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ABSTRACT

The vegetation of semi-arid savanna landscapes relies on the fragile equilibrium between rainfall,
grazing and fires [Trodd and Dougill, 1998]. For a sustainable management of their farms, farmers
need to take into account this delicate equilibrium and correctly balance the amount of animals
and the available food and water resources. These two quantities are estimated every year at
the end of the growing season (end of May) to define the yearly management plans [Reinhard,
2017].

Ground based techniques for animal counting and biomass estimation are long and time
consuming processes that can hardly provide a good coverage of the farm [Reinhard, 2017].
Farmers are now more and more looking towards remote sensing techniques to overcome the
field work and achieve both these tasks.

The main goal of this project was to classify the soil cover in Kuzikus Wildlife Reserve,
in the north-eastern Kalahari region of Namibia, in order to provide an estimate of the food
availability for wildlife at the end of the growing season. Ultra-high resolution UAV images
and coarse resolution satellite images were classified using both supervised and unsupervised
classification techniques.

Random Forest and Support Vector Machine supervised classifiers gave encouraging results
and the research showed the great potential of UAV and satellite imagery for biomass estimation.
Used together, these two complementary types of data allow to have both a detailed plant species
recognition and a general overview of the study area.
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CHAPTER 1

INTRODUCTION

1.1 Context and Problematics

Semi arid savannas are ecoregions that mostly develop in regions with hot semi arid climates in
the tropics and subtropics. They are most commonly found in Africa, South Asia and Australia,
but also in some areas of Europe, North and South America. Those regions are characterized
by hot summers, warm to cold winters and few precipitation [Peel et al., 2007]. Because of this
particular climate, herbaceous vegetation dominates, with some scattered shrubs and trees.

Semi-arid savannas vegetation relies on the fragile equilibrium between rainfall, grazing and
fires [Trodd and Dougill, 1998]. After each rain season, vegetation regrows and is grazed by
animals. During the dry season, it can be destroyed by occasional fires. Shrubs are a stable
and resistant type of vegetation which usually wins the competition against grasses [Trodd
and Dougill, 1998]. After fires, though, grasses recover faster, which helps maintaining the
equilibrium between the two.

While rainfall and fires act mostly on the short term, grazing can affect the dynamics of the
vegetation on the long term and break this equilibrium.

When in the late 1800’s Europeans settled in the tropics and sub-tropics, they introduced
domestic cattle and sheep [Walker et al., 1981]. The introduction of those mammals, whose
population rapidly increased and exceeded the maximum size sustainable by the environment
(carrying capacity), significantly reduced the number of indigenous mammalian herbivores and
their predators [Walker et al., 1981].

These events caused radical changes in the vegetation of the semi-arid savannas. Cattle and
sheep do not eat shrubs and prefer perennial grasses. The overstocking of those mammals and
the fencing of farms caused high grazing pressure. Together with sufficient rain and reduction
of the frequency of fires, this led to a decrease in the perennial grasses cover, in favor of annual
grasses and shrubs. Even with a significant decrease of grazing pressure, the reestablishment of
perennial grasses may take decades [Walker et al., 1981],[Joubert et al., 2008].

The phenomenon of "excessive expansion of bush at the expense of other plant species,
especially grasses" [De Klerk, 2004] is called bush encroachment. It causes an "imbalance of
the grass:bush ratio, a decrease in biodiversity, and a decrease in carrying capacity" [De Klerk,
2004].Trodd and Dougill [1998] recognize it as "the most widespread ecological problem affecting
semi-arid range lands utilized for cattle grazing". The increase in domestic livestock, poor range
land management practices and the exclusion of occasional fires are the most important causes
that contributed to this phenomenon. The decrease in wild herbivores populations (indigenous
browsers and grazers), replaced by livestock, and the consequent increase of pressure on the grass
layer created a favorable environment for bushes and shrubs. Perennial grasses lost their com-
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petitive advantage [De Klerk, 2004]. Moreover, the introduction of domestic livestock pushed
farmers to suppress fires, which used to play an important role in maintaining the equilibrium
of semi-arid savannas vegetation [De Klerk, 2004]. As grass recovers faster than shrubs, one
tool to reestablish the equilibrium could be controlled fires [Joubert et al., 2008]. Grasses use
water in the top soil layers, while bushes and shrubs the one in deeper layers. In overgrazed
areas, the lower grass cover allows water to easily percolate in the deeper soil layers, favoring
bush encroachment |Reinhard, 2017|. In Namibia, this phenomenon is estimated to affect up
to 45 millions ha of land with negative consequences on agricultural productivity and ground-
water [De Klerk, 2004]. The central, eastern and north-eastern regions are the most affected.
Blackthron (Acacia mellifera), Sickle bush (Dichrostachys cinerea africana) and Three thorn
(Rhigozum, trichotomum) are the main species causing bush encroachment.

Farmers need to take into consideration this delicate equilibrium between vegetation and
grazing for a sustainable management of their farms. Two points are important, in particular
for wildlife farms: a) Estimating the carrying capacity (i.e. available food and water resources)
and b) Estimating wild animal population numbers by species.

Every year, at the end of the growing season (end of May), farmers estimate the fodder
availability for the year and consequently adapt their management plan. They have to pay
attention to correctly balance the amount of wildlife and the food available. If the food and
water resources are not enough, three choices are available to maintain the balance: translocate
animals to other areas, hunting or introducing predators [Bothma and Toit, 2010].

Estimating the amount of food and animals is a long and complicated task. Ground-based
analysis can hardly provide a good coverage of the spatial patterns of the vegetation and animal
counting is often done using an helicopter, causing disturbances to the wildlife [Reinhard, 2017].
The use of remote sensing is a new promising technique to help farmers achieving both this
tasks. Thanks to airborne imagery, it is possible to get a high spatial and temporal cover of
large areas in relatively short time and without the need to directly access them.

Amongst these new possibilities, satellite imagery is freely available at resolutions down to
10-15 meters and provides a good overview of the temporal evolution of the land cover over
the 30 past years. It can be useful to provide a general understanding of land cover change
dynamics and help estimate the quantity of fodder available for the next year [Reinhard, 2017].
For more precise analysis, commercially available low altitude Unmanned Aerial Vehicles (UAV)
can be used to produce very high resolution (sub-decimeter) imagery. The use of UAVs can be
combined with sensors like RGB, multispectral, hyperspectral or thermal in order to retrieve
different information from images. However, their limited endurance restricts them to map much
smaller areas than those that can be covered with manned aircrafts or satellites. More and more
studies are being developed on how to use satellite or UAVs imagery for quality and quantity of
forage estimation or animal counting [Ramoelo et al., 2012], [Rey et al., 2017]. The information
obtained from these two types of imagery is complementary.

Farmers are more and more interested into these new technologies. Kuzikus Wildlife Re-
serve, in Namibia, for example, is part of a project that aims at developing an innovative land
monitoring strategy using ultra-high resolution photographic imaging from drones [SAVMAP,
2017].

1.1.1 Kuzikus Wildlife Reserve

In the south-eastern Kalahari region of Namibia, Kuzikus Wildlife Reserve has been for over 70
years a cattle and sheep natural reserve (figure 1.1). Since 1964, it was one of the first farms to
slowly restore into a wildlife reserve by reintroducing locally extinct species and allowing wild
animals to reproduce. Today, this 10,300 ha large reserve (figure 1.2), is a hot spot for ecological
integrity and biodiversity and hosts more than 3000 individuals from more than 40 mammals
and reptiles species, more than 90 insects species and 200 birds species [Kuzikus, 2017|, [Kuzikus,
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Figure 1.2: Kuzikus Wildlife Reserve [DigitalGlobe, 2018], [SAVMAP,

2017]

1.1.2 Animal-Vegetation relations

In Kuzikus, animals are not fenced within the reserve. It these conditions, it is difficult to

establish a good strategy for grass cover and farmers need to constantly control the game number

by “mimicking the function of predators and droughts [Kuzikus, 2018|. This, other than being a

sustainable way of meat production, helps avoiding overgrazing and maintaining the equilibrium

between food and animals |[Reinhard, 2017|, [Kuzikus, 2018], [Robinson and Bennett, 2004].
We can distinguish between three types of animals:

e Pure grazers: eat only grass. Some examples are the Burchell’s Zebra (Equus quagga
burchellii), the Gnu (Connochaetes gnou and C. taurinus), the Blesbok (Damaliscus alb-
ifrons) and the Hartebeest (Alcelaphus buselaphus).

e Pure browsers: eat only bushes, trees and trunks. Between them, the Greater Kudu ( Trage-
laphus strepsiceros), the Giraffe (Giraffa camelopardalis giraffa) and the Black Rhinoceros
(Diceros bicornis bicornis).

e Both grazers and browsers, like the Common Eland (Taurotragus oryz), the Springbok
(Antidorcas marsupialis), the Gemsbok (Oryz gazella) and the Impala (Aepyceros melam-

pus).

Most of the animals in the reserve are pure grazers or both grazers and browsers. Thus, it
is important to correctly estimate the available amount of grass at the end of the rain season
(January-May).

Grasses can be annual or perennial and have different roles in the diet of the animals. Figure
1.3 shows their phenological stages. Perennial grasses are the most important plants for grazers.
They survive droughts, live more than one year and just need some humidity to start getting
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green. This generally happens at the beginning of October, at the end of the dry season (May-
December). Their peak is in April. This rapid growth at the beginning of the rain season gives
them an advantage over annual grasses [van Langevelde et al., 2016].

December Annual grasses
Perennial grasses start growing
_g November /
start getting green ‘\\
October

September
. Perennial grasses
maximum growth
August ~ Annual grasses

July June maximum growth

Dry season I Rain/Growing season
Figure 1.3: Phenological stages of perennial and annual grasses [Bacchilega, 2018].

Perennial grasses put energy in the roots, growing slowly and forming a strong root system.
They are sensitive the first year and the more they grow, the more resistant they become. The
Long-awned grass (Aristida stipitata) (figure 1.4a) is an abundant and nutritious grass. The
best perennial plant that can be found in Kuzikus is the Silky Bushman grass (Stipagrostis
uniplumis) (figure 1.4b). This plant is good for cattle and sheep and also beneficial for wildlife.
It is rare because it is the first to be eaten by animals.

(a) The Long-awned grass (b) The Silky Bushman grass
Figure 1.4: a) The Long-awned grass (Aristida stipitata) [Strohbach, 2014] and (b) The Silky Bushman
grass (Stipagrostis uniplumis) [Juergens, 2005].

Annuals plants, on the other hand, germinate year after year. They start growing in Febru-
ary/March, after a certain threshold of rain is reached, and are at their maximum height at the
end of April/beginning of May. This type of plant put energy in the aerial structures, growing
higher and faster than perennial plants. The Kalahari sourgrass (Schmidtia kalahariensis) is a
nutritious annual grass for wildlife.

As animals prefer the fresh growing grasses than the older ones, it is difficult for them to
grow high. Perennial plants die sooner if they are not grazed at all [Reinhard, 2017]. In low
grazing pressure areas, the cover of perennial grasses is large, but when density of herbivores
increases it decreases in favor of annual grasses. The seeds of perennial grasses germinate rapidly
with the arrival of the first rains, but they have a low longevity. On the other hand, seeds of

-10-
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annual grasses persist more in the ground, facilitating the transition from perennial to annual
grasses [van Langevelde et al., 2016], [Tessema et al., 2016].

Grasses excepted, the Velvit raisin (Grevia flava) is a shrub that produces valuable food for
animals and the Buffalo thorn (Ziziphus mucronata) is a nutritious tree [Reinhard, 2017].

1.2 Goal and objectives

The main goal of the project is to classify the land cover in Kuzikus, using a combination of
satellite and aerial imagery, in order to provide a rough estimation of the quantity of food
available for animals at the end of the growing season.

One part of the project concerns the analysis of ultra-high resolution images from UAVs.
The main objectives for this part are:

e Differentiate trees, bushes and grasses from soil at the end of the growing season and at
the end of the dry season with different classification algorithms.

e Use the classification results to estimate the forage quantity available for the wildlife in
the same periods.

