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Abstract

Photoplethysmography (PPG)-based monitoring devices will probably play a decisive role

in healthcare environment of the future, which will be preventive, predictive, personalized and

participatory. Indeed, this optical technology presents several practical advantages over gold stan-

dard methods based on electrocardiography, because PPG wearable devices can be comfortably

used for long-term continuous monitoring during daily life activities. Contactless video-based

PPG technique, also known as imaging photoplethysmography (iPPG), has also attracted much

attention recently. In that case, the cardiac pulse is remotely measured from the subtle skin color

changes resulting from the blood circulation, using a simple video camera. PPG/iPPG have a lot

of potential for a wide range of cardiovascular applications. Hence, there is a substantial need for

signal processing techniques to explore these applications and to improve the reliability of the

PPG/iPPG-based parameters.

A part of the thesis is dedicated to the development of robust processing schemes to estimate

heart rate from the PPG/iPPG signals. The proposed approaches were built on adaptive frequency

tracking algorithms that were previously developed in our group. These tools, based on adaptive

band-pass filters, provide instantaneous frequency estimates of the input signal(s) with a very low

time delay, making them suitable for real-time applications. In case of conventional PPG, a prior

adaptive noise cancellation step involving the use of accelerometer signals was also necessary

to reconstruct clean PPG signals during the regions corrupted by motion artifacts. Regarding

iPPG, after comparing different regions of interest on the subject face, we hypothesized that the

simultaneous use of different iPPG signal derivation methods (i.e. methods to derive the iPPG

time series from the pixel values of the consecutive frames) could be advantageous. Methods to

assess signal quality online and to incorporate it into instantaneous frequency estimation were

also examined and successfully applied to improve system reliability.

This thesis also explored different innovative applications involving PPG/iPPG signals. The

detection of atrial fibrillation was studied. Novel features derived directly from the PPG wave-

forms, designed to reflect the morphological changes observed during arrhythmic episodes, were

proposed and proven to be successful for atrial fibrillation detection. Arrhythmia detection and

robust heart rate estimation approaches were combined in another study aimed at reducing the

number of false arrhythmia alarms in the intensive care unit by exploiting signals from inde-

pendent sources, including PPG. Evaluation on a hidden dataset demonstrated that the number

of false alarms was drastically reduced while almost no true alarm was suppressed. Finally, other

aspects of the iPPG technology were examined, such as the measurement of pulse rate variabi-

lity indexes from the iPPG signals and the estimation of respiratory rate from the iPPG interbeat

intervals.

Keywords : photoplethysmography, heart rate, real-time monitoring, arrhythmias, atrial fibrilla-
tion, imaging photoplethysmography, adaptive filter, heart rate variability, ICU alarms, adaptive
frequency tracking, organization measures, signal quality, spectral analysis.
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Résumé

Les dispositifs médicaux de surveillance basés sur la photopléthysmographie (PPG) joueront

probablement un rôle décisif dans l’environement de santé du futur qui sera préventif, prédic-

tif, personnalisé et participatif. En effet, cette technologie optique présente plusieurs avantages

pratiques par rapport aux méthodes standards basées sur l’électrocardiographie, car les disposi-

tifs portables PPG peuvent être utilisés confortablement pour une surveillance continue à long

terme pendant les activités de la vie quotidienne. La technique de PPG sans contact basée sur

la vidéo, également connue sous le nom de photopléthysmographie par imagerie (iPPG), a aussi

attiré beaucoup d’attention récemment. Dans ce cas, le battement cardiaque est mesuré à dis-

tance à partir des changements subtils de la couleur de peau résultant de la circulation sanguine,

en utilisant une simple caméra. Les technologies PPG/iPPG ont beaucoup de potentiel pour un

large éventail d’applications cardiovasculaires. Par conséquent, il existe un besoin important de

techniques de traitement du signal pour explorer ces applications et améliorer la fiabilité des

paramètres estimés à partir des signaux PPG/iPPG.

Une partie de la thèse est consacrée au développement de techniques de traitement robustes

pour estimer la fréquence cardiaque à partir des signaux PPG/iPPG. Les approches proposées

ont été conçues à partir d’algorithmes de suivi de fréquence adaptatifs développés précédemment

dans notre groupe. Ces outils, basés sur des filtres passe-bande adaptatifs, fournissent des esti-

mations de fréquence instantanée du (des) signal (aux) d’entrée avec un très faible délai, ce qui

les rend appropriés pour des applications en temps réel. Pour le PPG classique, une étape d’an-

nulation de bruit adaptative préalable impliquant l’utilisation de signaux d’accéléromètre était

également nécessaire pour reconstruire des signaux PPG propres au cours des régions corrom-

pues par des artefacts de mouvement. Concernant l’iPPG, après avoir comparé différentes régions

d’intérêt sur le sujet, nous avons supposé que l’utilisation simultanée de différentes méthodes de

dérivation des signaux iPPG (c’est-à-dire des méthodes pour dériver les séries temporelles iPPG

à partir des valeurs des pixels des images consécutives) serait avantageuse. Des méthodes permet-

tant d’évaluer la qualité du signal en temps réel et de l’intégrer dans l’estimation de la fréquence

instantanée ont également été examinées et appliquées avec succès pour améliorer la fiabilité du

système.

Différentes applications innovantes impliquant des signaux PPG/iPPG ont également été ex-

plorées dans cette thèse. La détection de la fibrillation auriculaire a été étudiée. De nouvelles

caractéristiques dérivées directement des formes d’onde PPG, conçues pour refléter les chan-

gements morphologiques observés au cours des épisodes arythmiques, ont été proposées et se

sont révélées efficaces pour la détection de la fibrillation auriculaire. La détection d’arythmies

et les approches robustes d’estimation de la fréquences cardiaque ont été combinées dans une

autre étude visant à réduire le nombre de fausses alarmes d’arythmies dans l’unité de soins in-

tensifs en exploitant des signaux provenant de sources indépendantes, y compris des signaux

PPG. L’évaluation sur un set de données caché a démontré que le nombre de fausses alarmes

a été considérablement réduit alors que presque aucune alarme réelle n’a été supprimée. Enfin,

d’autres aspects de la technologie iPPG ont été examinés, tels que la mesure des indices de va-
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riabilité cardiaque à partir des signaux iPPG et l’estimation de la fréquence respiratoire à partir

des intervalles inter-battement dérivés des signaux iPPG.

Mot clés : photopléthysmographie, fréquence cardiaque, surveillance en temps réel, arythmies,
fibrillation auriculaire, photopléthysmographie par imagerie, filtre adaptatif, variabilité de la
fréquence cardiaque, alarmes USI, poursuite adaptitive de fréquence, mesures d’organisation,
qualité du signal, analyse spectrale.
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Introduction 1
1.1 Motivation and problem statement

Cardiovascular monitoring techniques have considerably evolved in the last decades, result-

ing in an increased surveillance capability for high-risk subjects [1]. One of the main reasons of

this sudden evolution is the appearance of wearable biosensors, which enable continuous moni-

toring in the hospital and at home. The development of such devices was made possible by recent

advances in sensing technologies, embedded systems, wireless communication technologies and

miniaturization. In addition to enable monitoring during daily life activities, wearable biosen-

sors also facilitate it at the hospital by reducing the amount of cables, which increase the risk of

tripping and falling [2].

The gold standard method for non-invasive cardiovascular monitoring is electrocardiography.

In electrocardiography, electrodes placed on the patient’s limbs and on the surface of the chest are

used to measure the electrical potentials generated by the heart electrical activity. The resulting

signal, named electrocardiogram (ECG), can be used for numerous applications, including heart

rate estimation, heart rate variability analysis, arrhythmia detection and breathing rate estimation.

ECG has high diagnostic capabilities, but is not the best candidate for continuous monitoring dur-

ing daily life activities. Indeed, ECG requires the placement of multiple electrodes on the chest

and the cables are encumbering. In addition, adhesive electrodes can lead to some issues such

as skin infection and signal deterioration over long periods of time. For this reason, ECG-based

long term monitoring should be avoided [3]. There is a growing interest for alternative ECG

methods based on non-contact electrodes that can be integrated into smart textiles for instance.

Instead of measuring the electrical activity of the heart, one can retrieve information about

the cardiovascular system from the blood volume changes in the microvascular bed of tissue, de-

tected with an optical sensor. This technique, known as photoplethysmography, has widespread

clinical applications (see Chapter 3 for a thorough description). This dissertation focuses on

the processing of photoplethysmographic (PPG) signals in the context of different monitoring

applications. Compared to ECG, PPG technology presents several advantages related to its us-

age. Indeed, a PPG system requires only a few opto-electronic components (an illumination

source and an photodetector) and can easily be embedded in comfortable wearable devices such

as wrist-type, ear-worn or finger ring sensors. Moreover, while ECG signals have to be measured

from several body sites, PPG signals can be retrieved from a single body site. In addition, PPG

sensors are usually low-cost. For all these reasons, PPG devices have become very popular in

the last two decades. This sudden surge of interest in the PPG technology is demonstrated by the

considerable increase in the number of publications and citations for PPG studies, as shown in

1
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Figure1.1.

Figure 1.1: Number of publications and citations for PPG studies (1994-2014). Image from [4],
c© 2016 IEEE.

Contactless video-based PPG techniques have also attracted much attention recently. In 2008,

it was shown for the first time that the cardiac pulse can be remotely measured from the subtle

skin color changes, induced by the blood circulation, using a simple video camera [5]. This com-

pletely contactless and low cost method, referred to as imaging photoplethysmography (iPPG) in

this dissertation, opens new horizons for home monitoring and telemedicine.

Numerous challenges emerge from these new PPG-based cardiovascular monitoring tech-

niques. From a physiological point of view, it is important to fully understand the relationship

between the studied pulse signal (PPG or iPPG) and the ECG waveform, and to what extent car-

diovascular parameters usually monitored with ECG can be monitored with PPG. In this regard,

many studies recently reported the accuracy with which some cardiovascular parameters, such as

heart rate, heart rate variability indexes and respiration rate could be derived from PPG signals.

The detection of arrhythmias from the PPG signal is also a topic of growing interest. Indeed,

PPG-based monitoring systems are more user-friendly than conventional ECG-based systems.

Firstly, PPG enables long-term monitoring, which is necessary for the diagnostic of some car-

diac dysrhythmias. Secondly, PPG-based systems are affordable and comfortable to wear, and

could therefore be used to screen large population for preventive purposes. Finally, arrhythmia

detection from PPG could also be used as a complementary information in the intensive care

unit, where the high false alarm rates are of serious concern.

PPG-based cardiovascular monitoring is a challenging area from a signal processing point

of view for many reasons. One of the crucial issues is the quality of the data acquired with

such wearable/contactless PPG systems. Indeed, PPG signals are very sensitive to patient and/or

probe-tissue movement artifacts [6]. Algorithms are therefore needed to deal with these bad-

quality episodes. For instance, heart rate estimation during physical exercise is not a trivial task

and methods based on heartbeat detection in the time domain usually fail during these perturbed

periods. Fourier-based methods are more appropriate to perform instantaneous frequency esti-

mation in such cases, but they entail complex peak selection process and induce an estimation

delay of half the length of the window used to compute the spectrum. Despite the large num-

ber of publications on this topic, new methods to reconstruct clean signals from corrupted data

as well as approaches to improve the reliability of instantaneous frequency estimation are still

under investigation.
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Video-derived PPG signals are equally, if not more, concerned by this problematic. Indeed,

signal stability is usually low for this contactless method. Therefore, both image and signal pro-

cessing algorithms need to be robust against numerous disturbances such as changes in ambient

illumination and movements.

Banaee et al. have addressed the topic of data mining tasks for wearable sensors in a lit-

erature review [7]. These tasks were divided into three categories: 1) anomaly detection, 2)

prediction and 3) diagnosis/decision making. Anomaly detection consists in detecting unusual

patterns. This task has to be performed in real-time in online health monitoring systems so that

alarms are triggered as soon as vital signs become abnormal. Prediction involves the use of a

predictive model to prevent chronic problems by identifying events which have not yet occurred.

Diagnosis/decision making is linked to anomaly detection, as abnormal patterns usually provide

valuable information about diagnosis. The following challenges related to the different tasks

were brought out:

• Simultaneous exploitation of multiple measurements of vital signs.

• Increase in the level of trust of the system used for the decision making process.

• Development of real-time health systems.

These are exactly the challenges that were dealt with in the algorithmic developments of the

present dissertation. Indeed, the combination of multiple waveforms/parameters often increases

the reliability of a given system, provided that the underlying combination process is appropri-

ate. System’s level of trust is the major concern when dealing with PPG/iPPG signals, given

that they are easily deteriorated by motion artifacts. Finally, many challenges are raised by the

design of real-time approaches since they require the use of causal processing techniques with

low computational complexity.

To summarize, PPG-based monitoring systems are promising tools that will probably play

a determinant role in the future healthcare system, which is usually described as preventive,

predictive, personalized, pervasive, participatory and patient-centered [3]. The sudden increase

in popularity of PPG-based monitoring devices is accompanied by a substantial need for novel

signal processing techniques to achieve reliable vital sign estimation, as well as to investigate

their potential for a wide range of applications.

1.2 Objectives

The present dissertation aims at developing signal processing approaches for different car-

diovascular monitoring applications based on conventional PPG or video-based PPG. The appli-

cations studied can be divided into two categories: 1) continuous estimation of vital signs and 2)

arrhythmia detection. Regarding the development of algorithms for vital signs monitoring, the

aim is to meet an accuracy comparable to the one obtained with the reference sensor (i.e. ECG).

In addition, the approaches proposed are developed with a special emphasis on real-time/online

processing and low computational complexity, to facilitate a potential embedding into device

processors.

Regarding the processing of conventional PPG signals, the objectives are:

• To develop robust heart rate estimation schemes suitable to monitor the subjects during

their daily life activities:

– To reconstruct clean PPG signals during periods corrupted by motion artifacts using

adaptive noise reduction techniques.
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– To evaluate the potential benefits of combining different waveforms in adaptive fre-

quency tracking schemes.

• To assess the potential of PPG-derived features in the detection of cardiac arrhythmias:

– To develop new metrics to quantify the organization/complexity of PPG signals captured

during atrial fibrillation.

– To detect life-threatening arrhythmias in the intensive care unit and suppress false alarms.

Regarding the processing of iPPG signals, the objectives are:

• To investigate different aspects of this innovative technology. More specifically:

– To compare the suitability of different regions of interest on the face to derive iPPG

signals.

– To evaluate the potential benefits of combining different existing iPPG-signal derivation

methods in a real-time heart rate estimation scheme.

– To enhance the reliability of heart rate estimation by using a signal quality index.

– To assess the reliability of iPPG-derived heart rate variability indexes during non sta-

tionary conditions.

1.3 Organization

The dissertation is divided into three parts. The first part describes adaptive frequency track-

ing algorithms that were used to estimate heart rate from PPG/iPPG signals. The second part

focuses on the processing of conventional PPG signals for various applications. The third part

is dedicated to the development of processing schemes and analysis techniques for video-based

vital sign monitoring applications.

Part I: Signal processing tools for instantaneous frequency estimation: This first part presents

the tools that were used for instantaneous frequency estimation throughout this dissertation. The

concept of instantaneous frequency and its importance in physiological signals is first discussed.

Then, two adaptive frequency algorithms are introduced and discussed. These algorithms, which

can combine multiple input signals, enable the estimation of the instantaneous frequency with

a very small delay. Two extensions of these algorithms are then proposed in order to increase

the robustness of frequency estimation by taking signal quality into account. The spectral purity

index, which was used in two applications presented in this dissertation, is also introduced.

Part II: Processing of photoplethysmographic signals: Different applications involving par-

ticular processing schemes of PPG signals are studied in this part. Chapter 3 gives a short in-

troduction to PPG. Chapter 4 is devoted to the development of a processing scheme to estimate

heart rate from PPG signals obtained from subjects performing physical exercise. Chapter 5 is

dedicated to atrial fibrillation detection from PPG signals acquired during cardiac ablation proce-

dures. Chapter 6 combines the aspects studied within the two preceding chapters and proposes a

multi-modal approach to reduce the number of false arrhythmia alarms in the intensive care unit.

Part III: Processing of video-derived photoplethysmographic signals: This part is dedicated

to the processing of video sequences for the remote measurement of cardiovascular parameters.

Chapter 7 introduces the iPPG technology and describes various methods that can be used to

derive iPPG signals from video-sequences. Chapter 8 describes the development of a complete

processing scheme for heart rate estimation from video-sequences. Several parameters such as

the selection of the face region of interest to derive the iPPG signals, the iPPG signal derivation
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techniques and the waveform quality were taken into consideration for the development of this

processing scheme. Chapter 9 is devoted to the measurement of pulse rate variability indexes

from the iPPG signals and the estimation of respiratory rate from the iPPG interbeat intervals.

1.4 Original contributions
The main contributions of this work are:

Part I: Signal processing tools for instantaneous frequency estimation:

• Development of two mechanisms to include the information about signal quality into the

adaptive frequency tracking algorithms.

Part II: Processing of photoplethysmographic signals:

• Design of a two-step heart rate estimation scheme for subjects performing physical ex-

ercise, consisting of 1) an adaptive noise cancellation step and 2) an adaptive frequency

tracking step.

• Development of a multi-modal approach based of innovative ECG-, PPG-, and arterial

blood pressure (ABP)-derived measures and an ensemble of logic decision rules to de-

crease the number of false arrhythmia alarms in the intensive care unit.

• Introduction of novel PPG-wave measures reflecting signal organization/complexity and

assessment of their potential to discriminate between sinus rhythm, atrial fibrillation and

ventricular arrhythmias.

Part III: Processing of video-derived photoplethysmographic signals:

• Assessment of the spatial distribution of heart rate related information on the face.

• Development of a real-time heart rate estimation scheme taking advantage of multiple

existing iPPG derivation methods and combining them in an adaptive frequency tracking

scheme.

• Development of an iPPG signal quality index computed from image and signal features

that is suitable for real-time applications.

• Assessment of selected iPPG-derived pulse rate variability parameters in non-stationary

conditions and comparison of these parameters with the same parameters derived from the

ECG.





Part I

Signal Processing Tools for
Instantaneous Frequency

Estimation





Instantaneous Frequency
Estimation 2

The present chapter aims at introducing the frequency estimation tools that were used in

various applications in the framework of this thesis. The concept of instantaneous frequency

is described in Section 2.2. Two adaptive frequency tracking algorithms are then introduced in

Sections 2.3.1 and 2.3.2. Their multi-signal extensions are also presented, as well as developed

extensions aiming at taking the signal quality into account in frequency estimation process. The

concept of spectral purity index is introduced in Section 2.4.

2.1 Motivations

Many physiological phenomena are driven by specific rhythms. These rhythms cover a large

range of frequencies, with periods ranging from a few milliseconds up to several months [8].

The study of these physiological rhythms provides valuable information about body functions

and their underlying regulation mechanisms. Moreover, the interactions between the different

systems can also be investigated through the relationship between the different rhythms, such

as synchronization and mutual entrainment. Beyond the understanding of these fundamental as-

pects, particular frequencies can be associated to specific physical states for monitoring purposes

(such as breathing frequency, heart rate, sleep stages, etc.). From a signal processing point of

view, the extraction and characterization of a number of these rhythms remain a challenge for

various reasons. Firstly, most of the physiological processes are non-stationary, making all the

processing tools developed for the stationary case not suitable. Secondly, several oscillations

can be present simultaneously. In addition, bio-signals recorded in a non-invasive manner from

wearable devices can be easily polluted by artifacts. Finally, when the aim is to monitor the pa-

tient, the frequency estimation has to be performed with the smallest possible time-delay, so that

an alarm can be triggered if needed. For all the aforementioned reasons, researchers continue

to investigate new tools to improve the reliability of frequency estimation in such challenging

conditions.

2.2 The concept of instantaneous frequency

Frequency is defined as the number of oscillations observed per unit of time. However, many

processes are nonstationary, i.e. processes whose mean, correlation function, and higher-order

moments are time-varying [9], and therefore the spectral characteristics vary over time. In that

case, the concept of instantaneous frequency is useful, as it reflects the frequency at a given time.

9
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In order to define the instantaneous frequency, an introduction to the concept of the analytic

signal is needed. The analytic signal xa(t) is a complex signal defined as:

xa(t) = x(t) + ixh(t) (2.1)

with xh(t), the Hilbert transform of x(t). The Hilbert transform is a linear operator, which can be

expressed as the convolution of the input signal x(t) and the impulse response of the quadrature

filter. The quadrature filter can be seen as an all pass filter providing a phase shift of −π/2 radians

for the positive frequency components and π/2 radians for the negative frequency components.

Its frequency response is:

H(e jω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
j, −π < ω < 0

0, ω = 0

− j, 0 < ω < π

(2.2)

and the corresponding impulse response is:

h(t) =
1

πt
(2.3)

The Hilbert transform is the response of the quadrature filter to a real input signal x(t):

xh(t) = x(t) ∗ h(t) =
1

π

∫ ∞

−∞
x(τ)

t − τdτ (2.4)

When dealing with discrete-time systems, the impulse response of equation 2.3 becomes:

h[n] =

⎧⎪⎪⎨⎪⎪⎩
2
πn , for odd n
0, for even n

(2.5)

In practical situations, the Hilbert filter can approximated with an finite impulse response

(FIR) 1.

In order to introduce the notions of instantaneous amplitude and frequency, the analytic signal

can be expressed in polar coordinates as follows:

xa(t) = A(t)e jφ(t) (2.6)

with A(t) = |xa(t)| , the instantaneous amplitude and φ(t) = arg(xa(t)), the instantaneous

phase. The instantaneous angular frequency is defined as the time derivative of the unwrapped

phase:

ω(t) =
dφ(t)

dt
(2.7)

Even though the instantaneous frequency can be obtained by differentiating the instantaneous

phase, this approach requires the oscillation to be narrow-band to lead to meaningful results. This

method is therefore not well suited for biomedical signals, which are often characterized by more

than one frequency component.

1. For more detailed explanations of the Hilbert transform and design of Hilbert Transformers, see [10]
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2.3 Adaptive frequency tracking
Throughout this manuscript, the term adaptive frequency tracking will refer to methods based

on adaptive band-pass (BP) filters designed to track time-varying oscillations contained in the

input signal.

FIR adaptive line enhancers have been previously used in adaptive frequency tracking [11–

13]. Although good performances were achieved, observed convergence rates were rather slow.

On the other hand, adaptive infinite impulse response (IIR) BP filters have a faster convergence

rate. Different schemes based on adaptive IIR filters have been proposed to perform adaptive

frequency tracking, with two main types of adaptive mechanisms: non-gradient updating and

mean square error (MSE) [14–18]. A new type of coefficient updating mechanism based on the

discrete oscillator model was proposed by Liao [19]. This coefficient updating mechanism has

the advantage of having a low computational complexity and being independent of the structure

chosen for the line-enhancement filter. Figure 2.1 shows the general configuration of an adaptive

IIR BP filter.

adaptive

mechanism

coefficient

α[n]

IIR

BP filter
x(n) y(n)

Figure 2.1: General configuration of the adaptive BP filter proposed in [19].

The next two subsections (Sections 2.3.1 and 2.3.2) focus on two adaptive frequency tracking

algorithms. These algorithms, derived from the algorithms proposed by Liao [19], have been

extended by former PhD researchers of our group, in particular to work in the multi-signal case 2 3

[20–23]. The multi-signal versions of these algorithms take several oscillatory input signals and

track their common instantaneous frequency component. In the biomedical field, in which it is

quite frequent to obtain redundant information across the sensors, these tools have revealed to be

very useful. Moreover, the signal combination often results in a more robust estimate than when

a single input is provided.

2.3.1 OSC-MSE algorithm
The discrete oscillator-based adaptive BP filter was proposed by Liao [19]. An input signal

of the following form is considered:

x[n] = s[n] + b[n] (2.8)

with s[n], a sinusoid of the form s[n] = A0 sin(ω0n + φ0) and b[n], an additive independent and

identically distributed noise. The transfer function of the time-varying BP filter is expressed as

follows:

H(z; n) =
1 − β

2

1 − z−2

1 − α[n](1 + β)z−1 + βz−2
(2.9)

2. Y. Prudat, J.-M. Vesin (Dir.) . Adaptive frequency tracking and application to biomedical signals. PhD Thesis

EPFL, no 4447 (2009).

3. J. Van Zaen, J.-M. Vesin (Dir.). Efficient Schemes for Adaptive Frequency Tracking and their Relevance for EEG
and ECG. PhD Thesis EPFL, no 5476 (2012).
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with α[n], controlling the central frequency of the BP filter and β (0 � β < 1), a factor related

to the filter bandwidth. The adaptive mechanism used to update the central frequency of the

BP filter of equation 2.9 at each time step requires the minimization of an MSE term, which is

derived from the real discrete oscillator equation described as:

s[n] = 2 cos(ω0)s[n − 1] − s[n − 2] = 2α0s[n − 1] − s[n − 2] (2.10)

with α0 = cos(ω0). As illustrated in Figure 2.1, the filter output, y[n], is used in the adaptive

mechanism. y[n] is defined by the following difference equation:

y[n] = (1 + β)α[n]y[n − 1] − βy[n − 2] +
1 − β

2
(x[n] − x[n − 2]) (2.11)

The following cost function can be derived from equation 2.10:

J[n] = E
{
(y[n] − 2α[n + 1]y[n − 1] + y[n − 2])2

}
(2.12)

The optimal value of the adaptive parameter α can be found by setting to zero the derivative of

this cost function, with respect to α[n + 1]. This leads to the following expression for α[n + 1]:

α[n + 1] =
E{y[n − 1](y[n] + y[n − 2])}

2E{(y[n − 1])2} (2.13)

which can be recursively estimated in practice using an exponentially weighted time-average:

α[n + 1] =
Q[n]

2P[n]
(2.14)

with

Q[n] = δQ[n − 1] + (1 − δ)y[n − 1](y[n] + y[n − 2])

P[n] = δP[n − 1] + (1 − δ)(y[n − 1])2 (2.15)

where the convergence rate can be adjusted with a forgetting factor δ. Finally, the instantaneous

frequency ω[n + 1] is defined as:

ω[n + 1] = arccos(α[n + 1]) (2.16)

Figure 2.2 shows the amplitude and phase responses of the BP filter described by the transfer

function of equation 2.9, for different values of the β parameter and for α = cos(0.5π). A value

of β closer to one entails a narrower filter.

As an example to illustrate the convergence speed as a function of δ, the algorithm was

applied to a 1800-sample long sinusoid with additional Gaussian white noise (SNR = 20 dB).

At sample n=600, the frequency of the sinusoid changes from 0.1π to 0.2π. For 50 values of

the parameter δ equally spaced between 0.8 and 0.995, the time (i.e. number of samples) to

converge to the second frequency value was estimated. For this purpose, the root-mean-square

error (RMSE) of the estimated frequency was computed on a 10-sample sliding window. The

estimation delay was defined as the first point after the frequency transition for which the RMSE

was lower than a fixed threshold of 0.0001, as illustrated in Figure 2.3. Results were averaged

over 1000 runs for each value of δ. Figure 2.4 shows the resulting estimation delay, in samples,

for the different values of δ. It can be seen that the delay increases exponentially with δ.
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Figure 2.2: Amplitude and phase response of the BP filter used in the OSC-MSE algorithm (see

equation 2.9), for different values of β.
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Figure 2.3: Frequency estimation using the OSC-MSE algorithm (δ = 0.8) and corresponding

RMSE. The arrow indicates the first point after the frequency transition for which the RMSE was

lower than the considered threshold. The time difference between this point and the frequency

transition was used to compute the estimation delay.
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Figure 2.4: The estimation delay of the OSC-MSE algorithm as a function of δ.

Multi-signal extension

The OSC-MSE adaptive frequency tracking scheme has been extended to the multivariate

case, in order to track the common frequency component present in M input signals [20, 21].

In this multi-signal extension, referred to as OSC-MSE-W, the same BP filter is used on each

signal to compute individual updates and frequency estimates, similarly to the univariate case.

Then, the update of the center frequency of the filter is computed as a weighted average of the

individual update estimates. The computation of the weights Wm is based on the minimization of

the variance of the linear combination of the individual instantaneous frequency estimates. The

recursive estimates of the variances of the input signals xm and output signals ym (m=1,...,M) are

first computed using the following equations

S ym[n] = μS ym[n − 1] + (1 − μ)|(ym[n] − 2α[n]ym[n − 1] + ym[n − 2]|2
S xm[n] = μS xm[n − 1] + (1 − μ)|xm[n]|2 (2.17)

with μ, a forgetting factor. The computation of the weights is given by

Wm[n] =
S xm[n]/S ym[n]∑M
i=1 S xi[n]/S yi[n]

(2.18)

Finally, the global instantaneous frequency estimate is defined as

ωglobal[n] =

M∑
m=1

Wm[n]αm[n] (2.19)

with αm[n] (m=1,...,M), the individual frequency estimates. The scheme in Figure 2.5 shows the

configuration of the multi-signal adaptive frequency tracker.



2.3 Adaptive frequency tracking 15

IIR

BP

filter

×

×

×

+

xM[n]

x2[n]

x1[n]

..

.
..
.

..

.

adaptive

mechanism

adaptive

mechanism

adaptive

mechanism

yM[n]

y2[n]

y1[n]

αM[n]

α2[n]

α1[n]

ω[n]IIR

BP

filter

Figure 2.5: Configuration of the multi-signal adaptive frequency tracker (OSC-MSE-W).

2.3.2 SFT algorithm
This algorithm, previously described in [21, 24], was derived from the discrete oscillator

based adaptive notch filter proposed by Liao [19]. In this case, the input signals is defined as:

x[n] = c[n] + v[n] (2.20)

with c[n] = A0e jω0n a cisoid, with A0 and ω0 its complex amplitude and frequency, and v[n], an

additive centered complex noise. The transfer function of the time-varying single pole BP filter

used in this algorithm is expressed as follows:

G(z; n) =
1 − β

1 − βe jω[n]z−1
(2.21)

with ω[n], the normalized instantaneous frequency estimate and β (0 � β < 1), a factor related

to the bandwidth of the filter. The adaptive mechanism used to update the central frequency of

the BP filter described in equation 2.21 requires at each time step the minimization of a cost

function, which is derived from the complex oscillator equation:

c[n] = e jω0 c[n − 1] (2.22)

By considering an input signal consisting of a complex sinusoid corrupted by a complex inter-

ference, from (2.22), the output signal y[n] can be written as:

y[n] = θ[n]y[n − 1] + ε[n] (2.23)

with ε[n], the error term and θ[n] = e jω[n]. A minimization of the MSE leads to the following

expression for θ[n]:

θ[n] =
E[y[n]y(n − 1)]

E[|y[n − 1]|2]
(2.24)

which in practice can be recursively estimated as:

θ̂[n] =
Q[n]

P[n]
=
δQ[n − 1] + (1 − δ)y[n]y[n − 1]

δP[n − 1] + (1 − δ)|y[n − 1]|2 (2.25)

where the convergence rate can be adjusted with a forgetting factor δ, (0 � δ < 1). Finally, the

instantaneous frequency estimate ω[n] is defined as:

ω[n] = arg
(
θ̂[n]

|θ̂[n]|
)

(2.26)
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Figure 2.6 shows the amplitude and phase response of the BP filter of the SFT algorithm, for

different values of β. It should be mentioned that, in practice, most of the signals are real-

valued. In that case, the analytic representation of the signal, computed with the discrete Hilbert

transform, is provided as input to the SFT algorithm.

Multi-signal extension

Similarly to the OSC-MSE algorithm, the SFT algorithm has been extended to the multivari-

ate case in order to track the common frequency component present in M input signals [20, 21].

In this multi-signal extension, referred to as SFT-W algorithm, the same BP filter is applied to

each signal to compute individual updates and frequency estimates, similarly to the univariate

case. Then, the update of the filter central frequency is computed as a weighted average of the

individual update estimates. The computation of the weights Wm is based on the minimization of

the variance of the linear combination of the individual instantaneous frequency estimates. The

recursive estimates of the variances of inputs signals xm and output signals ym (m=1,...,M) are

first computed using the following equations

S ym[n] = δS ym[n − 1] + (1 − δ)|ym[n]|2
S xm[n] = δS xm[n − 1] + (1 − δ)|xm[n]|2 (2.27)

The weights are computed as:

Wm[n] =
S xm[n]/S ym[n]∑M
i=1 S xi[n]/S yi[n]

(2.28)

Finally, the global instantaneous frequency estimate is defined as

ω[n] =

M∑
m=1

Wm[n]ωm[n] (2.29)

2.3.3 Inclusion of signal quality in adaptive frequency tracking schemes
Biomedical signals recorded in a non-invasive way can contain artifacts, rendering their anal-

ysis very challenging. When estimating the instantaneous frequency with the OSC-MSE/SFT

algorithms, sudden drops in signal quality usually result in large displacements of the BP central

frequency. As a consequence, the algorithm takes some time after the end of the perturbation

to re-converge to the frequency of the main oscillatory component. In the framework of this

thesis, which focuses on the processing of photoplethysmographic signals, some modifications

of the OSC-MSE-W and SFT-W algorithms were proposed in order to incorporate the signal

quality into these multi-signal adaptive frequency tracking algorithms and therefore improve the

robustness of frequency estimation. The next two paragraphs describe two modifications of the

adaptive mechanism developed for the two following cases: 1) the signal quality is available and

2) the signal quality is not available.

Available signal quality

In some situations, signal quality information is available or can be assessed with a specific

method, for instance by using the information provided by an additional sensor (e.g. an ac-

celerometer). Quality measures for biomedical signals are usually named signal quality indexes

(SQIs). In the framework of this thesis, a modification of the OSC-MSE-W algorithm was pro-

posed in order to incorporate a SQI into this multi-signal adaptive frequency tracking scheme.
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Figure 2.6: Amplitude and phase response of the BP filter used in the SFT algorithm, for different

values of β.

