3¢,c€° @ _]e)~
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Putting together the results of Case 1 and Case 2, we see that for 0 <€ < ¢y,
1{[3,'02,50} (Eio) TYZEiO = l{ﬁio >Bo} Z»

where

a-1

Z_ . 2 7+7] a-1 =~
=min(cp € « —2I3¢,c6 @ —2Ilezt—5y — Jelie<r—s1 |-

Note that all the constants are independent of iy. Taking into account the bounds on moments
of I3¢, I and J, and then using Proposition A.2.1, we deduce that for all p = 1, there is C >0
such that

B Vg (€0 Ty260) "] <E[1p,2p0 277 <EIZ "1 = C.

Since this applies to any p = 1, we can use Holder’s inequality to deduce (2.5.26). This proves
Proposition 2.5.11. O

2.5.3 Proof of Theorem 2.1.1(c) and Remark 2.1.2(c’)

Fix two compact intervals I and J as in Theorem 2.1.1. Let (s, ), (f,x) € I x ], s < £, (S, y) # (£, X),
and z,2p € R4. Let Z be as in (2.5.20) and let pz be the density of Z. Then

ps,y;t,x(zl, 22) = pz(z21,22 — 21).
Apply Corollary 1.5.3witho ={ie{1,...,d}: zé - z{ > 0} and Hélder’s inequality to see that

d

pz(z1,22—2z1) < [] (P{Iui(t,x) ~ui(s, )| >z} —ZQ'I})
i=1

x |Hq,. 2ayz1)llo2- (2.5.56)

-

2

Ul

Therefore, in order to prove the desired results of Theorem 2.1.1(c) and Remark 2.1.2(c’), it
suffices to prove that:

a-1 o
IHq,..oayznlloz <cr(t—sl'a +|x—y/* =42 (2.5.57)
and
d 1 2
NN z]— 2z
l_[(P{Iui(t,x)—ui(s,y)l>|z{—z§|})2dScexp(— Iz1 - 2| ) (2.5.58)
i=1 cr(lt—sl @ +|x—yle 1)
under the hypothesis P1, and
d N lt—s|°a +|x—ylo! piaa
P{lu;(t, x)—u;(s,y)| > |zt -z ) < Al 2.5.59
1]1( {litt, 0 = wits 1 > 12} - 21} " (2.5.59)
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2.5. The Gaussian-type upper bound on the two-point density

under the hypothesis P1’.

The proof of (2.5.58) under the hypothesis P1 is essentially the same as that of [26, (6.2)], with
A replaced by A, by using Lemma 2.5.1, the exponential martingale inequality [64, (A.5)] and
Girsanov theorem. As for the proof of (2.5.59) under the hypothesis P1’, it is analogous to that
of [27, Theorem 1.6(b)]. We first observe that (2.5.59) holds when | z; — z»| = 0, since

a-1
lt—sl @ +]x—y/* 1

Al=1,
21 — 221

for (¢, x) # (s, y). Assume now that ||z — z2|| # 0. Then there is i € {1,...,d}, and we may as well

assume that i = 1, such that 0 < |z} — zi| = max;—;,_ 4|z} — z}|. Then

1

2d

d o L
[T (Pt 0 - wits 31> 12] = 241} = (Pl (6,0 — (5,1 > 121 = 231}) .
i=1

Using Chebyshev’s inequality and (2.1.6), we see that this is bounded above by

pl4d)

Al Al

a-1
lt—sl'a +]x—y/*!
C
2y — 222

pl4d) a-1 -
_g| Mzl Hlx—y
|Z1_Z1|2 -
1 2

We turn to proving (2.5.57), which requires the following estimate on inverse of the matrix y 7.

Theorem 2.5.13. Fix T > 0. Assume P1’ and P2. Let I and ] be compact intervals as in Theorem
2.1.1. Forany (s,y),(t,x) € Ix J,s < t,(s,y) # (t,x),k=0and p > 1,

Ck,p,T l_f(my l) € (1)1
Elr2)p lkp| <3 crprlt=sl'e +1x=y1% )72 if(m,]) € () or (3), (2.5.60)
a-1
copr(t—si@ +lx=—y* D)™ if(m, ) e@).

Proof. As in the proof of [26, Theorem 6.3], we shall use Propositions 2.5.6, 2.5.7 and 2.5.8.

When k = 0, the result is a consequence of the estimates of Propositions 2.5.6 and 2.5.8, using
the fact that the inverse of a matrix is the inverse of its determinant multiplied by its cofactor
matrix.

For k = 1, we proceed recursively as in the proof of [26, Theorem 6.3], using Proposition 2.5.7
instead of Proposition 2.5.6. U

Proof of (2.5.57). The proofis similar to that of [26, (6.3)] by using the continuity of the Skoro-
hod integral 6 (see [64, Proposition 3.2.1] and [65, (1.11) and p.131]) and Holder’s inequality
for Malliavin norms (see [82, Proposition 1.10, p.50]); the main difference is that A is replaced
by A,. Comparing with the estimate in [26, (6.3)], we are able to remove the extra exponent 7
because of the correct estimate on the inverse of the matrix yz in Theorem 2.5.13. U
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Remark 2.5.14. We conclude this chapter by remarking that (2.5.57) is also valid for the solu-
tions of stochastic heat equations with Neumann or Dirichlet boundary conditions, since the
result of Theorem 2.5.13 is still true in that case by applying Proposition 2.5.8; see Remark 2.5.9.
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8] Hitting probability for stochastic heat
equations with additive noise

In this chapter, we study the hitting probabilities of the solution to a system of linear stochastic
heat equations with Dirichlet boundary conditions. We will show that for any bounded Borel
set with positive d —6-dimensional capacity, the solution visits this set almost surely. The strong
Markov property and the recurrence property of the solution considered as a one-parameter
process indexed by time are used.

3.1 Introduction and main result

In this chapter, we consider a special case of equations (1.2.1) with 0 =1d, b=0and U = [0, 1].
That is, we consider the following system of linear stochastic partial differential equations:

%(tx)—@(txnwi(tx) (3.1.1)
or T oxz T o

forl<i<d, te[0,00[ and x € [0,1], where u := (uy,- -, uy), with initial conditions (0, x) =
uo(x) for all x € [0, 1] satisfying 1o(-) € C([0,1],R%), and Dirichlet boundary conditions

u(t,0)=u(t,1)=0, forall t=0.

We assume there exist d independent copies of Brownian bridge {Bé(x) :0sx<liforl<i<d,
which are independent of the space-time white noise W. Set

V2

Uy = 7(35,“',361).

Fort=0,let %; = o{W(s, x),p(x),s € [0, t], x € [0,1]} v A, where A is the o-field generated by
P-null sets. . We say that u is a solution of (3.1.1) if u is adapted to (%) ;>0 and if for i € {1,---, d},
t€]0,00[ and x € [0, 1],

trl ) 1 .
u;(t, x) :f f G(t—-r,x, v)W’(dr,dv)+f G(t,x, v)uy(v)dv, (3.1.2)
0 Jo 0
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where the Green kernel G(¢,x,y) is given in (1.3.6) and also has the following equivalent
expression

G, %,y =Y e Flp0pry) (3.1.3)
k=1

with ¢ (x) := v2sin(km x); see, for example, [6] and [81].

For the hitting probabilities of the solution {u(, X)} (1, x)e[0,00[x[0,1] With vanishing initial condi-
tions, the upper and lower bounds were established by Dalang, Khoshnevisan and Nualart
[25], in terms of respectively Hausdorff measure and Newtonian capacity. There, they show
that there exists ¢ > 0 depending on M, I, J with M >0, and I <]0,00[, J ]0, 1[ be non-trivial
compact intervals, such that for all Borel sets A < [-M, M] d

c'Cap,_g(A) <Plu(l x NNA# @} < cH)_g(A).
Our goal is to establish the following probability one result.

Theorem 3.1.1. For any bounded Borel set A < R with positive (d — 6)-dimensional capacity,
the random field {11, X)} (1, vyc[0.00[x 0,1], Starting with any initial value uy(-) € C([0,1],R%), visits
this set A almost surely.

We denote by E := {¢(-) € C([0,1],R%) : ¢(0) = ¢(1) = 0} equipped with the norm

lp()lloo:= sup sup o’ (v)].

Osv=ll=<i<d

Denote the metric on the space E by
pla,b) :=lla-Dbl, fora,beE. (3.1.4)

Without loss of generality, we assume ||uy(-)loo < N and A S [-N, N14 for some N > 0. As
a two-parameter random field, some estimates on the probability density functions of the
solution {u(t, X)}(1,x)e€[0,00[x[0,1] Were given in [25], from which they derived the upper and lower
bounds on hitting probabilities. On the other hand, if we view the solution parameterized
only by time and taking values in E, it will possess the strong Markov property. The definition
of transition semigroup and construction of canonical Markov systems will be presented in
Section 3.2. In Section 3.3, we show that the solution, as a Markov process, converges to an
invariant distribution and therefore has a recurrence property. Intuitively, the recurrence
property implies that the solution visits infinite many times A with a positive probability. In
Section 3.4, we show that the lower bound on hitting probabilities still holds if the solution
starts from a non-vanishing initial value, which extends the corresponding results in [25]. We
finally give the proof of Theorem 3.1.1 in Section 3.5.
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3.2 Strong Markov property

The strong Markov property and the invariant distribution of the solution to (3.1.1) are well
known facts; see, e.g., [81] and [32]. We still give a self-contained proof for reader’s convenience.
We refer to [8] for the terminology of Markov processes.

As a two-parameter Gaussian process, the trajectories (¢, x) — u(t, x) are jointly continuous.
Hence ¢ — u(t,-) is continuous in E. We denote by u,,((f,-) to specify that the solution starts
from u(-). And denote by B(E), %, (E) and Cy(E) the Borel o-field, the set of bounded Borel
measurable functions and the set of bounded continuous functions on E, respectively. In what
follows, we will introduce the transition semigroup associated with the process and construct
the Markov system associated with the transition semigroup.

For t =0, up(-) € Eand I' € BB(E), we define
P (up(), 1) :=Pluy,(t,) €T}

It is obvious to see that I' — P;(ug(),T') is a probability measure on %(E) and Py(uy(-),T) =
1r(uo()). Then, for f € 9B, (E),

Pif(uo():= fEf(u)Pt(uo(-), du) = E[f (uu, (2,)].

Proposition 3.2.1. Fort=0 and f € C,(E), ug(-) — P f(uo(-)) is continuous on E.

Proof. Let (up,(-))n=1 be a sequence converging to u(-) in E. From equation (3.1.2) we have

1 . .
f G(t,x, v)(uy,(v) — uy(v)dv
0

|y, () () = Uy () () loo = SUP  sUP
O<x<ll=<i<d

< sup sup |ug, (V) — uy(V)| = ton() — to () loos
O<v<ll<i<d

which implies that r%im Pif(uon(+)) = Psf(up()) by the dominated convergence theorem. [
—00

The property of (P;) ;>0 in Proposition 3.2.1 is a variant on the Feller property; see [8, p.161].

The indicator function ug(-) — 1r(uo(-)) of an open set I' can be approximated by bounded
continuous function. To see this, we define a sequence of continuous functions on E by

fn(a@) :=min(1, np(a,T'°).
Then it is clear that

lim f,(a)=1r(a), forall acE,
n—00
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which implies that
r}im Pifn(up(?)) = Pe(up(-),I), forallaeE
—00

by the dominated convergence theorem. Hence, we see that uy(-) — P;(uo(-),I') is measurable.
Furthermore, by the monotone class theorem, uy(-) — Ps(u(-),I") is measurable for all I'
9B(E), which implies that (uy(-),I) — P;(ug(:),T’) is a transition kernel on (E, (E)).

We next show that (P;) ;> satisfies the Markovian transition semigroup property.

Proposition 3.2.2 (Markov property). Fors,t=0, uy(-) € E and f € $B,(E), we have

ELf (wug () (£ + 5, NI F 5] = P f (yy (5 (s, ). 3.2.1)

Proof. We verify the equality (3.2.1) by the following calculations. First,
E[f (U (E+ 5, )Tl (0)

t+s pl 1

:E[f(f f G(t+s—r,-,v)W(dr,dv)+f G(t+s,-, v)uo(v)du)|9s](w)
0 0 0
t+s pl s rl

=E[f(f f G(t+s—r,-,v)W(dr,dv)+f f G(t+s—r,,v)W(dr,dv)
s 0 o Jo

1
+f G(t+s,-, v)uo(v)dv)L@S] ().
0

Since the random variable [; fol G(t+s—r,-,v)W(dr,dv) is measurable with Z; while
[ [LG(t+s—r1,-, v)W(dr,dv) independent of Z, this is equal to

t+s prl
f P(dd))f(f f G(t+s—r,,vYW(dr,dv)(®)
Q s 0

s rl
+f f G(t+s—r,-,v)W(dr,dv)(w)+f
o Jo 0

t prl
=fP(d(D)f(f f G(t—r1,- V)W (dr,dv)(®)
Q 0 JO

1
G(t+s,-, v)uo(v)dv)

s rl 1
+[ f G(t+s—r,~,v)W(dr,dv)(w)+[ G(t+s,',v)u0(v)dv),
0o Jo 0

where the notation P(d®) means we are taking the expectation of the random variable & —
Jis fol G(t+s—r1,,v)W(dr,dv)(®), and in the equality, we use the fact that the random

variable [/ [} G(t+s—T,-, v)W(dr,dv)(@) has the same law as [\ [ G(t—r1,-, )W (dr,dv)(@).
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3.2. Strong Markov property

Furthermore, by the semi-group property of G, this is equal to

r pl
fP(dd))f(f f G(t—r,-,v)W(dr,dv)(®)
Q o Jo
s prl 1
+f f (f G(t,,2)G(s—r,2z, U)dz)W(dr,dv)(a))
o Jo ‘Jo
1, pl
+/ (f G(t,-,2)G(s, z, v)dz)uo(v)dv)
o ‘\Jo
t pl
:f P(dd))f(f f Gt—r,-,v)W(dr,dv)(®)
Q 0 Jo
1 s pl 1
+f de(t,-,z)(f f G(s—r,z,v)W(dr,dv)(w)+[ G(s,z,v)uo(v)dv))
0 o Jo 0

t el 1
:f P(dcb)f(f f G(t—r,-,v)W(dr,dv)((I))+f G(t,-,z)uuo(.)(s,z)(w)dz)
Q 0 Jo 0

= P[f(uuo() (S) )(w))r

where the first equality holds by the stochastic Fubini theorem (see [24, Chapter 1, Theorem
5.30] or [81, Theorem 2.6 ]) since the condition of the stochastic Fubini theorem can be
verified:

G(t,-,2)G(s—1,2,V)G(t,-,2)G(s— 1,2, )0 y=pdvdidrdz
[0,1]x[0,1] x [0,s] x [0,1]

= fff G?(t,,2)G*(s—r1,z,v)dvdrdz

[0,11x[0,s]x[0,1]

= ff Gz(t,~,z)G(2(s—r),z,z)drdz
[0,5]x[0,1]

<C ff Gz(t z);drdz
i VaGn
[0,s]%[0,1]

SC\/§<00.
t

From (3.2.1), it is easy to derive the Markovian semigroup property:

Prisf(ug(-)) = ELf (g (£+5,9))]
=E[E[f (tyy() (T +5,))|F]]
=E[P;f (Uyy)(s,)] = PsPy f (up ().

Let Q := C([0,00[, E) be the space of continuous functions from [0,00[ to E. For a generic
element @ € Q, we write @(f,-) to indicate the value at t, and the second variable appears
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Chapter 3. Hitting probability for stochastic heat equations with additive noise

since @(t,-) € C([0, 1],IRd). Set i(t,-) (@) := &(t,-), which means that (¢, x) (@) = @(t, x), for all
x € [0,1]. Define

Fi=olifs,):s<t} and Z0:=\/ .ZL.
=0

We define the law of the process u = {ty,(,+) : t = 0} on (Q, ﬁgo) by

PO (e A):=Pluy €A},  for ug() € E, Ac.F2, (3.2.2)
which is determined uniquely by

POty € By,..., Ly, ") € Bp} = Plttyy () (t1,) € By, ..., Uyy() (tn, ) € By} (3.2.3)

forany n = 1, By,...,B, € #(E), and 13,...,t; = 0. We denote by E%0) the corresponding
expectation with respect to the probability P%0O) From (3.2.3), we know that up(-) — Pl (A)
is measurable for A € ﬁ:?o Together with (3.2.1), we have, for f € %, (E),

E“O[f (@t + 5,0 F0) = E"S) [ f@a(t, )] = P f(i(s,), P9 as. (3.2.4)
Let ./ be the collection of sets that are P -null for every uy(-) € E. Define

F =0l F UN} and ﬁoo:z\/%.
=0

Since the process {ii(t,-) : t = 0} has the Markov property (3.2.4) and the semigroup (P;);=¢ has
the Feller property (i.e., Proposition 3.2.1), by Proposition 20.7 of [8], we know that the filtration
(Z 1) =0 is right continuous. Furthermore we have the following strong Markov property.

Theorem 3.2.3 (Strong Markov property). Suppose T is a finite stopping time with respect to
(%) =0 and Y is bounded and measurable with respect to %.. Then

Euo(') [Yo 0T|§T] — Eﬂuo(‘)(T") (Y], (3.2.5)
where (0;) (0 is the shift operator defined by

0:0(s,x):=0(t+s,x), for @€ Q, (s,x) € [0,00[x[0,1].

Proof. The proofis similar to that of Theorem 20.9 in [8, p.164], since only the Feller property
in Proposition 3.2.1 and Markov property in (3.2.4) are needed. U
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3.3. Invariant distribution

3.3 Invariant distribution

For any ¢ = 0, and a probability measure i on %(E), we set
P;u(D) :=fEPt(u,F)p(du), I'e B(E).

We call p an invariant distribution with respect to (Py) »g if

Piu=p for each t = 0. (3.3.1)

Recall that the covariance of each component of the process {iy(x) : 0 < x < 1} is given by

. . 1
Bl ()i () = 5 (x Ay =xy). (3.3.2)
We denote the law of iy on E by p.

Proposition 3.3.1. u is an invariant distribution with respect to the transition semigroup
(Pl’) t=0-

*

Proof. Fix t > 0. We assume that u(z,) starts from iiy. Then the law of u(z,-) on E is P; u, since
for f e ,(E),

E[f (ug,(2,))] =fEE[f(uuo(.)(t,'))],U(d(uo(')))=LPtf(uo(-))u(d(uo(~))).

Clearly, the process {u(f,x) : 0 < x < 1} is a continuous Gaussian process. So we only need to
check that the component process {u'(t,x):0 < x < 1} also has the covariance given by (3.3.2).

We denote by
. t rl . oo
vi(t, x) :=[ f G(t—rx, V)W dr,dv) = Z (,bk(x)Altc, (3.3.3)
0 Jo k=1
where, from (3.1.3),
. tel .
Ak ::f f e T g (Wi (ds, dv), (3.3.4)
0 Jo
with variance
t 1
Var(A¥) = f ds f dve " Fs g2 () = (1-e 27 K1y 2n? k).
0 0
Let

. 1 . © .,
pi(t, x) :=f G(t,x, v, (vdv= Y e ™ Flpr(xCF, (3.3.5)
0 k=1
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Chapter 3. Hitting probability for stochastic heat equations with additive noise

where

1 .
C’“-:f0 or(W) Tl (v)dv.

(3.3.6)
Then we have
B! (1,00 (1, y)] = E[ kZ POAL Y pu(0A7]
=1

00 e—27‘[2k2

Z —mE P PE). (3.3.7)
And

Elu (1, 0’ (1,)] =E[ Y e " Flpr0CF Y e 1, (1)C")
k=1 n=1
0o —271 22
= Z 5z PO, (3.3.8)

where the last equality is based on the following identity (as a consequence of [8, (6.1)])

1 _
I k=n.

1 p1 0 k ,
f f sin(krz)sin(nrv)(z A v—zv)dzdv={ 7 n
0 Jo
Since u'(t,x) = v' (£, x)+u' (¢, x), v' (¢, x) and pi(t, x) are independent mutually, from equalities
(3.3.7) and (3.3.8), we obtain that

i i _y _1 -
E[u'(t, x)u'(t,y)] = ;1 2n2k2¢k()€)¢>k(y) = 2(x/\y xy),

where the last equality follows from [8, (6.1)]. The proof is complete

We give some estimates on the moments of the increments of the solution. By [60, Lemma
A.1], there exists ¢ > 0 such that, forall x,y€[0,1], £ =0

. ) t 1
E[(v’(t,x)—v’(t,y))21=f f (G(t—r1,x,v) - G(t—r1,y,v)dvdr
0 JO

=clx—-yl. (3.3.9
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3.3. Invariant distribution

Andforallt=1, x,y€0,1]

' (6, x) — ' (t, )] =

1 o 272 :
fo Y e R () — pr ()b (W) () dv
k=1
<2N)_ e " F 1 sin(knx) - sin(kny)|
k=1

(e0)
<2Nn Y ke ™ F|x-yl<clx-yl. (3.3.10)
k=1

Lemma3.3.2. Forallt=1,p =1 andd sufficiently small, there exists c, > 0 such that

sup |ul(t,x)—u'(t,y)|P
|x—y\%sd

1
E Scpéplnp(1+§). (3.3.11)

Proof. The proofis similar to that of [25, Lemma 4.5] by applying Proposition A.1 in [25]. We
define

S:=10,1], p(x,y)::lx—yll/z, udx):=dx

Y :=eM -1, p=x f):=u'(tx),
I )—f(y))
€, dx)u(dy),
¢ ff (p(p(x ) pldx)u(dy)
If ()= ()
<gl._ff ( ) dx)u(dy).
¢ (0%, 7)) uldx)u(dy)

Then €6; <€/ and €} = 1. By (3.3.9) and (3.3.10), forall 7> 1,

E[€;] <E[€}]

=E[fdxfdyexp(|u (t,x)—u (t,y)l)]
s Js |x — y|1/?

ZE[fdxfdyexp(lv (t,x)—-v (I,y)+/.t (t’x)_ﬂ ([,y”)]
S S

|x_y|l/2
scfdxfdyE e
S S

Xp(lv (tL,x)—-v (t,y)l)]
i . 2
:Cfdxfdyexp(E”U (£, x) = v'(t, ¥l ])<C,
S S

|x_y|1/2
2[x -yl
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Chapter 3. Hitting probability for stochastic heat equations with additive noise

where, in the second inequality, we have used (3.3.10). Then from [25, (A.3)], we have

E| sup [|u'(s,x)-u'(t,y)”| <10PE

20 @, p
( duln(1+—2))
x—y|2 <6 0 [1(Bp (x, u/4))]

26 p
( duln(1+ (6[4))
0 au

26 ¢l
f duln”(1+ t4)
0 au

Since 6} (w) = 1 for all 7> 1 and w € Q, we can choose § small enough such that €} /(c; u*) =

=10PE

<107 (26)P~'E

eP~! —1 holds for all u€]0,25], t =1 and w € Q. Since the function x — In” (1 + x) is concave
on [eP~! — 1,00, by Jensen’s inequality, this is bounded above by

E[6}]
aut

20 20
107 (26)P~1 dulnP |1+ <107 26)P! duInP 1+L
0 0 4

au

1
<c10726)P 16 InP (1 + )
54
1
= cpéplnp(l + 6—4),
where the second inequality is due to

i fglnp(1+1/u4)du_
om0 oInP+1/0Y

by 'Hopital’s rule. This completes the proof. O

Proposition 3.3.3. Fix uy(-) € E and let u solve (3.1.1) with Dirichlet boundary conditions.
Then the law of u(t,-) converges weakly to the invariant measure (L as t — oo, or equivalently,

lim P: f(uo() = () := fE fapuduw), (3.3.12)

for any initial value uy(-) € E and f € Cy(E).

Proof. Since the components are independent, it suffices to prove that u!(t,-) converges
weakly to the law of {%Bé(x) :0<x<1}on C([0,1],R), as t — oco.

We will appeal to Theorem 7.5 in [9] to prove the weak convergence. We first prove the conver-
gence of finite dimensional distributions, i.e.,

/3

i i d 2 V2
(u' (t,x1)y...,u (L, x)) — (TBO(xl),...,7BO(Xk)), as t— oo (3.3.13)

holds for all x;, ..., x¢. The random vector (u/ (¢, x1),..., u' (¢, x;)) is Gaussian, and its charac-
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3.3. Invariant distribution

teristic function is determined by the mean and variance/covariance which satisfy
i i -k k
mean(u' (¢, X)) = p' (6, xm) = )_ e ¢Gr(xm)C* — 0, as t — oo,
k=1
where Cy. is defined in (3.3.6), and

Cov(u! (t, Xpm), u' (£, 1)) = BIv' (£, xp) V' (£, X))
—2m2 k%t

Z PR Pk ),

converges to, as r — oo,

(8]

1 1 1 . )
> 7272 Pk ComPi(n) = 5 (Xom A X = X Xn) = S BBy (6m) By ()]
k=1

for 1 < m, n < k, where the first equality follows from [8, (6.1)]. This implies (3.3.13).

From (3.3.11), we use Chebyshev’s inequality to obtain that for any positive €,

limlimsupP< sup Iui(t,x)—ui(t,y)IZG =0, (3.3.14)
6—0 t—o0 |x—yl<d

which verifies the second condition for weak convergence in [9, Theorem 7.5]. Hence, we have
proved the proposition. O

Remark 3.3.4. In the case of Neumann boundary conditions, the Green kernel is given by
o -n2k2t
G(t,x,y)=1+2 Z e cos(kmx)cos(kmy);
k=1

see [81, p. 323-326], or [25, (4.16)]. In this case, by the semi-group property of the Green kernel
(A.6), the second moment of the solution is equal to

3 1 t
Elu(t, x)?] :f f G*(t-r,x, v)dvdr:f GQ@2r,x,x)dr
o Jo 0

O 2 ! 2mk?
=t+2 Z cos (knx)f e <K Tdr
k=1
—2m2 k>t 5
=r+ Z —zr cos” (kn),
k=1
which converges to oo, as t — co. Hence, we do not expect that the law of the solution to (3.1.1)
with Neumann boundary conditions converges to a limit as t — oco.

We denote by B(0, R) (B(0, R)) the open (closed) ball of radius R > 0 centered at 0 in E, B(0, R)©
the complement of B(0, R) and B(0, R) the boundary of B(0, R).

95



Chapter 3. Hitting probability for stochastic heat equations with additive noise

From [9, (9.39)], we have

. )
P{ sup |Bi(x)| < R} =142 (-DFe?KF forall R >0, (3.3.15)
0=x<1 k=1

which implies that the distribution of the random variable supy,<; IBé (x)| has a probability
density function with respect to one-dimensional Lebesgue measure. Hence the random
vector

(sup IBé(x)l,..., sup IBg(x)I)

0=x=<1 0=x=1
has a density with respect to d-dimensional Lebesgue measure, which implies that
P{ sup sup |B)(x)|= R} =0. (3.3.16)
1<i<d0=x<1

Therefore, we have p(6B(0,R)) = 0 for any R > 0. On the other hand, we observe that the
distribution function defined by

F(R):= P{ sup |B)(x)| < R} =142 (~Dke2KR (3.3.17)

0<x<1 k=1

takes values in ]0, 1[ for all R > 0. To see this, first from the expression of the alternating series
in (3.3.17), it is clear that F(R) < 1 for all R > 0. To prove that the distribution function F is
strictly positive, we denote

Bé(x) = B(x)-xB(1), x€[0,1],

where {B(x) : x € [0,1]} is a standard Brownian motion. Then by the triangle inequality,
F(R) = P{ sup |B(x)|+|B(1)| < R}
0=x=1

> P{ sup |B(x)| < R/Z} = H(R/2),

0<x<1

where

4 X (-1)Fk [ 2k +1)%72
€ -_— |, for x>0

Hx) = -
> nkgozkﬂ 82

denotes the distribution function of the supremum of the absolute value of Brownian motion;
see [20, p.233]. It is clear from the expression of the function H that H(x) > 0 for all x > 0.
Hence we have proved p(B(0, R)) > 0.

By the equivalent statements of weak convergence (see [9, Theorem 2.1]), from (3.3.12), we
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3.4. Lower bound on the hitting probability for solutions with a bounded initial value

obtain that
tlim P:((up(-),B(0,R)) = u(B(0,R)) >0, forall up(-)€E. (3.3.18)
—00

Owing to Corollary 3.4.6 of [32], we get the following result on the recurrence property of the
solution.

Theorem 3.3.5. The Markov process (Q, %, i(t,-), P, P;,0,) is recurrent with respect to
B(0,R) foranyR >0, i.e., for any uy(-) € E,

P (t,) € B(O,R), for an unbounded set of t> 0} = 1. (3.3.19)

Remark 3.3.6. We remark that the Markov process «Q, %, i(t,-), PV P, 0,) is also recurrent
with respect to B(0, R)¢ for any R > 0, and the proof follows similarly with that of Theorem 3.3.5.

3.4 Lower bound on the hitting probability for solutions with a
bounded initial value

We first recall the hypotheses and consequence of Theorem 2.1(1) in [25].

Theorem 3.4.1 ([25, Theorem 2.1(1)]). Fix two compact intervals I c]0,00[ and J <10, 1[. Sup-
pose that {v(t, x)};,x)erxJ IS a two-parameter continuous random field with values in R4, such
that (v(t, x), v(s, y)) has a joint probability density function p; x;s,y(-,+), forall s,t € I and x,y € J
with (t,x) # (s,y). We denote by p; (-) the density function of v(t,x). Assume the following
hypotheses:
Al Forall M > 0, there exists a positive and finite constant C = C(I, ], M, d) such that for all
(t,x) € Ix Jandall z€ [-M, M]%,

Prx(2)=C. (3.4.1)

A2 There exists > 0 such that for all M > 0, there exists c = c¢(I, ], M, d) > 0 such that for all
s,telandx,y€ J with (t,x) # (s, y), and for every z1, zp € [-M, M1¢,

c exp - lz1 — 2212
[A((t, x); (s, y)]F/2 cA((t, x); (s, y) )
Then the following statement holds.

Ptx;s,y(21,22) < (3.4.2)

(1) Fix M > 0. There exists a positive and finite constant a = a(l, J, 3, M, d) such that for all
Borel sets A< [-M, M]%,
Plv(Ix)NnA#@}=a Capﬁ_G(A). (3.4.3)

From now on, we assume

I=[1,2] and J=1[1/4,1/2].
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As in (3.3.3) and (3.3.5), we still denote by, respectively, {v(Z, x)}(;,»erxs the random part,
and {u(t, X)} (1, nerxy non-random part of the solution {u(¢, x)}(;,xerxs to (3.1.2) starting from
uy(+) € B(0, N) for some N > 0.

By Proposition 4.1 of [25], the probability of visiting A for {v (¢, x)}(;,x)erx; has the lower bound
in (3.4.3) with 8 = d. We claim that the lower bound also holds for {u(¢, x)}(;,x)erx s, Wwhere the
constant will depend additionally on N, but not on the specific choice of uy(+).

Lemma 3.4.2. For any M, N > 0, there exists a finite positive constant a = a(l, ], N, M, d) such
that for all Borel sets A< [-M, M]%, and for all uy(-) € B(0, N),

Pluy,y(Ix NNA#@}=aCapy_g(A), (3.4.4)
and equivalently,
POYYG(Ix )N A# @) = aCapy_g(A) (3.4.5)

Proof. In order to prove (3.4.4), by Theorem 3.4.1, it suffices to prove that hypotheses Al and
A2 are satisfied for {u(t, x)}(;,x)e1x s, Where the constants depend additionally on N, but not on
the specific choice of 1(-). We add the superscripts u or v to the probability density functions
to indicate to which random field they correspond.

Verification of Al. Fix M > 0 and let z € [- M, M]%. Then for all (¢,x) € I x J, the probability
density function of u(¢, x) is given by

lz— p(t, )11
U (2) = ————exp|———F—], 3.4.6
Pix() (2mo? a2 p( 202, (546
where
) t 1
U%X::Var(ul(t,x)):f drf dv(G(t—-r,x,1))>°. (3.4.7)
0 0

Since (t, x) — v'(t, x) is L? continuous by (4.11) of [25], it follows that the function (f, x) — o7
achieves its minimum p; > 0 and its maximum p, < oo over I x J. Thus

" ~(M?+ N%d
Pix(2) 2 Iy a—

————>€exp
(ang)dlz ( 2,0%
which proves Al.

Verification of A2. First, we give some estimates on the regularity of the function (z, x) — u(¢, x)
onlx].

Case 1: s = t, x # y. From (3.3.10), there exists a constant ¢ such thatforall t e I, x,y € J,
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3.4. Lower bound on the hitting probability for solutions with a bounded initial value

l1<i<d,

| (%) — p' (1, )] < clx - yl. (3.4.8)
Case2:x=y,s<t.

uﬁam—ﬁumn=

1 o 212 212 -
fo Y (e RS g ()i (v) b (v)d v
k=1
1 > 212 272 -
=) Y eS| — eI 1 (0 pr(v) b (v) | d v
k=1

- -2 k% (t-s)
<2N Z e [1—e |.
k=1

By the inequality 0 < 1 — e~ < min(x, 1), for all x > 0, this is bounded above by
S 212
2N ) e  min(n*k*(t-),1)
k=1

o0
=2N(e ™ min@?(t-5), D+ Y e £ min@?k?(¢ - 5), 1)).
k=2

Using the fact that the function x — e X min(m2x(t—s),1) is nonincreasing on [1,00[ for any
s, t with s < ¢, this is bounded above by

2N(cl(t— s) +[ e min(7?r?(t - s), l)dr)
1

1
iss  _2.2 0
:2N(c1(t—s)+f e nzrz(t—s)dr+f 1
1 nVi—s

0 232 2 2 o0 _ 2.2
SZN(cl(t—s)+(t—s)[ e’”zrrdr-Ht\/t—sf1 re’”dr)
1
aVi-s

2.2
e’”dr)

<2N(c1(t=$)+Co(t—5) + c3VT—se )
<@lt—sl, (3.4.9)

where the last inequality is because that the inequality /xe~!/* < x is valid for all x > 0.

Hence, (3.4.8) and (3.4.9) together imply that there exists a constant ¢ such that for all s, t € I,
x,ye], 1<i<d,

(W~ )% < c(( =92 + (x— p)P). (3.4.10)

Using the upper bound on the joint probability density function of (v(t, x), v(s, y)) (see of [25,
(2.3) and Theorem 4.6]), the elementary equality (a — b)? = %az — b% and (3.4.10), we obtain
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that
Pis,y(21,22) = P sy (21 — (%), 22 — p(s, )
- c exp _IIZ1—u(t,x)—Zz+u(s,y)||2)
T IA((E, x); (s, ¥))]402 cA((t,2); (s, 1))
¢ sllz1 = 22112 = | (e, x) — pis, )I12
< exp|—
[A((L, x); (s, y))]9/2 cA((t,x); (s, )
¢ lz1 — 2|2 )
< - , 3.4.11
A 0; 52 TPz 0: 5,9) G410
which proves A2.

Therefore, the lower bound on hitting probability in (3.4.4) follows from the result of Theorem
3.4.1. Finally, the statement (3.4.5) is a consequence of (3.4.4) and (3.2.2). ]

3.5 Proofof Theorem 3.1.1

We first state a result on hitting probability for general Markov processes, which will be used
to prove Theorem 3.1.1.