Another part of the project concerns satellite imagery. The main objectives for this part are:

e Classify two images - one at the end of the growing season and one at the end of the dry
season - in order to differentiate grasses and higher vegetation from soil.

e Use the classification results to estimate the amount of grass in the reserve in those periods.

e Analyze the temporal evolution of the Difference Vegetation Index (DVI) in some areas of
the reserve and one neighbor farm to detect some trends.

1.3 Methodology

Plant recognition on the ground is quite simple, but from remote images it is challenging.
Depending on the image spatial resolution, it is possible to distinguish different patterns on the
ground.

To distinguish trees and different species of bushes and grasses from ground, drone images
taken in May 2015 with spatial resolutions between 3 and 7 cm are used. Three classification
algorithms (K-means, Support Vector Machine and Random Forest) are tested using RGB (Red
Green Blue) and NIR (Near infrared) images together with elevation data, vegetation indexes,
principal component analysis (PCA) and textures to differentiate the classes over some small
areas of the reserve. Then, the three classification methods are compared to manually delineated
reference land cover classes and the results obtained from the best one used to estimate the forage
quantity.

The distinction between perennial and annual plants is not straightforward when many plants
are green, but this task is easier at the end of the dry season when only perennial plants start
flowering and becoming green (figure 1.5). For this reason, a drone flight campaign was carried
out in October 2017 with the aim of better differentiating those plants, in particular grasses.

-11-
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Figure 1.5: Freshly green perennial grass in the y al red sand soil in Kuzikus Wildlife Reserve [Bacchilega,
2017]

The second type of data used is satellite imagery. Sentinel-2 images have a spatial resolution
of 10 m (for bands B2, B3, B4 and B8) [ESA, 2017a], but one single image covers the whole
extent of the reserve. This larger coverage allows to get a general overview of the vegetation
cover in Kuzikus and the neighboring farms. One Sentinel-2 image dating May 2017 and one
image dating October 2017 are used to classify the land cover in Kuzikus and estimate the
amount of vegetation.

As the main advantage of satellite data is their high temporal resolution, another element
of this research is to analyze the temporal evolution of the DVI over two and a half years (from
August 2015 to November 2017). A few patches of grass and fields in Kuzikus and one neighbor
farm are analyzed during the same period and compared with rain data measured on water points
in Kuzikus and provided by the manager of the reserve [Reinhard, 2017|. Finally, the evolution
of DVI for each pixel of the image is computed over one year (November 2016-November 2017).

At the end, drone and satellite results are compared to try to determine if some common and
useful information can be extracted to facilitate the long term exploitation of satellite images to
estimate the fodder quantity.

The structure of the report is the following: chapter 2 is a review of literature about vegetation
classification and forage quantity estimation; chapter 3 describes the data; chapter 4 presents
the methods used for classification, forage estimation and temporal analysis; chapter 5 illustrates
the results and chapter 6 discusses them; chapter 7 concludes and gives perspectives for future
works.

-12-



CHAPTER 2

STATE OF THE ART

2.1 Land cover classification

In the literature, different approaches to classify and map plant species can be found. These
approaches can be applied to a range of images types with different spatial resolutions, number
of spectral bands, radiometric resolutions and renewal periods. The use of high spatial resolution
(sub-metric) imagery is the most common approach and many studies report satisfactory results
[Michez et al., 2016]. The use of lower spatial resolution (decametric) imagery offers a good
alternative solution when the patches of mapped species are bigger than the spatial resolution
of the satellite image [Michez et al., 2016]. Many authors suggest that not only the spatial
resolution is important, but that also the time period and phenological stage of the targeted
plants play an important role in the classification [Michez et al., 2016].

When classifying different plant species, questions often arise about whether to use a pixel
or an object based approach, which kind of algorithm is the best and which features help in the
classification.

With the increase in spatial resolution, single pixels do not represent the characteristics of
classification targets anymore. This causes the spectral variability inside the class to increase
and the classification accuracy to decrease, causing the salt and pepper effect, where individual
pixels are classified differently from their neighbors [Yu et al., 2006]. Object based classification
techniques group similar pixels into homogeneous objects through segmentation, then classify
objects instead of pixels. This approach allows to consider textural, shape and spatial rela-
tionships between pixels in addition to spectral information [Juel et al., 2015]. Many studies
found that this technique improves the performances of classification [Juel et al., 2015],[Yu et al.,
2006]. Yu et al. [2006], for example, used an object based approach to map 43 vegetation al-
liances over 72 ha in Point Reyes National Seashore, California, using high-resolution airborne
remote sensing images from DAIS sensor.

Unsupervised classifiers define the class of belonging of pixels or segments according to sim-
ilarity measurements, without needing examples of classes provided by the user. Supervised
classifiers, on the other hand, use training data-sets to train the classifier and probability mod-
els to assign pixel or segments to a class [Mafanya et al., 2017]. Their ability to learn the
characteristics of target classes from descriptors given by the user and to identify them in pre-
viously unseen data makes them more robust than unsupervised models [Belgiu and Drigut,
2016]. These two types of classifiers are compared in a study from Mafanya et al. [2017], who
evaluated the accuracy of pixel and object based supervised and unsupervised classifiers for
mapping Harrisia Pomanensis using 3.65 cm spatial resolution images from UAVs and found
that object-based supervised methods gave the best accuracy.

13
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Random Forest (RF) and Support Vector Machine (SVM) are popular supervised classifiers
for remotely sensed data [Belgiu and Dragut, 2016]. Random Forest is well known because of its
ability to handle high dimensional datasets [Michez et al., 2016|, |[Belgiu and Dragut, 2016], [Juel
et al., 2015] and its high resistance to noisy variables [Michez et al., 2016], [Juel et al., 2015].
It uses a bagging technique (resample with replacement) to build a forest of classification trees
with high variance among individual decision trees, becoming a stable and robust model insen-
sitive to overfitting [Michez et al., 2016],|Belgiu and Dragut, 2016]. Moreover, it can be used to
select the most relevant features for classification, allowing to reduce the high dimensionality of
remote sensing data [Yu et al., 2006], [Belgiu and Drigut, 2016]. Many authors apply and rec-
ommend this procedure, because it decreases the dimensionality of data, simplifying the model,
and increases the accuracy of the classification [Belgiu and Dragut, 2016], [Ghosh and Joshi,
2014|. The algorithm, though, is reported by many studies to be not transferable to new areas:
the overall accuracy decreases when it is trained on different study areas [Belgiu and Drigut,
2016],|Juel et al., 2015|. The RF classifier has been successfully used with satellite imagery to
map insect defoliation levels using RapidEye images, boreal forest habitats using WorldView-2
imagery, biomass using Landsat temporal data, to identify tree health using IKONOS data,
and to map tree canopy cover and biomass using uni-temporal Landsat-8 imagery [Belgiu and
Dragut, 2016]. Studies also report the use of RF in the classification of UAVs data. Michez
et al. [2016], for example, found satisfactory results mapping riparian species from UAV derived
aerial imagery using RF algorithm and segmentation and Juel et al. [2015] used it to map fine
scale coastal vegetation in Denmark.

Support Vector Machine (SVM) is a non-parametric classifier which divides classes using
hyperplanes that fit the training dataset [de Morsier, 2017]. It became popular in machine
learning because of its efficiency in handling large input data and the higher accuracy compared
to techniques like maximum likelihood or decision trees classifiers [Colgan et al., 2012]. SVM can
also handle the non-linear separation of classes by transforming data into a higher dimensionality
feature space using kernels: similarity functions over pairs of data [de Morsier, 2017|. This
classifier has successfully been applied to predict tree species in deciduous and tropical forests
from hyperspectral and LIDAR data [Colgan et al., 2012|, |[Baldeck et al., 2014].

According to Belgiu and Dragut [2016], RF and SVM classifiers are equally reliable. The
first performs slightly better for high dimensional input data and is faster. The second performs
generally better in objects based analysis, but seems to be more sensitive to input features
and less user friendly in terms of parameter settings. Ghosh and Joshi [2014] found higher
classification accuracies (94%) with SVM object based classifier than RF while attempting to
classify bamboo patches using WorldView 2 imagery in West Bengal, India, using both pixel and
object based approaches. Burai et al. [2015] tested the applicability of SVM and RF to classify
extremely fine scale mosaics of several vegetation types in the Pannonian basin. They tried
to classify 20 vegetation classes using images acquired from an AISA EAGLE II hyperspectral
sensor, which has 128 contiguous bands (400-1000 nm) of 5 nm bandwidth and 1m spatial
resolution. SVM classifier provided the highest accuracies |Burai et al., 2015].

Concerning features to be used in the classification, many authors report that image bands
derivatives and ancillary data are usually helpful to differentiate between spectrally inseparable
vegetation classes [Yu et al., 2006]. The most used features, other than multispectral bands,
are textures [Ghosh and Joshi, 2014], [Belgiu and Dragut, 2016], topographic features such as
elevation data, slope or aspect [Yu et al., 2006], [Belgiu and Dragut, 2016|, geometric features
[Yu et al., 2006], principal components [Ghosh and Joshi, 2014] or statistical features like means,
standard deviations or quantiles of some variables [Juel et al., 2015].

To summarize, object based approaches and supervised classification methods allow to
achieve better results, and Random Forest and Support Vector Machine are among the most
used and successful classifiers. Ancillary data and band derivatives help in the distinction be-
tween classes. High resolution UAV or satellite imagery is preferred to coarse resolution satellite

_14-
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imagery.

2.2 Biomass estimation

Grass quantity and quality are important information for the management and planning of
grazing resources and to understand the dynamics of herbivores’ populations [Ramoelo et al.,
2012]. For decades, this information has been acquired by biomass sampling. Now, “remote
sensing techniques have the potential to overcome the physical restriction that limits large scale
ecological surveys” [Smith et al., 1990], offering multispectral images in the visible, NIR and
others regions of the spectrum to study vegetation patterns at regional and global scales [Smith
et al., 1990].

Literature about biomass estimation from UAVs or manned aircrafts imagery is scarce, more
is available for images derived from satellites like RapidEye, Sentinel-2, Landsat or MODIS.

Vegetation indexes derived from satellites, such as the Normalized Difference Vegetation
Index (NDVI), are now “commonly used by ecologists as a proxy for vegetation productivity”
|[Borowik et al., 2013] at different temporal and spatial scales. NDVI values are high for green
vegetation because it has a high reflectance in the NIR and absorbs light in the visible. Values
are lower for senescent or dry vegetation and soils because they have a higher absorption in the
NIR [Borowik et al., 2013].

Borowik et al. [2013] studied whether NDVI is a good predictor of forage availability in
semi-open landscape in eastern Poland using MODIS images. Coherently with other studies,
they found a positive relation between the two variables, with a stronger correlation occurring
in summer. Thus, suggesting that the usefulness of NDVI to predict above ground biomass
depends on the season.

Another study, conducted by Ramoelo et al. [2012] using 6.5 m resolution RapidEye images
taken at peak productivity in North eastern South Africa, found that vegetation indexes alone
yielded poor results in estimating biomass. However, combining them with ancillary variables
like altitude, slope, aspect, distance to river, temperature and precipitation improved the esti-
mation.

In an article from Moleele et al. [2001] the authors try to determine whether green browse
biomass can be quantified in a bush encroached semi arid rangeland in south-east Botswana,
using vegetation indexes and transforms from Landsat data. Their work shows the limitations of
those indexes in the assessment of the herbaceous layer in this kind of landscape. Other studies
state that quantifying the vegetation cover in semi arid rangelands with Landsat imagery is
difficult because of the spectral dominance of the background soil [Smith et al., 1990], [Giri
et al., 2013|.

A lot is found in the literature about biomass estimation using small footprint LIDAR, (LIght
Detection And Ranging) coupled with manned aircrafts, which, according to some studies, give
accurate estimates [Vaglio Laurin et al., 2014]. This surveying method consists of measuring the
distance of a target by illuminating it with a pulse laser light and measuring the time taken to
the pulse to reach it, be reflected and come back to its source [Bluesky, 2017].

The combination of this technology with hyperspectral data is now considered one of the
most accurate remote sensing methods for biomass mapping [Vaglio Laurin et al., 2014|. Hy-
perspectral data alone have already been used to directly estimate leaf canopy and grassland
biomass [Vaglio Laurin et al., 2014].

