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Abstract

Background: Active upper-limb prostheses are used to restore important hand
functionalities, such as grasping. In conventional approaches, a pattern
recognition system is trained over a number of static grasping gestures. However,
training a classifier in a static position results in lower classification accuracy
when performing dynamic motions, such as reach-to-grasp. We propose an
electromyography-based learning approach that decodes the grasping intention
during the reaching motion, leading to a faster and more natural response of the
prosthesis.

Methods and Results: Eight able-bodied subjects and four individuals with
transradial amputation gave informed consent and participated in our study. All
the subjects performed reach-to-grasp motions for five grasp types, while the
elecromyographic (EMG) activity and the extension of the arm were recorded. We
separated the reach-to-grasp motion into three phases, with respect to the
extension of the arm. A multivariate analysis of variance (MANOVA) on the
muscular activity revealed significant differences among the motion phases.
Additionally, we examined the classification performance on these phases. We
compared the performance of three different pattern recognition methods; Linear
Discriminant Analysis (LDA), Support Vector Machines (SVM) with linear and
non-linear kernels, and an Echo State Network (ESN) approach. Our off-line
analysis shows that it is possible to have high classification performance above
80% before the end of the motion when with three-grasp types. An on-line
evaluation with an upper-limb prosthesis shows that the inclusion of the reaching
motion in the training of the classifier importantly improves classification
accuracy and enables the detection of grasp intention early in the reaching
motion.

Conclusions: This method offers a more natural and intuitive control of
prosthetic devices, as it will enable controlling grasp closure in synergy with the
reaching motion. This work contributes to the decrease of delays between the
user’s intention and the device response and improves the coordination of the
device with the motion of the arm.

Keywords: Myoelectric control; Upper limb prosthesis; Pattern recognition;
Reach-to-grasp motion

Background

The loss of a hand impacts all aspects of daily life, including work, recreation and
communication [1]. Prosthetic devices can help restore motor abilities lost after
amputation, and can improve the quality of life for amputees. Despite these poten-
tial benefits, many people with upper-limb amputations do not use a prosthesis [2].
Studies examining the causes of rejection [3, 4, 5] report that secondary prosthesis
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rejection, i.e. after a period of use, is primarily due to dissatisfaction with prosthetic
comfort, function or control. Improving prosthesis control systems could thus pre-
sumably provide additional functionalities to users and could minimize prosthesis
rejection.

Surface electromyography (EMG) has been widely studied as an intuitive human-
machine interface for controlling intelligent external devices, such as prosthetic
hands [6, 7]. As amputees generally have a limited number of independent EMG
sites available for controlling a multi-degree of freedom (DOF) prosthesis, we can-
not rely on a one-to-one EMG-to-DOF control. Surgical methods, such as targeted
muscle reinnervation (TMR) [8, 9] and regenerative peripheral-nerve interfaces (RP-
NIs) [10], can enable the control of a larger number of DOFs.

Advanced signal-processing approaches could also be used to control multi-DOF
prostheses with fewer independent EMG sites. EMG-based pattern-recognition sys-
tems are proposed for estimation of, both independent and simultaneous [11, 12],
hand and wrist movements [13, 14, 15]. Using extrinsic hand muscles, pattern recog-
nition has effectively classified functional hand-grasp patterns [13] and even indi-
vidual finger movements [16, 17].

In these previous studies, generally subjects performed muscle contractions while
maintaining their arm in a fixed position. However, training a classifier in a static
position, as mentioned above, results in lower classification accuracy when the limb
is in different positions or performs dynamic motions [18].

Reach-to-grasp movements are important activities of daily living that require
dynamic motions. A few studies have attempted to decode grasping intention from
EMG during reach-to-grasp motions, but only with able-bodied subjects [19, 20].
When reaching to grasp an object, the opening and closing of the hand is in co-
ordination with the motion of the arm [21, 22], see Figure la. More specifically,
the human hand opens rapidly in the early stages of the reaching cycle, while the
fingers converge gradually to their final configuration [23, 21].

A self-paced reaching motion of an able-bodied hand could take approximately
1s to complete [19, 24]. In contrast, the activation of prosthetic hands could oc-
cur more than one second after the onset of the motion [25, 26] (see Figure 1a).
This makes unnatural the actuation of a prosthetic hand, lacking the natural arm-
hand coordination. It also slows down the reach-to-grasp motion. It is crucial for
prosthetic devices to react promptly to human intentions to enable for natural and
intuitive operations [27]. To convey a seamless coordination between the device and
the residual arm, it is important for the device to identify the grasping intention
during the reaching phase.

In our previous work [19], we show that detection of the grasp type in synchrony
with the reaching motion could enable smooth coordination of hand closure with
the reaching motion, thus providing a more natural and seamless motion of the arm
and a robotic hand. In our approach, the classification performance is related to the
occurrence of hand pre-shape during reaching motions, following the natural pre-
shape phase as documented in [23, 28]. Our prior study was limited to able-bodied
subjects. Here, we extend this approach to decoding residual EMG in individuals
with a below-elbow amputation. We compare the performance of four different
classifiers: LDA, two SVMs, and an Echo State Network (ESN). Additionally, we
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explore a relationship between classification performance and the phases of the
reach-to-grasp motion.

Methods

Experimental Protocol

Eight able-bodied subjects (6 males and 2 females 25 — 32 years old) with no known
neurological or physical deficits and four unilateral transradial amputees partici-
pated in the experiment. All able-bodied subjects were right-handed and performed
the experiment with their dominant hand. All subjects were naive to pattern recog-
nition control with the exception of three of the amputee subjects. Two of the
amputee subjects had undergone a TMR surgery. Table 1 presents demographic
information about the amputee subjects.