Proposition 3.5.1. Let (Q,.%;, X(1),0¢, P¥) t>0,xes be a continuous Markov system taking values
on the Banach space &, which has the strong Markov property. Fix K> N >0 and o/ C &.
Suppose that the process { X (1) : t = 0} is recurrent with respect to B(0, N) and B(0,K), and that
there exists a positive constant ¢ = ¢(N, K, /) such that for all x € B(O,N),

P*3re|0, 1], s.t. X(D e} =, (3.5.1)
where T :=inf{t = 0: | X(£)|| > K}. Then for any x € B(0, N),

P'3t=0, s.t. X(H) et} =1. (3.5.2)

Proof. By the recurrence property, we define inductively two sequences of finite stopping
times (Ty) =0 and (Si) k=0, as follows. Let T; = Sy =0, and for k=1,

T =inf{r = Sp_1: IX(O > K}, Sp=inflr=> Ty: X0 <N},
which satisfy that T = Sg_1 + T1 005, ,.
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3.5. Proof of Theorem 3.1.1

For each k = 1, we set oy := {X([Sk-1, Tx]) N o # @}. By the strong Markov property,

Px{dklﬁsk%} =P (At € [Si_1, Tx], s.t. X(1) € AN Fs, }
=P*3re [Sk-1,Sk-1+Th 095k71]’ s.t. X(¢) € dLa%\Sk,l}
=P*3re (0, T Oesk_l], s.t. X(t+Sr_1) €.52¢|§sk_1}
=E " 3se0,13), s.t. X(0est) © 05,1175,y

X(Sk-
=EX Y Ngieio,n), 5.t xwean] 2 6 (8.53)

where the inequality is due to (3.5.1). Therefore, for any integer n > 1,

n

P*{3r >0, s.t. X(t)E,szf}ZPx( Qik)
k=1

S1-p r"}d,g)
k=1

[ —

n-1
=1-E* (H lﬂ;)Px{dglySnl}
k

=1-E* (]:[ Loy (1—Px{g¢n|ﬁsn1})]
k

n-1
21-(1-0E" | [] 1
k=1
=1-(1-0", (3.5.4)

where we repeat the argument to get the last inequality. Letting n — co, we obtain (3.5.2). [J

Proof of Theorem 3.1.1. We assume that u(-) € B(0, N) and A < [-N, N1 for some N >0, as
mentioned in Section 3.1. First, we give an estimate on the following tail probability. For any
K> N,

P{ sup ||uu0(.)(t,~)||oozK}s ZP{ sup sup Iui(t,x)lzK}

O<t=<2 0<t<20=x<l

d . .
=ZP{ sup sup Iv’(t,X)+ul(t,x)|2K}

0=<t=<20=x=<1

SdP{ sup sup Ivi(t,x)lzK—N}. (3.5.5)

0=t=<20=x=1

Since (t, x) — v’ (t,x) is continuous almost surely, we have

lim P{ sup sup Ivi(t,x)lzK—N}zo.

K—oo (0<r=20<x<1
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Chapter 3. Hitting probability for stochastic heat equations with additive noise

Then we can choose sufficiently large K, depending only on N, such that
1
P{ sup |ty (£, ) oo = K} < -aCap,_g(A),
0=t<2 2
or, equivalently,
() . 1
po sup [li(t, )= K¢ < EaCapd_G(A), (3.5.6)
0<t=<2
uniformly for all () with ||uo (") lco < N, where the constant a = a(l, J, N, N, d) is specified in

(3.4.4).

Define «f := {¢(-) € E:dx € [0,1] s.t. ¢(x) € A}. Since

P11y ([0,00[x[0,1]) N A # @} = P“O{i1([0,00[x[0,1]) N A # @}
=P 320, st i(t, ) Nt # 0},

by Proposition 3.5.1, it suffices to verify that the estimate for the hitting probability in (3.5.1)
holds for the process {ii(t,-) : t = 0}. Indeed,

POFre 0, Ty], s.t. i(t,”) € of}
— Puo('){a(l—, x) € [0, T7] x [0,1], s.t. i(t, x) € A}

> pto®) {{a(r, x) €10, 1] x [0,1], s.t. @i(t, x) € A} n { sup [|17i(t,)lloo < K}}
0<t=<2

> ptol) {{a(t, x)€[1,2] x [1/4,1/2], s.t. @i(t,x) € A} m{ sup [ (t, ) loo < K}}
0<t=<2

= PO 31, x) € [1,2] x [1/4,1/2], s.t. @(t,x) € A}—P”"('){ sup [17(t,)llo = K}
0<st=<2

1
= EaCapd_G(A), (3.5.7)

where the last inequality follows from (3.4.5) and (3.5.6). Hence the assumption in (3.5.1) is
satisfied and we complete the proof of Theorem 3.1.1. (I
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On the density of the supremum of
the solution to the stochastic heat
equation

In this chapter, we first develop a general criterion for an upper bound on hitting probabilities.
This criterion involves a condition on the probability density function of the supremum of
a random field over a rectangle or a segment. Motivated by this, we study the regularity of
the probability density function of the supremum over a time interval of the solution to the
linear stochastic heat equation. Using a general criterion for the smoothness of densities for
locally nondegenerate random variables, we establish the smoothness of the joint density of
the random vector whose components are the solution and the supremum of an increment in
time of the solution over an interval (at a fixed spatial position). Applying the properties of
the divergence operator, we give a Gaussian-type upper bound on this joint density, which
presents a close connection with the Holder-continuity properties of the solution. We also
derive the smoothness property and a Gaussian-type upper bound for the density of the
supremum of the solution over a space-time rectangle that touches the ¢ = 0 axis. In the
case of Neumann boundary conditions, the smoothness of the density of the supremum of
rectangular increments from the origin of the solution is also proved.

4.1 Introduction and motivation

For a real-valued Gaussian random field {X(?) : t € I}, where I is a parameter set, defined
on a probability space (Q,.%, P), the distribution function of the supremum of this random
field, or the excursion probability P{sup,.; X(#) = a}, has been investigated extensively; see,
for example, [1, 2, 72] and references therein. In general, finding a formula for the distribution
function of the supremum of a stochastic process is an almost impossible task, let alone for
its probability density function, which is much less studied than the probability distribution
function. We first review some of the literature on the study of regularity of the probability
density function of the supremum of a stochastic process.

We begin with Gaussian processes. Let {X(¢) : t € I} be a separable, centered and real-valued
Gaussian process define on the canonical probability space (B(I),.%;,P), where [ is a compact
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set of R”, B(I) is the space of Borel functions on I and X(#)(w) := w; for w € B(I). Denote
M :=sup,; X(1), F(x) := P{M < x}, F_(x) := P{M < x} and ay := inf{x : F_(x) > 0}. It is clear
that M is a measurable convex function on B(). From Cirel’son [21], assuming that M < co
a.s., then F_ is continuous except possibly at ag. And the density F’ (x) exists except perhaps
on a countable set where it may have jumps downward. Moreover, if E[X (£)?] does not depend
on t, then F_ is continuous everywhere and F’ is continuous except possibly at ay where it
may have a finite jump. In the review of Cirel’son [21] in Mathematical Reviews, Dudley gives
a another proof of the result that F’ exists and is continuous except for downward jumps:
According to Borell [11, Corollary 2.1],

P.(AA+(1-A1)B)=P(A'PB) 4,
for A, B measurable, 0 < A < 1, where P, is the inner measure of P, and then

F(Ax+(1-2A)y) =P{M < Ax+(1—-A)y}
=P M <Ax+(1-A)y}
> P MM < x}+ (1 - )M < y}}
>P{M < x}'"PIM < 1A = Fo Ry 1

Hence F is logarithmically concave, which shows that F’ exists and is continuous except for a
countable number of downward jumps.

Pitt and Lanh [73] showed, under very general conditions, that the distribution function F is
absolutely continuous with a bounded density. Following the idea of Pitt and Lanh [73], Weber
[83] gave an a upper bound on the probability density function of the supremum of certain
Gaussian processes. Further developments have been given by many authors, among which
we mention Lifshits [56, 57]. We also refer to Diebolt and Posse [36] and Azais and Wschebor
[4, Chapter 7] and references therein for more information on the regularity of the density of
the maximum of smooth Gaussian random fields.

In [64, Proposition 2.1.11], a criterion for the absolute continuity property of the distribution
function of the supremum of a continuous process is given in terms of the Malliavin derivative
of this process. Moreover, a general criterion is established for the smoothness of the probabil-
ity density function for locally nondegenerate random variables; see [39, Theorem 2.1] and
[64, Theorem 2.1.4].

We are interested in the properties of the probability density function of the supremum of the
solutions to SPDEs. On the other hand, the density of the supremum of the solution is related
to the study of upper bounds on hitting probabilities for these solutions, as we now explain.

As we have seen in Chapter 2, the upper bound on hitting probabilities for the solution
to a system of non-linear stochastic (fractional) heat equations is not as sharp as that for
linear stochastic (fractional) heat equations; see [25, Theorem 4.6], [26, Theorem 1.2] and our
Theorems 2.1.4, 2.1.5. This is because for the non-Gaussian solution, the upper bound on the
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4.1. Introduction and motivation

probability of visiting small balls within a small space-time region is not of the same order as
for the Gaussian solution; see [25, Theorem 3.3], [25, Proposition 4.4] and our Lemma 2.2.1.

Let us study this probability of visiting small balls from another point of view. For simplicity,
we denote by u the solution to one single equation (1.2.1) (i.e., d = 1) with vanishing initial
data, that is,

u

a—u(t, X) = —=(t,x) + o (u(t, X)) W(t, x) + b(u(t, x)), (4.1.1)
ot 0x?

where the coefficients o and b satisfy the hypotheses P1 (or P1’) and P2 in Chapter 2. We
would like to give an estimate on the following probability of visiting small balls:

P{ inf Iu(t,x)—ZISZ_”}, (4.1.2)
(t,x)eR},
where

RY o= (k27 (k+ 127" x [127%", (1 +1)272"). (4.1.3)

By the triangle inequality, this probability is bounded above by

P{Iu(t,?,xf)—zlsz_”+ sup Iu(t,x)—u(t,?,xl”)l}. (4.1.4)

(t.X)€R?,

For the Gaussian solution (i. e., 0 = 1, b = 0), Dalang, Nualart and Khoshnevisan [25] derive a
formula similar to (4.1.4) by using the Gaussian property of the solution and introducing two
independent random variables; see the proof of [25, Proposition 4.4]. This is not applicable in
the non-Gaussian case.

Since the supremum of the absolute value of a continuous function is equal to either the
maximum of this function, or the minimum of this function times —1, the probability in (4.1.4)
is approximately equal to

2-PSlulty,x)—zl<27"+ sup u(t,x)—u(ty,x);. (4.1.5)
(t0ERY,

Even though the random variables u(#;/,x;') and sup; e RE, u(t,x) — u(t, x;') are not inde-
pendent, from the perspective of probability density functions, we expect that the joint
density (denoted by p,(:,-), whose existence needs to be proved) of the random vector
(u(t”,xl”),sup(t,x)eRZyl u(t,x) — u(t",xl”)) is bounded above by a constant times the prod-
uct of the marginal densities of the components. Notice that the density of u(t”,xl”) is
bounded uniformly over (7, x;"). We expect that the joint density of the random vector
(u(tl, x}),sup; ye R, u(t,x) — u(ty, x;") is controlled by the density of the random variable
SUP (1, x)eR?, u(e, x) — u(el, xp).
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To derive a satisfactory estimate for the density of sup (t,X)€R?, u(t,x) — u(t?, x?), recall that the
probability density function of the maximum of Brownian motion maxo< <7 B(t) is given by

2

—Z
exp(ﬁ) l[oym[(z).

Z—

2
vanT
Relating this formula to the fact that the sample paths of Brownian motion are almost %-Hblder
continuous suggests that the joint density p, (-, -) should satisfy the following bound:

2
c -2z5
, < 4.1.6
pn(zl 2) (2—4n)1/2 +2-2n exp(c((2_4n)1/2 +2—2n)) ( :
22
=c2"exp ( 2_22n) , forall z; €R, z5 > 0. 4.1.7)
c

If we apply the Gaussian-type upper bound on the density in (4.1.7) and calculate the proba-
bility in (4.1.5), it will give us the correct upper bound on the probability of hitting small balls,
as in the Gaussian case.

Motivated by the above discussion, we establish the following general criterion for an upper
bound on hitting probabilities from the perspective of probability density functions, which is
comparable to [25, Theorem 3.3].

Let v = (vy,...,v4) = {v(t,x),(t,x) € Ry xR} be a random field on R4 with i.i.d. components.
Fix H >0,H, >0and T > 0. Let I c]0, T] and J <R be two compact intervals.

Theorem 4.1.1. Assume that the probability density function p; x(z) of v1(t,x) is bounded

uniformly over (t,x) € I x ] and z € R.

(1) Suppose that there exists a constant ¢ = c(I,]) such that for all (sy, yo) € I x J, 01 and d»
sufficiently small, the random vectors

(v1 (S0, ¥0), sup (v1(8,x)— vl(SO,yo))), (4.1.8)

(t,x]€[$0,50+61] X [yo,y0+62]

and

(—vl(s(),yo), sup (=t %) - (= vl(s(),yo)))) (4.1.9)
(t,%)€[80,50+611%[¥0,Y0+02]

have joint probability density functions, denoted by pgl 5,00 and Ps. 5,0 respectively,

which satisfy that

H |, sH.
exp , forallz1 eR, zp = 6" +6,%.
H, , <H. 1 2
61" +0,° c(6f1+6fz)

+
p(glﬁz (Z], ZZ) <

(4.1.10)
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Then there exists a constant C = C(I, ]) such that for all compact sets A c R4,
P{v(Ix])mA;é(b}sC%_Hl-l_Hz-l(A). (4.1.11)

(2) Suppose that there exists a constant ¢ = c(I, J) such that for all (sy, yo) € I x J, 61 sufficiently
small, the random vectors

(vl(SO,yo), sup (vl(t,yo)—vl(s(),yo))), (4.1.12)
Z’E[S(),S()‘FB]]
and
(—vl(SO,yo), sup (_Vl(t;yo)_(_VI(SO»J/O)))) (4.1.13)
te(so,S0+01]

have joint probability density functions, denoted by pgl (-,-) and ps, () respectively, which
satisfy that

+ << % 121 €R, zp =8 4.1.14
1751(21»22)—@6@ ek forall z; €R, zp = 67" (4.1.14)
1 1

Then there exists a constant C = C(I, ]) such that for all compact sets A< R? and for every
Yo€J,

Plo(Ix{yo)h)nA# @} < C%_Hfl (A). (4.1.15)

Remark 4.1.2. (a) In order to obtain the upper bound on hitting probability in (4.1.11), it is
sufficient to have the estimate on the joint density in (4.1.10) with 6, = 652/ Hi: see the proof
below, in particular, the choice of 61 and 6, in (4.1.18).

(b) In some cases, the estimates for pglv 5, and pgl are a consequence of (4.1.10) and (4.1.14)
for pgl’ 5, and pgl, respectively. For example, let vy be the solution to (4.1.1). Then —v; is
a solution to (4.1.1) with the coefficients o replaced by —o(—-) and b replaced by —b(—").
Since the functions —o(—-) and —b(—-) also satisfy the hypotheses P1 (or P1’) and P2, the
probability density functions of the random vectors defined in (4.1.9) and (4.1.13), which are

Ps, 52(-, -) and/or Ps, (-,+), will also satisfy the estimates in (4.1.10) and (4.1.14), respectively,
provided py , (-,-) andlor py (-,-) do.

Proof of Theorem 4.1.1. We change slightly the notations in (2.2.1) to denote, for all positive
integers n,

T | oyl
1y = k2 nH, " x) =12 nH,
and

n __ n n n __ n n n _ rn n
L =l e Ty =D xn ) Ry =L < Ty
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Following the previous discussion, we have

P{ inf Ivl(t,x)—ZISZ_"}
t,x)ER"

k,l

<sPIlni(ef,x) =zl <27+ sup |vi(t,x)—vi(g], X))
(t’x)ERZ,z

<sPJlni(tf,x)—zl<27"+ sup v(t,x)— v (¢, x])
(1,x)€RY,

+PAvn(t, x)—zl<27"+ sup (—vi(t, %) +vi(t],x)))
(t.0€R?,

=P{lvi(t,x])—zl<27"+ sup v(t,x)—v1(t,x])
()R],

+P{|—v1(t,?,xl")+z|52_”+ sup (—vl(t,x)—(—vl(t,?,x?)))}. (4.1.16)

(t,x)eR?,

We will show, using (4.1.10) for pgl 5, (-,+), that the first probability on the right-hand side of
(4.1.16) is bounded by 27" times a constant, and the estimate for the second one is similar by
using (4.1.10) for Ps. 5,710 fact, this probability is bounded above by

P{Ivl(t,z’,xl")—zlsf"+ sup vl(t,x)—vl(t,?,xf)}
(t,x)eR]’c'yl

m{ sup vl(t,x)—vl(t,?,xl")zz-Z‘”}
(t,x)eR,’C‘yl

+P{lvi(t], x) -2zl <3-27"}. (4.1.17)
For the first probability in (4.1.17), we apply the assumption (4.1.10) with
Sy =2""H" and §,=2""H' (4.1.18)

to see that it is equal to

2

oo Z0+27 "tz oo 20+27 "+ 2z 23
f dzzf dzlpgl 5,(21,22) < Cf def dz 2" e @
2 - ’ -

27n 2-2""+2 2:27n 2-2""+2z
2

o0 Z

- 2c2”f (2 +2 e @7 dzy=c'27"
2:27n

(4.1.19)

where the last equality holds by changing variables (z, = 27" Z,) to calculate the integral.

Since the density of vy (¢, x;’) is bounded uniformly for (¢, x?) € I x J, the second probability
in (4.1.17) is bounded above by 2" times a constant. Together with (4.1.17) and (4.1.19), we
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have obtained that

PLlvi(tl, x)—zl<27"+ sup wvi(t,x)—vi(t),x]) p<c27". (4.1.20)
(1,X)€RY,

Hence, we conclude that

P{ inf |v1(t,x)—2z| < 2_”} <c27", (4.1.21)
(t,X)€R"

k,l

which implies

P{ i)nf lv(t,x) —z| < 2—”} <c274n, (4.1.22)
t,x)ER"

k,1

Now we use the estimate in (4.1.22) to prove Theorem 4.1.1(1), using the arguments in the
proof of Theorem 2.1.4(b). Assume that d — H;” 1_ H; 1 >0, otherwise, there is nothing to prove.
Fixe€]0,1[ and n € N such that 27" 1 < ¢ <277, and write

PwixNnBre#ets Y PluRl)NBGz2 ™ #g].
(k,l):R]’C‘,lmIXJ;éQS

The number of pairs (k, [) involved in the sum is at most 2% +#:") times a constant. The
bound (4.1.22) implies that for all z € A and large n,

P{v(I x J) N B(z,€) # @} < G2 dpnH +Hy )
< Ce~Hi'—Hy ' (4.1.23)

Note that C does not depend on (n,€). Therefore, (4.1.23) is valid for all e €]0, 1[.

Now we use a covering argument: Choose € €]0, 1[ and let {B;},_, 00 be a sequence of open
balls in R? with respective radii r; €]0, €[ such that

© —_ —
ASUR B and Y @r)® M < o (A e, (4.1.24)
i=1

Because P{v(I x J)n A # @} is at most zgglp{uu x J) N B; # @}, the bounds in (4.1.23) and
(4.1.24) together imply that

P{v(Ix])mA;é¢}5C(%_H1-1_H2-1(A)+€). (4.1.25)
Letting € — 0%, we obtain (4.1.11).

In order to prove Theorem 4.1.1(2), we assume that d — H; 1 > 0. Similar to the derivation for
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(4.1.22), using (4.1.14), we have
P{[ienlfn lu(t, yo) — 2l 52—”}sc2—d”, (4.1.26)
k

where the constant ¢ does not depend on yy € J nor n. Fix € €]0,1[ and n € N such that
27"l <¢<27" Then, by (4.1.26),

P{vUx(yo)NBze)Zot< Y Pl x{y)nBz2") %o}
k' N I#¢

< Canl_lz—dn

~ -1
< Ced M,

Now use a covering argument, as we did to prove (1), which completes the proof of Theorem
4.1.1(2). O

4.2 Main results

We would like to verify that the assumptions in Theorem 4.1.1 hold for solutions to stochastic
heat equations. We will only consider here the linear case, where the solution is Gaussian. We
consider equation (4.1.1) with o = 1, b = 0, that is, we consider the linear stochastic heat
equation

a—u(tx)—az—u(tx)+W(tx) 4.2.1)
or 77 ox2 T -

for £ € [0,00[ and x € [0, 1], with initial condition ©(0, x) = 0 for all x € [0, 1], and either Neumann
or Dirichlet boundary conditions.

By definition, the solution is

rpl
u(t, x) :[ f G(t—r,x,v)W(dr,dv), (4.2.2)
o Jo

where the Green kernel G(t, x, y) is given in (1.3.5) and (1.3.6), respectively.

We assume that the process {u(t, x) : (¢, x) € [0,00[x[0, 1]} given by (4.2.2) is the jointly continu-
ous version (see (2.1.7)), which is almost i-Hﬁlder continuous in time and almost %-Hﬁlder
continuous in space. In fact, for any p = 1, (£, x), (s, y) € [0, T] x [0, 1], there exists a constant
C =C(p, T) such that

Ellu(t,x) — u(s, )IP1 < C(t— sV + |x - y)P'% (4.2.3)

see also (2.1.6).
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Choose two non-trivial compact intervals I < [0, T] and J < [0, 1]. In the case of Dirichlet
boundary conditions, we assume that J <]0, 1[. Choose 6, > 0 and (s, yo) € I x J. For t € [0, T1,
we denote

u(t, yo) = u(t, yo) — u(so, yo). (4.2.4)
Set
Fr=u(so,y0), Fo= sup i(t,y0) and F = (F,F). (4.2.5)
IE[S(),SO+6]]

Choose 6 > 0 such that [y, yo + 62] < [0, 1]; in the case of Dirichlet boundary conditions, we
assume that [yy, yo +02] <10, 1[ (open interval). Denote by M) the global supremum of u over

[0,61] x [y0, Yo +82]:

My = sup u(t, x). (4.2.6)
(t,x)€[0,611%[y0,Y0+02]

We will also consider the random variable

and set
M= sup u(t, x). (4.2.8)
(t,%)€[0,T]x[0,1]

Our goal is to give some estimates on the joint probability density function of F, which cor-
responds to (4.1.14) in Theorem 4.1.1, and on the probability density function of M,. At the
same time, we also want to know if the random variables F and M, have infinitely differen-
tiable densities. Malliavin calculus is a tool to study the smoothness of random variables (see
Theorem 1.5.1). It is clear that the first component of F belongs to D*°. We will show that F»
belongs to D2 in Lemma 4.4.4. However, we do not expect that F, belongs to D*. The same
problem arises for M and M. This means we can not apply the results in Theorem 1.5.1 and
Corollary 1.5.3 directly.

Florit and Nualart [39] established a general criterion (Theorem 1.5.5) for smoothness of the
density assuming that the components of the random vector only belong to D2, According to
Theorem 1.5.5, instead of imposing nondegeneracy conditions on the Malliavin matrix, it is
sufficient to assume that there exist some smooth random directions such that the derivatives
of the components of the random vector along those directions form a smooth matrix whose
determinant has negative moments of all orders. We will make use of these results to prove
the smoothness of the densities of the random variables F, My and M.

We first state the results on the smoothness of the densities of these random variables.

Theorem 4.2.1. (a) For all (sy, yo) €10, T] x J and 6, > 0, the random vector F has an infinitely
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differentiable density on Rx]0,00[ and if yy €10,1], then F» > 0 a.s. When so =0, F, vanishes
identically but F, takes values in 10,00[ a.s. and has an infinitely differentiable density on
10,00].

(b) Forallyy€[0,1],61 >0 and b, > 0 with [yy, yo + 621 < [0,1] (1y0, yo + 021 <10, 1[ in the case
of Dirichlet boundary conditions), the random variable My takes values in10,00[ and has an
infinitely differentiable density on]0,00|.

(c) In the case of Neumann boundary conditions, the random variable M takes values in 10, 00[
and has an infinitely differentiable density on ]0,00].

Statements (a) and (b) of this theorem will be proved in Section 4.5. The method to prove
statement (c) is different from that of (a) and (b). We will prove statement (c) in Section 4.8.

In the proof of Theorem 1.5.5 (see [64, Theorem 2.1.4]), the integration by parts formula
provides us with a formula for the density of the random vector F, from which we are able
to analyze the behavior of the density. We remark that choice of u4 in Theorem 1.5.5 is not
unique. We will choose a suitable adapted process so that the Skorohod integral coincides
with the Walsh integral and hence we can use Burkholder’s inequality instead of Holder’s
inequality for Malliavin norms (see [82, Proposition 1.10, p.50]) to estimate the moments of
this stochastic integral. This will allow us to give a Gaussian-type upper bound on this density.

In order to estimate the density of F, we assume I x J ]0, T]x]0, 1[. Assume that there are
constants ¢, C; such that

O<cy<I:=inf{s:sel} and I:= sup{s:sel}<C; < T+1. (4.2.9)
Assume also that there are constants ¢y, C, such that

0<cy<J:=infly:yeJ} and J:=sup{y:yeJ}i<C<l. (4.2.10)
Choose 6, €]0, 1] small enough so that

so+0,€I and 6}/2<min{l—02,(C2—]_)/2}; (4.2.11)
see Figure 4.1.

Denote (z1, z2) — p(z1, z2) the probability density function of random vector F with §, satisfy-
ing the conditions in (4.2.11) (the existence of p(,-) is assured by Theorem 4.2.1(a)).

Theorem 4.2.2. Assume I x Jc]0, T]x]0,1[. There exists a positive constant ¢ = c(1, ]) such that
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C J

So+51 -------------------

So+-------|F----------

1
1
c1 :
1
1
1

C yo—061"2 yo +26172

o
S

G 1

Figure 4.1 - Illustration of conditions (4.2.9)-(4.2.11)

or all 51 > 0 satisfying (4.2.11), and for all z, = §Y*, z; € R and any (so, vo) € I x J,
g 1 Y (S0, Y

c B z5 ~1/4 2
p(zl,ZZ)sWexp 5172 (Jz11 A1)exp(—z7/c) (4.2.12)
6, 1
¢ % (4.2.13)
< exp|——=-1. 2.
/5%/2 P c51/?

The proof of this theorem will be presented in Section 4.6. Note that (4.2.13) is an immedi-
ate consequence of (4.2.12). As a consequence of Theorems 4.2.1 and 4.2.2, we deduce the
following.

Corollary 4.2.3. Let I and ] be as above (4.2.4). The random variable F» has an infinitely
differentiable density on ]0,00|, denoted by zo — pr,(z2) . Suppose that I x ] <10, T]1x]0,1[. Then
there exists a positive constant ¢ = c(I, ]) such that for all 6, > 0 satisfying (4.2.11), and for all
2o = 6}/4 and any (so, yo0) € [ x J,

c exp ( zg
[s1/2 coi2 |
07 1
Remark 4.2.4. By Theorem 4.2.2 and Remark 4.1.2(b), the assumption (4.1.14) of Theorem
4.1.1 is satisfied for the solution to (4.2.1) with H, = %. Therefore, Theorem 4.2.2 provides an

alternative proof of [25, Theorem 3.1(3)] with 3 = d for the upper bound on hitting probabilities
at a fixed spatial position.

Pr,(22) = (4.2.14)

We will also give a Gaussian-type upper bound on the density of M under the assumption
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t
T 4
Ci 1 J
61287
I ] S
yo—(5i/2+52) Yo +2(5i/2+52) C,
0 c Yo yo+6s 1

Figure 4.2 — llustration of condition (4.2.15)

yo € J <10, 1[. Choose a positive constant C; with C; < T. Let ¢3, C; be chosen as in (4.2.10).
Choose 61, 0, €]0, 1[ small enough so that

Yo+02€], (6)%+62)*<Cr and 812 +8, <min{J—cp, (C2—N)/2}; (4.2.15)
see Figure 4.2.

Denote z — py(z) the probability density function of random variable M, with §, d» satisfying
the conditions in (4.2.15) (the existence of py(-) is assured by Theorem 4.2.1(b)).

Theorem 4.2.5. Assume J <]0,1[. There exists a finite positive constant ¢ = c¢(T, J) such that for
all 81, 8, satisfying the conditions in (4.2.15), for all yo € J and z = (612 + 5,)/2,

po(z) < (4.2.16)

;exp(_z—z)
/5%/2_'_52 6(6}/2-1—62) '

The proof of Theorem 4.2.5 will be presented in Section 4.7.

4.3 Preliminaries

In this section, we assume that I and J are as above (4.2.4) and we will introduce two families
of random variables to control the value of the random variable F» and M), respectively. For
this purpose, we will give some estimates on the rectangular increments of the solution.

114



4.3. Preliminaries

Choose an integer pp and yg € R such that
Po>7Yo >4 (4.3.1)

For r € [sg, So + 011, define the following family of random variables:

t) - ) zpo
Y, = f (lt, yo) =t Y72 5y (43.2)
[S0,71?

|t — s|vo/2

By (4.2.3) and the choice of pg, Yo in (4.3.1),

E u t, —Uu S, ZpO l»_sp()/z
f elt Yo = W YOI g < cf Je=si®™ —dsdt <. 4.3.3)
50,712 [t — s[Yo (50,712 | £ — 8|70

Hence for all r € [sg, s+ 011, the random variable Y, is finite a.s. Moreover, by Holder’s inequal-
ity and (4.2.3), for any p > 1, there exists a constant ¢y, not depending on (so, yo) € [0, T] x [0, 1],
such that for all r € [sg, so + 01],

Ellu(t, yo) — u(s, yo)|?PoP]

E[|Y,|P] = (r — 50)*P7V f dsdt
' 50,712 |t — s[rop/2
t— s|Popi2
=Cp (r—SO)Z(p_Df %dé‘dt
[S(),I‘]z |t—S|Y0p
<cp(r— 30)2p6§p°_7°)p/2. (4.3.4)

The following result shows that the family of random variables {Y; : r € [sg, so + 1]} can control
the value of the supremum F>.

Lemma 4.3.1. There exists a finite positive constant c, not depending on (so, yo) € [0, T'1 x [0,1],
such that for any a > 0, for all5, > 0 and for all r € [sg, So + 011,

Y, <R:= caz”"df(yo_‘l)/z = sup |i(t,yo)l < a. (4.3.5)
telso,r]

Proof. We first apply the Garsia, Rodemich, and Rumsey lemma (see Lemma A.6.1) with

S:=[so, 7], p(t,$) := It—slllz, uldt) :=dt,

W (x):=x%P0, p(x):= X and f:=ul,yo).
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By (A.34), we deduce that for all ¢, s € [sg, ],

1
2po
Y, Yo _

uzeo tdu
[(Bp (s, ul/4))]Y po

2p(t,s)
lu(t, yo) — u(s, yo)l < IOf
0

2;} 2p(t,s) _2 Yo,
Y™ u rouo du
0

Yo—4 %
— _ 4 Po
=cCy|t—s| 0 Y,
Yo—4 1

T
<c 614170 Yr Po ,

where we have used (4.3.1); the constants c;, ¢ do not depend on r, nor on (s, yo) € [0, T] x
[0,1]. Assuming Y; < R, letting s = sy in the above inequality and choosing a suitable constant
in the definition of R, we obtain that

sup |a(r,yo)| <80 P (g2rog 2P 2 g,
te(so, ]

We will also introduce a family of random variables to control the value of the supremum Mj.
We first give an estimate on the rectangular increments of the solution.

Lemma 4.3.2. There exists a constant Ct such that for any 0 €]0, % [and (t,s,x,y) € [0, T1? x
[0,1]2,

El(u(t, x) + u(s, y) — u(t, y) — u(s, )2 < Crlt — sI2 Alx— y|

< Crlt—s|2 70 x—y20. (4.3.6)

Proof. The second inequality is trivial. To prove the first inequality, on the one hand, by (4.2.3),

El(u(t, x) + u(s,y) —u(t,y) — u(s, x))?]
< 2E[(u(t, x) — u(s, x))] + 2E[(u(s, y) — u(t, )]

<Crlt—sl?. 4.3.7)
On the other hand, using (4.2.3) again, we have

El(u(t, %) + u(s, y) — u(t, y) — u(s, x))%)
< 2E[(u(t, x) — u(t, )% + 2E[(u(s, x) — u(s, y))*]
=Crlx-yl. (4.3.8)

Hence (4.3.7) and (4.3.8) establish (4.3.6). ]
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Y2

71

Figure 4.3 — [llustration of (4.3.11) and (4.3.12)

From now on, we fix 8 €]0, %[ and set

1
01=§—0, 0, =20.

By the isometry and Lemma 4.3.2, since Du(t, x) = 1¢.<y G(f — -, X, %),

(4.3.9)

ID(u(t, %)+ uls, y) — ult,y) — uls, )%, = ELu(t, x) + uls, y) — u(t, y) — u(s, x))]

<Crlt—s|Mx—y|%,

for any (s, x,y) € [0, T)? x [0,1]2.

(4.3.10)

Let pg and Y be defined as in (4.3.1). Let 6; and 0, be defined as in (4.3.9). We assume that pg

is sufficiently large so that there exist ¥y, y» such that
1 1 1 1
—<’Y1<91/2——, —<’}/2<92/2——,
2po 2po 2po 2po

and

_]_.

)

Yo
2y1+y2=
ey 2po

see Figure 4.3. Denote
§:=612+6,, A.:=6% and A.:=6A0-y).
For r € [0,A.], we define

B (u(t, yo) — u(s, yo))*P
Yo(r):= f[o,r]z T dsdt,

(4.3.11)

(4.3.12)

(4.3.13)

(4.3.14)
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and

t’ + ) - t) - » Zpo
Yi(r) ::f dtdsf dxdy(u( %) u(ls zy) Ul y)l Zu(s x)) . (4.3.15)
(0,r]2 (Yo, yo+A.12 |t = s|HHePoYi|x — y|1+2PoY2

By Lemma 4.3.2, the choice of yy, 72 in (4.3.11) and the Gaussian property of the solution,

f dtdsf gy B 2) 4 (s, ) — t, ) — s, x))?P)
[0,r]? (Yo, Yo+A ]2 y |t—s|1+2P0?’1|x_y|l+2p0y2

|2 = 5|00 |x — y| P00
sof dtdsf dxdy T y12 <00
[0,r12 (Yo, Yo+A1? |t — s|'*ePori|x — y| i *ePor2

Hence for all r € [0, A.], the random variable Y; (r) is finite a.s. Moreover, by Holder’s inequality
and (4.3.10), for any p = 1, there exists a constant ¢, not depending on yj € [0, 1], such that
for any r € [0,A.],

EY1(DP] < (rA)2PD f drds f dxdy
[0,7]? (Yo, Yo+A.]?