-15-



CHAPTER 3

DATA

3.1 Drone data

Kuzikus Wildlife Reserve has a vast amount of ultra-high resolution images taken from drones. In
May 2014, May 2015 and October 2017 the SAVMAP consortium [SAVMAP, 2017], [Rey et al.,
2017|, [Ofli et al., 2016], did several flight campaigns in Kuzikus with the aim of characterizing
the vegetation and wildlife status in the reserve. Orthomosaics, point clouds and elevation
models have been obtained after processing raw images taken by different sensors: RGB, NIR,
Red Edge (RE), MultiSpectral (MS) and Thermal InfraRed (TIR). In all three campaigns, aerial
photographies were acquired with fixed wings drones produced by senseFly SA [senseFly, 2017a]
and further processed with Pix4D photogrammetry software [Pix4D, 2017].

The flight campaign of October 2017 took place to map the reserve at the end of the dry
season with RGB and MS sensors. In order to get as much overlap as possible with the existent
dataset, the new acquisition campaign was based on the ones from 2014 and 2015. During the
campaign, we tried to always fly the two sensors over the same areas at the same time (or with
the least possible time shift). This choice aimed at avoiding different shadow effects between
RGB and MS images and consequently facilitating the combination of the two images during
classification. More than 2740 hectares were mapped in five days (October 15 - October 21)
with the help of Gous Gammo Divia, a San [Boden, 2009|, and Dr. Reinhard, the managing
director of Kuzikus, who guided us in the reserve (figure 3.1).
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Figure 3.1: SAVMAP team, flight campaign 2017 [Bacchilega, 2017].

For this project, only a few RGB and NIR images with corresponding point clouds or elevation
models from May 2015 and October 2017 are used for classification. Figures 3.2 and 3.3 show the
footprints of all 2015 and 2017 acquisitions over Kuzikus with RGB, NIR and MS sensors and
tables 3.1 and 3.2 give the details of the flight campaigns. In 2015, 6831 images were acquired
with RGB and NIR sensors within 42 flights. In 2017, 18540 images were acquired within 37
flights. The selection of data is detailed in chapter 4.1.

Kuzikus Wildlife Reserve
RGB and NIR acquisitions, May 2015

— fences
= water reservoirs
0 1 2km = roads
| Se—
[ NIR footprints
[ RGB foortprints
Authors: B. Bacchilega, M. Parkan, F. Reinhard selected areas

Figure 3.2: Mapped areas with NIR and RGB sensors during the 2015 flight campaign [SAVMAP, 2017]
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Kuzikus Wildlife Reserve
RGB and NIR acquisitions, October 2017

— fences
@ water reservoirs
0 1 2km = roads
[ S footprints
[ RGB footprints
Authors: B, Bacchilega, M. Parkan, F. Reinhard selected areas

Figure 3.3: Mapped areas with MS and RGB sensors during the 2017 flight campaign [SAVMAP, 2017]

RGB images NIR images
Sensor Sony Cyber-shot Canon PowerShot S110 NIR
DSC-WX220
Spectral resolution [nm] 470 (B), 570 (G), 660 (R) 550 (G), 625 (R), 850 (NIR)
Spatial resolution [cm] 2-4.5 2.5-4.5
Radiometric resolution [bits] 8 8
# of images 4838 1993
7+ of flights 26 16
Platform eBee eBee

Table 3.1: Details of the May 2015 campaign [SAVMAP, 2017]

RGB images MS images
Sensor Sensefly S.0.D.A Parrot Sequoia
Spectral resolution [nm] 450 (B), 520 (G), 660 (R) 550 (G), Sg(()) ((lflil)f,{;% (RE),
Spatial resolution [cm] 2.3-4.5 7-8.3
Radiometric resolution [bits] 8 16
# of images 7415 11125
## of flights 18 19
Hectars mapped 1889.27 851.53
Platform eBee Plus eBee SQ

Table 3.2: Details of the October 2017 campaign [SAVMAP, 2017]
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3.2 Satellite data

For the purpose of this project, Sentinel-2 data are used. They are available on the United
States Geological Survey (USGS) EarthExplorer [USGS, 2017].

Sentinel-2 is a mission developed by the European Space Agency (ESA) with the aim of
performing terrestrial observations. It is composed by two identical satellites, Sentinel-2A and
Sentinel-2B, launched in June 2015 and March 2017, respectively. They offer multispectral data
in 13 bands with resolutions of 10, 20 or 60 meters in the visible, near infrared (NIR), and short
wave infrared (SWIR) [ESA, 2017a]. Thanks to the simultaneous operation of the two satellites,
one image every 5 days is available under the same viewing angle.

For the project, 10 m resolution bands of 81 images with less than 40% cloud cover are used.
Details of the data and spectral resolutions of the bands used are given in table 3.3 and figure
3.4, respectively.

Location Central Namibia
Field of view 290 km
Coordinate system WGS84 / UTM zone 34S (EPSG:32734)
Period August 6, 2015 (first image available) - November 21, 2017
Bands used B2 (B), B3 (G), B4 (R) and B8 (NIR)
Spatial resolution 10m

Table 3.3: Details of Sentinel-2 data [USGS, 2017]

SWIR
10m
00 1000 1200 1400 e 1500 o] ] 2400
nam nm nm nam nam nm nm nm nm
Band B (842 nm)
Band 4 [66% nm)
Band 3 (560 nm)

Band 2 [450 nm)

Figure 3.4: Sentinel-2, 10m resolution bands [ESA, 2017b].
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CHAPTER 4

METHODS

4.1 Data selection and preparation

The first part of the project was dedicated to the selection and preparation of drone and satellite
images used for the classifications.

Drone data selection

Drone data were selected based on the type of vegetation represented (as much differentiated as
possible) and the overlap between orthomosaics acquired by different sensors in 2014 and 2015.
As the main idea for the classification is to combine data in the visible and NIR parts of the
spectrum, one area had to be covered by at least a NIR/MS and a RGB sensor: the images
taken by both must overlap. Due to faulty NIR images acquired in 2014, some processings
failed and too few diverse vegetation species in some images, only three areas were selected with
overlapping NIR and RGB images from 2015. The same areas were selected from the 2017 flight
campaign. The areas are shown in figure 4.2.

One orthomosaic per area, sensor and year was chosen: 3 NIR and 3 RGB images from 2015
and 3 MS and 3 RGB images from 2017 flight campaign. In order to retrieve information about
vegetation height, digital terrain and surface models (DTM and DSM) from 2017 and point
clouds from 2015 were used (DTM not available from 2015 data).

Drone data preparation

Parrot Sequoia, the camera used to acquire MS images during the 2017 campaign, outputs one
image per band. Those images were combined into one multi band image to ease the calculations
and the handling of data.

In order that the different images are correctly co-registered, NIR and RGB images from 2015
and MS and RGB images from 2017 were geo referenced using QGIS software [Sherman, 2002]
by linking common tie points between the two images. The only reliable points were holes in
the ground created by aardvarks (Orycteropus afer), which appeared as black holes in the sand
and clearly visible in both images (figure 4.1). Unfortunately, aardvarks’ holes are not visible in
the point clouds, which were georeferenced with CloudCompare software |Girardeau-Montaut,
2003] using small shrubs as tie points.
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~

(a) NIR image (b) RGB image
Figure 4.1: Two aardvarks’ holes in (a) a NIR image from 2015 and (b) in the corresponding RGB image

In order to reduce the processing time, only small sections of the images were used. Two
squares of 150 by 150 meters per year and per sensor were extracted from the first area (zone 1
and zone 1bis), 1 from the second (zone 2) and 1 from the third (zone 3) 4.2, for a total of 16
images (4 NIR and 4 RGB from 2015 and 4 MS 4 RGB from 2017), they are shown in figure 4.2.
Two areas have been chosen in zone 1 one in order to do some initial test of the classification
algorithm on the same orthomosaic, before extending the classification to other images.

Within the same campaign, selected images were taken in different days, different times of the
day, by different sensors and often with different radiometric and spatial resolutions. Therefore,
raw orthomosaics are not comparable. To solve this problem, the histogram of all images from
the same campaign and the same sensor were matched in MATLAB |[MathWorks, 1984| with
the imhistmatchn [MathWorks, 2017b] function and their resolution downgraded to 10 cm. After
this procedure, all 16 images have 150021550 pixels.

Satellite data selection

Satellite data already had the same resolution and format, the only limitation in the selection
was cloud presence.

A first selection was done at the download time, when a filter was applied to download only
images with less than 40% cloud cover. The cloud cover is computed over the entire image,
but Kuzikus only occupies a minimal fraction of it. Therefore, the 40% arbitrary threshold was
preferred to 0%. After the download, Sentinel-2 images where cut to the extent of the reserve
and checked again one by one to make sure no clouds were present. This led to the selection of
81 images.

To perform the time series analysis, one image per month was considered enough to analyze
the evolution of vegetation patterns. Therefore, the data set was further reduced to only one
image per month (for the available months) leading to the final selection of 25 images from
August 16, 2015 to November 20, 2017. All images have a 10 m spatial resolution and 139821677
pixels. The dates corresponding to each image are presented in the appendix A.

To perform classification, only two images were used. The choice was dictated by the purposes
of the project: quantify the vegetation at the end of the growing season and compare drone and
satellite data. Only one image was available in May, dating May 24, 2017, and the satellite
image closer to drone acquisitions was from October 21, 2017.

Satellite data preparation

The same procedure used for drone images was used to create multi-bands images for each
date and to match the histogram of all images. Sentinel-2 images from different days were not
coherently georeferenced between each other and were exploited with their original geolocations.
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Kuzikus Wildlife Reserve
Selected working areas for drone images

2 1
Zone 3 _me
) Zone 1bis
Zone 2

0 1 2 km

— )
Selected areas

roads

Author: B. Bacchilega

Figure 4.2: Selected working areas for drone images: zone 1, zone 1bis, zone 2 and zone 3

4.2 Ground truth and classes

Reference (ground truth) data is necessary to train the supervised classification models and
assess their accuracy. Reference training/validation data are created by manually digitizing
polygons on QGIS, each polygon corresponding to a specific class.

Three different ground truths were created: one for 2015 drone images, one for 2017 drone
images and one for satellite images. The ground truth references for drone images were the
drone images themselves: classes were defined visually by looking at the images. For satellite
images, the digitization reference was a 2017 Bing map from DigitalGlobe [DigitalGlobe, 2018|.
Polygons were refined according to distinguishable objects on the image from May 2017. Table
4.1 shows the classes present in the ground truths. Classes with the same name but different
number represent different types of the same object and were distinguished on images according
to their different color, texture or shape. Perennial class, in the ground truth from 2015 drone
images, represents old perennial grasses |[Reinhard, 2017].
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Drone 2015 Drone 2017 Satellite
1. Road
1. Road
2. Tree
2. Tree 1
3. Shadow 1. Grass 1
3. Shadow
4. Soil 2. Grass 2
4. Soil
5. Bush 1 3. Sand 1
5. Bush 1
6. Grass 1 4. Sand 2
6. Grass 1
7. Grass 2 5. Limestone Soil
7. Grass 2
8. Grass 3 6. Tree
8. Tree 2
9. Perennial
9. Bush 2
10. Bush 2

Table 4.1: Classes for 2015 and 2017 drone images and satellite images. Classes with the same name but
different number were distinguished on images according to their different color, texture or shape

Figures 4.3 and 4.4 show some classes examples for 2015 and 2017 drone images, respectively.
All sub-figures represent an area of 14.4x13.1 square meters.

(a) Grass 1 (green), Grass (b) Bush 1, Shadow, (c) Tree, Shadow, Road, (d) Perennial and Road
2 (beige) and Soil Grass 1 (green), Grass 2 Grass 2 (beige) and Peren-
(beige) and Soil nial (bottom right)

(e) Bush 2, Grass 3 and
Soil

Figure 4.3: Examples of the classes used for 2017 drone images classification: (a) Grass 1 (green), Grass 2
(beige) and Soil , (b) Bush 1, Shadow, Grass 1 (green), Grass 2 (beige) and Soil, (c) Tree, Shadow, Road,
Grass 2 (beige) and Perennial (bottom right), (d) Perennial and Road and (e) Bush 2, Grass 3 and Soil
[SAVMAP, 2017].
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(a) Tree 1, Shadow, Grass ~ (b) Bush 1 and Soil ~ (c) Tree 2, Shadow, Grass (d) Bush 2, Grass 2 and
1 and Sail 1, Soil and Road (bottom Soil

right)
Figure 4.4: Examples of the classes used for 2017 drone images classification: (a) Tree 1, Shadow, Grass 1
and Soil, (b) Bush 1 and Soil, (c) Tree 2, Shadow, Grass 1, Soil and Road (bottom right) and (d) Bush 2,
Grass 2 and Soil [SAVMAP, 2017].