This modification aimed at increasing the robustness of frequency estimation in presence of arti-

facts and at providing an indication about the reliability of the current frequency estimate. This

algorithm is referred to as OSC-MSE-W-SQI. It is assumed here that the SQI of a signal is a vec-

tor of the same length as the signal, taking the value of one when the signal quality is acceptable,

zero otherwise. We decided to include a SQI in the adaptive frequency tracking scheme in order

to freeze filter adaptation during bad quality epochs, via the forgetting factors δ and μ. These

scalars were replaced by vectors, in order to have both time-dependent and signal-dependent

forgetting factors δm[n] and μm[n]. In this case, equations 2.15 become:

Qm[n] = δm[n]Qm[n − 1] + (1 − δm[n])ym[n − 1](y[n] + ym[n − 2])

Pm[n] = δm[n]Pm[n − 1] + (1 − δm[n])(ym[n − 1])2 (2.30)

and equations 2.17 become:

S ym[n] = μm[n]S ym[n − 1] + (1 − μm[n])|(ym[n] − 2α[n]ym[n − 1] + ym[n − 2]|2
S xm[n] = μm[n]S xm[n − 1] + (1 − μm[n])|xm[n]|2 (2.31)

and the forgetting factors were defined according to the SQI values:

δm[n] =

⎧⎪⎪⎨⎪⎪⎩1, if SQIm[n] = 0

δ as defined previously with (0 � δ < 1), otherwise
(2.32)

μm[n] =

⎧⎪⎪⎨⎪⎪⎩1, if SQIm[n] = 0

μ as defined previously with (0 � μ < 1), otherwise
(2.33)

This OSC-MSE-W-SQI algorithm was tested on synthetic signals, consisting of two 3000-

sample long sinusoids at ω0 = 0.2π with uniformly distributed random phases and with additive

Gaussian white noise at various SNR levels ranging between 0 and 30 dB (with one dB step).
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In order to simulate bad-quality segments, a few local perturbations were added to these signals.

More precisely, for seven manually selected 40-sample long epochs, the SNR was set to -12 dB

and the SQI was set to zero for the corresponding samples. The instantaneous frequency was

then computed using the OSC-MSE-W and OSC-MSE-W-SQI algorithms and bias and variance

analysis was performed in order to evaluate the performance of the two algorithms on the afore-

mentioned synthetic signals. The parameters β, δ and μ were set to 0.9. For each SNR value,

1000 runs were performed and frequency bias, variance and average absolute error (AAE) were

computed over the last 2000 samples. Results are shown in Figure 2.7. It can be noted that both

bias and variance were lower for the SQI-modified algorithm than for the original algorithm.

Indeed, in this example, the variance is reduced, on average, by 97% and the AAE by 73%. As

expected, the OSC-MSE-W-SQI results in an unbiased estimate at high SNR values, despite the

presence of the bad-quality segments. Figure 2.8 shows an example of these signals, as well as

their frequency estimates using the original and the modified algorithms. It can be noticed that

the OSC-MSE-W-SQI algorithm is more robust to the local disturbances, especially when the

two signals are simultaneously polluted by noise, which is often the case with biomedical signals

(e.g. when patient movements affect all signals). In such cases, the oscillation of interest is lost

from the signal for a few samples, perturbing the original algorithm, which will take time to re-

converge to the true frequency. It should be emphasized that this OSC-MSE-W-SQI algorithm

requires an accurate input SQI in order to be efficient, which is itself a challenging task.
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Figure 2.7: Bias, variance and AAE for the OSC-MSE-W and OSC-MSE-W-SQI algorithms.

The inputs signals consisted of two 3000-sample long sinusoids at ω0 = 0.2π with uniformly

distributed random phases and with additive Gaussian white noise at various SNR levels ranging

between 0 and 30 dB (with one dB step). In order to simulate bad-quality segments, seven

manually selected local 40-sample long perturbations (SNR of -12 dB) were added to each signal.

Signal quality is not available

Sometimes the SQI of the studied signal is not directly available. In such cases, a method

to estimate the quality directly from the waveform is needed. The following observation can
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Figure 2.8: Example of two synthetic input signals. The SNR is 15 dB in this example and -12

dB during the simulated bad-quality regions (shaded zones). The frequency estimates using both

OSC-MSE-W and OSC-MSE-W-SQI algorithms are shown (bottom).

be made from the spectrum of a signal of interest: the more the power is concentrated around

a single frequency peak, the easier frequency estimation is. We decided to use a parameter

called the spectral purity index (SPI) to quantify how well the signal is locally defined by a

single frequency. The SPI is described in detail in the next section (Section 2.4). This new SPI-

based adaptive mechanism was applied to the SFT-W algorithm. In the original version of the

algorithm, δ is a fixed forgetting factor that should be chosen as a trade-off between convergence

speed and estimation variance. The parameter β is related to filter bandwidth, with β closer to

one indicating a narrower filter. Adaptive mechanisms for δ and β were developed based on the

following considerations. Ideally, δ should be smaller when the signals are of good quality, in

order to guarantee a faster tracking. On the other hand, a larger δ value is required to ensure

stability when there is a reduction in signal quality. Regarding the adaptation of β, the estimation

variance can be reduced by using a β closer to one. However, when the quality of the signals is

not high enough, smaller values of β ensure the tracking of an oscillation. Then, δ and β were

defined as linear saturated functions of the average SPI (averaged across the different channels if

more than one input signal is provided). These functions are shown in Figure 2.9.

The modified algorithm was evaluated on synthetic signals. In order to make comparisons

possible, the instantaneous frequency estimation was performed with both the original SFT-W

and the modified SFT-W-SPI algorithm. For the original version β and δ were set to 0.99 and

0.95, respectively, as these values correspond to the ones used in the modified algorithm when the

signal quality is very good (SPI > 0.9). Two different types of input signal were used. In the first

case, the input signal consisted of a 3000-sample long sinusoid at ω0 = 0.2π with an uniformly

distributed random phase. Gaussian white noise was added at various SNR levels ranging from 0

to 30 dB (with one dB step). For each SNR value, 1000 runs were performed and frequency bias,

variance and AAE were computed over the last 2000 samples. In the second case, segments with

a poor signal quality were simulated by lowering the SNR to -5 dB for two epochs of 200 samples.
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The results for the two cases are shown in Figures 2.10 and 2.11, respectively. It can be noted

in Figure 2.10 that the bias was larger at low SNR values for the SFT-W-SPI, whereas variance

and AAE were smaller. For SNR values above approximately 12 dB, the performance of the two

algorithms are very similar. This was expected as δ and β had the same value in both algorithms

when the SPI was higher than 0.9. It can be noted in Figure 2.11 that, in the presence of bad-

quality segments, the variance and the AAE are smaller for SFT-W-SPI. On average, the AAE

was reduced by 51% for this example. Figure 2.12 shows an example of the input signal and the

resulting SPI, δ, β and corresponding frequency estimates. It can be noted that the SPI decreases

in the two regions with low SNR, resulting in an δ increase and a β decrease. As a result, it can

be noted that the modified version of the algorithm is less affected by the simulated bad-quality

segments. This property is particularly interesting for real-time applications. Indeed, it allows to

keep a good convergence rate while increasing the stability during segments containing artifacts

without introducing a trade-off between stability and convergence rate when dealing with signals

of variable quality.
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Figure 2.9: Adaptive parameters. (a) δ as a function of the average SPI; (b) β as a function of the

average SPI.
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Figure 2.10: Bias, variance and AAE of frequency estimation with STF-W and SFT-W-SPI algo-

rithms averaged over 1000 runs for each tested SNR value, and for a synthetic signal consisting

of a sinusoid at ω=0.2π.
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Figure 2.11: Bias, variance and AAE of frequency estimation with STF-W and SFT-W-SPI al-

gorithms averaged over 1000 runs for each SNR value, and for the synthetic signal consisting of

a sinusoid at ω=0.2π and containing simulated bad-quality segements.
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Figure 2.12: Frequency estimation using the SFT-W-SPI algorithm on a synthetic signal. The

input signal consist of a noisy sinusoid (SNR = 15 dB) with simulated bad-quality epochs (SNR

= -5 dB). The time evolutions of the SPI, δ and β are shown, as well as the resulting frequency

estimates.
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2.4 Spectral purity index
The adaptive frequency tracking algorithms require a narrow enough signal bandwidth so

that the oscillatory component of interest can be properly isolated. In addition, the bandwidth

of any biomedical signal is itself a potentially useful information, as it can be related to signal

quality or morphological changes possibly related to physical state changes. The spectral purity

index is a heuristic parameter designed to provide information about signal bandwidth. This

measure, which was originally developed in the context of the analysis of electroencephalogram

signals [9, 25], ranges between zero and one and indicates how well the signal of interest can

be described by a single frequency. It is defined as the running squared second-order spectral

moment divided by the product of the running total power and fourth-order spectral moment:

SPI(n) =
ω2

2(n)

ω0(n)ω4(n)
(2.34)

with ωn the nth-order spectral moment, defined by:

ωn =

∫ π

−π
ωnS x(e jω)dω (2.35)

where S x(e jω) represents the power spectrum of the signal. In the present thesis, the spectral

moments ωn were estimated in the time domain, as proposed by [9]. The following difference

equations can be used to estimate the first and second derivatives:

x(1)[n] = x[n] − x[n − 1] (2.36)

x(2)[n] = x[n + 1] − 2x[n] + x[n − 1] (2.37)

Then, from these derivatives, spectral moments can be estimated as:

ω̂i ≈ 2π

N

N−1∑
n=0

(x(i/2)[n])2 (2.38)

with i = 0, 2, 4 and N the length of the signal. In addition, the SPI can be measured recursively

using a sliding window of length L. The expression for the SPI[n] is then written as:

SPI[n] =
(
∑n

k=n−L+1(x(1)[k])2)2∑n
k=n−L+1(x(0)[k])2

∑n
k=n−L+1(x(2)[k])2

(2.39)

Depending on the application, one may want to smooth this instantaneous SPI estimate in

order to focus more on long-term variations. For this purpose, an optional forgetting factor λ was

incorporated into the SPI estimation scheme as follows:

SPIsmooth[n] = λ · SPIsmooth[n − 1] + (1 − λ) · SPI[n] (2.40)

Figure 2.13 shows the SPI of a synthetic signal in three different regimes: a sinusoid at fre-

quency ω0 = 0.2π, a sum of two sinusoid at frequencies ω0 = 0.2π and ω1 = 0.08π, and the sum

of the same two sinusoids with an additive Gaussian noise (SNR = 0 dB). As expected, the SPI

is equal to one during the first regime, consisting of a pure sinusoid. The SPI decreases during

the second regime because the signal is composed of a sum of two sinusoids at different frequen-

cies. During the third regime, the SPI decreases more, due to the presence of the white Gaussian

noise. In the framework of this thesis, this SPI measure was used in three applications, namely

the evaluation of PPG signal quality (see Chapter 4), the assessment of PPG signal organization

during arrhythmias (see Chapter 5) and the detection of ventricular tachycardia on ECG signals

(see Chapter 6).
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Figure 2.13: The SPI of a synthetic signal with three different regimes, using L = 60 and λ =
0.98. Original signal (top), PSD for each regime (middle) and instantaneous SPI (below).

2.5 Conclusion

The concept of instantaneous frequency was discussed in this chapter. Two adaptive fre-

quency tracking algorithms were presented, one designed to work with real-valued signals (OSC-

MSE) and one designed to work with complex-valued signals (SFT). Their adaptive mechanisms,

based on the (complex) oscillator equation, are designed to maximize the oscillatory behavior,

resulting in scale-independent algorithms able to extract an oscillation with low amplitude com-

pared to the noise level. The multi-signal extensions of these algorithm were also presented. In

these multi-input configurations, the common frequency component present in the several input

signals can be extracted by filtering all the inputs with the same BP filter and weighting the

contribution of each input signal. It should be mentioned that these two algorithms can be used

for the similar purposes. However, we noted that, in some cases, one or the other had some

advantages and led to better results. In addition to the fact that the SFT is applied to the analytic

representation when the input is real-valued, the difference in the filter responses also explain the

difference in the obtained results. More specifically, we observed that the real version has worse

performance for low normalized frequencies due to the presence of a zero in the transfer function

at normalized frequency zero.

Two extensions of these adaptive frequency tracking algorithms were developed in the frame-

work of this thesis in order to take the signal quality into account. In one case, we assumed that

a binary SQI was available and used it to freeze filter adaptation during bad-quality segments.

In the other case, we proposed to use the SPI to have a real-time continuous estimation of the

quality of the oscillatory waveform and δ and β were defined as saturated linear function of the

SPI.

We believe that these adaptive frequency tracking tools have some advantages over the Fourier-

based methods. Indeed, Fourier-based methods are not optimal for real-time processing as they

induce a delay of half the length of the temporal window used to calculate the spectrum. More-

over, Fourier-based methods require a peak-selection process, while the presented algorithms
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are more straightforward. Finally, these adaptive frequency tracking algorithms offer an elegant

solution to combine multiple signals, that do not even have to be in phase, and therefore increase

the robustness of frequency estimation in most cases. For all these reasons, they were largely

used in different applications presented in this thesis, namely 1) to perform robust heart rate es-

timation from PPG signal while subjects are exercising, 2) to perform heart rate estimation from

PPG and ABP in the ICU in order to suppress false arrhythmia alarms, 3) to quantify the level of

organization in PPG signal during different types of heart rhythms and 4) to perform contactless

video-based heart rate estimation using iPPG.
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Photoplethysmography (PPG) is a noninvasive optical technique used to measure blood vol-

ume changes in the microvascular bed of tissue [6]. PPG technology has a wide range of applica-

tions, including, inter alia, the monitoring of various cardiovascular parameters (heart rate, blood

oxygen saturation, blood pressure, cardiac output and respiration), the assessment of vascular

function and the evaluation of autonomic activity through heart rate variability. This technique

has the advantage of being low-cost and integrable into wearable devices. For all these reasons,

there has been a surge of interest in PPG in recent years.

The sensor system is composed of a light source, usually a light-emitting diode (LED), and a

photodetector. As shown in Figure 3.1, two operational configurations exist: the transmission

mode, for which the biological tissue is placed between the illumination source and the pho-

todetector and the reflection mode, for which the illumination source and the photodetector are

placed side-by-side.

Figure 3.1: The two possible operational configurations of a PPG sensor system: the transmission

mode (left) and the reflectance mode (right).

Regarding the wavelength used for the illumination source, different possibilities have been

investigated. In [26], it was shown that the origin of the pulsatile AC component of the PPG

signal depends on the light wavelength. Using an optic probe positioned on the left arm, the au-

thors concluded that for green light (at 560 nm), the pulsations in the ascending arterioles were

the source of the AC component while at an infrared (IR) wavelength (940 nm) the observed AC

component was related to the pulsations occurring deeper in the tissue volume in larger vessels.

The underlying explanation is the presence of a peak in the haemoglobin absorption spectrum at

the 560 nm wavelength. Therefore, the intensity in the deeper layers of the skin is considerably

reduced at this wavelength [27]. This is probably the reason why, recently, the PPG devices

operating at green wavelength are becoming more popular than the ones operating at red/IR

wavelengths [28–30].

27
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Figure 3.2: Variation in light attenuation by tissue. Image from [28], c© 2016 IEEE.

In addition to the aforementioned pulsatile “AC” component, which reflects the cardiac syn-

chronous changes in the blood volume with each heartbeat, the PPG waveform also comprises a

slowly varying “DC” baseline. Figure 3.2 illustrates the origins of the AC and DC components

of the PPG waveform. It is important to mention that the PPG waveform is usually inverted. The

DC component reflects the influence of respiration, sympathetic nervous system activity and ther-

moregulation [6]. Two phases can be distinguished in an AC-PPG pulse: the anacrotic phase,

corresponding to the rising edge of the pulse and mainly related to systole, and the catacrotic

phase, corresponding to the falling edge of the pulse and related to the diastole and wave reflec-

tions from the periphery. A dicrotic notch is usually observed in the catacrotic phase. Figure

3.3 shows a PPG waveform below the corresponding ECG segment. Different pulse landmarks

are highlighted in this illustration, namely the pulse foot, the pulse peak and the amplitude. The

pulse transit time to the foot of the pulse (PTTf) and the pulse transit time to the peak of the pulse

(PTTp), computed using the ECG R-waves, are also shown. Different sites of the body periphery

can be used to record the PPG signal, the more popular being fingers, toes and ears. Figure 3.4

shows examples of pulse shapes for PPG waveforms acquired at different peripheral locations on

two healthy subjects. The pulse wave characteristics depend on various factors. In [31], the evo-

lution of the pulse shape characteristics with aging was studied, for PPG recorded at the fingers,

the toes and the ears. The authors observed a significant overall elongation of the systolic rising

edge, which was attributed to changes such as resistance and compliance occurring in arterial

properties. A damping of the dicrotic notch was also reported, which can be partly explained

by age-related changes in pulse velocity. In another study by the same authors, the similarity

between left-body-side and right-body-side pulse wave characteristics was studied [32]. For this

purpose, PPG signals were acquired simultaneously at the ears, the fingers and the toes and the

similarity between pulse shapes was assessed using root mean square error and cross-correlation.

Pulses from the left and right sides were highly correlated for normal subjects. However, some

differences were observed in vascular patients suffering from asymmetrical diseases.
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Figure 3.3: PPG waveform and pulse landmarks frequently used. PTTf is the pulse transit time

to the foot of the pulse and PTTp is the pulse transit time to the peak of the pulse.

Figure 3.4: Example of waveforms acquired in two healthy subjects at different body locations.

Figure from [6].
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In the last years, most efforts have been concentrated to provide low-cost wearable PPG sys-

tems, comfortable to wear and suitable for long-term recordings. However, various challenges

linked to data quality have arisen. In [4], the following three main limitations of PPG were

pointed out: spot measurement, contact measurement and motion artifact corruption. Spot mea-

surement is the fact that a probe monitors a single site, resulting in a very localized picture of the

dynamic changes of blood volume. Contact measurement means that the PPG sensor has to be

tightly attached to the skin. Indeed, it has been shown that the contact force has to be precisely

controlled in order to obtain high quality data [33–36]. Finally, motion artifacts are an important

problem when dealing with PPG signals. In order to lower their impact, an accelerometer sensor

is often embedded in the device, providing a reference for motion. This aspect will be discussed

more into detail in Chapter 4.

Two main applications of PPG are targeted in the framework of this thesis, namely the esti-

mation of heart rate and the detection of arrhythmias. A considerable number of approaches have

already been proposed to estimate heart rate from the PPG signals. However, the number of PPG

devices commercialized for out-of-hospital use has exploded these last years and being able to

provide reliable heart rate estimates during all kind of daily life activities is a current challenge.

On the other hand, the potential of PPG for the detection of arrhythmias has not been extensively

studied yet. We believe that this field will be explored in depth in the next years. Indeed, PPG

wearable devices have a huge potential as a screening tools as they allow to perform long-term

monitoring out of the hospital. The next three chapters are dedicated to 1) the development of

a processing scheme to perform robust heart rate estimation from PPG signals when the sub-

jects are performing physical exercise (Chapter 4), 2) the detection of atrial fibrillation using a

wrist-type PPG device (Chapter 5) and 3) the development of a multimodal approach to reduce

the number of false alarms in the ICU, which includes the information from the PPG signals

(Chapter 6).
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The purpose of this chapter is to introduce a new methodology for robust heart rate estimation

during physical exercise using wrist-type PPG signals corrupted by strong motion artifacts.

4.1 Introduction

In recent years, wearable pulse rate sensors based on PPG technology have emerged as very

promising tools to monitor HR outside of the hospital. Indeed, these biosensors can be worn

for all kind of daily activities, including sport sessions and are useful to evaluate the physical

condition of subjects and prevent injuries [2]. The commonly used methods to estimate HR from

the AC component of PPG waveforms are Fourier-based methods. However, theses techniques

may not be an optimal choice because of the non-stationary nature of PPG signals. In addition,

the presence of motion artifacts (MA) can strongly affect the quality of the waveforms and make

them unusable, as illustrated in Figure 4.1. Therefore, hardware and software improvements are

still required to fully exploit the potential of wearable PPG sensors. Different approaches have

been investigated so far to identify and remove MA from PPG signals. Some of these methods

involve various types of frequency-domain data processing, including smoothed pseudo Wigner-

Ville distribution [37], frequency-domain independent component analysis [38] and Fourier se-

ries analysis on a cycle-by-cycle basis [39]. Another possible course of action to reduce MA in

PPG waveforms is adaptive filtering. Different variants of least-mean-squares (LMS) filters were

tested using either accelerometer (ACC) signals as noise reference [40] or a synthetic noise [41].

The aforementioned strategies for the attenuation of MA have been compared by Naraharisetti et
al. [42]. The authors concluded that, in the absence of extra hardware such as an accelerometer,

cycle-by-cycle Fourier analysis and singular value decomposition were the most efficient meth-

ods to remove MA.

The removal of MA is particularly important for applications involving HR monitoring during

sport sessions. Recently, some studies have reported complete schemes for HR estimation using

PPG and ACC signals during physical exercise. An approach based on signal decomposition for

denoising, sparse signal reconstruction, and spectral peak-tracking (TROIKA) was developed by

Zhang et al. [43]. In this HR estimation scheme, a high-resolution spectrum is obtained by means

of a sparse signal reconstruction and the spectral peak-tracking step comprises an initialization,

followed by peak selection and verification. Another method based on joint sparse spectrum re-

construction using a multiple measurement vector model, followed by spectral subtraction and

spectral peak-tracking (JOSS) was developed by Zhang [44]. In this study, a sparsity constraint

is used on spectral coefficients to identify and remove the spectral peaks corresponding to MA

31
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on the PPG spectra. In the two aforementioned studies, the success of the subsequent spectral

peak tracking step strongly relies on a proper initialization. In order to reduce the importance

of this initialization step, Lakshminarasimha Murthy et al. developed a framework using a mul-

tiple initialization scheme for spectral peak tracking (MISPT), in which MA removal is first

performed using adaptive noise cancellation and then, the multiple HR trajectories are combined

to provide an accurate HR estimation [45]. Another approach based on empirical mode decom-

position was proposed by Khan et al., with a recursive least-squares filter used to remove MA.

Finally, spectral-peak tracking is performed on the different reconstructed and original PPG sig-

nals [46]. In another study, Sun and Zhang introduced a framework (SPECTRAP) involving a

new spectrum subtraction algorithm based on asymmetric least-squares to remove MA from the

PPG spectrum [47]. Then, a spectral peak-tracking method based on Bayesian decision theory is

used to extract HR estimates. The performance of the above mentioned HR estimation schemes

[43–46] was evaluated on the same database, made available by the authors of [43].
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Figure 4.1: Example to illustrate how motion artifacts can corrupt the PPG waveforms. (a)

Segment of good-quality PPG signal; (b) Segment of PPG signal corrupted by motion artifacts.

4.1.1 Motivation of the proposed study
The AC component of PPG has been proven to be reliable for HR estimation. However, as

mentioned previously, PPG waveforms are easily affected by motion artifacts. Therefore, the

development of new algorithms to increase the reliability of the estimated HR when the subjects

are performing daily-life activities is a current challenge. Two main points should be taken into

consideration in the development of such algorithms. Firstly, the computational cost should not

be high if the aim is to embed them in a wearable device. Secondly, as the goal is to provide

instantaneous HR values, the estimation delay should be as short as possible.

The purpose of the study presented in this chapter is to develop a new approach for HR esti-

mation using wrist-type PPG signals corrupted by strong MA. Although existing methods lead to

good results, it should be noted that all of them are based on a block-wise implementation, which

inevitably introduces half block-length delay in the processing flow. Moreover, the spectral-peak

tracking step often relies on many assumptions and a considerable number of parameters have to
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be precisely tuned in order to achieve satisfying results. The method we introduce in this chapter

is straightforward and mainly operates in the time domain. MA reduction and frequency track-

ing are achieved by two consecutive adaptive filters, on an almost real-time basis. Moreover, the

method does not require any a priori knowledge about the signals. This work was the object of

two publications [48, 49].

4.2 Methods

4.2.1 Data
The IEEE Signal Processing Cup 2015 database is composed of 22 recordings and was made

available by the authors of [43]. The details about age, sex and physical condition of the sub-

jects are provided in Table 4.1. For each subject, the following waveforms were recorded si-

multaneously: three-axis acceleration (ACC), one channel ECG and two-channel PPG. Each

waveform was sampled at 125 Hz. The two pulse oxymeters (using green LEDs) as well as

the accelerometer sensor were embedded into a wristband. The ECG signal, recorded from the

subject’s chest, was available only for the first 12 records. However, for every subject, a ground-

truth HR (BPMre f ), derived from ECG, was provided. BPMre f was defined as the average HR

value in every 8-second time window (6-second overlap). Each recording lasted approximately

5 minutes. More precisely, it corresponded to an average of 140.73±15.30 time windows (or

BPMre f values), per subject. The different kinds of physical activities that were performed by

the subjects are specified in Table 4.1. For the first 12 records (dataset-1), the subjects were re-

quired to run (R) on a treadmill at different speeds according to the following protocol: 0.5 min

at 1-2 km/h, 1 min at 6-8 km/h, 1 min at 12-15 km/h, 1 min at 6-8 km/h, 1 min at 12-15 km/h

and 0.5 min at 1-2 km/h. The second part of the database (dataset-2) is composed of records

during which the subjects were asked to perform different forearm and upper arm movements

(T). T01 corresponds to various exercises such as hand shakes, stretches, pushes (common in

arm rehabilitation), running, jumps and push-ups, whereas T02 corresponds to intensive forearm

and upper arm movements (e.g. boxing).

Table 4.1: Database description. BP: blood pressure.

Record number Sex Age Healthy? Activity Type

Dataset-1 1-12 M [18-35] Y R

13 ,14,19 M [18-35] Y T01

15,16,17,18,20,21 M [18-35] Y T02Dataset-2

22 F 58 Abnormal HR and BP T01

4.2.2 Adaptive motion artifact reduction
Adaptive filters, i.e. digital filters with adaptive coefficients, have a wide range of applica-

tions. The general configuration of adaptive filters is shown in Figure 4.2. In this figure, n is the

time index, x[n] is the input signal, y[n] denotes the adaptive filter output and d[n] is the desired

signal. The error signal e[n] is computed as (d[n] − y[n]). The update of the filter coefficients is

achieved through the adaptation algorithm, which uses the error signal in an objective function

minimized to match the desired signal d[n] [50]. There are two main optimization methods; the

Newton ones and gradient descent ones. This paragraph focuses on one application of adaptive

filtering, namely adaptive noise cancellation.
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Adaptive noise cancelling (ANC) is a method to estimate signals corrupted by additive noise

or interference. Two inputs are needed; the “primary” input and the “reference” input. The pri-

mary input contains the signal corrupted by noise and the reference input is derived from sensors

located at points in the noise field where the signal is weak or undetectable. As illustrated in Fig-

ure 4.3, these two signals are provided to the adaptive noise canceler, where the reference input

is adaptively filtered and then subtracted from the primary input to retrieve the signal estimate

[12, 51]. ANC algorithms have been previously used in the context of PPG signals, using either

accelerometer signals as noise reference [40], or a synthetic noise signal generated from the MA-

corrupted PPG signal [41], or a signal from an optoelectronic sensor [52]. In the present study,

based on the hypothesis that MA interferences in the PPG and ACC waveforms are correlated,

we decided to use a normalized least-mean-square (NLMS) algorithm with the ACC signals as

noise reference. This algorithm is widely used in adaptive filtering due to its computational sim-

plicity [50]. In this well known algorithm, an input signal x[n] is provided as well as a desired

signal d[n]. When the aim is to perform ANC, x[n] is the refence input and d[n] is the primary

input (see Figure 4.3). The filter output y[n] minimizes the least-mean-squares error, and the

error signal e[n] is used to update the filter coefficients. The output error is given by:

e[n] = d[n] − xT [n]w[n] (4.1)

with w[n] the filter coefficient vector, and x[n] the input vector composed of samples of x[n].
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The equation for the weight-vector update is given by:

w[n + 1] = w[n] +
μe[n]x[n]

γ + xT [n]x[n]
(4.2)

with γ, a small constant to avoid large step size when xT [n]x[n] becomes small and μ a fixed

convergence factor, 0 < μ � 2.

The ACC and PPG waveforms were first re-sampled at 35 Hz prior to adaptive MA reduction us-

ing the NLMS algorithm. Importantly, as the contribution of each ACC-axis to the deterioration

of the PPG waveforms was not known, adaptive MA reduction was performed for the six possible

ACC-PPG channel pairs. For this purpose, the corrupted PPG signals were defined as primary

input signals d[n] and ACC signals were defined as reference input signals x[n] to the NLMS

algorithm. The clean reconstructed PPG signals with minimized MA were approximated by the

error outputs e[n] of the NLMS filter (see equations 4.1 and 4.2). In order to make real-time

implementation possible, the filter was chosen to be causal. The filter length was 70 samples and

an adaptation coefficient μ of 0.1 was used. Multiple reasons motivated the choice of performing

ANC simultaneously on all possible ACC-PPG pairs. Indeed, it was hypothesized that the best

PPG-ACC combination was time-varying and subject dependent, depending on both the sensors

position and on the types of movements performed. In addition, the frequency estimation step

of the proposed processing scheme is achieved by means of a multiple input adaptive frequency

tracking algorithm (see Section 4.2.3). In this algorithm, the contribution of each input signal

to the frequency estimate is weighted according to its relative quality. Therefore, for each time

index, the best reconstructed PPG signals are automatically selected by the algorithm.

4.2.3 Instantaneous heart rate estimation

An adaptive band-pass filter was used to estimate the instantaneous frequency of the recon-

structed PPG signals. More specifically, the multi-input SFT-W and the SFT-W-SPI algorithms

described in Sections 2.3.2 and 2.3.3 respectively were used. The original version of the al-

gorithm was first used and then compared with the extension including the SPI-based quality

measure, which allows to adapt the filter bandwidth and convergence speed according to the

local signal quality. Since these algorithms operate in the complex domain and the signals of

interest were real-valued, the Hilbert transform was used to obtain the analytic representation of

the latter. More specifically, for each sample, the Hilbert transform was computed on a centered

window of 21 samples. For every record, the initial central frequency of the adaptive band-pass

filter was computed from the maximum of the power spectral density of the first reconstructed

PPG signal during the first 8 s window. For the version with adaptive δ and β parameters (SFT-

W-SPI), the SPI was estimated in the time domain, using equation 2.39 (see Chapter 2). The

length of the sliding window for the calculation of the SPI was two seconds. Figure 4.4 shows

an example of SPI for a PPG signal. It can be noted that the SPI decreases when the quality

of the PPG waveform decreases. In addition to the SPI-based mechanism, as it was empirically

observed that sudden increases in signal amplitude were often related to artifacts, an additional

mechanism was developed to block filter adaptation (δ = 1) in such situations. For this purpose,

a parameter (pm) reflecting local amplitude increases using a 2-second sliding window was de-

fined. For each window and for each signal indexed by m, the difference between the maximum

and the minimum value was first computed. Then, pm was computed as the ratio of the current

maximum difference to the maximum difference 20-sample (0.57 s) before. Finally, δ was set

to one for the next 20 samples when pm, averaged for the available signals, was higher than a

threshold empirically set at 1.7.

Figure 4.5 summarizes the different steps of the proposed HR estimation scheme.
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Figure 4.4: Example of SPI for a PPG signal (dataset-1, record 02). (a) PPG signal; (b) SPI.
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Figure 4.5: Flow diagram of the proposed HR estimation scheme.

In order to demonstrate the importance of each step of the proposed framework, HR was

estimated for different configurations. More specifically, HR was estimated: with or without

adaptive MA reduction, with fixed β and δ parameters (0.98) and with adaptive parameters, for

all signals together and for each signal separately.

4.2.4 Performance measurement

In order to make possible the comparison with the ground-truth HR (BPMre f ), the obtained

HR estimates were averaged on 8-second windows (BPMest). Different measures were used to

assess the performance of our HR estimation scheme. The average absolute error:

Error1 =
1

N

N∑
i=1

|BPMest(i) − BPMre f (i)| (4.3)
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with N, the total number of time windows (see section 2.1). And the average absolute error

percentage:

Error2 =
1

N

N∑
i=1

|BPMest(i) − BPMre f (i)|
BPMre f (i)

(4.4)

In order to have an additional measure of agreement between true and estimated HR values,

Bland-Altman analysis was also performed. In Bland-Altman plots, the average between the

ground-truth and the HR estimates is displayed on the x-axis, while the difference between these

two measures is shown on the y-axis. The limits of agreement (LOA) [μ − 1.96σ, μ + 1.96σ] to

encompass 95% of the differences were calculated.

In addition to the aforementioned performance metrics, the estimation delay was also estimated.

The instantaneous true HR was derived from the ECG signals (available only for the dataset-

1). For this purpose, a simple local maxima detection algorithm was first used to detect the

R-waves on the ECG signals. The resulting inter-beats intervals were uniformly re-sampled at 4

Hz and the instantaneous true HR was derived from these re-sampled intervals. The estimated

HR was also down-sampled to 4 Hz. Then, the delay between the instantaneous true HR and

the instantaneous estimated HR (using PPG signals) was computed from their cross-covariance

on 30-second sliding window (28-second overlap). These delay estimates were finally averaged

over all windows and all subjects.

4.3 Results

4.3.1 Performance of the presented scheme
Tables 4.2 and 4.3 present the results for the error-1 and error-2 measures, respectively, for

the four different following configurations [(a)-(d)] of the proposed HR estimation scheme:

(a) No MA reduction, HR estimation using the two raw PPG signals, adaptive β and δ.

(b) Adaptive MA reduction (NLMS), HR estimation using all inputs (raw and reconstructed

PPG signals), fixed β and δ (0.98).

(c) Adaptive MA reduction (NLMS), HR estimation using the input leading to the smallest

error, adaptive β and δ. Numbers in brackets indicate the index of the input waveforms

that led to the lowest error (see table 4.4).

(d) Adaptive MA reduction (NLMS), HR estimation using all inputs, adaptive β and δ.