During the experiment, both the able-bodied subjects and the amputee subjects
sat in front of a table, facing a computer screen, with their elbows at a 90° angle.
The able-bodied subjects had their right hand closed on the table and they were
asked to reach the object and grasp it with a predefined grasp type and to mentain
the same wrist orientation for all grasp types. Custom computer software, called
Control Algorithms for Prosthetics Systems (CAPS) [9], prompted users to initiate
the reach-to-grasp motion and to go back to a resting position. Subjects performed
the motion at their own pace. They were tasked to reach and grasp an object
placed 30cm away from the initial position of their hand. Once they had reached
the objects, they were asked to remain in the same posture until they receiving a
cue from CAPS to go back to rest position. The duration of each trial was 4s with
a 10s rest between trials, to avoid fatigue. All subjects performed 30 trials for five
grasp types, resulting in 150 trials in total.

In the experiments with the amputee subjects, the subjects were asked to reach
the object and grasp it with their intact hand while trying to replicate the motion
with their phantom limb, see Figure lc. These subjects started their self-paced
motion when cued by the experimenter. Whenever a subject perceived an irregular
or unexpected muscle contraction, the experiment was paused and the trial was
repeated. Regular breaks were taken in order for the subjects to relax from the
stress and effort of contracting their phantom limb. All the amputee subjects were
able to complete the experiments.

Apparatus and Pre-processing

Custom computer software [9] was used for signal acquisition, with EMG signals
acquired at 1000H z with a 30 — 350 H z band-pass filter using TT ADS1298 biosignal
amplifiers. The EMG activity of 12 muscles was recorded: Trapezius, Deltoid Ante-
rior, Deltoid Medial, Deltoid Posterior, Biceps Brachii long head, Triceps Brachii
long head, Brachialis, Flexor Digitorum Superficialis, Extensor Digitorum Commu-
nis, Flexor Carpi Ulnaris, Extensor Carpi Ulnaris, Flexor Carpi Radialis (seven
muscles of the upper arm and five muscles of the forearm). To construct a linear
envelope, full-wave rectification was performed, followed by smoothing with a low-
pass seventh-order Butterworth filter with cut-off frequency at 20Hz. At the end
of this step, each channel was normalized by the maximum value recorded in the
trials. A goniometer was placed on the subjects’ elbow for measuring the onset and
extension of the elbow.
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Phases of the Motion

As illustrated in Figure 1a, during natural reach-to-grasp motion, the opening and
closing of the hand is coordinated with the extension of the elbow [21, 22]. Typically
for able-bodied subjects, the hand opens rapidly in the early stages of the reaching
motion and decreases its velocity while approaching the object and reaching the
final configuration [23]. The hand’s velocity peak occurs before the peak velocity of
the elbow extension [21]. Thus, the hand reaches its final grasp-posture after the
peak velocity of the elbow extension. Because EMG recordings from upper and lower
arm muscles encapsulate information on the hand motion, the EMG patterns will
likely differ in the different phases, specifically before and after the elbow extension
velocity peak. Taking inspiration from this behavior, we divided the reach-to-grasp
motion into three phases with respect to the extension of the elbow joint. The first
phase is defined as the interval from motion onset (i.e. when the angular velocity of
the elbow joint exceeds a velocity threshold) until the angular velocity of the elbow
reaches its maximum. The second phase is the interval between the aforementioned
maximum angular velocity and the end of the reaching motion (i.e. when the angular
velocity of the elbow drops below a velocity threshold). We define the third phase as
the phase after the completion of the elbow extension. More specifically, we selected
25% of the duration of the reaching motion selected after the velocity drops below a
threshold. The velocity threshold was set at 10% of the maximum angular velocity
recorded for each subject.

We normalized the time of the duration of the reaching cycle. The reaching cycle
corresponds to the time interval between the motion onset and the end of the
extension of the elbow, i.e. when the angular velocity of the elbow drops below
the velocity threshold. We performed a one-way multivariate analysis of variance
(MANOVA) on the average values of the 12 EMG channels over the three phases
for each grasp type. The Wilks Lambda test and the Pillai-Barlett Trace test were
used to compare the results to a significance level of 5% (a = 0.05). We present the
results in Section III.

To further investigate the three phases, we grouped the EMG signals of the classes
together for each phase. The signals were divided into sliding time windows and the
average activity of each channel was extracted, creating a vector of N elements
(N corresponds to the number of EMG channels). A principal component analysis
(PCA) was performed with the data from the third phase and the two remaining
phases were projected into the new hyperplane. The distribution of the data on the
first two principal components was fitted to Gaussian Mixture Models (GMMs) for
each phase, and the number of Gaussian components was optimized by the Bayesian
Information Criterion (BIC). We performed an analysis on the complete muscle set
(N = 12) and an analysis using only the muscles of the forearm (N = 5).

Classification Methods for Decoding the Grasping Intention

The preprocessed EMG signals were analyzed using a sliding time-window of 150m.s
with an increment of 50ms. The time window and increment lengths were chosen to
be between the preferred values for an online implementation, as suggested in [29].
We used no dimensionality-reduction method (such as PCA) in this step. For each
grasp type, 10 trials were randomly selected as the testing set. The remaining 20
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trials of each grasp type constituted the training and validation sets. A four-fold
cross-validation was performed to optimize the hyper-parameters for each classifi-
cation method.

The classification accuracy of four classification methods was compared, namely
for an LDA classifier, an SVM with linear kernel, an SVM with a Radial Basis Func-
tion (RBF) kernel and an ESN. For each classification method, one classifier was
trained per subject. We did not attempt any inter-subject training. We inserted the
classification outcome of each time window into a Majority Vote (MV) algorithm,
that uses a buffer of 0.5s history to predict the winning class.