Figures 4.5a, 4.5¢c, 4.5e, 4.5g, 4.5i and 4.5k show classes Grass 1, Grass 2, Sand 1, Sand 2,
Tree and Limestone soil, respectively, on the Bing image used for digitizing the ground truth for
satellite images. Figures 4.5b, 4.5d, 4.5f, 4.5h, 4.5j and 4.51 show the same patches on the false
colors Sentinel-2 image from May 2017. One pixel measures 10x10 meters.
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L Vi R i
(a) Grass 1,Bing (b) Grass 1,Sentinel-2 (c) Grass 2, Bing (d) Grass 2, Sentinel-2

(e) Sand 1,Bing

(h) Sand 2, Sentinel-2

(i) Tree,Bing (i) Tree, Sentinel-2 (k) Limestone soil,Bing (1) Limestone  soil,

Sentinel-2
Figure 4.5: Examples of the classes used for satellite images classification: (a) Grass 1, (c) Grass 2, (e)
Sand 1, (g) Sand 2, (i) Tree and (k) Limestone soil classes on the Bing image and (b),(d),(f).(h).(j).(I)
corresponding polygons on the false color Sentinel-2 image from May 2017 [USGS, 2017]

As some classes are more abundant than others, the number of pixels per class in the ground
truth are not equal. For drone images, grass classes have fewer pixels than other classes, mainly
because of the difficulty of correctly delimiting polygons but also because patches of this type of
vegetation are much smaller than those of other classes. In general, the smaller the patch, the
more difficult to digitize it. This is particularly true for images from 2017, for which one type of
grass is present in only a few and small patches. The same problem exists for satellite images,
for which the least abundant class is Tree.

4.3 Features

For classification, not only the spectral information is useful, but also variables derived from
them or ancillary data. Variables to be used in the classification are called features.

Five different types of features are used: spectral bands, vegetation indexes, principal com-
ponents, textures and digital height models.

Spectral bands

Spectral bands include red, green, blue, near infrared and red edge.
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Vegetation indexes

Vegetation indexes are useful to enhance vegetation. The Normalized Different Vegetation In-
dex (NDVI), Difference Vegetation Index (DVI), Green Normalized Different Vegetation Index
(GNDVI), Ratio Vegetation Index (RVI) and the Soil-Adjusted Vegetation Index (SAVI) are
calculated from bands combination of NIR (for 2015), MS (for 2017) or satellite images. The
formula used to calculate the vegetation indexes are the following [Jones and Vaughan, 2010]:

DVI=NIR-R (4.1)
NIR - R

NDVI= TR+ R (42)
NIR -G

NDV] = —— 4.

¢ v NIR+ G (4.3)

NIR
VI=—— 4.4
R = (4.4)
NIR - R
SAVI=(+L) R T (45)

Where R is the red band, G the green band, NIR the NIR band and L is a coefficient equal
to 0.5.

Specifically for satellite images classification, a new vegetation index is calculated from the
temporal evolution of DVI. The index, called stdev DVI, represents the standard deviation of
the DVI values of each pixel over one year (November 2016 - November 2017). More information
about the choice of the period is given in chapter 4.7, page 34.

Principal component analysis

Principal component analysis is a statistical procedure that transforms a set of possibly corre-
lated variables into a set of uncorrelated variables called principal components [Zey, 2017]. Here
it is used with RGB, NIR, MS and satellite images to decorrelate the spectral bands.

Texture

Texture, which is the visual aspect of the image, allows to take into consideration the neighbor-
hood of pixels. Those features are calculated from the co-occurrence matrix, using a window size
of 7 pixel (70cm) for drone images and 5 pixels (50m) for satellite images. The window sizes
were determined empirically based on the results. Contrast, correlation, energy, homogeneity
and entropy co-occurrence indexes are extracted for each band.

Digital height models

Digital height models were calculated only for drone images, as no data were available at higher
scale. DHM is given by the difference between DSM and DTM. For 2015 data, only DSM was
available, thus DHM is calculated using the point cloud issued from NIR images and the digital
forestry toolbox for MATLAB [Parkan, 2017].

Table 4.2 presents an exhaustive list of all calculated features and in which classification models
they are used. The features to be used in each model are chosen based on the estimates of
the variable importance got from the Random Forest’s Out-Of-Bag error (see chapter 4.5) and
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results of the classification. In general, only the positive variables are used. SVM model is more
sensitive to the number of features used, many test were done to choose which variables to leave
apart. According to the results and calculation times, textures were not used in those models.
Models will be explained in chapter 4.4.

Platform
Drone 2015 Drone 2017 Satellite

Features KM SVM RF KM SVM RF RF

R, G, B, NIR v v v v v v v
RE v v v

NDVI v v v v v v v
NDVIgg v

DVI v v v v v
DVigg v
GNDVI v v v v

RVI v v v v v
RVIREg v

SAVI v v v v v
SAVIrp v

Stdev DVI v

PCA R, G, B, NIR v v v v v
PCA RE v v
Contrast R, G, B, NIR v v
Contrast RE v
Correlation R, G, B, NIR v v
Correlation RE v
Energy R, G, B, NIR v v
Energy RE v
Homogeneity R, G, B, NIR v v
Homogeneity RE v
Entropy R, G, B, NIR v v
Entropy RE v
DHM v v v v v v

Table 4.2: Features used for each model. R is the red band, G is the green band, B is the blue band,
NIR is the NIR band, RE is the red edge band, NDVI is the Normalized Difference Vegetation Index, DVI
the Difference Vegetation Index, GNDVI the Green Normalized Difference Vegetation Index. RVI the Ratio
Vegetation Index, SAVI the Soil-Adjusted Vegetation Index and DHM the Digital Height Model.

Finally, after the features calculation and prior to classification, images were normalized and
only drone ones segmented. The normalization is performed in order to remove extreme values.
Each feature is normalized as follow:

(feature; — q01;)

(q91; — q01;)
q01; and ¢99; are the 0.01 and 0.99 quantiles of the it" feature, respectively.
Segmentation is done using the MATLAB superpizel function |[MathWorks, 2017¢|. This

function uses the simple linear iterative clustering (SLIC) algorithm [Achanta et al., 2012],
which performs local K-means and groups pixels into regions with similar values based on color

feature; = (4.6)

_27-



4.4. CLASSIFICATION

and space. The number of segments is calculated as follows:

(ImageWidth)?
(SizeSegment)?

Nbsuperpizel =

The size of the segment is 0.5m and the image width 150 m.

4.4 Classification

Classification aims at generalizing the information in an image by reducing the multidimensional
information contained in a pixel. Pixels are grouped in coherent spatial units which correspond
to thematic classes.

The process usually consists in three steps:

1. Selection of training examples, which teach data dependencies to the model.

2. Establishment of a model to decide the class membership of a pixel. A similarity measure
is used to decide the class of belonging of each pixel.

3. Prediction on the image: the decision function of the model assigns a class to each pixel.

Two types of classification exist: supervised and unsupervised. The main difference is that
in unsupervised methods class information is not available and the model learns data depen-
dencies based on a given similarity criterion. In supervised methods, on the other hand, class
information is available and the model learns from data examples, usually given by the user.
Unsupervised methods (or clustering methods) return groups of similar pixels (clusters), which
have to be assigned to a class by the user, while supervised methods directly return a thematic
map [de Morsier, 2017].

For drone images, the K-means unsupervised method (chapter 4.4.1) is used with only spec-
tral bands, NDVI and height data to see if these features are enough to approximately distinguish
the different classes. Then, Support Vector Machine (chapter 4.4.2) and Random Forest (chapter
4.4.3) supervised methods are used to better classify the images using multiple features (table
4.2). All classifications were performed in MATLAB separately for 2015 and 2017 data.

For satellite images, Random Forest classification is used to predict the land cover (chapter
4.7).

In the description of methods that follows and the rest of the report, the pixels of images
are called samples and the variables used for the classifications are called features.

4.4.1 K-means

K-means is an iterative unsupervised classification method that aims at partitioning the sam-
ples in the data set into k& compact clusters. It builds the decision function based on features
similarities between samples within the clusters. Each sample is assigned to the closest cluster
[de Morsier, 2017].

The work flow of the classifier is the following:

1. Choice of the number £ of clusters by the user.

2. Random selection of the clusters’ centroids c, ..., Cg.

3. Calculation of the euclidean distance D(¢;, z;) between sample x; and centroid ¢;.
4. Agsignment of each of the n samples x1,...,x, to the closest cluster’s centroid.

5. Update of the centroids’ positions as the mean of all points x; assigned to the cluster ¢; in
step 4.
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6. Steps 3-5 are repeated until the cluster assignments or the centroids’ position do not change
anymore.

Figure 4.6 explains the iterative process.

Data and initial (random) centroid Initial cluster assignment Iteration 1
10, 10 0 10

15 o
%0 -10 0 10 20 3o =20 0 [ 10 20 o
Iteration 2
10, 10 14,
5 g Ml 5 5 . I
L Q'Qq_.’.. k EN Bl
YA ;*1
0 @ 0 o -
] ': i ) "o,
5 %‘ 5 -5 ﬁ
¢ .
=10 i =10 -10
T 0 10 20 B 0 10 C a—T g 0

Figure 4.6: lterative process of the K-means classifier, example with 4 clusters. Dots represent the samples
and lines represent the boundary between the clusters according to the minimal euclidean distance [de Morsier,
2017].

How to choose the right value of k?

The choice of the number of clusters is never simple and there is no specific method to support
the decision.

One of the most commonly used metrics is to compare the mean distance between samples
and assigned centroid for different values of k. Increasing the number of clusters will decrease
the mean sample - centroid distance. After a certain k, the rate of decrease will drop and the
distance will continue to decrease slower until zero is reached when k is equal to n. By plotting
the mean distance versus the number of clusters, the drop will appear as an "elbow" in the curve.
The k at this "elbow" point should be the best number of clusters for the data set [Trevino,
2017].

This method helps in the choice, but it often over estimates the number of classes. Therefore,
the user should always be critical about it. In order to better define the ideal number of clusters
for each image, the results of the "elbow" method was compared to the number of classes
estimated from the a priori knowledge of the environment.

Picking the initial centroids

The second step of the K-means classifier is critical for the performance of the classification. By
picking centroids randomly, the algorithm might select points that are in the same cluster and
the final clustering wont represent the real one [Leskovec et al., 2016]. Therefore, the K-means
algorithm was run multiple times, to choose the best set of centroids.
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4.4.2 Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm that uses similarities between classes to build
a linear or non-linear function to separate them [de Morsier, 2017|. It is a binary classifier that
can be adapted to multiclass problems.

The samples are plotted in a n-dimensional space (where n is the number of features), then
the classifier finds the hyper plane that better separates them into two classes. The classes are
usually called +1 and -1 [Ray, 2017]. The equation of the hyper plane is of type:

y=wx-+b (4.8)

Where w is a weight vector and x the features vector.

Within many possible hyper planes, the one that better separates the samples will be the
one that has the smallest risk of making errors on new data. It will be at maximum distance
from the closest samples of both classes. Those samples (marked in grey in the left of figure 4.7)
are called the support vectors, and they alone define the hyper plane [de Morsier, 2017].

To predict the class of previously unseen samples, the decision function is based on the
distance between the sample and the support vectors (equation 4.9). A cost matrix allows to
consider the cost of a wrongly classified pixel.

{y >0, class +1 (4.9)

y <0, class —1

<r>’/ &

Figure 4.7: The best hyper plane and the support vectors (in grey) [de Morsier, 2017].

How to handle non linear responses?

When a linear classification is not possible in the feature space, SVM can also perform a non-
linear classification using the so called kernel trick. The main idea is to add a new dimension, so
that a linear separation of the classes is possible. The input data are projected into a new feature
space where a linear problem is solved. They are then projected back in the input space to get
a non linear model (figure 4.8). The SVM classification was performed using the MATLAB
fitcecoc [MathWorks, 2017a] function with a gaussian kernel.
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Figure 4.8: Kernel trick [de Morsier, 2017].