Using the complete processing scheme (d), for the dataset-1, an overall average absolute er-

ror of 1.40±0.60 beats-per-minute (bpm) and an overall absolute error percentage of 1.16% were

obtained. Regarding the dataset-2, an overall average absolute error of 4.28±3.16 bpm and an

overall absolute error percentage of 4.28% were achieved. Wilcoxon signed-rank tests were per-

formed to have some statistical comparisons between the different configurations of the proposed

HR estimation scheme [(a)-(d)]. The statistical level was set to p-value < 0.01. The error-1 was

significantly reduced from configuration (a) to configuration (b), confirming the usefulness of

adaptive MA reduction (p-value < 0.01). The error-1 was also significantly reduced by the use

of adaptive β and δ parameters (p-value < 0.01) (comparison between (b) and (d)). The differ-

ence between (c) and (d) was not significant. Figure 4.6 shows the Bland-Altman analysis for the

two datasets. LOA of [-4.71, 4.67] for dataset-1 and [-16.30, 14.35] for dataset-2 were obtained.
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Table 4.2: Error-1 results for the four different configurations (a-d) of the presented HR esti-

mation scheme. (a): no MA reduction, adaptive β and δ; (b) NLMS, HR estimation using all

channels, fixed β and δ (0.98); (c) NLMS, HR estimation from the best channel only, adaptive β
and δ; (d) NLMS, HR estimation using all channels, adaptive β and δ

Record (a) (b) (c) (d)

da
ta

se
t-

1

1 18.28 6.95 2.05 (2) 1.75

2 19.13 1.91 1.97 (3) 1.94

3 1.73 1.39 1.25 (3) 1.17

4 1.77 2.01 1.67 (3) 1.67

5 0.91 1.07 0.99 (3) 0.95

6 1.62 1.36 1.33 (7) 1.22

7 1.02 1.15 0.75 (7) 0.91

8 1.44 1.57 1.02 (3) 1.17

9 0.92 1.19 0.85 (3) 0.87

10 6.81 3.02 3.98 (3) 2.95

11 8.28 1.41 1.02 (2) 1.15

12 9.02 1.26 1.06 (4) 1.00

Av. ± std 5.91±6.68 2.03±1.64 1.49±0.89 1.40±0.60

da
ta

se
t-

2

13 12.68 12.69 10.29 (3) 12.12

14 8.42 4.59 2.74 (1) 4.02

15 10.44 3.70 4.85 (5) 2.52

16 8.76 5.28 4.59 (4) 5.64

17 19.13 3.79 2.39 (4) 3.31

18 8.33 4.13 2.40 (3) 3.39

19 6.08 3.36 3.55 (1) 3.45

20 12.35 6.70 4.17 (2) 5.86

21 2.21 1.88 1.64 (1) 1.56

22 1.09 1.01 0.87 (3) 0.95

Av. ± std 8.95±5.24 4.71±3.23 3.75±2.63 4.28±3.16

to
ta

l

Av. ± std 7.29±6.13 3.25±2.78 2.52±2.17 2.71±2.58
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Table 4.3: Error-2 results for the four different configurations (a-d) of the presented HR esti-

mation scheme. (a): no MA reduction, adaptive β and δ; (b) NLMS, HR estimation using all

channels, fixed β and δ (0.98); (c) NLMS, HR estimation from the best channel only, adaptive β
and δ; (d) NLMS, HR estimation using all channels, adaptive β and δ

Record (a) (b) (c) (d)
da

ta
se

t-
1

1 14.51% 6.20% 1.76% (2) 1.59%

2 16.21% 1.87% 1.92% (3) 1.99%

3 1.50% 1.20% 1.06% (3) 1.02%

4 1.57% 1.81% 1.52% (3) 1.51%

5 0.71% 0.82% 0.78% (3) 0.75%

6 1.29% 1.16% 1.09% (7) 1.05%

7 0.80% 0.89% 0.60% (7) 0.72%

8 1.24% 1.36% 0.92% (3) 1.04%

9 0.79% 1.03% 0.76% (3) 0.76%

10 4.31% 1.98% 2.65% (3) 1.93%

11 5.65% 0.98% 0.67% (2) 0.79%

12 6.33% 0.97% 0.82% (4) 0.79%

Av. 4.58% 1.69% 1.21% 1.16%

da
ta

se
t-

2

13 16.77% 16.94% 13.83% (3) 16.13%

14 10.60% 5.96% 3.55% (1) 5.28%

15 10.55% 3.13% 4.06% (5) 2.10%

16 5.49% 3.31% 3.16% (4) 3.52%

17 15.97% 3.19% 2.01% (4) 2.81%

18 6.04% 3.05% 1.77% (3) 2.51%

19 6.52% 3.99% 4.17% (1) 4.11%

20 8.19% 4.55% 2.91% (2) 3.99%

21 1.72% 1.47% 1.27% (1) 1.21%

22 1.27% 1.19% 1.01% (3) 1.11%

Av. 8.31% 4.68% 3.77% 4.28%

to
ta

l

Av. 6.27% 3.05% 2.38% 2.58%
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Figure 4.6: Bland-Altman plots for dataset-1 (a) and dataset-2 (b) and for the configuration (d)

of the proposed HR estimation scheme. The x-axis corresponds to the mean between BPMre f

and BPMest and the y-axis corresponds to the difference (BPMre f − BPMest).

4.3.2 Effect of adaptive MA reduction
In order to highlight the importance of the adaptive MA reduction step, the error was also

reported for a configuration in which HR was estimated only from the two re-sampled raw PPG

signals (Tables 4.2 and 4.3 (a)). In addition, Figure 4.7 shows an example in which the PPG

signal is strongly affected by MA. The original PPG signal, as well as one of the reconstructed

PPG signals are displayed on top of the ECG. The power spectral density of the two signals for

the corresponding data segment is also displayed. Figure 4.8 shows the HR estimate, as well as

the ground-truth, for a record of dataset-1, with and without adaptive MA reduction.

4.3.3 Combining inputs
The columns (c) of Tables 4.2 and 4.3 emphasize the interest of performing adaptive MA re-

duction for every possible PPG-ACC combination and using all the reconstructed PPG signals as

inputs for adaptive frequency tracking. For each subject, the HR was estimated on the different

reconstructed and original PPG channels separately and the one resulting in the lowest average

absolute error is displayed. The numbers in brackets correspond to the following channel com-

binations: 1: ACC(1) & PPG(1), 2: ACC(2) & PPG(1), 3: ACC(3) & PPG(1), 4: ACC(1) &

PPG(2) , 5: ACC(2) & PPG(2), 6: ACC(3) & PPG(2), 7: PPG(1) only, 8: PPG(2) only. Ta-

ble 4.4 summarizes the number of times each reconstructed/raw PPG signal led to the best HR

estimation in terms of average absolute error.

4.3.4 Effect of adaptive β and δ
In order to highlight the effect of adapting δ and β, the error measures have been computed

also for fixed δ and β (Tables 4.2 and 4.3 (b)). Figure 4.9 illustrates the evolution of error-1 as a

function of δ and β for three different records of the database.
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Figure 4.7: Effect of adaptive MA reduction on a data segment (record 02, dataset-1). (a) Original

PPG(1) and reconstructed PPG(1); (b) ECG and reconstructed PPG(1); (c) Power spectral density

of the original PPG(1) and reconstructed PPG(1) signals.
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Figure 4.8: HR estimation with and without adaptive MA reduction (record-12).

4.3.5 Difference between the different types of physical exercises

Figure 4.10 compares the performance of our method, in terms of average absolute error, for

the different types of physical exercise that were performed by the subjects. These error values

correspond to the final HR estimation scheme (d).
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Table 4.4: Number of times each channel combination led to best heart rate estimation.

Combination Number of times it

number
Waveforms

gave the best estimation

1 ACC(1) & PPG(1) 3

2 ACC(2) & PPG(1) 3

3 ACC(3) & PPG(1) 10

4 ACC(1) & PPG(2) 3

5 ACC(2) & PPG(2) 1

6 ACC(3) & PPG(2) 0

7 PPG(1) 2

8 PPG(2) 0
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Figure 4.9: Left side: Relationships between the error-1 and δ for three records (β fixed at 0.98);

right side: Relationships between error-1 and β for the same records (δ fixed at 0.98).
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Figure 4.10: Error-1 results for the different types of physical activities performed by the subjects.
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4.3.6 Estimation delay
An average estimation delay of 0.93± 0.30 seconds was found between the true and the esti-

mated HR (final estimation scheme (d)). It should be noted that this delay is variable and depends

on different parameters, such as the value of parameter δ in the SFT-W algorithms and the na-

ture of the frequency changes. For example, a larger delay was observed for epochs containing

very abrupt HR changes. Importantly, as the cross-correlation was computed between HR esti-

mated from ECG and HR estimated from PPG. A fraction of this estimated delay corresponds

to the pulse transit time, which varies according to different factors such as age, HR, height, and

systolic blood pressure [53].

4.3.7 Comparison with the state-of-the-art
Results from some of the studies mentioned in the introduction are reported in Table 4.5.

Wilcoxon signed rank tests were performed to compare the results. Regarding dataset-1, the

error values obtained using our scheme were significantly lower than that of TROIKA [43] (p-

value < 0.01), but significantly larger than that of MISPT [45] (p-value < 0.05). There was

no significant difference between our scheme and the JOSS [44] and SPECTRAP [47] ones.

Regarding the second dataset, our error values were significantly larger than that of SPECTRAP

(p-value < 0.01) [47].

Table 4.5: Comparison with existing studies (error-1).

Record TROIKA JOSS SPECTRAP MISPT Our
[43] [44] [47] [45]

da
ta

se
t-

1

1 2.29 1.33 1.18 1.58 1.75

2 2.19 1.75 2.42 1.80 1.94

3 2.00 1.47 0.86 0.58 1.17

4 2.15 1.48 1.38 0.99 1.67

5 2.01 0.69 0.92 0.74 0.95

6 2.76 1.32 1.37 0.93 1.22

7 1.67 0.71 1.53 0.73 0.91

8 1.93 0.56 0.64 0.45 1.17

9 1.86 0.49 0.6 0.41 0.87

10 4.70 3.81 3.65 3.60 2.95

11 1.72 0.78 0.92 0.88 1.15

12 2.84 1.04 1.25 0.68 1.00

Av. ± std 2.34 ± 0.83 1.29 ± 0.90 1.39 ± 0.86 1.11 ± 0.89 1.40 ± 0.60

da
ta

se
t-

2

13 - - 4.89 - 12.12

14 - - 1.58 - 4.02

15 - - 1.83 - 2.52

16 - - 3.05 - 5.64

17 - - 1.62 - 3.31

18 - - 1.24 - 3.39

19 - - 2.04 - 3.45

20 - - 2.49 - 5.86

21 - - 1.16 - 1.56

22 - - 0.66 - 0.95

Av. ± std - - 2.06 ± 1.21 - 4.28 ± 3.16
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4.4 Discussion
The overall error-1 of 1.40 ± 0.60 [bpm] (error-2 of 1.16 %) for dataset-1 and 4.28 ± 3.16

[bpm] (error-2 of 4.28%) for dataset-2 are encouraging. Columns (a) of Tables 4.2 and 4.2 indi-

cate that PPG signals alone were not sufficient to compute accurate HR estimates and the use of

ACC signals was necessary. It should be observed that MA reduction was more efficient for the

first dataset, for which an error-1 reduction of 76% was achieved when NLMS was used prior

to adaptive frequency tracking. For the second dataset, the use of NLMS resulted in an error-1

reduction of 52%. An example of effective MA reduction is shown in Figure 4.7, where the orig-

inal PPG signal is affected by MA and exhibits supplementary pulses whereas the reconstructed

PPG signal is well synchronized with the ECG. This was confirmed by the power spectral density

of these two signals, in which only one clear peak at the true HR was visible after adaptive MA

reduction.

Regarding the contribution of each input signal (raw and reconstructed PPG signals), different

conclusions can be drawn from Table 4.4. The first PPG channel (PPG(1)) led to better results

than the second one (PPG(2)), despite the similarity between the two sensors (green LEDs at 609

nm, distance of two centimeters between them). A possible explanation for this difference of

performance is that the position of the first LED (PPG(1)) was more appropriate than that of the

second one (better skin contact, more blood vessels, etc.). It should also be noted that the input

signal resulting in the smallest error varies for the different recordings and can not be known

in advance. Therefore, the possibility of easily combining all the inputs in adaptive frequency

tracking is of great interest.

The possible benefit of adaptive δ and β parameters was also investigated in this study. The HR

estimation was significantly improved by adaptive δ and β parameters. More precisely, average

error-1 reductions of 31% and 9% were achieved for dataset-1 and dataset-2, respectively (Table

4.2). In addition to this error reduction, the interest of using adaptive β and δ is illustrated in Fig-

ure 4.9, where it can be noticed that the optimal value for β and δ, in terms of error-1, varies for

the different records. In addition, very slight changes of β and δ can lead to important change of

performance (for example record-1). Regarding the underlying adaptive mechanism, SPI seems

to be a good candidate, as it is representative of the PPG signal quality (see example in Figure

4.4). Indeed, a good quality PPG signal presents a main oscillation at HR frequency, while a

PPG signal corrupted by MA shows oscillations at various frequencies.

It should be noticed that better results were achieved by our method for the first dataset, as shown

by the Bland-Altman plots (Figure 4.6). This may be explained by the fact that MA induced by

running are more or less periodic and stationary and thus easier to attenuate. Very abrupt transi-

tions can be observed in the ACC signals for the second dataset and this may be the reason why

the NLMS was less efficient for dataset-2 and larger error values were obtained. Surprisingly,

better results were obtained for exercise type T02 (Figure 4.10), which was more intensive than

exercise type T01. This dataset allowed us to highlight the limitations of the presented scheme.

For example, we can notice that HR estimation failed for the first recording of dataset-2 (Table

4.2).

Our approach provides results that are comparable to the state-of-the-art approaches for dataset-1

(Table 4.5). However, our scheme is less accurate than the SPECTRAP one [47] for the dataset-2.

Surprisingly, the authors of the other studies did not report the performance of their algorithms

on dataset-2, which was in fact more challenging than dataset-1.

In addition to the aforementioned results, our method has the advantage of being almost real-

time, while the studies mentioned have a 4-second delay. This real-time aspect is frequently

mentioned as a requirement in the development of smart wearable systems. Indeed, intelligent

medical monitoring devices are often described as devices capable of providing real-time pro-

cessing and feedback to medical staff, patients, athletes, and healthy subjects [54].

Another strength of the presented HR estimation scheme is the very small number of parameters
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to tune, rendering the methods easily applicable to different data and different experimental situ-

ations.

Finally, it should be mentioned that our method does not crucially depend on the initialization

step as it is the case in other studies [43, 44].

4.5 Conclusion
In this chapter, we propose a new approach to estimate HR using PPG and ACC signals for

subjects performing different kind of physical activities. Our results are in the same range as the

ones resulting from the state-of-the-art algorithms in this field. However, unlike the previously

proposed Fourier-based approaches, our scheme provides continuous heart rate estimates almost

in real-time, which is of great interest for real-time applications. In addition, all the signals are

automatically combined in an optimal way and thus, no a priori knowledge about the contribution

of the different waveforms is required. Finally, only a very few number of parameters have to be

tuned, making this approach suitable and flexible for different experimental situations. Further

work should concentrate on improving the tracking during physical exercises similar to those of

dataset-2. In addition, the inclusion of a confidence index on the estimated HR values could be

valuable.





Atrial Fibrillation
Detection 5
5.1 Introduction

The present chapter aims at evaluating the potential of different PPG-derived measures to dis-

criminate between different types of rhythm, namely atrial fibrillation (AF), ventricular arrhyth-

mia (VA) and sinus rhythm (SR), in the perspective to perform atrial fibrillation detection using

the PPG signal. After defining atrial fibrillation and reviewing the literature about atrial fibril-

lation detection using PPG, novel PPG-wave measures reflecting signal organization/complexity

are presented and their performance in detecting atrial fibrillation is evaluated. These measures

are also compared with more conventional measures based on heart rate variability.

5.1.1 Definition of atrial fribrillation

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia characterized by uncoordinated

atrial activation, which results in the deterioration of atrial mechanical functions. As illustrated in

Figure 5.1 AF can be identified on the ECG. It can be seen that the P-waves are replaced by rapid

oscillations, referred to as fibrillatory waves. These fibrillatory waves have variable amplitude,

morphology and period. Their frequency is usually between 300 and 600 bpm [55].

Figure 5.1: Example of ECG showing AF. Figure from [55].

47
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AF is the most common cardiac arrhythmia, affecting 1-2% of the general population. Among

several AF-related cardiovascular outcomes, AF is known to increase stroke risk [56], and thus

should be diagnosed early. AF may present as a unique episode or be recurrent. Different clas-

sifications of AF have been established to facilitate the management of patients. Depending on

episodes duration, recurrent AF is further classified as: paroxysmal if it terminates spontaneously

within 7 days, persistent if sustained beyond 7 days (<7 days if cardioversion is performed) or

longstanding persistent in case of a continuous episode lasting more than one year. Finally

AF is defined as permanent if cardioversion has failed or was not attempted [56]. AF can be

symptomatic or asymptomatic. Patients often experience a sensation of palpitations and other

symptoms such as chest pain, dyspnea or dizziness have also been reported.

The paroxysmal nature of AF in its initial course renders its diagnosis challenging and re-

quires long-term monitoring to capture AF episodes. The gold standard diagnostic tools are

Holter and implantable cardiac monitors. The latter are widely accepted to be the most reliable

monitoring method to assess AF therapies [57]. However, implantable cardiac monitors require

an invasive procedure which limits their use on a large population. On the other hand, efforts

in recent years have focused on providing low cost, portable and minimally invasive diagnostic

tools that are suitable for diseases screening on a large scale.

5.1.2 Literature review on the use of photoplethysmographic sensors to
detect atrial fibrillation

The principle of PPG was introduced in Chapter 3. Because they can be comfortably worn

during day-life activities, a lot of wearable PPG-based heart rate monitors have recently emerged

on the market. For example, we have seen in the previous chapter that PPG-wrist type devices

can be used to estimate HR during sport sessions. However, despite this attractiveness for PPG

devices, their potential as diagnostic tools to detect cardiac arrhythmias is still partly unexplored.

More specifically, the number of studies reporting the performance of AF detection using PPG is

still quite limited. In [58, 59], the PPG signals provided by an iPhone 4S were used to detect AF.

The interbeat intervals (IBI) were first computed from the PPG waveforms and some statistical

measures were derived from the IBI series, including the normalized root mean square of suc-

cessive difference of IBI (nRMSSD), Shannon entropy and a parameter derived from a Poincaré

plot. In another study, AF detection using a wrist-type PPG sensor was investigated by Bonomi

et al. [60]. More specifically, 16 patients were monitored for 24 hours with a standard Holter

monitor and a wrist-wearable PPG device. AF detection was performed using the IBI series de-

rived from the PPG signals. A first-order Markov model was used successfully to compute the

probability of AF based on the pattern of IBI series. Corino et al. investigated the use of the

blood volume pulse signal to discriminate between AF, other arrhythmias and SR [61]. In this

study 24 features were computed. They can be categorized in three different classes: spectral

analysis, variability and irregularity analysis and shape analysis. The two first classes are derived

from the IBI (the inter-systolic and the inter-diastolic IBIs were studied). Highest variability pa-

rameters were obtained for AF, and the most relevant features were pNN40 and PNN70 1. Using

these two features, specificities of 0.928/0.963/0.768 and sensitivities of 0.773/0.754/0.758 were

obtained for AF, SR and other arrhythmias, respectively. In another study by Conroy et al., four

HRV parameters were derived from the inter-systolic intervals computed on the PPG signal [62].

In this study, the PPG signal was recorded using an earlobe PPG sensor. Sensitivity and speci-

ficity of 90.9% were obtained for the pNN35 parameter.

As for AF, a PPG-based monitoring device for ventricular arrhythmia (VA) detection would

present a substantial clinical interest. There are relatively fewer research works on VA detec-

1. pNNx: The percentage of successive normal cardiac interbeat intervals greater than x msec.
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tion. PPG-based detection of heart rate turbulence [63], that is, the short-term oscillation in hear

rate induce by a PVC has been proposed. Turbulence onset and slope, as well as turbulence-

induced wave shape changes were used. Another work proposed a PVC-detection scheme based

on features characterizing PPG pulse power and peak-to-peak intervals [64]. To the best of our

knowledge, only one publication dealt with the problem of PPG-based classification of VA ver-

sus sinus rhythm (SR) and supraventricular (i.e., mainly atrial) premature contractions [65].

The present study aims at evaluating the potential of a PPG wrist-type device to discriminate

between different types of rhythm, namely AF, VA and SR. In preliminary studies, we showed

that: 1) a few PPG-IBI features can relatively well discriminate between AF and SR [66] and

2) the organization level of PPG signal, which can be assessed trough the adaptive organization

index, is significantly lower during AF [67].

In the present study, we introduce a set of features consisting of complexity/organization mea-

sures, completely innovative in the context of PPG processing, and we evaluate their ability to

discriminate between AF and the other rhythms. We show that, besides being as discriminative

as the PPG-IBI features to classify AF and SR episodes, the proposed features lead to better

performance for the classification of AF and VA episodes.

5.2 Methods

5.2.1 Database

The database consists of 17 consecutive patients (12 men, 5 women, age: 57 ± 13 years old)

referred for catheter ablation of cardiac arrhythmia (Arrhythmia Unit, Heart and Vascular Depart-

ment, Lausanne University Hospital, Switzerland). For each patient, the following waveforms

were continuously recorded during the ablation procedure: ECG, PPG and three-axis accelerom-

eter signals (ACC). More specifically, the 12-lead ECG was acquired at 2 kHz (Sensis, Siemens)

and the PPG signal was recorded using a wrist-type device developed by the Swiss Center for

Electronics and Microtechnology (CSEM). This PPG device is composed of a LED operating at

near-infrared light in reflection mode and an embedded accelerometer. The resulting ACC and

PPG signals were sampled at 21.33 Hz.

5.2.2 Annotation of ECGs

In order to define a ground-truth for the different types of rhythm, ECG waveforms were

annotated by a team of local experts for the segments belonging to one of these three classes: SR,

AF and VA. The VA class consisted of ventricular tachycardia, premature ventricular contractions

and bigeminy episodes. Table 5.1 summarizes the number of annotated 10-second epochs for

each class. A total of 2166 labeled epochs was obtained for the three classes (SR,AF and VA).

5.2.3 Pre-processing

Alignment of PPG and ECG signals

ECG and PPG waveforms were temporally aligned using the IBI series extracted from PPG

and ECG [66]. Regarding the ECGs, the detection of R-waves was performed directly by the

recording system (Sensis, Siemens) and the RR intervals were computed from the differences

between consecutive R-waves. Regarding the PPG signals, the systolic downstrokes of each

pulse were identified as the zeros of the PPG signal second derivative. A finite impulse response
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Table 5.1: Number of epochs of SR, AF and VA, for each patient.

Patient SR AF VA Total

1 107 0 0 107

2 26 0 74 100

3 0 0 25 25

4 63 0 0 63

5 82 0 170 252

6 0 100 0 100

7 0 512 0 512

8 20 0 0 20

9 0 22 0 22

10 13 0 110 123

11 0 0 6 6

12 0 323 0 323

13 12 0 6 18

14 0 156 0 156

15 0 166 4 170

16 0 91 0 91

17 58 0 20 78

Total 381 1370 415 2166

filter with the following coefficients was first applied to the raw PPG signal:

ddn = [
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] � hanning(9) (5.1)

Where � is the element-wise multiplication and hanning(9) is a Hanning window of length 9.

Then, pairs of samples crossing the zero-value were identified from the second order derivative

and were recognized as systolic downstrokes. In order to increase the temporal resolution, a lin-

ear interpolation was applied for each pair of samples.

PPG-based IBI were computed from the time difference between consecutive events. For each

record, a beat-to-beat alignment of the ECG- and PPG-based IBI series was performed. A dy-

namic time warping algorithm was used for this purpose [68]. After the alignment of the ECG-

and PPG-based IBI series, the relation between the time-bases of the two recording systems was

assumed to be modeled by the following linear equation:

t̂ECG = α · toptical + β (5.2)

where t̂ECG is the estimated time in the ECG system time base, toptical is the estimated time in the

PPG system time base, α is the relative drift of the PPG system clock relatively to the ECG system

clock, and β is the time offset of the two recordings. The parameters α and βwere estimated using

classical regression. Given the noisy nature of the PPG-based IBI series, removal of outliers prior

to the estimation of the model parameters was necessary. The RANSAC algorithm was used for

this purpose, with the residual threshold set to one second [69]. Finally, equation (5.2) was used

to transform the time-base of the PPG signals to match the time-base of the ECG signals 2.

Removal of motion artifacts

As discussed in Chapters 3 and 4, PPG waveforms are very sensitive to motion artifacts and

different approaches have been proposed to perform adaptive cancellation [42]. In this study, we

2. The alignment of PPG and ECG signals was performed by Mathieu Lemay and Philippe Renevey, CSEM.
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decided to discard all the PPG segments contaminated with motion artifacts in order to assess

the efficiency of our methods to detect arrhythmias in optimal conditions. The ACC signals were

used in this regard. More specifically, when the local standard deviation of the ACC signals

was larger than a fixed empirically selected threshold, the corresponding PPG regions were not

considered for further analysis. Figure 5.2 illustrates this detection of motion artifacts.
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Figure 5.2: Removal of PPG segments contaminated by motion artifacts. (a) ACC signals; (b)

Pre-processed PPG signal. Example of a segment automatically detected as a motion artifact.

5.2.4 Computation of the features
This subsection describes the features that were computed on the 10-second epochs of PPG

signal (no overlap) corresponding to the annotated ECG sections. Two different types of fea-

tures were computed; the PPG-wave features and the PPG-IBI features. Based on the simple

observation that the PPG waveform is a lot more irregular in terms of morphology and ampli-

tude during AF episodes, we hypothesized that AF leads to changes in hemodynamics such as

reduced stroke volume (followed by a reduction in systemic blood pressure) and a pooling of

venous blood, leading to such pathological waveform morphology. We therefore investigated

PPG-wave features able to reflect such changes. The PPG-IBI features, on the other hand, were

computed from the PPG-IBI series.

PPG-wave features

• Adaptive organization index (AOI): the organization index, introduced in [70], is defined

as the ratio of the combined power of the fundamental frequency and the first harmonic

of an oscillation to the total power of the signal. An adaptive method for continuous and

instantaneous estimation of this index was proposed in [71]. In this study, the authors

used the harmonic frequency tracker described in [21], based on time-varying single pole

band-pass filters to track the instantaneous fundamental and first harmonic frequency com-

ponents. The power was then computed from the low-pass version of the extracted compo-
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nents squared (fundamental and first harmonic). Using the aforementioned methodology

to compute the AOI, we showed in a preliminary study [67] that the AOI is representa-

tive of PPG signal organization by comparing its average value for four different types of

rhythm, namely: SR, regularly paced rhythm, irregularly paced rhythm (atrial and ven-

tricular pacing protocols with increment in pacing rate) and AF. This is shown in Figure

5.3. In the present study, the average AOI value for each 10-second epoch considered was

reported as a feature.
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p < 0.001

Figure 5.3: Boxplot of the obtained AOI values for the four classes, from our preliminary study

[67]. SR: sinus rhythm, IPR: irregularly paced rhythm, RPR: regularly paced rhythm, AF: atrial

fibrillation.

• Variance of the slope of the phase difference (VSPD): the phase difference between the

harmonic components of a signal reflects their synchronization and, therefore, is an indi-

cation of signal organization. Using the same harmonic frequency tracker [21], the instan-

taneous phase difference between the fundamental and the first harmonic was computed

using the Hilbert transform. The variance of the slope of the phase difference (VSPD)

was calculated for each 10-second epoch. Larger VSPD values were expected during AF,

reflecting a reduced synchronization between the fundamental component and its first har-

monic.

• Permutation entropy (PE): permutation entropy is a complexity measure based on the

probability distribution of the permutation motifs [72]. The permutation entropy of order

n (n � 2) is defined as:

PE(n) = −
∑

p(π) log(p(π)) (5.3)

With p(π) the relative frequency of the permutation motif π:

p(π) =
{t|t ≤ T − n, (xt+1, ..., xt+n) has type π}

T − n + 1
(5.4)

with T the length of a signal x. PE has been used in biomedical applications, such as

detection of dynamic changes in the analysis of electroencephalogram signals [73]. In the

present study, the PE was computed on the PPG waveform for each 10-second epoch, us-

ing n = 4. Larger PE values were expected during arrhythmias.
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• Spectral entropy (SE): spectral entropy quantifies the spectral complexity of a time series.

It is defined as the Shannon entropy of the normalized power spectral density function [74]:

SE =
∑

f

p f log(
1

p f
) (5.5)

With p f , the power spectral density normalized with respect to the total spectral power.

In this study, the power spectral density was computed using an Fourier-based method

(Welch’s) as recommended in [74]. Figure 5.6 illustrates the SE values obtained for a

sinusoid (ω0 = 0.2π) with additive Gaussian white noise at different SNR values.

0 100 200 300
samples

-2

-1

0

1

2

in
pu

t

0 100 200 300
samples

-2

0

2

in
pu

t

0 100 200 300
samples

-4

-2

0

2

4

in
pu

t

0 100 200 300
samples

-20

0

20

in
pu

t

0 0.5π π

frequency

0

2

4

6

8

P
S

D

0 0.5π π

frequency

0

2

4

6

8

P
S

D

0 0.5π π

frequency

0

2

4

6

8

10

P
S

D

0 0.5π π

frequency

0

50

100
P

S
D

SNR = 10 dB SNR = 0 dB SNR = -20 dB

SE = 1.3192 SE = 2.3822 SE = 4.0204 SE = 4.702

Figure 5.4: This example illustrates the SE values obtained for a sinusoid contaminated with

different level of white Gaussian noise.

As for PE, this measure has mainly been used in biomedical applications involving the

analysis of electroencephalogram signals [74]. In this study, we hypothesized that a higher

spectral complexity would be observed during AF episodes, and thus higher SE values.

• Fractional spectral radius (FSR): a vector ui is first defined as an embedding vector

whose elements are m samples taken at intervals of J samples along the observed time

series x:

ui = (xi, xi+J , ..., xi+(m−1)J)T , i = 1 : N − (m − 1) · J (5.6)

with m, the embedding dimension. One can construct an embedding matrix U from the

embedding vectors, such that the lines of U are uT
1 , uT

2 ,...,uT
N−(m−1)·J . Then, the eigenvalues

σ2
i of UT U are computed and their spread can be quantified using the fractional spectral

radius (FSR), defined as [74]:

FSR(k) =

∑k
i=0 σ

2
i∑m

l=0 σ
2
l

(5.7)

In the study, the value of k was empirically set to 1 and we used J = 11 and m = 3. Smaller

FSR values were expected during AF, indicating a higher complexity.
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• Spectral purity index (SPI): the SPI measure described in Section 2.4. In this study, a

sliding window of length L = 40 samples was used to compute the instantaneous SPI.

Then, for each epoch, the average SPI was reported as feature. Low SPI values were

expected during AF episodes.

PPG-IBI features

The following PPG-IBI features were computed for each IBI series corresponding to a 10-

second annotated PPG epoch:

• Mean: mean(IBI)

• Standard deviation: std(IBI)

• Median: median(IBI)

• Interquartile range: iqr(IBI)

• Minimum: min(IBI)

• Maximum: max(IBI)

• Square root of the mean squared differences of successive IBI [75]: RMSSD

5.2.5 Classification
Bagging decision trees were used to assess the discriminative performance of the aforemen-

tioned features. Three groups of features were considered: PPG-wave features, PPG-IBI features

and all features together. The performance of each feature group was evaluated for the three fol-

lowing classification schemes: AF against SR, AF against VA and AF against (SR & VA). In

order to reduce the variability of the results, a k-fold cross-validation was performed with k = 5.

5.2.6 Accuracy of the computed IBI series
Heartbeat detection in PPG signals may be a challenging task, especially in the presence of

arrhythmias. In order to evaluate the efficiency of the heartbeat detection method used here (see

Sect. 5.2.3), the detected heartbeats were compared to the reference heartbeats directly provided

by the ECG recording device (Siemens, Sensis). The heartbeats detected from the PPG signal

were classified into three categories: true positive (TP), false positive (FP) and false negative

(FN). Then, the detection error rate (DER) was used as a performance metric:

DER =
FP + FN

Npeaksre f
(5.8)

where Npeaksre f indicates the total number of heartbeats in the reference signal. The overall DER

was estimated over all the 10-second epochs used to calculate the features. In addition the DER

was reported separately for the three categories (SR, AF, VA).
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5.3 Results

5.3.1 Computed features

Figure 5.5 is a representative example illustrating the steps involved in the computation of

the AOI. Figure 5.6 illustrates the normalized PSD of two PPG segments during SR and AF. The

resulting SE, computed from the PSD, is also displayed. Boxplots for the different features are

shown in Figure 5.7. Table 5.2 reports the AUC of the ROC for each feature taken separately and

for two classification schemes: AF against SR and AF against VA.

0 10 20
-500

0
500

[m
V

]

(a)

0 10 20
-500

0
500

1000
1500

[m
V

]

(b)

0 10 20
-500

0
500

1000
1500

[m
V

]

(c)

0 10 20
-20

0

20

[A
.U

.]

(d)

0 10 20
-20

0

20

[A
.U

.]

(e)

0 10 20
-10

0

10

[A
.U

.]

(f)

0 10 20
-10

0

10

[A
.U

.]

(g)

0 10 20
-10

0

10

[A
.U

.]

(h)

0 10 20
-5

0

5

[A
.U

.]

(i)

0 10 20
-5

0

5

[A
.U

.]

(j)

0 10 20
-5

0

5

[A
.U

.]

(k)

0 10 20
-5

0

5

[A
.U

.]

(l)

0 10 20
Time [sec]

0

0.5

1

[N
.U

.]

(m)

0 10 20
Time [sec]

0

0.5

1

[N
.U

.]

(n)

0 10 20
Time [sec]

0

0.5

1

[N
.U

.]

(o)

Figure 5.5: Example illustrating the computation of the AOI feature for the different types of

rhythms: SR, AF and VA (from the left to the right). (a-c) ECG waveforms; (d-f) PPG waveform;

(g-i) Fundamental components; (j-l) First harmonic components; (m-o) Resulting AOIs.

The results displayed in Table 5.2 indicate that some features alone could already discrim-

inate well between SR and AF. However, it was not the case for the classification of AF and

VA. Therefore we decided to investigate classification schemes involving combinations of the

proposed features.

5.3.2 Classification performance:

The accuracy, specificity and sensitivity values obtained for the classification of AF and SR

events and for the different groups of features are reported in Table 5.3.

The same values for the classification of AF and VA events and for the different groups of

features are reported in Table 5.4.

Table 5.5 reports the same performance metrics for the classification of AF and other events

and for the different groups of features.
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Figure 5.6: Example of PPG waveforms (a,c), their PSD (b,d) and the resulting SE values. Top

row: SR; bottom row: AF.

Table 5.2: AUC values for the different features.