In the cases of LDA and SVM, we extracted three features for each time window
and introduced them into the classifier. Following previously described methods for
EMG pattern recognition [30], we chose three features; the average activation of
each time window, its waveform length, and the number of slope changes. In the
case of ESN, we did not perform any feature extraction, treating the problem as a
multidimensional time-series problem.

Linear Discriminant Analysis

LDA is one of the most commonly used classification algorithms for biomedical
signals due to its performance and robustness. LDA finds a linearly optimal com-
bination of the features in order to separate between classes. A fitting function
estimates the parameters of a Gaussian distribution for each class and finds the
probability of each point belonging to a class. Despite the linear nature of LDA, it
has been shown to perform well in the classification of EMG signals [31].

Support Vector Machine
We tested two types of kernels, i.e. a linear kernel and an RBF kernel. In the case of
the linear kernel, after a grid search, we optimized the penalty factor C'. Likewise in
the case of the RBF kernel, we optimized by a grid search both the penalty factor
C and the v parameter.

Echo State Networks

ESN [32] is an effective recurrent neural network (RNN) that has attracted substan-
tial interest due to its performance in time-series [33, 34]. The core of ESN is a large
fixed reservoir. The reservoir contains a large number of randomly and sparsely con-
nected neurons. The determination of the readout weights is the only trainable part;
the weights can be obtained simply by linear regression. The necessary and suffi-
cient condition to generate the echo state is based on information from the dynamic
reservoir, such as the spectral radius of the internal weight-matrix. We optimized
the three hyper-parameters; number of neurons, spatial radius and regularization
parameter, by a grid search.

Physical Prosthesis Control

For the purpose of the online implementation, we used the RIC hand [35], a proto-
type prosthesis with two degrees of actuation, that is able to perform two grasping
postures: hand open, power grasp and prismatic-2 fingers. Due to its design, the
RIC hand can offer access to a lower level control of the actuators. In this control
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scheme, we could control the actuators directly hence avoid any delays that arise
from using control interfaces offered by commercial prosthesis. We mounted the
prosthesis on a socket fitted to the user’s residual forearm and a goniometer was
placed on the elbow joint to record arm extension. We collected 12 EMG signals
from the arm, preprocessed and classified them in real time and we inserted the
classification output into a majority vote algorithm. The buffer of the majority
vote was 0.5s. Once the majority vote confidence exceeded a threshold of 0.5, i.e.
more than half of the votes belonged to the same class, the corresponding command
was sent to the prosthesis.

One subject, TR4, participated in a real-time control experiment. During the
training phase, we cued the subject to perform 20 reach-to-grasp motions for each
trained grasp type. The collected EMG signals were used to train two SVMs with
RBF kernels: the first classifier used EMG from all the motion phases, whereas the
second classifier was trained with EMG collected after arm extension (only the third
phase). During the testing phase, the subject performed two sets of 20 reach-to-grasp
trials for each classifier with the prosthesis turned on. Prior to the testing phase,
the subject controlled the prosthesis for 10 — 15 minutes to familiarize themself
with the device control. We used two metrics to compare the performance of the
classifiers: the classification accuracy, and the time to reach a 0.5 majority-vote
confidence level. We performed a two-sample t-test to validate the null hypothesis
and to determine if there were significant differences between the results from the
two classifiers.

Results
Phases of the Motion
To examine the muscle-activation patterns during the reaching motion, we divided
the recorded EMG signals in two groups: muscles of the forearm and muscles of the
upper arm. Figure 2 presents representative examples of the average EMG activity
of each muscle group in normalized time; the blue color corresponds to the muscles
of the forearm and the red color corresponds to the muscles of the upper arm. The
vertical dashed lines highlight the average time of the shift from the 1% phase to
the 2"¢ phase, with the green shaded areas corresponding to the standard deviation
of that shift. We calculated these events from the kinematic data recorded by the
goniometer. The mean reaching time varied between 0.97 £+ 0.16s to 1.26 £ 0.3s for
able-bodied subjects and from 1.13 £ 0.23s to 1.7 4+ 0.3s for amputee subjects

We identified the maximum elbow-joint angular velocity at 30 —45% of the reach-
ing motion for all the participants. We found no significant difference between able-
bodied and amputee subjects regarding the timing of maximum elbow-joint angular
velocity (p = 0.55,t — value = 1.45). The activation pattern of the distal muscles
(muscles of the forearm) differed between amputee and able-bodied participants. In
particular, the activation of the distal muscles in able-bodied subjects occurred ear-
lier than in amputees. The muscular activity of the forearm muscles of able-bodied
subjects reached a peak from 20 — 60% of the motion, decreasing as the motion is
came closer to completion.

The EMG activity of forearm muscles of the amputee subjects increases gradually
during the reaching. Whereas, the proximal muscles remain at a constant level
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of activation after the maximum angular velocity is reached. This difference in
activation timing could have an effect on classification performance.

We compared the average activity across the three phases with a one-way
MANOVA. As it rejected the null hypothesis, we found significant differences be-
tween the phases (p < 0.01, Degrees of Freedom (DoF)= 2) for all the subjects
(able-bodied and amputees). Figure 2 presents the Gaussian models of the phases
on the first two principal components for the complete muscle-set and the muscles
of the forearm, respectively.

Although some models partially overlap, they have different mean values for all
subjects, regardless of the muscle-set. In able-bodied subjects, the third-phase mod-
els are concentrated around the origin and have standard deviations smaller than
the other phase models.