How to handle multiple classes?

fitcecoc takes into account more than two classes thanks to the coding design. This is translated
as a matrix where each row corresponds to a distinct class and each column corresponds to a
binary learner.

One of the most common coding designs is One Versus One (OVO). For each binary learner,
OVO considers that one class is positive and another one is negative. The others are ignored.
This design exhausts all combinations of class pair assignments [MathWorks, 2017a|. One hyper
plane is created for each combination, then the information is combined.

4.4.3 Random Forest

Random Forest is a supervised ensemble learning algorithm based on classification trees. It grows
decision trees using a bootstrap (random sampling with replacement) sample of the training data
and selects a random subset of predictors to use at each decision split. The final choice for the
class assignment is made by majority voting (figure 4.9).
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Tree-1 Tree-2 Tree-n

Class-A Clalss-B Class-B
| E-iajaﬁt;;-\-'ming |

\Final-Class |
Figure 4.9: Random Forest algorith, simplified (Original image [Jagannath, 2017])

The forest is grown in the following way:

e Given the training set X, N subsets are created by selecting, with replacement, n samples
from X. Because replacement is allowed, one sample can be in many subsets or not selected
at all. One tree is trained for every subset (bootstrap technique).

e At each split of the tree, a subset of m features is randomly selected between the M
available features. The feature and the value of this variable that give the best separation
of classes is used to split the tree. In general, m = sqrt(M), M being the total number of
predictors. The best split is chosen according to the GINI coefficient (see Appendix B for
further explanations about the coefficient).

e Each tree is grown to the largest extent possible. Branches are added until the trees
predictions on the training subsets are 100% accurate, so that at the end of every branch
the classes are pure.

Once the forest is grown, each sample goes through every tree which assigns it to a class.
Finally, the sample is assigned to the class that was predicted by most of the trees [of California,
2017],[Yee and Chu, 2017].

Single classification trees tend to overfit data because they treat every detail in the subset
of training data as important. In consequence, some boundaries between two classes are based
on distinctions that don’t really make a difference. The use of a multitude of trees and the final
majority voting decrease this overfitting and give a greater accuracy [Yee and Chu, 2017]|. The
number of trees to use in the Random Forest classification depends on the size and nature of
the training set. An optimal number can be found by observing the OOB error (chapter 4.5),
which tends to stabilize as the number of trees increases. In general, the more trees in the forest,
the higher accuracy in the results [of California, 2017]. Usually the error stabilizes before 500
classifications trees are achieved |Belgiu and Dragut, 2016].

The Random Forest classification is performed using the TreeBagger function in MATLAB
[MathWorks, 2017d]. A cost matrix is added to consider the cost of a wrongly classified pixel .
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4.5 Sampling and accuracy assessment

The first step of classification is the selection of training examples. While unsupervised methods
calculate them internally based on similarities between samples, supervised methods need them
as an input given by the user. For this reason, prior to perform supervised classification, the
data set obtained from the ground truth is divided in training and test sets. The first will be
used to train the models and the second to test their accuracy.

Every algorithm has a different sensitivity to the size and quality of the training set. Thus,
the split fraction between train and test set differ from method to method. The ideal fraction
for each one is found by testing different values and observing the classification results.

As K-means method does not need a training data set, all samples from the ground truth
are used for testing.

To assess the accuracy of the classification, precision and recall [Joshi, 2016], overall accuracy
[de Morsier, 2017], F1 scores [Joshi, 2016] and Cohen’s Kappa [McHugh, 2012] statistics are
calculated. Precision and recall are the percentage that a reference sample has been classified
correctly and the percentage that a sample classified into a class belongs to this class, respectively.
The overall accuracy is the percentage of correct classifications. F1 score is a measure of accuracy
that harmonic mean precision and recall (formula 4.10):

precision - recall

F1=2 (4.10)

precision + recall

Cohen’s Kappa statistics takes into consideration the predictions by chance (formula 4.11):

Po — Pe
1- De

Where pg is the overall accuracy and p. the probability of prediction by chance.

For Random Forest, the Out-Of-Bag (OOB) error is also used as an unbiased estimate of the
classification error as trees are added to the forest. Each time a tree is constructed, a different
bootstrap sample of the original data is used. To calculate the OOB error, each observation
that has never been used to build a tree (OOB observation) is run through all the trees to get
a class. At the end of the run, suppose that ¢ is the class that got the most of the votes every
time the observation n was OOB. The OOB error estimate is the proportion of times that ¢ is
not the true class of n over all the observations [of California, 2017].

Finally, the spectral signature of each class obtained from SVM and RF is compared to the
one of the ground truth classes. The spectral signature is calculated as the median value of each
spectral band for each class.

K = (4.11)

4.6 Forage quantity estimation

Once the images are classified, the next step is to assess the quantity of forage. The estimation
is calculated for both May (end of growing season) and October (dry season) images. Results
are calculated by multiplying the the sum of pixels belonging to a certain class by the images’
pixel area.

For drone images, as they cover only small and distinct areas of the reserve, results are
calculated separately for the 8 images. The following values are calculated:

e Grassl, Grass2, Grass3 areas and the total grass area
e Bushl, Bush2 areas
e Treel, Tree2 and the total tree area

e Total vegetation area
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Calculated values can slightly vary from image to image as not all classes are preset in all
images.
For satellite images, the following values are calculated:

e Grassl, Grass2 and the total grass area
e WoodyVegetation area

e Total vegetation area

Results are given in m? for drone images and in hectares for satellite images.

4.7 Land cover change analysis

To take advantage of the high temporal resolution given by Sentinel-2 data, the land cover
change of some areas of Kuzikus is analyzed through the Difference Vegetation Index (DVI):
the most relevant vegetation index in the classification according to the features importance
calculated during Random Forest classification.

At first, the evolution of DVI per pixel is analyzed over one year, from November 2016 to
November 2017. The choice of this particular period is due to the availability of images, the aim
was to have the least missing months possible. Only January and March 2017 are missing, but
one date at the beginning and one at the end of April 2017 are available. The standard deviation
of the DVI per pixel over 1 year is then used as a feature for the Random Forest classification
of the satellite images.

Then, DVI time series are calculated over 3 uniform patches of grass in Kuzikus and 1 in
a neighbor farm and compared to rain data measured at water points in the wildlife reserve to
detect trends (figure 4.10). The median of rain measurement of the water points in the reserve
is used as a proxy to quantify rainfall.

Finally, a small area of Kuzikus is compared to 4 fields of a neighbor cattle and sheep farm
to discover the different management strategies (figure 4.10).
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Figure 4.10: Location of fields and grass patches used for the temporal analysis. Background image: false
color Sentinel-2 image from May 24, 2017
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CHAPTER b

RESULTS

5.1 Data selection and preparation

Selected drone data

The small areas to be classified on drone images were chosen based on the different plant species
on them. Most of the classes are present in all of the four square images. Figures 5.1 and 5.2
show the four areas for 2015 and 2017, respectively. In May 2015, zones 1 (figure 5.1a) and 1bis
(figure 5.1b) have a large cover of different grass species, while the same areas in October 2017
(figures 5.2a and 5.2b) only have a few small patches around trees. Zones 2 and 3 seem to have
the same grass distribution in both years (figures 5.1c, 5.1d, 5.2c and 5.2d). In zone 1bis (figure
5.2b) and in particular in zone 2 (figure 5.2c) from 2017 it is possible to distinguish trees that
are always green from trees that are just starting to get leaves. Finally, bushes from zones 1 and
1bis (figures 5.1a, 5.1b, 5.2a and 5.2b) are different from those in zone 3 (figures 5.1d and 5.2d)
and roads are only present in the first three areas (figures 5.1a,5.1b, 5.1c, 5.2a, 5.2b and 5.2¢).
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(a) Zone 1 (b) Zone 1bis
(c) Zone 2 (d) Zone 3

Figure 5.1: Selected areas from 2015 drone images: (a) zone 1, (b) zone 1bis, (c) zone 2 and (d) zone 3
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(a) Zone 1 (b) Zone 1bis
(c) Zone 2 (d) Zone 3

Figure 5.2: Selected areas from 2017 drone images: (a) zone 1, (b) zone 1bis, (c) zone 2 and (d) zone 3

Selected satellite data

About satellite images, cloud free data between August 16, 2015 and November 20, 2017 are
available at least once in a month with the exception of 4 months: May and June 2016 and
January and March 2017. Figure 5.3 represents the false color composition of the two Sentinel-2
images chosen for classification. Kuzikus reserve’s contour and some soil cover patterns stand
out in the images. The eastern part of the reserve is mostly characterized by red sand soil with
some sand’s dunes, while the western part has more vegetation and is more bush encroached.
Limestone soil characterizes the two grey and white areas in the north, while the small grey
spots all around the reserve are mostly water points. Because of the false color composition,
vegetation appears in shades of red and blue/green, while sand and soil in shades of yellow /white
and grey. Green vegetation (dark red in the images) is clearly visible around water points and
in particular around the lodge, in the south of Kuzikus.
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(a) Sentinel-2, May 24, 2017

TS

»

(b) Sentinel-2, October 21, 2017
Figure 5.3: Selected satellite images in false colors: (a) May 24, 2017 and (b) October 21, 2017
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5.2 Ground truth and classes

Table 5.1 shows the percentage of ground truth samples for each class used for drone images’
classification. Some of them, like Tree, Road and Soil, are abundant, while others, in particular
bushes and some types of grasses, are scarce. In 2017 some classes count for less than 2% of the
ground truth. In 2015, the ground truth pixels represent the 2% of the total number of samples
of the 4 images, while in 2017 they represent the 3.7%.

Drone 2015 Drone 2017
Class # of samples t‘f; tolf g;frll;:s Class # of samples t‘fil tolf 5;;)111;25
Road 28544 15.5 Road 53232 15.8
Tree 1 60061 32.6 Tree 1 116933 34.8
Shadow 13364 7.3 Shadow 30734 9.1
Soil 26121 14.2 Soil 61797 18.4
Bush 1 9001 4.9 Bush 1 6381 1.9
Grass 1 9536 5.2 Grass 1 3788 1.1
Grass 2 7032 3.9 Grass 2 23381 7.0
Grass 3 18753 10.2 Tree 2 34414 10.2
Perennial 7541 4.1 Bush 2 5832 1.7
Bush 2 3829 2.1

Table 5.1: Number of ground truth samples per class for 2015 and 2017 drone images

For Sentinel-2 images, Limestone soil class is the most abundant, representing 24% of the

ground truth, while the class Tree is the scarcest with only 8.8%. Table 5.2 shows the percentage
of ground truth samples for each class. The number of ground truth samples per class is more
homogeneous for satellite than for drone data.

Satellite

Class # of samples % of ground truth samples
Grass 1 4064 18.4
Grass 2 3330 15.1
Sand 1 4441 20.1
Sand 2 2939 13.3
Limestone soil 5358 24.3
Tree 1951 8.8

Table 5.2: Number of ground truth samples per class for satellite images

5.3 Features

Figure 5.4 shows the features’ ranking for the classification of drone images from the least
important (on top) to the most important (at the bottom). All features were positive for both
2015 and 2017. Contrast, correlation and PCA of green, red and NIR bands were the most
important features in 2015, while height is largely the most important feature in 2017. Despite
all features being positive for both years, SVM models resulted more sensitive than RF to the
number of features used in the classification and after some tests, it was decided not to use
textures with this classifier.
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(a) Drone May 2015

(b) Drone October 2017
Figure 5.4: Features importance for (a) 2015 and (b) 2017 drone images
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As far as satellite images are concerned, textures were all negatively ranked and therefore
not used in the classification. Figure 5.5 represents the ranking of the features used. For both
images, the standard deviation over the 1 year DVI time series is largely the most discriminant
feature for classification. It is followed by principal components and spectral bands.

pcatl nir
ndvi
gndvi
r

savi
rvi

dvi

nir
pca b
9

b
pcag
pcar
std dvi

Features

0 0.5 1 1.5 2 25
Predictor importance estimates

(a) Sentinel-2 May 2017

(b) Sentinel-2 October 2017
Figure 5.5: Features importance for (a) May and (b) October 2017 satellite images

5.4 Classification

The three following sections show the results of the classification of drone and satellite images
obtained with K-Means, Support Vector Machine and Random Forest methods.