Feature AUC SR-AF AUC AF-VA

AOI 0.92 0.74

VSPD 0.93 0.70

PE 0.92 0.56

SPI 0.60 0.84

SE 0.87 0.52

FSR 0.81 0.66

Mean(IBI) 0.68 0.60

Std(IBI) 0.88 0.52

Median(IBI) 0.72 0.58

Iqr(IBI) 0.93 0.54

Min(IBI) 0.83 0.62

Max(IBI) 0.78 0.65

RMSSD 0.90 0.54

Table 5.3: Classification performance AF against SR.

Accuracy [%] Specificity [%] Sensitivity [%]

PPG-wave features 97.3 90.6 99.2

PPG-IBI features 97.3 89.5 99.5

All features 98.1 92.4 99.7
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Figure 5.7: Boxplots for all features, computed from all the labeled PPG epochs after removal of

segments corresponding to motion artifacts. AOI: adaptive organization index; VSPD: variance

of the slope of the phase difference; PE: permutation entropy; SPI: spectral purity index; SE:

spectral entropy; FSR: fractional spectral radius; Mean(IBI): mean IBI, Std(IBI): standard devi-

ation IBI; Median(IBI): median IBI; Iqr(IBI): interquartile range IBI; Min(IBI): minimum IBI;

Max(IBI): maximum IBI; RMSSD: square root of the mean squared difference if successive IBI.

Table 5.4: Classification performance AF against VA.

Accuracy [%] Specificity [%] Sensitivity [%]

PPG-wave features 93.9 87.0 96.1

PPG-IBI features 88.1 63.1 95.7

All features 95.9 88.7 98.1

Table 5.5: Classification performance AF against (SR&VA).

Accuracy [%] Specificity [%] Sensitivity [%]

PPG-wave features 93.8 91.5 95.1

PPG-IBI features 88.5 78.4 94.3

All features 95.0 92.8 96.2

5.3.3 Comparison with IBI-ECG-derived features
Table 5.6 compares the classification performance for the IBI features derived separately

from PPG and ECG.

5.3.4 Accuracy of the computed PPG-IBI series
Table 5.7 reports the DER obtained for the different classes.
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Table 5.6: Classification performance for ECG

Accuracy [%] Specificity [%] Sensitivity [%]

AF/SR PPG-IBI features 97.3 89.5 99.5

ECG-IBI features 99.4 98.2 99.8

AF/VA PPG-IBI features 88.1 63.1 95.7

ECG-IBI features 95.9 89.2 97.9

AF/(SR&VA) PPG-IBI features 88.5 78.4 94.3

ECG-IBI features 96.4 93.7 98.0

Table 5.7: DER of the detected heartbeats in PPG signal.

All SR AF VA

0.28±0.31 0.05±0.11 0.33±0.32 0.33±0.28

5.4 Discussion

The present study aimed at evaluating the potential of a set of PPG-derived measures to dis-

criminate between AF and other types of rhythm. Such approaches could improve the screening

of AF by rendering it less cumbersome, non invasive and at a lower cost.

As mentioned in the introduction, the number of studies dealing with AF detection using PPG

is limited. In these studies, promising results were reported for the discrimination between AF

and SR rhythms. In [60], the classification of 30-seconds segments led to an accuracy of 98%.

An AUC of 0.966 was obtained in [59], and an accuracy of 96.8% was achieved in [58]. Our

results reported in Table 5.3 for the AF/SR classification scheme involving the combination of

all features are in line with the results obtained in the literature.

With an overall accuracy of 95.0% (specificity of 92.8% and sensitivity of 96.2%), the classi-

fication performance for AF against other events (SR and VA) is encouraging (see Table 5.5).

Besides, our study is among the first studies to report the performance of classification between

AF and VA using PPG signals. Yet, this aspect is crucial in realistic situations as ventricular

premature contractions are common in the general population. The AF/VA classification is more

challenging than the AF/SR one because both arrhythmias are characterized by increased heart

rate variability and disorganization. Specificity was slightly inferior (88.7%), indicating a larger

number of false positive, but overall the results remained very encouraging as shown in Table 5.4.

Regarding the relevance of the proposed features, Table 5.2 shows that the best performing PPG-

wave features to discriminate between SR and AF were the AOI, the VSPD and the PE, with

AUC values of 0.92, 0.93 and 0.92, respectively. With an AUC of 0.60, the SPI had the lowest

performance to discriminate between AF and SR and, surprisingly, larger SPI values were ob-

tained during the AF than during SR (see Figure 5.7). As the SPI measures how well a signal can

be represented by a single frequency component, the explanation for the low SPI values during

SR periods may be the strong presence of the first harmonic, as shown in the PSD (see example

in Figure 5.6(b)). However, the SPI was the best PPG-wave feature to discriminate between AF

and VA. More generally, table 5.4 indicates that the classification of AF and VA events using

only IBI-based features led to poor results, while a clear superiority of the PPG-wave features
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can be noticed.

With an overall DER of 27%, the detection of heartbeats on the PPG signal was not really sat-

isfying (see Table 5.7). As anticipated by our observations, the heartbeats were better detected

during SR periods (DER of 5%) than during the arrhythmic periods (DERs of 30%). For this

reason, we believe that, in some cases, the PPG-IBI features may not be sufficient because the

observed increased rhythm irregularity is not only a consequence of the arrhythmia but also the

result of a poorer heartbeat detection accuracy. Hence, having some features that do not rely on

any heartbeat detection appears as an advantage. For comparison purposes, the classification per-

formance using the same IBI-features from ECG are shown in Table 5.6. A drop in performance

can be noticed for the PPG-IBI features, especially for the classification of AF and VA episodes.

In addition, it should be mentioned that this problem is not entirely linked to the accuracy of the

algorithm used for heartbeat detection, but also related to the PPG waveform itself, and therefore

the amount of blood pumped towards body periphery. For example, it has been shown that the

premature ventricular beats are not always followed by a pulse on the PPG signal [63]. Figure

5.8 shows an example of a very low pulsatile activity.

The amount of motion is rather limited during cardiac ablation procedures. However, motion

artifacts can be of real concern when performing ambulatory monitoring with this kind of PPG

device. Different approaches have been investigated so far to reconstruct clean PPG signals us-

ing adaptive cancellation of motion artifacts [42]. However, the efficiency of these methods in

the presence of cardiac arrhythmias has never been demonstrated and thus, currently, the most

reliable solution is the removal of the PPG segments corrupted by motion artifacts. Due to the

possible resemblance between artifacts and arrhythmias, the detection of such segments can not

exclusively rely on the PPG signals. Therefore, the presence of an accelerometer sensor on the

wrist device is valuable.

It is important to mention that this study has some limitations. Firstly, the unbalanced dataset

can be pointed out. Indeed, SR periods were rare compared to arrhythmic periods because the

patients studied were suffering from various arrhythmias. Such unbalanced dataset can bias the

outcome of classification. In addition, there was no patient with both AF and SR epochs. Sec-

ondly, the selected epoch duration was rather short (10 seconds). As a consequence, the number

of analyzed epochs was larger but consisted of less independent epochs. However, having a short

epoch duration is an advantage to identify possible short paroxysmal events. Finally, it should be

mentioned that an additional feature selection step might improve the results.
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Figure 5.8: Example of a VA episode. (a) ECG (lead II); (b) PPG signal.

5.5 Conclusion
In this chapter, the detection of AF using a wrist-type PPG device was investigated. This

preliminary study highlights the potential role of wrist-type PPG devices to screen AF with a

reasonable accuracy. Our analysis shows that the subtle changes occurring in the PPG waveform

during AF can be exploited to develop more robust classification schemes. We proposed a set of

PPG-wave features that are innovative in the context of PPG processing and we showed their po-

tential to be used as complementary measures to PPG-IBI features, especially when VA episodes

are also present.
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to Reduce False
Arrhythmia Alarms in the
ICU 6
6.1 Introduction 1

6.1.1 Motivations

High false alarm (FA) rates are a persistent concern in the Intensive Care Unit (ICU), as

FA rates up to 86% have been reported [76]. Limited performance of ICU monitoring devices

results in the desensitization of the medical staff and longer response times, which can have

severe repercussions. In addition, the noise disturbances that are induced may lead to patient

sleep deprivation [77].

The potential of PPG to estimate HR during physical exercise and to detect AF was discussed

in the previous chapters. Performance evaluation was achieved through a comparison between

the results obtained using the reference sensor (i.e. the ECG) and the ones obtained using the

PPG. In the present chapter, the information provided by the pulsatile signals is not used from

the perspective of replacing the ECG, but as a complementary information. The physiological

parameters derived from the PPG and arterial blood pressure (ABP) signals are incorporated into

a multi-modal processing scheme, in order to improve the outcome compared to the case when

ECG alone is used to trigger alarms. This multimodal approach aiming at reducing the number

of FAs in the ICU was developed in the context of the PhysioNet/CinC challenge 2015.

This chapter is organized as follows. In Section 6.2, the methods used to process the different

waveforms and determine alarms validity are presented. The results obtained are presented in

Section 6.3 and discussed in Section 6.4. These results are the object of a conference paper [78]

and a journal paper [79].

6.1.2 State-of-the-art

Artifacts and momentary fluctuations in the signals are the main causes for high FA rates.

Studies based on heart rate (HR) trend analysis have been proposed in order to suppress FAs.

An alternative approach based on a two-stage recursive median filter was proposed in [80]. The

1. The study presented in this chapter is the result of a joint collaboration with Sasan Yazdani (ASPG), which in turn

will be also published in another dissertation entitled “Novel Low Complexity Biomedical Signal Processing Techniques
for Online Applications”, thesis director Dr. J.-M. Vesin.
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resulting proportion of true alarms increased from 12% to 49% during postoperative haemody-

namic monitoring of cardiac patients. Several other methods have been proposed to eliminate

FAs by means of multimodal signal processing. Aboukhalil et al. showed that the use of ABP

alongside ECG can lead to an overall FA suppression of 59.7% on various alarm types, while

preserving the true alarm rates, except in case of ventricular tachycardia [81].

In addition to the processing of cardiovascular signals from independent sources, the auto-

mated identification of low-quality signals and the development of signal quality indexes (SQIs)

can contribute to the improvement of the decision-making process to determine the validity of

an alarm [82–85]. Sun et al. used several features such as HR, heartbeat duration, systolic and

diastolic blood pressure values to detect anomalies in the ABP waveforms and compute a signal

abnormality index [82]. Another ABP quality assessment method based on fuzzy logic was pro-

posed by Zong et al. [83]. These two approaches were combined by Li and Clifford to develop

an ABP SQI, which was then employed to reduce the number of FAs in the ICU, resulting in FA

reduction rates of 74% and 53% for extreme bradycardia and extreme tachycardia, respectively

[84]. The same authors developed a more complete processing scheme by including photo-

plethysmogram (PPG) signals [86] and developing a PPG SQI [85]. This scheme was evaluated

on a database composed of different types of life-threatening arrhythmia alarms, resulting in FA

suppression rates of 86.4% for asystole, 100% for extreme bradycardia and 27.8% for extreme

tachycardia, while preserving true alarms. For ventricular tachycardia alarms an FA suppression

rate of 30% was achieved, with a true alarm suppression rate below 1%. The quality of ECG

waveforms also plays an important role. Indeed, as arrhythmia alarms in the ICU are mainly

triggered by the ECGs, low-quality ECG waveforms are associated with increases in FA rate.

Behar et al. developed a complete scheme based on machine learning to compute signal quality

indexes (SQIs) for ECG waveforms [87]. In this study, the authors pointed out the challenges

linked to the evaluation of ECG waveform quality in case of abnormal rhythms and proposed to

train classifiers independently for the different types of rhythms.

FA suppression in case of ventricular arrhythmia alarms can be especially arduous. Previ-

ous studies have emphasized the difficulties in classifying ventricular tachycardia and ventricular

fibrillation episodes [81, 84, 88, 89]. Indeed, in these cases, accurate HR values are not suffi-

cient to identify the presence of an arrhythmia and therefore, additional features are required to

detect morphological changes in the waveforms. Moreover, there is no clear evidence yet that

PPG/ABP waveforms can be used as surrogates to characterize these arrhythmias. Salas-boni et
al. proposed a method to reduce the number of false ventricular tachycardia alarms based on

ECG wavelet transform [88]. In this work, the ECG waveform was first decomposed in three

sub-signals using multi-level wavelet transform. Then, different features were extracted from the

sub-signals and machine learning was used to determine the validity of the alarms. An FA sup-

pression of 21% on the PhysioNet MIMIC II dataset was achieved. Regarding the classification

of ventricular fibrillation episodes, a study showed that an accuracy of 96.3% could be achieved

using two features derived from ECG waveforms after the removal of noisy segments [89].

This chapter presents a new approach to lower the incidence of FAs using information from

independent sources, namely ECG, ABP and PPG. As shown in Figure 6.1, four main steps

are involved. Quality assessment is first performed on the available pulsatile waveforms. Then,

according to the alarm type, various features are extracted from the waveforms within the window

of interest. Finally the decision-making process determines whether a true arrhythmia has taken

place when the alarm was triggered. Based on the quality of available signals, heart rate is either

estimated from the pulsatile waveforms using an adaptive frequency tracking algorithm and/or

computed from the ECG using an adaptive mathematical morphology approach. Furthermore,

we propose a supplementary measure based on the spectral purity of the ECGs to determine

whether a ventricular tachycardia or flutter/fibrillation arrhythmia has taken place. The proposed

method is then evaluated on the PhysioNet/CinC Challenge 2015 database.
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Figure 6.1: The general framework to determine the validity of an alarm.

6.2 Methods

6.2.1 Data
The PhysioNet/CinC Challenge 2015 multimodal database consists of 1250 life-threatening

alarm recordings, each categorized into either bradycardia, tachycardia, asystole, ventricular

tachycardia or ventricular flutter/fibrillation arrhythmia. Each record contains two ECG leads

and at least one pulsatile waveform (PPG and/or ABP). The nature of each alarm was manually

labeled by a team of experts according to the definitions of the five arrhythmia alarm types re-

ported in Table 6.1. The database was divided into two subsets: a “real-time” subset, for which

the data were available only before the alarm was triggered and a “retrospective” subset, in which

each record contains an additional 30 seconds of data following the time of the alarm.

Table 6.1: Definition of the five alarm types [90, 91].

Alarm type Definition

Asystole No QRS for at least four seconds.

Extreme Bradycardia Heart rate lower than 40 bpm for five

consecutive beats.

Extreme Tachycardia Heart rate higher than 140 bpm for 17

consecutive beats.

Ventricular Tachycardia Five or more ventricular beats with heart

rate higher than 100 bpm.

Ventricular Flutter/Fibrillation Fibrillatory, flutter, or oscillatory waveform

for at least four seconds.

For each type of alarm, two figures show examples of waveforms during the 16 seconds

preceding the alarm. In these selected examples, the two pulsatile waveforms were available

(ABP and PPG). Figures 6.2 and 6.3 show a true and a false asystole alarm, respectively. Figures

6.4 and 6.5 illustrate a true and a false extreme bradycardia alarm, respectively. Examples of a

true and a false extreme tachycardia are reported in Figures 6.6 and 6.7, respectively. Examples

of a true and a false ventricular tachycardia are reported 6.8 and 6.9, respectively. Figures 6.10

and 6.11 provide examples of a true and a false extreme ventricular/flutter fibrillation alarm,

respectively.
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Figure 6.2: Example of a true asystole alarm (tape a142s).
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Figure 6.3: Example of a false asystole alarm (tape a134s).
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Figure 6.4: Example of a true bradycardia alarm (tape b455l).
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Figure 6.5: Example of a false bradycardia alarm (tape b332s).
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Figure 6.6: Example of a true tachycardia alarm (tape t174s).
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Figure 6.7: Example of a false tachycardia alarm (tape t409l).
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Figure 6.8: Example of a true ventricular tachycardia alarm (tape v648s).
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Figure 6.9: Example of a false ventricular tachycardia alarm (tape v169l).
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Figure 6.10: Example of a true ventricular flutter/fibrillation alarm (tape f544s).
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Figure 6.11: Example of a false ventricular flutter/fibrillation alarm (tape f121l).

6.2.2 ECG processing

HR estimation.

Observations of the available ECG channels in the training set indicated that they present

various perturbations such as clipping of the QRS complexes, large baseline drift and high muscle
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activity noise. Therefore, a robust heartbeat detection algorithm was needed in order to have a

reliable FA suppression. To this end we used a QRS complex extraction algorithm proposed by

Yazdani and Vesin [92, 93], based on an adaptive mathematical morphology (AMM) approach.

In this setting, operators nonlinearly transform the signal of interest using a structuring element

(SEl), designed to extract useful information regarding shape and size. The resulting signal is

called the feature signal. Figure 6.12 illustrates the general framework of AMM.

MM Filtering
Feature Signal Analysis

 and peak detection

Structuring
 Element
Update

Structuring Element

QRS Complexes

50HZ Acquisition
Noise Removal

Figure 6.12: The block diagram of AMM.

The outcome of a mathematical morphology operator depends on the shape of the SEl. AMM

uses a synthesized SEl, in order to extract heartbeats from the ECG. synthesized SEl comprises

five fiducial points namely the onset, Q-wave, R-wave, S-wave and the offset. With a detection of

a heartbeat, a series of morphological features such as the shape and size (i.e. the amplitude and

the relative distance to the onset) are extracted from the beat.Then using a learning coefficient

the amplitude and the location of each fiducial point in synthesized SEl are updated. The new

synthesized SEl is used to extract future QRS-complexes in the ECG. This adaptation of the

SEl makes AMM flexible, and makes possible a more robust QRS complex extraction against

the aforementioned perturbations. Furthermore, the learning coefficient in AMM is tuned based

on the change in power of two successive heartbeats. This tuning on the learning coefficient is

set to avoid excessive changes on the synthesized SEl, especially when ECG presents impulsive

noise or when ectopic beats such as PVC (or bigeminy and trigeminy) take place in the ECG.

Figure 6.13, illustrates the performance of AMM on a tape from the training set with pathological

ventricular rhythm (bigeminy). Finally, it is worth mentioning that the pacing spikes are not

detected in the scheme due to their limited time duration. From a practical view point, AMM

avoids excessive use of arbitrary thresholds, and entails a low computational cost, linear with

respect to the length of the signal. Figures 6.14 illustrates the performance of AMM on two

low-quality signals from the training dataset.
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Figure 6.13: AMM performance on a tape with bigeminy (v421l).

Spectral purity index.

Defining the characteristics of ventricular arrhythmia is challenging from a signal processing

point of view. More specifically, in case of ventricular tachycardia, the definition includes a con-
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Figure 6.14: AMM performance on an ECG (tape a527l) from the training set.

straint on the rhythm (HR higher than 100 bpm) as well as morphological changes in QRS com-

plexes (five or more ventricular beats). Although many methods have been proposed to estimate

the HR, methods to identify a succession of ventricular beats are scarce. Our observations have

shown that ECGs become closer to a sinusoid during ventricular tachycardia/flutter/fibrillation

episodes, due to a widening of the QRS complexes. Such kind of behavior can be quantified

with a measure called the spectral purity index (SPI). This measures, which ranges between zero

and one, is described in Section 2.4. In this study, the SPI of the available ECG channels was

measured for ventricular tachycardia and ventricular flutter/fibrillation alarms. Higher SPIs were

expected for true arrhythmias. In order for the SPI to be more representative of the general

changes in the signals, ECG waveforms were first smoothed by down-sampling to 35 Hz and by

applying a 5-sample moving average filter. A 2-second sliding window (L=70) was used for SPI

calculation. Figure 6.15 illustrates an example of the SPI during a true ventricular tachycardia

episode.

6.2.3 PPG and ABP processing

Quality assessment.

In order to assess the quality of the PPG and ABP signals, we used respectively the ppgSQI
and the jSQI algorithms, provided for the PhysioNet/CinC 2015 challenge [90, 91]. Based on

the detected heartbeats, these algorithms compute the features needed to estimate signal quality.

Heartbeats were detected using the algorithm described by Arberet et al. [94]. The resulting

signal quality indexes (SQIs), that ranged between zero and one, determined whether PPG/ABP

waveforms should be analyzed.

HR estimation.

In order to supress FAs and preserve true alarms, it is necessary to have an accurate HR ex-

traction. However, a precise HR estimation has proven to be difficult when signal quality is low.
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Figure 6.15: Example of SPI for a true ventricular tachycardia (record v194s). (a) and (b) show

the two ECG waveforms; (c) and (d) represent the corresponding SPIs. In both cases, it can be

observed that the SPI significantly increases when the arrhythmia takes place.

Moreover, abnormal heart rhythms are expected to be present in the waveforms. In this study, we

decided to exploit the pulsatile nature of PPG and ABP waveforms by using adaptive frequency

tracking algorithms, which consist of adaptive band-pass filters, to estimate HR. More specifi-

cally, the OSC-MSE-W and the SFT-W algorithms described in Sections 2.3.1 and 2.3.2 were

used. An 8th-order Butterworth low-pass filter with a cutoff frequency of 5 Hz was first applied

to the PPG signals. Then, the baseline of PPG and ABP signals was removed by subtracting the

mean of the upper and lower signal envelopes estimated using maximum/minimum detection on

a sliding window. Finally, when the SQIs of the PPG/ABP signal reached a certain threshold, the

OSC-MSE-W/SFT-W algorithms were used to compute the instantaneous HR of the available

signals. In order to increase the robustness of HR estimation, smoothed versions of the input

signals, obtained with a moving average of length lwin, were also fed to the algorithm. It is espe-

cially important to attenuate the dicrotic notch and to ensure the tracking of the main oscillation

and not of the first harmonic. The example illustrated in Figure 6.16 shows why it is necessary

to use also the smoothed signal as an input to the adaptive frequency tracking algorithms for

a precise HR estimation. In this example, the ABP signal has a lower frequency component,

which is the frequency corresponding to instantaneous HR, and a higher frequency component,

due to the presence of the dicrotic notch. It can be seen that, when the smoothed ABP signal

is also provided to the OSC-MSE-W algorithm, the common frequency between the inputs is

the frequency of interest and the HR can be accurately estimated, which is not the case when

only the ABP signal is used. In order to further optimize HR estimation, the parameters required

for adaptive frequency tracking, were empirically selected for each type of arrhythmia. These

parameters are summarized in Table 6.2, where fre indicates the re-sampling frequency of the

waveforms, β is related to the bandwidth of the adaptive band-pass filter and δ is a forgetting fac-

tor. It should be noted that, for asystole alarms, a smaller δ was used in order to detect decreases

in HR faster. We noticed that the complex version of the algorithm (SFT-W) was more suitable
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for arrhythmia associated with low HR, i.e. asystole and bradycardia, while the OSC-MSE-W

was more suitable for arrhythmia associated with high HR. Figure 6.17 shows an example of

HR estimation using the OSC-MSE-W algorithm, during a true extreme tachycardia episode. As

illustrated, despite the moderate quality of the waveforms, the oscillation of interest is correctly

isolated by the adaptive band-pass filter and therefore, instantaneous HR can be estimated.

Table 6.2: Algorithms and selected parameters for HR estimation using PPG and/or ABP wave-

forms.

Arrhythmia Algorithm fre lwin PPG lwin ABP β δ
[Hz] [samples] [samples]

Asystole SFT-W 15 3 3 0.8 0.8

Extreme Bradycardia SFT-W 15 3,5,11 7 0.87 0.87

Extreme Tachycardia OSC-MSE-W 35 5 7 0.89 0.9

Ventricular Tachycardia OSC-MSE-W 35 5 7 0.89 0.9
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Figure 6.16: An example to illustrate the interest of using multiple inputs for adaptive frequency

tracking. (a) Original (baseline removed) and smoothed ABP signals; (b) ABP signal filtered

with the adaptive band-pass filter (single input to the OSC-MSE-W) and ABP signal filtered

with the adaptive band-pass filter (multiple inputs to the OSC-MSE-W). The HR component is

correctly extracted when ABP and smoothed ABP are used as inputs.

6.2.4 Arrhythmia alarm processing
Definition of the five alarm types (see Table 6.1) enabled us to develop processing schemes

specific to each arrhythmia, which are described throughout the upcoming subsections. In each

scheme, thresholds were empirically selected in order to maximize the corresponding true nega-

tive rate (TNR) while keeping true positive rate (TPR) as close as possible to 100% in the training
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Figure 6.17: An example of HR estimation using the OSC-MSE-W algorithm during an extreme

tachycardia episode. (a) PPG waveform; (b) Instantaneous HR.

dataset. It should be mentioned that, for each type of arrhythmia, the default alarm result was

set to one. Instead of detecting a given arrhythmia, our algorithms rely on finding sufficient

conditions to suppress the alarm.

Asystole processing.

Figure 6.18 illustrates the processing scheme for asystole. For this arrhythmia, available

ECGs and high-quality pulsatile waveforms were processed separately and alarm veracity was

determined by means of voting. More specifically, the alarm was suppressed if at least one

processed waveform suppressed the alarm. For the retrospective setting, a few seconds of data

after the alarm were also taken into account for the calculation of the HR features, i.e. the mean

HR and the decrease of HR for the pulsatile waveforms and the maximum RR-interval for ECG

waveforms. A linear discriminant analysis (LDA) classifier, trained on the training dataset (see

Section 6.2.5), was used to compute the alarm result derived from the pulsatile waveforms. In

order to have consistency with the performance metric that was used in this study (see Section

6.2.5), the false negative cost was set as five time larger than that of false positive in the LDA.

The classifier was trained on the training dataset. Regarding the processing of the ECG signals, a

threshold of 3.5 seconds, was put on the maximum RR-interval during the last 20 seconds before

alarm was triggered (+ 5 seconds after in case retrospective data were available) to compute the

ECG alarm results.

Extreme bradycardia processing.

Two different processing schemes are possible in case of extreme bradycardia alarm, depend-

ing on the quality of the waveforms (Figure 6.19). When at least one of the pulsatile waveforms

had an acceptable quality (SQI higher than 0.5), alarm validity was determined based on a thresh-

old of 54 bpm on the mean and median HR values extracted from the pulsatile waveforms during

the last five seconds before the alarm was triggered. On the other hand, when the SQIs of PPG
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Figure 6.18: Asystole alarm processing.

and ABP waveforms were both below 0.5, the ECG waveforms were analyzed. A threshold of 40

bpm was used on the minimum HR derived from five consecutive beats to discriminate between

true and false alarms. A period of 16 seconds before the alarm was considered and, if available,

5 seconds after the alarm were also taken into account.
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Figure 6.19: Extreme bradycardia alarm processing.

Extreme tachycardia processing.

In case of extreme tachycardia alarm, only the pulsatile waveforms were processed, as shown

in Figure 6.20. The decision about alarm veracity was made from the mean and maximum

HR values during the last four seconds preceding the alarm. More precisely, the alarm was

suppressed if the maximum HR was below 115 bpm while the mean HR was below 100 bpm.

For this arrhythmia, ECG waveforms were not analyzed.

yes
PPG/ABP SQI > 0.6?

HR estimation
OSC-MSE-W

Consider 4 sec.
before alarm

Mean (HR) < 100 bpm?
yes

Max (HR) < 115 bpm?
yes

Alarm = 0

Alarm = 1

no

Figure 6.20: Extreme tachycardia alarm processing.

Ventricular flutter/fibrillation processing.

As shown in Figure 6.21, a single feature, the maximum average SPI on a 3-second slid-

ing window (2-second overlap), was used to suppress false ventricular flutter/fibrillation alarms.
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More precisely, the alarm was suppressed if this SPI feature was smaller than 0.63 during the 15

seconds preceding the alarm. Pulsatile waveforms were not processed for this arrhythmia.

ECG(1)

< 0.63? Alarm = 0
yes

Max(SPI_av)
ECG(1)

ECG(2)

Consider 15 sec.
before alarm

SPI
SPI averages on 3-sec.
sliding window: SPI_av

Max(SPI_av)
ECG(2)

Max

Figure 6.21: Ventricular flutter/fibrillation alarm processing.

Ventricular tachycardia processing.

The processing of ventricular tachycardia alarms was the most challenging one (Figure 6.22).

On one hand, pulsatile waveforms were used to compute HR and suppress the alarm if the HR

ranged between 60 and 90 bpm. On the other hand, the ECG SPI was employed to detected

morphological changes during ventricular contractions. It should be noted that pulsatile wave-

forms and ECGs were processed independently, and that both could lead to the suppression of the

alarm. The first feature was the maximum of the average SPI on a 3-second sliding window (2-

second overlap) during the 20 seconds preceding the alarm. The maximum difference between

every other value of these SPI averages were used to compute a second feature reflecting SPI

increase. Three different conditions led to alarm suppression based on the SPI features described

above. Either the maximum SPI increase had to be below 0.012, or the maximum SPI average

was below 0.25, or both the maximum SPI average and the maximum SPI increase were below

0.36 and 0.2, respectively.
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Figure 6.22: Ventricular tachycardia alarm processing.

6.2.5 Evaluation metrics

A training set of 750 records was provided for this challenge. Then, the performance of the

developed scheme was evaluated on a hidden test set of 500 records (extended to 750 records for

the second phase). It is important to eliminate false alarms while preserving true alarms, since

the life of the patient is threatened if true alarms are suppressed. To enforce this, a specific score

function was selected for this challenge [90, 91]. This score is a function of the number of true

positives (TP), false positives (FP), false negatives (FN) and true negatives (TN), computed by
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the following equation:

Score =
100 · (TP + TN)

(TP + TN + FP + 5 · FN)
(6.1)

As shown in Eq. 6.1, FN alarms are penalized five times more than FP alarms. In addition to

this score, TPRs and TNRs were reported for the different alarm types (see Appendix A for an

introduction about evaluation of classifiers).

6.3 Results
After feature extraction and training on the available training set, our scheme was first evalu-

ated on a test set of 500 records, and was ranked as the second best method with an overall score

of 73. For the second phase of this challenge, we focused on optimizing the parameters that were

used by the different algorithms of our scheme. At the same time, different voting strategies were

studied in order to find the best way to aggregate the results provided by each processing compo-

nent. It is worth mentioning that, for this phase, an additional dataset of 250 records was added

to the evaluation dataset. For the real-time test dataset, the proposed framework achieved a TPR

of 94%, a TNR of 77%, and an overall score of 76.11. Regarding the retrospective subset, a TPR

of 99% and a TNR of 80% were achieved, with an overall score of 85.04 [95]. This scheme was

ranked fifth in the real-time event and first in the retrospective event [90, 91]. A follow-up phase

was also considered for this challenge. After applying minor changes to the decision-making

process of the asystole and extreme tachycardia alarms, an improvement of one percent in TPR

was achieved for the real time event, resulting in a real-time score of 77.07. More details on the

performance of the proposed scheme on the test and the training datasets can be found in Tables

6.3 and 6.4, respectively.

Table 6.3: Results obtained on the hidden-test dataset.

Phase I Phase II Follow-up

Arrhythmia TPR TNR Score TPR TNR Score TPR TNR Score

[%] [%] [%] [%] [%] [%]

Asystole 92 78 76.42 83 88 81.44 94 85 84.28

Extreme brady. 96 66 73.53 100 71 82.47 100 71 82.47

Extreme tachy. 96 60 80.00 97 60 86.18 97 80 86.99

Ventricular flut./fib. 83 88 79.55 89 94 87.10 89 94 87.10

Ventricular tachy. 93 65 67.38 94 72 72.75 94 72 72.75

Real-time 93 65 68.15 94 77 76.11 95 76 77.07
Retrospective 95 77 77.82 99 80 85.04 99 80 85.04

Table 6.4: Results for the training set.

Arrhythmia TP FP FN TN TPR TNR Score

[%] [%] [%] [%] [%] [%]

Asystole 18 12 0 70 100 85 87.70

Extreme bradycardia 51 18 1 30 98 63 77.49

Extreme tachycardia 94 3 0 4 100 55 97.10

Ventricular flutter/fibrillation 10 16 0 74 100 83 84.48

Ventricular tachycardia 22 19 4 55 85 75 67.45

Average 39 13 1 47 98 78 82.31
Gross 37 14 2 47 95 76 77.88
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6.4 Discussion

In this challenge, the highest score in both real-time and retrospective events was achieved by

a meta-algorithm, which uses a voting system on the 13 best performing entries (see Appendix A

for a short introduction about classifier fusion). Table 6.5 compares the results achieved by our

scheme with the meta-algorithm developed by the challenge organizers. More details about the

top scoring entries from the other participants can be found in [90, 91]. Regardless of our final

scores, our main goal was to achieve the highest TPR since the applicability of the developed

method in the ICU would be most acceptable with a TPR of 100%. This was reflected in the final

results, as our approach reached the highest TPR for both real-time and retrospective events [90].

Table 6.5: Comparison between our scheme and the voting algorithm.

Real-time subset Retrospective subset

TPR TNR Score TPR TNR Score

Voting algorithm [90] 94% 90% 84.26 94% 94% 87.03

Our scheme 95% 76% 77.07 99% 80% 85.04

We believe that quality assessment of the signals plays an important role in FA suppression

in the ICU. Indeed, in our case, the use of the PPG/ABP SQI was necessary to obtain satisfying

results. Table 6.6 shows the percentage of records that were analyzed based on the SQI thresh-

olds set in our processing scheme. It should be noted that for extreme tachycardia alarms, only

51% of the records had quality acceptable enough to be analyzed. Therefore, excluding 49%

of signals undoubtedly affects the final TPR and TNR that can be achieved for this arrhythmia,

as shown by the low TNR on the training set reported in Table 6.4. The use of an ECG qual-

ity assessment method was also investigated in this study. As mentioned before, the ECGs in

the database usually present various perturbations. Therefore, during the training phase of this

study, we developed an ECG quality assessment classifier, in order to categorize the ECGs into

low, moderate, and high quality classes. To this end, all ECGs in the dataset were manually

labeled by an operator and various features were extracted from them. Initially, third and fourth

moment based features, i.e. respectively skewness and kurtosis, and ECG QRS- and baseline-

power features were extracted from the tapes, as proposed in [87]. Then ECGs were processed by

AMM [92] and several QRS complex-driven features were extracted from the output of AMM.

More specifically, features such as maximum, minimum, average duration of QRS complexes

and RR-intervals were extracted from the signals. Subsequently, a support vector machine based

ECG signal quality assessemnt classifier was trained and validated (10-fold cross-validation).

The classification accuracy of the trained classifier was 81.6% against the training set. How-

ever, when this ECG quality assessment was incorporated into AMM, i.e. only ECGs with high

enough quality would be processed, a performance decrease was observed in the training set. For

this reason, the use of ECG quality assessment was discontinued for this challenge.