For amputees, the third-phase models are concentrated around the origin, similar
to the able-bodied results. however, these models cover an area larger than the
corresponding models for the able-bodied subjects. Also, a larger overlap was found
between the models first and second phases for all amputee subjects, with larger
distance from the models of third-phase.

We compared the average muscle activity during the three phases for each class
(i.e. grasp type) by performing a one-way MANOVA. The one-way MANOVA failed
to reject the null hypothesis (p < 0.001, DoF' = 2), indicating significant differences
between the means of the phase models for all the subjects. The significant differ-
ences between the three phases show that the data from all classes in the space
change continuously, thus reducing the ability for a classifier to generalize across
the three phases if it is trained on only one of them.

Decoding the Grasping Intention
As stated previously, we compared the performance of four classifiers (LDA, SVM
with linear kernel, SVM with RBF kernel and ESN). Figure 3 presents the average
classification accuracy of each classifier over a time interval of 2s. After performing
an analysis of variance (ANOVA) for a significance level of 5%-a = 0.05, we did
not notice any significant differences between the classifiers’ performance for each
group of classes ({p = 0.7, F-value=0.43}, {p = 0.5, F-value=0.97} and {p = 0.8,
F-value=0.35} for 5, 4 and 3 classes respectively). However, the SVM classifier
with the RBF kernel performed better than the other classifiers with 60.45 4+ 8.2%,
65.824+8% and 77.445.88% classification accuracy for 5,4 and 3 classes, respectively,
but this difference was not significant. This was followed by the SVM with the linear
kernel, the ESN and the LDA. As the SVM-RBF classifier achieved slightly better
performance, the rest of the results correspond to the performance of this classifier.
Figure 4 presents the classification performances of the five grasp types in each
of the three motion phases. Poor classification performance occurred during the
first phase in both amputee and able-bodied subjects. Accuracy improved in the
subsequent two phases (see Figure 4a and d). Grasp types; precision disk, palm
pinch and lateral grasp, yielded the best performance in second and third phases for
amputee subjects (see Figure 4b and c). The lateral grasp improved from 58.14+6.2%
in the second phase to 60.45 + 8.2% in the third phase. Accordingly, the precision
disk and palm pinch increased from 60.2 + 10.2% to 70.5 + 1.2% and 68.4 4+ 6.8%



Batzianoulis et al. Page 8 of 16

to 71 + 8.9%, respectively. The precision disk and lateral grasp types had the best
classification accuracy for the able-bodied subjects as well (see Figure 4e and f).
These grasp types’ performances increased from 60.2 + 10.2% and 50.8 + 9.9% in
the second phase to 75.54+7.6% and 87.14+3.5% in the third phase, respectively. We
noticed the worst performance in the prismatic-4 fingers for the amputee subjects,
with 49.6 & 5.6% in the third phase (Figure 4c), and in prismatic-2 fingers for the
able-bodied subjects, with 47.74+8% in the third phase (Figure 4f). The prismatic-2
fingers and palm pinch were misclassified for one another in the third motion phase
for the able-bodied subjects about 25 — 30% (see Figure 4f). This indicates that
the muscular activity during the preshaping of the fingers is similar for these grasps
types. The reason for this could the similarity of the two grasp types as they differ
mainly on the configuration of the middle finger.

Figure 5a-c presents the evolution of average classification performance of the
control group, that consist of the eight able-bodied subjects, and the individual
performance of all the amputee subjects, until 2s after the motion onset. For the
cases of 4—grasp and 5—grasp types, the classification performance of each classi-
fier follows the same profile: poor classification performance in the first phase of
the motion, and the performance increases as the hand approaches the object. Sub-
ject TR1 achieved the best performance of all amputee subjects, with performance
comparable to that of the able bodied subjects, whereas TR2 had the lowest per-
formance. TR3 and TR4 exceeded the level of 60 — 70% in the accuracy at the end
of the first phase and the beginning of the second phase, and they stayed at this
level until the end of the third phase.

In the case of 3—grasp types, TR3 and TR4 appeared better performance than
the control group in the first phase, reaching 80% of accuracy during the shift to the
second phase. In the second phase, the performance among the subjects TR1, TR3
and TR4 reached an accuracy of 90 4+ 10%, which is higher than the corresponding
performance of the control group (76 4+ 20%). The classification accuracy in the
third phase for the these amputee subjects stayed above 80%, though lower than
the control group (95 + 5%).

Reducing the number of channels

In this section, we compare classification performance for when using only the
forearm EMG with that of using the complete muscle set. An SVM classifier with
an RBF kernel was trained for each muscle set: the complete muscle set and the
five muscles of the forearm. Figures 5d-e present the evolution of the classification
accuracy for a duration of 2s. As shown, using fewer EMG sites led to decreased
performance for the amputee subjects. From the end of the second phase and after-
wards, the average classification accuracy decreased significantly from 67.2+8.4% to
60+8.2% when predicting among 5—grasp types (p < 0.01, t-value=4.33). Although
the reduction of the EMG sites available had a large impact on the performance of
amputee subjects, when using only the muscles of the forearm the performance of
able-bodied subjects was higher than when using the full muscle set.