Ellu(t, x) + u(s, y) — u(t, y) — u(s, x)|*PoP]
X
|t — s|PA+2poyD)| x — y|PU+2PoY2)

se,,(rA*)Z(”‘“f drdsf dxdy
[0, (Y0, Yo+A.12

|t — S|P0P91 lx— y|P0P92

X
|t — S|p(1+2poyl)|x_ y|p(1+2p0y2)
<cp (rA*)ZpAf?(poel—(1+2poy1))Af(poez—(uzpoyz))

<cp r2p5p(2p091—2(1+2poy1))5p(p092—(1+2p072)+2)

=cp r2p5p(po(291+92)—2po(2Y1+Y2)—1)

=cp r2p6P(po—Y0), (4.3.16)

where in the last inequality we use (4.3.13), and in the second equality we use (4.3.12) and the
fact that 2607 + 6, = 1 from the definition of 8;, 6, in (4.3.9).

For r € [0,A.], set
Y, = Yo(r)+ Y41(r). (4.3.17)

By (4.3.16) and the calculation in (4.3.4), for any p > 1, there exists a constant c,, not depending
on Jy € [0, 1], such that for any r € [0, A.],

E[|Y,)|P] < ¢, r?P5PPoY0), (4.3.18)

To see that the family of random variables {Y; : r € [0,A.]} controls the value of the supremum
of My, we need to use the Garsia, Rodemich, and Rumsey lemma for Banach space valued
functions (see [64, Lemma A.3.1] and our Lemma A.6.2). Indeed, we will write, for (¢, x) €
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[0, T] x [0,1],

u(t, x) = u(t, x) + u(t, yo), (4.3.19)
where

u(t, x) = u(t, x) — u(t, yo). (4.3.20)

For fixed t, ti(¢, *) belongs to the Banach space E, y[yo, yo + A«] which we now define.

For an integer p, an arbitrary y €] ﬁ, 1[ and a continuous function f defined on [a, b], we
define the Holder seminorm

F - FWPP |\
”f”p,y = (‘/[‘a b2 WdXdy . (4321)

Epyla, bl denotes the space of continuous functions vanishing at a and having a finite || - ||
norm. We omit [a, b] if this interval is clear from the context. Each element of E), , turns out
to be Holder continuous. Indeed, we apply the Garsia, Rodemich and Rumsey lemma (see
Lemma A.6.2) to the real-valued function f with ¥ (x) = x2P, p(x) = x1+2p1@p) g =1 to get
that there exists a constant ¢ such that for all x, y € [a, b],

£ = FD < clx— Y1 F 1 fll e

Moreover, as a fractional Sobolev space, Ep, y[a, b] is a separable Banach space; see [35, Propo-
sition 4.24].

Since for any € > 0, a.s., for any fixed ¢, the function x — (¢, x) is % —e-Holder continuous,
it follows that (¢, ) belongs to the Banach space E, y, [0, yo + A«] with pg, y2 as defined
in (4.3.1) and (4.3.11). We establish the following lemma to study the continuity of the map
t — U(t,*) in the Banach space Epoy, [0, o+ Axl.

Lemma 4.3.3. Forany0<¢<601/2 and0<1n<0,/2, there exists a random variable C that is
a.s. finite such that a.s., for all (t, s, x, y) € [0, T1? x [0,1]3,

lu(t, x) +uls,y)—ult,y)—u(s,x)| < Clt— slélx— yI". (4.3.22)
Remark 4.3.4. This property is also established in [43, Theorem 5.2].
Proof of Lemma 4.3.3. Let @1 = {ii(t, x) : (t,x) € [0,00[x[0, 1]} be the random field defined in
(4.2.7).

We choose p, 72 such that £ <0,/2— ﬁ and n+ # <Y2<02/2—- ﬁ. Let Ep 7,10,1] be the space
of continuous functions defined on [0, 1] vanishing at 0 and having a finite | - || , 7, norm. Since
a.s., forany ¢t € [0, T'], x — #i(t, x) is almost %-H(’)lder continuous, we see that 7(t, *) belongs to
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Ep7,- Moreover, by (4.3.6), for any s, t € [0, T],

Ellla(z, *) — a(s,*)”if’?z] -

_ _ 2p
f Ellu(t, x) +u(s,y) —u(t,y) — u(s, x)| ]dxdy
[0,1]2

|x_y|1+2p}72
6
|lx — y|”2P
SCTlt—slel”f %dxdy
[0)1]2 |x—y| pY2
<Crlt—s/"P,

We apply the Kolmogorov continuity theorem (see [76, Theorem 2.1]) to see that the process
{ti(¢,*) : t € [0, T]} has a continuous version {#i(¢, *) : t € [0, T]} with values in Ep 7,, which
61 1 61 1

is 3 — 3~ e-Holder continuous for small € such that 35 — 3p —€> ¢, namely, there exists a

random variable C, finite almost surely, such that a.s. for any s, ¢ € [0, T7,
_ - A-Ll_¢
(e, =) —a(s, «)py, <Clt—s|2 2

Hence we have for any s, t € [0, T,

0 _ 1 _
dxdy<Clt—s|'2 "2 9P

f |2i(t, x) — (s, x) — @(t, y) + (s, y)|?P
[0,1]2 |x—y|1+2m_’2

We apply the Garsia, Rodemich and Rumsey lemma (see Lemma A.6.2) to the real-valued
function x — ii(t, x) — @i(s, x) with ¥ (x) = x?P, p(x) = x1+2P12)/CP) g = 1, to get that for any
(t,5,x,y) €0, T1* x [0, 1],

6 -
|i2(t’ x) - a(s’ x) - i'z(t’ y) + a(s’ y)' = Clt_ Sl%_ﬁ_elx_yl}/Z_i

<Clt—sl|x—y[. (4.3.23)
Letting y =0 in (4.3.23), we obtain

|ii(t, x) — di(s, x)| < C|t - s|°. (4.3.24)

Fix (s, y) € [0, T] x [0, 1]. Using the triangle inequality,
[a(t, x) — u(s, )| < |a(t, x) — uls, x)| +|a(s,x) — uls, y)l,

which converges to 0 as (t, x) — (s, y) by (4.3.24) and the fact that x — (s, x) is continuous
since (s, *) € Ep 3,. Therefore, a.s., (£, x) — #i(f, x) is continuous. Together with the fact that for
any t € [0, T], P{ii(¢, *) = @i(¢, *)} = 1, we obtain that the processes {7(t, x) : (£, x) € [0, T] x [0, 1]}
and {ii(t,x) : (t,x) € [0, T] x [0, 1]} are indistinguishable and hence (4.3.23) implies (4.3.22). [J

Choose ¢, n as in Lemma 4.3.3 such that n >y, + 1/(2py), which is possible by (4.3.11). Then,
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by (4.3.22),
. § (u(t, x) + u(s, y) — u(t, y) — u(s, x))?P°
Jate, ) - ats 1, = | N-ulty dxdy
[J’Ory0+A*]2 |x— yl PoY2
S(Ht—sﬁmfj‘ |x_yﬁpw—L4PM?dxdy
[J/Ory0+A*]2
< C|t — s?Po¢ (4.3.25)

since 2pon—1-2pgy2 > 0, which shows thata.s., £ — ii(t, ) is continuous in Ey , [yo, yo + A«]
(the space of continuous functions defined on [yy, yo + A.] vanishing at y, and having a finite
I - Il po,y» norm). Similarly, we can prove that a.s., x — u(-, x) is continuous in Ej, ,, [0, T] (the
space of continuous functions defined on [0, T] vanishing at 0 and having a finite || - || 5, ,,
norm), where y1, po are defined in (4.3.11) and (4.3.1).

As a consequence of Lemma 4.3.3, we can write, for r € [0,A.],

u(t, x) + u(s,y) — u(t,y) — u(s, x))2Po
o= [ dras | dxdy WD+ 1Y) — UL y) — s )
(0,r]2 (Yo, Yo +A. 12 [t —s|*+ePoY|x — y|*+ePoY2
. . 2p
oz le=srEen ' -

We are now ready to show that the family of random variables {Y; : r € [0,A.]} defined in
(4.3.17) controls the value of the supremum of Mj.

Lemma 4.3.5. There exists a finite positive constant c, not depending on y, € [0, 1], such that
foranya>0,6,>0,02>0andforallr€[0,A.],

Y, <R:=ca*Ps* " = sup lu(t, x)| < a. (4.3.27)
(#,x)€[0,r1%[y0,y0+02]

Proof. Assuming Yy(r) < R, similar to the proof of Lemma 4.3.1, by the Garsia, Rodemich and
Rumsey lemma (see Lemma A.6.1), we deduce that for all ¢, s € [0, 7],

Yo-

0—4 1
lu(t, yo) — uls, yo)| < ¢’ |t — sl #0 Yo(r) 2o

Yo—4 1 Yo—4

1
<1 A Yo(r)2ro = ¢ 8270 Yy(r) e, (4.3.28)

where the constant ¢; does not depend on r, nor on yj € [0, 1]. Letting s = 0 in (4.3.28), we
obtain
Yo—4 -

Yo—4 1 Yo=4 _ 1
sup |u(t, yo)|l < c16 2r0 Yo(r)2ro < ¢y 270 R2p0. (4.3.29)
te(0,r
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Hence we can choose a suitable constant c in the definition of R in (4.3.27) so that

sup |u(t, yo)l <
tel0,r]

N|Q|

. (4.3.30)

Assuming Y; (r) < R, from the expression of Y;(r) in (4.3.26), we first apply the Garsia, Ro-
demich, and Rumsey lemma (see Lemma A.6.2) to the Ej, y,[y0, yo + Ax]-valued function

s — T(s, %) with W (x) = 227, p(x) = x(1+2Po7)/@po) to deduce that there exists a constant ¢,
such that for all ¢, s€ [0, r],

p 1 2|t—s| _ 1 l+2pgn 1
e (t, %) — (s, ) py,y, < € Yl(r)2P0f X Pox 2m dx
0

1 2por1-1
=c Yi(r)wo|t—s| 2
1 Zpgﬂ_l 1 2@pori-D
s YVi(M)™mA, =Y . (4.3.31)

Letting s = 0, we obtain for all ¢ € [0, 7],
. 2 _
(s, %)My, < c2 Ya()&2EPm =D,

Applying the same lemma to the real-valued function x — i(¢, x) (¢ is now fixed) with ¥ (x) =
X2, p(x) = x1+2P0Y2)/2Po) wwe obtain

1 2@por1-D 2poy2-1

[i(t, x) = u(t, ) <cgY1(r)?0d 20 |x—y| 20

’

forall x, y € [yo, Yo + A«]. Letting y = yo we obtain that for all (¢, x) € [0, 7] x [yo, Yo + Ax],

20pgy -1 2Pore—l

1
lu(t,x) — u(t, yo) < cs Yi(r)2 8 20 A,

1 2@poy1-1)  2pgy2-l
<c3Yi(r)d o 6 2

4

1 10
=c3Y1(r)2nd 2,

where in the second inequality we use (4.3.13), and the equality is due to (4.3.12). In particular,
this implies that

0—4

1Y
sup lu(t, x) — u(t, yo)| < c3 Y1(r)2ro d 2vo | (4.3.32)
(£,x)€[0,r]%[¥0,Y0+02]

We can choose the constant ¢ in the definition of R in (4.3.27) small so that (4.3.30) holds and

a
sup lu(t,x) — ult,yo)l < —. (4.3.33)
(1,%)€10,71%[Y0,Y0+52] 2
Hence, by (4.3.30), (4.3.33) and the triangle inequality, we obtain (4.3.27). (]
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4.4. Malliavin derivatives of F»,, M, and M

We conclude this section by introducing a result on the uniqueness of the solution to heat
equation with boundary conditions, which will be used when we check the condition (iii) of
Theorem 1.5.5.

Let f:[0,00[— R be a differentiable function with continuous derivative satisfying f(0) =
Let g € C*°([0, 1]) satisfy the same boundary conditions as the Green kernel. We define

A(t,x) = ffG(t rx,v)(—r——)(f(r)g(v))dvdr, t>0,x€l0,1],

A0,x)=0, xel0,1].

Lemma 4.3.6. The function A is well-defined and we have A(t,x) = f(t)g(x) for all (t,x) €
[0,00[ %[0, 1].

Proof. Tt is clear that the function A is well-defined since both the Green kernel and the
function (r, v) — (6ar 61/2) (f(r)g(v)) belong to L2([0, T] x [0,1]). From the definition of the
function A, we see that A solves the inhomogeneous heat equation, that is, A satisfies

(0 a)A( )—(0 i)(f(t)()) (4.3.34)
ot 0x2) T T\ T ax2) s

the same boundary conditions as the Green kernel and vanishing initial condition. On the
other hand, the function f(-)g(*) also satisfies (4.3.34) with A(¢, x) replaced by f(#)g(x) and
the same boundary and initial conditions. By the uniqueness of the solution to heat equation
on bounded domains (see [38, Theorem 5, p.57]), we have A= f(-)g(x). O

4.4 Malliavin derivatives of F,, M, and M

In this section, we recall some results on the suprema F,, M and M in (4.2.5)-(4.2.8), in order
to apply Theorem 1.5.5 and to prove Theorems 4.2.1, 4.2.2 and 4.2.5.

First, we state the 0-1 law for the germ o -algebra generated by the Brownian sheet that appears
in equation (4.2.1). Define .Z; :=o{W(s,x):s<t,0<x<1}and %/ : ﬂ Fs.

Lemma 4.4.1. Forany setB € .7 P(B) € {0,1}.
Proof. Forany x,y€[0,1],r =0and ¢ > s =0, we know that W (r +¢, x) - W(t, x) is independent
of W(s, y). Hence W (r +t, x) — W (¢, x) is independent of .%;. Furthermore we have W (r + ¢, x) —

W (t, x) is independent of er In particular, for any r 20, >0 and x € [0,1], W(r + £,x) —
W (t, x) is independent of .%". Since

W(r,x) = lig}l(W(r +t,x)— WI(t x)),
t
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we obtain that W (r, x) is independent of .%". Therefore for any r > 0, .%; is independent of
ﬂg , which implies fg is independent of itself. Hence, for any B € ﬁg ,

P(B) =P(BN B) =P(B)?,

which implies that P(B) € {0, 1}. O

Lemma 4.4.2. (a) With probability one, the sample path of the process{ii(t, yo) : t € [So, So+011}
achieves its supremum at a unique point in [sy, So + 011, denoted by S. If (so, yo) € [0, T1x]0,1[,
we have F, >0 a.s.

(b) With probability one, My > 0 and the sample path of the process {u(t, x) : (¢t,x) € [0,01] x
[¥0, Yo + 021} achieves its supremum at a unique point in 10,611 x [yo, Yo + 621, denoted by
S, X).

(c) With probability one, M > 0 and the sample path of the process {1i(t, x) : (t,x) € [0, T] x [0, 1]}
achieves its supremum at a unique point in 10, T1x]0, 1], denoted by S, X).

Proof. The first statement of (a) follows from [47, Lemma 2.6 ], since for t, s € [sg, so + 61] with

t£S,
Ella(t, yo) — (s, yo)1*] = Ellu(t, yo) — u(s, yo)|I*1 0,

by Lemma A.5.3. In order to prove the second statement of (a), we denote {#(t, x) : (£,x) €
[S0, S0 + 611 % [¥0, Yo + 021} the solution to (4.2.1) on the whole space. If sy = 0, it is clear that
F, >0 a.s. by using the 0-1 law in Lemma 4.4.1; see also the proof for My > 0 a.s. below. If sy > 0,
by [45, p.23, (3.9)], we see that

sup  u(t, yo) — ti(So, ¥o) >0 a.s.
te(so,S0+01]

Since the the processes {u(t, x) : (£, x) € [So, So +01] x [yo, Yo + 621} and {7i(t, x) : (¢, x) € [So, So +
011 x [0, Yo + 62]} are mutually absolute continuous by [62, Corollary 4], we conclude that

F>, >0, a.s.
We turn to proving the statement (b). Fix x € [yp, yo + 62]. It is clear that

{My>0}={ sup u(t, x) > 0} o limsup{u(t,, x) > 0}. (4.4.1)
(t,x)€[0,611% [Y0,Y0+02] 10

On the other hand, we know that

limsup{u(t,, x) >0} € Z; (4.4.2)
,10

124



4.4. Malliavin derivatives of F»,, M, and M

and

1
P{hmsup{u(tn, x> 0}} > limsup P{u(t,, x) > 0} = =, (4.4.3)
1,10 t, 10 2

since for every n, u(t,, x) is a centered Gaussian random variable and P{u(t,, x) > 0} = %
Hence by Lemma 4.4.1, we obtain that

P{hmsup{u(tn,x) > 0}} =1, (4.4.4)
10

which establishes that M, > 0 almost surely. Furthermore, for any (¢, x), (s, y) €10,61] % [¥0, Yo +
d2] with (¢, x) # (s, ¥), by Lemma A.5.3,

Ellu(t, x) — u(s, y)*1 #0,

which yields the conclusion of statement (b) by [47, Lemma 2.6 ].

We proceed to prove statement (c). In the case of Dirichlet boundary conditions, since u(¢,0) =
0 for any ¢ = 0, we can repeat the proof of statement (b) to see that M > 0 almost surely. In the
case of Neumann boundary conditions, fix ¢ > 0. We follow [25, (4.22)] to write

u(t,x) =vV2 Y cos(knx)&¥ri+ Y %’;ﬂx)g’; +V1&0
k=1 k=1

:= R(x) + B(x) + V&7,

where {¢ ’,f ZOZO is ani.i.d. sequence of standard Gaussian random variables and

. (1 —exp(—272k?1))'/2 -1
e V2rk '

We proceed to prove that almost surely x — R(x) is differentiable on [0, 1]. By Fubini’s theorem,
we see that

E

Y k&Nl | = Y. KENEFIrel ¢ ) klrgl <oo,
k=1 k=1 k=1

where the last sum is finite because |ri| = Okt exp(—27t2 k21) as k — oo. Hence we have
almost surely
oo

kIEX| 7] < o0 (4.4.5)
k=1

We denote R, (x) := ZZ:1 cos(kmx)é ’t“ I't. By (4.4.5), we know that, almost surely, R; converges
to R uniformly on [0, 1]. Furthermore Ry, (x) = X.}/_, —kmsin(kmwx)¢ ’; 't and using (4.4.5) again,
we see that almost surely, R, converges to x — Y.2°  —knsin(kmwx){ ’;rk uniformly on [0, 1].
Hence by [77, Theorem 7.17], we obtain that almost surely, x — R(x) is differentiable, and, for
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Chapter 4. On the density of the supremum of the solution to the stochastic heat

equation

x€[0,1],

Rw)=) —kn sin(knx)(f’frk.
k=1

Now recall that from [81, Exercise 3.9, p.326], the standard Brownian motion {W (x) : x € [0, 1]}

has the expansion

W(x) = %fo + kX::l g&k cos(kmx),

where {6/6}2":1 arei.i.d N(0,1) (o is also N(0,1), but not independent of the other {;). By the

non-differentiability property of Brownian motion (see [61, Theorem 1.27]), we have

. W(x) - W(0)
limsup——— =+o0, as.,
x|0 x—0
which implies
. B(x) - B(0)
limsup—— =+oc0 as.
x10 x—0

Therefore, we have

. u(t,x) —u(t,0)

limsup——— = +0c0, a.s.,
x|0 x—0

which implies

sup (u(t,x)—u(z,0) >0 a.s.

0<x<1

Hence M >0 a.s.

(4.4.6)

Now we need to prove that the sample path of the process {#(t, x) : (¢, x) € [0, T1x[0, 1]} achieves
its supremum uniquely on [0, T] x [0, 1]. Since M > 0 a.s., by [47, Lemma 2.6 ], it suffices to
check that for any (¢, x), (s, y) in ]0, T]x]0,1] (]0, T1x]0,1[ in the case of Dirichlet boundary

conditions) with (¢, x) # (s,¥),

Ellu(t, x) — u(t,0) — u(s, y) + u(s,0)|*] #0.

This is a consequence of Lemma A.5.3. Therefore, we have finished the proof.

O

Remark 4.4.3. The process {By : x € [0,1]} defined in (4.21) of [25] is not a standard Brownian

motion. But we know that there exists a constant ¢ such that for all x, y € [0,1],

El|Bx— By’ = clx—yl,
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which is sufficient for (4.25) of [25].

Lemma 4.4.4. The random variables My, M and F, belong to D'? and

DMy=1,_5G(S~--X,*), (4.4.7)
DM=1,_gG(S—+X,%) —1,_G(S~+,0,%), (4.4.8)
DF> =11.<5G(S =+, ¥0, *) — 1{.<5,) G(So —*, Yo, *), (4.4.9)

where the random variables S, X, S, X and S are defined in Lemma 4.4.2.

Remark 4.4.5. The function (t,x) — l;.<3G(t — -, x, *) (we use the notation - to denote the
time variable and * for the space variable) from [0, T] x [0,1] into ¢ is continuous by the
argument below (4.4.13). Therefore, 1 (< S}G(S —., X, %) is the random element of A obtained by
composition of the random vector w — (S(w), X (w)) and this continuous function.

Proof of Lemma 4.4.4. Tt is similar to the proof for the Brownian sheet; see [64, Lemma 2.1.9].
We only prove (4.4.8). The proofs of (4.4.7) and (4.4.9) are similar.

Let {(tg, xk)}%":1 be a dense subset of [0, T'] x [0, 1]. Define
M}’l = max{a(tlyxl)»- .oy ﬁ(tn, xn)}~

Then M, converges to M almost surely as n — co. Borell’s inequality (see (2.4) in [1]) implies
that for any g = 2,

E sup |0(t, x)|7| < oo,
(£,x)€[0,T]x[0,1]

which indicates that M,, converges to M in I2(Q) as n — oo by Lemma A.6.3. Furthermore
M,, belongs to D2 by Proposition 1.2.4 of [64] since the function ¢, : R” — R defined by
Qn(x1,...,X) =max{xy,..., x,} is Lipschitz. We define

A} :={a(t, x1) = My},
Ag = {ﬂ(tl,Xl) # Mn, a(IZVxZ) = M}’L}»

A= {a(t, x1) # My, .., Ut Xg—1) # My, U1, Xi) = My}

Then it is easy to see that
AlnAp =0, if k#m,

and because almost surely the maximum is attained at a unique point, we have
Pluy_ Al =1,
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and
n
M,=)_ 1p (te, xi),  as.
k=1

On the set A}, we have My, — l(1, x) = 0 almost surely. By the local property of the operator
D (see Proposition 1.3.16 in [64]), we have D (M, — i(t, x;)) = 0 almost surely on the set AZ.
Hence we have

n
DM, = Z 1an Dai(ty., )

N

A"(l <l’k}G(tk »xk»*)_1{~<tk}G(tk_')0)*))
k=

=11<5,3G(Sn—+ X, %) — 11.<5,1 G(S,, — -, 0, %), (4.4.10)

—

where (S, X},) is the unique point such that M,, = @1(S,, X},). Since for any (¢, x) € [0, T] x [0, 1],
1<n Gt -+ x, )%, = Elu(t,0)*] < cr, (4.4.11)

we have

supE[IIDMnIIf] <28upZP{A HIlpatg Gtk =+ Xk, )5 + 1< Gt —+,0, %) 1%)

n=1 I’l>k1

<c. (4.4.12)

Hence from Lemma 1.2.3 in [64], we know that M belongs to D2 and DM,, converges to M in
the weak topology of L?(Q, 7). In other words, for any G € L*(Q, .7,

lim EXDM,;, G) ,#1 = E[(DM, G) #]. (4.4.13)

n—oo

On the other hand, since for any (¢, x), (s, ¥) € [0, T x [0, 1], by (4.2.3),

ID(t, x) = u(s, YDI% = 1<y Gt =+, x, %) = 1<y Gls =+ 3, %)%,
=E[lu(t, x) — u(s, y)I°] (4.4.14)
<Cr(t—s""?+]x -y,

we see that the function (¢, x) — Du(t, x) = l;.<4 G(t—-, x, *) from [0, T] x [0, 1] into .77 is contin-
uous. Furthermore, because the random vector (S,,, X;;) converges to (S, X) almost surely, the
L.t GO @) -

-, X(w), *) in ¢ almost surely, and the measurable function @ — 1;.cg, () G(Sy(@) —-,0, %)
converges to w — 1{.<§(w)}G(§(w) —-,0, %) in .2 almost surely. Hence for any G € L2(Q, 7)), we

measurable function w — 1{.<s, () G(Sy(w) — -, X, (w), *) converges to w —
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have
r}l—I:Igo<1{<S"}G(Sn -5 Xn’ *) - 1{<Sn}G(Sn 5 Oy *)’ G)f
=(1..§G(S— X, %) —1,_§G(S—-0,%),G) r, as. (4.4.15)
By (4.4.10) and (4.4.11),

SUPE[(1{.<5,1G(Sn — * Xn, %) = 11<5,) G(Sn =, 0, %), GY3]

n=1

n
<2sup 3 E|Lap (Ui Gltk =k, 9, G + (Licry Gl —,0,%), G2 )|
nz1 j=1

n
<2sup ) E [1A; (I pety Gtk =+ Xk, )5 + 1 1<t Gtk — -, 0, %) 11%) ||G||§f]
nz1 j=1
< cE[IIGI%,] < co. (4.4.16)
Hence (4.4.15), (4.4.16) and Lemma A.6.3 imply that

lim EXDMp, G} = lim E[(li.<s,}G(Sn = Xn, ¥) = L1<5,} G(Sn =+, 0, %), G) ]

n—oo

=EB[(1..gG(S—+ X, %) =15 G(S~+,0,%),G) »]. (4.4.17)
Comparing (4.4.13) and (4.4.17), we obtain that almost surely,

DM=1,_gG(S—+X,%) —1,_gG(S-+,0,%).

4.5 Smoothness of the densities

In this section, we suppose that I and J are as above (4.2.4) and we are going to introduce
the random variables needed for Theorem 1.5.5 and prove they satisfy the conditions therein.
We start by establishing the smoothness of the random variables {Y; : r € [sg, So + 61]} and
{Y, :r €[0,A.]} defined in (4.3.2) and (4.3.17) respectively.

For simplicity of notation, we denote

u(lys,fx)y,x1) == u(t, x) + u(s, y) —u(t, y) — u(s, x),
and

Du(t, x;s,y) := D(u(t, x) + u(s, y) — u(t, y) — u(s, x))

for (t,s,x,y) € [0, T]? x [0,1]%.
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Lemma4.5.1. (a) Foranyr € [sy, o+ 01], Y; belongs to D*™° and for any integer I,
2popo—1)---2po—1+1)
| — s|Yo/2

x (u(t, yo) — u(s, yo))*P L (D (u(t, yo) — uls, yo)))®L.
(4.5.1)

Dy, = f dtds
[s0,7]?

(b) Foranyr €[0,A.], Y, belongs to D*® and for any integer I,
2po2po—1)---2po—-1+1)
|t — s|y0/2

x (u(t, yo) — u(s, yo)) P~ L (D (u(t, yo) — u(s, yo)))®!
2poRpo—1)---2po—1+1)

+f 2dtdsf dedy 1 2P0 e — o 2000

[0,7] (Y0, Yo+A.] [t —s| [x—yl

x ULy nx1y) P (Dult, x;5, )L (4.5.2)

D'V, = f dtds
[0,r1?

Proof. We start by proving (a). We define the random function

(u(t,yo)—uls,yo0))*P0 . .
h(t, s) = { |[_S|Yo/2_ if ¢ #S;

otherwise.

By the Hélder continuity of the solution (see (2.1.7)) and (4.3.1), we know that a.s., the function

h is continuous and bounded on [0, T)2. For k = 1, we denote t; = s; = s¢ + - _kso i (we omit the

dependence on k for convenience) and

k=1 (u(t;, yo) — u(s;, yo))?P°
X = (r—so)*k ™2 .
k ( 0) l‘_JZ:() |ti _ sj|y0/2

Here we assume that

(u(ti, yo) — u(sj, yo)) 2P
|£; = sj[10'

=0 if li =sj.

As the Riemann sum of Y}, X} converges to Y, a.s. as k — oo. For any g = 1, by Holder’s
inequality,

k=1 E[(u(t;, yo) — ulsj, yo))2Po9]
E[|Xg]9] < ck=29 2@~ /
[| kl] c Z |ti_sj|y0/2

i,j=0
k-1 |tl~—sj|p0‘7’2

<ck™?

. . /2
i,j=0 It — S]|Yoq

k-1
<ek? )Y 1=¢
i,j=0

where the last inequality is due to choice of pg,yo in (4.3.1). Applying Lemma A.6.3, we see
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that Xj. converges to Y, in L9(Q) as k — oo for any g > 1. By the chain rule,

DX = (r — 502k kf 2po(u(ti, yo) — u(sj, yo))*Po!
k= 0 i,j:() |tl _ s]|)/0/2

(D(u(ti, yo) — u(sj, y0))),

which converges almost surely to the Bochner integral

2po(ult, yo) — u(s, yo))?Po~t
f drds=Poh Yo Yo (D(ult, yo) - uls, o))
[50,712 |t — s[1o/2

by using the continuity of the map (¢, x) — Du(t,x) = 1;.<3G(t — -, x, *) from [0, T] x [0, 1] to
. Furthermore, by Holder’s inequality, for any g = 1,

k=1 Ellu(t;, yo) — uls;, yo)|9@Po=D]
q ~241.2(q-1) 7o LA
E[I DXkl 1 < ck™7k > PEE

i,j=0

ID(u(ti, yo) — utsj, yo) 19,

By (4.2.3) and the isometry (4.4.14), this is bounded above by

k-1 |t' _ s,|(2p0—l)q/4+q/4
6k—2qk2(q—l) Z ! J

im0 L=
k=1 [, — ¢.|Poq/2
— ek2ax2a-D |t — sjl
im0 1ti = 5§79’
k-1
<ek? Y 1=c
i,j=0

We apply Lemma A.6.3 again to see that D X converges to the Bochner integral

_ 2po—1
f[ ]Zdtdszm(u(t’y()) YO e, yo) - uls, y0)))

[t — s|1o/2

in L9(Q;.#7) for any g = 1. Since the Malliavin derivative is closable (see [64, Proposition
1.2.1]), we obtain that

2po(u(t, yo) — uls, yo))?Po~t
(It —s|ro’2

DY, = f[ L drds (D(u(t, yo) - (s, yo))) (4.5.3)
So, T

and Y; € Ng> D49, We can repeat the above procedure to obtain that ¥, € D* and the equality

(4.5.1).

The proof of (b) is similar. The main difference is the Malliavin derivative of the second term
Y; (r) in the definition of Y;. For simplicity of notation, we only prove the smoothness of the
random variable

— — 2po
Y(l):/ (ult, ) % uls,y) = ull, ) = WS DT 5 o, (4.5.4)
[0,1]*

|l— _ S|1+2p071 |x _ y|1+2p0)/2
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We define

Uy 11x1y,) 270

il(t, $X,Y) = { |£—s]1F2P071 | x—y|T+2PoT2
0

ift#sand x # y;

otherwise.

Applying Lemma 4.3.3 with y; + ﬁ <&<01/2,y, + 2—’1?0 <1 < 02/2 so that almost surely
the function # is continuous and bounded on [0, T]? x [0, 1]2. Similar to the proof of (a), we
discretize Y (1) by

k=l Us;, 11 %1y 2P

Xk = k_4 Z ,
i,j,m,n=0 |2; — Sj|1+2l7071 | X — Y| 1+2P072

where t; =s;=x;=y; = i]'c,i =1,..., k (we omit the dependence on k for convenience). Here
we assume that

2
u(l]sj;tilx]ynrxm]) Po _
|t; — Sj|1+2pw1 | X — yn|1+2pm

0, iff;=sj0r Xpm=yn.

Similar to the arguments in the proof of (a), using (4.3.6), (4.3.10) and Lemma A.6.3 we have
that X; converges to Y (1) in L9(Q) as k — oo for any g > 1. Furthermore, We can prove that
DX} converges to the Bochner integral

f Zpou(lls,r]x]y,x])z”"_lDu(l‘,x: s, ) dsdtdydx
[0,1]

|t — s|1+2PoY1|x — y|1+2Poy2
in L9(Q; 77) as k — oo for any g = 1. Since the Malliavin derivative is closable, we have

DY) - 2pou(lys,i1x1y,x)°7 " Dult, 35, y)
- [0,1]4 |t— 5|1+2p07/1 |x — y|1+2P0Y2

dsdtdydx (4.5.5)

and Y(1) € qul[ﬂ)l"’ . We repeat the above procedure to conclude that Y (1) € D* and for any
integer [,

plymye [ 2Po@po=D--@po-l+ D u(lys,gx1y,0) 2P (Dult, x; 5, ))°
= [0‘1]4 |t_ S|]+2poy1|x_y|1+2po)’2

dsdtdydx.

0

Moreover, we have the following estimates on moments of the Malliavin derivatives of the
random variables {Y;, r € [sg, So + 611} and {Y;, r € [0, A.]}.

Lemma 4.5.2. (a) Forany p =1, there exists a constant cy, not depending on (s, yo) € [0, T] x
[0,1], such that for all 5, > 0 and for all r € sy, So + 611,

EDY 1%, < ¢p(r — s0)2P8 P07 10PP2, (4.5.6)
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(b) For any p = 1, there exists a constant c,, not depending on yy € [0,1], such that for all
r€[0,A.],

ElDY, " 1 < cpr?PaPoroP, (4.5.7)

Proof. We first prove (4.5.6). By Lemma 4.5.1(a),

, - ’ 2po—1
DY, =2p0f dsdt(u( Yo) ~ (5, Y0))

(50,712 |t — s|Y0/2 D(u(t, yo) — u(s, yo)), (4.5.8)
So,T -

and for any p = 1, by Holder’s inequality,

p-1 E[I(u(t, yo) — u(s, o)) | 2P~ 1P ]
E[IDY; 1P ] < f dd) f dsd
. II”]<C,,( (50,712 sat 50,712 sat |t — s|vor/2
x | D(u(t, yo) — u(s, yo))llgg,. (4.5.9)
Since
ID(u(t,x) — uls, y)I5, = Ellult, x) — uls, y)I°] (4.5.10)

(see also the isometry (4.4.14)), by (4.2.3), we see that (4.5.9) is bounded above by

eplr - SO)Z(p—l)f dsdt|t— s|PPo=10)/2

[s0,71%
< cp(r — 59)2P5P0TYOP2 4.5.11
=Cp 0) 1 ’ (4.5.11)

as desired.

To prove (b), it suffices to estimate the moments of DY] (r) since the estimate for the moments
of DY (r) is similar to the proof of (a). Indeed, by (4.5.2),

’

u(lys,x1y,x) 2P0 Dult, x;5, y)
DY (r) :Zp()f Zdtdsf ,dxdy sLR2peT e =yl 2T
[0,7] (Yo, Yo+Ax] [t — s [x—yl
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and for any p = 1, by Holder’s inequality,

E(IDY (NI, 1< c (rA*)z(p_”f dtdsf dxdy
H# P [0,r? (Yo, Yo+A.1?

Elu(Lys,x1y,x) 2P VP [ Dult, x5, )1,
) £ — s|0F2Por 0P| x — y|0+2Pay2)p

< cp(rA*)z(”_l)f dtdsf dxdy
[0,r1? (Y0, Yo+A,1?

|t — S|P0P91|x_y|l70p92
X
[t — s|PA+2poy)) | x — y|P(1+2P0Y2)
2pAp(p091—(1+2p071))Ap(poez—(1+2poyz))
. *

=¢p (rAy)
< Cp r2p5p(2p091—2(1+2p0}/1))6p(p062—(1+2p0y2)+2)

=cp r2P P Po@01+02)=2po@y1+y2)=1) - Cp r2PgPPo=Yo), (4.5.12)

where the in the second inequality we use (4.3.10), and the derivation of the last equality
follows the same reason as that of (4.3.16).