Table 6.6: Percentage of processed waveforms for each type of alarm in the training set. The last

column indicates the percentage of records for which at least one waveform was processed.

% of processed records ABP PPG PPG or ABP ECG At least one waveform

Asystole 35% 45% 80% 100% 100%

Extreme bradycardia 40% 64% 80% 20% 100%

Extreme tachycardia 29% 26% 51% 0% 51%

Ventricular flutter/fib. 0% 0% 0% 100% 100%

Ventricular tachycardia 45% 52% 78% 100% 100%
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Based on the results presented above, it seems that adaptive frequency tracking is an appro-

priate technique to obtain instantaneous HR from the pulsatile waveforms. This method does

not provide any information about heart rate variability, but results suggest that precise HR aver-

ages and trends are most of the time sufficient to determine the validity of the alarm. Moreover,

adaptive frequency tracking enabled us to process moderate-quality waveforms, and as a result

increased the numbers of potential FA candidates for suppression. Furthermore, information

from ABP and PPG can be easily combined using this technique.

We found out in this study that the elimination of false ventricular tachycardia alarms only on

the basis of PPG/ABP waveforms is very difficult. Our observations showed that ventricular

tachycardia episodes sometimes induce amplitude decreases in the pulsatile signals. However,

as illustrated in Figure 6.23, this effect was not consistent over records. In this figure, the PPG

waveforms, as well as the ECG waveforms are displayed for two records corresponding to true

ventricular tachycardia episodes. It can be noted that the pulse amplitudes decrease during the

ventricular beats for the first record (highlighted by the ellipse), but the same behavior can not

be observed for the second record. For this reason, PPG/ABP amplitude changes were excluded

from our scheme. This phenomenon had been reported by [63]. In this work the pulse ampli-

tude, among other features, was used to detect ventricular premature beats. The authors noted

that different pulse patterns are possible in the PPG signal when a premature ventricular beat

occurs, depending on blood pumping efficiency. Finally, as a compromise, we decided to rely

on pulsatile waveforms for HR estimation and on ECGs for the detection of the morphological

changes. To the best of our knowledge, it is the first time SPI is used to characterize the morpho-

logical changes related to ventricular arrhythmia. This measure undoubtedly has a potential to

be used for ventricular tachycardia and ventricular flutter/fibrillation arrhythmias, as confirmed

by the good results achieved with a very limited number of features. Moreover, the computation

of this index can be done on-line in the time domain, at a very low cost.
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Figure 6.23: Two examples of PPG signal behavior during true ventricular tachycardia episodes.

(a) Record v628s. A decrease in pulse amplitude can be observed in the PPG signal during the

arrhythmia; (b) Record v159l. No decrease in PPG pulse amplitude.
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The decision-making process of our scheme is very straightforward, as it mainly uses simple

thresholds on a few features to eliminate FAs. In order to find the optimal way to aggregate the

results provided by different components of our scheme, both learner fusion and learner selection

methods were studied. As illustrated by the arrhythmia alarm processing schemes (Figures 6.18 -

6.22), for asystole and ventricular tachycardia alarms, a fusion-based method leads to the best re-

sults. For extreme bradycardia, the alarm verification procedure is chosen based on the threshold

of 0.5 on the PPG/ABP SQI, which represents the learner selection that was incorporated for this

arrhythmia. For extreme tachycardia and ventricular flutter/fibrillation, results showed that the

use of pulsatile waveforms alone and ECG waveforms alone, respectively, were more effective.

It should also be noted that, compared to the exact alarm definitions (see Table 6.1), most HR

thresholds in our method were set to have a certain degree of tolerance, which was necessary to

avoid the suppression of true alarm. Using a decision-making process based on sophisticated ma-

chine learning algorithms is debatable in our case. Indeed, machine learning-based approaches

have already proven their efficiency, as shown by the results from the other participants in the

challenge [90]. However, our limited number of features allowed us to keep our scheme simpler

while rendering a physiological interpretation possible. The similarities between the performance

achieved on training and test datasets confirm the relevance of the empirically chosen parameters

(see Tables 6.3 and 6.4), and suggest that overfitting was avoided despite the limited number

of available records for some types of arrhythmia. It is noteworthy to mention that, during the

development of our method for the processing of ventricular tachycardia, we tried to replace the

thresholds on SPI derived features (see Figure 6.22) by an LDA classifier. However, despite the

better results obtained on the training set, lower performance were achieved in the test dataset,

as shown in Table 6.7.

Table 6.7: Linear discriminant analysis for ventricular tachycardia alarms.

Training dataset Test dataset

TPR [%] TNR [%] Score TPR [%] TNR [%] Score

With LDA 90 77 72.83 81 74 64.83

No LDA 85 75 67.45 94 72 72.75

6.5 Conclusion
The study presented in this chapter confirms that the use of cardiovascular signals from in-

dependent sources is of great interest to reduce the number of FAs in the ICU. We propose an

innovative approach, based on the capture of specific signal behavior that occur during arrhyth-

mia episodes, in addition to the traditional HR measures derived from the ECGs and pulsatile

waveforms. The efficiency of our approach was demonstrated on the PhysioNet/CinC Challenge

2015 dataset, for which TNRs of 76/80% were achieved, with corresponding TPRs of 95/99%

for the real-time and retrospective subsets, respectively.
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Introduction to Imaging
Photoplethysmography 7
7.1 Principle

Imaging photoplethysmography (iPPG) was introduced for the first time in 2008 [5]. This

technique enables the remote measurement of cardiac pulses. Similarly to PPG, iPPG is an

optical-based method. However, iPPG differs from the usual PPG technique in various aspects.

While PPG requires an illumination source at a dedicated wavelength, iPPG is a non-contact

technique that uses ambient light as only illumination source. The camera sensor, which can be

a low-cost commercial digital camera, is typically placed 1-2 meters away from the subject. The

iPPG signals are derived from temporal skin color variations of a skin region. This region of

interest (ROI) is generally selected on the subject’s face. According to the skin reflection model

described in [96], the signal measured by the camera sensor is a mixture of specular and diffuse

reflection. As shown in Figure 7.1, the pulsatile information is contained in the diffuse reflection.

Unlike PPG, which measures the blood volume changes from a single site, iPPG measures these

variations by averaging the changes in a relatively large ROI.

Figure 7.1: Skin reflection model. Image from [96], c© 2016 IEEE.

Different kinds of cameras have been previously used for iPPG applications. In [97], iPPG

signals from a webcam and a high-speed CMOS color camera were compared. In this study,

the authors observed similar capabilities in measuring HR from both systems. Besides the se-

lected camera, the video compression is a very important parameter. McDuff et al. compared a

set of commonly used video compression algorithms (x264 and x265) at different constant rate

factors (“level of compression”) [98]. The analysis was performed on two data subsets, namely

a stationary task and a random motion task. The authors concluded that compression, even at

83
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low constant rate factors, considerably degrades the blood volume pulse signal-to noise ratio.

Moreover, this effect is worsened in the presence of additional noise sources such as large head

movements. It is therefore important to analyze the raw video data.

Various techniques, reviewed in the next section, have been previously explored in the liter-

ature to derive iPPG signals from video sequences. It should be mentioned that differing termi-

nologies are used in the literature to refer to the iPPG technology, including among others remote

photoplethysmography (rPPG) and video photoplethysmography (vPPG). The term iPPG is used

throughout this dissertation.

7.2 Review of the iPPG-signal derivation methods

Spatial averaging

In [5], Verkruysse et al. showed for the first time that PPG signals can be remotely measured

from a subject’s face with a simple camera using normal ambient light as illumination source. In

their study, a digital camera placed 1-2 meters away from the subjects was used to record video-

sequences of their face. The illumination conditions consisted of a combination of daylight and

normal artificial fluorescent light. The ROI was selected on the subject’s face and raw signals

were computed as the average of all pixel intensity values within the ROI at each frame and for

each channel of the RGB image (namely RED, GREEN and BLUE channels). The raw signals

were then band-pass filtered between 0.8 and 6 Hz (48-360 bpm), in order to detrend them

and remove very high frequency components. Time-frequency and frequency domain analyses

were performed on the raw and band-pass filtered iPPG signals. The main conclusions of this

preliminary study can be summarized as follows: 1) the HR estimate was found to be in excellent

agreement with the one provided by the reference sensor, 2) averaging pixels within a ROI leads

to higher SNR, 3) the green channel is the best channel, and 4) the respiratory rate can also be

determined. The authors also emphasized the limitations related to motion artifacts, as well as to

the noise in the pixel values generated by the charge coupled device (CCD) camera. Figure 7.2

illustrates the basic methodology to recover iPPG signal from the video sequences.

ROI selection Raw RGB traces RGB pulse signals

Band-pass

filtering

Spatial

averaging

of the pixels

within the

selected ROI

Figure 7.2: Basic principle of iPPG signal derivation, as introduced in [5].

Blind-source separation based methods

Based on the observations that 1) the iPPG technique is very sensitive to noise and 2) the

frequency band of the noise overlaps with the frequency band of the physiological signals of

interest, researchers decided to investigate blind-source separation (BSS) methods in order to

retrieve the blood volume pulse [99–102]. BSS methods allow the separation of the sources

from a set of observed mixed signals, for which the mixing process is unknown. The general

methodology for iPPG-signal derivation using BSS is illustrated in Figure 7.3. In the BSS-based
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processing scheme proposed in [99], the raw RGB traces were first normalized as follows:

xnorm(t) =
x(t) − μ
σ

(7.1)

where μ is the mean and σ the standard deviation. Then, independent component analysis (ICA)

was used to decompose the normalized RGB traces into three independent source signals. A

time-window of 30 seconds was used for this purpose. The information contained in the signals

before and after ICA was compared, and the authors showed that the HR estimated using ICA

was more accurate compared to the HR estimated from the raw traces, especially for sequences

with motion artifacts. In [100], the same authors extended their ICA-based methodology to

quantify additional physiological parameters, namely respiratory rate and HRV parameters (LF,

HF and LF/HF) 1. For this purpose, a supplementary processing step was added: the selected

source signal was smoothed and band-pass filtered between 0.7 and 7 Hz. In order to enhance the

precision of heartbeat detection, the signal was interpolated at 256 Hz. For immobile subjects, a

correlation of 0.94 was reported between the reference interbeat intervals (IBI) and the iPPG-IBI.

ROI selection Normalized raw RGB traces

Separated source 1

Separated source 2

Separated source 3

Spatial

averaging

of the pixels

in the ROI

BSS

algorithm

Figure 7.3: Principle of BSS-based iPPG signal derivation methods.

Model-based methods

Given the drawback induced by the component selection step in the BBS methods and the fact

that these methods are not optimal for real-time applications, other iPPG signal derivation meth-

ods have been proposed in the literature. A chrominance-based iPPG method was introduced

in [103], in which the iPPG signal is reconstructed as a linear combination of the RGB color

channels. The authors suggested that the specular reflection component, which is not affected

by blood volume changes, as well as the non-local intensity variations, were the main causes of

distortion. In their model, a constant standardized skin-color is assumed to normalize the signal

1. LF: power in the low frequencies [0.04-0.15] Hz, HF: power in the high frequencies [0.15-0.4] Hz.
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and construct a linear combination orthogonal to the distortions. In this algorithm, referred to as

CHROM, the iPPG signal, S , is defined as:

S = Xs − αYs (7.2)

with α = σ(Xs)
σ(Ys)

and Xs and Ys the color difference signals defined as :

Xs = 0.77Rn − 0.51Gn

Ys = 0.77Rn + 0.51Gn − 0.77Bn (7.3)

the normalized color channels (Rn, Gn, and Bn) are defined as:

Rn =
Rs

0.7682
,Gn =

Gs

0.5121
, Bn =

Bs

0.3841
(7.4)

with Rs, Gs, and Bs, the average pixel intensity values at frame n for the corresponding channel.

Better results were obtained when band-pass filtered versions of Rn, Gn and Bn were used. This

algorithm showed superior performance compared to BSS-based methods for videos with sub-

jects performing physical exercise, including periodic motion. In addition, overlap-add intervals

of only 1.6 s were used, while processing intervals of 25 s were required to give satisfactory

results with the BSS-based methods.

The same authors published another algorithm, in which the blood-volume pulse signature was

used to improve robustness against motion [104]. This approach did not require any assumption

about the periodicity of the signals and distortions. The normalized blood-volume pulse vector,

Pbv, defined as the signature of blood volume change, was estimated from the relative pulsatil-

ities of the color channels and used to discriminate the distortions from the pulse signal. This

algorithm, referred to as PBV, showed a better robustness against motion compared to the BSS-

based and CHROM methods. However, the performance of PBV was slightly inferior than that

of CHROM for stationary subjects. The length of the overlap-add window was also investigated

and the best results were obtained for a window duration of approximately three seconds. The

authors also proposed to use the PBV and CHRO methods for the component selection in BSS-

based methods, resulting in two additional methods: principal component analysis (PCA) guided
by CHROM and PCA guided by PBV, which produced good results.

Later, Wang et al. introduced another model-based iPPG signal derivation technique called POS

(plane orthogonal to skin) in [96]. The main idea behind this algorithm is to project the signal

onto a plane orthogonal to the temporally normalized skin tone, in order to improve the separa-

tion between pulsatile and specular components. The following assumption was made in order

to define the projection-axes:

skin pulsatility green > skin pulsatility blue > skin pulsatility red (7.5)

The different steps to derive the iPPG signals using the POS algorithm are summarized in Fig-

ure 7.4. In order to assess the performance of the POS method, the authors computed an SNR

measure, which was also reported for the iPPG signals computed with different existing iPPG sig-

nal derivation techniques (averaging, PCA, ICA, CHROM, PBV, SSR). The database consisted

of a total of 60 video sequences, divided in four subsets with various experimental conditions

(various skin tones, different luminance conditions, recovery after exercise and fitness exercise).

Promising results were obtained with the POS method, which was almost always ranked as best

or second-best according to the SNR metric used.
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ROI selection

for n = l : K do
Spatial averaging to derive raw traces:

Cn = [Rn,Gn, Bn]


Windowing:

Consider the l past samples

Temporal normalization:
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n =
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(n−l+1)→n
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·Cn

Tuning:

h = S 1 + αS 2,with α = σ(S 1)
σ(S 2)

Overlap-adding:

P(n−l+1)→n = P(n−l+1)→n + (h − μ(h))

end for

Figure 7.4: The different steps involved in the POS method [96]. Cn: vector containing the raw

R/G/B traces at frame n, S : projected signal, h: short-term pulse signal, P: long-term pulse

signal, K: number of frames.

In [105], an optical iPPG signal model was proposed and used to derive a processing approach

aiming at attenuating motion artifacts. According to this optical model, the raw iPPG signal was

represented as:

Ii(t) = αiβi(S 0 + γiS 0Pulse(t) + R0)M(t),with i ∈ {R,G, B} (7.6)

where αi is the power of the ith color channel in the normalized practical illumination spectrum,

βi is the power of the ith color light in the normalized diffuse reflexion spectrum, S 0 is the average

scattered light, γi is the (ac/dc) ratio of the ith color light, Pulse(t) is the normalized ideal iPPG

signal, R0 is the diffuse reflection light, and M(t) is the motion modulation of the ideal iPPG

signal. A color difference method was used to attenuate motion artifacts. This operation consists

of a weighted subtraction between two iPPG channels. In that case, the color difference signal,

D(t), was written as:

D(t) =
Ii(t)
αiβi
− I j(t)
α jβ j

(7.7)
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Similarly to the work presented in [96], the authors assumed that skin pulsatility green > skin pul-

satility blue > skin pulsatility red. For this reason, the color difference operation was performed

between the green and red channels, resulting in an adaptive green-red difference operation.The

products αiβi for the green and red channels were approximated by:

α̃G(t)β̃G(t) =
IG(t)√

I2
R(t) + I2

G(t) + I2
B(t)
, (7.8)

and

α̃R(t)β̃R(t) =
IR(t)√

I2
R(t) + I2

G(t) + I2
B(t)
, (7.9)

and the green-red difference (GRD) signal was defined as:

GRD(t) =
IG f (t)

α̃G(t)β̃G(t)
− IR f (t)

α̃R(t)β̃R(t)
(7.10)

with IG f (t) and IR f (t), the band-pass filtered IG(t) and IR(t) (0.7-4 Hz). This GRD method was

compared with an ICA-based method and a CHROM-based method on subjects performing six

different types of head movements. The GRD method was found to be the best performing

method, for all kinds of movement types.

Spatial subspace rotation method

Instead of defining an optical model, which requires a good knowledge of the complex phys-

ical phenomena involved, one can decide to use a data-driven approach. In [106], an algorithm

referred to as spatial subspace rotation (SSR) was introduced. In this algorithm, conceptually

quite different from the aforementioned approaches, the temporal rotation of the RGB subspace

of skin pixels is estimated to derive the pulse. Figure 7.5 summarizes the different steps involved

in the SSR algorithm, namely matrix construction, eigen decomposition, projection and overlap-

adding. Promising results were obtained for this method, with results comparable to those of

the POS method (a performance comparison can be found in [96]). The authors pointed to the

following limitations. First, a well-defined skin mask is necessary in order to avoid having non-

skin clusters, which are problematic. Secondly, as for the POS method, the optimal value of the

window length l depends on the subject pulse rate.

Other color spaces

The use of other color spaces for iPPG applications was investigated by Tsouri et al. [107].

In this study, channels from seven color spaces 2 were used to derive iPPG signals and compared

to each other for pulse rate estimation. For each method, the HR was derived from the main

frequency peak between 0.74 and 4 Hz in the PSD spectrum. Results were also compared when

ICA methods were applied. Interestingly, the lowest average absolute error was obtained for

the Hue channel, which performed even better than the classical RGB after applying ICA-based

methods. The authors concluded that the use of color spaces derived from the RGB color space

is beneficial.

2. standard RGB (sRGB), hue saturation lightness (HSL), hue saturation value (HSV), hue intensity saturation HIS,

XYZ, CIE XYZ and CIE YUV.
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ROI selection

for n = l : K do
Construct a matrix V with

the RGB values of the N skin pixels

Vn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pix1R pix1G pix1B

pix2R pix2G pix2B

. . .

. . .
pixNR pixNG pixNB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Compute symmetric correlation matrix:

Cn = Vn
Vn

N

Eigen decomposition :

[Un,Λn] = eigs(Cn)

Windowing:

Consider the l past samples

Projection:

for τ = n − l + 1 : n do

S (τ) =

√
λt

1

λτ
2

· ut

1

uτ
2
uτ


2
+

√
λt

1

λτ
3

· ut

1

uτ
3
uτ
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end for

Tuning:

h = S 1 + αS 2,with α = σ(S 1)
σ(S 2)

Overlap-adding:

P(n−l+1)→n = P(n−l+1)→n + (h − μ(h))

end for

Figure 7.5: The SSR method described in [106]. Vn: matrix containing the RGB skin pixel values

at frame n, Cn:symmetric correlation matrix, Un: eigenvectors, Λn: eigenvalues, l: length of the

sliding window, h: short-term pulse signal, P: long-term pulse signal, K: number of frames.

Other approaches

It is important to emphasize that the aforementioned list of iPPG signal derivation techniques

is not exhaustive. Other methods, which will not be described in this dissertation, have been pro-

posed. For instance, a wavelet-based filtering operation was applied for detrending and denoising
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the raw iPPG signal in [108]. Another approach based on spectral graph theory was proposed

in [109]. In this study, the Laplacian Eigenmap was used to map the RGB data onto a one-

dimensional space, from which the blood volume pulse could be extracted. In another study, the

NLMS filter was used to reduce the effects of artifacts caused by illumination variations [110].

Wu et al. proposed a method called Eulerian Video Magnification able to amplify subtle color

variations and imperceptible motions [111]. In this approach, a spatial decomposition followed

by a temporal filtering step was applied to the video frames, resulting in amplified videos. This

amplification allows, for example, the visualization of blood volume flow as it fills the face at

each heartbeat and could be used as a pre-processing step for iPPG applications.

Additional considerations

The selection and tracking of the ROI, which have not been discussed yet, are also very

important in the extraction of iPPG signals. Selection of the ROI will be discussed in the next

chapter, in which different regions on the subject face are compared. ROI tracking, for its part, is

especially important when the subjects are moving. The aim here is not to provide an overview

of the numerous available tracking algorithms but to keep in mind that the performance of all

iPPG signal derivation methods can be enhanced by the use of a good ROI tracking algorithm. In

addition, skin segmentation, i.e. automatic identification of the pixels corresponding to the skin,

is also a precious tool that can improve the quality of the derived iPPG signal.

Summary

Table 7.1 summarizes the advantages and drawbacks of the iPPG signal derivation methods

described in the present chapter. Several sequences recorded in the dark using a near-infrared

(NIR) camera were processed in the framework of the present thesis, which has warranted men-

tion of the applicability to an NIR setting in this table. It can be noticed that all methods except

the basic averaging method require the three RGB channels and are therefore not suitable for

sequences recorded with a NIR camera.

7.3 Conclusion
The contactless iPPG technology was introduced in this chapter. The principle of iPPG was

first described and the most known signal-derivation methods were presented. The next two

chapters focus on two applications of this technology, namely real-time HR estimation (Chapter

8) and measurement of pulse rate variability (Chapters 9). Some preliminary results for video-

based HR estimation on the neonates are presented in Appendix B.
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Table 7.1: Summary of the state-of-the-art iPPG signal derivation methods. BP filtering: band-

pass filtering. A common choice for the pass-band is [0.7-4] Hz [112]. l: length of the sliding

window [96, 106].

Method Advantages Drawbacks / Limitations
NIR

applicable?

Averaging • simple • not robust yes

& BP filtering • small delay

BSS-based
• robust • component selection no

• large delay

CHROM [103]
• small delay • knowledge required to no

• robust to periodic motion define projection plane

PBV [104]
• small delay • requires precise no

• robust to periodic motion knowledge of blood

volume pulse signature

SSR [106]
• small delay • requires perfect no

• robust to motion skin segmentation

• l parameter selection

POS [96]

• small delay • l parameter selection no

• robust to motion

• built on physiological reasoning

GRD [105]
• small delay • requires very no

• robust to motion precise tracking





A Processing Scheme for
Real-Time Heart Rate
Estimation 8
8.1 Motivations

There are increasing applications for contactless video-based monitoring of HR. For instance

in neonatology, the attachment of sensors to the fragile skin of the neonates causes discomfort,

while there is currently a lack of contactless technology. Video-based HR monitoring would

therefore provide a solution to overcome the limitations of traditional sensors in such cases.

Another possible application is the monitoring of drivers, in which the detected HR could be

used to detect fatigue or other events that diminish driving capacity. iPPG technology could also

be incorporated onto video-based surveillance systems, to monitor for example elderly people at

home. The two main advantages of this technology, i.e. being contactless and relatively low-cost,

make it very attractive for various applications.

The present chapter aims at introducing a novel processing scheme to estimate the HR in a

contactless manner, using the iPPG signals derived from video sequences. The database as well

as the acquisition system are first introduced. Preliminary tests are then performed to investi-

gate which parts of the face result in the iPPG signals with the best quality, in order to have a

well-founded basis for the ROI selection step. After these considerations for ROI selection, three

different algorithms for instantaneous frequency estimation are evaluated on the derived iPPG

signals. After selecting one of these algorithms, the potential benefits of combining iPPG sig-

nals derived with different methods are investigated. Finally, a challenging database subset with

moving subjects is analyzed and a signal quality index is developed to increase the reliability of

the HR processing scheme.

8.2 Database

The adult database was created at the Swiss Center for Electronics and Microtechnology

(CSEM), Neuchâtel, Switzerland 1. Video sequences were recorded on 12 healthy subjects who

gave their informed consent. For each subject, multiple sequences were acquired according to

different experimental scenarios designed to explore different aspects of iPPG technology. Two

commercial IDS R© cameras with a dynamic range of 12 bits were used to record the sequences;

one working in visible light 2 and one working in the near-infrared (NIR), for night vision 3. The

1. The data acquisition was supervised by Virginie Moser and Fabian Braun from CSEM.

2. Model UI-3240CP-C-HQ with EV76C560ACT sensor.

3. Model UI-3240CP-NIR-GL with EV76C661ABT sensor.

93
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video sequences were sample at 20 frames per second with a resolution of 1.3 megapixels.

In order to assess the accuracy of the physiological parameters estimated from the video se-

quences, the subjects also wore classical sensors, whose signals were used as ground-truth. For

this purpose, a BIOPAC R© system was used to record the following waveforms: one-lead ECG,

respiration (thoracic belt) and PPG (finger-transmission mode). These reference signals were

synchronized with the video sequences with a precision of about one millisecond. The following

experimental scenarios were used for data acquisition:

• Respiration modulation protocol: this protocol aimed at recording sequences with con-

trolled time-varying breathing rate. Such sequences are useful to train and evaluate the

respiration estimation algorithm. They are also valuable in the development of HR esti-

mation algorithms, as modulations of breathing rate trigger HR changes. Sequences of a

duration of 252 s (∼4 minutes) were acquired using the protocol described in Figure 8.1.

32 seconds:

7.5 brpm

20 seconds:

apnea

200 seconds:

from 5 brpm to 15 brpm

Figure 8.1: iPPG acquisition protocol: respiration modulation. brpm: breaths per minute.

• Handgrip protocol: the main purpose of the handgrip protocol was to induce HR increases

without having the subjects moving. These sequences are valuable to validate the HR

estimation algorithms in non-stationary conditions, which are more challenging. 4-minute

sequences were acquired using the protocol described in Figure 8.2.

15 seconds:

rest

1 minute:

handgrip

30 seconds:

rest

1.5 minute:

handgrip

45 seconds:

rest

Figure 8.2: iPPG acquisition protocol: handgrip isometric exercise.

• Movement protocol: for this protocol, subjects were asked to rotate their head to the left

and to the right according to an audio stimulus. The timings of the left and right move-

ments of the head were randomly generated with a uniform distribution of 1-7 seconds for

pauses in between the right/left transitions. After 1.5 minutes, the hand of a second person

was moved in and out of the cameras field of view. For each subject, the duration of the

acquired sequence was two minutes.

In addition to the different tasks performed by the subjects, different lighting conditions were

tested. More specifically, the feasibility of performing video-based monitoring in the dark using

a system composed of the NIR camera and an IR illumination was also investigated. The num-

ber of sequences acquired for each experimental scenario is summarized in Table 8.1. For all

sequences, the subjects were lying down and the camera was placed about 1.5 meters away. The

experimental setup is illustrated in Figure 8.3. It is important to mention that the subjects were

wearing a white headband with a large hole opening on the forehead for reasons related to ROI

tracking.

The reference HR was derived from the ECG signal. A local maxima detection was first applied

in order to detect the R-waves and extract the RR intervals. The detected R-peaks were visually

checked (and corrected if needed) in order to ensure the full correctness of the ground-truth.

Then, the RR-intervals were uniformly re-sampled at 4 Hz to compute the true instantaneous

HR. This instantaneous HR was finally averaged on 4-second windows (3-second overlap) to

compute the reference HR.
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Table 8.1: iPPG acquisition: The number and duration of sequences for each experimental sce-

narios. For the handgrip subset, 12 sequences were originally recorded in artificial light but a

technical problem occurred for one sequence, and another was removed because the subject was

moving too much.

Artificial light Darkness

RGB & NIR cameras NIR camera

respiration subset 12 x 4-minute 12 x 4-minute

handgrip subset 10 x 4-minute 12 x 4-minute

motion subset 12 x 2-minute -

Figure 8.3: The experimental setup used for the acquisition of the adult database.

8.3 Methods

8.3.1 Tracking and skin segmentation

Subjects were asked to stay immobile during the recording of the respiration and handgrip
subsets. ROI tracking was therefore not necessary to obtain good quality signals. However,

ROI tracking was necessary for the sequences belonging to the motion subset. For this purpose,

the tracker described in [113], based on the algorithm described in [114], was used. In this

algorithm, the adaptive tracking-by-detection is based on structured output prediction achieved

using a support vector machine learning framework. A budgeting mechanism is used to limit

the number of support vectors and allows the tracker to run at high frame rates (20 fps in our

case). In addition, a skin-segmentation step was implemented by selecting pixels whose hue and

saturation match known skin color 4. This skin-segmentation operation returns, for each frame,

a binary image (called the segmentation mask) where white pixels correspond to skin and black

pixels correspond to non-skin area.

The initial idea for the motion subset was to track a forehead ROI, in accordance with our

previous findings (see Section 8.3.2). However, the fast rotations of the head present in the motion
subset were challenging for the tracking algorithm, which had difficulties to follow the selected

ROI. As a consequence, three problematic recordings of the motion subset were dropped. For

the nine remaining recordings, some frames without skin pixels were returned during agitated

periods. These frames were omitted for the computation of iPPG signals. Because of these

difficulties, all the analyses of the motion subset were also performed for an ROI encompassing

4. Yann Schoenenberger and Lionnel Martin (LTS2, EPFL) developed the ROI tracking and skin segmentation

methodology.
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the whole face, which was easier to follow for the tracker. Examples of a tracked forehead ROI

and a tracked whole face ROI are shown in Figures 8.4 and 8.5, respectively.

Figure 8.4: A sample ROI tracked on the subject forehead and the corresponding skin segmenta-

tion mask, where white pixels correspond to pixels automatically detected as skin.

Figure 8.5: A sample ROI encompassing the whole face and the corresponding skin segmentation

mask, where white pixels correspond to pixels automatically detected as skin.

8.3.2 Determination of the best region on the face to derive iPPG signals
In the literature, the skin ROI chosen to compute the iPPG signals is most often selected on

the subject’s face. For instance, it has been shown that an ROI encompassing the whole face area

can be used to recover the iPPG signals and further estimate HR [100, 115]. However, eye move-

ments and blinking can induce artifacts. For this reason, McDuff et al. decided to exclude the

region around the eyes from the whole-face ROI [102]. The selection of the ROI was also ques-

tioned in a study by Lewandowska et al., in which two ROIs of different sizes were compared

[101]. Similar accuracies were reported for an ROI on the forehead and a whole-face ROI, and

the authors concluded that the selected forehead ROI was comparable to the whole-face region.

Additional investigations were carried out by Verkruysse et al., in a study with the iPPG signals

derived from different ROIs being visually compared [5]. More specifically, four different ROIs

were considered, namely the whole face, the upper head, a forehead rectangle and a single pixel

on the forehead. The authors concluded that the selection of ROI is not critical for the determi-

nation of HR, but they stressed the fact the SNR can be reduced by averaging a larger number

of pixels. On the other hand, when the whole face is used, some pixels do not contribute to HR

signal, decreasing the signal quality. Consequently, for iPPG applications, a compromise has to

be made between the number of pixels in the ROI and their relevance.

The aforementioned studies have shown promising results for HR estimation with the iPPG con-

tactless technology. However, few researchers have addressed the problem of ROI selection and
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we noted that the reasons behind the choice of the ROI remain under-studied. This study aims

at providing some rationale for the choice of the ROI in iPPG applications. The results were

published in a conference paper [116].

Methods

The small database used for this analysis consists of six sequences that were recorded using

the same experimental setup as for the adult database described in Section 8.2, except that the

entire face of the three subjects was visible (no headband). Images were recorded with the two

cameras (RGB and NIR) simultaneously . For each video sequence, a rectangular box encom-

passing the whole face of the subject was manually selected. Then, this area was divided into

260 (20x13) small ROIs of equal size (see Figure 8.6 (a)). For each ROI, the raw iPPG signals

were computed by spatial averaging of the pixels, for each channel and at each frame. As a

pre-processing step, the resulting signals were band-pass filtered between 0.6 and 4 Hz using a

Butterworth band-pass filter (forward and backward filtering). Then, a PSD analysis was per-

formed in order to compare the percentage of power in the HR band for the different ROIs. More

specifically, a 10-second centered sliding window (50% overlap) was used to compute the PSD

of the iPPG signals, using an autoregressive-based parametric spectral estimation algorithm. A

model order of 30 was empirically chosen. For each window and each channel, the percentage

of power within a frequency band of 0.2 Hz centered at the local true HR was computed. The

local true HR was defined as the average true HR derived from the ECG in the corresponding

10-second window. The resulting power percentages were averaged over the duration of the

sequence. In order to facilitate the interpretation of the quantitative results, some ROIs were

clustered according to the segmentation mask shown in Figure 8.6 (b) and their results were av-

eraged. The following four sub-regions were considered: the forehead, the cheeks, the whole

face and the whole face except forehead and cheeks.

Figure 8.6: Division of the face area into 260 small ROIs which were individually processed. (a)

For each subject, the grid size was fitted to the subject face size. (b) Segmentation mask. The

lighter part corresponds the forehead area, and the darker parts correspond to the cheeks.

Results

Figure 8.7 shows the power percentages, averaged over all sequences, for the different clus-

ters of ROIs representing the face regions and for the different channels. Table 8.2 reports, for

each sequence, the average percentage of power in the HR band, for the different clusters of ROIs

representing the face regions and for the different channels. In order to have a visual assessment

of the results, power values for the different ROIs were plotted in color maps. The normalized

color maps averaged over all subjects are shown in Figure 8.8.
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Figure 8.7: Percentages of power at true HR for the different face regions and channels.
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Figure 8.8: Normalized color maps averaged over all subjects to represent the amount of power

at the true HR.

Discussion and conclusion

Figure 8.7 and Table 8.2 indicate that, for all channels, the forehead region was the one that

contained the largest power at the HR frequency. This effect was observed for all sequences

and for all channels. This is also confirmed by the average color maps (see Figure 8.8), in

which the superiority of the forehead is clearly distinguishable. The color maps also indicate

that cheekbones may be suitable ROIs. Interestingly, it can be seen that there was some power

at HR on the neck (visible because the subjects were lying down). This is not really surprising

as a lot of blood vessels pass through the neck. Concerning the cheeks regions, the power at HR

frequency was larger than for the whole face 83% of the time. However, these differences were

not very large. On the other hand, the difference between the whole face region and the forehead

region was very marked. Indeed, the whole face region contains, on average, only 59% of the

forehead information. It should also be noted from Table 8.2 that the absolute power percentage

results are very variable between the three subjects, despite similar experimental conditions. This

suggests that characteristics such as skin color, skin thickness and blood perfusion probably play
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Table 8.2: Average percentage of power in the HR band for the different regions: (a) forehead;

(b) cheeks; (c) the whole face; (d) the whole face except the forehead and the cheeks.