Comparing the performance of TMR versus non-TMR subjects

In this section, we compare the classification performance between TMR subjects
(TR1 and TR3) and non-TMR subjects (TR2 and TR4). In the case of 5 classes,
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the average classification accuracies and standard errors in the first, second and
third phases of the TMR subjects are 44.1 + 10.1%, 62.7 +86.5% and 74.9 &+ 6.1%,
respectively. The corresponding performances of the non-TMR subjects in the three
motion phases are 47.6 +8.9%, 54.9+7.5% and 67+2.5%. The classification accura-
cies are at the same level also in the case of 4 classes. More specifically, the average
classification accuracies and standard errors of the TMR subjects are 45.5 + 8.9%,
76.45 +6.4% and 77.7 £ 8.4% in the first, second and third phase, respectively. The
corresponding performances of the non-TMR subjects in the three motion phases
are 48.33 £+ 10.7%, 58.3 + 6.9% and 77.72 & 8.6%. In the case of 3—grasp types,
both the TMR and non-TMR groups have improved accuracies with respect to the
other two cases (5 and 4 classes). In the first and third phase, the average classifi-
cation accuracies of the non-TMR group are at the same level as the TMR group;
68.6 8.8% and 64 £14.4% for the first phase and 87.6+£3.4% and 83.6 4% for the
third phase, respectively. However, the accuracy of the TMR subjects exceeds the
one of the non-TMR subjects in the second phase; 90.2 + 4.6% and 77.8 + 10.9%,
respectively. As stated above, TR1 (a TMR-subject) has the better performance
among the amputee subjects.

On-line evaluation

To demonstrate the usability of our proposed approach for controlling a prosthetic
hand, we present an on-line implementation of our approach. We followed the proto-
col described in Section ITE. One amputee subject took part in this validation. The
subject performed reach-to-grasp motions while commanding the device to close in
one of two grasp types: a power grasp or a prismatic-2 fingers grasp. In total, the
subject performed two sets of 20 trials for each training approach: training over all
phases or training only over the third phase.

An SVM with an RBF kernel was trained off-line, while the testing was performed
on-line, where the subject performed 20 reaching motions for each of the aforemen-
tioned training approaches. As soon as the classifier reached the confidence threshold
of 0.5, the corresponding motor commands were sent to the prosthetic hand to drive
the fingers to their desired final posture. We assessed the performance through two
metrics: classification accuracy and time to generate a confident prediction on grasp
type. Results are shown in Figures 6b-c.

When trained with all three phases of the motion, the pattern recognition system
showed a higher performance in terms of the overall classification accuracy compared
to the one that used only the third phase. The overall classification accuracy, when
using all three phases for training the system, was 804:-5% whereas the corresponding
accuracy when the system was trained only with the third phase was 55 & 5%, see
Figure 6¢c. When using only the third the system identified poorly the power grasp
type, despite having similar performance for the prismatic-2 fingers grasp type.

The system that trained on all 3 phases was also faster at delivering a robust
prediction. On average, it offered a confident prediction 25 — 40% earlier than the
system trained only on the 3rd phase. For the correctly classified trials, when the
system trained over all the phases the time needed to exceed the confidence level was
significantly lower(p = 0.0194, t-value=2.49) than when it used only the third phase,
0.3£0.10 and 0.42+0.12s, respectively (Figure 6b). The pattern recognition system
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trained with all the phases reached the confidence threshold at 0.26 + 0.04s for the
prismatic-2 fingers grasp, which was significantly faster (p = 0.003, t-value=3.49)
than the system trained only with the third phase. Regarding the power grasp, the
system trained with all the phases reached the confidence threshold faster, but not
significantly (p = 0.3841, t-value=0.93), 0.37£0.13s than 0.48 £0.18s, respectively.

Discussion

We present an approach for decoding the grasping intention during reach-to-grasp
motions. Although the classification results for our proposed approach are compa-
rable with previous studies [31, 36, 37], it is different for two main reasons. Previous
studies examine the classification performance of different hand gestures, including
wrist motion, hand open/close, a small number of grasp types (2-4) and in some
cases the resting condition [38, 39, 40]. Whereas, we focus only on grasping gestures
with different finger configurations. Most importantly, previous studies examined
static hand-gestures, whereas we investigate the classification of EMG activity dur-
ing dynamic motions. The inclusion of the reaching motion in the training procedure
increases classification performance and confidence, enabling faster activation of the
prosthetic device while yielding a seamless and intuitive interaction with the user.

When a hand reaches for an object, the velocity and acceleration profile of the
motion are coordinated with the motion of the fingers and the wrist, and the fingers
function in a synergistic manner [41, 28]. It is shown that the reach-to-grasp motion
consists of many components [42, 43]. Specifically, the motion can be separated into
two phases; (1) the reaching phase, when the hand approaches the object while the
fingers are pre-shaping [43],and (2) grasping phase, where the hand has traveled
the distance to the object and the fingers have taken their final form. This gradual
molding of the fingers is revealed through different patterns of muscle activation
visible during the reaching motion, which we noticed this in our analysis on able-
bodied subjects. Although we cannot observe preshaping in amputees, we assume
that this pattern of muscle activation would be preserved partially and would be
revealed through different patterns of muscle contractions, as we progress in reach-
to-grasp movement.

Taking inspiration from human behavior, we examine the classification perfor-
mance with respect to the velocity of elbow extension. In particular, we segment
the reach-to-grasp motion into three phases: (1) the first phase- where the veloc-
ity of the motion increases, (2) the second phase- where the velocity of the motion
decreases and (3) the third phase- when the reaching motion is complete. As the av-
erage activity of the EMG signals between the three phases is significantly different,
training a classifier with only one phase could increase the difficulty of generalizing
over the three phases. To highlight these differences, we model the first two principal
components with Gaussian Mixture Models (GMMS) for each phase and show phase
models occupy different spaces and they only partially overlap(Figure 2). Hence,
classification during different phases of the reaching motion could reduce the vari-
ability of the EMG signals, thus increasing the classification accuracy. The lack of
motion after the contraction of the muscles could lead to different EMG patterns.
As shown in Figure 2, amputee subjects contract their forearm muscles even in
the latter stages of the reaching motion, whereas the EMG of able-bodied subjects



Batzianoulis et al. Page 11 of 16

converges to lower levels in the final stages. Furthermore, in the case of able-bodied
subjects, the fingers pre-shape during the early stages of the reaching motion [43]
which results in earlier activation of the forearm muscles. As no pre-shape occurs in
transradial amputees, they potentially contract the muscles but solely to close their
phantom hand. This could lead to high accuracies in the prediction of the grasp
type, even from the first phase with a smaller number of grasp types, as presented
in Figures Hc and 6c.