Therefore, we have finished the proof. ([

Furthermore, it is clear that for any integer i and p = 1,

sup E ||D"Y,||§f®i]<oo, (4.5.13)
r€[30,50+51]
and
sup E IIDinIIZ,f®i] < oo. (4.5.14)
rel0,A.] :

We proceed to introduce the random variables needed for Theorem 1.5.5 to study the smooth-
ness of densities of the random variables F and M,. We define the function yq : R* — [0,1] as
an infinitely differentiable function such that

0 ifx>1;
wo(x) =1 wo(x)el0,1] ifxe [%, 1], (4.5.15)
1 ifx<i.

2

We first introduce the random variables needed to prove the smoothness of density of F. For
(Zb ZZ) € RX]O’OO[’ set

a=2zy/2 and A=Rx]a,ool. (4.5.16)
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Let R = R(zp,61) be defined as in Lemma 4.3.1 for the specific value of a in (4.5.16). Define

0 if x> R;
Ww(x):=wo(x/R) sothat y(x)=<{ wx)el0,1] ifxe [%,R], (4.5.17)
1 ifxsg
and
19 loo :=suply/(x)| < cR™! (4.5.18)

xeR

for a certain constant ¢ not depending on z.

If I xJ<]0,T]x]0,1[, let ¢1, Cy, c2, Co be as in (4.2.9) and (4.2.10), and fy : R — [0,1] be an
infinitely differentiable function supported in [c;/2, (C; + T)/2] such that fy(¢) =1, forall r €
[c1,C1]. Let go : R— [0, 1] be an infinitely differentiable function supported in [c2/2, (Cy + 1)/2]
such that go(x) = 1, for all x € [¢, Cy]. In the case of Neumann boundary conditions, if I ]0, T']
and yp =0¢€ J c[0,1], we define gy to be an infinitely differentiable function with compact
support such that gy(0) = 1 and satisfies the same Neumann boundary conditions.

We define the .77 -valued random variable u}q evaluated at (7, v) by

2

u114(r, U) = (E — w

) (fo(r) go(v). (4.5.19)

In the case I x J <]0, T1x]0, 1], from the choice of the functions fy and gy, we see that there
exists a constant ¢ such that for all (sg, yg) € I x J,

luylle < c. (4.5.20)

Let ¢po : R— [0, 1] be an infinitely differentiable function supported in [—1,2] such that ¢ (v) =
1, forall v € [0,1].

For yp € J < [0, 1], we define ¢, as an infinitely differentiable function with compact support
such that ¢5, (o) = 1 and satisfies the same boundary conditions at 0 and 1 as the Green kernel.
In particular, if / <]0,1[ and 6, satisfies the conditions in (4.2.11), then we choose the function
¢s, in the following way:

V=Yo
¢s, (V) 1= (W), velo,1], (4.5.21)

1

so that, for some constant c,

95, (0 <c67'? and |¢5 () <cb;', forallve[0,1]. (4.5.22)
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Set

.
H(r,v):=¢>51(V)f v(Yoda, (r,v)€[so,s0+61] % [0,1]. (4.5.23)

We define the .7#-valued random variable ui evaluated at (r, v) by

o2 - :
ui(m:{ (£- &) How i (v €lso,so+81]x10,1]; w524

otherwise.

Finally, we define the random matrix y 4 = ()fiij )1=i,j<2 by

1 0
= . 4.5.2
YA ( 0 fsf)o-i-a] W(Yr)di‘ ) ( 5 5)

If sy=0€ 10, T], we only consider the random variables F», ui and yi"z defined in (4.2.5),
(4.5.24) and (4.5.25) with sg = 0, respectively.

We next introduce the random variables needed to prove the smoothness of density of M. For
z€]0,00], set

a=z/2 and A=]a,ool. (4.5.26)

Let R = R(z,6) be defined as in Lemma 4.3.5 for the specific value of @ in (4.5.26). Define

0 if x> R_;
¥(x):=wo(x/R) sothat ¥(x)={ w(x)el0,1] ifxe [_g,fz], (4.5.27)
1 ifx< g
and
19" lloo :=sup [/ (x)| < cR™! (4.5.28)

xeR

for a certain constant ¢ not depending on z.

We define ¢4 as an infinitely differentiable function with compact support such that
¢s(v) =1, forall ve [y, yo+052] (4.5.29)

and satisfies the same boundary conditions at 0 and 1 as the Green kernel. In particular, if
J <10,1[ and 81, &> satisfy the conditions in (4.2.15), we choose the function ¢ in the following
way:

gba(v):gbo(y;yo), velo,1], (4.5.30)
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where the function ¢ is specified below (4.5.20), so that for some constant c,

g5 () <cd™! and |P5(v)l<cd? forallvelo,1]. (4.5.31)

Set
H(r,v):= é&(v)f U (Yo)da, (r,v)€[0,A.]x][0,1], (4.5.32)
0

where {Y; : r € [0,A.]} is defined in (4.3.17). We define the .#-valued random variable u 4
evaluated at (r, v) by

(- &) A0 i 0,v)€l0,A0 % (0,1];
ui(r,v)=4{ \or ov (4.5.33)
otherwise.
Finally, we define the random variable
A
Ya =f0 w(Y)dr. (4.5.34)

We now prove the smoothness of these random variables, as required in Theorem 1.5.5.

Lemma 4.5.3. Fori, j € {1,2}, u}, e D®(), v €D and u; e D®(#), y ; € D®.

Proof. We first prove that yi’z € D*°. Similar to the proof of Lemma 4.5.1, we discretize the
integral by setting

01 &
Xp:=— Z W(Ys0+k61/n)
n =1

for n = 1. Since r — Y, is continuous, X, converges to yi"?‘ a.s. as n — oo. By dominated
convergence theorem, for any p = 1, X;, converges to )fi‘z in LP(Q) as n — oco. By the chain
rule, we know that X, € D*° and

01 &
DX, = ; Z L4 (Ys()+k61/n)DYsg+k61/n;
k=1

which converges a.s. to the Bochner integral |, S?“Sl

continuous. For any g = 1, by Holder’s inequality,

v'(Y,;)DY,dr as n — oo since r — DY, is

n
ElDX,1%1<cn™7n9™" Y ElI D51 k6,/nll %]
k=1

n
<enn7'Y sup E[IDY, I, ] =<c,

k=11€ls0,5+01]

where the last inequality follows from (4.5.13). We apply Lemma A.6.3 to see that DX}, con-
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verges to the Bochner integral fs.zo+51 v (Y,)DY,dr in L9(Q; ) for any g = 1. Since the Malli-
avin derivative is closable (see [64, Proposition 1.2.1]), we obtain that

2,2 Stor
DYA’ :fso v (Y,)DY,dr (4.5.35)

and yijz € Ng=1 D9, In order to prove that yijz € D*°, we can repeat this procedure and it
remains to prove thatforany g, j = 1,

sup  E[ID/y(Y)1,.;1 < oo. (4.5.36)

re[sg,So+01]

In order to prove (4.5.36), we use the Faa di Bruno formula (see formula [24.1.2] in [3]), we

have
. J L1 (DY, "
— (n) r
Dly(Y)=Y vy  } ®;( E ) , (4.5.37)
n=1 LY Lh=n Y] il=j1=1 !
where both & and ® denote the tensor product of functions. Set
iy [(piy |
A=y (DY) (4.5.38)
i=1
We have
J —
1AL ypes < c [T ID! Yl i (4.5.39)
i=1

Then (4.5.37), (4.5.38), (4.5.39) and (4.5.13) give us (4.5.36). Hence v belongs to D.
We can prove y ; € D* similarly by discretization and using (4.5.14).

We proceed to prove that ui‘ € D> (7). By the definition of ui in (4.5.24), we can write

ui(r, V) =W (V) 5046, (NP5, (V) = Lisy s9+81] (r)qbg’1 (V)f v(Ygda

= uil(r, v)— uiz(r, V). (4.5.40)

We first prove that v € D (). For n = 1, we define

n
Y (r,0) = Y W (Yayes,kim) Lisg+6, (k=1 my 546, k1l (P, (V).
k=1
For almost every (w,r,v) € Q x [0, T] x [0,1], Y,%(r, V) converges to u‘?‘ql(r, v) as n — oo. By the
dominated convergence theorem, Yn1 converges to uil in LP(Q; 77) for any p =1 as n — oo.
Since for any r € [sg, So + 011, Y € D*°, by (4.5.36) and chain rule, we know that for any r €
[S0, S0 + 011, w(Y;) e D*.
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We claim that if Z € D* and h € 77, then Zh belongs to D*°(7). To see this, it suffices to
prove that for any integer k = 1 and p = 1, Zh belongs to D*? (7). Since Z € D, we choose
a sequence of smooth random variables (Z;),>1 converging to Z in D%P as n — co. By the
definition of the norm || - [l p, , (Znh)n=1 is a Cauchy sequence in D5P (#), which converges
to a limit in DF? (7), say Z. On the other hand, it is obvious to see Z,h converges to Zh in
L2(Q, ) as n — co. Hence Zh = Z e DXP (7).

Applying this claim we see that Y,} belongs to D*°(#’) and

n
DY, (%)= Y DY (Ysor8,kim) iso+8, hk—1)/m,50+8: kil (Db, (%),
k=1

For almost every (w,1,v) € Q x [0, T] x [0,1], DY,% (r, v) converges to Dy (Y;) 1 s, so+8,1 (M Ps, (V)
as n — oo since r — Dy (Y;) is continuous. Moreover, by Holder’s inequality, for any g = 1,

T prl n
E[f f IDY, (r, )%, drdv| =Y E
0 Jo .

So+kd1/n 1
f ||D1//(Ys0+51k/n)llf7%dr][o ¢gl(v)dv
S

=1 o+(k=1)81/n
n so+kd1/n q
SCZ[ sup E[IIDY,II%J]dr
k=1YS0+(k-1)81/n re[sy,s0+051]
<c,

where the last inequality follows from (4.5.13). Applying Lemma A.6.3 (with the measure space
replaced by (Q x [0, T] x [0,1],P x 12), where A2 is the Lebesgue measure on [0, T] x [0,1]), we
have for any g = 1,

lim E
n—00

T rl
fofo||DY,}(r,u)—Dw(Y,)1[50,30+51](r)¢51(v)llifdrdv

=0,

which implies

lim E
n—oo

T rl 12
([) [) ”DYnl(r, U)—DW(Yr)l[so,s0+6l](r)¢5l(U)”_Zjiadrdl/) =0.

Thus for any g = 1, DY;} (-, *) converges to Dy (Y) 15, s9+6, ()5, () in L9(Q, 5®?) as n — co.
Since D is closable, we obtain

Duﬁl (%) = DY (Y) 15, sp46, ()5, ().
We repeat this procedure and apply (4.5.36) to conclude uil € D™ (7).

The proof for u%? € D°(J#) is similar. We discretize u%2(r, v) by

n So+k51/ﬂ

YZ(rv)=), V(Yo dal s+ (k-1)8,/n,50+ k6,1 (P (V).
k=1Y%

In fact, the proof of yi’z € D*° indicates that for any r € [sg, so + 611, fs:) v(Yz)da € D*™®. Hence
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applying the claim again, we see that Y? € D®(). Similarly, we apply (4.5.36) again to
conclude u?? € D™ (7).

The proof of u ; € D*°(J¢) is similar. U

The following results gives some estimates on the L” (Q)-norm of (ﬁ{z)—l and y;.

Lemma 4.5.4. (a) The random variable yfq’z has finite negative moments of all orders. Further-
more, for any p = 1, there exists a constant cy, not depending on (o, yo) € I x ], such that for
all small &, > 0 and for zp = 51/4,

[ (Yifz)_lnm(g) <¢p 51_1. (4.5.41)

(b) The random variabley ; has finite negative moments of all orders. Furthermore, for any
p = 1, there exists a constant ¢, not depending on y, € ], such that for all small 5y, 62 > 0
and for z= (61/2 +02)12,

”')/;11”[}7(9) =¢p (5}/2 +52)_2. (4.5.42)
Proof. We start by proving (a). By the definition of the function v,

29 So+01 _
Ya 2[ 1{Y,s§}dr‘:X-

So

Fore <67 and any g = 1, since r — Y, is increasing, we have

P{X <€} <P{Y1e = R/2}
< (2/R)TE[| Yy sel] < ¢ R 9295071072 (4.5.43)
where in the second inequality we use Markov’s inequality, and the last inequality is because

of (4.3.4). This shows that the random variable yi‘z has finite negative moments of all orders
by Lemma 4.4 in Chapter 3 of [24]. Moreover, for any p =1 and g > p/2,

E[X"p]:pf yPIP(X > yydy
0
61’1 B 0o _
= pf yPIp(X 7t > y)dy+pf yPIP(X7 > y)dy
0 67!

—p . peqgsPo-r0al2 [ -1 —2q
<cd," +cR95 yPy™#ldy
671

P —q s(Po—yot+4ql2—p
=cd," +cR™ 15 .
Using the definition of R in (4.3.5), this is equal to
1

Cﬁzp (1 i a—2poqé(l}’o—4)67/25(P0—Y0+4)q/2) )
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Under the assumption z, = d i/ 4 by (4.5.16), this is bounded above by
1, _ _ _
c5,? (1 T e BT N
which implies (4.5.41).

We proceed to prove (b). Similarly, by the definition of the function v,

A,
yAzf I{Yrsg}dr::X.
0 2
For any 0 < € < A, since r — Y, is increasing,

P{X <€} <P{Y.=R/2}
< /R)TEY,T) < cuR™1295P07104, (4.5.44)

where, in the last inequality, we use (4.3.18). Hence the random variable y ; has finite negative
moments of all orders. Moreover, for any p =1 and g > p/2,

o0
0
. o
) pf YRET > yydy + Pf YR > y)dy
0 At
P R4 5! )q oo 1,,-2q
N - Po—Yo p-1,—
<cA,"+cR™ fA_1y y2aqy
= cATP + cR™I5WPo=Y0d 720D
Using the definition of R in (4.3.27), this is equal to
cAP (1 + d_zp"q&_(‘l—)’o)q(s(po—yO)qA%q) .

Under the assumption z = §/2 = (§1/2 + 6,)!/2, by (4.5.26) and (4.3.13), this is bounded above
by

CA._p (1 + 6—%x2poq5—(4—}’0)675(p0—7/0)qA%q) — ZCA._p,

which implies (4.5.42). O

Now we are ready to verify that the random variables introduced above satisfy the condition
(iii) of Theorem 1.5.5.

Lemma 4.5.5. (a) On the event{F € A} = {F, > a}, we have (DF;, ui)%) = yi;j fori,je{1,2}.
(b) On the event{My € A} ={My > a}, (DMo, uz)x =73
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Proof. We first prove (a). If 5o > 0, by the definitions of u}q in (4.5.19) and of the functions fy,
8o, and Lemma 4.3.6, we have that

(DFy, ul). —fSOfIG( - )(i—i)(f() (w)drd (4.5.45)
LUp) o = A So—1 Yo,V ar 902 olr)golv rav 0.

= fo(s0)go(yo) = 1= Y,lq'l-

Second, from the definition of 14124 in (4.5.24), it is obvious that

2

So 1 a
(DFy, U%) 7 = fo fo G(so—r,yo,zz)(

E - ﬁ) H(r, V)l{s0<rsso+51}drdv =0. (4.5.46)

By Lemmas 4.4.4 and 4.3.6,

1 S rl 0 62
(DFZ,MAX}?:fO fo G(S—r,yo,v)(a—W)(fo(r)go(v))drdv

So 1 a 02
—fo fo G(So—r,yo,v)(a—W)(fo(r)go(w)drdv (4.5.47)
= f0(8)80(10) — fo(s0)go(y0) =1—-1=0.

Furthermore, by Lemma 4.3.6, for both cases sp > 0 and sy = 0,
S 1 S0 1
(DF>, u3) zf drf dvG(S -, yo, V)5 (1, V) —f drf dvG(so— 1,0, V)u4 (1, v)
0 0 0 0

N 1 0 9%
=| d dvG(S—ryp, V)| -5 |HIHv) -0
fso rfo vG(S—1,y0 v)(ar 61}2) (r,v)

S—so 1 ) 62
=f0 cirf0 dvG(S—so—r,yg,v)(a—ﬁ)H(so+nl/)
= H(S, o). (4.5.48)

Therefore,

S S
(DFs, %) 5 = b5, (o) f WYy dr = f w(v)dr (4.5.49)
So So

where, in the second equality, we use the fact that ¢, (o) = 1. Moreover, on the event {F € A} =
{F> > a}, we observe that if r > S = sy, then y¥(Y;) = 0. Otherwise, we would have ¥ (Y;) >0,
hence Y; < R for some r > S, and by Lemma 4.3.1, this implies that

F>=1(S,y0) = sup u(t,yo) =a<Fk,,

te(so,r]

which is a contradiction. Hence, on {F € A} = {F, > a}, the last integral in (4.5.49) is equal to

SO+61 29
f w(¥,)dr =42,

So
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This completes the proof of (a).

We now prove (b). By Lemma 4.4.4,

(DMo, uz) w = 1;..5(G(S =+ X, %), uz) »

ffG(S X, 1/)( )H(rv)dvdr

S, X) = ¢s(X) f w(Y,)dr. (4.5.50)

Since X €[ Y0, Yo + 021, by the definition of the function (;_55, itimplies that (ﬁ,; (X) = 1.Hence,

S
(DMo tiz) 1 = fo B (Tdr

On the event {My > a}, for r > S, we have ¥(Y;) = 0. Otherwise, we would have ¥(Y;) > 0,
hence Y; < R and by Lemma 4.3.5 this implies that

My=u(S,X)= sup u(t,x) < a< My,
(£,x)€[0,r1%[0,Y0+02]

which is a contradiction. Therefore, on the event {M, € A},

A
<DM0»UA>%”:f0 w(Yy)dr=yj;.

This proves (b). O

Proof of Theorem 4.2.1(a). The strict positivity of F, has been proved in Lemma 4.4.2(a). For
(S0, ¥0) € I x J < [0, T] % [0,1] with sp > 0, by Lemmas 4.5.3, 4.5.4(a), 4.5.5(a) and Theorem 1.5.5,
the random vector F has an infinitely differentiable density on Rx]z,/2,00l. Since the choice of
z is arbitrary, the random vector F possesses an infinitely differentiable density on Rx]0,col.
Using the same argument, if sy = 0, then the random variable F, has an infinitely differentiable
density on ]0, co]. i

Proof of Theorem 4.2.1(b). The strict positivity of My has been proved in Lemma 4.4.2(b). The
proof of smoothness of the density of M is similar to that of Theorem 4.2.1(a) by using
Lemmas 4.5.3, 4.5.4(b), 4.5.5(b) and Theorem 1.5.5. U

We now derive the expression for the probability density functions of F and M, from the
integration by parts formula; see [64, (2.25)]

Proposition 4.5.6. (a) The probability density function of F at (z1, z2) € Rx]0,00] is given by

P(21,22) = E|1ip 5z, 55206 (148 (1315 ) | (4.5.51)
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(b) The probability density function of My at z €]0,00] is given by

po(2) = El1{py>26 (gl y 3)1. (4.5.52)

Proof. We first derive the formula (4.5.52). Let K, : R — [0, 1] be an infinitely differentiable

function such that €,(x) = 0 for all x < 23—Z and K,(x) =1 for all x = i—z. Define Gy = &k (Mp).

Consider @ and A as in (4.5.26). It is clear that on the set {M, ¢ A}, we have G, = 0.

Let f be a function in the space C3°(R) of infinitely differentiable functions with compact
support. Set p(x) = [ f(y)dy. On {M, € A}, by the chain rule of Malliavin derivative (see [64,
Proposition 1.2.3]) and Lemma 4.5.5(b), we have

(DY(My), uz) = @' (Mo)(DMo, uz) = ¢'(Mo)Y 5.
Hence,

@' (Mp) = (Dp(Mo), uz!y ) -
Since Gy = 0 on the set {M; ¢ A}, we obtain

Go' (M) = Go(Dp(My), uz1'y 3) -

Taking expectations on both sides of the above equation and using the duality relationship
between the derivative and the divergence operators we get

E[Gog' (Mp)] = Elp(My)6(Gou 41y 7)) (4.5.53)
Using the fact that
My

p(My) = f o' (ydy (4.5.54)

and Fubini’s theorem, we obtain that
E[Gop' (Mp)] = A(p'(y)E[l{MPy}é‘(Go uzlyldy, (4.5.55)
and equivalently,

E[Go f (Mp)] :fRf(y)E[I{Mo>y}5(GOuA/YA)]dJ’- (4.5.56)

32 o, the density function of

Since Gy = 1 on the set {My = 32}, this implies that for any y €]3;

My at y is given by
Po(y) =ElL{py>6(Goua 1y 2)1.
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In particular,
pol(2) = E[l{M0>z}5(GOuA/YA)]'

Since Gy = 1 on the set {M, > z}, by the local property of § (see [64, Proposition 1.3.15]), we
obtain

po(2) =E[1pg>20(wzly 7)1

We now derive the formula (4.5.51). Let k , : R— [0, 1] be an infinitely differentiable function

such that x4z, (x) =0 forall x < Zgﬁ and x4, (x) =1forall x = 3722. Define k (y1, y2) = Kz, (y2) and

G =« (F). Consider a and A as in (4.5.16). It is clear that on the set {F ¢ A}, we have G =0.

Let g be a function in the space Cgo([RRz) of infinitely differentiable functions with compact
support. Set

X1 X2
(P(xbe):f f gy, y2)dydys. (4.5.57)

On {F € A}, by the chain rule of Malliavin derivative (see [64, Proposition 1.2.3]) and Lemma
4.5.5(a), we have

. 2 . 2 ..
(DO1p(F), ul)) s = Y 01i9(E)DF;, ul)) o = ¥ 01:p(F)y'/,
i=1 i=1

where the notation 0,; means we take the partial derivative with respect to the first variable
and then take the partial derivative with respect to the ith variable. Consequently,
2 k k
0129 (F) = Y (DO19(F), ul) s (y ;)2
k=1
Since G = 0 on the set {F ¢ A}, we obtain
2
GO19(F) = Y G(DO1¢(F), uk) s (y ;)2
k=1

Taking expectations on both sides of the above equation and using the duality relationship
between the derivative and the divergence operators we get

2
E[GO129(F)] = E[01p(F)5( Y. Guk (y 31 ). (4.5.58)
k=1

We denote

2
G=6() Gukiy;h*.
k=1
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Since G = 0 on the set {F ¢ A}, the local property of § (see [64, Proposition 1.3.15]) implies that
G = 0 on the set {F ¢ A}. On the other hand, on {F € A}, by the chain rule and Lemma 4.5.5,

. 2 . 2 ..
(D@(F), )y v =Y 0ip(F)(DFj, u)) v = Y 0ip(F)y'/,
i=1 i=1
which implies that on {F € A},
2
01p(F) = Y _(D@(F), u}) s (y,H™.
n=1

Multiplying both sides of the above equality by G, we obtain

- 2 -

Go1p(F) = Y G(D@(E), uy) » (y ™. (4.5.59)

n=1

We substitute (4.5.59) into (4.5.58) and we obtain
2 —_
E[GO129(F)] =E | Y. G(D@(F), u}) »(y )™
n=1

=E|pF)é

=E|@p(F)d

2
6( Guﬁ(mk'z)uzml)"'l)
k=1
Since (y;)"! =1and (y;)? = (y;)*! =0 by (4.5.25), this is equal to

E[p(F)6(6 (Gl (y M2 ul(y;H'h] = Elp(F)S (6 (Gu 1vy55) ul)).

Using the fact that

F rk
p(F) = f 0129(y1,y2)dy1dy- (4.5.60)

—00dJ—

and Fubini’s theorem, we obtain that
E[Go129(F)] = fR 01201, Y2BIL(E 5 By 06 (GU 1y 5 )l dyrd e, (4.5.61)
and equivalently,

E[Gg(F)] = fR 8L Y2IEILE >y, B>y 6O (GUa Y udyidys. (4.5.62)

Since G = 1 on the set {F € R x [%,oo[}, this implies that for any (y,,)2) € [Rx]?%,oo[, the
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4.6. Gaussian-type upper bound on the density of F

density function of F at (y1, y») is given by
p(y1,y2) = E[1{F1>y1,F2>y2}5(6(Gui/)fi’z)u}4)].
In particular,
p(21,22) = ElLip 52,5520 B (GUA 1Y 5 U],

Since G =1 on the set {F» > z,}, by the local property of 6 (see [64, Proposition 1.3.15]), we
obtain

p(zlr ZZ) = E[]-{F1>Zl,F2>Zg}5(6(u31/Y§1’2) ulA)]'

g
Remark 4.5.7. In the proof of Proposition 4.5.6, if we use the fact that
+00 F
p(F) = —f 0129 (y1, y2)dy2d y,
F] —00
instead of (4.5.60), we obtain another formula for the joint density:
p(z1,22) = —ElLip <z, 52,30 O (W /Y52 ulp)]. (4.5.63)

4.6 Gaussian-type upper bound on the density of F

In this section, we fix I x J <10, T1x]0, 1[ and assume that 0 satisfies the conditions in (4.2.11).
We derive an estimate on the density of F from the formula obtained in the previous section.
This estimate will prove Theorem 4.2.2.

First, from (4.5.51) and applying Holder’s inequality, for z; =0,

p(z1,22) < P{F1 > 21} PIF > 2} 166 (15 1757 ul) 2 o0 (4.6.1)
On the other hand, if z; < 0, applying Holder’s inequality to (4.5.63), we have

p(z1,22) < P{F) < 21} *PIF, > 21 16 6 (1 1y 5 u) 12 - (4.6.2)
Combining (4.6.1) and (4.6.2), we obtain that, for all (z1, zp) € Rx]0, 00,

p(z1,22) < P{F1| > |z} *P{E > 22 16 (0 (W4 1v5) ul) 2 - (4.6.3)

In what follows, we use the properties of the Skorohod integral é to express 6 (0 (ufq/ }/3{2) ullq).

147
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Lemma 4.6.1.

@AY UL =T+ To— T3+ Ty — Ts + T,

where
5(u?) (DY%2, u2) 1
1= a0y, To= ——5 =8y, Ty = —5(DEWA), ul)r,
Ya (o®) Ya
5(u?) 2Dy, u%)
T4 = A <D7/izr u}q)jﬁ’), T5 = A—A<Dyi27 u}q)}ipr

(Y5%? (y5%3

1
T = —53— (DXDY5? W) s )
)

Proof. First, by [64, (1.48)],

8@ WAy ul) = 8WA Y8 (W) — (DSWA IV, uh) .
We use [64, (1.48)] again to write

5(ui/y‘f‘4'2) = 5(ui)/yi"2 + (Dyil’z, ui)yg/(yi‘z)z.

Hence the first term on the right-hand side of (4.6.8) is equal to

5(u?) DY Ul
Wi 1Y3H0 ) = —55-0 () + ——257 =5 (u)).
A (ra?)

For the second term on the right-hand side of (4.6.8), we apply (4.6.9) to obtain that

DS(WA1Y%%) = DO WA 1Y5?) - DUDYE ud) ol (Y5H)?)

_DoGd) SwhDYE: DDV uha N 2DY5, u2) - DYS?

Yo (552 (552 (553

Therefore the second term on the right-hand side of (4.6.8) can be written as

1 2DY5% W) 2
DOV, g s = =55 (DOWR), U = —— 2552 (DY 52 )
YA YA
5(u) 1
5 DY U)o+ 5 (DADY 5 W) e u) v
o) (rx9)
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4.6. Gaussian-type upper bound on the density of F

Putting (4.6.10) and (4.6.12) together, we obtain (4.6.4). [l

Proposition 4.6.2. (a) For any p =2, there exists c, > 0, not depending on (so, yo) € I x ], such
that for all small 61 > 0, and for all z, = 5}/4,

I Tillr ) < cp 671, forie{l,2,3). (4.6.13)
(b) Ty, T5 and Tg vanish.

An immediate consequence of Lemma 4.6.1 and Proposition 4.6.2 is the following.

Proposition 4.6.3. There exists a finite positive constant c, not depending on (so, yo) € I x J,
such that for all small 5, > 0 and for all z, = 6%/4,

8@ W5 /Y32 20y < €672 (4.6.14)
The proof of Proposition 4.6.2 is divided into the following two subsections.

4.6.1 Proof of Proposition 4.6.2(a)

Throughout Section 4.6.1, we assume that
zp = 5174, (4.6.15)
Recalling the definition of R in (4.3.5), under the assumption (4.6.15), we see from (4.5.16) that
R'= c_la_2p°6(1y°_4)/2 = c'zz_2p°6(17/°_4)/2
< s\, (4.6.16)

We will make use of this in the estimates below.

We first give an estimate for the moments of T;. In order to estimate the moments of the
Skorohod integral 6 (ui), we extend Proposition 1.3.11 of [64] to multiparameter adapted
processes, as mentioned in [64, p.45].

We denote by 2 the closed subspace of L2(Q x [0, T x [0, 1]) formed by those processes which
are adapted to the filtration {%s:= c{W(t,x) : t <s5,x€[0,1]},s € [0, T]}.

Proposition 4.6.4. 12 c Dom & and the operator § restricted to L2 coincides with the Walsh
integral, that is, for u € Li

T pl
o(u) :[ f u(r,yyYW(dr,dv) (4.6.17)
o Jo

Proof. We follow the proof of [64, Proposition 1.3.11]. Define Z(z, x) = Y1), 1 (£)1p(x) where
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the random variable Y is square integrable and measurable with respect to .%#, and B is a
bounded interval. We first prove that (4.6.17) holds for Z. Since a square integrable random
variable can be approximated by random variables in D! and & is closed, we can assume
Y e D2, Using [64, (1.48) and Corollary 1.2.1], we have

T prl
0(Y1,p(D1p(x)) =YW(a,b] x B) =f f Z(r,v)W(dr,dv). (4.6.18)
0 JO

Since the linear span of the random variables of the same type as Z is dense in L2 (see [16,
Proposition 3.1]), we can find a sequence {Z,},>; converging to u in I2(Q x [0, T] % [0,1]) and

T rl
0(Zy) :f f Zy(r,v)W(dr,dv). (4.6.19)
0o Jo

By Ito’s isometry, we know that [ [} Z,(r, v)W(dr,dv) converges to f| [y u(r, )W (dr,dv) in
L?(Q) as n — oo. Since § is closed, this implies 1 € Dom & along with (4.6.17). ([

Proposition 4.6.4 enables us to use properties of Walsh integrals to estimate the LP (Q)-norm
of 6 (ui), as in the following lemma.

Lemma 4.6.5. For any p = 2, there exists a constant ¢, not depending on (o, yo) € I x J, such
that for all6; > 0,

182D lLr ) < cpd3'*. (4.6.20)

Proof. From (4.5.40), we know that for (r, v) € [sg, So + 611 x [0, 1],
15 (r,0) = g, WY(Y;) =P (V) f y(Ya)da.

Since ui is adapted, by Proposition 4.6.4, we have

2. So+61 1 B S()+61 1 " r
O(uy) = A ¢s, WY (Y)W (dr,dv) : W(dr,dv)(,bal(v) v(Yzda.
(4.6.21)

For the first term on the right-hand side of (4.6.21), by Burkholder’s inequality, for any p = 2,
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4.6. Gaussian-type upper bound on the density of F

since0<vy <1,

p

So+51 1
f fo s, WY (Y)W (dr,dv)

LP(Q)

S()+5] 1
U f ¢>§l(u)w2(yr)drdv)
So 0

1 pl2
- cpé’f/z ([0 <P(251(V)dv)

12 opla 3pl4
< ¢y "6V =, 677" (4.6.22)

pl2
<cpE

For the second term on the right-hand side of (4.6.21), similarly, by Burkholder’s inequality,
forany p=2,since0<y <1,

So+51 1 r p
f fW(dr,dv)(pgl(v)f v(Yo)da
So 0 So

LP(Q)

S()+5] 1 r 2 p/2
([ ar [ e[ wcra] ||
So 0 So

So+61 pl2 1 pi2
ool [o-srar] ([ whwral
S0 0

/2
yo+261/2 P
3pl2 —2
< ¢pd; (fy 0;°dv

1/2
0_51

_ Cpéiip/26l—3p/4 _ Cp5ip/4» (4.6.23)

<cpE

where, in the third inequality, we use (4.5.22). Hence (4.6.20) follows from (4.6.21), (4.6.22) and
(4.6.23). O

By (4.5.20), forany p = 1,

T pl 1/2
16D lrr@ = cp ( fo fo (wy(r,v)?drdv| <c, (4.6.24)
From (4.5.41), (4.6.20) and (4.6.24), using Holder’s inequality, we obtain that for all p = 2
I Tyl e < €p071 83 % = c,p07 M4 (4.6.25)
This proves the statement (a) of Proposition 4.6.2 for i = 1.

Next, we show that the estimate in Proposition 4.6.2(a) holds for 7.

We first use the formula (4.5.40) to give an estimate on the .77-norm of ui. By definition, since
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o<y<l,

50+6]

1
1312, <2 drf0 dvy(v,)20% (1)
So

50+51 1 r 2
+2f drf dv(¢g’1(v))2 (f w(Ya)da)
So 0 So

)/0+26i/2 S()+6] y0+25i/2
5261f dl}+26/ (r—so)zdrf 61_2dv
¥

0—5}/2 So J’O—lﬂ/z
=67+ 676,

=2c637, (4.6.26)

where in the second inequality we use (4.5.22).

Lemma 4.6.6. For any p = 1, there exists a constant c,, not depending on (so, yo) € I x ], such
that for all 6, > 0,

IKDY%2, u2) el v < €07 (4.6.27)

Proof. Taking the Malliavin derivative of yi’z, we have

22 2 So+01 2
<DYA »uA>jé”=f w/(YrNDYr» uA>ji”dr-

So
By Holder’s inequality, (4.5.18) and (4.6.26), forany p = 1,

_ S()+51
E |<DY1242,u,24>%|p] < ly'15,67 1[ E[(DY;, u%) |P1dr

So

—pop-1 So+01 p 2P
<R P80 [ BIDY I 1 dr

So

So+61
< c,,R‘Paf‘“Sp“f ElIDY, 11", )dr.

So
Using Lemma 4.5.2(a), this is bounded above by
—p ap=143p/4 a(po—yopi2 210! 2
cpRP6} &0 f (r—so)Pdr

So
_ —-1+3p/4 - 12 2p+1
=cyR paf p 5§Po Yo)p 5110

(Yo—po—Bp/2 op—1+3p/4 <(po—Yo) p/2 2p+1
< c,0, Bl 5 57
7pl4
:Cpalp )

where, in the inequality, we use (4.6.16). ]
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4.6. Gaussian-type upper bound on the density of F

By (4.5.41), (4.6.24) and (4.6.27), using Holder’s inequality, we obtain that for any p = 1

1Tl < cp07287* = c,67 Y2 (4.6.28)

This proves the statement (a) of Proposition 4.6.2 for i = 2.
We proceed to give an estimate on the moments of 73.