5.4.1 K-Means

K-Means classification algorithm was only used with drone images. The elbow method used
to decide the best number of clusters & resulted inconclusive for both 2015 and 2017 images.
Therefore, k was chosen visually, based on the best results between many classifications tests.
The 4 images for each year were classified independently and later every cluster was assigned to
a class. Because of the complexity of assigning clusters to classes, some of the classes presented
in chapter 4.2 were grouped. Here, there is no distinction between grass species, which are all in
the same class called Grass. Bushes and trees are merged into the class Woody Vegetation, with
the exception of the class Tree 2 for 2017 images, which is called TreeNoLeaves and represents
trees without green leaves.

Figure 5.6 shows the 2015 classified images and their legend of colors. For images in zones 1
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(figure 5.6a) and 1bis (figure 5.6b) k was equal to 5 and for zones 2 (figure 5.6¢) and 3 (figure 5.6d)
it was equal to 4. The algorithm roughly distinguishes all trees and shadows, sometimes over-
predicting shadows and the expense of trees (zones 2 and 3, figures 5.6¢ and 5.6d, respectively).
Its performance is low in the distinction between grass and soil, which are often confused. Soil
is over-predicted at the expenses of grass, in particular in zones 1 and 2 (figures 5.6a and 5.6¢).
Soil and road are also often confused and small bushes in zone 3 (figure 5.6d) are classified as
shadow instead of vegetation.

(a) Zone 1 (b) Zone 1bis
(c) Zone 2 (d) Zone 3

Legend KM 2015
I 5oil

B vioodyVegetation
Bl shadow

I Grass

[ Road

(e) Legend
Figure 5.6: K-Means classification of drone images from May 2015 over (a) zone 1, (b) zone 1bis, (c) zone
2 and (d) zone 3. (e) is the legend of the colors
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Figure 5.7 shows the results for 2017 images. The number of clusters k was equal to 5 for all
images. The same comments for the results obtained for 2015 images hold. In addition to that,
trees without leaves are well spotted in zone 3 (figure 5.7c) but not in zone 1bis (figure 5.7b).

(a) Zone 1 (b) Zone 1bis

(c) Zone 2 (d) Zone 3

Legend KM 2017

[ Soil

B voodyvegetation

Il shadow

I Grass

1 Road

[ TreeMoleaves

(e) Legend

Figure 5.7: K-Means classification of drone images from October 2017 over (a) zone 1, (b) zone 1bis, (c)
zone 2 and (d) zone 3. (e) is the legend of the colors

Accuracies for the K-Means classifications over drone images are low. For 2015 images (table
5.3), the overall accuracy and Cohen’s Kappa are 42% and 26%, respectively. The statistics
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confirm that samples belonging to Shadow and Woody Vegetation classes are the best classified,
their precision is 96% and 47%, respectively and F statistics are above 50%. Those classes
also have the higher recall: 34% and 83%, respectively. Soil, Grass and Road classes are often
interchanged and have a F statistic below 35%. More details about misclassifications are available
in the confusion matrix (Appendix C, table 2).

Precision Recall F
Soil 0.320 0.384 0.349
Woody Vegetation 0.468 0.832 0.599
Shadow 0.955 0.341 0.503
Grass 0.312 0.246 0.275
Road 0.315 0.274 0.293

Table 5.3: Precision, recall and F statistics for K-Means classification over drone images from May 2015

For 2017 images (table 5.4), overall accuracy and Cohen’s Kappa are 55% and 40%, respec-
tively. Soil and Woody Vegetation classes have the best accuracies, with F statistics of 62% and
72%, respectively. Shadow and TreeNoLeaves, on the other hand, have the worst statistics (F
is equal to 19% and 0.1%, respectively). More details about misclassifications are given in the
appendix (Appendix C, table 3).

Precision Recall F
Soil 0.672 0.566 0.615
WoodyVegetation 0.649 0.814 0.722
Shadow 0.288 0.147 0.194
Grass 0.367 0.367 0.367
Road 0.522 0.630 0.571
TreeNoLeafs 0.001 0.001 0.001

Table 5.4: Precision, recall and F statistics for K-Means classification over drone images from October 2017

5.4.2 Support Vector Machine (SVM)

Like K-Means, SVM was also only used with drone data. For 2015 images, results and legend
are shown in figure 5.8.

Trees and shadows are generally well spotted, but shadows are often under-predicted and
classified as trees, in particular in zones 2 and 3 (figures 5.8c and 5.8d). Roads are well differ-
entiated from soil in all images and Bush 1 class is correctly classified the most of the times.
Sometimes bushes of type one are classified as both Bush 1 and Tree. Bush 2 class (only present
in zone 3) is well classified and rarely object of misclassifications. The majority of classification
errors appear at the transition between trees and shadows, where shadows are often classified
as Bush 1 or Tree. Perennial class, in yellow, is correctly classified at the bottom right of zone 1
(figure 5.8a) and at the bottom left of zones 1bis (figure 5.8b) and 2 (figure 5.8¢). It is generally
over-predicted elsewhere, in particular around trees and bushes.
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(d) Zone 3
Legend SVM 2015

[ Road
B Tee
Hl shadow
B sail

I Bush
B Grass1
[ Grass2
B Grass3
[] perennial
B Bushz

(e) Legend
Figure 5.8: SVM classification of drone images from May 2015 over (a) zone 1, (b) zone 1bis, (c) zone 2
and (d) zone 3. (e) is the legend of the colors

Figure 5.9 shows a detail from zone 3 (figure 5.8d) representing the correct classification of
Bush 2 (in pink) and some patches of Grass 3 (dark green) and the over-prediction of perennial
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grasses (in yellow).

e,

(a) Detail of the original (b) Corresponding classi-

RGB image over zone 3 fied image

from 2015
Figure 5.9: Detail of (a) the original RGB image over zone 3 from 2015 data representing Bush 2, Soil and
Grass 3 classes and (b) the corresponding classified image

Figure 5.10 shows a small area of zone 1 with Grass 1 (in green), Grass 2 (in beige) and
Soil (in orange) classes (figure 5.10a) and the corresponding classification results (figure 5.10b).
Objects are almost all correctly classified.

(a) Detail of the original (b) Corresponding classified
RGB image over zone 1 from image
2015

Figure 5.10: Detail of (a) the original RGB image over zone 1 from 2015 data representing Grass 1, Grass
2 and Grass 3 classes and (b) the corresponding classified image

Although in the most of the images grasses are well classified, they are sometimes wrongly
classified as trees, in particular in zone 3 (figure 5.8d). The classification allows to also spot
small details like narrow roads created by animals, which are visible in zone 1 (figure 5.8a).

Figure 5.11 shows the results for 2017 images. Although some classes like Bush 2 and Road
are well classified, the class Tree 1 is largely over-predicted at the expenses of all other classes,
in particular soil. This is particularly visible in zones 1 and 1bis (figures 5.11a and 5.11b).
Bushes of type 1 are small in this season. They are correctly spotted but their contours wrongly
classified as Tree 1. Tree 2 is well distinguished from Tree 1 (figures 5.11b and 5.11c).
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-

(d) Zon

Legend SVM 2017

I Road

Bl Treel
B stadow

B soil

B Bushi

I Grass1

[ Grass2

[ Tree2

I Bushz

(e) Legend

Figure 5.11: SVM classification of drone images from October 2017 over (a) zone 1, (b) zone 1bis, (c) zone
2 and (d) zone 3. (e) is the legend of the colors

Table 5.5 shows the calculated statistics for 2015 images, which are all very high. Overall
accuracy and Cohen’s Kappa are both 98% and precision, recall and F1 statistics are above 93%
for all classes. The worst accuracies are for Bush 1 and Perennial classes, which have F statistics
of 95% and 94%, respectively. The confusion table is in the appendix (Appendix C, table 4).
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N Tain N test Precision Recall F
Road 11417 17127 0.979 0.991 0.985
Tree 24024 36037 1.000 0.993 0.996
Shadow 5345 8019 0.986 0.985 0.985
Soil 10449 15672 0.986 0.976 0.981
Bushl 3600 5401 0.952 0.944 0.948
Grassl 3815 5721 0.978 0.984 0.981
Grass2 2921 4381 0.975 0.990 0.982
Grass3 7501 11252 0.974 0.984 0.979
Perennial 3017 4524 0.945 0.935 0.940
Bush2 1532 2297 0.955 0.995 0.974

Table 5.5: Number of training and test samples and precision, recall and F statistics for SVM classification
over drone images from May 2015

Table 5.6 reports the statistics for 2017 images. All statistics are above 96%), overall accuracy
and Cohen’s Kappa are both 99%. Those results contrast with the classified image, where many
samples where clearly wrongly classified. The confusion table in the appendix (Appendix C,
table 5) gives an overview of the misclassifications, Tree 1 class is the one with most samples
actually belonging to other classes.

N Tain N test Precision Recall F

Road 21292 31940 0.999 1.000 0.999
Tree 46773 70160 0.998 0.992 0.995
Shadow 12293 18441 0.991 0.987 0.989
Soil 24719 37078 0.994 0.999 0.996
Bushl 2552 3829 0.965 0.997 0.981
Grassl 1516 2272 0.971 1.000 0.985
Grass2 9353 14028 0.997 0.999 0.998
Tree2 13766 20648 0.995 0.996 0.995
Bush2 2333 3499 0.961 0.965 0.963

Table 5.6: Number of training and test samples and precision, recall and F statistics for SVM classification
over drone images from October 2017

5.4.3 Random Forest

Random Forest classifier was used for both drone and satellite images.

Drone images

Results for 2015 drone images classification are shown in figure 5.12.
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Legend RF 2015

[ Road
B Tice
Bl shadow
B 5ol

B Bush
B Grass1
[ Grass2
B Grass3
[ perennial
Bl Bushz

(e) Legend
Figure 5.12: RF classification of drone images from May 2015 over (a) zone 1, (b) zone 1bis, (c) zone 2
and (d) zone 3. (e) is the legend of the colors

Objects belonging to classes Bush 1, Bush 2, Tree, Road and Shadow are generally correctly
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classified and perennial grasses are less over-predicted than with SVM classifier. On the other
hand, Grass 1, 2 and 3 classes are under-predicted, samples belonging to this class are often
classified as soil. Like with SVM, but in a larger extent, many misclassifications exist at the
transitions between objects. Pixels between shadows and soil are often wrongly classified as
Bush 1, Bush 2 or Perennial. Figure 5.13 shows an example of this phenomenon: shadows,
(black) are contoured by pixels classified as Bush 1 (blue) or Perennial (yellow).

4
(a) Detail of the orig- (b)  Corresponding
inal RGB image over classified image
zone 3 from 2015

Figure 5.13: Detail of (a) the original RGB image over zone 1 from 2015 data and (b) the corresponding

classified image showing the misclassifications at the transitions between objects

Classified images from 2017 drone data are given in figure 5.15. All classes are well classified
and there is fewer noise around objects than in 2015. The bigger mistakes are in zone 3 (figure
5.15d), where parts of shadows are often classified as Bush 2. Tree 2 is also over-predicted in
some areas, in particular in zone 1 (figure 5.19a), where some pixels belonging to Grass 1 or
Grass 2 are classified as Tree 2. In the same zone, some pixels belonging to Bush 1 are wrongly
classified as Tree 2. In general Tree 1 and Tree 2 are well distinguished and it is possible to
see which trees already have green leaves, which one do not have them yet and which one are
starting to get them. Figure 5.14 shows a detail of zone 2 where it is possible to see these three
types of trees.

.2

(a) Detail of the original RGB (b) Corresponding classified

image over zone 2 from 2015  image
Figure 5.14: Detail of (a) the original RGB image over zone 2 from 2015 data showing trees that already
have green leaves, that do not have them yet and that are starting to get them and (b) the corresponding
classified image
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Legend RF SVM 2017

I Road

B Treel
Il shadow

B 5oil

B Bushl

B Grass1

[ Grass2

O Tree2

B Bushz

(e) Legend

Figure 5.15: RF classification of drone images from October 2017 over (a) zone 1, (b) zone 1bis, (c) zone
2 and (d) zone 3. (e) is the legend of the colors

Statistics on 2015 images are shown in table 5.7. Overall accuracy and Cohen’s Kappa are
both 97%. Precision, recall and F1 statistics range between 67% and 99%. Road and Shadow
classes have excellent statistics and are the most pure classes (confusion matrix in Appendix C,
table 6). Some misclassifications appear between Road and Soil classes. Tree and Soil have also
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excellent statistics, but samples belonging to other classes are often assigned to those classes.
Bushes and grasses have the lowest statistics and highest impurities, in particular perennial
grasses (F statistic equal to 80%). Indeed, bushes and Grass 3 are often classified as Perennial.