Red Green

Sequence # (a) (b) (c) (d) (a) (b) (c) (d)

1 32.5 24.9 22.8 21.5 48.7 39.7 33.0 30.2
subject1

{
2 37.1 23.7 21.6 19.6 50.5 33.9 31.5 29.2

3 14.5 9.7 10.7 10.5 33.7 19.8 16.9 14.6
subject2

{
4 16.2 12.3 10.1 9.1 33.9 21.5 15.9 13.1

5 27.3 13.1 14.4 13.3 41.3 21.1 20.9 18.8
subject3

{
6 34.4 20.4 19.5 17.7 49.2 29.2 27.4 24.8

Av. 27.0 17.4 16.5 15.3 42.9 27.5 24.3 21.8

Blue NIR

Sequence # (a) (b) (c) (d) (a) (b) (c) (d)

1 32.3 25.3 21.3 19.5 44.2 32.6 28.2 25.8
subject1

{
2 31.7 20.8 18.9 17.2 48.0 29.2 29.0 27.0

3 18.0 11.9 11.3 10.5 23.7 13.4 13.2 12.1
subject2

{
4 18.4 13.1 10.2 8.8 23.0 15.6 13.5 12.2

5 28.2 15.3 15.5 14.3 34.6 13.5 15.6 14.0
subject3

{
6 33.9 20.7 19.8 18.1 44.7 22.3 22.0 19.5

Av. 27.1 17.8 16.2 14.7 36.4 21.1 20.3 18.4
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Figure 8.9: Time evolution of the power at HR frequency in the different zones for the first

sequence.
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an important role in the quality of the extracted iPPG signals.

Concerning the variability between the different channels, our results show that the green channel

has the strongest iPPG signals (see Figure 8.7). These results are in accordance with previous

findings [5, 96, 105], and may be explained by the position of the hemoglobin absorption peaks,

as discussed in Chapter 3 in the context of PPG.

Figure 8.9 illustrates the time evolution of the power percentage in different face regions for the

first sequence. It can be noted that the three curves follow the same pattern, indicating that it

would be of a dubious interest to use the different regions in a complementary way.

It should be mentioned that the main limitation of this preliminary study is the size of the dataset.

Regardless, similar tendencies were observed for all sequences and all subjects, reinforcing the

hypothesis that the results are reproducible. The obtained results call into question the choice

of the ROI. Indeed, most often the whole face is used [100, 115], but better performance might

be achieved using only the forehead. A previous study pointed out considerations about the ROI

size and its impact on the SNR [5]. Our findings highlighted the fact that, in addition to the size,

the location of the ROI also matters. Indeed, the selected ROIs of equal sizes led to different

results, even the ones containing only skin.

To conclude, these preliminary results suggest that the forehead part is the most appropriate

region to estimate HR, followed by the cheeks. Similar conclusions were reported in other studies

[117, 118], in which different ROIs were compared. Therefore, these regions should be tracked

in priority in iPPG applications. Further work should be performed to validate these conclusions

on a broader population, including subjects with dark skin and for different subject postures.

8.3.3 Evaluation of three algorithms to compute instantaneous HR from
the iPPG signal

After determining what parts of the face contain the strongest cardiac pulsatility, investiga-

tions were pursued to find an algorithm suitable to estimate HR from the iPPG signal. Different

approaches exist to derive the HR from the iPPG signal. In many studies, the HR was estimated

from the spectrum of the iPPG signal, usually computed using the fast Fourier transform (FFT)

algorithm [5, 99, 101, 103–105, 110, 119–123]. In other studies, time-domain methods were

used to detect individual pulses and derived HR [100, 102, 109, 124]. In [125], the poles cor-

responding to the HR on an auto-regressive model were identified. Although promising results

were obtained in the aforementioned studies, it should be noted that most of proposed approaches

are based on block-wise implementations with considerable processing delays (from 7.5 seconds

to one minute). For medical applications, such as monitoring in the ICU, the estimation delay

should be as short as possible.

The present study aims at reporting the performance of three candidate algorithms poten-

tially suitable for real-time HR monitoring using the iPPG contactless technology. These al-

gorithms are: 1) an algorithm based on adaptive sliding-window singular value decomposition

(SWASVD), 2) an adaptive band-pass filter (OSC-MSE-W), 3) a notch-filter bank (NFB) es-

timation method. In order to assess the performance of these algorithms in presence of large

HR fluctuations, the handgrip and respiration datasets described in Section 8.2 were used. In

addition, the possibility of performing HR monitoring in the dark using the NIR camera and

appropriate illumination was also investigated. The results were published in a conference paper

[126].

Methods

In the present study, the averaging iPPG signal derivation technique was used. The raw iPPG

traces were obtained by averaging the pixels within a manually determined and fixed rectangular

ROI on the forehead. These raw traces were then band-pass filtered between 0.6 and 4 Hz using
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an 8th order Butterworth band-pass filter. Only the green channel was considered for the se-

quences recorded with the RGB camera, resulting in an iPPGgreen signal for sequences recorded

with the RGB camera and an iPPGNIR signal for sequences recorded in the dark. It should be

noted that filtering using an IIR filter induces signal distortions, as some frequency components

are more delayed than others. This can be avoided by zero-phase filtering, i.e. filtering the signal

in the forward and backward directions, which can not be applied in real-time applications. An

alternative would have been the use of a FIR filter. However, it has been shown that, for similar

performance, IIR filters have a dramatically lower order [127]. As the aim here was not to study

the pulse shape, but to extract HR from the main oscillatory component with the smallest possi-

ble delay, an IIR filter was selected.

SWASVD-based algorithm: Singular value decomposition (SVD) is a very popular tool for

subspace estimation 5. However, SVD algorithm are generally computationally demanding and

are therefore not optimal for applications that require fast tracking techniques. Recently, efforts

have been put to develop adaptive SVD-based techniques with lower computational cost that can

be employed for tracking applications. The sliding-window adaptive singular value decomposi-

tion (SWASVD) algorithm described in [128] was implemented. This algorithm is derived from

the sequential bi-iteration SVD approach [129] and yields a recursive computation of the sub-

space components in a sliding window. As shown in Figure 8.10, in this algorithm the input data

are first projected onto the first decomposition of the previous step (QA). A QR decomposition 6

is then performed, yielding to another basis QB. The projection of the input data onto this basis

yields the basis for the next step. It was shown that the columns of QB converge to the r dominant

left singular vectors, while the columns of QA converge to the r right singular vectors and RB and

RA converge to Σ [129].

In the present study, a 50-sample causal sliding window (step size of one sample) and six sub-

spaces were used. At each time step, the frequency of each subspace component ( f1(t), ..., f6(t))
was computed from the discrete Fourier transform (DFT) of the matrix with columns converging

to the right dominant singular vectors (QA). In order to enhance the precision of the frequency

estimate, a two-step procedure was used. First, the frequency bin corresponding to the largest

DFT sample was extracted. Then, an iterative frequency estimation was performed, as proposed

in [130]. Our observations showed that, most of the time, the oscillation of interest (i.e. reflecting

the blood volume changes) was contained in the first component of the decomposition. However,

in some situations (artifacts, bad-quality waveforms), it corresponded to the second component.

For this reason a supplementary mechanism was developed to automatically switch to the second

component f2 in such cases. More specifically, at each time step the median of f1 for the previous

250 samples was computed. Then, if the value f2(t) was closer to this median value compared

to f1(t), the algorithm automatically switched to f2(t). Figure 8.11 summarizes the successive

processing steps involved in the SWASVD-based algorithm.

OSC-MSE-W algorithm: The OSC-MSE-W algorithm described in Section 2.3.1 was used.

In this study, the parameter reflecting filter bandwidth (β) and the two forgetting factors (δ and μ),
were set to 0.97. The iPPGgreen/iPPGNIR and smoothed versions of this signal (causal window, fil-

ter lengths of 3 and 5 samples) were provided as inputs for the light/dark conditions, respectively.

NFB algorithm: This algorithm uses a bank of notch filters to measure the common instanta-

neous frequency in several input signals [131] 7. More specifically, the filter bank is composed of

5. The SVD of X is the factorization X = UΣVH , where U and V and orthonormal matrices and Σ, a rectangular

diagonal matrix. The diagonal entries σi are known as the singular values.

6. A QR decomposition of a matrix A is a composition of this matrix into a product such as A = QR, where Q is an

orthogonal matrix and R is an upper triangular matrix.

7. Developed by Leila Mirmohamadsadeghi, former PhD student of our group.
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Figure 8.10: SWASVD algorithm. Image from [128], c© 2004 IEEE.
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Figure 8.11: SWASVD-based scheme for HR estimation.

length-3 FIR notch filters, equally spread over a range of discrete frequencies. In this setting, the

main frequency of the signal is closer to the notch frequency of the filter resulting in the small-

est output. The output-to-input power is computed and then used to calculate a set of weights.

The frequency estimate is finally derived from the weighted sum of the notch frequencies. The

multiple inputs are combined in a similar scheme to the one used in the OSC-MSE-W algorithm.

In this study, the iPPGgreen/ iPPGNIR and smoothed versions (causal window, filter lengths of 3

and 5 samples) were provided as inputs for the light/dark conditions, respectively. The number

of filters in the filter bank was chosen to be 50 in the frequency band [0.5-5] Hz. Figure 8.12

summarizes the successive processing steps of the NFB algorithm.

Performance assessment: The average absolute error (AAE) was computed between the
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Figure 8.12: The different steps of the NFB algorithm.

true and the estimated HR values. For this purpose, HR estimates were averaged on 4-second

windows (3-second overlap). A Bland-Altman analysis was also performed to define another

measure of the similarity between the true and the estimated HR values. The limits of agreement

(LOA) [μ − 1.96σ, μ + 1.96σ] to contain 95% of the differences were calculated. In addition,

the estimation delay was computed using the cross-covariance between the true and the esti-

mated HR. The average delay of each algorithm was then used to align the HR sequences and

to re-compute the previously described performance metrics for the aligned HR sequences and

provide algorithm accuracy independently of its delay. Occasionally, artifacts on iPPG wave-

forms were induced by small movements of the subjects. These artifacts were characterized by

sudden amplitude increases in the iPPG waveforms. In order to avoid large estimation errors, a

method based on the amplitude ratio of consecutive signal windows was developed to automati-

cally detect and remove these segments. A more elaborated quality measure for iPPG signals is

presented in Section 8.3.5.

Results

Figure 8.13 shows a segment of iPPG signal derived from a video sequence acquired using

the NIR camera in total darkness. The smoothed iPPG signals, which were also provided as

inputs to the OSC-MSE-W and NFB algorithms, are also displayed.

In order to quantify the HR fluctuations induced by the respiration and handgrip tasks, the

HR range was computed for each record as (HRmax − HRmin). Among all records, the average

range was 25.4 ± 8.1 bpm. Figure 8.14 shows an example of the estimated HR for a subject

performing the handgrip exercise. An averaged estimation delay of four seconds was found for

the SWASVD and OSC-MSE-W algorithms and of three seconds for the NFB algorithm. The

AAE values of each sequence have been plotted in Figure 8.15, for both visible light and dark

conditions (delay compensated). The results for the overall AAE and the LOA for sequences
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Figure 8.13: Sample of iPPGNIR signal derived from a sequence acquired in total darkness.

recorded in artificial light and in the dark are shown in Tables 8.3 and 8.4, respectively. These

performance metrics are reported for both the real-time setting and for the aligned HR series. In

total, 1.7% of HR estimates were removed based on the detection of bad-quality segments.
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Figure 8.14: Estimated HR values and ground-truth for a recording of the handgrip subset, in

artificial light.
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Figure 8.15: AAE for HR estimation from iPPG for all sequences recorded in visible light (a),

and in the dark (b). The estimation delay was compensated.

Table 8.3: AAE and LOA results for the three algorithms and for the sequences recorded in

visible light.

SWASVD OSC-MSE-W NFB

mean AAE [bpm] 3.42 ± 1.17 3.14 ± 0.84 3.98 ± 1.49
Real-time

LOA 95% [bpm] [ -8.73 10.60] [-7.79 9.65] [ -11.03 12.60]

mean AAE [bpm] 1.69 ± 1.19 1.85 ± 0.78 2.49 ± 1.61
Aligned ∗

LOA 95% [bpm] [-6.99 8.90] [ -6.59 8.50] [ -9.26 10.87]

∗ Aligned means that the estimation delay of each algorithm was compen-

sated.

Table 8.4: AAE and LOA results for the three algorithms and for the sequences recorded in the

dark.

SWASVD OSC-MSE-W NFB

mean AAE [bpm] 5.25 ± 3.43 4.21 ± 2.51 6.02 ± 4.00
Real-time

LOA 95% [bpm] [-12.67 18.46] [-10.66 13.77] [-17.05 20.97]

mean AAE [bpm] 3.88 ± 3.76 3.07 ± 2.71 4.75 ± 4.46
Aligned ∗

LOA 95% [bpm] [-11.76 17.59] [-9.51 12.66] [-15.98 19.94]

∗ Aligned means that the estimation delay of each algorithm was compen-

sated.
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Discussion

Overall results are encouraging and confirm that all the investigated algorithms were suit-

able to estimate the HR from video-sequences of the subjects. In order to better emphasize the

accuracy, and given that large HR variations were present in the database, it was important to

report the performance also when the estimation delay was compensated. Although better results

were obtained for the video-sequences recorded in visible light, HR monitoring in the dark using

an NIR camera and infrared illumination seems conceivable with an average AAE under 5 bpm

(see Table 8.4 and Figure 8.15). The results are in the same range for the three algorithms. In

terms of AAE, the best average performance was achieved by the OSC-MSE-W algorithm. More

precisely, this algorithm resulted in an average AAE of 3.14/4.21 bpm for visible/dark sequences

with the real-time setup and 1.85/3.07 bpm when the delay was compensated. It can be noted

in Figure 8.15 that the individual AAE values were very similar between the three methods (ex-

pected for some recordings that were more challenging for the NFB or SWASVD algorithms),

indicating that the three algorithms were sensitive to the same kind of perturbations. The small-

est estimation delay was achieved by the NFB algorithm. Concerning the choice of the input

channel, the initial idea was to combine the R/G/B channels for the multiple-input algorithms

(OSC-MSE-W and NFB). However, it was noticed during the development of the HR processing

schemes that better results were achieved with the signals derived from the green channel only,

compared to the RGB combination. This is consistent with previous findings, for which the cor-

relation between estimated and ground-truth HR was larger for the green channel than for the

RGB [102].

Variable results have been reported in prior works regarding the accuracy of HR estimation

in iPPG applications. For instance, an AAE of 6.1 bpm was reported using the RADICAL ICA

method, for video-sequences recorded with a webcam in stable conditions [115]. In another

study, a correlation of 1 was reported between the HR derived from video-sequences and from a

contact PPG sensor [102]. The pole cancellation method described in [125] resulted in an AAE

of approximately 3 bpm. In [108], a wavelet-based iPPG signal derivation technique led to an

average beat-to-beat RMSE of 1.97 ± 0.62 bpm on a database of 12 subjects. In another study, an

FFT-based approach was used to estimate HR from an iPPG signal derived from the hue channel

of the HSV color space [107]. In this study, an AAE of 4.31 ± 0.4 bpm was reported over epochs

of 30 seconds. The feasibility of estimating the HR using a smartphone camera was studied in

[119], where an FFT-based approach led to an average error rate of 1.08 %.

It is important to emphasize that it is debatable to compare the performance obtained in the dif-

ferent studies. Indeed, very variable methods and window lengths are used to compute the error.

Most of the time, the error is computed on long windows (about 30 seconds) and is therefore not

an instantaneous error. In addition, different types of cameras and experimental setups have been

used. Still, we draw the following conclusions 1) the investigated algorithms meet state-of-the

art performance and 2) they have the shortest estimation delays. In addition, we were able to

demonstrate their potential using a database containing large HR fluctuations. We believe that

the presence of these large HR fluctuations gives more credibility to the results obtained.

8.3.4 Combining different iPPG signals

An important step in the development of a video-based HR estimation scheme is the selection

of the technique used to derive the iPPG signals from the pixel intensity values. As mentioned in

Section 7.2, different methods exist to derive the iPPG signals when the sequences are recorded

using a color camera. In the previous section (Section 8.3.3), we showed that promising re-

sults were obtained for the OSC-MSE-W algorithm to perform real-time HR estimation. This

algorithm can track the common oscillatory component present in multiple input signals (see

Chapter 2). Hence, we decided to investigate the potential benefits of an approach combining the
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iPPG signals derived using different methods. More specifically, we implemented the following

methods (described in Section 7.2):

• iPPGgreen: Spatial averaging of pixels for the green channel, and band-pass filtering be-

tween 0.6 and 4 Hz.

• iPPGhue: Transformation of the RGB space to the HSV space, spatial averaging of pixels

for the hue channel and band-pass filtering between 0.6 and 4 Hz.

• iPPGGRD: Adaptive green-red difference [105].

• iPPGSSR: Spatial subspace rotation, using a sliding window of length l = 20 samples (one

second) [106].

• iPPGPOS: Plane-orthogonal-to-skin, using a sliding window of length l = 20 samples (one

second) [96].

Figure 8.16 shows the aforementioned iPPG signals for a segment of the first sequence of

the respiration subset of the database described in Section 8.2. Figure 8.17 also shows the iPPG

signals, but for a sequence from the motion subset. For the motion subset, a tracking of the ROI

was necessary. This step is detailed in Section 8.3.1. It can be noticed that the iPPGgreen and

iPPGhue signals are very clean when the subject is not moving. However, the cardiac pulses are

less distinguishable when the subject is moving, while they are still visible in the other waveforms

(iPPGSSR, iPPGPOS, iPPGGRD).
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Figure 8.16: Sample of the iPPG signals derived with the different methods for a recording from

the respiration subset. ECG is also displayed as visual reference.

In order to investigate the potential benefits of combining these different iPPG signals, the

HR was estimated from each of them individually and collectively using the OSC-MSE-W algo-

rithm. Figure 8.18 shows the individual AAE values for the static data subset, which includes the

respiration and handgrip subsets and Figure 8.19 shows the same measure for the motion subset

(full face tracking) (see Section 8.2). It can be noticed that 1) the signal leading to the smallest

error is not always the same, 2) the performance of a given iPPG-signal derivation technique

can be very variable from one sequence to another. This suggests that all methods have their

advantages and drawbacks depending on the situation. Table 8.5 reports, for each iPPG signal,
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Figure 8.17: Sample of the iPPG signals derived with the different methods for a recording from

the motion subset. ECG is also displayed as visual reference.

the number of sequences for which it led to smallest/highest AAE. It can be noted that the SSR

and POS techniques seem to have a slight advantage over the other single input methods, but

the combination is more advantageous. Overall, the combination led to the best results 58% of

the time and never led to the worst ones. In contrast, the best single input, the iPPGPOS, led

to the best results 19% of the time and to the worst ones 19% of the time. The average AAE

confirms that it is more advantageous to combine the different iPPG signals. Indeed, for both

datasets, the smallest average AAE was obtained for the combination of all input signals (1.40 ±
0.83 bpm for the static subset and 16.95 ± 16.24 bpm for the motion subset). Combining iPPG

signals derived using different methods is therefore a good way to increase the robustness of HR

estimation. It should be noted that, despite the combination of the different iPPG signals, results

obtained for the motion subset are not satisfying for some sequences. Section 8.3.5 describes the

development of a signal quality index (SQI) for iPPG signals in order to increase the accuracy of

HR estimation in challenging conditions such as those of the motion subset.

Table 8.5: Number of times each iPPG-input resulted in the best HR estimation (# best) and in

the worst HR estimation (# worst).

static subset (N=22) motion subset (N=9) total (N=31)

# best # worst # best # worst # best # worst

iPPGgreen 0 13 2 2 2 15

iPPGhue 0 5 0 2 0 7

iPPGSSR 3 0 0 2 3 2

iPPGPOS 4 4 2 2 6 6

iPPGGRD 0 0 2 1 2 1

Combination 15 0 3 0 18 0
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Figure 8.18: Individual AAE results for each sequence and each input signal, for the static subset.

The estimation delay was compensated.
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Figure 8.19: Individual AAE results for each sequence and each input signal, for the motion
subset. The estimation delay was compensated.
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8.3.5 Signal quality index
An overview of the existing iPPG-signal derivation techniques was presented in Section 7.2.

However, as mentioned by Wang et al., the iPPG-signal derivation technique resulting in the

highest SNR depends on experimental conditions that may additionally vary over time [96]. This

was confirmed by our observations, showing that the performance of the investigated iPPG signal

derivation methods is quite variable from one sequence to another (see Section 8.3.4). In addition,

iPPG signals are easily deteriorated by motion and illumination changes. Therefore, an SQI

can be a valuable tool to increase the robustness of iPPG-based monitoring applications. More

specifically, an SQI can be use to 1) detect bad-quality epochs during which the estimated HR is

not reliable and 2) develop processing schemes involving a quality-based dynamic combination

of iPPG signals derived with different techniques.

Two different kinds of approaches are conceivable to assess the quality of a video-derived

waveform. The SQI can either be computed from features derived from pixel values of the

video frames or from features derived from the iPPG signal. Both kinds of approaches have

their advantages and their drawbacks. On one hand, features extracted directly from images can

be obtained with a smaller delay than features extracted from the iPPG waveform. In addition,

they can be related more easily to the source of the artifacts. On the other hand, these image-

derived features do not depend on the technique used to derive the iPPG signals, which are not

equally sensitive to specific disturbances. Therefore, features computed from the pre-processed

iPPG time series have the advantage to lead to signal-dependent SQI. Being aware of these

considerations, we opted for an SQI combining both kinds of information and developed a real-

time signal-dependent SQI. This iPPG-SQI was the object of a conference publication [132].

Methods

The frame-to-frame average absolute difference between pairs of corresponding pixels in the

ROI (DI) was first computed as follows:

DI[n] =
1

Npix

Npix∑
k=1

|pixk[n] − pixk[t − 1]| (8.1)

with pixk[n], the green channel value of the kth pixel of the ROI, at frame n and Npix, the total

number of pixels in the ROI. Sudden surges of this measure of inter-frame variability are cor-

related with various disturbances such as subject movements, illumination changes and camera

occlusions, as shown in Figure 8.20.

When a sample is associated with a significant DI increase, empirically defined as a current

DI value at least five times larger than the median DI over the past 50 samples, the sample is

labeled as a candidate for the beginning of a bad-quality region (i.e. SQI = 0). It was observed

that the iPPG signals were not all affected in the same way by the disturbances. Therefore, the

final step of the SQI calculation was designed to be signal-dependent. Two configurations were

considered:

• iPPGgreen, iPPGhueand iPPGGRD: For each labeled candidate, the SQI was set to zero for

the next five seconds.

• iPPGPOS, iPPGSSR: As shown in [96], these signals are relatively resistant against distur-

bances. Our observations showed that bad-quality regions were associated with local am-

plitude increases of these iPPG signals. For every labeled candidate, the presence of such

an increase is checked using the following rule. The amplitude before the labeled candi-

date is first computed as: ampbe f ore = max{x[n − win], ..., x[n]} − min{x[n − win], ..., x[n]}
with win = 20 samples and x, the iPPG signal of interest. After 10 samples, this amplitude

is compared with the current amplitude, computed in the same way (using a causal window
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Figure 8.20: The time evolution of the DI for a sequence taken in the motion subset. The timings

of the audio stimuli indicating to the subjects when to move are also displayed as vertical grey

lines.

of 20 samples). If the ratio ampcurrent / ampbe f ore is larger than 1.6 (empirically selected

threshold), the SQI is set to zero for the current sample. The general scheme illustrating

the main steps involved in the SQI computation is shown in Figure 8.21.

The resulting SQIs were used for two purposes 1) to modify the update mechanism of the

adaptive filter used to perform adaptive frequency tracking and 2) to label bad-quality segments

for which the estimated HR is not reliable. HR estimation was performed using the OSC-MSE-

W-SQI algorithm, which uses the input SQI(s) to freeze filter adaptation when the quality of the

input signal(s) is not good (see Chapter 2, Section 2.3.3). The value of β and δ were set to 0.95.

All the iPPG signals, as well as their smoothed versions (moving average using window lengths

of 3 and 5 samples), were provided as inputs. It is important to stress that the frequency tracking

scheme used was not affected by phase differences between the inputs

Performance assessment

In order to investigate the potential benefits of the proposed SQI, HR was estimated with

and without SQI. As for the ground-truth, HR estimates were averaged on 4-second windows

(3-second overlap). The accuracy of the estimated HR was quantified with the AAE, computed

between the true and the estimated HR values. A Bland-Altman analysis was also performed

to compute the LOA [μ − 1.96σ, μ + 1.96σ] to contain 95% of the differences. The percentage

of removed data points, considered as not trustworthy (i.e. when all the SQIm[n] were equal to

zero), was also reported.

Results

Figure 8.22 is an example of the time evolution of the proposed SQI for a data segment taken

from the motion subset, for the iPPGSSR signal. The results for the performance comparison
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between the original scheme and the SQI-based scheme and for the two data subsets are shown

in Tables 8.6 and 8.7. The performance metrics are reported for both the real-time setting (Table

8.6) and for the aligned HR series (Table 8.7), for which the averaged estimation delay of 4

seconds was compensated. The individual AAE values for the motion subset are plotted in Figure

8.23. Using the forehead ROI, the error was reduced by using the SQI for all the sequences and

an average error reduction of 42% was achieved. According to our quality measure, a fraction of

24% of data was considered as not reliable. When the entire face was used as ROI, the error was

reduced for 8 sequences by using the SQI and an average error reduction of 45% was achieved,

with 13% of data considered as not reliable. An example of HR estimation can be found in Figure

8.24, where the two HR estimates, computed with the original and the SQI-based scheme, are

compared. The corresponding iPPG waveforms are also shown.

Table 8.6: Performance comparison between the original scheme and the SQI-based scheme for

the real-time configuration.

Av. AAE [bpm] LOA 95% [bpm] % removed

Static subset, forehead
Original scheme 3.28 ± 0.86 [-8.62 10.05] 0

SQI-based 3.27 ± 0.92 [-8.64 10.00] 0.01

Motion subset, forehead
Original scheme 16.46 ± 14.04 [-27.79 32.14] 0

SQI-based 6.74 ± 2.77 [-16.06 19.26] 23.65

Motion subset, full face
Original scheme 9.89 ± 4.23 [-20.16 29.35] 0

SQI-based 5.32 ± 4.94 [-14.31 19.51] 13.3

Table 8.7: Performance comparison between the original scheme and the SQI-based scheme for

the aligned configuration.

Av. AAE [bpm] LOA 95% [bpm] % removed

Static subset, forehead
Original scheme 1.92 ± 0.89 [-5.75 7.08] 0

SQI-based 1.89 ± 0.93 [-5.68 6.95] 0.01

Motion subset, forehead
Original scheme 11.57 ± 6.21 [-24.75 28.36] 0

SQI-based 6.21 ± 2.55 [-14.93 18.41] 23.65

Motion subset, full face
Original scheme 9.85 ± 4.32 [-20.41 29.70] 0

SQI-based 4.72 ± 5.27 [-13.93 19.24] 13.3

Discussion

The accuracy of HR estimation was considerably increased by the addition of the SQI for the

motion subset, while the results for the static subset remained almost unchanged, which can be

explained by the small amount of subject movements in these videos. The average error of about

five bpm for the motion subset is encouraging given the challenging nature of this dataset.

Regarding the computation of the SQI, it should be mentioned that SQI metrics have been pro-

posed already in the context of classical PPG signals. For instance, Li et al. proposed an SQI

based on dynamic time warping for pulsatile signals (PPG and ABP) [85]. Unfortunately, it

seems difficult to adapt this approach to iPPG signals, because the morphology of the latter is

very variable. We believe that the proposed method based on the DI value has some strengths.

First, it only requires the pixel values at the current frame and at the frame [n-1] and it is very
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Figure 8.23: Individual AAE values and percentages of data considered as not reliable for HR

estimation for the motion subset.
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Figure 8.24: HR estimated from all iPPG signals with and without using the SQI for a sequence of

the motion subset (top) and the corresponding iPPG waveforms, where darker segments indicate

good quality segments (bottom).

simple to compute. Second, this inter-frame variability measure raises with all kinds of distur-

bances that are likely to deteriorate the quality of the iPPG signals. Other measures such as the

time evolution of the position of the tracked ROI could have been used instead. However, in that
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case, sudden illumination changes would not be detected.

In addition to the proposed SQI, we introduced in this study a complete HR estimation scheme

taking into account signal quality and integrating different state-of-the-art methods to derive the

iPPG signals [96, 105, 106]. As illustrated in Figure 8.24, this SQI-based adaptive frequency

tracking scheme allows us to combine the relevant information present in the different iPPG

waveforms, while bad-quality segments do not affect frequency estimation. In this very extreme

case, it can be noticed that only iPPGSSR and iPPGPOS contribute significantly to HR estimation.

Nevertheless, it is important to keep in mind that both the frequency and the amplitude of the

movements performed by the subject in the motion subset are not very natural.

The lack of labels for waveform quality was a limitation of this study. Future work could in-

clude testing this SQI on videos with subjects performing smoother movements, in time-varying

illumination conditions.

8.4 Conclusion
The development of a processing scheme to perform real-time HR estimation from video

sequences was presented in this chapter. Using a database recorded on adult subjects, different

aspects of the iPPG technology were studied, leading to the following observations/findings. The

best regions on the subject face to derived the iPPG signals are the forehead and the cheeks, and

they lead to higher SNR compared to the entire face region for static subjects. The three studied

algorithms (OSC-MSE-W, SWASVD-based and NFB) can be used to perform accurate instanta-

neous HR estimation with a very small estimation delay (3-4 s). The OSC-MSE-W algorithm,

which allows the combination of multiple input signals and led to the smallest error values, was

selected for further processing. We also showed that monitoring in the dark is possible with the

investigated vision system. We noticed that, for the sequences recorded with an RGB camera,

the robustness of HR estimation can be increased by combining the iPPG signals derived using

different existing techniques. However, the analysis of the motion subset was challenging de-

spite the simultaneous use of multiple iPPG signal derivation techniques supposedly resistant to

motion [96, 105, 106]. An SQI relying on features derived from the images and the iPPG signal

was developed in order to increase the accuracy of HR estimation when the subjects are moving.

The resulting SQIs were used in the adaptive frequency tracking scheme, as well as to label and

suppress very bad-quality segments, resulting in an error reduction of 42% for the motion subset.

To conclude, the proposed innovative approach takes advantage of different existing iPPG

signal derivation techniques, by combining the relevant information present in each iPPG input

signal in an adaptive frequency tracking scheme.

This processing scheme was further adapted to estimate HR from video sequences of preterm

infants in the neonatal intensive care unit. Preliminary results can be found in Appendix B.

Finally, it is also worth mentioning that this video-based HR estimation scheme was implemented

in C++ for a real-time demo 8.

8. This demo was presented at Nano-Tera Final event 2017: http://www.nano-tera.ch/events/meeting.html
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9.1 Motivations

As mentioned in Section 7.1, iPPG is a very recent technology. There are therefore many

aspects to investigate in order to have a better comprehension of this technology and its potential

to replace replace traditional sensors (i.e. ECG-based sensors) in some cardiovascular monitoring

applications.

The present chapter, which is divided into two main sections, focuses on iPPG-derived pulse

rate variability (PRV). In the first part, agreement between ECG-HRV, PPG-PRV and iPPG-PRV

indexes in non-stationary conditions induced by respiration and handgrip exercises is measured.

In the second part, the iPPG-derived respiratory sinus arrhythmia is used to estimate the breathing

frequency from the video sequences.

9.2 Assessment of iPPG pulse rate variability indexes

9.2.1 Introduction
The physiological phenomenon characterized by oscillations in the interval between consec-

utive heartbeats is known as heart rate variability (HRV). HRV has been extensively studied and

some quantitative measures have been developed, which are now recognized as valuable mea-

sures of autonomic activity [75]. These measures are useful in clinical diagnostics, as they can

be correlated with risk of cardiac events, such as congestive heart failure, sudden cardiac death

and myocardial infraction [75, 133]. Usually, the R peaks detected on the ECG waveform are

used to derive the inter-beat interval (IBI) time series, in this case called the RR intervals. In

order to simplify the notation, the RR intervals will be noted ECG-IBI in the following analysis.

The classical HRV indexes can be divided in two main classes: the time-domain measures and

frequency-domain measures. Among the time-domain methods, the most used are the statistical

methods, which consist of simple measures such as mean and standard deviation. Frequency

domain measures focus on the analysis of the power present in different commonly used fre-

quency bands: the ultra-low frequency (ULF) [0.0001-0.003] Hz, the very low frequency (VLF)

[0.003-0.04] Hz, the low frequency (LF) [0.04-0.15] Hz and the high frequency (HF) [0.15-0.4]

Hz bands. LF band is influenced both by the sympathetic and parasympathetic branches of the

autonomic nervous system. The HF band is mainly influenced by the parasympathetic branch.

From a pulse-wave signal (PPG or ABP), one can derive the PRV. In that case, different

pulse morphological landmarks can be used to compute the IBI time series, namely the systolic

117
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peak, the maxium slope and the onset of the systole, as illustrated in Figure 9.1. Many studies

have been performed to investigate whether the PRV indexes derived either from the PPG-IBI or

ABP-IBI can be used as substitutes for HRV indexes computed from the ECG-IBI [134–146].

Different degrees of agreement have been reported in the aforementioned studies. Indeed, many

factors have been found to influence the results. Among these factors, the most important are the

experimental conditions (subject position, resting or non-resting condition), the pulse landmark

used to computed the IBI series, and the sampling frequency. For example, Charlot et al. [136]

found a good agreement between all the studied HRV parameters in supine position, while the

agreement became poorer for the moderate and exhaustive exercise conditions. This decrease of

agreement between between PRV and HRV from resting to non-resting experimental conditions

has also been observed in other studies [140, 143]. As pointed out by the authors of [134], the

differences observed between the ECG-IBI and PPG-IBI time series are a consequence of two

things: inaccuracies in pulse detection and physiological variability in the pulse transit time. The

resulting PRV usually tends to overestimate the variability.