Using (4.6.21), we take the Malliavin derivative of & (ui) and write

¢
Dé,né(ui) = 15,5046, W (Ye) s, () — 1[50,30+51](f)(/>g1 (n)‘[s w(Yyda
So+61 1
+ f f $s, W' (Y)Dg Y, W(dr, dv)
So 0

So+51 1 r
— f f W(dr,dv)c/)g](v) [ V' (Ya)DepYada. (4.6.29)
0 So

So

It is clear that the inner product of the first two terms on the right-hand side of (4.6.29) and u}q
is equal to ¢ uf‘, ui‘)%ﬂ. By the stochastic Fubini theorem (see [24, Chapter 1, Theorem 5.30] or
[81, Theorem 2.6]), we see that the inner product of the third term on the right-hand side of
(4.6.29) and u}q is equal to

So+01 1
f f G5, WY (Y, )(DY, ul) » W(dr,dv), (4.6.30)
So 0
since the condition of the stochastic Fubini theorem can be verified:

E

So+61 1 50+51 1
f dffo dmu;(cf,n)lf alrf0 dv s W)W (V) (DeyYp)?

SO+51 1 S()+61
f dé¢ f dn f (D¢, Yr)2dr
So 0 So

<cdy sup E[IDY:I%,] <oo,

r€[sp,S0+01]

<cE

where the last inequality is due to (4.5.13). Similarly, the inner product of the last term on the
right-hand side of (4.6.29) and ullq is equal to

50+51 1 r
f f w(dr,dv)dy (v) f Y (Y)(DY,, ul) wda. (4.6.31)
So 0 So
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Therefore, by (4.6.29), (4.6.30) and (4.6.31), we write
2, 1 2 1 Sot01 1 1
<D5(UA); Up) o = Uy Up) 7 +f j(; w,(Yr)<DYr; Up) o Ps, (W (dr,dv)
So

S()+61 1 r
[T [ wandngy, o0 [ day' )Yy
0 s

So

= Tgl + ng — ng. (4.6.32)
From (4.6.26) and (4.5.20), it is easy to see that forany p = 1,
1751l rr () < ¢p03™ (4.6.33)

By Burkholder’s inequality and using (4.5.18) and (4.5.20), we have for any p = 2,

pl2

So+01 1
E[|Ts2|”] < c,B U f wl(yr)2<DY,,ullq)ig,(pgl(v)drdv)
So 0

So+01 1 pi2
U IDY, B ar [ <p(231(v)dv) ]
So

S()+61 2 p/z
( f IDY, ||fdr) .
So

By Holder’s inequality and (4.5.6), we see that (4.6.34) is bounded above by

<c,RPE

1 pl2
:ch‘P(fO ¢§1(v)dv) E (4.6.34)

So+§1
- 14 opl2—-1
cpRPSP Sy f E[IDY |, 1dr

So
S()+§1
_ 4 2-1 - 2
<cpR péf/ 6;9/ 6;’0‘) rop! f (r —so)?Pdr
So

_ -p (2(p0—)/0)+11)p/4
=cpR776;

<c 6(yO—po—4)p/26(2(p0—)/0)+11)p/4 —c 53p/4, (4.6.35)
P11 1 PY1

where in the last inequality we use (4.6.16).

We now give an estimate on the moments of T33. By Burkholder’s inequality and using (4.5.18)
and (4.5.20), we see that for any p = 2,

pl2

So+01 1 r 2
E[| Ts3|P] < cpE (f f (f wl(Ya)(DYa, ujlél)jfda) ((pgl(y))Zdrdl/)
So 0 So

S()+51 r 2
(f (f ||DYa||,%”da) dr)
So So

pl2

1 pl2
<c,RP ( f (¢} (v))zdv) E (4.6.36)
0
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Using Holder’s inequality twice and (4.5.22), (4.6.36) is bounded above by

_3p/4 So+61 r p/Z
cpRP5""E (f dr(r—so)f IIDYallzjfda)
So So

_3p/4 So+01 r plz_l So+01 r
<cpR P57 U dr[ da) f dr(r—so)”/zf ElIDY,I",1da.
) So So So ’
(4.6.37)
Applying the estimate in (4.5.6), (4.6.37) is bounded above by
_ _ _ S()+51 r
cpR PSPl s P Tn2 dr(r-so)’* | (a-sp)*’da
P 1 1 %
So So
= ¢, R PsEPTIHIDPI
1
- Cpagy()—po—4)p/26§2(p0—70)+11)l7/4 _ Cp5ip/4, (4.6.38)

where in the inequality we use (4.6.16).

Therefore, by (4.6.33),(4.6.35), (4.6.38) and (4.5.41), we have obtained that for any p = 2,
T30 r ) < Cp61_1/4- (4.6.39)

This proves the statement (a) of Proposition 4.6.2 for i = 3.

Therefore, we have finished the proof of Proposition 4.6.2(a).

4.6.2 Proof of Proposition 4.6.2(b)

We are going to show that the three terms T, T5 and T are equal to zero. First, we apply
Lemma 4.3.6 to see that for any t, s € [sg, So + 011,

T prl1
(D(u(t, yo) — uls, y0)), ul) =f [ Qir<tyGa(t —1,y0, V) = 1<y Ga (s — T, Yo, 1))
0 0

X(i—a—z)( (rNgo(v)drd
or 0v? fongowndrdv

= fo(£)go(x) — fo($)go(yo) =1-1=0. (4.6.40)

by the definition of the functions fy and go. Furthermore, by (4.5.8) and (4.6.40), we know that
forre [S(),S() +61],

o (u(t, yo) — u(s, yo))*Po
DY, e =2po | dsdrHIE

=0. (4.6.41)

(D(u(t, yo) — u(s, yo)), k) »
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Hence, by (4.5.35),
22 1 Yotor 1
(DY)~ up) r =f Y (Y )(DYr, uy) wdr =0, (4.6.42)
So

which implies that Ty = T5 = 0.

We proceed to prove that Tg vanishes. Similar to (4.6.40), for any ¢, s € [sg, So + 011,

(D(ul(t, yo) — u(s, yo)), u3) »
2

so+61 1 0 0
=[SO drfo dU(l{r<t}G(t—r,,VOyU)_1{r<s}G(S_ryy0yU))(a_ﬁ)H(T’;l})

= H(t, y0) — H(s, y0). (4.6.43)

Hence, by (4.5.1), for r € [sg, so + 611,

t, - ) 2p071
(u(t, yo) — u(s, yo)) (D(u(t, yo) — uls, yo)), u%) »

(DY =2po | dsdr

[s0,712 |t — s[Yo/2
(u(t, yo) — u(s, yp))?Po~1
=2pof[ L dsdt y°|t_s|mf/2° (HL(t, o) - H(s, Y0))
So, T
(u(t, yo) — u(s, yo))2ro1 ff
=2 dsdt Y,)da, 4.6.44
pOf[‘SOyr]z N |l’—S|70/2 S 1//( a) a ( )

where in the last equality we use the definition of the function (#, x) — H(¢, x). And moreover,

(D(DY;, u%) 0, Ul

(u(t, yo) — us, yo))?Po—2

=2po2po—-1) dsdt |t—s|Yo/2

[$0,71?

I3
X <D(u(t,yo)—u(s,yo)),ub;zﬂf v(Yz)da
N

(u(t, yo) — u(s, yo))?Po~t rt
+2pof[s » dsdt y0|t_sm?/20 fs ' (Y)(DY,, uk),}fda
0

=0+0=0, (4.6.45)

where, on the right-hand side of the equality, the first term vanishes due to (4.6.40) and the
second term vanishes because of (4.6.41). Therefore, by definition of yi’z,

So +61
(D(DYZE Ul s Uly) e = <D f Y/ (Y, )(DY;, u5) dr, u}{>%
So 3

So+§1
= [ DY, DY e

So
S0+ / 2 1

; f W (Y )(D{DY;, t2) o, b odr
So

-0, (4.6.46)
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which implies T = 0.

This proves the statement (b) of Proposition 4.6.2.

4.6.3 Estimates for the tail probabilities

Lemma 4.6.7. There exists a finite positive constant ¢, not depending on (s, yo) € I x J, such
that for all z) € R,

-1 -Z%lc
Pi{lFi|>|z1l} =c(lz1l " AD)e ™77, (4.6.47)

and forall 5, >0 and z; > 0,

Z2
P{F, >z} < cexp|——75 |- (4.6.48)
co,

Proof. We first bound P{|F;| > |z;]}. Since the variance of u(sp, yo) is bounded above and
below by positive constants uniformly over (sy, yo) € I x J (see [25, (4.5)]), there are constants
c1, €2, c3, ¢4 independent of (s, yp) € I x J such that for all z; e R

+oo

P{IF| > |z} < clf e VIedy <zt Al e A (4.6.49)

|z1]

where the last inequality holds because for |z;| = 1 we apply the inequality in [61, Lemma
12.9], and for |z;| < 1 we use the fact that ¢; fl?l e‘yz/CZdy < f0°° e‘J’z/CZdy =c <ceVa<
cse~4/% This proves (4.6.47).

We denote

o®:= sup E[il(t, y0)?l.

t€[s9,80+01]

From (4.2.3), we have g2 < Céi/z. On the other hand, by [25, (4.50)], we have

E[F] <E sup  |u(t, yo) — u(so, yo)l
Z’E[S(),So+51]
<E sup |u(t, x) — u(So,J/o)l]
[A((5,x);(s0, yo))] /267"
<col, (4.6.50)
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Applying Borell’s inequality (see [1, (2.6)]), for all zp > cé {/ 4 (here c is the constant in (4.6.50)),

P{F, > zp} < 2exp (22 — E[F2))*/ (20%)) < 2exp (- (22 — E[F2))*/ (2C5}'%))
<2exp(-(225/3 - 2E[R1%)/(2C81'?))
=2exp (—2z5/(3C81'H) exp (E[F2)?/ (C81'%)
<2 /Cexp(-22/(3C517%))
_ Eexp(—z%/(?)C@{/z))- (4.6.51)

Since for 0 < z, < c61/4,
exp (—z5/(3C81'%) = e_%,
we can find a constant ¢ such that for all z, > 0,
P{F; > 25} < exp (—25/(3C51'%). (4.6.52)

This proves (4.6.48). O

Finally, we prove Theorem 4.2.2.

Proof of Theorem 4.2.2. This follows from (4.6.3), (4.6.47), (4.6.48) and (4.6.14). |

4.7 Gaussian-type upper bound on the density of M,
In this section, we assume J <]0,1[ and 01, 6, satisfy the conditions in (4.2.15).

From the formula for the probability density function of M, in (4.5.52), by the Cauchy-
Schwartz inequality,

po(2) < P{My > 2 216 (u/y Dl 2 - 4.7.1)

Proposition 4.7.1. (a) There exists a finite positive constant c, not depending on yy € J, such
that for all small 61, 62 > 0 and for all z = (5%’2 +02)12,

16(wz/y D2 < cB12+82) 712 (4.7.2)

(b) There exists a finite positive constant ¢, not depending on yy € J, such that for all 61, 62 > 0
and forall z> 0,

2

P{Mo > 2} < c exp (—@) . (4.7.3)
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Proof of Theorem 4.2.5. This is an immediate consequence of (4.7.1) and Proposition 4.7.1. [

The proof of Proposition 4.7.1 is given in the following two subsections.

4.7.1 Proof of Proposition 4.7.1(a)

Throughout this section, we assume that
z2= (612 + 5,12 =512, (4.7.4)

Recalling the definition of Rin (4.3.27), under the assumption (4.7.4), we see from (4.5.26) that

R Y= lg2rogyo=4 = o/ ;2P0 Y04

< coYomPo4, (4.7.5)

In order to prove Proposition 4.7.1(a), we need the following several lemmas. Recall the
definition of u ; in (4.5.33).

Lemma 4.7.2. For any p = 2, there exists a constant cy, not depending on y, € ], such that for
all 61,6, >0,

18wl < cp 82 (4.7.6)

Proof. The proofis similar to that of Lemma 4.6.5. Since u 5 is adapted, by Proposition 4.6.4,
we have

A, pl e Ao pl _ oo
O(uyz) :f [ s WY (Y)W(dr,dv) —/ f w(dr, dv)(,bg(v)/ v(Y)da. (4.7.7)
o Jo o Jo 0
For the first term on the right-hand side of (4.7.7), by Burkholder’s inequality, for any p = 2,
since0<sy <1,
p

< cpE
LP(Q)

Aol ) pi2
U f <p§(u)1p2(yr)drdu)
0 0

1 pl2
< cpAfﬁz (/0 (Z)(zs(v)dv)

< c,AP6P12 = ¢,6%P12, (4.7.8)

APl .
fo fo b5 (WF (VW (dr, dv)

For the second term on the right-hand side of (4.7.7), similarly, by Burkholder’s inequality, for
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any p=2,since0<sy <1,

p

A, prl r
f fW(dr,du)J)g(v)f w(Y)da
0 0 0 LP(Q)
A. 1 _ r _ 2
U drf dv((,bg(v))z(f w(Yu)da))
0 0 0
A, pl2 m pl2
<cp (f rzdr) (f (cﬁg(v))zdv)
0 0

Yo+26 pl2
2 _
sepA:fp/ (/ 1) 4dv)
¥

pl2
< cpE

-5
= ¢, APP57IP2 = ¢\ 59P12, (4.7.9)

where, in the third inequality, we use (4.5.31). Hence, (4.7.7), (4.7.8) and (4.7.9) prove the
lemma. (]

Lemma 4.7.3. There exists a constant c, not depending on yy € J, such that for all 6, 62 >0,

luzll e < c832. (4.7.10)

Proof. The proof is similar to that of (4.6.26). By the definition of u j,

A. 1 A. 1 _ r _ 2
||u,;||2%52f drf de(m%ﬁg(mzf drf dv(¢>g(u))2(f u‘/(Ya)da)
0 0 0 0 0
y0+26 A. y0+26
SZA.[ dv+20[ rzdrf 5 *dv
Yo—0 0 Yo—0

=¢84+ N353

=2¢6°, (4.7.11)

where, in the second inequality, we use (4.5.31). O

Lemma 4.7.4. For any p = 2, there exists a constant c,, not depending on y, € ], such that for
alldy,62>0,

KDY 4, uz) s llriy < c872. (4.7.12)

Proof. The proofis similar to that of Lemma 4.6.6. Taking the Malliavin derivative of y 5, we
have

A. B _
(DYA,uA>,;f=fO V' (Y)(DYr,up) pdr.
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By Holder’s inequality, (4.5.28) and (4.7.11), forany p = 1,

E[(Dy 4, up)IP] < ||1/7’||£’0Af7_1f0A.E[|<DY,,uA),yflp]dr
< ch—pAf"lfOA'E[||DY,||§f|| uzl”, ldr
< ch—vAf"1+3”’4f0A' E[IDY,1%,1dr.

Applying (4.5.7), this is bounded above by

—p AP-143P14 sy [ 2p
cpR7PAS 0 rePdr
0
— CpR—pAf’)—1+3p/45(p0—yo)pA%p+1
< Cpé‘()/o—l?o—4)PA?_1+3P/45(P0—Y0)PA?’7+1

— Cp57p/2y

where, in the inequality, we use (4.7.5). O

Proof of Proposition 4.7.1(a). Using the property of Skorohod integral § (see [64, (1.48)]),

O(uj) N (Dy i uz)w

S(uzly ;) = = v =0+ 1. (4.7.13)
By Lemmas 4.7.2 and 4.5.4(b),

1L 2 < c83267% = c671/2, (4.7.14)
By Lemmas 4.7.4 and 4.5.4(b),

1Ll 2y < c87267% = co™ V2, (4.7.15)
Therefore, (4.7.13), (4.7.14) and (4.7.15) establish (4.7.2). U

4.7.2 Proof of Proposition 4.7.1(b)

Proof of Proposition 4.7.1(b). The proofis similar to that of (4.6.48). We denote

a%:z sup Elu(t, x)?].
(2,%)€[0,611% [y0, Yo +62]
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From (4.2.3), we have 0(2) <C (61/2 +02). On the other hand, by [25, (4.50)], we have

E[Myl <E sup | (t, x)|
(t,x)€[0,611%[y0,y0+02]
<E sup | (t, x)|
[AX(2,%);(0,y0))]V/2<(8}/2+6,)1/2
<c (672 +82)12 (4.7.16)

Applying Borell’s inequality (see [1, (2.6)]), for all z> ¢ (612 + 5,2)!/? (here c is the constant in
(4.7.16)),

P{My > z} < 2exp (~(z — E[Mp])?/ (203)) < 2exp (~(z - E[Mo))*/ 2C(51/? + 5,)))
<2exp(~(22%/3 - 2E[My]*)/2C(51% +6)))
=2exp (—z°/(3C(51 +82))) exp (EIMo1*/ (C(51/% +52)))
<2¢“'Cexp(-2%/(3C(61% +6,)))
= cexp (-2*/(3C(61* +62))). (4.7.17)

Since for 0=z < c (612 +6,)!?,

2
exp (—z2/(3C(612 +82))) = e3¢,
we can find a constant ¢ such that for all z > 0,
P{F, > z} < Cexp (- 22/ (3C(61/% + 52))). (4.7.18)

This proves (4.7.3). U

Remark 4.7.5. The results of Theorem 4.2.1(a), (b) and Theorems 4.2.2, 4.2.5 also hold for the
solution without boundary (x € R). This is because in the definition of the random variables
H and H in (4.5.23) and (5.3.17), the functions ¢s, and ¢s are compactly supported and C*®

and the boundary conditions do not affect the smoothness ofui‘, yi;j, i,je{l,2}anduy, vy in
Lemma 4.5.3. And the equalities (4.5.45), (4.5.46), (4.5.47), (4.5.48) and (4.5.50) in the proof of
Lemma 4.5.5 still hold with [0, 1] replaced by R. Furthermore, the formulas and estimates in
(4.5.51), (4.5.52), (4.5.63), (4.6.3), (4.6.4), (4.6.49) and (4.7.13) are generic, no matter with or
without boundary conditions. Moreover, the boundary conditions do not change the estimates
in (4.5.41), (4.5.6), (4.6.26), (4.6.34), (4.6.36), (4.7.6), (4.7.10) and (4.7.12). Furthermore, the
equalities (4.6.40), (4.6.41), (4.6.44), (4.6.45) and (4.6.46) remain the same. In the end, the
estimates (4.6.50) and (4.7.16) still hold for the solution of the equation without boundary (we
can redo the proof of [25, (4.50)] line by line). This will be done in more detail in Lemma 5.4.6.
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4.8. Proof of Theorem 4.2.1(c)

4.8 Proofof Theorem 4.2.1(c)

The aim of this section is to prove the smoothness of the density of the random variable M
defined in (4.2.8), in the case of Neumann boundary conditions. We will apply the criterion
of Theorem 1.5.5 to establish this result. In other words, we will construct random variables
satisfying the locally nondegeneracy conditions in Theorem 1.5.5. The approach is similar to
the case of Brownian sheet (see [39]), and is slightly different from the method in Section 4.5.

Choose and fix y1,y2 and an integer p such that
1 1 1 1
—<y1<601/2—— and —<vy2<62/2——. (4.8.1)
2p 2p 2p 2p

Recall the definition of the random variables {7i(¢, x) : (¢, x) € [0, T] x [0,1]} in (4.2.7). By (4.3.22)
we know that a.s. t — #(t,-) is continuous in Epy,10,1] and x — (-, x) is continuous in
Epy,[0,T].

We define two families of random variables:

Vo f lats, ) - aes', )15,
g)::=

/
0,012 |s—s'|1+2Pm dsds
(u(s, x) — u(s,x") — u(s', x) + u(s’, x))2P
_ !/ / 4 )
_f , dsds [ , dxdx 2 e o1e2pTs (4.8.2)
[0,0] [0,1] [s— s [x—x'|
and
~ A~ 2p
o, x)—at, x|
Y?(1):= PV dxdx'
0,72 |X— xr|1+2py2
(u(s, x) — u(s, x') — u(s', x) + u(s', x))?P
— / !
_f[o,r]z dxdx f[O,T]ZdeS 15— 5/ [LF2PT [x — /| L7207 , (4.8.3)
where (o,7) € [0, T] x [0, 1]. Set
Yor=Y'(0)+Y?(1), (4.8.4)

for (o,7) € [0, T] x [0, 1]. The following lemma is analogous to Lemma 4.3.1 and Lemma 4.3.5.

Lemma 4.8.1. For any a > 0, there exists a constant R, depending on a, p,y1 andy», such that
forall(o,7) €[0,T] x [0,1],

Yo:<R = sup |[t(t, x)| < a. (4.8.5)
(£,x)€(0,01x[0,1])u([0, TTx[0,7])

Proof. In order to establish this property, we first apply the Garsia, Rodemich and Rumsey
lemma (see Lemma A.6.2) to the Ej, [0, 1]-valued function s — (s, *) with ¥ (x) = x*, p(x) =
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x1+2PY0/2P) g = 1, From this lemma, and assuming Y1 (o) < R, we deduce, as in (4.3.31), that
7 (e 2p 12py1-1
” u(S) *) - u(s ’ *)”py}/2 = Cp,lels_ N | pn
for all s, s € [0, 0]. Hence, with s’ = 0, we get
lacs, <125, < cpy, R
’ pY2 = P11

for all s € [0,0]. Applying the same lemma to the real-valued function x — (s, x) (s is now
fixed) with ¥ (x) = x?7, p(x) = x172PY2/2P) we obtain

[G(s, x) — 0(s, x) %P < cp,,,zc,gnylll%lx—x’lzm’z_1

for all x, x’ € [0, 1]. Hence, letting x’ = 0, we obtain

11
2 2 b
 Coy, R?P.

sup |4t X)| = ¢y, Cpy,

0<t<o0,0<x<1

Similarly, focusing on Y2(t), we can prove that

1 1
= 5= 1
~ 2p 2p b
< 2
sup |[T(t, x)| < Coy cm,zR P,
0<t<T,0=sx<1

1 1

% 2 e
P ¢l R < a. O

and it suffices to choose R in such a way that ¢, ¢/,

We next prove the smoothness of the two families of random variables defined in (4.8.2) and
(4.8.3).

Lemma 4.8.2. For any (o,7) € [0, T] x [0,1], Y!(0) and Y?(1) belong to D*®. For any integer I,

2p2p—1)---2p =1+ Dullis nx )P (Dult, x;5,y) !
DlY1(1)=f Pep P iddllbicd y dsdtdydx.
(0,1]* |t — s|1+2PY1|x — y|1+2PY2
(4.8.6)
Proof. The proof follows the same lines as that of Lemma 4.5.1(b). (I
As a consequence of Lemma 4.8.2, for any (r,v) € [0, T] x [0, 1],
2p-1 .
1,0 u(lys,f1x1y,x)) P~ Dult, x; 8, y)
DY (r)=2p [o,r]Zdtde[-o,l]dedy (= s 2PT =y (4.8.7)
Uy 1x1y,0)°P ! Dult, x; 5, )
DY (w)=2p| dxdy| dsd— 2L 4 (4.8.8)

[0,v]? [0,T)2 |t_3|1+2pY1|x_y|1+2pyZ
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and for any integer i,

. u(lys, <1y x) P~ (Dult, 3 5,y)®'
D'Y,, = c,-[ dtdsf dxdy ]”]X]yf] 5 0 y
[0,r]2 [0,1]2 |[—S| + lelx—yl +apy2

u(lys 1x1y,x)?P = (Du(t, x; 5, ) ®
[t — s|1+2PY1|x — y|1*2pY2 ’

+ cif dxdy dsdt (4.8.9)
[0,v]? (0,712

Hence for any (r, v) € [0, T] x [0, 1],

; |u(Lys, 111 y,) PP 1Dty 5.5, ) ®0 N s
||D1Yr,y||miszcif dsdrf dxdy— T = ey
[0,T)2 0,1]2 [t —s[1*ePYi|x — y|1+epPY2
(4.8.10)
which implies that for any g = 1
sup  E[ID'Yy,07,. |
(r,)€l0,T1x[0,1] '
E[lu(lis,1x1y ) 7272 1 (Dut, .5, )11,
<c¢q dsdt dxdy
(0,712 0,112 |£— s|90+2PYD)|x — y| a1 +2PY2)
IDu(t,x; 5, )| 9P~
<c¢q dsdt dxdy -
0,712 [0,1]2 |t — s|90+2PYD | x — y|d(1+2pY2)
t— s|Pa01 | — y|Pab2
<c¢q dsdt dxdy | | | Y| <cgy, (4.8.11)
[0, T2 [0,1]2 |[— Slq(1+2pY1)|x_ y|CI(1+2P)’2)

where, in the second inequality, we use again the fact that a centered Gaussian random variable
X ~ N(0,02) has the property E[IXIk] = ckak.

For any a > 0 and set A =]a,oo[. Let ¢ : R* — [0,1] be the infinitely differentiable function
defined in (4.5.17) where R is the constant appearing in Lemma 4.8.1 determined by a, p,v1,7>.

We define the #-valued random variable 1 4 evaluated at (r, v) by
0 62 r opv
Aalr,v) = (— - —)f f b(1-byw(Y,p)dbda
or 0v? o Jo ’
v r
= fo b - byy(Y,p)db—(1-20) fo Y (Y p)da

dy?w) [’
—v(1-v) e [Ow’(ya,y)da

= AL () = A4 () = A3, ). (4.8.12)

Lemma 4.8.3. A4 belongs to D> (7).

Proof. The proofis similar to that of Lemma 4.5.3. We start by proving /1114 is Malliavin differen-
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tiable. For each integer k = 1, we define the Riemann sum of /12 by

ko pG-D/k
Xp(rv):= Y ; b(l_b)llf(Y(j—l)T/k,b)db1[(jfkl)Ty%](r)l[FTI,LI;](V).
ij=1

As the proof of ui € D*°(##) in Lemma 4.5.3, we can show that X ,i converges to /1114 in LY(Q, 77)
as k — oo for any g = 1. Moreover, by (4.8.11) and Lemma A.6.3, DX ,i converges to the Bochner
integral [ b(1—b)Dy/(Y.,)db in L7(Q, 7#°*%) as k — oo for any q = 1. Since D is closable, we
have

DA}L‘:[ b(1-b)Dy (Y. )db.
0

In order to prove Mx € D*°(J¢’) we can repeat this procedure and it remains to prove for any
q,j=1,

T r1 )
supE f f 1D/ X (r, )1, dvdr| < oo, (4.8.13)
k=1 0 JO
which follows from
sup  E[IDIp(¥apllY,., | <oo. (4.8.14)

(a,b)€[0,T]x[0,1]

The proof of (4.8.14) is the same as that of (4.5.36) by using Faa di Bruno formula and (4.8.11).

Similarly, we can prove that A% € D*°(%) and it remains to prove that A3 belongs to D™ (7).
For each k > 1, we denote v; = (i —1)/k,r; = (j — 1) T/ k. We discretize )Lil by

k v; 2p
i u(l 1)
Yi(r,v) = Z 2v;(1- Ui)f dx[ dsdt 1+2]s't]x]x”}’] )
ij=1 0 (0,772 |t = s|"FoPN v — x[FF2PY2

rj
[V V) @y D100,

For almost every (w,r,v) € Q x [0, T] x [0,1], Yi(r, v) converges to Ai(r, v) as k — oo. Using
Holder’s inequality and Lemma 4.3.2, we can show that for any g = 1,

T ol
f f |Yi(r,|9dvdr
o Jo

which implies, by Lemma A.6.3 (with the measure space replaced by (Q x [0, T'] x [0, 1],P x 212)),

supE
k=1

< 0o,

lim E
k—o0

T (1
f f |Yi(r,v) = A3 (r, )| 9dvdr | =0
o Jo
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and consequently,

T rl q/2
([ f | Vi (T, U)—/li‘(r, U)Izdvdr)
o Jo

Thus Yy converges to )Li in L1(Q, 77) as k — oo for any g = 1. Moreover,

lim E
k—o0

=0.

k v; 2p-1 .
i u(lys,x1x,0,) P~ Dult, vi; s, x)
DYy (r,v)= ) 4pvi(1- l/l')f dxf dsdt - Te2py Tr2py
i 0 (0,772 [z — sl i —xl 2

rj
X/(; W/(Ya,vi)da1[v,—,vi+1](v)l[l‘j,rjnl(r)

k i 2
' u(l 1)
+ 2 2’/1‘(1—1);')] dxf dsdt - Z]S’”X]x'”'] —
i,j=1 0 [0,T]2 [ — s|1+2P11|p; — x|1+2PY2

Ty
X/ Dw,(Ya,Ui)dal[Ui,UHl](U)l[rjyrj+1](r)’
0

which converges to the Bochner integral

v u(l 2P 1Du(t, v;s, x)
Z(r, v)::4pv(1—v)f dx dsdt ]s't]x]ﬁ? )
0 [0,T]2 [t — s|*HePYV1|y — x| F=PY2

v u(l]s,t]X]x,v])2p r ’
+2v(1—v)f0 dxf[o,r]z detlt—s|1+2p?’1|v—x|1+2p72fo Dy (Y, )da

in J7 as k — oo for almost every (w, 1, v) € Q x [0, T] x [0,1]. Since

.
f() w’(Ya,y)da

|u(ys %10 PP~ DL, vi5 5, ) e
|t — s|1t2Pr1|p; — x|1+2PY2

k 1
IDYe(r,v)llp<c ). dxf dsdt
i,j=1J0 [0,7)?

X ]‘[Virl/i+1](y)]‘[rj,rjﬂ](r)
£t (L5, 01x)x,0,1) "
+c Z dx dsdt ) )
ij=1 0 [0,T)2 |[ — S| pn | Vi — xl pPY2

T
X fo IDYq,v, lrdaliy, v, Wirj, (1),
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forany g =1,

T prl
E f f IDYi(r, )%, dvdr
0 JO ’

k T prl
SCq ZL fO l[VirVHI](U)l[rjyrj+1](r)dvdr

i,j=1
flde dsdt|u(1]s,t]x]x,yi])|2p—1||Du(t, vi; 8, %) |z
0 [0,T]2 |[—S|1+2pY1|yi—x|1+2pY2

x E

q]
k T pl
+Cq Z /(; fo l[viyym](v)l[rj,rm](r)dvdr

ij=1

T 1 2p q
u(ys, 11x1x,01) P I DY g, | o2
x E f daf dxf dsd -] o
0 0 [0,T]2 |t —s|tHePVi|y; — x| FePY2
k 1 lu(1 DEPIDut, vi; 5, %) e |
<ck 2 Y E f dxf dsdt—>I0 L 4
ij=1 0 [0,T]2 |t—s| + pYIIUi—x| +2py2

q

T 1 2p /
u(l DPIDYq v, |l 7

f da f dx f dsdy—2000) o
0 0 [0,T]2 [t —s|*TePV1|v; — x| H4PY2

k
+ ch_z Z E
ij=1
Using Hoélder’s inequality and Cauchy-Schwarz inequality, this is bounded above by

E [lus,x1x0) 1947 V] IDuCt, vi; 5,019,

k 1
-2
cqk dxf dsdt
! i,jzzl 0 [0,T1? [t — s|t+2P11|p; — x|1+2PY2

1/2 2
k T 1 E[u(l]slt]x]x,yi])zlqp] E ”DYa,Ui” y
_2 T
+cqk Z da| dx dsdt ) )
i,j=170 0 (0,712 [t = s TPV |y — x| Fepre

By Lemma 4.3.2 and (4.8.11), this is bounded above by

k k
) ) o
cgk™ X 1+cyk™ 3 1=2c.
i,j=1 i,j=1

Applying Lemma A.6.3 (with the measure space replaced by (Q x [0, T] x [0, 1],P x A?)), we have

foranyg=1
T pl
limEf f IDY(r,v) = Z(r,)|%, drdv| =0,
k—o0 o Jo

which implies

lim E
k—o00

T prl ql2
(f f DY (r, v) - Z(r, v)lléiﬂdrdv) 0.
0 JO

Thus DY;. converges to Z in L9(Q, .5#’®?) as k — oo for any g = 1. Since D is closable, we obtain
that )L?q is Malliavin differentiable and D/li = Z. We can repeat this procedure to conclude
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that /1?4 € D*°(J7). The proof is complete. [l

Now we are ready to prove the main result of this section.

Proof of Theorem 4.2.1(c). Fix a >0 and set A =]a,oo[. Define the following two random vari-
ables:

S, =inf{t=0: sup u(s,y) > a}
O=s=<t,0=y=<1

and

X, =inf{x=0: sup u(s,y) > aj.
0=s=T,0=y=x

Note that (Sq, X;) < (S, X) on the set {M > a}, where (S, X) is the point where the maximum is
uniquely attained in [0, T'] x [0, 1].

We claim that the random element A 4 introduced in (4.8.12) and the random variable

T pl
GA:f [ v(l-v)y (Y, dvdr
0o Jo

satisfy the conditions of Theorem 1.5.5. First, A 4 belongs to D°° () by Lemma 4.8.3. Moreover,
on the set {M > a}, we have

w(Y,,) =0 if (r,v)€I10,S,] %[0, X,]. (4.8.15)

Indeed, if y(Y;,) # 0, then Y,,, < R by definition of ¢ and from (4.8.5) this would imply
SUP (1 e ((0.11x[0,11)u(0, T]x[0,0)) X(L, X) < a, and, hence, r < S4, v < X4, which is contradictory.

Consequently, on {M > a}, by (4.4.8), we obtain
(DM, Ap) e = (1 (G(S =+, X, %) = G(S=+,0,%)),Aa)

S rl
:f f GS-rX,v)-G(S-r,0, v)Aa(r,v)dvdr
o Jo

S 1
:f drf dv(GS-rX,v)-GS-r,0,1v))
0 0

( o 0
X — — —
or o0v?

r v
) f f b(1 - by (Y, p)dbda.
0 Jo
Since the function (r,v) — [y [y’ b(1 — by (Y, p)dbda satisfies the Neumann boundary condi-
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tions, applying Lemma 4.3.6, this is equal to

S pX S (0
f f v(l—v)l//(Yr,,,)dvdr—f f v(l-vw(Y,,)dvdr
0o Jo o Jo

S pX T r1
:f f v(l-v)w(Y,,)dvdr :f f vl =)y (Y, )dvdr = Gy, (4.8.16)
o Jo o Jo

where the second last equality holds from the observation in (4.8.15).

By discretization, the proof of G4 € D* is similar to that of yi’z € D*°, as we did in Lemma 4.5.3.