N Tain N test Precision Recall F
Road 2855 25689 0.977 0.992 0.984
Tree 6006 54055 0.998 0.994 0.996
Shadow 1337 12027 0.967 0.992 0.979
Soil 2612 23509 0.985 0.968 0.976
Bushl 901 8100 0.917 0.873 0.894
Grassl 953 8583 0.977 0.974 0.975
Grass2 730 6572 0.951 0.978 0.965
Grass3 1875 16878 0.972 0.959 0.966
Perennial 754 6787 0.946 0.854 0.898
Bush2 383 3446 0.676 0.991 0.803

Table 5.7: Number of training and test samples and precision, recall and F statistics for RF classification
over drone images from May 2015

Statistics for 2017 images, shown in table 5.8, are all above 90%. Overall accuracy and
Cohen’s Kappa are both 98%. The classifiers led to only a few misclassifications, which mainly
concern confusion between the two types of tree (confusion table in the Appendix C, table 7).

N Tain N test Precision Recall F

Road 5324 47908 0.997 0.998 0.998
Tree 13543 121896 0.972 0.995 0.983
Shadow 2970 26721 0.996 0.980 0.988
Soil 6180 55617 0.991 0.998 0.994
Bushl 638 5743 0.952 0.973 0.962
Grassl 378 3410 0.994 0.992 0.993
Grass2 2338 21043 0.999 0.997 0.998
Tree2 3441 30973 0.983 0.901 0.940
Bush?2 584 5248 0.971 0.953 0.962

Table 5.8: Number of training and test samples and precision, recall and F statistics for RF classification
over drone images from October 2017

Figure 5.16 show the OOB error estimate for 2015 and 2017 classifications. For 2015 images
it decreases and stabilizes below 0.1 while for 2017 it continues to slowly decrease. After 500
trees it is below 0.2.
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Figure 5.16: OOB error estimate for RF classification over (a) 2015 and (b) 2017 drone images

Satellite images

Results given by RF classifier with Sentinel-2 images from May and October 2017 are shown in
figures 5.17 and 5.18, respectively. The general patterns of the classified images well represent
those of the original ones, in particular in the distinction between soil and vegetation. Limestone
soil is correctly classified in the northern part of the reserve and allows to recognize the location
of water points. Almost no pixels are classified as sand in the western part of the reserve, while
this class dominates the north eastern part of Kuzikus. Classifications from May and October
images are similar, the biggest differences are in the vegetation classes. The class representing
trees is more abundant in May than in October, while for grasses it is the opposite.
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Figure 5.18: Random Forest classification, Sentinel-2 October 2017

For the image dating May 2017, statistics are given in table 5.9. An overall accuracy of 94%
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and a Cohen’s Kappa of 93% are reached. Precision, recall and F statistics for Limestone soil,
Sand 1 and Sand 2 classes are all above 96%. Grass 1 and Grass 2 come after and Tree is the least
precisely classified class (F1 score is 79%). The Limestone soil class is hardly ever misclassified,
while samples belonging to the Tree class are often classified as grasses. Some misclassifications
between the two grass species also exist. More information is given in the confusion matrix in
the appendix (Appendix C, table 8).

N Tain N test Precision Recall F
Grassl 1355 2709 0.895 0.928 0.911
Grass2 1109 2221 0.906 0.881 0.893
Sand1 1481 2960 0.967 0.969 0.968
Sand2 980 1959 0.989 0.994 0.992
leseositlone 1785 3573 0.999 0.998 0.999
Tree 651 1300 0.798 0.772 0.785

Table 5.9: Number of training and test samples and precision, recall and F statistics for RF classification
over Sentinel-2 image from May 2017

Sentinel-2 images from October 2017 gave similar results (table 5.10). The overall accuracy
of the classification is 93% and Cohen’s Kappa 91%. The confusion matrix is available in the

appendix C, table 9.

N Tain N test Precision Recall F
Grassl 1354 2710 0.867 0.898 0.882
Grass2 1110 2220 0.877 0.845 0.861
Sand1l 1480 2961 0.965 0.967 0.966
Sand2 980 1959 0.984 0.996 0.990
leseositlone 1786 3572 0.999 0.998 0.999
Tree 651 1300 0.801 0.779 0.790

Table 5.10: Number of training and test samples and precision, recall and F statistics for RF classification
over Sentinel-2 image from October 2017

The OOB error estimate (figure 5.19) rapidly stabilizes around 0.1 for both classifications.
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Figure 5.19: OOB error estimate for RF classification over (a) May and (b) October satellite images

The following three figures show a comparison between Sentinel-2 classification results and
drone orthophotos from October 2017 over zones 1 and 1bis (figure 5.20), zone 2 (figure 5.21)
and zone 3 (figure 5.22). Drone images are superposed to satellite classification results with 40%
transparency. In figure 5.20, Random Forest classification over the Sentinel-2 image correctly
identified the majority of trees, in particular the big ones or trees close to each other. In the
bottom right part of the figure, all is classified as tree, while in reality it is mostly grasses. In
the rest of the image, grass patches, which are smaller than the pixel size of 10210 meters, are
not identified. In figure 5.21 the situation is similar. In figure 5.22 the grass cover on the ground
is more abundant than sand and Sand 1 and Sand 2 classes are not present. In the middle of
the image there is a water point with bare soil around (grey), in turn contoured by big trees.
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Again, trees are almost always correctly identified.
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Figure 5.20: Comparison between RF classificatin results over the Sentinel-2 image from October 21, 2017
and an eBee Plus Orthophoto from October 17, 2017 over zone 1

Figure 5.21: Comparison between RF classificatin results over the Sentinel-2 image from October 21, 2017
and an eBee Plus Orthophoto from October 16, 2017 over zone 2
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Figure 5.22: Comparison between RF classificatin results over the Sentinel-2 image from October 21, 2017
and an eBee Plus orthophoto from October 17, 2017 over zone 3

5.5 Sampling and accuracy assessment

Table 5.11 summarizes the overall accuracies and Cohen’s Kappa statistics for all classifications.
Considering drone images, SVM classification gave slightly better statistics than RF for both
years. However, from the 2017 classified images with this algorithm, many mistakes were visible.

Platform Classification Overall accuracy Cohen’s Kappa
K-Means 2015 42% 26%
K-Means 2017 55% 40%
SVM 2015 98% 98%
Drone
SVM 2017 99% 99%
RF 2015 97% 97%
RF 2017 98% 98%
Sentinel-2 RF May 94% 93%
RF October 93% 91%

Table 5.11: Comparison of overall accuracy and Cohen’s Kappa for all classifications

The following of this chapter gives the sampling fractions and accuracy assessments through
spectral signature comparison for RF and SVM classifications. K-Means was not taken into
account as classification results led to the distinction of only a minimal part of the original
classes. The spectral signature comparison compares the median values of the spectral bands
for each class before and after classification. The spectral signature before classification is
calculated using the ground truth samples, while the one after classification using all samples of
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the images.

Drone images

The split fraction of the train and test sample for both 2015 and 2017 SVM classifications was
0.6 for testing and 0.4 for training the model. For Random Forest, the split fraction was 0.9 for
testing and 0.1 for training the model for both 2015 and 2017 images.

For drone images, medians of green, red and NIR bands are calculated from the same camera
(NIR for 2015 and MS for 2017) while the blue bands come from the RGB cameras. Graphs
obtained from 2015 images (figures 5.23, 5.24 and 5.25) show similar curves before and after
classifications, with the exception of Bush 1 class (figure 5.24). RF classifier gave lower values
for Bush 1 compared to the curves obtained from SVM and ground truth data. Medians over
vegetation classes and Shadow class have higher values compared to ground truth data. Standard
deviations of the median values are given in the appendix D, figure 1.
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Figure 5.23: Spectral signatures of Soil, Road and Shadow classes (a) before classification and (b) after
SVM and RF classifications of 2015 drone images
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Figure 5.24: Spectral signatures of Tree, Bush 1 and Bush 2 classes (a) before classification and (b) after
SVM and RF classifications of 2015 drone images

-61-



5.5. SAMPLING AND ACCURACY ASSESSMENT

1 T T T 1 T T T
Grass1
Grass2
0.9 L |—#—Grass3 i 0.9 kL 4
Perennial a
’ —
0.8 - . 0.8 T .
P
= 4 ,;/”’/
7 =3
07 - g 07 Y/ 1
7/
.
i
7
a 06 - q a 0.6 7
< c 7
= & Y/
3] 3]
2 & 4
2051 R © 051 4
c c
@ @
5 k=]
) )
=04+ R =04+ .
03 r B 03r bl
Grass1 SVM
02r T 02r Grass1 RF =
Grass2 SVM
Grass2 RF
—®— Grass3 SVM
0.1 b 0.1 |-—=--Grass3 RF 7
Perennial SVM
Perennial RF
0 | 1 1 | 0 1 | 1 1
500 600 700 800 900 500 600 700 800 900
Wavelength [nm] Wavelength [nm]
(a) Before classification (b) After classification

Figure 5.25: Spectral signatures of Grass 1, Grass 2, Grass 3 and Perennial classes (a) before classification
and (b) after SVM and RF classifications of 2015 drone images

Graphs from 2017 images (figures 5.26, 5.27 and 5.28) show that RF and SVM had almost
the same results and that they are consistent with the spectral signature obtained from ground
truth data for all classes except Tree 1 with SVM classifier (figure 5.27b). Here is very well
visible the wrong classification of Tree 1 class with this classification method. Indeed, this class
has median values completely different from those obtained from ground truth data and RF.
Values for Bush 1 and Shadow slightly differ between SVM and RF and are higher than those
from the ground truth (figures 5.26 and 5.27). Standard deviations of the median values are
given in the appendix D, figure 2.

-62-



5.5. SAMPLING AND ACCURACY ASSESSMENT

1 T T T 1 T T T
Road Road RF
Shadow Road SYM
09 L Soll i 0.9 - Shadow RF ]
Shadow SVM
Soll RF
Soil 8VM
0.8 - ] 0.8 - _
0.7 B 07 F i

g 06 R g 06 .

= =

] ]

5 5

& <

T o5 4 © 05 N

= c

L] ]

o 5

@ @

Zo04r 1 Zoaf :
03+ . 03+ 1
02 - . 02+ .
01 - ] 01 - _

D 1 1 1 L D 1 1 1 |
500 600 700 800 900 500 600 700 800 900
Wavelenght [nm] Wavelenght [nm]
(a) Before classification (b) After classification

Figure 5.26: Spectral signatures of Soil, Road and Shadow classes (a) before classification and (b) after
SVM and RF classifications of 2017 drone images
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Figure 5.27: Spectral signatures of Tree 1, Tree 2, Bush 1 and Bush 2 classes (a) before classification and
(b) after SVM and RF classifications of 2017 drone images
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Figure 5.28: Spectral signatures of Grass 1 and Grass 2 classes (a) before classification and (b) after SVM
and RF classifications of 2017 drone images

Satellite images

Sentinel-2 images were only classified with RF classifier. The best split fraction for test and
train was 0.66 of ground truth samples used for testing and 0.33 for training the model.