Therefore, to increase the efficiency of the classification approach, it is important
to look into the patterns of the muscular activation. The authors in [39] point
out that the muscle activation differs with respect to the arm position and that
examining the EMG patterns is important. In our work, we elaborate on the EMG
pattern during reach-to-grasp motions, both on able-bodied subjects and individuals
with amputation.

In our real-time evaluation, we intend to highlight the negative impact that the
lack of good classification over the entire duration of the reaching motion could
have in the natural coordination of motion of the prosthesis with the arm. More
specifically, we compare the performance of a classifier when it is trained only with
one phase (i.e. the third motion phase) against our approach that takes the overall
motion into account. Previous approaches [13, 14, 15] train a pattern recognition
system while maintaining the arm in a fixed position while monitoring the contrac-
tion of the muscles. This arm configuration is similar to our third phase, where
the extension is complete and the arm remains in the same position. Our results
show that the muscle contractions when having the arm fixed are different from the
contractions when the arm extends hence the pattern recognition fails to generalize.
This leads to lower classification accuracy that results in a slower reaction of the
prosthesis. This outcome is aligned with the findings of [38], where a classifier that
takes into account different arm positions outperformed a single-position classifier.
The benefits of a dynamic training protocol are also shown in [40]. Our work is
complementary to these approaches in that it focuses on the timing of classifica-
tion. As in [40], we address the problem of dynamically estimating the grasp type.
To reduce the time needed for reaching a sufficient classification confidence, so as
to provide faster reaction time, we focus on combining detection mechanisms.

Relating muscle activation of amputee subjects to the classification accuracy in
Figure 2, we noticed that as the activation level increases, performance also in-
creases. The evolution of the classification accuracy follow the same trend on all
the subjects: lower classification in the first phase an higher in the second and third
phase(Figure 5). Although it seems that forearm muscles are most important for
classification performance, as they are responsible for finger motion, the muscles of
the upper arm can help improve the classification performance. Our results show
a decrease in accuracy for our amputee subjects when we remove upper arm EMG
data by 10% on average, see Figure 5e. This outcome is aligned with the findings
of [20], where it is shown that the activation of the proximal muscles is statistically
different when the arm reaches to grasp objects with different characteristics or ori-
entations. Although our experimental protocol constrains subjects to a single-hand
orientation, the decreased accuracy when removing the upper-arm EMG indicates
that the proximal muscles are important for classification accuracy during reaching.
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In addition to the importance of the proximal muscles, we notice an improvement
on the performance of the individuals who undergo a TMR operation. More specif-
ically, the classification accuracy on the TMR subjects becomes better than the
non-TMR subject on the second motion phase, whereas it stays at the same level
of performance in the third phase. These results are aligned with studies [8, 9] that
indicated the potential benefits of TMR on the classification accuracy. However,
considering the small sample size of the group in our study, these results should be
taken with a grain of salt. The improvements that TMR operations could provide
on the performance of a myoelectric pattern-recognition system should be further
investigated.

We compare four different classification methods, but find no significant differ-
ences in classification performance. LDA perform well: delivering similar results
with SVM with either a linear or RBF kernel. The performance of the Echo State
Network was on a level similar to the other classification methods. It is worth men-
tioning that no feature extraction is performed on the EMG before being inserted
in the ESN. In this case, we let the random reservoir select the features and then
train a linear regressor for classification. This indicates that a random projection of
the EMG signals to a very high dimensional space could be sufficient for achieving
good classification results.

This work presents an approach to improve the reaction time of a hand prosthetic
device through a systematic assessment of the accuracy of a myoelectric pattern
recognition system over different phase periods during reach-to-grasp motions. The
EMG signals are collected from seven muscles of the upper arm and five muscles of
the forearm, as we focus on a potential application for individuals with transradial
amputation. Our approach could potentially be implemented for proximal amputa-
tions in cases where the user has an enhanced ability to control a myoprosthesis, e.g.
after undergoing a TMR operation. TMR has been shown to increase the accuracy
of a myoelectric pattern-recognition system also for the case of transhumeral am-
putation [9, 44]. This improvement increases the number of degrees of freedom that
individuals with transhumeral amputation can control. A potential extension of our
approach to a proximal upper-limb amputation could be possible for individuals
with TMR. This extension would however require further work to model the activa-
tion of the residual muscles of the upper arm during reach-to-grasp motions and to
select a smaller number of grasp types, for increasing the classification confidence.

An important extension of our approach is the introduction of a robotic control
scheme that derives from the natural motion of the human hand, and that imparts
a human-like behavior to the prosthesis. As the EMG activation is significantly dif-
ferent among the three phases of the motion, a combination of different classifier for
each phase, or a combination of those, could improve the classification performance.
This approach could also be applied in conjunction with a synergistic closure of the
hand [28], tackling the problem of the high dimensionality of the task. A direct ex-
tension of this work could be the coupling of the closure of the hand with the motion
of the arm; this could provide a more natural coordination between the hand and
the arm. The introduction of different hand orientations and an additional wrist
control could be a further expansion of the approach.