So it remains to prove that G;ll has finite moments of all orders. Indeed, we have
T pl
Gy = f f v(l-v)w(Y,,)dvdr
o Jo

T rl T 1
zfo fo V(I_V)l{Y,,V<§}dVdr2fo drl{Y‘(r)<§}[O dvv(l—v)l{yz(ng}

1
=Arelo,11: Y (r) <R/4}f =0y dy, (4.8.17)
0

V)<
where A! denotes the one-dimensional Lebesgue measure. For any 0 < e < T, we get

PIAYre[0,T): Y'(r) < R/4} <é}

el 2p
(s, *) —u(s’, ©)lyy,

<P{Yl(e) 2R/4}:P{f dsds’zR/4}.
[0

]2 |s—s'|1+2P1

For any g = 1, by Markov’s inequality, this is bounded above by

q

dsds'

N N 2
(4/R)qu (s, %)~ (', iy,
(0,612

|s— s/|1+2p71

< (4/R)9¢?a-D dsds' dxdx' [ 15,5']x]x,x'] ]
[0,e]2 0,1]2 |s— sllq(1+2m/1) |x — xr|q(1+2py2)

< cqe*? (4.8.18)

for some positive constant ¢,;. By Lemma 4.4 in Chapter 3 of [24], we know that the random
variable AY{r € [0, T] : Y} (r) < R/4} has finite negative moments of all orders. It remains to

prove the random variable fol v(l-— U)].{Yz )<k }dv also has finite negative moments of all
4
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orders. For any 0 < € < 1/36, we have

1
P{f v(l— v)l{yz(y)<§}dv<e
0

1/2 \/E 1/2
sP{f\/E v(l—v)l{yz(v)<§}du<e} SP{?[/; 1{Y2(U)<§}dv<e}
172 1/2 Je

1/2
P{fo Liyz(eydv < 3\/6} <P{Y*Bve) = R/4}

~ ~ 2p
1a(-, x) — a, x| R
=P f T PV dxdx' ==\,
[0,3 /€12 [x — x'|1+ePY2 4

For any g = 1, by Markov’s inequality, this is bounded above by

A0, x) — a6, X2
i, x) u(,x)llpmdxdx,
[0.3Ve)?

1{Y2(u)<§}d’/}

IN

q

q
(4/R) E |x_x/|1+2pyg

_ E [1u(Lyg,¢)x1x,00)12P7
< (4/R)1(3T/e)?™V f dxdx' f dsds' [1 Jo i) ]
0,3yar 0,712 |5 — §/|a0+2P7D) | — x| 40+2pY2)

< cqe. (4.8.19)

Again, we use [24, Chapter 3, Lemma 4.4] to obtain that the random variable fo1 v(l -

V)1 y2(,)< &, dv has finite negative moments of all orders, which completes the proof of Theo-
4

rem 4.2.1(c). O

Remark 4.8.4. (a) In the case of Dirichlet boundary conditions, we do not know if M has a
smooth density. This is because in the definition of the random variable A 4 in (4.8.12), the
function (r,v) — [y [y b1 = b)Yy (Y, p)dbda satisfies the Neumann boundary conditions,
while in the case of Dirichlet boundary conditions, we are not able to construct a function
that satisfies the Dirichlet boundary conditions.

(b) Even with Neumann boundary conditions, the method we use does not give a Gaussian-
type upper bound on the density of M. This is because in our method the family of random
variables {A o(r,v) : (r,v) € [0, T] x [0, 1]} defined in (4.8.12) is not adapted to the filtration
and we cannot use Burkholder’s inequality to estimate the Skorohod integral, as we did in
Sections 4.6 and 4.7.
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Extension to the linear stochastic
fractional heat equation

In this chapter, we extend some of the results of the previous chapter to the solution of a linear
stochastic fractional heat equation. When the heat operator is replaced by the fractional heat
operator, the Holder continuity of the solution changes accordingly. However, the method
of the proof for smoothness of the density and the estimate for the Gaussian-type upper
bound on the density remain the same. This Gaussian-type upper bound highlights again the
connection between the density and the Holder continuity properties of the solution.

5.1 Introduction and main results

In this chapter, we consider a special case of equations (1.2.2) with « €]1,2[, 0 =1d, b= 0 and
d = 1. That is, we consider the following linear stochastic fractional heat equation

%(r,x) = D%u(t,x) + W(t, x), (5.1.1)

for ¢t € [0,00] and x € R, with initial condition (0, x) = 0, for all x € R. The definition of the
fractional differential operator D? is given in (2.1.2) and (2.1.3).

By definition, the solution of (5.1.1) is
t
u(t,x):f fGa(t—r,x—v)W(dr,dv), (5.1.2)
0 Jr
where Gg (-, *) is the fundamental solution of the Cauchy problem

0
&G(t,x) =,D%G(t,x), t>0,x€R,

G(0,x) =6p(x),
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where § is the Dirac distribution. An expression for G (-, *) is

1
Go(t,x) = —f exp(—iAx—t|A|%)dA. (5.1.3)
271 JRr

We assume the process {u(t,x) : (£, x) € [0,00[xR} given by (5.1.2) is the jointly continuous
version, which is almost ‘;—;l-Hdlder continuous in time and almost “T‘I—Hijlder continuous in
space. In fact, there exists a constant C = C(p, T) such that for any p = 1, (¢, x), (s, y) € [0, T] x R,

Ellu(t,x) — u(s, PIP) = C(1t—s|T +|x— y|* )P’ (5.1.4)
see (2.1.6).

We adopt the same notations as in Chapter 4. Choose two non-trivial compact intervals
Ic[0,T] and J cR. Choose (sg, o) € I x J and d; > 0. For ¢ € [0, T], we denote

u(t, yo) = u(t, yo) — u(so, yo)- (5.1.5)
Set
Fy=u(so,y0), Fo= sup i(t,yo) and F=(F,F). (5.1.6)
tE[So,So+61]

Choose 6, > 0. Denote by M, the global supremum of u over [0,61] x [y, o + 62]:

My = sup u(t,x). (5.1.7)
(£,)€[0,611%[y0,Y0+02]

Similar to the Theorem 4.2.1, we establish the smoothness of the probability density functions
of the random variables F and M,.

Theorem 5.1.1. (a) For all (sg, yp) €10, T] x R and 6, > 0, the random vector F takes values
in Rx]0,00[ a.s. and has an infinitely differentiable density on Rx]0,00[. When sy = 0, F;
vanishes identically but F» takes values in 10,00[ a.s. and has an infinitely differentiable
density on10,00l.

(b) ForallyyeR, 51 >0 andd, >0, the random variable My takes values in 10,00[ a.s. and has
an infinitely differentiable density on 10, 00].

We will prove Theorem 5.1.1 in Section 5.3. The method is the same as that in Chapter 4: we
will use Theorem 1.5.5. The fractional heat operator is a non-local operator, and this makes
a difference here. For example, the inner product of the random elements in the condition
Theorem 1.5.5(iii) gives a formula for the solution of an inhomogeneous heat equation. For the
heat equation with Neumann or Dirichlet boundary conditions, uniqueness of the solution
holds, while for heat equation on the whole space, uniqueness of the solution fails in general
(see for example [40, p. 145]). Fortunately, we are able to overcome this problem because of
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t
T
G J
S()+61 ---------------
Sot+-----|--------- 1 I
c1 : : :
E yo—éi/“i yo+261/% E N
c2 0 Yo Co

Figure 5.1 — Illustration of conditions (5.1.8)-(5.1.10)

the choice of the functions fy, go and ¢y in Section 5.3.

We will also establish Gaussian-type upper bounds on the probability density functions of the
random variables F and M.

Assume I x ] <]0, T x R. Assume that there are constants c;, C; such that

O<ci<I:=inf{s:sel} and I:=sup{s:sel}<C;<T+1. (5.1.8)
Assume also that there are constants c¢», C, such that

C<]:= infly:yeJ} and C, > J:= supiy:ye Jh. (5.1.9)
Assume that 6, is small enough so that

so+61€l, and 8}* <min{J-cs, (Co—/2}; (5.1.10)

see Figure 5.1.

Denote (z1, z2) — p(z1, z2) the probability density function of the random vector F.

Theorem 5.1.2. Assume I x J <]0,T] x R. There exists a constant ¢ = c(I, ]) such that for all
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Chapter 5. Extension to the linear stochastic fractional heat equation

81 > 0 satisfying (5.1.10), for all z, = 6(1“_1)/(2“), z1 € R and any (so, yo) € I x ],

2 2
p(zl,zz)s;exp —Z—2 (Izll_%/\l)exp —Z—l (5.1.11)
/—6(1a_1)/a Caga—l)/a c
< ¢ ex z% (5.1.12)
- \/W P caga—l)/a : o

We will prove Theorem 5.1.2 in Section 5.4.

Remark 5.1.3. Note that (5.1.11) implies (5.1.12) directly. By Theorem 5.1.2(b) and Remark
4.1.2(b), the assumption (4.1.14) is satisfied for the solution to (5.1.1) with Hy = “2—;1 Therefore,
there exists a constant C = C(1, ]) such that for all compact sets A < R* and for every yy € J,

P{U(Ix{yo})ﬂA?f(D}SC%_%(A), (5.1.13)
where the components of the random field v = (v1, ..., vg) are independent copies of the solution
uto(5.1.1).

To establish the Gaussian-type upper bound on the density of the random variable M, we
introduce some notation for simplicity. Denote

5:=6W VL5871 A:=677, and A, :=dar. (5.1.14)

Choose a positive constant C; with C; < T. Let ¢», C» be chosen as in (5.1.9). Assume that
01,02 €]0,1[ are small enough so that

yo+62€], A.<Ci and A, <min{J-c,,(C,—N)/2}; (5.1.15)
see Figure 5.2.

Denote z — py(z) the probability density function of random variable M.

Theorem 5.1.4. Assume J < R. There exists a finite positive constant ¢ = c(T, J) such that for all
81, 62 satisfying the conditions in (5.1.15), for all yy € ] and z = (55“_1)/“ + 5’2"_1)”2,

Z2

Cc
exp|— .
’—5506—1)/@ ror ! p( 6(5(1a—1)/a +6971)

The proof of Theorem 5.1.4 will be presented in Section 5.5.

po(z) < (5.1.16)
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t
T
G J
Ao
ol R T ] o+2A. i
0 yo—A* Jo y0+52 C2

Figure 5.2 — Illustration of condition (5.1.15)

5.2 Preliminaries

In this section, we first present a result, analogous to [45, Theorem 3.3(1)], on the local behavior
of the solution in time, which will be used to prove the strict positivity of F».

Proposition 5.2.1. Fix yg € R. There exists a fractional Brownian motion {X; : t = 0} with Hurst

index H := “2—;1, such that

u(t, yo) — m(a—1)"°r/a)"V?Xx(1), t=0 (5.2.1)

defines a mean-zero Gaussian process with a version that is continuous on [0,00[ and infinitely
differentiable on ]0,00l. As a consequence, for all t > 0, and yy € R,

t+e, o) — ult,
lim sup u(t+e,yo) — u(t, yo)

=ma-))""T/a)?  as. (5.2.2)
clo €@ D/Ca)/2TnIn(1/e)

Remark 5.2.2. Similar result on the local behavior of the solution in space has been established
in [41, Corollary 1.2 and Proposition 3.1]; see also [45, Theorem 3.3(2)].

Proof of Proposition 5.2.1. The structure of this proof is similar to that of [45, Theorem 3.3(1)].
From (5.1.2), for ¢, > 0,

I3
El(u(t+e€, yo) — ult, yo))?] :fo fR(Ga(t+e—r,y0—v)—Ga(t—r,yo—v))zdvdr

t+e
+f fGé(t-ke—r,yo—v)dvdr
¢ R

= 4 ], (5.2.3)
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Using the semi-group property of the Green kernel (Lemma A.1.1(ii)), we see that

t+e

Jo = Ga2(t+e-1),0)dr
t
=f Gq(2r,0)dr
0
_ ra/a) p-la st (5.2.4)
m(a—1)

As for the term J;, we have

t
I =f f(Ga(m— r,v) — Gg(r, v)2dvdr. (5.2.5)
0 JR

Before we evaluate J;, we first compute the following integral:

> 1 [ a a2
f f(Ga(€+r,v)—Ga(r, v))zdvdr=—f drfdv e_(r+€)|”| —e Tl
o Jr

f drf dve 2" e V" ?
(1—e e )2
dv
271’ v®
a2
1 o 0 l—e_v
=§67‘f A=) = )dy, (5.2.6)
0

where, in the first equality, we use the Plancherel theorem. The last integral in (5.2.6) is equal

to 2F(1/ @) (1 —271/%) by changing variable [z = v%]; see also the calculation the proof of Lemma
Alin [45]. Therefore,

I'l/a)
n(a—1)

=

1-27Vay s —f f(Ga(€+ r,v) — Gg(r,v)dvdr. (5.2.7)
t R

Combining (5.2.3), (5.2.4) and (5.2.7), we obtain that

n(a—1)

F(I/a’) a-1
€

El(u(t+¢, yo) — u(t, yo))?1 = —f f(Ga(e+r, V) = Ga(r,v)?dvdr. (5.2.8)
t R

In order to understand the last integral, let  denote a white noise on R that is independent of
the space-time white noise W, and consider the Gaussian process {T : t > 0} defined by

—t|z|“

t:
\/4nf | z]@/2

n(dz), t=0.

This is a well-defined mean-zero Wiener integral process, Ty = 0, and

1 [ (1-e ")
Var(Ty) = —f ——— | dz<oco forallt>0.
47 Jp |Z|a/2
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Note that
o1 [ [ertlt - emtrala)
BI(Tee=To%) = o | | dz
_ pelzl®)\?
:L e‘zﬂzla —1 ¢ dz
477 |Z|a/2
:L dse 27" fdz —e|z|"‘)2
a a 2
_ _f ds/ dz ~(s+e)lzl® _ szl
:f fR(Ga(e+s,z)—Ga(s,z)) dzds, (5.2.9)
t

where, in the last inequality, we again use the Plancherel theorem. Since T and u are indepen-
dent, by (5.2.8) and (5.2.9), we have

Bt +6, o)+ Tree — i, yo) — Tp)?] = 8 o2t (5.2.10)
u €, Yo t+e — UL, Yo t _n(a—l)e . 2.

Therefore, since u(0, yp) = 0 = Ty, we have proved that {X, : t = 0} is a fractional Brownian
motion {X; : t = 0} with Hurst index H := 2-1 \where

= (m(a— 2T /) V2 (u(t, yo) + T, t=0. (5.2.11)

It remains to prove that the process {7 : t = 0} has a version that is continuous on [0,00[ and
infinitely differentiable on ]0,00[. The proof follows along the same lines as that of [45, Lemma
3.6]. We give the proof for the convenience of the reader. First, for ¢, s = 0,

|Z|a/2

1 — e-lt=slizl®\?
< ——| dz
f[R |Z|a/2

1 —slz —t1z)% |2
E[(T; - Tp* = — (—) dz
41 JR

Applying the Kolmogorov continuity theorem, we see that T has a version that is Holder
continuous with exponent (@ — 1)/(2a) —¢ for all small € > 0.
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Next, we consider the case that ¢ > 0, and define forall n =1,

—tlzl
(n) .

1 \/Efat" (T)"(”m

(_1)n+1 o
— - .[R|Z|an—a/2e—t|z\ n(dz).
Vamn

Since the integrand belongs to L?(R), {Tt(”) : t > 0} is a well-defined mean-zero Gaussian
process. Furthermore, for every ¢, s > 0,

:if|z|2an—a e
47 Jr

1 o @
=_f | z[2an=a g=2sAD)z]

~slal® _ g—tlal® 2

dz

2
dz

1 _e—lt—SIIZI“

|t s|2 -
< | |2an+a 2(5/\t)|z|“dz

where, in the last inequality, we use that 1 — e~ < 6 for all § = 0. It follows from the Kolmogorov
continuity theorem that every T""” is continuous on ]0, 00| [up to a version)].

If ¢ € C;°(10,00[) (the space of infinitely differentiable functions with compact support on
10,00[), then we apply the stochastic Fubini theorem (see [24, Chapter 1, Theorem 5.30] or [81,
Theorem 2.6]), to see that, a.s.,

o0 1 o g [1-e7tlE"
T dtz—f da f dt—|———
.[0 e P Van [Rzn( ? 0 ot | |z]%/? v

_ = 1)" 1-e/A") on
nldz )f dt( Pz ) pom22

otn

thanks to integration by parts. A second appeal to the stochastic Fubini theorem yields

f n)(Ptdf—( 1)f Tt (ptdt a.s.
0

That is, Tt(”) is the weak n-fold derivative of T; for all £ > 0. Since T (" js continuous on ]0, 00|
for all n, this shows that in fact T’ t(”) is a.s. the ordinary n-fold derivative of T at . Therefore,
{T;: t = 0} has a version that is infinitely differentiable on ]0,col.

Finally, (5.2.2) follows from the representation (5.2.1) and the law of the iterated logarithm for
fractional Brownian motion (see [45, Theorem 2.11]). O

We next show some properties of the rectangular increments of the solution, analogous to
Lemmas 4.3.2 and 4.3.3.

Lemma 5.2.3. There exists a constant Ct such that for any 6 €10, “T_l [and (t,s,x,¥) € [0, T]? x
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RZ
El(u(t, ) + u(s, y) — u(t, y) - u(s, x)* < Crlt - 5| Alx—y|o!
al_g ab
=Crlt=sl« 7|x=yl"". (5.2.12)
Proof. The proof follows the same lines as the proof of Lemma 4.3.2 by using (5.1.4). O
From now on, we fix 8 €]0, “7_1[ and set
a-1
61 =——0, 92:a0. (5.2.13)
a

By the isometry and Lemma 5.2.3,

ID(u(t, x) + uls, y) — u(t, y) — u(s, )15, = El(u(t, %) + u(s, y) — u(t,y) — u(s, x))°]
<Crlt—s/"1x—y%, (5.2.14)

for any (¢, s, x, ) € [0, T]? x R,

Lemma5.2.4. Forany0<¢<0,/2 and0<n<80,/2, there exists a random variable C which is
a.s. finite and depends on T and the length of the interval L such that a.s., for all (t,s,x,y) €
[0, T1? x [a, b]? with [a,b] C L,

lu(t, x)+uls,y) —ult,y) —u(s,x)| < Clt— slflx— yl". (5.2.15)
Proof. The proof follows the same lines as that of Lemma 4.3.3 with the interval [0, 1] replaced
by [a, b]. For (¢, x) € [0,00[ xR, we denote

a(t,x)=u(t,x)—u(t,a). (5.2.16)

We choose p, 7 such that & < 60;/2 - ﬁ andn+ ﬁ <Y2<03/2- ﬁ. Let Ep,7,[a, b] be the space
of continuous functions defined on [a, b] vanishing at a and having a finite || - || 7, norm (see
Section 4.3 for the definition of Ej, y,[a, bl and || - [l 5,7,).

Since a.s., for any ¢ € [0, T], x — (¢, x) is almost “T_l-H('jlder continuous, we see that (¢, *)
belongs to E) y,[a, b]. Moreover, by (5.2.12), for any s, ¢ € [0, T],

_ _ 2p
E[IIﬁ(t,*)—ﬂ(s,*)IIzP ]Zf[ b]zE[lu(t’XHM(s’y) e

Y2 |x — y|1+2p772 dXdy

|x— |92P
sCT|t—s|91Pf X axay
(a,b]? |x—y| pY2

< Crlt—sP,

181



Chapter 5. Extension to the linear stochastic fractional heat equation

where the constant Cr depends only on T and the length of the interval [a, b]. We apply the
Kolmogorov continuity theorem (see [76, Theorem 2.1]) to see that the process {#i(t,*): t €

[0, T1} has a continuous version {#i(t, *) : t € [0, T]} with values in Ej, 7,, which is 02—1 - ﬁ —€-
Holder continuous for small € such that % - ﬁ — € > ¢, namely, there exists a random variable

C, finite almost surely, such that a.s. for any s, t € [0, T,
—€

O _ 1
(e, =) —a(s, «)py, = Clt —s| 2 2

Hence we have for any s, t € [0, T,

~ o~ o~ ~ 2p
f |ti(t, x) = (s, x) — u(t, y) + s, y)l dxdy<Clt— S|(%1_$—e)2p_
la,b]?

|x—y|1+2p}72

We apply the Garsia, Rodemich and Rumsey lemma (see Lemma A.6.2) to the real-valued
function x — ii(t, x) — ii(s, x) with ¥(x) = x?P, p(x) = x1+2P12)/@P) g = 1, to get that for any
(t,5,%,) €10, TI* x [a, b]?,

|t %) — (s, %) — @t y) + (s, Y < Cle— 512~ |x— y[7 %
<Clt—sl|x -y, (5.2.17)
where C depends on the length of the interval [a, b]. Letting y = a in (5.2.17), we obtain
|a(t, x) - (s, )| < C'lt — s1°, (5.2.18)
where C’ depends on the length of the interval [a, b].
Fix (s,y) € [0, T] x [a, b]. Using the triangle inequality,

|G, x) — a(s, y)| < |a(t, x) — a(s, x)| + (s, x) - u(s, y)l,

which converges to 0 as (¢, x) — (s, y) by (5.2.18) and the fact that x — (s, x) is continuous
since (s, *) € Ep 3,. Therefore, a.s., (£, x) — #i(t, x) is continuous. Together with the fact that for
any t € [0, T1, P{ai(t, *) = i(¢, *)} = 1, we obtain that the processes {ii(t, x) : (¢,x) € [0, T]1 x [a, b]}
and {ii(t, x) : (£,x) € [0, T] x [a, b]} are indistinguishable and hence (5.2.17) implies (5.2.15). [J

Choose an integer pg and g € R such that

>y > 29 (5.2.19)
Po>Yo> —. 2.

We assume that py is sufficient large so that there exist y1, y2 such that

1 1 1 1
—_—< <01/12—-—, —< <05/2——, (5.2.20)
2p ns=n Po  2po yasbe 2p
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Y2

(Yo—D(a-1)
2po

71

(yo—1)(a-1)
2po 2poa

Figure 5.3 — Illustration of (5.2.20) and (5.2.21)

where 01, 0, are defined in (5.2.13), and

an , Y2 _Yo—l (5.2.21)
a-1 a-1 2po

see Figure 5.3.

We introduce the following family of random variables, which can control the value of the
supremum F,. For r € [sg, So +01], we define

t) - ’ 2po
Y, ;:f (ult, yo) = uls, yo ™ oy (5.2.22)
[s0,71?

|t— S|(a—1)y0/a

By Holder’s inequality and (5.1.4), there exists a constant c,, not depending on (s, yo) €
[0, T] x R, such that for any p = 1, and for all r € [sg, So + 611,

_ Ellu(t, yo) — u(s, yo)|*P*P]
B, )< (- 50?0 [ W W0 S g sar
s IE=s@DopIa
- |t — s]@ Dpopla
< ¢y (r—s0)*"P l)f ———————dsdt
(50,712 | £ = s|@DYop/a
< ¢y (1 — 59) 2P\ D PoTOPIE (5.2.23)

Similar to Lemma 4.5.1(a), we know that Y, € D*°, r € [sg, So + 01] and for any integer [,

2po@po—1---2po—1+1)
|t—s|(“_1)7’0/“

x (u(t, yo) — u(s, y) 2P LD (e, yo) — uls, yo)) . (5.2.24)

D'y, = f dtds
(50,712

Moreover, we have the following estimate on the moment of the Malliavin derivative of Y.
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Chapter 5. Extension to the linear stochastic fractional heat equation

Lemma 5.2.5. For any p = 1, there exists a constant cy, not depending on (s, yo) € [0, T] x R,
such that for all61 > 0 and for all r € sy, So + 611,

ElDY;I,] < cp(r — sg)?Po o0 @ bre, (5.2.25)

Proof. From (5.2.24), we know that

(u(t, x0) — u(s, yo))?Pot
|t_s|}/0(a—1)/a

DY, :Zp()f dsdt

[s0,71?

D(u(t, yo) — u(s, yo))

and by Holder’s inequality,

p-l E {1t yo) — uls, yo))|2Po—DP
E[||DYr||’;f15cp(f dsdt) f o E10E Y0 — s yo)| ]
c [50,712 (50,712 |t — s|Yopla=D/a
x | D(u(t, yo) — uts, yo) I, (5.2.26)
Since
ID(u(t,x) — uls, Y) e = lut, x) — uls, Yz (5.2.27)

a-1 _
<C(t-sl@ +|x—y/*H/2

by (5.1.4), we see that (5.2.26) is bounded above by

Cp((r—so)z)p_lf del|t—s|(p0_Y0)(a—1)p/a

(0,112
< ¢p(r —sp)2Ps{oro@bple (5.2.28)
which completes the proof. U

Furthermore, we have for any integer / and g = 1,

sup E[ID'Y,|?

9 | <o, (5.2.29)
I‘€[S(),S()+61]

Lemma 5.2.6. There exists a finite positive constant c, not depending on (s, yo) € [0, T] xR,
such that for any a > 0, and for all r € [sg, So + 011,

2p06?—7/0(a’—1)/06

Yy<R:=ca = sup lu(t,yo)l < a. (5.2.30)

te(so,r]

Proof. The proofis similar to that of Lemma 4.3.1. We first apply the Garsia, Rodemich, and
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Rumsey lemma (see Lemma A.6.1) with

S:=lso,7), p(t,8) =1t =3I, p(dn:=at,
W(x):=x%P, p(x):=x"/CP) and  f:=u(,y).

From (A.34), and assuming Y; < R, we deduce that for all ¢, s € [sg, ],

1
2po
Yr Y0

(1B, (s, ul) 7m0

2pg ldu

2p(t,s)
lu(t, yo) — uls, yo)l < 10[
0

% 2p(t,8) 4 Yo 4
<qY™ u @ roy20 T du
0

Yo @ L
_ (a=1) a3, ~(az 2pg
=c2(/t =] )2ro (@=bpo Y

Yola-1) 1

1
<6, "R, (5.2.31)

where we have used (5.2.19); the constants c;, ¢» do not depend on r, nor on (s, yo) € [0, T] x R.
Letting s = sy in the above inequality and choosing a suitable constant in the definition of R,
we obtain that

sup |u(z, yo)l < a.
telso,r]

Recall the definition of the space Ep,,v,[¥0, o + Ax] in Section 4.3, i.e., the space of continuous
functions defined on [y, yo + A«] vanishing at yp and having a finite | - || 5, ,, norm defined in
(4.3.21). For (t,x) € [0, T] x R, we denote

u(t, x) = u(t, x) — u(t, yo). (5.2.32)

Choose ¢, n as in Lemma 5.2.4 such that n >y, + 1/(2py), which is possible by (5.2.20). Then,
by (5.2.15),

2po _[ (u(t, x) + u(s, y) — u(t, y) — u(s, x))Po ixdy
(Yo, Yo+A. 12

Poy2 |x — y[1*+2por2
<Clt- s|2l’°ff |x — y|PPon=1=2P0Y2 gy y
Yo, Yo+A4)?
< C|t - s|*Po* (5.2.33)

since 2pon—1-2pgy2 >0, which implies that a.s. ¢ — (¢, *) is continuous in Ep, , [yo, Yo+ Ax].

We next introduce a family of random variables, which can control the value of the supremum
Mo.
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Chapter 5. Extension to the linear stochastic fractional heat equation

For r € [0,A.], we define

B (u(t, yo) — u(s, yo))*P
Yo(r):= f[o,r12 7 s|@=Dyola dsdt, (5.2.34)

and

v - 2po
|22z, %) — (s, *)||
Yi(r) = PO dtds
[0,7]2 |t — S|1+2p0Y1

_f dtde dxd (ult,X) + u(s, ) = uh, ) = uls, )P (5.2.35)
o ospean LT e s gy -

Similar to the calculation in (4.3.16), by Holder’s inequality and (5.2.12), we see that there
exists a constant ¢, not depending on yp € R, such that for any p = 1 and for any r € [0, A.],

0,—-(1+2 0,—(1+2
E[|Y1(1)|P] < cp (rA*)ZpAf?(Po 1—( PoYl))Af(Po b—(1+2poy2))

=cp r2p6p(p001—(1+2p071))0¢/(a—1)5p(p092—(1+2p072)+2)/(a—1)
0 2}
= ¢, 2P §PPo (G + 2 =2po (1 + 32 -1)

a-1 " a-1

=¢p rzpap(Po—Yo), (5.2.36)

where in the first equality we use (5.1.14), in the third equality we use (5.2.21) and the fact that
;‘—fll +-2 = by the definition of 64, 6, in (5.2.13).

a-1"

For r € [0,A.], set
Y, :=Yo(r) + Yq1(r). (5.2.37)

By (5.2.36) and the calculation in (5.2.23), for any p = 1, there exists a constant ¢, not depend-
ing on yp € R, such that for any r € [0, A.],

E[|Y,)|P] < ¢, r2P§PPoY0), (5.2.38)

Similar to Lemma 4.5.1(b), we know that Y, € D* for r € [0,A.], and for any integer [,

D'V, = D'Yy(r) + D' Y1 (1)
2 —1)--- _
:f drds2P0@Po— 1) 2po—1+1)
[0,r12 |t~ s|(@Dyola
x (u(t, yo) — u(s, yo)) P~ L (D (u(t, yo) — u(s, y0))®'
2p02po—1)---2po—1+1
+f dtdsf dxdy 2P po” ) Po_ "~ )
(0,712 (Yo, Yo+A4]2 [t — st T=PoYi|x — y[1T=PoY2

x U(Lys qx1yx) P (Dult, x; 5, ). (5.2.39)

We proceed to give an estimate on the moment of DY, analogous to (4.5.7).
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Lemma 5.2.7. Forany p = 1, there exists a constant c,, not depending on y, € R, such that for
allr € [0,A.],

EDY; ", < cpr?P5Po-1oP, (5.2.40)
Furthermore, for any integer l and q = 1,

sup E[uD’ Y,||’;f®,] < o0. (5.2.41)
rel0,A.] ‘

Proof. We focus on estimate on the moment of DY) (r) since the estimate on the moment of
DYy(r) is essentially the same as that of DY (r) in the proof of Lemma 5.2.5. From (5.2.39),

u(Lys,fx1y,x) 270" Dult, x;5,y)
DYl(r):Zpof Zdtds[ ,dxdy ERT¥S T
[0,7] (Yo, Yo +A.] |t —s] [x—yl

and for any p = 1, by Hoélder’s inequality,

E[IDY;(MI”,] < ¢ (rA*)Z(”‘“f dtdsf dxd
7 P [0,r]? [Y0,Yo+A41? Y

Ellu(lys,1x1y,) @7 VP11 Duct, x5, 1,
y ‘
|t — s|A+2PoYD)P| x — y|0+2pPoY2)p

<cp (rA*)Z(p_”f dtdsf dxdy
[0,r1? Yo, Yo +A,1?

|t — S|P0P31 |x — y|P0P92

X
|t — s|PA+2poy)) | x — y|P(1+2P0Y2)
<cp (rA*)ZpAfJ(Poel—(1+2P0Y1))Af(poez—(1+2po)/2))

= ¢, r2PgPPod1=(H2porial(@=1) sp(pobz=(1+2poy2) +2)/ (@=1)
=Cp rz”ap(Po(%+%)—2po(%+%)—1)
= Cp rZPé‘P(Po—Yo)’ (5.2.42)

where in the second inequality we use (5.2.14), in the first equality we use (5.1.14), in the third
equality we use (5.2.21) and the fact that g—?ll + % = 1 by the definition of 4, 65 in (5.2.13).

Property (5.2.41) follows from (5.2.39) and a calculation similar to (5.2.42). O

Lemma 5.2.8. There exists a finite positive constant c, not depending on y, € R, such that for
anya>0,61>0,62>0andforallr €0,A.],

- — 2a
Y, <R:= ca’Poga-i N = sup lu(t, x)| < a. (5.2.43)
(£,x)€[0,r]x[y0,Y0+02]

Proof. The proofis similar to that of Lemma 4.3.5.
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Chapter 5. Extension to the linear stochastic fractional heat equation

Assuming Yy(r) < R, by the Garsia, Rodemich, and Rumsey lemma (see Lemma A.6.1), we
deduce, as in (5.2.31), that for all ¢, s€ [0, r],

Yo __a _1
lu(t, yo) — u(s, yo)| < 1 (|1t — s|“@~ D/ )20 @00 Yy (1) 200
yola-1) 1 BN 70 @ 1
< A POY(r)20 = ¢ 820 @Dro Yy (r) 2o, (5.2.44)

where the constant ¢, does not depend on r, nor on yy € R. Letting s = 0 in (5.2.44), we obtain

a 1

Jo ___«a 1 Jo _
sup |u(t, yo)l < c1 60 ©@ro Yy(r)2ro < cpd2ro @ Dro R2po, (5.2.45)
tel0,r]

Hence we can choose a suitable constant ¢ in the definition of R in (5.2.43) so that

. (5.2.46)

N|Q|

sup |u(t, yo)l <
te(0,r]

Assuming Y (r) < R, from the expression of Y;(r) in (5.2.35), we first apply the Garsia, Ro-
demich, and Rumsey lemma (see Lemma A.6.2) to the E, y,[yo, Yo + Ax]-valued function
s— 11(s, *) with W(x) = x2Po, p(x) = x1+2PoYD/2po) g = 1 to deduce, as in (4.3.31), that there
exists a constant ¢, such that for all ¢, s € [0, r],

, 1 r2lt=sl 1 1eepen _1
Nz (t, %) — (s, *)l py,y, < € Yl(r)%f X Pox 2ro dx
0

1 2por1-1
= Yi(r)o|t—s| 2k

1 % 1 apoy1—1)
<soYi(NA, ™ = Y(r)2n g 2@,

Letting s = 0, we obtain for all £ € [0, r],

v 2 _ —
122, %) sy, < €2 Ya(r)§@Pom—hal@s),

Applying the same lemma to the real-valued function x — (¢, x) (¢ is now fixed) with W (x) =
x2P0, p(x) = x(1+2PoY2)/ 2P0 '\ye obtain

. . 1 a@poy;-1 2poy2-1
[t2(t,x) = 0(t,y)| < c3 Y (r)2r0 6 2@ Dro |x—y| 20

for all x, y € [yo, Yo + A«]. Letting y = yp we obtain that for all (¢, x) € [0, 7] % [yo, Yo + Ax],
1 aepyy -y 2pore-l
|lu(t, x) = ult, yo)l < c3 Y1 (1) § 70 A, *°

1 a@poni-1)  2pgya-l
=c3Y1(r)?n § 2@-Dpy §2la-Dpo

1 Yo a
= c3Y1(r) 70§20 mle T,

where in the first equality we use (5.1.14), and the second equality is due to (5.2.21). In partic-

188



5.2. Preliminaries

ular, this implies that

1 Yo __a
sup lu(, ) — u(t, yo)| < c3 Y1 (r)?0 6200 pol@=D, (5.2.47)
(t,x)€[0,r]x [y0,y0+62]

We can choose the constant ¢ in the definition of R in (5.2.43) small so that (5.2.46) holds and

a
sup lu(t,x) —u(t, yo)l < —. (5.2.48)

(£,X)€[0,]x Yo, Yo +52] 2
Hence, by (5.2.46), (5.2.48) and the triangle inequality, we obtain (5.2.43). O

We conclude this section by presenting a technical result on the uniqueness of the solution to
the fractional heat equation, which will allow us later on to verify the conditions in Theorem
1.5.5(iii). We first check that the fractional differential operator D% maps C3°(R) into the space
of infinitely differentiable functions with finite moment of all orders.

Lemma 5.2.9. For g € C°(R), D%g belongs to C*°(R) N LP(R), forallp = 1.

Proof. By definition,

a glx+y) —gx)-yg'x)

D = d
gx) Coch |y|1+a y

“f g(x+y)—g1(x)—yg (x) dy+caf g(x+y)—g1(x)—yg (x) dy
lyl<1 lyli+a lyl>1 |y|1+e

= g1 (%) + g2 (x).