Nowadays, the same questions about the reliability of PRV indexes arises in the context of

the iPPG technique. HR estimation using iPPG is usually investigated in the literature. However,

the feasibility of performing PRV/HRV analysis using iPPG has not been investigated in many

studies yet. In [100], one minute recordings were analyzed and the mean HR, as well as the

LF, HF and LF/HF components were reported for iPPG signals derived from video sequences

using ICA. The agreement was computed between PRV indexes derived from iPPG signals and

PRV indexes derived from the reference finger blood volume pulse (BVP) sensor. An excellent

agreement was reported for the average HR and a good agreement (correlation coefficient of

about 0.9) for the frequency domain indexes. In [124], the relationship between HRV indexes

derived from the ECG and PRV indexes derived from iPPG signals was studied. In this study,

a database composed of 60 healthy subjects for which an autonomic response was triggered by

a classical rest-to-stand manœuvre was examined and the iPPG time series were derived from

three different ROIs; one on the forehead, one on the nose and one on the cheek. The raw time

series were first de-trended and the zero-phase component analysis (a variant of PCA) method

was used to extract clean iPPG signals. The extraction of iPPG-IBI series was performed by

finding peaks on the first derivative of the iPPG signal. The authors concluded that iPPG-PRV

indexes can be considered as good surrogates for HRV indexes, especially in the supine position.

The agreement between PRV and HRV parameters was lower in standing position, partly due to

motion artifacts.

The aim of the present study is to assess the agreement between ECG-HRV, PPG-PRV and

iPPG-PRV indexes in non-stationary conditions induced by respiration and handgrip exercises.

For this purpose, a set of classical time domain and frequency domain HRV indexes were com-

puted from the different IBI series and compared. As mentioned in Section 7.2, various methods

have been proposed to derive the iPPG signals from the video frames. In this study, the iPPG sig-

nals derived using different techniques were compared, and the one leading to the most accurate

IBI series was selected to computed PRV measures.

9.2.2 Data
The respiration and handgrip subsets of the iPPG database recorded on adult subjects de-

scribed in Section 8.2 were used in this study.

9.2.3 Methods
The IBI series were computed from the three available waveforms: the ECG (ECG-IBI), the

PPG (PPG-IBI) and the iPPG (iPPG-IBI). The accuracy of heartbeat detection on the PPG and

iPPG signals was calculated and reported. The iPPG signal for which the heartbeat detection was
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Figure 9.1: ECG and pulse-wave signal. The following pulse landmarks are indicated: the sys-

tolic peak (p), the maxium slope or first derivative (d) and the onset of the systole (f). An RR

interval (RRI) is shown on the ECG, and the corresponding peak-to-peak interval (PPI(p)) is

shown on the PPG.

the most accurate was selected for further analysis. Then, for each record, classical statistical and

frequency domain HRV indexes were extracted from the three IBI series. Finally, the agreement

between the HRV and PRV indexes was assessed using different measures. All methods are

described into details in the following paragraphs.

Computation of ECG-IBI

The R-waves were detected on the ECG using a method for finding local maxima using a

sliding window. The detected R-peaks were visually checked (and corrected if needed) in order

to ensure the full correctness of our ground-truth.

Computation of PPG-IBI

The PPG baseline was roughly approximated by the zero-phase low-pass filtered version of

the PPG (cutoff frequency of 0.8 Hz) and was subtracted from the original PPG. As mentioned

earlier, different pulse landmarks can be used to compute the PPG-IBI time series. The main

possibilities are the systolic peak, pulse onset and maximum slope location. Suhrbier et al.
[135] showed that the maximum slope detection methods are more reliable than peak detection

methods to compute the IBI series from a pulsatile signal, partly because the points detected

using the former are more robust against morphological changes. For this reason, we decided

to rely on an approach based on maximum slope detection for the computation of PPG-IBI and

iPPG-IBI. More precisely, the technique used to detect ECG R-waves, based on local maxima

detection, was used to detect maxima on the first PPG derivative (dPPG). Figure 9.2 illustrates

the different steps of PPG heartbeats detection for a data segment taken from the respiration
subset. Figure 9.3 shows an example of PPG signal corrupted by motion artifacts, resulting in

heartbeat mis-detections.
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Figure 9.2: Exemple to illustrate PPG baseline removal and heartbeat detection.

745 750 755 760 765 770

-2.38

-2.36

-2.34

-2.32

[A
.U

.]

PPG
Baseline

745 750 755 760 765 770
Time [s]

-0.01

0

0.01

0.02

0.03

[A
.U

.]

PPG without baseline
detected heartbeats

Figure 9.3: Example of a PPG segment corrupted by motion artifacts.

Computation of iPPG-IBI

The computation of iPPG-IBI series was the most challenging. Because of the contactless

nature of this technology, the iPPG signals derived from the pixel intensities are prone to arti-

facts induced by subject movements and illumination changes. The morphology of the resulting

waveforms is usually very variable compared to PPG. In order to have the same polarity as for

the PPG signal, the sign of each iPPG signal was first compared to the sign of the PPG signal and,
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if needed, the iPPG signal was inverted. Then, as for the PPG signal, heartbeats were detected

using an approach based on maximum slope detection. In order to increase the detection accu-

racy, the derivative iPPG signal (diPPG) was first enhanced using the relative energy (Rel-En)

algorithm described in [147, 148] 1. This algorithm extracts short- and long-term energies in a

signal and provides a coefficient vector with which the signal is multiplied, heightening events

of interest. More specifically, the ration between the short- and long-term energies is obtained

trough:

c[n] =

∑n+swin
i=n−swin

|x[i]|p∑n+lwin
j=n−lwin

|w[ j] × x[ j]|p (9.1)

where the parameters swin and lwin represent the half-lengths of the short and long sliding win-

dows, respectively. The parameter p denotes the exponent and w is the window function of

interest. The enhanced signal xRE is computed as follows:

xRE[n] = x[n]c[n] (9.2)

An example of application presented in [147] is iPPG enhancement to improve heartbeat detec-

tion accuracy. The same parameters were used in the present study: 100 ms for the short window

(swin) and 600 ms duration for the long window (lwin). An exponent of 10 was selected for p. An

example to illustrate the diPPG Rel-En enhancement and heartbeat detection is shown in Figure

9.4. A local cubic spline interpolation was finally performed for each detected maximum and its

two closest neighbors using 200 points in order to increase the temporal resolution, as the sam-

pling frequency of the iPPG signals was only 20 Hz. Heartbeat detection was performed on the

different iPPG signals (iPPGgreen, iPPGhue, iPPGGRD, iPPGSSR, and iPPGPOS) that were derived

using different techniques described in Section 7.2.
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Figure 9.4: Example to illustrate heartbeat detection on the iPPG signal. The original diPPG

signal (on top) is shown, as well as the RelEn enhanced diPPG signal (bottom), on which the

maxima were detected.

1. This algorithm was developed by Sasan Yazdani (ASPG, EPFL).
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Figures 9.5 and 9.6 show examples of the computed IBI series for sequences 1 and 6, respec-

tively.
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Figure 9.5: The three IBI series for a subject (sequence 1, respiration protocol). The iPPG-IBI

series showed in this example was derived from the iPPGSSR signal.
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Figure 9.6: The three IBI series for a subject (sequence 6, handgrip protocol). The iPPG-IBI

series showed in this example was derived from the iPPGSSR signal.
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Accuracy of heartbeat detection

The detected heartbeats from the PPG and iPPG waveforms were first aligned with the de-

tected heartbeats on ECG by compensating for the average pulse transit time. For each sequence,

the latter was computed as the mean distance between an R-wave and the closest subsequent

PPG/iPPG detected heartbeat. In order to assess the heartbeat detection accuracy, the heartbeats

detected in the PPG/iPPG signals were classified into three categories: true positive (TP), false

positive (FP) and false negative (FN). A tolerance of 150 ms was used. Then, the following per-

formance metrics were calculated:

The detection error rate (DER):

DER =
FP + FN

Npeaksre f
(9.3)

The sensitivity (Se):

Se =
TP

TP + FN
(9.4)

The positive prediction value (PPV):

PPV =
TP

TP + FP
(9.5)

where Npeaksre f indicates the total number of heartbeats in the reference signal, i.e. the ECG.

Computation of the HRV/PRV indexes

Some of the classical HRV indexes were computed [75]. In the time domain:

• Mean HR [bpm]: 60 divided by the mean of all normal-to-normal (NN) intervals 2.

• SDNN [ms]: Standard deviation of all NN intervals.

• RMSSD [ms]: The square root of the mean of the sum of the squares of differences be-

tween adjacent NN intervals.

• pNN50 [%]: NN50 count divided by the total number of all NN intervals. NN50 is the

number of interval differences of successive NN intervals greater than 50 ms.

In the frequency domain: The IBI series were first uniformly re-sampled at 4 Hz. A non-

parametric method (Welch periodogram) was used to compute the PSD.

• LF norm [%]: Power in the LF band in normalized units. Frequency range [0.04-0.15] Hz.

• HF norm [%]: Power in the HF band in normalized units. Frequency range [0.15-0.4] Hz.

• LF/HF : Ratio LF [ms2] /HF [ms2].

Agreement between HRV and PRV parameters:

The Pearson correlation coefficient (r) between the HRV and PRV parameters was computed,

as this coefficient is usually reported in previous studies. However, it should be noted that this

coefficient can only assess the linear correlation between the studied parameters, but yields an

incomplete information. For example, the presence of a systematic bias can lead to a large

correlation coefficient. For this reason, a Bland-Altman analysis might be more appropriate.

More specifically, the Bland-Altman ratio (BAr) can be computed as:

BAr = 0.5
CI95%

mean(AV(re f ,est))
(9.6)

2. NN intervals: Intervals between adjacent QRS complexes resulting from sinus node depolarization.
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with CI95% the 95% confidence interval of the differences between the reference and the estima-

tion and AV(re f ,est), all the average values of the two measures. The agreement can be qualified

as excellent when BAr < 0.01, good if BAr ∈ [0.01 − 0.1], moderate if BAr ∈ [0.1 − 0.2] and

insufficient if BAr > 0.2.

For each HRV/PRV index, and for each sequence, the difference between reference and the mea-

sure of interest (referred as Δ) was also computed and tailed Wilcoxon signed rank tests were

performed to test the alternative hypothesis stating that the data Δ come from a distribution with

median greater/smaller than 0. The significance level was set at 1%.

9.2.4 Results

9.2.5 Heartbeat detection accuracy
Regarding the heartbeat detection accuracy from the PPG waveforms, the average DER was

very small (0.008 ± 0.018), and was zero for most of the records (Table 9.1). A few mis-

detections occurred in some records, caused by motion artifacts. Figure 9.3 shows an example

of PPG signal corrupted by motion artifacts.

Table 9.1: Performance of heartbeat detection on the PPG signal, for each sequence.

Record number Protocol DER Se PPV

1 respiration 0 1 1

2 handgrip 0 1 1

3 respiration 0 1 1

4 handgrip 0.004 0.996 1

5 respiration 0 1 1

6 handgrip 0 1 1

7 respiration 0 1 1

8 handgrip 0 1 1

9 respiration 0 1 1

10 respiration 0 1 1

11 handgrip 0 1 1

12 respiration 0 1 1

13 handgrip 0.026 0.987 0.987

14 respiration 0.073 0.963 0.963

15 handgrip 0.015 0.994 0.991

16 respiration 0.003 1 0.997

17 handgrip 0 1 1

18 respiration 0 1 1

19 respiration 0.004 1 0.996

20 handgrip 0.044 0.972 0.984

21 respiration 0 1 1

22 handgrip 0 1 1

Average respiration sequences 0.007 ± 0.021 0.997 ± 0.011 0.996 ± 0.011

Average handgrip sequences 0.009 ± 0.015 0.995 ± 0.009 0.996 ± 0.006

Average all sequences 0.008 ± 0.018 0.996 ± 0.010 0.996 ± 0.009
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The mean DER, Se and PPV for the different iPPG signals are reported in Table 9.2. It can be

noted that, on average, the iPPGSSR signal led to smallest DER. The iPPGSSR signal was therefore

selected to perform further analysis.

Table 9.2: Mean heartbeat detection performance metrics for all sequences and the different iPPG

signals.

Input iPPG average DER average Se average PPV

iPPGgreen 0.095 ± 0.079 0.946 ± 0.049 0.958 ± 0.035

iPPGhue 0.131 ± 0.168 0.928 ± 0.098 0.939 ± 0.080

iPPGGRD 0.083 ± 0.079 0.955 ± 0.049 0.962 ± 0.036

iPPGSSR 0.078 ± 0.086 0.956 ± 0.053 0.965 ± 0.038

iPPGPOS 0.110 ± 0.089 0.943 ± 0.051 0.947 ± 0.043

Table 9.3 shows the heartbeat detection performance metrics on the iPPGSSR signal, for each

sequence.

Table 9.3: Performance of heartbeat detection on the iPPGSSR signal, for each sequence.

Record number Protocol DER Se PPV

1 respiration 0.011 0.992 0.997

2 handgrip 0.084 0.937 0.978

3 respiration 0.033 0.991 0.977

4 handgrip 0.070 0.971 0.960

5 respiration 0.087 0.952 0.961

6 handgrip 0.199 0.882 0.915

7 respiration 0.013 0.990 0.997

8 handgrip 0.011 0.993 0.996

9 respiration 0.063 0.965 0.972

10 respiration 0.143 0.925 0.932

11 handgrip 0.185 0.906 0.909

12 respiration 0.022 0.984 0.994

13 handgrip 0.051 0.968 0.980

14 respiration 0.006 0.994 1.000

15 handgrip 0.378 0.762 0.845

16 respiration 0.058 0.966 0.976

17 handgrip 0.014 0.990 0.997

18 respiration 0.041 0.978 0.981

19 respiration 0.100 0.946 0.953

20 handgrip 0.056 0.972 0.972

21 respiration 0.072 0.988 0.943

22 handgrip 0.019 0.989 0.992

Average respiration sequences 0.054 ± 0.042 0.973 ± 0.022 0.973 ± 0.022

Average handgrip sequences 0.107 ± 0.116 0.937 ± 0.072 0.954 ± 0.050

Average all sequences 0.078 ± 0.086 0.956 ± 0.053 0.965 ± 0.038
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Tables 9.4 and 9.5 report the computed measures of agreement between HRV and PPG-PRV

indexes for the respiration and handgrip sequences, respectively.

Table 9.4: Summary of the agreement between the HRV and PPG-PRV indexes for respiration
sequences. ∗ indicates that the p-value was lower than 0.01.

r BAr av. Δ ± std, (tested hypothesis)

av. HR 1.000 0.008 -0.158 ± 0.291 [bpm], (Δ > 0)

SDNN 0.940 0.236 -4.792 ± 9.762∗ [ms], (Δ < 0)

RMSSD 0.782 0.699 -9.950 ± 21.901∗ [ms], (Δ < 0)

pNN50 0.945 0.445 -3.717 ± 6.601∗ [%], (Δ < 0)

LF 0.650 0.172 2.200 ± 4.073∗ [%], (Δ > 0)

HF 0.675 0.350 -3.483 ± 6.441∗ [%], (Δ < 0)

LF/HF 0.837 0.402 0.162 ± 0.283∗, (Δ > 0)

Table 9.5: Summary of the agreement between the HRV and PPG-PRV indexes for handgrip
sequences. ∗ indicates that the p-value was lower than 0.01.

r BAr av. Δ ± std, (tested hypothesis)

av. HR 1.000 0.008 -0.030 ± 0.295 [bpm], (Δ < 0)

SDNN 0.946 0.295 -7.800 ± 13.398∗ [ms], (Δ < 0)

RMSSD 0.569 1.304 -22.590 ± 37.207∗ [ms], (Δ < 0)

pNN50 0.949 0.410 -2.420 ± 3.874 [%], (Δ < 0)

LF 0.525 0.214 2.900 ± 5.561∗ [%], (Δ > 0)

HF 0.592 0.889 -5.430 ± 9.559∗ [%], (Δ < 0)

LF/HF 0.792 0.738 0.835 ± 1.142∗, (Δ > 0)
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Tables 9.6 and 9.7 report the computed measures of agreement between HRV and iPPG-PRV

indexes for the respiration and handgrip sequences, respectively.

Table 9.6: Summary of the agreement between the HRV and iPPG-PRV indexes for respiration
sequences. ∗ indicates that the p-value was lower than 0.01.

r BAr av. Δ ± std, (tested hypothesis)

av. HR 0.995 0.033 -0.783 ± 1.200∗ [bpm], (Δ < 0)

SDNN 0.807 0.416 -24.667 ± 19.345∗ [ms], (Δ < 0)

RMSSD 0.675 0.806 -65.133 ± 36.610∗ [ms], (Δ < 0)

pNN50 0.644 0.751 -26.242 ± 15.473∗ [%], (Δ < 0)

LF 0.524 0.243 9.375 ± 5.292∗ [%], (Δ > 0)

HF 0.676 0.363 -13.550 ± 7.619∗ [%], (Δ < 0)

LF/HF 0.570 0.668 0.595 ± 0.397∗, (Δ > 0)

Table 9.7: Summary of the agreement between the HRV and iPPG-PRV indexes for handgrip
sequences. ∗ indicates that the p-value was lower than 0.01.

r BAr av. Δ ± std, (tested hypothesis)

av. HR 0.996 0.044 0.290 ± 1.646 [bpm], (Δ > 0)

SDNN 0.234 0.980 -45.150 ± 53.827∗ [ms], (Δ < 0)

RMSSD -0.408 1.861 -106.640 ± 93.003∗ [ms], (Δ < 0)

pNN50 0.210 1.023 -38.950 ± 19.187∗ [%], (Δ < 0)

LF 0.323 0.416 13.280 ± 9.722∗ [%], (Δ > 0)

HF 0.329 1.053 -24.230 ± 16.369∗ [%], (Δ < 0)

LF/HF 0.328 1.498 2.293 ± 1.760∗, (Δ > 0)
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Tables 9.8 and 9.9 report the computed measures of agreement between PPG-HRV and iPPG-

PRV indexes for the respiration and handgrip sequences, respectively.

Table 9.8: Summary of the agreement between the PPG-PRV and iPPG-PRV indexes for respi-
ration sequences. ∗ indicates that the p-value was lower than 0.01.

r BAr av. Δ ± std, (tested hypothesis)

av. HR 0.994 0.036 -0.625 ± 1.303 [bpm], (Δ < 0)

SDNN 0.746 0.457 -19.875 ± 21.808∗ [ms], (Δ < 0)

RMSSD 0.440 0.966 -55.183 ± 46.306∗ [ms], (Δ < 0)

pNN50 0.541 0.774 -22.525 ± 16.684∗ [%], (Δ < 0)

LF 0.168 0.352 7.175 ± 7.487∗ [%], (Δ > 0)

HF 0.296 0.518 -10.067 ± 11.337 [%], (Δ < 0)

LF/HF 0.322 0.952 0.433 ± 0.526, (Δ > 0)

Table 9.9: Summary of the agreement between the PPG-PRV and iPPG-PRV indexes for hand-
grip sequences. ∗ indicates that the p-value was lower than 0.01.

r BAr av. Δ ± std, (tested hypothesis)

av. HR 0.995 0.048 0.320 ± 1.823 [bpm], (Δ > 0)

SDNN 0.189 0.984 -37.350 ± 56.039 [ms], (Δ < 0)

RMSSD -0.181 1.807 -84.050 ± 100.721∗ [ms], (Δ < 0)

pNN50 0.218 1.007 -36.530 ± 19.507∗ [%], (Δ < 0)

LF 0.328 0.451 10.380 ± 10.203∗ [%], (Δ > 0)

HF 0.348 1.017 -18.800 ± 17.216∗ [%], (Δ < 0)

LF/HF 0.358 1.346 1.458 ± 1.295∗, (Δ > 0)

Figures 9.7 and 9.8 show the scatter plots for all the computed HRV parameters, as well as

the Pearson correlation coefficient (r) and the BAr, for PPG and iPPG, respectively.
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Figure 9.7: Agreement between ECG-HRV and PPG-PRV time domain measures [(a)-(d)] and

frequency domain measures [(e)-(g)], for all sequences.
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Figure 9.8: Agreement between ECG-HRV and iPPG-PRV time domain measures [(a)-(d)] and

frequency domain measures [(e)-(g)], for all sequences.
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9.2.6 Discussion

With an average DER of 0.008 ± 0.018, Se of 0.996 ± 0.010 and PPV of 0.996 ± 0.009,

the accuracy of heartbeat detection from the PPG signal was good. Some mis-detections oc-

curred, mainly due to the motion artifacts induced by the physical effort required to perform the

handgrip exercise (Figure 9.3). It can be seen in Tables 9.4 and 9.5 that the best agreement was

obtained for the average HR. This makes sense, because the little variations tend to cancel each

other in the averaging process. The pNN50 and SDNN were the second best indexes in terms of

agreement, for both the respiration and handgrip subsets. Despite the very low DER obtained

for PPG heartbeat detection, it can be noticed that the level of agreement was not very high for

some indexes. More precisely, r was lower than 0.9 for the RMSSD and all the frequency do-

main indexes and BAr was higher than 0.2 for most of the studied parameters. The Δ measure

on the time domain statistical indexes indicates that the variability was overestimated. Indeed,

the SDNNPPG, RMSSDPPG, PNN50PPG were significantly higher than SDNNECG, RMSSDECG,

PNN50ECG. These trends are in accordance with previous findings [134]. Regarding the differ-

ence between the type of exercise performed by the subjects, it can be noted that, on average and

for all parameters, a higher degree of agreement was obtained for the respiration subset. This

might be partly explained by the observed difference in heartbeat detection accuracy. However,

it is important to emphasize that the observed bias between HRV and PRV is not entirely ex-

plained by fluctuations in peak detection but is also related to physiological effects. Indeed, the

pulse transit time (PTT) is known to have some variability. In [149], the PTT changes induced

by paced respiration activity were studied and the authors concluded that a strong relationship

between PTT changes and RR intervals changes is present, but changes are not synchronous.

Regarding the iPPG signals, the best results (DER of 0.078 ± 0.086, Se of 0.956 ± 0.053 and

PPV of 0.965 ± 0.038) were obtained for the iPPGSSR signal. The same performance metrics

yielded slightly better results for the respiration subset, which can be again partially explained

by the presence of motion artifacts in the handgrip subset. Tables 9.6 and 9.7 show the agree-

ment between ECG-HRV and iPPG-PRV. As for PPG, the highest agreement was obtained for

the mean HR. For all the studied indexes, the agreement was lower than that of PPG-derived

indexes, which is not really surprising given the challenging nature of the iPPG technology. As

for PPG, a higher degree of agreement was obtained for the respiration subset. The obtained r
values for the respiration subset are very close to the ones obtained on iPPG signals in [124] for

a standing dataset, for which the performance of heartbeat detection were also very similar to

ours. The level of agreement between iPPG-PRV and ECG-HRV indexes was very low for the

handgrip subset, for all the studied indexes except the average HR. For both PPG and iPPG, it

can be seen that the relative HF power was significantly increased compared to the ECG-derived

one. These results are in accordance with previous findings [144, 150] and suggest that, because

of this overall low level of agreement for frequency domain indexes, both PPG-PRV and iPPG-

PRV are not suitable to study autonomic cardiovascular control. Tables 9.8 and 9.9 report the

agreement between PPG-PRV and iPPG-PRV, which is surprisingly lower than the agreement

between ECG-HRV and iPPG-PRV, for all variability measures and for the two data subsets.

This suggests that the error/variability sources were quite different.

Different conclusions were drawn in previous studies regarding the information contained in

the PRV derived either from PPG or ABP waveforms. The results, which are not unequivocal, are

nicely summarized by Schäfer and Vagedes [134]. Among various opinions, most of the authors

warned against the use of PRV as a surrogate of HRV in specific conditions. For example, Charlot

et al. [136] did not recommend the use of PRV, expect for the supine rest setting. The obtained

results point in the same direction, and show that one should be very careful when using iPPG to

study HRV, as the level of agreement is even lower than that of the PPG-derived PRV indexes.
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It was shown in the present study that iPPG-PRV is neither a good surrogate of ECG-HRV nor

of PPG-PRV in non-resting conditions. However, it is important to emphasize that the method

used to derive the iPPG signal plays an important role. The results presented in this chapter were

generated using the actual state-of-the-art iPPG signal derivation techniques. These techniques

might considerably evolve in the near future and become more robust and subsequently lead to

results closer to the ones obtained with the PPG signal. Another factor which might have lowered

the agreement of iPPG-derived indexes compared to PPG is the low sampling frequency of 20

Hz, despite the interpolation performed. In addition, it would be interesting to see if trends are

conserved. For example, a patient goes from a state A to a state B, which is characterized by

a significantly higher variability, will the variability derived from iPPG be significantly higher

too? If yes, it makes iPPG-PRV of great value. For instance, the detection of atrial fibrillation

(AF) using iPPG was investigated by Couderc et al. [151]. In this study, a novel measure of PRV

called the pulse harmonic strength has been shown to be able to differentiate between different

states (i.e. sinus rhythm and AF).

To conclude, it would be interesting to perform the same analysis on a similar database with

subjects at rest in order to see if the level of agreement between ECG-HRV and iPPG-PRV

increases. Unfortunately, such a database was not available in the context of this work. However,

another aspect of iPPG PRV was briefly studied, which is estimation of the respiratory rate by

using the iPPG PRV.

9.3 Real-time respiratory rate estimation using imaging pho-
toplethysmography inter-beat intervals

9.3.1 Introduction
iPPG waveforms can also be used to estimate respiratory information directly [125, 152] or

indirectly through the respiratory modulation of the IBI. The latter is usually measured as the HF

component of the HRV [100]. These studies employ spectral estimation or empirical mode de-

composition, which require analyzing fixed bandwidths and/or fixed-length segments of the iPPG

waveforms. Fixed bandwidths, namely the HF 0.15-0.4 Hz band [153] are restrictive and result

in erroneous estimations when respiratory rates are lower than 0.15 Hz (9 breaths-per-minute)

and fixed-length segments analysis is detrimental when considering real-time applications. In the

present study, we aim to estimate the respiratory rate from the iPPG signal (acquired in a con-

tactless manner) by using the PRV, and a real-time-capable algorithm, without restrictive band-

widths. We used the instantaneous and real-time NFB algorithm (briefly described in Section

8.3.3) [131, 154] to track the main frequency component of the PRV, which is the respiration.

We compared our estimates to an estimate computed from the simultaneously recorded ECG,

which is an accepted method of estimating the respiratory rate from cardiac activity [155, 156].

This study was the object of a conference publication [157] 3.

9.3.2 Methods
In this study, the iPPGred, iPPGgreen and iPPGblue waveforms were obtained by the averaging

signal derivation method described in Section 7.2, using a fixed ROI extracted from the forehead

of the subjects.The respiration and handgrip subsets were described in Section 8.2 were used.

The instantaneous heart rate was computed by using the NFB algorithm [131, 154] with the three

channels as simultaneous inputs. The mean heart rate was used to compute an appropriate inter-

beat estimate for an extrema detection method to identify the heart beats in each channel. The

3. This study was done in collaboration with Leila Mirmohamadsadeghi, former PhD student of EPFL-ASPG.
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IBI time series were created for each channel and all three series were re-sampled uniformly at

a sampling rate of 4 Hz using linear interpolation to avoid delays [158]. The re-sampled series

were then band-pass filtered between 0.09 and 1 Hz, considered to be a large respiratory band

comprising rates from 5.4 to 60 breaths-per-minute. The respiratory rate was estimated using a

modified version of the NFB algorithm with each of the three filtered iPPG IBI as input. This

modified version (compared to [131, 154]) comprises an extra pre-processing step in which the

sliding window singular value decomposition (SWASVD) algorithm [128] (see Section 8.3.3)

was applied to extract the principal component of the IBI series. This step was added as the

wide-band filtering does not produce an oscillatory signal and thus might result in erroneous es-

timation through the classic NFB. For comparison, the respiratory rate was similarly estimated

from the ECG IBI.

The reference respiratory rate was computed from the reference respiratory signal acquired with

the impedance belt. This signal was re-sampled uniformly at 4 Hz and filtered similarly to the

iPPG and ECG IBI. Its instantaneous frequency was then estimated in three ways: (1) by identi-

fying the largest peak of the Welch spectrum in sliding windows, (2) using the NFB, and (3) the

average of (1) and (2).

The correlations between the iPPG and ECG IBI were computed with Pearson’s correlation co-

efficient, r. The errors of their smoothed (4 s windows) estimates were computed as the mean

absolute difference, in breaths-per-minute, between the estimates and the smoothed (4 s win-

dows) reference rate. However, due to large artifacts in the iPPG, it was necessary to develop a

quality index to identify portions of sufficient quality and to consider errors only in good qual-

ity segments. Indeed, in practice, one would prefer to know that the signals are of poor quality

rather than being presented with a bad estimate. Therefore, an empirical quality index based on

the amplitude of the iPPG signals was developed. To compute this quality index, an amplitude

index was computed as the squared amplitude of the signal, divided by its variance (computed in

a sliding window). The quality index was set to 1 where the amplitude index was smaller than

ten times its interquartile range (computed in a sliding window) and 0 elsewhere. Portions with

a quality index of 1 were retained when computing the correlations and the errors.

9.3.3 Results
The evaluation was performed on the entire length of the recordings over all parts of the

protocols where the quality index was equal to 1. Among the three iPPG channels, the green

channel yielded the IBI most similar to the ECG ones with an average correlation of 0.65±0.27

(all per-record correlations were significant with p < 0.001). The red and blue channels intervals

yielded correlations with the ECG intervals below 0.5 as reported in Table 9.10. Therefore the

green channel was retained for respiratory rate estimation.

Table 9.10: The mean correlations between the IBI of the three iPPG channels and the ECG

inter-beat intervals over all subjects.

iPPGred iPPGgreen iPPGblue

ECG 0.04 ± 0.11 0.65 ± 0.27 0.38 ± 0.24

Figures 9.9 and 9.10 illustrate the iPPG and ECG respiratory rate estimates and the reference

for two subjects. The iPPG quality index is shown as well. It can be seen that both estimates

follow the steep increase in the reference for both subjects.

The errors between the estimates and the reference are reported in Table 9.11 for both the

ECG and the iPPG. The difference between the ECG and iPPG estimates was 3.05 ± 1.69. The

results were obtained on 88% of the data selected as having sufficient iPPG quality.



9.3 Real-time respiratory rate estimation using imaging photoplethysmography inter-beat

intervals 133

0 50 100 150 200 250

0

1

(a) Quality index

0 50 100 150 200 250
Time (s)

0

5

10

15

20

25

30

Fr
eq

ue
nc

y 
(b

pm
)

(b) Respiratory rate

Reference
ECG estimate
iPPG-green estimate

Figure 9.9: The iPPGgreen (a) quality index and (b) respiratory rate, ECG-derived respiratory rate

and reference for subject 1.
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Figure 9.10: The iPPGgreen (a) quality index and (b) respiratory rate, ECG-derived respiratory

rate and reference for subject 2.
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Table 9.11: The mean (± standard deviation) error in breaths-per-minute of the ECG and

iPPGgreen estimates compared to the reference over all subjects.

Welch ref. (1) NFB ref. (2) mean ref. (3)

ECG 3.18 ± 2.94 2.86 ± 3.67 2.74 ± 3.25

iPPGgreen 4.06 ± 1.88 3.49 ± 2.32 3.52 ± 1.99

9.3.4 Discussion
The iPPGgreen signal yielded the IBI most similar to the ECG ones, which corroborates ear-

lier findings on the green wavelength being more suitable than red and blue to capture skin tone

differences due to blood circulation because of its better absorption by hemoglobin [5]. The ac-

curacy of the iPPG estimates was slightly less than that of ECG estimates. However, considering

the challenging conditions of the iPPG acquisition and processing, the errors are still comparable

to errors reported in the literature for estimating the respiratory rate from the ECG or the PPG

[155, 156].

Regarding the apnea detection, it has been shown that the respiratory influence on the IBI sub-

sists in a weaker form even without respiration [159], which means that apneas cannot be detected

reliably via the IBI. Therefore the subject of apnea detection with iPPG-derived IBI was not ad-

dressed in the present study.

Limitations: In the present study, the subjects were in a supine position. In this position, most of-

ten the respiratory influence on the HRV is much stronger than the baroreflex activity, occurring

at 0.1 Hz. Therefore, the main component of the HRV in all but one subject was the respiration.

However, in an orthostatic position, the baroreflex activity would be larger than that of the respi-

ration and the previous assumption would not hold. It should also be mentioned that, despite our

best care and intentions, the reference respiratory rates were prone to errors and artifacts and do

not represent a ground-truth.

9.4 Conclusion
The iPPG-derived PRV was studied in this chapter. In the first part, classical HRV measures

were derived from the ECG, PPG and iPPG waveforms and their level of agreement was evalu-

ated. It was shown that iPPG-PRV is neither a good surrogate of ECG-HRV nor of PPG-PRV in

non-resting conditions. However, even if PPG-PRV and iPPG-PRV were different from the HRV

computed from the ECG, if the same trend of differences is observed between various physiolog-

ical conditions, it makes the PPG-PRV and iPPG-PRV of great value. It will therefore be impor-

tant to perform further investigations in that regard. In the second part, the iPPG PRV was used

to estimate the respiratory rate. The obtained estimation errors were comparable to commonly

reported errors for respiratory rate estimation from the ECG and the conventional contact-based

PPG. Moreover, the data of the respiration subset were recorded with varying respiration rates,

which is challenging. These findings are encouraging in the use of iPPG for real-time contactless

respiration rate monitoring.
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The main focus of this thesis was the development of processing tools for cardiovascular

monitoring applications based on conventional and video-based PPG. Because of their ability to

monitor comfortably the subjects during their daily life activities, PPG-based wearable monitor-

ing devices are becoming very popular. Besides, imaging PPG has also attracted much attention

in the last years. However, the PPG signals acquired by wearable devices, or remotely using a

video-camera, are easily deteriorated by subject movements, illumination changes (iPPG) or by

a weak contact between the probe and the tissue (PPG). Thus, efforts are made by the engineers

to 1) develop new processing tools to improve the reliability of the estimated parameters and

2) explore the different possible applications of this technology. These two research areas were

studied in this thesis.