Another interesting extension of the proposed approach could be the introduction
of the kinematics of the arm, towards a multi-sensor pattern-recognition system. In
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this case, the angular position or velocity could correspond to a parameter of the
system, providing information regarding the phase of the motion and potentially

improving the accuracy of the system.

Conclusion

In this work, we have presented an electromyography-based approach for decoding
the grasping intention during reach-to-grasp motions. Four able-bodied subjects and
four individuals with transradial amputation participated in our study. In order to
examine the evolution of the classification accuracy over the reach-to-grasp motion,
we separated the motion into three phases: (1) the first phase- where the velocity
of the motion increases, (2) the second phase- where the velocity of the motion
decreases and (3) the third phase- when the reaching motion is complete. Our results
have shown that it is possible to decode the grasping intention before the end of the
reaching motion, especially during the second motion phase. The inclusion of the
muscular activity of the upper arm to the pattern recognition algorithm increases its
accuracy by 10% on average. As a proof of concept, we have evaluated our approach
with an individual with a transradial amputation controlling a myo-prosthesis in
real-time. The real-time evaluation shows a significant improvement in classification
accuracy as well as in the reaction time of the device when all the motion phases
are included in the training data. Further extensions should involve the evaluation
of our proposed approach in in real-life conditions as well as with different hand’s

orientations.
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Figure 1 a) Typical profiles of velocities of the elbow and hand aperture in abled-bodied subject [21, 45, 46]
compared to that generated with a traditional prosthetic device, as presented in [25, 26]. During reaching, the
aperture of the human hand (solid green line) changes in coordination with the extension of the arm (dashed
blue line). In contrast, the prosthetic hand (dash-dotted red line) begins its motion later in the reach-to-grasp
cycle, once the elbow is fully extended. In our approach, we separate the reach-to-grasp motion into three
phases (denoted by dashed vertical lines) according to the angular acceleration of the elbow joint a.;. We
distinguish between acceleration, deceleration and rest phases. We present that a pattern recognition system,
trained including the reaching motion, could gain efficient prediction confidence early in the reaching motion
and, thus, activate faster a prosthetic device. b) ) The selected five grasp types used in our classification,
following the names and using figures from the taxonomy of [47]. c) Experimental set-up for training the system
with amputee subjects in data recordings. EMG-information from the amputated arm are recorded while the
subject performs the reach and grasp motion with his/her intact arm.
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Figure 2 Representative examples of the EMG activity and the phases of the motion of the able-body subject
4 (left) and the amputee subject TR4 (right). The graphs in the middle correspond to the linear envelope of the
EMG signals of the upper-arm (red lines) and the forearm (blue lines). The grey shadow areas correspond to the
standard deviations of the timings where the shifts between the phases occurred. The graphs on the bottom of
the figure show a representation with Gaussian Mixture Models (GMMs) of the EMG activity of the three
phases projected on the first two components of third phase after performed Principal Component Analysis
(PCA). The analysis was performed on the complete muscle set (N = 12) and when using only the muscles of
the forearm (N = 5). The GMR representation shows limited overlap between the three phases, indicating
differences on the EMG activity of the phases. Occasionally, an extended overlap occurred between the first and
second phases as presented in the bottom-right graph. However, the third phase had rarely overlapped with any
of the other two phases.

Tables
Additional Files
Supplementary materials

The supplementary materials contain the activity of the selected muscles as well as results regarding the models of
the motion phases for all the subjects.
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Figure 3 The average performance of all the classification models through out the whole trajectory of 2s
among all the subjects.No significant differences were noticed between the performances of the classifiers for
each group of classes(p = 0.7, p = 0.5 and p = 0.8 for 5, 4 and 3 classes respectively.
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Figure 4 The confusion matrices for all the motion phases. The confusion matrices present the average
classification accuracies and their standard deviations for the five grasp types. The matrices on the top
correspond to the classification performances among the amputee subjects while the matrices on the bottom
correspond to the classification performance of the able-bodied subjects. The horizontal axis of the confusion
matrices correspond to the predictions while the vertical axis correspond to the ground-truth. The color of the
tile was assigned according to the colormap of the classification accuracy on the right.
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Figure 5 The evolution of classification performance and standard error through time for 2s after the motion
onset. The vertical dashed lines correspond to the average moments of the shifts of between the phases while
the shaded areas present the corresponding standard deviations accordingly. Figures a,b and c present the
evolution of the classification performance of the control group and the amputee subjects for 5,4 and 3 classes
accordingly. Figures d and e compare the classification performance on 5 classes when using the forearm muscles
and complete muscle-set as an input to the classifier.
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Figure 6 The results of the on-line evaluation. a) Screen-shots of two examples of the on-line implementation
showing an activation of the prosthetic device during the second phase. The graph presents the confidence of
the majority vote with the elbow’s angular velocity profile. b) the average time and standard deviations until the
confidence threshold was reached for the correctly classified trials. The pattern recognition system exceeds the
confidence threshold of 0.5 significantly faster (p = 0.019) when trained including all the phases of the motion.
c) the classification accuracy of the testing phase of the on-line evaluation. The pattern recognition system
presents better accuracy when trained including all the phases of the motion.

Table 1 Demographic information of the four transradial amputatee subjects. TR1 and TR3
underwent a TMR operation for neuroma pain, not for improving prosthetic control. TR1 is not a
user of a myoprosthesis due to financial reasons.

Subject TMR  User of myoprosthesis Age  Years since amputation

TR1 Yes No 25 7
TR2 No myoelectric prosthesis 53 38
TR3 Yes myoelectric prosthesis 51 2
TR4 No myoelectric prosthesis 68 >30

Video
The video presents the motivation of this study, the experimental protocol of the off-line analysis as well as an
illustration of the models of motion phases and the real time evaluation of the approach.