We just prove that the function g; is in C*°(R) and the proof for g» is similar. By the remainder
formula in Taylor’s expansion,

1
g’ (x+y)—g'(x) - yg"(x)| < = sup|g® (x)]y>.
2 xeR

Since 1 < a < 2, we have

2
Yy
dy < oo.
fmq e Y

Applying the dominated convergence theorem (see [75, Theorem 5, Chapter 5]), we can differ-
entiate under the integral sign for the function g;. Hence g is differentiable. We can repeat
this argument to conclude that g; is infinitely differentiable. Similarly, g» is also infinitely
differentiable.

In order to prove that D%g belongs to L (R), it suffices to prove that the function x —
fl yi>1 %d y belongs to LP (R) since the other parts of D% g are infinitely differentiable and
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Chapter 5. Extension to the linear stochastic fractional heat equation

compactly supported. By Holder’s inequality and Fubini’s theorem,

f f |g(x+y)|dyp [ - lff Ig(x+y)|”dydx
RIJy>1 lyltte lyl>1 Iyl”“ yi>s1 lyltte

=c/ dymf lgx+y)IPdx
yi>1 1Yl

which completes the proof. O

Let g € Cgo([R) and f : [0,00[— R be a differentiable function with continuous derivative
satisfying f(0) = 0. We define

t
A(t,x)=ffGa(t—r,x—v)(i—,,D“)(f(r)g(v))dvdr, >0 xeR,
0 JR or

A0,x)=0, xelR.

Lemma 5.2.10. The function A is well-defined and we have A(t,x) = f(t)g(x), forall (t,x) €
[0,00[xR.

Proof. By Lemma 5.2.9, the function

a [04
(r,v)— (5 —uvD ) (f(ngw)

belongs to L?([0, T] x R), and so does the Green kernel. Hence A is well-defined. Fix ¢ > 0. We
are going to use the L!-Fourier transform to prove this identity. For this, we first show that

f |A(t,x)|dx < oo. (5.2.49)
R

Indeed, by Fubini’s theorem,

t
flA(t,x)Idefdxf drf dvGe(t—r,x—)|f (1) 1gW)l
R R 0 R

t
+fdxf drf dvGe(t—r,x—v)|f(r||D%g )|
R 0 R

t
Scf drfdvlg(v)lfGa(t—r,x—v)dx
0 R R

¢
+cf drf dvID“g(v)lfGa(t—r,x—v)dx
0 R R

= ctfR(lg(V)I +|D%(v))dv < oo,
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where the last inequality is due to Lemma 5.2.9. Therefore, by Fubini’s theorem,
FAt,)©) =fRe"'x5A(r,x)dx
= Rdxe_ix'ffotdrfRdVGa(t—r,x—v)[f’(r)g(v)—f(r)D“g(v)]
:fotdrfmdv(fRe_ix'fGa(t—r,x— vdx|If'(ngw) - f(r)D%g(v)].

Using the Fourier transform of the Green kernel (see (5.1.3)), the above integral is equal to

fo “ar fR dve eI £ (1) g(v) - f(r) D g(v)]
_ fo Cdr e IR ) F (6 — (). F (D) )]
= fo [dre‘”‘”'f'a[f’(r)ffg(é)+f(r)|vf|“9g(€)]
=78 fo te‘”""f'“f’(r)dw|£|“9’ 463 fo te‘“‘”'f'“f(r)dr, (5.2.50)

where in the second equality we use (2.1.2). Integrating by parts, the first integral in (5.2.50) is
equal to

Fg&(f) - fO)e )~ 18T g® fo eI
= Zg&) f(1)- &1 Fg(&) fo R fydr
since f(0) =0, which implies that
F AW = f(0.FgE&) = F (F(Hg)E. (5.2.51)

Hence for every t > 0, A(t,x) = f(#)g(x) for almost every x € R. On the other hand, by the
Cauchy-Schwarz inequality and (4.2.3),

t
IA(t,x)—A(t,y)lsf drf aAv|Ge(t—1,x—v)—Ga(t—1,y— )|
0 R

x|f'(ngw) - f(r)Dg(w)|
t 1/2
SC([ fIGa(t—r,x—v)—Ga(t—r,y—v)Izdvdr
0 JR

1/2
x (fR(Ig(V)I +|D%g(v))*dv

< Clx_y|(a_1)/2;

which shows that for every ¢ > 0, the function x — A(t, x) is continuous. Hence A(f,x) =
f(t) g(x) for all (¢, x) € [0,c0[xR. O
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Chapter 5. Extension to the linear stochastic fractional heat equation

5.3 Smoothness of the densities

It is clear that the first component of F in (5.1.6) belongs to D*°. For the second component of
F and the random variable M), we have the following result.

Lemma 5.3.1. (a) The random variable F, takes values in]0,00[ a.s. Moreover, it belongs to
D2 and

DF =11.<5Ga(S—+ Yo —*) = Li<5) Ga (S0 =+ Yo — %), (5.3.1)

where S €15y, S0 + 01] is the unique point where the maximum that defines F, is attained.
(b) The random variable My takes values in 10,00[ a.s. and belongs to DY2, and

DMy =1_5Ga(S—+ X - %), (5.3.2)

where (S, X) €]0,51] x (Y0, Yo + 02] is the unique point where the maximum that defines My is
attained.

Proof. First, the strict positivity of F, (when sy = 0) and M is a consequence of the 0-1 law;
see also the arguments in the proof of Lemma 4.4.2. When sy > 0, (5.2.2) implies that F, > 0 a.s.

The proof of (5.3.1) and (5.3.2) is similar to that of Lemma 4.4.4. We have to show that the
maximums F, and M are attained at a unique point almost surely. For the random variable
F>, by [47, Lemma 2.6 ], it suffices to check that for any ¢, s €]0,00[ with ¢ # s,

E[lu(t, yo) - u(s, o)1 > 0. (5.3.3)
Assuming ¢ > s without loss of generality, by (A.2),

t
E[|M(I,J/o)—u($,yo)|2]2f fRGi(t—r,yo—v)dvdr

—s _
- G (2r,0)dr = cy(t—5) T >0.
0

Therefore, the maximum F, is attained at a unique point in [sg, So + 61] almost surely. The
proof of (5.3.1) is similar to that of (4.4.9).

For the random variable M, by [47, Lemma 2.6 ], it suffices to check that for any (z, x), (s,y) €
10,00[xR with (¢, x) # (s, )

Ellu(t, x) — u(s, y)|*1 > 0. (5.3.4)
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If t # s, assuming ¢ > s without loss of generality, we have
t
Ellu(t, x) — u(s, y)I°] 2[ f Gﬁ(t— r,x—v)dvdr
R
SI—S a1
=f G, 2r,0)dr =cq(t—5s) @« >0,
0
by (A.2). If t = 5, x # y, by the Plancherel theorem, we have
¢
Ellu(t, x) — u(t, y)|*] =f f(Ga(t_ rx—v)=Ge(t—r,y—v)?dvdr
0 JR
t
:f f(Ga(r, V) —Go(r,y—x+ v)’dvdr
0 Jr

1 t @
:_[ fe—zrw
21 Jo Jr

since the Lebesgue measure of {1:1 — e Mx=)) = 0} is zero. O

. 2
1- e’ﬂ(x—y)( dAdr >0,

We proceed to construct the random variables needed for Theorem 1.5.5. For (z1,2p) €
Rx]0,00[, set

a=2zy/2 and A=Rx]a,ool. (5.3.5)

Let v : R — 1 be the infinitely differentiable function defined in (4.5.17), where R is defined in
Lemma 5.2.6 with a as in (5.3.5). Hence we have

19 lloo := sup ¥/ (x)| < cR™! (5.3.6)
xeR

for a certain constant ¢ not depending on z.

IfIxJc]o, Tl xR, let c1, Cy, ¢2, Co be asin (5.1.8) and (5.1.9) and f; : R— [0, 1] be an infinitely
differentiable function supported in [c;/2, (C; + 1)/2] such that fy(t) =1, forall ¢ € [c}, C1]. Let
8o : R— [0,1] be an infinitely differentiable function supported in [c, — 1, C, + 1] such that
go(x) =1, for all x € [c,, C2]. We define the .77 -valued random variable u}4 evaluated at (r, v) by

0
u,14(r, v) = (E - uD“) (fo(r)go (). (5.3.7)

By Lemma 5.2.9 and the definition of the functions fj and gy, there exists constant ¢ such that
forall (s, yo) € I x J <10, T] x R,

luylle < c. (5.3.8)
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Chapter 5. Extension to the linear stochastic fractional heat equation

We define the function ¢s, as

V=)o
l/a
51

¢s, (V) := o ( ) , forall veR, (5.3.9

where, as below (4.5.20), ¢ : R — [0,1] is an infinitely differentiable function supported in
[—1,2] such that ¢p¢(v) =1, for all v € [0, 1]. Set

H(r,v) ::gbgl(v)f w(Yyda, (r,v)€lsy,So+01]xR. (5.3.10)

We define the .7#-valued random variables ui evaluated at (r, v) by

0 _ a : .
= | (B oD HO) 0 €l 50011 <R 5310
0 otherwise.
Finally, we define the random matrix y 4 = (yf&j )1=i,j<2 by
(! 0 (5.3.12)
Ya= 0 f350°+51W(Yr)dr . -9

If sy =0€ 10, T], we only consider the random variables F», ui and yi‘z defined in (5.1.6),
(5.3.11) and (5.3.12) with sy = 0, respectively.

We next introduce the random variables needed to prove the smoothness of density of M. For
z €]0,00], set

a=z/2 and A=]a,ool. (5.3.13)

Let ¥ : R — 1 be the infinitely differentiable function defined in (4.5.27), where R is defined in
Lemma 5.2.8 with a as in (5.3.13). Hence we have

17 lloo := sup %7 (x)| < c R (5.3.14)

xeR

for a certain constant ¢ not depending on z.

We define the function ¢s by

7 V=)o V=Y
(/)5(1/)3:(/)0( AL ) :Qbo(m), VER, (56.3.15)
where the function ¢ is specified below (5.3.9), so that for some constant c,

I(Z)g(v)IScé‘_ﬁ and |(/3g(v)|505‘ﬁ, forall v e R. (5.3.16)
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5.3. Smoothness of the densities

Set
FI(r,v)::(ﬁ(g(v)f w(Yda, (r,v)€[0,A.]x][0,1], (5.3.17)
0

where {Y; : r € [0,A.]} is defined in (5.2.37). We define the #-valued random variable u 4
evaluated at (r, v) by

0 _ a) 1 : .
) = (£-.D%) A v i () €10,A xR 5:3.18)
0 otherwise.
Finally, we define the random variable
A
yA=f W(Y,)dr. (5.3.19)
0

The random variables introduced above are smooth, as required in Theorem 1.5.5.
Lemma5.3.2. Fori,j€{1,2}, u', e D®(), yi;j eD® anduz € D®(I), vy ; € D™.

Proof. The proof is similar to that of Lemma 4.5.3. First, by discretization and (5.2.29), we see
that yi"?‘ belongs to D*°. On the other hand, we write

Lé,(r, V) =Y (V)15 s+, (NP5, (V) — 1[30,s0+51](r)D“</>51(V)f y(Yg)da. (5.3.20)

Since v — D%¢s, (v) belongs to LP(R) for all p = 1 by Lemma 5.2.9, we can use the same
argument as in the proof of Lemma 4.5.3, to see that the discretization of ui converges to ui
in LP(Q, #¢) for any p = 1, and its Malliavin derivative converges to Dui in LP(Q, #%2) for
any p = 1. We repeat this procedure and conclude that ui belongs to D*° (7).

Similarly, we can show that u ; € D*°(.%) and y ; € D*. |

In the following, we check that the random variables defined above satisfy the conditions in
Theorem 1.5.5(iii).

Lemma5.3.3. (@) On the event{F € A} = {F, > a}, we have (DF;, uf;‘)jgo = yf&j fori,jed{l,2}.
(b) On the event {My € A} = {My > a}, (DMo, Uuz)» =Y ;-

Proof. We start by proving (a). If sp > 0, by Lemma 5.2.10, we have

So a
(DFj, u}q>%” = fo fRGa(SO -nYo— V) (E - vDa) (fo(r)go(w)drdv

= fo(s0)go(y0) =1= Yi{l-
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Chapter 5. Extension to the linear stochastic fractional heat equation

Obviously,

So a
(DF1,M?4>%=[0 fRGa(so—r,yo—v)(a—UD“)H(r,v)1{30<r550+51}drdv:0.

Moreover, using Lemmas 5.3.1(a) and 5.2.10, we have

S 0
<DF2,U,14>W:f0 fRGa(S—r,yo—v)(E—yD“) (fo(r)go(v))drdv

So a
—f f Ga(So—1,y0—-0) (— - UD“) (fo(rgo(w))drdv
0 JR or
= f0(S)go(¥0) — fo(s0)go(yo) =1-1=0,

where the last equality is due to the definition of the function fy and g since S € [sp, So + 61].
Furthermore, for both cases sy >0 and sy =0,

S
(DFg,qujgc:f drf dvGa(S—r,yo—v)ui(r, V)

0 R
So

—f drf dvGg(so—1,y0— V) U5 (1, V)
0 i

S 0

:f drf dvGa(S—r,yO—v)(——yD“)H(F,U)
So R or

S—S() 6
:f drf dvGa(S—so—r,yo—v)(——UD“)H(r+so,v)
0 R or

= H(S,)/O),

where the last equality follows from Lemma 5.2.10 by using the fact that H(sg, v) = 0 for all
v € R. Therefore,

S S
(DF,, ui)%/ = s, (yo)f w(Y,)dr :f w(Y,)dr, (5.3.21)
So So

where in the second equality we use the fact ¢s, (o) = 1. Moreover, on the event {F € A} =
{F> > a}, we observe that if r > S, then ¥ (Y;) = 0. Otherwise we would have y(Y;) >0, hence
Y, < R, and by Lemma 5.2.6, this would imply that

F>=1(S,y0) = sup u(t,yo) =a<Fk,,

te(so,r]

which is a contradiction. Hence on {F € A}, the last integral in (5.3.21) is equal to

SO+61 29
f W (¥, dr =y42.

So
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5.3. Smoothness of the densities

We proceed to prove (b). By Lemma 5.3.1,
(DMy, uz)» = <1{.<S}(Ga(~§_ o X — %), Uz rw
$ L 4 )
:f f Go(S—1,X-1) (— - ,,D“) H(r,v)dvdr
o Jr or

S
= H(S, X) = ¢s5(X) fo w(Y,)dr. (5.3.22)

Since X € [y, yo + 821, by the definition of the function ¢;, it implies that ¢s(X) = 1.Hence,

S
<DM0;UA>.7f:fO w(Y,)dr.

On the event {My > a}, for r > S, we have ¥(Y;) = 0. Otherwise, we would have ¥(Y;) > 0,
hence Y, < R and by Lemma 5.2.8 this implies that

My=u(S,X) = sup u(t,x) < a< My,
(t,)€[0,r1x[y0,y0+02]

which is a contradiction. Therefore, on the event {M, € A},
A
(DM, uz) » =f0 v(Y)dr=vy;.
This completes the proof. O

The last ingredient for the smoothness of the densities of F and M, is the finite negative
moments of yi’z andy ;.

Lemma5.3.4. (a) The random variable yijz has finite negative moments of all orders. Further-
more, for any p = 1, there exists a constant c,, not depending on (o, yo) € I x ], such that for
all51 >0 and for all z, = 55“_1)/(2“),

105 i < ¢p 07 (5.3.23)

(b) The random variabley ; has finite negative moments of all orders. Furthermore, for any
p = 1, there exists a constant c,, not depending on y, € ], such that for all small 61, 62 >0
and for z = (81D + 5112,

Iy 3 @ < ¢p 01D+ 857 a. (5.3.24)

Proof. The proofis similar to that of Lemma 4.5.4. We need to pay attention to the exponents
in the calculation.

197



Chapter 5. Extension to the linear stochastic fractional heat equation

We first prove (a). By the definition of the function v,

29 50+51 _
= 1 dr:=X.
Ya fs() v, <%

For 0 <e <6, and any g = 1, since r — Y, is increasing, we have

P{X <€} <P{Y e = R/2}

< (2/R)TE[| Yy, 1el) < ¢ R 925 07100/

where in the second inequality we use (5.2.23). which shows that the random variable yi’z has
finite negative moments of all orders by [24, Chapter 3, Lemma 4.4]. Moreover, for any p = 1
andg> %,

E(X 7] = pfo yPIP(X7L > y)dy

1/61 _ o0 _
= pf yPlp(x1 > y)dy+pf/6 yPIP(X71 > y)dy
0 1/6,

< 1 R—qé(po—yo)(a—l)q/a oo p=1,-2q4
<¢p5+Cp 1 yoy y
6] 1/6,
— -p —q s(po—yo)@-1)qla s2g—p
=cpd,  +cpR™ 5] 0]
_ -p —q s(po—v0)(@-Dqla c2q
= cp0; " (1+R776] 52
_ Cpal—p(1+a—2p0q511/o(a—l)q/a—245(1po—yo)(a—l)q/a(siq)

’

where the last equality uses the definition of R in (5.2.30). Using (5.3.5) and the assumption
z=0 (1“_1)/(2“), this is bounded above by

- aly (-2 - _ _ _
Cp(slp (1+512" x( poq)éql/o(a Nqla 2q6(lpo Yol l)q/aéfq)
_ . 5P
=cpb,".
Therefore, we have proved (5.3.23).

We proceed to prove (b). Similarly, by the definition of the function v,

A,
yng 1{Y,SE}dr:=X'
0 2
For any 0 < € < A., since r — Y, is increasing,

P{X <€} <P{Y.=R/2}
< /R)TE[Y,T] < cuR™ 12950104, (5.3.25)

where, in the last inequality, we use (5.2.38). Hence the random variable y ; has finite negative
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5.3. Smoothness of the densities

moments of all orders. Moreover, for any p =1 and g > p/2,

o0
E[XP] = pf yPIP(X7 > y)dy
0

AL B 0o B
=p yPIP(X s yydy + pf yPIP(X > yydy
0 AL

o0
<A P p—q 5(Po—Y0)q p-1,-2q
<cA."+cR 96 fA._ly y “ldy
=cALP + cR™ 5P N2TP
Using the definition of Rin (5.2.43), this is equal to
2a

cAJP (1 + d—2p0‘75—(m—Yo)q(s(Po—Yo)qA%q) .

Under the assumption z > §'/2 = (6(1“_1)/“ + 6‘2"’1)”2, by (5.3.13) and (5.1.14), this is bounded
above by

cAP (1467225 (a1 pZT) = e AP,
which implies (5.3.24). O
Proof of Theorem 5.1.1(a). The positivity of F» has been proved in Lemmas 5.3.1(a). For
(S0, ¥0) € I x J < [0, T] x R with sy > 0, by Lemmas 5.3.1(a), 5.3.2, 5.3.3(a) and 5.3.4(a), the
random vector #,4 and the random matrix y 4 introduced in this section satisfy the conditions
in Theorem 1.5.5. Hence the random vector F possesses an infinitely differentiable density
on Rx]zy/2,00[. Since the choice of z; is arbitrary, it has an infinitely differentiable density

on Rx]0,c0[. Similarly, if so = 0, we apply these lemmas for ufq and yijz and Theorem 1.5.5 to
conclude that the random variable F» has an infinitely differentiable density on ]0,c0]. O

Proof of Theorem 5.1.1(b). The proof is similar to that of Theorem 5.1.1(a) by using Lemmas
5.3.1(b), 5.3.2, 5.3.3(b), 5.3.4(b) and Theorem 1.5.5. ]

Proposition 5.3.5. (a) The probability density function of F at (z1, z2) € Rx]0,00] is given by

P21, 2) = E|Lip >z, 55206 (46 (1577 (5.3.26)

= —Ellp <z, 520 O (W /Y5 ulp]. (5.3.27)
(b) The probability density function of My at z €]0,00] is given by

Po(2) = Ellvy>26 (e z/y 7). (5.3.28)

Proof. The proof is exactly the same as that of Proposition 4.5.6 and Remark 4.5.7. U
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Chapter 5. Extension to the linear stochastic fractional heat equation

5.4 Gaussian-type upper bound on the density of F

In this section, we fix I x J ]0, T] xR and assume that §; is small enough so that the conditions
in (5.1.10) hold. Similar to the derivation of (4.6.3), we can bound the density of F by

p(z1,22) < P{Fi| > |z} *PFs > 2} 16 6 (W 15 up) 2 - (5.4.1)

Asin Lemma 4.6.1, we have the following.

Lemma 5.4.1.

@AY UL =T+ To— T3+ Ty — Ts + T, (5.4.2)
where
Oy - <D73{2’u124><%” 1 1 2y 1
Ih= 2,2 6(uA)’ I = 2212 §(MA), I3 = ?(Dé(u/‘), UA>3?{’, (5.4.3)
YA ra’) YA
o(ul) 22 1 2<D7i{2’”§x>% 22 1
Ty=—=ADy " updw, Ts=——=5""—Dy,  upw (5.4.4)
(7’?42)2 A HA (YiZ)g A YA
To= — 1 (D(DV?2 2 1
6= 22 2< DYy wa) e Upd - (5.4.5)
o)
Proof. The proofis identical to that of Lemma 4.6.1. U

In the remainder of the this section, we follow the same path as in Section 4.6. The main
difference is that the exponents are expressed in terms of a.

Proposition 5.4.2. (a) For any p =2, there exists c, > 0, not depending on (so, yo) € I x J, such
that for all 6, > 0 and for all zp = 5(104—1)/(205)’

1Tl ey < cp 80D forie{1,2,3). (5.4.6)

(b) Ty, Ts and Ty vanish.

As an immediate consequence of Lemma 5.4.1 and Proposition 5.4.2, we obtain the following.

Proposition 5.4.3. There exists a finite positive constant c, not depending on (sg, yo) € I x J,
such that for all 6, > 0 and for all z, = 5(1a71)/(2a)’

||6(6(u124/)/i’2)u,14) “LZ(Q) < 6651_“)/(2“). (547)

The proof of Proposition 5.4.2 is divided into two subsections. Throughout the remainder of
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5.4. Gaussian-type upper bound on the density of F

Section 5.4, we assume that
Z > 55‘1_1)/(2“). (5.4.8)

Recalling the definition of R in (5.2.30), under the assumption (5.4.8), we see from (5.3.5) that
R 1= C—la—Zpoa)lfo(a—l)/a—Z _ C;Z2—2p06)1/0(a_1)/a_2

< Cagyo—po)(a—l)/a—Z_ (5.4.9)

5.4.1 Proof of Proposition 5.4.2(a)
We first give an estimate on the moments of T7.

We denote by L2 the closed subspace of L?(Q x [0, T] x R) formed by those processes which
are adapted to the filtration {.%, := 6{W(s,x) :s< t,x€R}, t € [0, T]}.

Lemma 5.4.4. For any p = 1, there exists a constant c,,, not depending on (o, yo) € I x ], such
that for all 51 >0,

182 Il < cpo @D, (5.4.10)

Proof. From the definition of ui, for (r,v) € [sg, So+01] xR,
r
ui(r, v) =¢s, (VY(Yy) —D"‘%l(v)f v(Ygda.
So

Since ui is adapted to {#; : t € [0, T1}, by Proposition 4.6.4, we have

S(u?) = o bs, Y (Y)W (dr,dv) — oo W (dr,dv)D%pgs, (v) ' (Yo)d
A s R 01 u/ r ) 5 R » (,b51 v sow a a.

(5.4.11)
Using Burkholder’s inequality, forany p = 1, since 0 sy < 1,
50+61 p
f f(,bgl(v)w(Yr)W(dr,dv)
So R LP(Q)
30+61 p/2
<cyE (f f(pg (v)wZ(Yr)dvdr)
So R !
/2 plz
< 0,955J (fR(/)(zsl (l))dl/)
< c,07%67/CM = ¢l OPIED) (5.4.12)

In order to estimate the second integral on the right-hand side of (5.4.11), we determine the
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dependence on 9 of the L?(R)-norm of Da(P(sl:

@, 2 2 P, (x+y) = P, (X) = ypys (x) 2
1D ‘P51||L2(R):C“fmedx fu@ |y|l+a dy

_ sz dx(f bo((x+y—30)/57'“) —Qbo((x—J/o)/E{/a)—J’Gl)f)((x-yo)/&{/“)/(si/ad
a R R

2

|y|1+a

o I 2

X+79) —do(X) — yoh(x
=C§5i/afdx (PO( J’) ll(p(i( ) y(Po( )6i/adj/

R |51 Dty|1+a
X+7) - po(®) - PR\
2635(11—2a)/afd)_6(f Po(X+3) |J—,¢|)10Jfa) Yol )dj/) = cali-2la, (5.4.13)
R R

where in the third equality we change the variables by letting x = & }’ “X+ypandy=90 i/ “5y.

Now we apply (5.4.13) to estimate that, by Burkholder’s inequality, for any p = 2, since 0 < ¢ <
1,

p

So+51 r
f fW(dr,dv)D“(,bgl(v)f w(Yz)da
S0 R S0 LP(Q)

So+51 r 2 p/2
U drfdv(D“(pgl(v))z(f w(Ya)da) ) ]
So R So

So+01 pl2 pl2
<cp U (r— so)zdr) (f (D%ps, (v))zdv)
So R

3pl2 c(1-2a)p/2a) _ (1+a)p/2a)
<cpd;" "6, =cpo, .

< cpE

(5.4.14)

Hence (5.4.11), (5.4.12) and (5.4.14) imply (5.4.10). O

Furthermore, from (5.3.8), for any p > 1, there exist a constant ¢, such that for all (so, yo) € I x J,

16 lLr = cplluyll e < c),. (5.4.15)

By (5.3.23), (5.4.10) and (5.4.15), using Holder’s inequality, we obtain that for all p =2

1c(0+a)/2a) _ (1-a)/(2a)
6, =cpo; .

I T1llr ) < cpdy (5.4.16)

This proves the statement (a) of Proposition 5.4.2 for i = 1.

We next give an estimate on the moments of T».
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5.4. Gaussian-type upper bound on the density of F

We first give an estimate on the .7/-norm of u124. By definition,

9 9 S(]+61 9 9 SO+(51 9 r 2
w5, st drf dvy(Yy) (p5l(v)+2f drf dU(Da([)gl(l})) f v(Yyda
So R So R So
y0+261/a S()+61
5251f 1 dv+c<5(11_2“)/“f (r —sp)?dr
yo—061/@ o
= 6161/ + 53617200 = g5 F W (5.4.17)

where, in the second inequality, we use (5.4.13).
Lemma 5.4.5. For any p = 1, there exists a constant c,, not depending on (o, yo) € I x ], such

that for all 6, >0,

IKDY%%, 13 2l 1oy < €pd (300, (5.4.18)
Proof. Taking the Malliavin derivative of yijz, we have

22 2 So+01 2
(Dy's ,uA),;f=f ' (Y )(DYr, uy) srdr.
So

By Holder’s inequality and (5.4.17), forany p = 1,

_ So+61
E |<Dyi;2,ui>jf|p] <[y 1567 f E[(DY;, u3) x|P1dr

So

_ p—l S()+61 p 2. p
<cpR7Po] f E[IDY: ), luyl’, ldr

So

S()+61
< e R P8y o [ R DY, 17 lar

So
Using (5.2.25), this is bounded above by
50+51
CpR_p6f—l5(11+a)p/(2a)6(1]90—)/0)(06—1)[7/06f (r = so)2Pdr

So

—c R_p5p—1+2p+1+(1+a)p/(2a)+(p0—yO)(a—l)p/a
- *p 1

< Cpé(l(yo—po)(a—l)/a—2)p6{9—1+2p+1+(1+a)p/(2a)+(p0—70)(a—1)p/a

_ (1+3a)p/2a)
=cpb,

)

where, in the inequality, we use (5.4.9). [l

By (5.3.23), (5.4.15) and (5.4.18), using Holder’s inequality, we obtain for any p = 1,
12l 0 < ¢p 67280 H3VICD = ¢ sl-0)/CD), (5.4.19)
This proves the statement (a) of Proposition 5.4.2 for i = 2.
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We proceed to estimate the moments of T5.

Similar to the calculation in Section 4.6.1, by the properties of the derivative and divergence
operator and the stochastic Fubini theorem (see [24, Chapter 1, Theorem 5.30] or [81, Theorem
2.6]), we write

So+01
(DS(U?), uly) s = (U2, k) o + f fR W' (V,)(DYy, ul) b5, (V)W (dr, dv)
So

So+61 r
—f fW(dr,dv)D“(/)gl(v)f day' (Yo){DYa, ul) »
R So

So
= Tgl + ng — ng. (5.4.20)
From (5.4.17) and (5.3.8), it is easy to see that for any p = 1,

1311120 < cpol +OCY, (5.4.21)

By Burkholder’s inequality and using (5.3.6) and (5.3.8), we have for any p = 2,

pl2
E[|T52|"] < cpE

So+61
([ \[Rw/(yr)%DYr, ullq)zjf(ptzsl(v)drdv)
So

So+01
( |7 ipvidar | (/)gl(v)dv)
So R

pl2
<c,RPE
=*p

2 pl2 so+61 , pl2
— ([ g, o] | ([T Dy ar) . 5499
0
By Hélder’s inequality, we see that (5.4.22) is bounded above by
30+61
- /2a) opl2—-1
cpR p6f 0‘5{’ /S E[”DYr”ﬁf]dr
0
— — _ So+01
5ch—p5f/(2a)6f/2 15§po Yolla l)p/af (r— s?Pdr
So
= ch_p(S’l”/(Z“)+5P/2+(Po—yo)(a—l)p/a
< Cp§§(7°_p0)(“—1)/0‘—2)Pé‘lf/(2“)+5P/2+(Po—)’o)(a—1)p/a
— Cp6(11+a)p/(2a)’ o

where, in the first inequality we use (5.2.25), and in the second inequality we use (5.4.9).

We now give an estimate on the moments of T33. By Burkholder’s inequality and using (5.3.6)
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and (5.3.8), we see that for any p = 2,

pl2
E[| T33/"] < cpE

So+61 r 2
( f fR ( f w’(Yu)<DYa,u;>,yfda) (Daqbal(v))zdrdv)

SO+61 r 2 p/z
(f (f ”DYa”jfda) dr) ]
S0 S0

(5.4.24)

pl2
<cpR? (f (D"‘(pgl(v))zdv) E
R

By (5.4.13) and using Holder’s inequality twice, we see that (5.4.24) is bounded above by

S()+61 r p/z
CpR—Pé‘gl_Z“)p/(za)E (f dar(r— So)f ||DYa||_2]~fda)
So So

_ So+01 r plz_l So+01 r
< ¢, RPI 2P/ ( [ ar| da) |7 are -7 [ EpYal’, 1da.
So So So So )
(5.4.25)
Applying the estimate in (5.2.25), we obtain that (5.4.25) is bounded above by
_ _ _ _ So+01 r
ch_pé(ll 2a)p/(2a)5;10 26(1p° role Dp/af dr(r—so)plzf (a—so)*Pda
So So
— CpR_p5(11—2a)p/(2a)5f—26§p0—yO)(a—l)p/a5?+5p/2
< Cpag()/o—po)(a—l)/a—Z)p6(11—2a)p/(Za)5{)—255190—70)(06—l)p/a5§+5p/2
= cpdy TP, (5.4.26)

where, in the inequality, we use (5.4.9).

Therefore, by (5.4.21),(5.4.23), (5.4.26) and (5.3.23), we have obtained that for any p = 2,
I T3l < cp &7 8D CD = ¢ gll-0/ GO, (5.4.27)
This proves the statement (a) of Proposition 5.4.2 for i = 3.

Therefore, we have finished the proof of Proposition 5.4.2(a).

5.4.2 Proof of Proposition 5.4.2(b)

As in Section 4.6.2, we are going to show that the three terms T}, T5 and T are equal to zero.
First, we observe that for any , s € [sp, So + 81], by Lemma 5.2.10 and the definition of the
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Chapter 5. Extension to the linear stochastic fractional heat equation

functions fy and gy,

T
(D(u(t, yo) — u(s, o)), u};)yz =[0 fR(l{rq}Ga(t— nYo— V)= liy<gGa(s—1,y0— 1))
0
X (5 - uD“) (fo(r)go(v)drdv
= fo(£)&o(¥0) — fo($)go(y0) = 0. (5.4.28)
By (5.2.24) and (5.4.28), we know that for r € [sg, o + 611,

(u(t, yo) — u(s, yg))?Po!
|t — SlyO(a—l)/a

(DYy,ul) = 2po f dsdt (D(u(t, yo) — u(s, yo)), u') »

[S0,71?

=0. (5.4.29)

Hence,

20 1 Yo+61 , )
(DY 5 up) Zf Y (Y )(DYy, uy) rdr =0, (5.4.30)

So
which implies T, = T5 = 0.
We proceed to prove that Tg vanishes. Similar to (5.4.28), for any ¢, s € [sg, So + 611,

So+01 1
(D(u(t, yo) — u(s, yo)), u%) =f drfo dv(lyy<pGt—1,y0— V)
So

a a
— 1<y G(s=1,)0— 1)) 5, " vDY|H)
= H(t, yo) — H(s, yo)

t S
= $5, (o) f w(Ya)da- s (o) f w(Yoda
t
- f w(Yo)da, (5.4.31)
S

where the last equality is due to the definition of the function ¢s,. Hence, for r € [so, so + 61],

(u(t, yo) — u(s, yo))?Po!
|t_sly0(a—1)/a

<DYr»u124>jf =2p0f dsdt (D(u(t,J/O)—u(S,J/O))» u124>%

[s0,712

— (u(t, yo) — u(s, yo))2Po~1 t
=2po f[sﬂ,rlz dsdt [ spoa-Dia fs v(Yyda. (5.4.32)
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5.4. Gaussian-type upper bound on the density of F

Moreover,

(u(t, yo) — u(s, yg))Po—2
[t — s|70(a—1)/“

(D(DY;, u3) e, up) = 2po(2po— 1) dsdt

[s0,71?

3
x (D(u(t, yo) — u(s, o)), ul) f y(Yy)da

t, — : 2po—1
+2p0f dsdt (u( J’O) u(S yo))
(50,71 |t — s|yola=D/a

t
xf Y (Yo(DYq, uy) wda

=0+0=0, (5.4.33)

where the first term vanishes due to (5.4.28) and the second term vanishes because of (5.4.29).
Therefore,

22 2 1 St 2 1
(DADY " ug) o Up) o = Df v (Y )(DYy, uy) pdr,uy B
S0 7

So+01
_ f W (Y, (DY, ul) o (DYr, 1) prdr

So
So+61 2 1
¥ f W (Y)D(DYy, 1) e, ) s dr
So
-0, (5.4.34)
which implies T = 0.

This proves the statement (b) of Proposition 5.4.2.

5.4.3 Estimates for the tail probabilities

In order to bound the tail probability P{F» > z}, we first give an estimate on the moments of
the supremum of |u(s, y) — u(sp, yo)|, analogous to Lemma 4.5 in [25].