One part of this work focused on improving the reliability of the heart rate (HR) estimated

using a wrist-type PPG device. After introducing the principle of PPG, we presented the chal-

lenges related to the presence of motion artifacts on PPG signals and the state-of-the-art methods

to deal with these motion artifacts. We then introduced a new straightforward method to esti-

mate HR from subjects performing different kind physical activities. In the proposed scheme,

the accelerometer signals were used to performed adaptive noise attenuation on the PGG signals,

using a normalized least-mean-square algorithm. An adaptive band-pass filter was then used to

track the instantaneous frequency (i.e. HR) of the reconstructed PPG signals. These adaptive

frequency tracking tools were previously developed at the ASPG by Jérôme Van Zaen [23] and

Yann Prudat [22], former PhD researchers of the ASPG. We developed an additional mechanism

to have a time-varying parameters controlling the convergence speed and the band-width of the

adaptive band-pass filter. This mechanism was based on the spectral purity index. We reported

the performance of the proposed approach on the publicly available IEEE Signal Processing
Cup 2015 database. The results obtained were in the same range than the results reported in

previous studies on the same database. However, unlike the previously proposed Fourier-based

approaches, our scheme provided continuous HR estimates with a very low time delay, which is

of great interest for real-time applications. In addition, all the signals were automatically com-

bined in an optimal way and thus, no a priori knowledge about the contribution of the different

waveforms was required. Finally, only a very few number of parameters had to be tuned, making

this approach suitable and flexible for different experimental situations.

Another part of this work on PPG signals consisted of studying the feasibility of detecting

atrial fibrillation (AF) from PPG signals acquired with a wrist-type device. This study took place

in the context of the Nano-Tera NTF project MiniHolter, in collaboration with the Swiss Center

135
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for Electronics and Microtechnology (CSEM) and the Lausanne University Hospital (CHUV).

PPG signals recorded during cardiac ablation procedures were analyzed. Based on the simple

observation that the PPG waveform is a lot more irregular in terms of morphology and ampli-

tude during AF episodes, we investigated features able to reflect such changes. These features,

namely the adaptive organization index, the variance of the slope of the phase difference between

fundamental and first harmonic components, the permutation entropy, the spectral entropy, the

fractional spectral radius and the spectral purity index, are innovative in the context of PPG

processing. The adaptive organization index and the variance of the slope of the phase differ-

ence features were previously proposed by a former PhD researcher of ASPG (Andréa Buttu)

for the analysis of surface ECG atrial activity during AF [160]. Other features derived from

the PPG interbeat intervals (IBI) were also computed. The annotated ECG signals were used as

ground-truth to assess the performance of the proposed features. We investigated not only the

discrimination between AF and sinus rhythm (SR), but also between AF and ventricular arrhyth-

mias (VA). We compared these PPG-wave features with the PPG-IBI features and concluded that

they had a similar discriminative capability to discriminate between SR and AF, and a higher

discriminative capability to discriminate between AF and VA. We also pointed the fact the high

observed variability in PPG-IBI features during AF episodes was not only a result of AF but also

a consequence of a poorer heartbeat detection accuracy. We concluded that the proposed PPG-

wave features have a good potential to be used as complementary measures to the more classical

PPG-IBI features.

The reduction of false arrhythmia alarms using signals from independent sources, namely

PPG, ECG and arterial blood pressure (ABP), was also studied in this thesis. This study took

place in the context of PhysioNet/CinC challenge 2015. The PhysioNet/CinC challenge 2015
database consists of 1200 life-threatening alarms recordings, each categorized as a bradycardia,

tachycardia, asystole, ventricular tachycardia or ventricular flutter/fibrillation. In the proposed

approach, the quality of the pulsatile waveforms (PPG and ABP) was first assessed using a pub-

licly available algorithm. Then, based on the quality of available signals, HR was either esti-

mated from pulsatile waveforms using an adaptive frequency tracking algorithm or computed

from ECGs using an adaptive mathematical morphology approach. We also introduced a mea-

sure based on the spectral purity of the ECGs to determine if a ventricular tachycardia or flut-

ter/fibrillation has taken place. Finally, alarm veracity was determined based on a set of decision

rules on HR and spectral purity values. The proposed approach, developed in collaboration with

Sasan Yazdani (PhD researcher of the ASPG), was tested on a hidden dataset by the organizers

of this challenge. This resulted in overall true positive rates of 95%/99% and overall true nega-

tive rates of 76%/80% on the real-time and retrospective subsets of the test dataset, respectively.

In addition to these good results (the first prize for the “retrospective” dataset), we believe that

the proposed approach is interpretable for the medical doctors, as we decided to keep the deci-

sion making process straightforward by setting physiologically interpretable thresholds on the

extracted features.

Another part of this thesis focused on the video-based estimation of vital signs. The recently

introduced iPPG technique only requires a digital video-camera and algorithms able to extract the

subtle skin color changes induced by the cardiac pulse. After introducing the state-of-art meth-

ods for video-based HR estimation, different aspects were studied, aiming at providing a better

understanding of this technology and at increasing its reliability. For this purpose, we used as

databased acquired at CSEM on adult subjects. A small analysis was first performed to determine

which parts of the face were the most relevant to compute HR. For this purpose, the subject faces

were divided into 260 small regions of interest (ROIs) and a spectral analysis was performed for

each region. We quantified the amount of power at the true HR and concluded that the forehead

was the best region to derive HR and used it to derive the iPPG signals in the following analyses.
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We also investigated the possibility to monitor the HR in the dark, by using a near-infrared cam-

era and an infrared illumination. The results obtained were almost as good as for artificial light

conditions using the RGB camera and we concluded that video-based HR monitoring in the dark

is possible. Regarding HR estimation from the iPPG signal, we evaluated three different algo-

rithms suitable for almost real-time frequency estimation, namely an algorithm based on sliding

window adaptive singular value decomposition (SWASVD), a notch filter bank (NFB) and an

adaptive frequency tracking algorithm (OSC-MSE-W). The OSC-MSE-W algorithm, which led

to the smallest average absolute error, was selected for further analyses. Then, different existing

iPPG derivation methods were implemented [96, 105, 106] (suitable for real-time application)

and tested in addition to the basic pixel averaging method [5]. We concluded that it was more

advantageous to combine the iPPG signals derived using different methods than using a single

input. Even after increasing the robustness of the HR estimation by combining different iPPG

signals and using an ROI tracking and skin segmentation algorithm, the results were not satisfac-

tory for the moving subset of the database. For this reason, we developed a signal quality index,

which was used to freeze the adaptation of the adaptive band-pass filter used for the estimation of

HR and to label bad-quality segments for which the estimated HR was not reliable. These algo-

rithmic developments resulted in HR estimation scheme, suitable for real-time applications. In

addition to have a very small estimation delay (3-4 seconds), it is, to the best of our knowledge,

the first approach which takes advantage of multiple iPPG signal derivation method.

This study was performed in the context of the Nano-Tera project NewbornCare, which final aim

is to apply this technology to the monitoring of preterm infants in the neonatal intensive care unit.

Preliminary results on neonates were presented in Appendix B. The results were encouraging,

but we concluded that different steps of the processing need improvements in order to achieve

a performance similar to the one achieved in controlled experimental conditions with adult sub-

jects.

Some additional investigations were performed to study the iPPG-derived pulse rate variability

(PRV). The database on adult subjects was used to assess the agreement between ECG-HRV and

iPPG-PRV indexes. It was concluded that, in the non-stationary conditions induced by respiration

and handgrip exercises, iPPG-PRV was not a good surrogate of ECG-HRV. We also investigated

the feasibility to estimate the respiratory rate in real-time using the iPPG-IBI (in collaboration

with Leila Mirmohamadsadeghi, former PhD student of ASPG). Promising results were obtained.

Different topics related to the processing of (video-based) photopleysmography were studied

in this dissertation. The presented studies aimed at 1) developing signal processing tools to in-

crease the reliability of the estimated HR and 2) assessing the potential of PPG/iPPG for other

cardiovascular monitoring applications. Regarding the HR estimation, we concluded that adap-

tive frequency tracking tools have a real potential, both for conventional PPG and video-based

iPPG signals. Indeed, due to their oscillatory behavior, these signals are perfect candidates for

this type of methods. These methods allowed us to built robust HR estimation schemes with

small estimation delays, which gives them an advantage over the classical block-based methods.

We also noticed that, when dealing with PPG/iPPG signals, the derivation and the subsequent

use of a signal quality index can significantly increase the accuracy of the estimated HR and is

helpful to assess the veracity of detected events.
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10.1 Summary of achievements
The major achievements of this dissertation, which were described in detail in the previous

section, can be summarized as:

• Development of a processing scheme to perform robust HR estimation using wrist-type

PPG signals during physical exercise.

• Reduction of false arrhythmia alarm rates in the ICU by the exploitation of signals from

independent sources.

• Introduction of novel PPG-wave measures for the detection of AF using PPG signals.

• Development of a processing scheme to perform real-time HR estimation from video

streams.

• Other contributions related to video-based monitoring:

– Assessment of iPPG-derived pulse rate variability indexes in non-stationary conditions.

– Real-time respiratory rate estimation using iPPG interbeat intervals.

– Development of a signal quality index.

10.2 Perspectives

Algorithm implementation

Nowadays, people like to track their health during their daily activities and many wearable

devices are available on the market for personal use. Forecasts regarding consumer health wear-

ables are promising; this segment is expected to grow at compound annual grow rate of 28.3%

(2016-2021) according to a survey by Frost and Sullivan. Among these health wearables, many

of them have an embedded PPG sensor. There is therefore a real need for PPG processing al-

gorithms to satisfy the consumer needs in this rapidly evolving field. The development of such

processing tools was studied in this thesis. The next step to bring this research to market is the

algorithm implementation. On-chip algorithm implementation is challenging as the aim is to

achieve the lowest level of power consumption, while having accurate algorithms. Low-power

signal processing embedded in wearable sensor nodes is beneficial as it results in reduced system

power consumption, minimized system latency, increased device functionality (e.g. alarms can

be triggered) [161].

This implementation aspect was kept in mind throughout the development of the different pro-

cessing schemes and we believe that a future on-chip implementation is conceivable.

Regarding video-based monitoring, the development of a commercial monitor would also re-

quire an algorithm implementation step. In that case, the aim is to embark the algorithms for HR

estimation, such that they run in real-time on the camera processor. The part related to the track-

ing of the ROI is expected to be most challenging, as it is the most computationally expensive.

A PPG-based cardiac monitor to screen for atrial fibrillation

AF is the most common cardiac arrhythmia, affecting 1-2% of the general population. AF

can be asymptomatic in its initial course, which renders its diagnostic difficult. In the future,

PPG-based cardiac monitors could be used to screen for AF in large population. It is therefore

of interest to pursue the study of AF detection using PPG. We presented in this dissertation some
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results computed from patients undergoing a cardiac ablation. It would be interesting to evaluate

the performance of the proposed features on additional PPG data recorded in an ambulatory

setting.

Further investigations into video-based monitoring on vital signs

This technology is quite recent and not yet fully understood. For example, more investiga-

tions should be performed to have a better understanding of the iPPG signal distortions induced

by the different types of movements and illumination changes. It would be also interesting to see

if adaptive noise cancellation techniques could be applied successfully to reconstruct clean iPPG

signals during corrupted periods.

As mentioned in Appendix B, we believe that the tracking of the ROI could be improved by

adding a dynamic feedback mechanism using the estimated HR and the signal quality index.

More generally, efforts should be made to have a better synergy between the video processing

and the signal processing parts.

The developed HR estimation scheme could be applied on many other applications. For example,

it could be used to monitor drivers and detect drowsiness. It could also be used to monitor elderly

people at home. Other applications such as the monitoring of people at customs and airports are

also conceivable.

We showed in this dissertation that the iPPG PRV can be used to derive the respiratory rate. This

is one possible application, but there are many other perspectives. A study demonstrated that the

PRV derived from facial videos can be used to detect AF [151]. iPPG-derived cardiovascular

parameters could also be used to detect some precursors signs of sudden infant death syndrome

(higher basal HR, reduced HRV and lower parasympathetic activity and/or higher sympathovagal

balance), as suggested in [162].
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Classifier Evaluation and
Ensemble of Classifiers A
A.1 Evaluation of classifiers 1

Machine learning is the study of models that can learn from input instances (known as train-

ing data), and subsequently make prediction on unseen instances (known as testing or prediction

data). Having built a prediction model, commonly referred to as classifier, one can evaluate

its performance by comparing classifier predictions with the actual testing data. In a two-class

(known as binary) problem, the training data is divided into positive and negative classes. The

positive class usually represents the instances for which the model is being created. For instance,

in an HIV test, instances representing the HIV class are considered as members of the positive

class whereas all other instances are considered as members of the negative class. Based on the

predictions made by the classifier, instances can belong to one of the following categories:

• True Positive (TP): Instances that belong to the positive class and classified as such.

• False Positive (FP); known as the type I error, represent instances that belong to the posi-

tive class but classified as a member of the negative class.

• True Negative (TN): Instances that belong to the negative class and classified as such.

• False Negative (FN); known as the type II error, represent instances that belong to the

negative class but classified as a member of the positive class.

A confusion matrix (also known as the contingency table) is usually used to visualize of the

performance of a specific classifier, as illustrated in Table A.1.

1. The content of this appendix is taken from the work of Sasan Yazdani (ASPG), ’Novel Low Complexity Biomed-

ical Signal Processing Techniques for Online Applications’, thesis director Dr. J.M. Vesin.
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Table A.1: Confusion matrix of hypothetical model trained for a binary classification problem.

Actual Class

+ -

+ True Positive
False Positive

Type I Error

Predicted Class
-

False Negative

Type II Error
True negative

By closely studying the TP, FP, TN, and FN, one can evaluate the performance of a trained

model. Over the years, several conventional metrics have been used in the literature, the most

common ones are reviewed next.

• Sensitivity (Se), also known as recall and the true positive rate (TPR), represents the num-

ber of instances that were classified as positive, which were indeed members of the positive

class. In other words, this measure can be interpreted as the probability of a test to be pos-

itive given that the sample belong to the positive class. Se can therefore be calculated as,

Sensitivity (S e) =
T P

T P + FN
(A.1)

• Specificity (SPC), also known as the true negative rate (TNR), is the proportion of in-

stances that belong to the negative class and are classified as such. SPC calculates the

same measure as Se, but for the negative class. SPC is calculated through,

Specificity (S PC) =
T N

T N + FP
(A.2)

• Positive Prediction Value (PPV) , also known as precision, studies how reliable the clas-

sifier is, in case the prediction is positive for an input sample. PPV is obtained as,

Positive Prediction Value (PPV) =
T P

T P + FP
(A.3)

• Negative Prediction Value (NPV) studies how reliable the classifier is, in case the predic-

tion is negative for an input sample. NPV is obtained as follows:

Negative Prediction Value (NPV) =
T N

T N + FN
(A.4)

• Accuracy (ACC) is the fraction of test samples that are correctly predicted. ACC is mea-

sured as,

Accuracy (ACC) =
T P + T N

T P + FP + T N + FN
(A.5)

• Detection Error Rate (DER) represents the fraction of test samples that are incorrectly

predicted. DER is defined as,

Detection Error Rate (DER) = 1 − ACC =
FP + FN

T P + FP + T N + FN
(A.6)

ACC and DER are simple statistics that report the overall performance of the trained clas-

sifier. Although these measures are intuitive and easy to calculate, they cannot provide reliable

evaluation of the trained model in case the training data is unbalanced, i.e. one class has sig-

nificantly more samples compared to the other. Let us assume a hypothetical machine learning

scenario for which 95% of the dataset is comprised of the positive class (5% negative). If the
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trained model classifies all input instances as members of the positive class, the final accuracy

of the model is 0.95 (DER is 0.05). Therefore, one needs to study Se and PPV alongside ACC

in order to perform a good performance evaluation. Alternatively, one can use the F-score (also

known as F-measure), which evaluates the classifier by studying Se and PPV. F-score is calcu-

lated through,

Fβ = (1 + β2)
PPV · S e

(β2 · PPV) + S e
(A.7)

where β is the parameter that determines the relative weights of Se and PPV. It is common to

compute the F-score with β = 1, which represents the balanced F-score. This harmonic mean

between Se and PPV is known as the F1-score,

F1 = 2
PPV · S e
PPV + S e

(A.8)

Over the years, several other metrics such as the Phi and Matthews correlation coefficients

have been proposed in the literature in order to take other important factors such as the true

negative rate into consideration. Further information on these metrics can be found in [163,

164]. In the context of this dissertation, only two-class machine learning techniques are studied,

methods described in this appendix covers binary classification evaluation. More information on

multi-class performance evaluation can be found in [164? ].

A.2 Classifier combination: selection and fusion

Over the pas decades, the idea of training multiple classifiers and combining them to obtain

the desired output has gained momentum. Multi expert (classifier) techniques can be categorized

into two sub-branches, namely selection and fusion. Consider a hypothetical problem in which

some classifiers outperform others at specific tasks, but their overall performance does not. For

instance, imagine a classification problem in which the goal is to identify cats and dogs, and that

we have created two classifiers, C1 and C2, from the training set. Assume that C1 outperforms

C2 but does not perform well for small-sized cats and dogs. On the other hand, C2 perfectly

separates small cats and dogs but does poorly otherwise. In this case when C2 is used for small-

sized inputs while C1 is used otherwise, the overall prediction performance improves. In this

way the classification task is broken into two subspaces, where C1 performs better in one while

C2 in the other. This combination technique is referred to as classification selection. Figure A.1

illustrates an example fusion technique with four classifiers.
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Figure A.1: An example classifier selection technique illustrated in a two attribute subspace. All

four classifiers (C1,C2,C3, and C4) work in coherence, each acting as the expert in its respective

subspace.

Another technique to combine classifiers is through classifier fusion. In this scheme, n classi-

fiers with low bias and high variance are created separately on the training set and their respective

predictions are combined to obtain the final prediction [164]. Figure A.2 illustrates the frame-

work used to create typical fusion of classifiers.

Various voting techniques can be used in classifier fusion, details of which are described as

follows.

• Majority Voting is the simplest yet most common voting scheme. As suggested by its

name, the prediction label in this scheme is selected as the label that has been predicted by

majority of the trained classifiers, i.e statistical mode of the prediction labels.

• Weighted Majority Voting works similarly to majority voting, however the predictions

made by classifiers are weighted, with some classifiers (the better performing and more

complex ones) having greater influence in label prediction.

• Optimistic Voting. In this scheme the final prediction label is considered as positive, if at

least one of the trained classifiers prediction is as such.

• Pessimistic Voting, also known as unanimous voting, is an scheme in which the final

prediction label is considered as positive, if the trained classifiers unanimously predict as

such.

A.3 The wisdom of crowds

The wisdom of crowds [165, 166] is a theory suggesting that, given the right conditions,

large groups of average people are smarter than a few elite experts. There are four necessary
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Model 
Predictions

Prediction Instance

…

…

Voting System

Trained 
Models

Final Prediction

Figure A.2: Typical framework of classifier fusion. In order to obtain the final prediction (Pf )

for an input instance, the predicted label (P1, P2, ..., Pn) for each trained classifiers (C1,C2, ...,Cn)

taken into account.

conditions for a crowd to be considered as wise. First, the rule of independence, which states

people’s opinion should not be influenced by others. Second, the rule of decentralization, stating

people should be able to draw their opinion based on their expertise. Third, the diversity of

opinion, meaning people should have some information on the problem. Finally, the aggregation

rule, which is a scheme to combine the crowd’s opinion to obtain a final decision.

Implementation of the wisdom of crowds in machine learning is somewhat difficult, even

though the aggregation and independence rules are naturally implemented when combining clas-

sifiers. Decentralization is also not hard to implement. This rule states that members of an

ensemble of classifiers should perform prediction based on different specialties (expertise). Al-

though meta algorithms such as bagging, boosting, rotation forest, and etc. can have numerous

base classifiers, in their implementation all base classifiers are essentially the same and are only

exposed to different training data [164]. Nevertheless, in machine learning, decentralization can

be carried out by training predictors of different natures, for instance a support vector machine,

a decision tree, along side a multi-layer perceptron neural network. Furthermore, if accurate

enough classifiers are created, one does not need numerous models to reach reliable predictions.

The difficulty in the implementation of wisdom of crowd lies in the diversity of opinion. When

creating classifiers, several attributes (features) are extracted from the training data. for the di-

versity rule to carry out, classifiers need to be trained on different features which in practice does

not make sense as they can improve the performance of other train classifiers. Moreover, often

features can be unintuitive to extract and therefore, are defined by the expert in the field of the

study.
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The implementation of wisdom of crowds, however, is not impossible. As pointed out Sec-

tion 6.4, during the false alarm detection Physionet/CinC challenge, the organizers took the top

performing algorithms and created a meta-algorithm, which obtained an accuracy higher than

that of any individual algorithm. The diversity of opinion rule was perfectly met as different

challengers used different features to train their classifiers. This can be considered as an example

implementation of wisdom of crowds, as all four rules were applied.



Video-Based Heart Rate
Monitoring in Neonatal
Intensive Care Unit:
Preliminary Results B
B.1 Introduction

In Switzerland, approximately 800 infants are born preterm every year, with a gestational

age below 32 weeks [167]. This phenomenon is currently growing. Indeed, over the last three

decades, the number of children born with a birth weight below 1500g has doubled [168]. Dif-

ferent factors such as changing demographics, older maternal age and higher rates of medically

assisted reproductions are related to this phenomenon [169]. Preterm infants, who require special

care, are first placed in a Neonatal Intensive Care Unit (NICU), where their vital sign are continu-

ously monitored. More specifically, their heart rate (HR), respiratory rate and oxygen saturation

are measured. The ECG monitor used to derive HR requires the attachment of adhesive elec-

trodes to the fragile skin of theses infants, which induces a discomfort. Moreover, the current

monitoring systems are much prone high false alarm rates [76]. In addition, the brain, which

is the most sensitive organ, is not monitored yet. The aim of the NewbornCare 1 2 project is to

overcome the limitations of the current NICU monitoring systems. It has two main components;

the multi-sensor component, which aims at monitoring arterial and cerebral oxygen saturation

and the central component, which aims at monitoring respiratory rate and HR in a contactless

manner. The latter, discussed in this appendix, is achieved by the means of a vision system con-

sisting of two cameras and an infrared illumination.

Aarts et al. investigated for the first time the feasibility of continuous non-contact HR mon-

itoring in the NICU [170]. In this study, a total of 19 infants were monitored for a duration

between one and five minutes. The iPPG signal, obtained by the averaging of the green channel

pixel values, was used to compute a joint-time-frequency diagram. A good match, defined as

|HRre f − HRest | < 5 bpm more than 90% of the time, was obtained for 13 sequences out of the

19 sequences. Different challenges were encountered and the authors concluded that algorithms

improvements are necessary to achieve more reliable results.

Villarroel et al. also evaluated the feasibility of continuous non-contact monitoring of cardiores-

piratory vital signs in the NICU [171]. In this study, two infants were monitored for 39.8 hours.

Among these 39.8 hours, 20.1 hours of stable periods of video data were first identified and la-

1. The NewbornCare RTD project was funded by NanoTera.

2. In the news: https://actu.epfl.ch/news/medically-monitoring-premature-babies-with-cameras/
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beled suitable for HR estimation. ICA was applied to the raw RGB traces and a band-pass filter

with cut-off frequencies of 78 and 300 bpm was then used. An auto-regressive model was used to

identify the cardiac frequency from the pre-processed iPPG signals, based on the methodology

proposed in [125] by the same authors. An 8-second sliding window was used for this purpose.

The resulting average absolute error was 2.83 bpm.

The aim of this appendix is to present the preliminary results obtained on a database acquired

at the UniversitätsSpital Zürich (USZ) NICU 3. For this purpose, the real-time HR estimation

scheme presented in Chapter 8 was adapted to capture any HR value within the HR range of

preterm infants.

B.2 Methods

B.2.1 Database
The NIR and RGB cameras were positioned on the side of the incubator/bed, as shown in

Figure B.1 (the same cameras as for the adult database were used, see Section 8.2). The duration

of each sequence was 20 minutes (40 minutes for some sequences). The reference HR, as well

as the ECG signal, were given by the NICU Däger commercial monitor. These ground-truth data

were synchronized with the data from the vision system 4. The results presented in this appendix

were generated on a subset of the entire database. This subset consists of 13 sequences acquired

on 10 different preterm infants, corresponding to a total of five hours of recording. This database

subset is summarized in Table B.1. The name and duration of each sequence are indicated in this

table, as well as the level of activity of the baby during the recording, the illumination conditions

and some specific remarks to depict the challenges encountered in the NICU.

Figure B.1: Experimental setup used for the database acquisition at the USZ NICU. Left: camera

setup. Right: example of an image obtained with this camera setup.

B.2.2 Tracking and skin segmentation
Tracking of the selected ROI and skin segmentation were performed with the method already

described in Section 8.3.1. For most of the sequences, the ROI was selected on the baby’s face.

However, the area of visible skin was sometimes very restricted due to the presence of medical

3. The acquisition of the video sequences was supervised by Tanja Karen (USZ), Virginie Moser (CSEM) and Daniel

Ostojic (USZ).

4. Data synchronization was done by Virginie Moser (CSEM) and Fabian Braun (CSEM).
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Table B.1: The neonate database subset analyzed in this appendix. Level of activity: subjec-

tive measure of baby’s level of activity during the recording; Illumination conditions: subjective

assessment of quality of the illumination conditions (poor indicates typically a very dark envi-

ronment or an illumination continuously changing); Remarks: events susceptible to impact the

contactless measure of HR.

Sequence Duration Inside Level of Illumination Remarks

name [min] incubator? activity conditions

P3-R1 20 no high poor -

P6-R1 20 no low moderate -

P6-R3 20 no high good eating

P7-R1 20 no low good many sensors

P7-R3 20 no low good -

P11-R1 20 no moderate moderate pacifier

P11-R3 20 no moderate good -

P12-R1 20 no high moderate -

P13-R1 20 no low poor -

P15-R1 40 no very high good many occlusions

P19-R1 20 yes low good -

P20-R1 20 yes moderate moderate light reflection (plexiglas)

P21-R1 40 yes low moderate ROI on the back

equipment (feeding tube, continuous positive airway pressure, oxygen mask, etc.). The size and

position of the selected ROI were therefore changing from one recording to another.

Regarding the skin segmentation step, it was difficult to find a threshold value working well for

all patients, given the very variable lightening conditions and the different skin tones. Therefore,

for each patient, the first step consisted of the manual selection of a patch of skin on the first

frame of the video, which was then used to apply automatic skin segmentation for the whole

duration of the recording.

B.2.3 iPPG signal derivation and heart rate estimation

The HR estimation scheme presented in Chapter 8 was adapted for this application. As shown

in section Section 8.3.4, different iPPG signal derivation techniques were used to compute the

following signals:

• iPPGgreen.

• iPPGhue.

• iPPGSSR, using l = 15 samples.

• iPPGPOS, using l = 15 samples.

• iPPGGRD.

However, it was not possible to use the same band-pass filter as for adults because the babies

have a higher HR. According to [172], “The minimum heart rate of premature or low-birth-

weight infants can be as low as 73 bpm; the maximum heart rate can be as high as 211 bpm.”. An

FIR band-pass filter with cut-off frequencies of 54 and 222 bpm was therefore used to compute

iPPGgreen, iPPGhue and iPPGGRD signals. The iPPGSSR and iPPGPOS signals were also band-pass

filtered using the same filter.

After visual inspection of the derived iPPG signals, it was noticed that, in these realistic experi-

mental conditions, the iPPGgreen and iPPGhue signals were usually of bad quality and the largest

peak on the PSD was not always at the HR frequency, as it was usually the case in the controlled
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experimental conditions of the adult database. This is illustrated in Figure B.2. In this figure, is

can be observed that for the studied 8-second window, the main peak on the PSD was at the HR

frequency for iPPGSSR, iPPGPOS and iPPGGRD signals, but it not for the iPPGgreen and iPPGhue

signals. For this reason, the iPPGgreen and iPPGhue signals were discarded.
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Figure B.2: Example of iPPG signals and their PSD for an 8-second data segment (sequence

P3-R1). (a) reference HR and selected time window; (b) ECG signal; (c) normalized PSD of the

iPPG signals and true HR; (d) iPPG signals.

The quality of the iPPG signals was then evaluated. For this purpose, the signal quality

index (SQI) was computed using the method proposed in Section 8.3.5. Then, the modified

version of the multi-input adaptive frequency tracking algorithm (OSE-MSE-SQI) described in

Section 2.3.3 was used to estimate the HR. The iPPGSSR, iPPGPOS and iPPGGRD signals and

their respective SQIs were provided as inputs. The HR estimates for which at least two of the

iPPG signals were bad quality (SQIm[n] = 0) were considered as not reliable and not taken into

account in the error calculation.

B.3 Results

After removing the bad-quality segments automatically identified using the SQI, an HR esti-

mate was available 92.8% of the time. The average absolute error (AAE) between the estimated

HR and the reference HR was computed on a 5-second sliding window (4-second overlap). The

percentage of samples for which the absolute difference between the estimated and the refer-

ence HR (|HRre f [n] − HRest[n]|) was lower than 5 bpm was also calculated and reported. The

results, for each sequence and globally, are shown in Table B.2. Figures B.3, B.4 and B.5 show

the HR estimates for three sequences. The estimated HR alongside the reference HR is shown

on the top. The grey zones correspond to regions where at least one the the signal was bad-

quality (SQIm[n] = 0). The DI measure of inter-frame variability is shown on the bottom plot.
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This measure, which was used in the computation of the SQI, gives an idea about the amount of

disturbances.

Table B.2: Results. For each sequence, the percentage of removed data, the AAE and the per-

centage of time the absolute error was lower than five bpm are reported.

Sequence name Duration removed data AAE |HRre f − HRest | < 5 bpm

[min] [%] [bpm] [%] of the time

P3-R1 20 6.6 14.5 43.3

P6-R1 20 4.4 2.4 91.2

P6-R3 20 3.4 6.6 74.9

P7-R1 20 4.3 3.8 78.4

P7-R3 20 1.3 1.7 94.8

P11-R1 20 18.9 12.6 45.6

P11-R3 20 10.8 6.4 82.6

P12-R1 20 10.3 6.1 73.8

P13-R1 20 2.1 11.1 61.6

P15-R1 40 21.3 5.7 79.3

P19-R1 20 0.5 5.7 81.2

P20-R1 20 0.9 7.1 73.4

P21-R1 40 1.3 1.9 97.1

Overall 300 7.2 6.11 + 12.93 77.4
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Figure B.3: Sequence P3-R1. Estimated and reference HRs (top) and DI measure of inter-frame

variability (bottom).
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Figure B.4: Sequence P6-R3. Estimated and reference HRs (top) and DI measure of inter-frame

variability (bottom).
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Figure B.5: Sequence P13-R1. Estimated and reference HRs (top) and DI measure of inter-frame

variability (bottom).



B.4 Discussion and conclusion 155

B.4 Discussion and conclusion
These preliminary results are encouraging. According to the proposed SQI, an HR estimate

was available 92.8% of the time. During this time, the overall AAE was 6.11 bpm and the HR

estimate was very accurate 77.4% of the time. It can be noticed in Table B.2 that the results were

quite variable from one sequence to another. The worst results were obtained for the sequence

P3-R1 (AAE of 14.5 bpm), which is shown in Figure B.3. In this figure, it can be seen that the

estimated HR follows well the reference HR, expect during two long periods. The baby was

crying and moving a lot during these periods, resulting in numerous fast movements difficult

to track for the ROI tracking algorithm. In addition, as specified in Table B.1, the illumination

conditions were really poor for this recording. Different factors have therefore contributed to the

deterioration of the computed iPPG signals. On the other hand, the example shown in Figure

B.4 is very encouraging for multiple reasons. Firstly, this infant had a dark skin tone, suggesting

that the proposed processing scheme was not affected by this factor. Secondly, this baby was

continuously active (gentle movements) during the whole duration of the recording. Finally, the

HR fluctuated a lot. Despite of all these challenges, the estimated HR matches really well the

reference HR (AAE of 3.4 bpm).

The example depicted in Figure B.5 shows an a recording during which a bradycardia occurred.

The estimated HR decreases during this event, but not as much as expected because the baby

started to move right after the event. These movements, combined with the poor illumination

conditions, resulted in an inaccurate HR estimate for a few minutes after the alarm.

More generally, it can be observed that the results presented in Table B.2 can be correlated with

the level of activity and the illumination conditions reported in Table B.1. Bad illumination

conditions and high activity level seem to affect the performance of HR estimation, which is

not really surprising. However, performing the estimation from a very restricted surface of skin

does not seem detrimental (see for example sequence P7-R1), provided that the automatic skin

segmentation is working well. The variation in the baby’s activity patterns was described as a

challenge by Villarroel et al. [171]. Our observations also showed that preterm infants make

irregular movements, even when they sleep, which can impact the remote measure of HR.

As mentioned already, these results are preliminary results and different aspects of the pro-

cessing need more investigations in order to increase the reliability of the estimated HR in these

challenging conditions. We believe that the following points should be examined in more detail

in future work:

• Motion artifacts: further work should focus on the improvement of the robustness to mo-

tion. This implies some improvements of the ROI tracking algorithm. For example, sev-

eral ROIs could be tracked simultaneously. Then, a dynamic feedback mechanism could

be added, in which the developed iPPG SQI could be used to select the most reliable ROI.

• Monitoring in the dark: it will be interesting to evaluate the performance of the HR esti-

mation using the NIR camera in the dark. Given that we use only one method to derive the

iPPG signals in that case, the HR estimate might be less accurate.

• Use of the respiratory information to increase the robustness of the HR estimation scheme:

the respiratory information could be used to improve HR estimation. For example, we

noticed that, in some cases, in the PSD of the iPPG signal, the peak corresponding to the

first harmonic component of the respiration was larger than the peak corresponding to the

HR. Information about the instantaneous respiration rate could therefore be useful to make

an adaptive cancellation of the first harmonic component of the respiration in such cases.

For this purpose, the algorithm developed in the context of this NewbornCare project to
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estimate the respiration from the thoracic motion could be used [173].

• Detection of life-threatening events: as the aim is to replace the conventional sensors by

the camera system in the future, it will be necessary to report not only the accuracy of

the estimated parameters, but also the sensitivity obtained for the detection of HR-related

alarms. Indeed, for these life-threatening events, only a system with a sensitivity of 100%

can be conceivable to replace the traditional systems.

To conclude, iPPG is a promising technology, but algorithmic improvements are still required

to deal with various challenges and to have systems that are clinically reliable to monitor fragile

infants in the NICU. It should be mentioned that video-based monitoring of infants vital signs

is also interesting for home monitoring applications. Indeed, it has been suggested recently

that camera-based, non-contact vital signs monitoring technology may provide a way for early

prevention of sudden infant death syndrome [162].
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