Batzianoulis et al. Figure 1

Reaching-to-grasp motion

1°* phase 2™ phase

Grasp types

Prismatic-2 fingers

v Palm pinch

. Lateral

Precision Disk

=
¥

Prismatic-4 fingers

Prosthetic
hand

(D)

Normalized velocity

-

Ny

Period of exceeding a confidence
threshold if the system is trained
with all the phases of the motion

= = Elbow flexion velocity profile (v, )
mmmm Hand aperture velocity profile (v, (c)
= um Prosthetic hand aperture velocity profile (vF) in a traditional training approach

a .the angular acceleration

(a)



Batzianoulis et al. Figure 2 Able'b()died Subject A"Ip[{tee SUbjeCt

1% phase 2" phase 3" phase 1% phase 2" phase

)

el

el

el

: B!
!
'|-;
B i
bl 1
L
.
.~ a
1
I'

0.16 N 0.16
)
': . 2
; et Upper-arm . _\»v| == Upper-arm

® .
: mm Forearm o V! mm Forearm
2 S

A

A
125 0 25 50 75 100 125
Normalized time{%] Normalized time[%)
Complete muscleset Forearm muscles
Complete muscleset Forearm muscles

ot
(o)

Density

=

Density
O

Density

[
bt Ty
.'

/

1 1%t PC :

mm 1" phase mem 2" phase W= 3" phase mm 1% phase mmm 2" phase === 3" phase




zianoulis et

Classification accuracy [%]

al. Figure 3

Average performance

-
o
-

BSVM - RBF kernel

30
60
40
20

O [— .
5 classes

.SVM - linear kernel

4 classes

PESN ¥LDA

3 classes



Amputee subjects

(a) (b)

Able-bodied subjects

Classification accuracy [%0]




Batzianoulis et al. Figure 5 5 classes 4 CIasses 3 CIasseS

1% phase i 2"! phase i 3™ phase 1¥ phase 1 2" phase 1 3™ phase 1 phase v 2" phase 1 3™ phase
'\8 ae( I ae! I Hﬂlﬁo '\E aet I ael I o Igﬂ ’\E ael I ael I aefzo
S, 100 [ I 2, 1007 l l <, 1001 l _
D 99 [ I D | . D 9of
g o | : - S sof 7oy
8 70“ 8 8 Tﬂ'—' x*ﬁ.{:: ’!?-'Fy
Qo 60 Q O - N
0 3 = ‘5“/-' i e |
50 A /
- . = = N o aht |
.9 40 ij}g\ =.~a-_~,a."‘;'$f -’\ _I::" .9 40 - R = .9 40?"-;:.? .-'. '
S gones 4 | \/ | === Control group et f X} |  — Control group ey ' N I | — Control group
qe] TR1 (TMR) g 30| TR1 (TMR) Qg 30 TR1 (TMR)
.8 20 I I TR2 -8 20r - I I TR2 08 20F I I TR2
— I s TR3 (TMR) e A I mmsm TR3 (TMR) = I mssm TR3 (TMR)
% 10 . s "am TRg gg 10 ' ! msam TRg % 10¢ ] I mm TR4
o h - ! : _H | : ! | | § ] —— ! y _ | Sy _ . Falk | ) ‘
"8 0 02 04 06 0.8 1 1.2 14 16 1.8 2 8 0o 02 0.4 06 0.8 1 12 1.4 1.6 1.8 2 8 % o2 0.4 06 08 1 1.2 1.4 1.6 1.8 2
Time[s] Time[s] Time[s]
(a) (b) (c)
Able-bodied subjects Amputee subjects
1** phase i 2™ phase i 3" phase 1t phase i 2™ phase i 3™ phase
’\ 4—\ ll—

’3 {Iea I ':ter I ae:'g o ™ ael I ":rer I acz ~O

X 100[ [ i X 100f I I

~ L Nl .

- 90 | | - [ I

O : | S |

g 80 [ l = = 80 | |

3 7of I 5 70 l =

O  6of O =

{% 60 I I o 60 I : I

L > o =

2 90 - I o 50 P 4 I

S 4o . | S 40 '- I

~ = ’Hﬂ 0

8 3w I I complete 8 30 | | com]:)lletf:t

&3 20 | | muscleset % 20 I I I musclese

& 10 I I forearm muscles A 1of [ | forearm muscles

I i . SRS . : 8 N 2

- o 02 04 0.6 08 1 12 1.4 1.6 1.8 2 O o 0.2 04 06 08 1 1.2 14 1.6 1.8 2

Time[s] Time[s]



Batzianoulis et al. Figure 6

Power

!
I
|
I
I
G |
grasp k|
I
|
|
|
Prismatic- :
2 fingers |
|
I
|
) |
| Elbow angular
0.5 I velocity
| Confidence:
| s Power grasp
I . .
I Prismatic-
2 fingers
o 0.2 0.4 0.6 0.8 1 1.2 1-4 1.6 1.8 2
Time [s]
(a)
Confidence timings Classification performance
A LG IR LU T systein trained using
only the 3™ phase ’\E — only the 3™ phase
0.7 v mm SYStem trained using = y SYstem trained using
T all the phases =) 100 all the phases
0.6 | o * % 00
— — =1
? 0.5 | &)
s s 7°
u ©O-14f e~ 60
£ ol S so
- < 40
0.2 | :.h:’.?. 30
0.1 k vy =20
W
Yol 10
O . - O o
Power grasp Prismatic- Overall Power grasp Prismatic- Overall
2 fingers 2 fingers

(b) (c)



	JNER_final2
	figure1_small
	figure2_small
	figure3_small
	figure4_small
	figure5_small
	figure6_small