Lemma 5.4.6. For a €]1,2] and for all p = 1, there exists Ap o > 0 such that for alle > 0 and all
(t,x) fixed,

E sup lu(t, x) — u(s, YIP | < Apac€P. (5.4.35)
[Aq ((£,2);(5, )] 2 <€

Proof. The proof is very similar to that of [25, Lemma 4.5] by applying Proposition A.1 of [25]
with

S:=S =1{(5, 1) : [Aa (£, 2); (5, Y2 <€l p((t,%), (5, 1) := [Ag (2, 2); (s, Y12,
pldtdx) :=dtdx, ¥Yx):=e* -1, px):=x and f:=u.
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Chapter 5. Extension to the linear stochastic fractional heat equation

We denote

€= drdy| dsdy

Se

Se

%ﬂzf

Se

exp (

drdy | dsdyexp

|u(r, ) — u(s, )| )_4
(Ir =5l +1y—yl=hV2

|

lu(r, ) — u(s, y)|
(Ir=s& +|7—yleH12

|

Then it is obvious to see that € < %! and there exists a constant ¢ > 0 such that for all w € Q,

€ (w) = cetl@rD/@-D), (5.4.36)
Furthermore, by (5.1.4),
E[%] <E[¢"]
u(r,y) —uls,
=E f drdy dsdyexp( | ny) (5.7 )]
e Se (Ir—sl'a +|y—yla-hi/2
< goetl@r D@D, (5.4.37)
In accord with [25, Proposition A.1], and by application of Holder’s inequality,
E sup lu(t, x) — u(s, y)IP
(A ((1,x);(s, )] 2 <€
2¢ % p
<10”E ( duln(1+ 2))
0 [1(Bp((t, x), ul4))]
2¢ € p
—10”
=10"E ( A duln(1+61u4(a+l)/(a_l)))
1 2e
P(2¢)P~ P -
=107ee" | duE |In (1+ clu4(“+1)/(“‘1))]
p p-1 % p ¢!
<107 (2¢) L duFE |In (1+W)]
2 ¢y
P(2¢)P~1 P - r
<107 (2¢) A duE |In (1+ clu4(“+1)/(“‘1))]’ (5.4.38)
where by (5.4.36) the constant ¢, > 1is chosen such that forall 0 < u <2¢ and w € Q,
cp€(w) _
_PT S el
AT 2 ° 1. (5.4.39)

Since the function x — In” (1 + x) is concave on [e?~! — 1,00, we apply Jensen’s inequality to
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5.4. Gaussian-type upper bound on the density of F

bound (5.4.38) above by

2¢ E[¢"!
10p(2€)p_1f dulnp(1+ cpElC ] )
0

a u4(l+a)/(a—l)

2e CoCr [ € \Aa+D)/(a-1)
< 10’”(26)’”_1[ duln” (1 + 2P (—) )
0 C1 u

0 coC
=10P2P" 1P |  duu2In? (1 + — L yAatDi (“‘”) = Ap,a€?, (5.4.40)
1/2 C1

as desired. O

Lemma 5.4.7. There exists a finite positive constant c, not depending on (so, yo) € I x ], such
that for all z; € R,

PIF|> |zl < cllal ADe @ e, (5.4.41)

and for all 5, > 0 and for all z, > 0,

2

Z.

P{F> > zp} < cexp | - ——2—|. (5.4.42)
Caga—l)/a

Proof. The estimate for P{|F}| > |z;|} is similar to (4.6.47) since the variance of u(s, yo) is
bounded above and below by positive constants uniformly for (s, yp) € I x J.

We denote

o%:= sup E[a(t, y0)?.
te[sp,So+01]

By (5.1.4), we have 02 < C§ g“_l)/ %. On the other hand, by Lemma 5.4.6 we know that

E[F;] <E sup  |u(t, yo) — u(so, yo)l

[E[S(),S()+51]
<E sup [u(t, x) — u(so, yo)l
[Ag ((,20;(s0,yo))] /2 <5 D/ @)
< colev/Co), (5.4.43)

Applying Borell’s inequality (see [1, (2.6)]) for all z > c6\*/®¥ (here c is the constant in
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Chapter 5. Extension to the linear stochastic fractional heat equation

(5.4.43)),

P{F, > 25} < 2exp (— (22 — E[R))?/ (20 ))<zexp( (zg—E[Fg])z/(2C6(1“_”/“))

(-
<2exp( (2z2/3 2E[F] )(2C5(“ 1)/a))
_ZeXp( Zz/(3C5(a 1)/a))exp(E[F2] /(C5(a 1)/a))
2/C

<2e exp( zZ/(3C5(“ D/a))

= cexp(-23/3CE V). (5.4.44)

Sincefor0 <z, < 06(1“71)/(2“),

2
exp(-25/(3Co 1V z ek,

we can find a constant ¢ such that for all z, > 0,

P{F, > 22} < Eexp -2/(3Co* V). (5.4.45)
This proves (5.4.42). (I
Proof of Theorem 5.1.2. This follows from (5.4.41), (5.4.42), (5.4.7) and (5.4.1). O

5.5 Gaussian-type upper bound on the density of M,

The structure of this section is similar to that of Section 4.7. In this section, we assume that 0,
0, satisfy the conditions in (5.1.15).

From the formula for the probability density function of M, in (5.3.28), by the Cauchy-
Schwartz inequality,

po(2) < P{My > 2 216 (uz/y Dl 2 - (5.5.1)

Proposition 5.5.1. (a) There exists a finite positive constant c, not depending on yy € J, such
that for all small 5y, 5, > 0 and for all z = (51"~ V'% + 5371172,

18 uzly Dl < ¢ @@V + 5571712, (5.5.2)

(b) There exists a finite positive constant ¢, not depending on yy € J, such that for all 61, 62 > 0
and forall z> 0,

ZZ

P{My>z}<cexp|— . (65“_1)/“ o5 ) . (5.5.3)
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5.5. Gaussian-type upper bound on the density of M

Proof of Theorem 5.1.4. This is an immediate consequence of (5.5.1) and Proposition 5.5.1. [

The proof of Proposition 5.5.1 is given in the following two subsections.

5.5.1 Proof of Proposition 5.5.1(a)

Throughout this section, we assume that
z= (8 se 2 = 5102, (5.5.4)

Recalling the definition of Rin (5.2.43), under the assumption (5.5.4), we see from (5.3.13) that

2 2
R L= 1 2PogYoatt = o z72Po§Y0~ a1

ST = (5.5.5)

In order to prove Proposition 5.5.1(a), we need the following several lemmas. Recall the
definition of u 5 in (5.3.18).

Lemma 5.5.2. Forany p =2, there exists a constant c,, not depending on y, € ], such that for
all 61, 62 >0,

_atl
||5(u;‘) ”LP(Q) < Cpéz(“—l] . (5.5.6)

Proof. The proof is similar to that of Lemma 5.4.4. Since u j is adapted, by Proposition 4.6.4,
we have

A. A. r
6(@:] f(ﬁ(s(v)lp(l_/r)W(dr,dv)—f /W(dr,dv)D“([)(s(v)f w(Y)da. (5.5.7)
0 R 0 R 0

For the first term on the right-hand side of (5.5.7), by Burkholder’s inequality, for any p = 2,

since0<w <1,
A. pl2
U f(ﬁg(u)zpz(?r)drdv)
0o Jr

2 _ pl2
<Al (fR<p§(u)dv)

pla+1)

< cpAP? 57T = )55, (5.5.8)

A po ) p
Hfo fR%(V)l/'/(Yr)W(dr,dv)

< cpE
LP(Q)

where in the third inequality, we have used the definition of ¢ in (5.3.15). For the second term
on the right-hand side of (5.5.7), we first observe that

- 1-2a
ID% 5117, gy = €6 &1 (5.5.9)
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Chapter 5. Extension to the linear stochastic fractional heat equation

by the same argument as in (5.4.13), replacing 6}/“ by §1/(@=1),

Applying Burkholder’s inequality, for any p =2, since 0 <y <1,

p

A. r
f fW(dr,dv)D"‘(/},;(u)f w(Y)da
0 R 0

LP(Q)

A. r 2
U drfdv(D“(Z)g(v))z U u‘/(ifa)da) )
0 R 0

A. pl2 . pl2
<cp U rzdr) (f (D“¢5(u))2du)
0 R

3p/2 o PU—20) pla+l)
=cp AP 75 2@ = cpf e, (5.5.10)

pl2
= cpE

where, in the first equality, we use (5.5.9). Hence, (5.5.7), (5.5.8) and (5.5.10) establish this
lemma. 0

Lemma 5.5.3. There exists a constant c, not depending on yy € ], such that for all 51, 62 >0,

a+1
lujll 7 < cbdza-n, (5.5.11)

Proof. The proof is similar to that of (5.4.17). By the definition of u 3,

A. A. r 2
||uA||?yfszf0 drfRduw(Y,)zJ)g(qufo drfRdv(D“J)g(v))z UO w(Ya)da)

y0+261/(a71) A. _
SZA.[ dv+2cf rzdrf(D“(pg(v))zdv
y0_51/(a—1) 0 R
a+l 3 1-2a
=cda1+CcA}0 a1
a+l

— 2085, (5.5.12)

where, in the first inequality, we use (5.5.9). ]

Lemma 5.5.4. For any p = 2, there exists a constant c,, not depending on y, € ], such that for
61”51, 52 >0,

3a+1
| (D)/A, uA),;;(/”Lp(Q) <cd2e1, (5.5.13)

Proof. The proofis similar to that of Lemma 5.4.5. Taking the Malliavin derivative of y 5, we
have

A. B _
(DYA,uA>,;f=fO V' (Y)(DYr,up) pdr.
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5.5. Gaussian-type upper bound on the density of M

By Holder’s inequality, (5.3.14) and (5.5.12), forany p = 1,

A. _
E[KDy 3, uz)l?] < ||1V||é’oAf"1fO EI(DT,, ug) P dr

A. _
sch—Mf"lfO ENDY, 1%, luzl’, dr

_ _q _pary A _
<cpR7PAY 5mf E[IDY 1", 1dr.
A (
Applying (5.2.40), this is bounded above by

A
_ -1 pla+1) _ .
cpR PAP™ 521 §Po 70)”[ r?Pdr
0

— pla+1)
— CpR_pAF 15 2a-1) 5(P0—Y0)PA%’7+1
(@+1)
< Cp(s(y()—po—Za/(a—l))PAf’_15g(grl) 5(P0—Y0)PA%P+1

(Ba+1)p
= Cp5 21,

where, in the inequality, we use (5.5.5). U

Proof of Proposition 5.5.1(a). Using the property of Skorohod integral § (see [64, (1.48)]),

O(uj) N (Dy i uz)w

O(uzlyz = =15+ . (5.5.14)
ATy Y4
By Lemmas 5.5.2 and 5.3.4(b),
sl oo -1/2
11l f2q) < cb2@Dd a1 =cd . (5.5.15)
By Lemmas 5.5.4 and 5.3.4(b),
s s 2L -1/2
”IZHLZ(Q) <cd2@1d a1 =¢cd . (5.5.16)
Therefore, (5.5.14), (5.5.15) and (5.5.16) establish (5.5.2). O

5.5.2 Proof of Proposition 5.5.1(b)

Proof of Proposition 5.5.1(b). The proofis similar to that of (4.7.3). We denote

a%:z sup Elu(t, x)?].
(2,%)€[0,611% [y0, Yo +62]
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From (5.1.4), we have 0(2) <C (6(1“_1)/“ + 6‘27‘_1). On the other hand, by Lemma 5.4.6, we have

E[Myl <E sup | (t, x)|
(t,0)€[0,611%[y0,y0+02]
<E sup lu(t, x)|
[Aa ((£,%);0, )1 M2=(81* 7V +55 1)1/
<c(@@ Ve sgH2, (5.5.17)

Applying Borell’s inequality (see [1, (2.6)]), forall z > ¢ (§'*"V/*+5¢~1)!/2 (here c is the constant
in (5.5.17)),

P{M, > z} < 2exp (- (z — E[Mp])?/ (205)) < 2exp (—(z— E[MOJ)Z/(ZC((SS“_U/“ +5g_1)))
< 2exp(—(2z2/3—2E[MO]2)/(2C(§§a—1)/a +5,21_1)))
=2exp —z2/(3C(5(1a—1)/a +5g—1))) exp (E[M0]2/(C(5(1a71)/a +6§"‘1)))
52€CQ/CeXp(—zz/(3C(6(1“‘”/“+5g—1)))

= cexp(-22/BCE T +5571). (5.5.18)
Since for0< z < 6(6(1“_1)/“ + 6‘2*_1)1/2,
exp (—zzl(3C(6(1“_D/“ +5‘2"_1))) > e_SC%,
we can find a constant ¢ such that for all z > 0,
P(F, > 2} < cexp -22/(BCO V" + 5571). (5.5.19)

This proves (5.5.3). ]
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A.1 Properties of Green kernel

In this appendix, we first present some properties of the Green kernel of the fractional heat

equation (1.3.4), which are available in [17], [34], [84] and [6].

LemmaA.l1.1. Fora €]1,2], the Green kernel has the following properties.

(i) Ggq(t,x) is positive for all (t,x) €]0,00[xR. For every fixed t = 0, the unique mode of the

function x — G, (t, x) is located at x = 0. And
f Gyo(t,x)dx=1.
R
(i) Scaling property:
Go(t,x) = t7V%G,(1, V%),

In particular,

ra/
Ga(t,0) = 119G (1,0) with Ga(l,0)= — %
Ta

wherel is Euler's Gamma function (see [61, p.80]).
(iii) There exists a positive constant ¢, depending on a such that

b -1 a—1
f fGi(t—r,x—V)dvdrzca((t—a)T—(t—b)T), as<b<t.
a JR

(iv) For a €]1,2], there exists a constant K, such that for all x e R,

0<Gg(1,x) < Ky(1+|x/%H~1,

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)
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(v) Semi-group property: for any t,s €]0,00[ and x,y € U,

f Ga(t,x—1)Ga(s,y—1)dv = Gg(t+5,X,)). (A.6)
U

A.2 Negative moments of random variables

The next proposition is used many times to bound negative moments of a random variable.

Proposition A.2.1 ([26, Propositon 3.5]). Suppose Z = 0 is a random variable for which we can
find ey €10,1[, processes {Y; ¢}ecjo,1[, and constants ¢ > 0 and 0 < ay < a; with the property that
Z zmin(ce® - Yy ¢, ce* —Ya ) foralle €10,€q[. Also suppose that we can find $; > a; (i = 1,2),
not depending on €y, such that

C(qg) := sup max ElV1c] EllYa.el]
‘ O<e<1 €‘7ﬁ1 ’ eQﬁz

<oo forallg=1.

Then for all p = 1, there exists a constant c;, €]0,00], not depending on €y, such that

EIZI7P] < c,e, "™

A.3 Extension of [60, Lemma 4.2]

We first recall Burkholder’s inequality for Hilbert-space-valued martingales; see also [7,
Eq.(4.18)] and [26, Lemma 7.6].

LemmaA.3.1 ([58, E.2. p. 212]). Let H;, be a predictable L2(([0, 1] x ®)™, da) -valued process,
where m = 1 and da denotes Lebesgue measure. Then, for any p = 1, there exists C > 0 such that

I3
f f f Hiy(a)da) dyds
0 JR

[0,t]xR)™

P

14
¢ 2
f st,y(a)W(ds,dy)) da <CE
0o Jr

[0,£]xR)™

The next result is another version of Morien [60, Lemma 4.2] for the solution of SPDE (2.1.1)
without boundary.

LemmaA.3.2. AssumeP1. Forallq=1,T >0 thereexistsC >0 suchthatforallT=t=s=¢€¢>0
and x €R,

d s 2\49
y E[U drf du’D%(ui(t,x))‘ )
k,i=1 S—€ R

< cela-bala,
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Proof. The proof follows the same lines as [60, Lemma 4.2]. We define

N 2\49
Hi(t,x):=E U drf du|D§f€3(ui(r,x))’) ] (A7)
s—€ R
and
d
Ks(n):=)_ sup sup H;(4,y) (A.8)
i=1s<A<t yeR

which are finite by (2.3.3). Thanks to formula (2.3.1), we have

s q
Hi(l',x)SC(f drf dvGi(t—r,x—v))
s—€ R

d s t
o | [ ar [ ol [* [ Gute-0.5-
+ch:1 [fs_e r[R l}(r . ( x—-n)

« DW) 1@, ) W (@0, dn) | q]

s t 2149
f drf dv(f fGa(r—e,x—n)Dﬁ?&(bi(u(e,n)))dedn) ] ]
s—€ R r JR

:=A+B+C. (A.9)

+cE

By (A.4), we see that

N a-1 a-1
f drfdvGi(t—r,x—v):c((t—s+e)7—(t—s)7)
s—€ R

a-1

<cew, (A.10)
since the function x — (x + €)@~ D/@ _ x(@=D/@ j5 decreasing on [0, co[. This implies that
A< el Dale, (A.11)

Using Burkholder’s inequality for Hilbert-space-valued martingales (Lemma A.3.1) first, and
then the Cauchy-Schwarz inequality together with the fact that the partial derivatives of o
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are bounded, we obtain

d sAO q
B=cY E [f d@f dnf sz(t 0,5~ (D)0 (u®,m) drdv]
j=1 s—€
d t snE q
<cYE U defdnf fGi(t—e,x—n)(D(k (0, n))) drdv
=1 - -
d snB q
= CZE [f de dnf sz(t 0,x-n) (D(k)(ul(H n))) drdv
) snO 2 q
+CZE [[ de dn/ [Gz(t 0,x-n) (D(k)(ul(e,n))) drdv
=By +B>. (A.12)

We now apply Hélder’s inequality with respect to the measure G2 (¢ -6, x —1)d0dn to find that

S
defdncf,(t—e,x—m’
— R

SNO q
(f drf dv(DE 0, ) ]
s—€ R
q

N
xf defdnGg(t—e,x—n)E
s—€ R
N
f def dnG,
s—€ R
x sup E

T 2\
(f drf dv(D&f?(ulte,m))) ]
O,mel0, TIxR 0 R

< ce@Dala (A.13)

=cC

where the last inequality follows from (A.10) and (2.3.3). Again, applying Holder’s inequality
with respect to the measure Gi(t —0,x—-n)d0dn, we see that

qg-1
By <

t
defdncg(t—e,x—n)
s R

t d s 2\4q
xf d@f dnGi(t—B,x—n)ZE (f drfdv(D%(ul(H,n))) ) ]
N R 1=1 s—€ R

. t
sc(t—s)Tl(q_Uf dHf dnGA(t—6,x—nKs(0)
s R

t 1
Scf (t—0) 2 K0)do. (A.14)
N

We handle the third term in (A.9) in a similar way. First, by the Cauchy-Schwarz inequality
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with respect to the measure G, (t — 0, x —n)d0dn, we have

9 q

[ s t d
C<cE [ drf dvf f Ga(t—H,x—n)Z(D%(ul(e,n)) d@dn}
| S—€ R r JR 1=1
t SAO d
=cE f d@f dnf dr[ dvGa(t—H,x—n)Z (D(k)(ul(H n)))
S—€ R S—€ R =1

[ S d 2
< CE f do dnGa(t—H,x—n)z drf dv D(k)(ul(e 77)))
|| /s- =1

+cE

|
L
|
|

f d@f dnGe(t—0,x— TI)Z drf dv D(k)(ul(H n)))2
=C1+(Co. (A.15)

By Holder’s inequality with respect to the measure G, (¢t —0,x—n)d0dn,

q-1
Ci<c

S
f d@f dnGal(t—6,x—1)
s—€ R

s d
Xf ddenGa(t—B,x—n)ZE
S—€ R 1=1

s
f de f dnGg
s—€ R

d

x), ~sup E (f drfdu D(")(u,(e 17))) ) ]
1=1(0,mel0,T1xR

< ce¥ < cel@ Vil (A.16)

SAO 2 q
U drf du(D;{i}(u,(e,n))) ) ]
s—€ R

=cC

where in the third inequality we use (A.1) and (2.3.3). Similarly;,

t q-1
f d@fdnGa(l‘—Q,x—ﬂ)
s R

Cy<c

s q
( f dr f dv(Dif?(ul(e,n)))zj ]
€ R

q-1
f d@f dnGy(t—0,x—-n)K(6)

t d
Xf dHfdnGa(t—H,x—n)ZE
s R

=cC

t
f d@fdnGa(t—Q,x—TI)
s R

t
<c f Ks(0)d6. (A.17)
S

Finally, we put (A.9) and (A.11)-(A.17) together and obtain that

3
K (1) < ce@Dala cf 1+ (t—0)"0)K,(0)do
S

t
< cel@Dala +Ef (t_e)_éKs(G)dG.
s
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Define fs(/l) := K;(A + 5). From the above inequality we have

Ks(t—s)Sce(“_l)"/“+Ef (t—s—6) <« K(0)do.
0

By Gronwall’s lemma [23, Lemma 15], we have

Ki(t) = Ks(t—s) < ce@ V9% forall s<r.

The following lemma is a refinement of Lemma A.3.2.

LemmaA.3.3. FixT >0,co>1and0<vyy<1. Forall q =1 there exists C > 0 such that for all
T=t=s=e>0witht—s>cye’ and xR,

d s q
Y E W ar [ av(pBwis, x)))z)
i s—€ R

k,i=1

< Ce(l—YUﬂ’o aT_IW_

Proof. We still use the notations as in the proof of Lemma A.3.2. First, under the condition
t— s> coe’?, using (A.4), we have

s _ a
f drf dvGi(t—r,x—v):c((t—s+€)71—(t—s)71)
S—€ R
< c((coe” +6) T — (cpe™ T)

a— ]. a—
= clcpe") T (1 + —€e ™) —1)
Co

a1 1 a—1
< c(cpe??) @ —el™V0
Co
a-1 -1 _ a-1
—c ¢ a€(1 Yo+Yo =g ), (A.18)

a-1

where the first inequality is because the function x — (x + e)an1 — x « is decreasing on
[co€e”?, 00[, and the second inequality is due to (1 + x)an1 -1< “T_lx, for all x = 0. This im-
plies that

A< et (A.19)
Using (A.18) instead of (A.10), we see that

By < ce11otr0 )4, (A.20)
Due to the choice of y( and by (A.16), we have

a—1
Cy < ce¥ < ceM 10470734, (A.21)
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The estimates for other terms remain the same as in the proof of Lemma A.3.2. Therefore, we
have obtained that

K(n) < ce”%%“a‘lmcft(1+(r—e)‘i)1<s(e)de
s
< cell V010 5)q +Eft(t—0)_cltl<s(0)d0.
s
Applying Gronwall’s lemma ([23, Lemma 15]), we have
K(0) < cel 70102 forall s< ¢,

O

Remark A.3.4. The result of Lemma A.3.3 is also valid for the solutions of stochastic heat
equations with Neumann or Dirichlet boundary conditions in which case a = 2. This is because
the Green kernel of heat equation with Neumann or Dirichlet boundary conditions shares
similar properties with the Green kernel of fractional heat equation, which enables us to derive
the same estimates as in (A.18), (A.19), (A.20) and (A.21) for the solutions of stochastic heat
equations with Neumann or Dirichlet boundary conditions.

A.4 Quantitative version of the inverse function theorem

The following lemma is another version of the inverse function theorem. We give its proof for
reader’s convenience.

Lemma A.4.1 ([7, Lemma 3.2] and [69, Lemma 5.6]). Forany 8> 1, d > 0, there exist constants
R,a > 0 such that any mapping ® : R? — R? satisfying

|detc1>’(0)|z% and sup (|®'(2)| + D" (2)]) < B. (A.22)
lzll<6

is a diffeomorphism from a neighborhood of 0 contained in the ball B(0,R) onto the ball
B(®(0), ), and

1
inf detd'(z) =

—. A.23
lzl<R 2B (A.23)

Proof. The proofis similar to that of [77, Theorem 9.24]. First, we introduce an inequality for
d x d invertible matrix A (see [80]), that is,

IA7 1 det Al < 24 - 1) A9~ (A.24)

221



Appendix A. An appendix

We apply (A.24) with A= ®'(0)~! to see that

d

-1 27-1 ennd=1 — (od 1y pd
[D°(0) Il S—ldetqD’(O)lnq) O =% -1)p°. (A.25)

We can choose 6y = do(,6) small enough so that §y < § and for any differentiable func-
tion f : RY — R? satisfying det f'(0) = 1/8 and supy <51 f (@1 + 11 f'(21) = B, we have
inf) ; <5, det f'(2) = ﬁ This is possible because the mapping z — det f’(z) is differentiable

and its derivative can be bounded in terms of §, and then we can apply the mean value
1

1@ T A %. Then for any function @ satisfying (A.22), we have

theorem. Choose R =
infllzIISR det®’'(z) = ﬁ

For each function ® satisfying (A.22) and y € R?, we associate a function ¢, defined by
Px) =x+0 (0 (y-d), xeR% (A.26)
Note that ®(x) = y if and only if x is a fixed point of ¢.

Since ¢'(x) = I-®'(0) "' ®'(x) = ®'(0) "1 (®'(0) — @’ (x)), then (A.25) and the mean value theorem
imply that for any x € B(0, R),

' ()1l < 19(0) 1| 19 (0) — @' (x))
<2?-1)p4 sup 19" (2)Illlx]|

lzl<6
1
<4-1pYBR< >
Hence
1
lp(x1) — @)l < 3 lx1 —x2ll, x1,%x2€B(0,R). (A.27)

By the contraction mapping theorem, ¢ has at most one fixed point in B(0, R), so that ®(x) =y
for at most one x € B(0, R). Thus @ is one-to-one from B(0, R) to ®(B(0, R)).

Let us prove ®(B(0, R)) is open. Pick yg € ®(B(0, R)). Then yy = ®(xp) for some xy € B(0, R). Let
By be an open ball with center at xq and radius ry > 0 so small that its closure By lies in B(0, R).

We will show that y € ®(B(0, R)) whenever ||y — yoll < Arp with 1 = m.

Fix y such that ||y — yoll < Arg. With ¢ as in (A.26),

lp(x0) = xoll = 19" (0) ™ (y = yo) Il < 19" (0) ~H[ Arg

<4 -1p%Ary = %
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where the second inequality uses (A.25). If x € By, it therefore follows from (A.27) that
lp(x) — xoll = ll(x) — @(xo) | + [l (x0) — Xoll
< 1||x X ||+r0<r
2 ol =
Hence ¢(x) € By.

It follows in addition that ¢ is a contraction of By into By. Being a closed subset of RY, By is
complete. Then the contraction mapping theorem implies that ¢ has a fixed point x € By. For
this x, ®(x) = y. Thus y € ®(By) c ®(B(0, R)).

Denote a = AL(ZTRI)M . We are going to repeat the above arguments to show that for any mapping
® satisfying (A.22), B(®(0), @) < ®(B(0, R)).

Fix y such that ||y — ®(0)|| < @. Then by (A.25),
li -1 li -1 d d R
le@) =1D'0) (y—2ONI<P0) a2 -1)p"a= T
If x € B(0, &), it follows from (A.27) that

el < llpx) —@O)] + O]

1
<—lxl+—==<
2

472

Hence ¢(x) € B(0, £).

Thus ¢ is a contraction of B(0, £) into B(0, £). Therefore ¢ has a unique fixed point x € B(0, £).

Thus y = ®(x) € ®(B(0, £)) c ®(B(0, R)).

Next we prove that the inverse function ®~! is differentiable from B(®(0), @) to @~ (B(®(0), )).
Pick 7 € B(®(0),a), 7 + k € B(®(0),a). Then there exist ¥ € ® 1 (B(®(0),a)),x + h €
O~ 1(B(®(0),@)) so that j = ®(X), 7+ k = (% + h). With ¢ as in (A.26),

PE+h)—@E) =h+0 0) " HPEX)-DE+h) =h-'(0) k.
By (A.27), [|h—®'(0) kIl < || hll. Hence [|®'(0) k[ = 3] kll, and then from (A.25),
I <210' ) Ikl <224 - 1) k| (A.28)

We point out that (A.28) implies that the inverse function @~ ! is continuous from B(®(0), a) to
®1(B(®(0), a)). By (A.23), ®'(x) has an inverse, say T%. Since

O J+k) -0 NG - Tik=h—Tik = T (@(E + h) — D(X) - D' (D) h),
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then inequality (A.28) implies

~1(5 o)~ T - B D (7
197" (7 + k) ||]j| () Txk”52(2d—1)/3d||T,—C||”q)(x+h) ||q;,(|r) @' (X)hll

As k — 0, (A.28) shows that & — 0. The right-hand side of the above inequality thus tends
to 0. Hence the same is true of the left. We have thus proved ®~! is differentiable at any
v € B(P(0), a) and

do~1(y)

_ Ieer—1r=1—1
dy =@

Y=y

So we have proved that @ is a diffeomorphism from ®1(B(®(0),a)) < B(0,R) onto the ball
B(®(0), ). O

A.5 Alinear independence property of the Gaussian solution

In this section, we show that for any integer n, the random variables u(ty, x1),..., u(t,, X,)
are linearly independent in L?(Q), where (t;,x;) €]0,00] x [0,1] and (¢;, x;) # (tj,xp) ifi # j
for i, je{l,...,n} (in the case of Dirichlet boundary conditions we assume x; €]0,1[) are the
solution of (4.2.1).

LemmaA.5.1. Foranyt >0, x; € [0,1] (in the case of Dirichlet boundary conditions we assume
x; €]0,1[) and x; # x;j fori, j €{1,...,n}, the covariance matrix of the Gaussian random vector
(u(t, x1),...,u(t, x,)) is positive definite.

Proof. It suffices to prove that the smallest eigenvalue of the covariance matrix is positive. Let

%n;ir.llxi—lez>e>0and€€IR"With €]l = 1. Then
i#]

n

t plf n 2
ZfiCov(u(t,xi),u(t,xj))fj=f0fo (ZfiG(t—r,xi,v)) drdv
i=1

i,j=1
n t Xj+v€
> Z[
j=1 r—e

Xj—\/g

n

2
&G(t—r,x, v)) drdv
i=1

> glﬁ(fs) —2119),

where

n 3 xj+\/E
() = Z/ f 6§G2(t—r,xj,v)drdv,
i—1Jt—eJxj—\e

n t xj+ye [ n 2
Iel(f)=2f Z{iG(t—r,xi,v)) drdv.
j=1di—edx;=ve \izj
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By [7, (A.3)], there exists a constant ¢; such that

xj+\E
Hgnlflﬂ(f) ff G*(t—r,xj,v)drdv = cve. (A.29)
t—€

Using Cauchy-Schwarz’s inequality and the fact G(¢ —r, x, v) < exp (—lx— v|2/2(t - r)

(see for example [7, (A.1)]), we have

c
V2m(t—=r)

sup 161(6)<2th f Gz(t—rx,,v)drdv
€ x]

l¢i=1 j=li#j

Xj+veE
SCZ th Ef] ! exp (=|x; — vI*/(t— 1)) drdv

J=li#] Ve 2m(t=r) e
xj+\E 1 )
=c f f p(—minlxi—le /4(t—r))drdv
j= u;é] t—eJxj-ye 2m(t=T1) n° i#]
SC\/Ef —exp(—mir.llxz'—lez/(4r))dr. (A.30)
or i#]

Combining (A.29) and (A.30), we have

inf Z ¢iCov(u(t, x;), u(t, x;))¢; = \/_(Cl—cf lexp(—minlx,-—x]~|2/(4r))dr).
Iel=1; 72 0or i#]

Since hm fo exp m;n lx; — x; |2/(4r)) dr =0, there exists a positive constant py such that
i#]

”éﬁlf Z ¢iCov(u(t, x;), u(t, x;))¢ = po.
i j=1

O

Remark A.5.2. Since Cov(u(t, x;), u(t, x;)) = %fOZt G(r,x;,xj)dr, Lemma A.5.1 is equivalent to
saying that the matrix with entries f02 "G(r,xi, x j)dr is positive definite.

LemmaA.5.3. For(t;,x;) €]0,00[x10,1] (in the case of Dirichlet boundary conditions we assume
x; €10,1[), i = 1,..., n with (t;, x;) # (tj,x;) fori # j, the covariance matrix of the Gaussian
random vector (u(ty, x1), ..., u(ty, X)) is positive definite. In particular, if (ay, ..., a,) # (0,...,0),
then

> 0.

" 2
Zaiu(tbxi))

i=1

Proof. We can assume the random vector (u(fy, x1),..., u(ty, X)) is of the form

(W(t, x}),ecc ulty, X )y Ut X7), o Ut X))
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such that Zle n;=nand t; > t, > --- > t;.. Suppose there exists ¢ € R” such that

Y §iCov(u(ti, xi), u(tj, xj))¢; =0,
i,j=1

which is equivalent to

2
51 n
(/ Zfz r<t,}G(tl—rx,.1/)W(dr dl/))

By the property of It6 integral, this implies that

2
5]

ff(Zg‘,G(tl rxl,v)) drdv =0,
[2)

which means that

(A.31)

1 1 (H —tz)
Z f'f]f G(r,x;, x;)dr =0.
l ,Jj=1
By Remark A.5.2, we have &; = --- =&, = 0. We substitute {; = --- = &, = 0 into (A.31) to obtain
that
tz n 2
f Y. &ilgey Gt — 1, x;, VYW (dr, dv) (A.32)
0 j= m+1
Using again the property of It0 integral, (A.32) implies that
i 1 ny 2
f f > 5iG(tz—r,x§,v) drdv =0,
I3 0 i=n;+1
which means that
1 7 2(t—13)
= 5;’5][ G(r, xj,x7)dr = 0.
i,j:n1+1 0
By Remark A.5.2, we have ¢, 41 = --- = {,, = 0. We repeat this argument and conclude ¢ = 0. [J

A.6 The Garsia, Rodemich and Rumsey lemma

In this section, we present two versions of the Garsia, Rodemich and Rumsey lemma.

Lemma A.6.1 ([25, Proposition A.1]). Let (S, p) be a metric space, L a Radon measure on S, and

VY :R — R, an even and convex function with W (0) =0, ¥ (co)
on R, . Suppose p : [0,00[— R is continuous and strictly increasing, with p(0) =
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any continuous function f : S — R,

f)-f
%:ff\y(—) d dy). A.33
205, 7)) pdx)uldy) ( )

Let B, (s, 1) denote the open p-ball of radius r > 0 about s € S. Then, forall s, t € S,

2p(s,0) g1 ¢ -1 ¢
£ — <5 N oo NGB o
0= fE) L [ (W@M&WMHJ+ (W@M%W@W)

pldu). (A.34)

We often use the following variant for functions with values in a Banach space.

Lemma A.6.2 ([64, Lemma A.3.1]). Let p, ¥ : Ry — R, be continuous and strictly increasing
functions vanishing at zero and such that lim., ¥ (£) = co. Suppose that ¢ : RY - Eisa
continuous function with values in a separable Banach space (E, || - ||). Denote by B the open
ball in R4 centered at xo with radius r. Then, provided

ff (II(P(t) (p(s)”)dsdt<oo,
p(t—sl)

it holds, foralls,t€ B,

4d+1
Aqu?

2|t-s|
n¢m—¢umssﬁ v ( )Mdm,

where A4 is a universal constant depending only on d.

To conclude the appendix, we cite the following lemma, which is a consequence of [20, Theo-
rems 4.5.2 and 4.5.4].

LemmaA.6.3. Let{X k}i"zl and X be random variables taking values in some Hilbert space H
such Xy converges almost surely to X as k — oo and sup . E[Il Xl ?{] < oo for some q > 0. Then
forany0O<r<gq, XeL (Q, H) and

lim E[[| X~ X|3] =
k—o0
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