Figures 5.29 and 5.30 show the spectral signature of each class before and after classification
for May and October satellite images, respectively. The two figures show that the shift between
the spectral signatures before and after classification vary according to the class and season,
results are less precise than those obtained with drone images. Median values for spectral bands
obtained from samples classified as tree are similar to those obtained from the ground truth for
both classifications. Limestone soil class varies considerably. Standard deviations of the median
values are given in the appendix D, figures 3 and 4.
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Figure 5.29: Spectral signatures of (a) Grass 1, Grass 2 and Tree and (b) Sand 1, Sand 2 and Limestone
soil classes before classification and after RF classifications of the Sentinel-2 May image
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Figure 5.30: Spectral signatures of (a) Grass 1, Grass 2 and Tree and (b) Sand 1, Sand 2 and Limestone
soil classes before classification and after RF classifications of the Sentinel-2 October image

5.6 Forage quantity estimation

Estimation from drone images

Table 5.12 shows the vegetation estimation for 2015 drone images and compares the results
obtained from SVM and RF models. Estimations are not calculated from K-Means results
because of the low performance of the classification algorithm. Results are given in m?. The
area of one pixel is 0.01m? and there are 2250000 pixels per image. The total grass and vegetation
areas for all zones differ for both models. Differences in total grass cover range from 162.4m? for
zone 1 to to 1608.5m? for zone 2 and differences in total vegetation cover range from 197.2 m?
in zone 2 to 2478.8m? in zone 3.
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Drone 2015
Zone Zone Zone Zone Zone Zone Zone Zone
Area [m?] 1 1 1bis 1bis 2 2 3 3

(RF) (SVM)| (RF) (SVM)| (RF) (SVM)| (RF) (SVM)

Grass 1 5428.7 | 5394.1 1490.3 | 3562.6 144.0 9.7 219.1 61.0
Grass 2 2688.8 | 4367.7 | 1919.7 | 3162.7 467.3 26.5 752.2 542.7
Grass 3 3888.2 | 1334.8 | 5885.9 | 4400.7 | 5492.2 | 4097.6 | 7181.1 | 8763.5
Perennial 1852.6 | 2599.2 | 2156.8 | 1416.3 | 2243.2 | 2604.5 | 1029.3 318.9
Total grass 13858.3 | 13695.9 | 11452.6 | 12542.3 | 8346.8 | 6738.3 | 9181.7 | 9686.1
Bush 1 481.2 706.4 755.2 888.7 195.4 31.9 467.4 290.3
Bush 2 194 0.9 27.7 21.7 65.6 3.9 278.1 396.4
Total bush 500.7 707.3 782.9 910.4 261.1 35.8 745.5 686.7
Tree 672.6 13949 | 2019.1 | 2870.2 | 1989.8 | 3626.3 | 1383.4 | 3416.5
Total vegetation | 15031.6 | 15798.0 | 14254.5 | 16322.9 | 10597.6 | 10400.4 | 11310.5 | 13789.3

Table 5.12: Vegetation estimation from RF and SVM classifications results per zones, drone May 2015

Results for 2017 classification are given in table 5.13. As noticed with previous results,
SVM largely over-predicts the Tree 1 class, leading to faulty results of vegetation estimation.
Therefore, SVM and RF results are not compared and only RF results are shown. The total
grass and total vegetation estimations are significantly lower than in May 2015, except for zone

3.
Drone 2017
Area [m?] Zone 1 (RF) Zo(nl:e{FI)bls Zone 2 (RF) Zone 3 (RF)
Grass 1 637.7 1176.0 200.6 159.4
Grass 2 898.1 2094.1 5195.5 12397.5
Total grass 1535.7 3270.1 5396.1 12556.9
Bush 1 644.7 156.9 10.2 8.7
Bush 2 0.0 1.8 0.3 1071.5
Total bush 644.7 158.7 10.5 1080.2
Tree 1 526.4 370.7 671.6 1518.0
Tree 2 538.2 21494 1269.1 30.5
Total tree 1064.5 2520.1 1940.7 1548.5
Total vegetation 3244.9 5948.9 7347.2 15185.6

Table 5.13: Vegetation estimation from RF and SVM classifications results per zones, drone October 2017

Estimation from satellite images

Table 5.14 gives the results, in hectares, of the vegetation estimation for satellite images from
May and October 2017. The surface occupied by one pixels is 100 m?. The total grass surface
is higher in October than in May, while the Tree and bushes cover is higher in May. The total
vegetation cover is higher in October.
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Satellite
May [ha] October [ha]
Grass 1 1236.1 1840.9
Grass 2 1536.1 1765.2
Total grass 2772.9 3606.1
Trees and bushes 3705.8 3159.3
Total vegetation 6478.7 6765.4

Table 5.14: Vegetation estimation from RF classification results, Sentinel-2 May and October 2017

5.7 Land cover change analysis

Figure 5.31 shows the standard deviation of the DVI between November 2016 and November
2017. Dark colors represent areas that slightly change over the year or that do not change at
all. In blue, we can see limestone soils and some roads and fences. The sandy north-east corner
of Kuzikus is characterized by low standard deviations. Small yellow dots could represent trees
or vegetation that stands out in the surrounding sand. The standard deviation increases around
water points, where more vegetation is present. The standard deviation is high in the more
vegetated western part of the reserve.

Figure 5.31: Standard deviation of the Difference Vegetation Index over 1 year, from November 2016 to
November 2017

Figure 5.32 shows the temporal series of the median DVI over three uniform patches of grass
in Kuzikus and one in a neighbor farm (figure 4.10). According to the rain data, rainfall was
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more abundant between 2016 and 2017 than 2015 and 2016, but in 2015 it started raining earlier
than in 2016. All patches of grass follow the same trend: they peak after the rain comes. For
2017, all patches peak in April, while for 2016 Patches 1 and 4 peak in February and Patches 2
and 3 in April.
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Figure 5.32: Median DVI of grass patches (a) 1, (b) 3, (c) 2 and (d) 4 and (e) (f) rain data

Figures 5.33 and 5.34 show the evolution of the DVI in 4 fields in a neighbor farm and in an
area in the south west of Kuzikus. The fields’ partition is given in figure 4.10. It is easy to see
the difference between a wildlife farm and a cattle and sheep farm. In the neighbor farm, small
fields are fenced and are all treated in a different way. Plots from 2016 show that on Kuzikus
there is low vegetation cover in October and November (figure 5.33), and that it starts growing
in December and continues until April (figure 5.33, left). On the other hand, in the neighbor
farm, vegetation cover is low in October and November (figure 5.33), but in field 1 there is more.
Vegetation grows until February. In March the vegetation cover is low for fields 1 and 2 but it
still increased in fields 3 and 4 (figure 5.34). In April it decreases also in fields 3 and 4. A similar
strategy is applied in 2017, but about a month later (figure 5.34). In May 2017 the vegetation
cover slightly increased.
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Figure 5.33: Median DVI over 4 neighbor fields and a Kuzikus area in December 2015, January and February
2016
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Figure 5.34: Median DVI over 4 neighbor fields and a Kuzikus area in March and April 2016, beginning and
end of April 2017 and May 2017
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CHAPTER O

DISCUSSION

Classification of remotely sensed images is a challenging problem and the performance of the
algorithms highly depends on the input data, which require to be accurately selected and pre-
pared. Data selection and preparation was a long process because of the huge and varied amount
of data available. Satellite data, despite being all acquired with the same sensor, were highly
influenced by the meteorological conditions, in particular the cloud cover. Drone data, on the
other hand, were less influenced by the weather but were acquired with different sensors and
resolutions, which made their comparison complicated.

Image superposition

One of the biggest challenges in this research was the combination of drone images acquired by
RGB sensors with those taken by NIR ad MS ones. Without ground control points (GCPs) on
the ground or instruments that correctly calculate the geotags of the images while the droune is
flying, their absolute positioning accuracy varies between 1 to 5 meters [senseFly, 2017b]. Before
being combined, images need to be manually georeferenced between each other. In vegetated
landscapes this procedure is complicated because vegetation does not have a precise and sharp
shape, making it difficult to find the exact same point in two different images. This task was
accomplished using holes on the ground dug by aardvarks, because they were the smallest and
more precise shape recognizable in both images. Drones were flying at different heights, taking
pictures with different angles and overlaps. All these factors influenced the reconstruction of the
orthomosaics, hence the matching of objects on the ground can not be perfect. For example, the
same tree or bush can have slightly different shapes in two different images. The main problem
in the superposition of images was caused by shadows. If NIR or MS and RGB pictures are not
taken at the same time or at a very short time distance, shadows in the orthomosaics will be
different and will not correctly superpose. While during the flight campaign in October 2017
attention was payed to fly the two sensors at the same time over the same area, this was not
the case in 2015. Figure 6.1 shows an example of shadow mismatch between a RGB and a NIR
image from 2015 drone campaign.
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(a) RGB image (b) NIR image
Figure 6.1: Shadow mismatch between NIR (a) and RGB (b) images acquired in 2015 over zone 2

For satellite images this problems did not exist because images from all bands were taken at
the same time and, anyway, the size of the pixel do not allow to recognize such small details.
On the other hand, satellite images taken on different days were not georeferenced between each
other and the resolution of the images did not allow to do it manually like with drone images.
Indeed, the resolution of Sentinel-2 images was too low to correctly identify the same features on
different images. Therefore, land cover change analysis were performed on non-matched images.

Ground truth

The imperfect superposition of images strongly influenced the ground truths, which in turn
influenced the classification. The ground truthing process was the most challenging part of the
research. As no data about the soil cover in Kuzikus were available, it was only based on the
visual differences between objects on the images.

For drone images, classes were distinguished based on the different colors, shapes and textures
of the objects visible on the images representing the selected areas for classification. Some objects
like trees, roads, shadows and bushes were easy to distinguish. Bushes, for example, have no
shadow, while trees do, and the two types of bushes have different shapes and are then easy
to distinguish. Roads have a different texture and slightly different color compared to soil. On
2015 images, soil was easy to distinguish from grasses, while in 2017 images their distinction
was more challenging. Indeed, in those images grass patches were small and did not stand
out on the sandy soil, except when they were located around trees. Grasses were the most
complicated objects to ground truth in both years. Despite the fact that different grass species
were distinguished, there is no proof that they are actually different grasses and not the same,
but at different growing stages. The distinction was only based on colors. In addition to this,
they are represented by small patches, with diameters ranging between 20 cm and 1m, hence
delimited by small polygons. Polygons of the smallest patches have more or less 6 pixels and
those of the biggest ones around 100, while the entire image has more than 2 millions pixels.
Digitizing a polygon that matches between the RGB and NIR or MS images further reduces its
dimensions. That is why in general there are less grass samples in the ground truth compared
to other classes: one tree polygon corresponds to more or less ten of the biggest grass polygons.
The inequality between classes is bigger for 2017 images because there is only a few grass and
it is more difficult to separate it from sand.

For satellite images, the ground truthing process was more complicated because the resolution
of the image do not allow to well recognize objects on the ground. Polygons were digitized using
both the band combinations of Sentinel-2 images and a Bing image composed by multiple images
stuck together, probably taken at different times of the year. The fact that the base image used
to build polygons was composed by different images made it more difficult to distinguish objects,
in particular grass species, which change appearance during the year. Trees were particularly
challenging to recognize because their size is smaller than the pixel size. Therefore, only the
bigger ones or trees close together were correctly spotted on Sentinel-2 images.

As for both drone and satellite images ground truth polygons were difficult to define, mostly
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because of the wrong matching between images and ambiguous objects on the ground, the
more polygons were added, the more the chances to be mistaken. This is the main reason why
ground truth samples represent a small fraction of the total number of pixel of the images. In
particular for drone images, even if some classes like Tree or Road were easy to distinguish, the
more polygons of those classes were added, the bigger the disproportion with the number of
samples of scarce classes, like grasses. This disproportion can influence the classification at the
point when the data set is divided between train and test sets. Despite the algorithm trying to
roughly take the same number of samples from all classes, if one class in the ground truth is over
represented it will still be over represented in the training data set. This can have big influences
in the classification. Usually a bigger fraction of ground truth data is used for testing than for
training, but in this case the risk was to have not enough samples of some classes. While RF
classifier managed to perform correct classifications even with just a few training samples (10%
of the ground truth samples), SVM classifier revealed to be more sensible to the train fraction,
which had to be increased to 40%.

Classification results

Despite the small number of ground truth samples, the results of the classifications are satisfying.

For drone images, the most of the misclassifications appear at the transitions between objects,
where there are mismatches in the superposition of the NIR or MS images with the RGB ones.
This phenomenon is particularly present around shadows in 2015 (figure 5.13). The situation
improves in 2017, because more attention was paid to fly the different sensors at the same time
over the same areas. Perennial and Bush 2 classes are less over-predicted by SVM than RF. On
the other hand, SVM is more sensible to the training data set, which needs to be larger than
for RF. The bigger number of samples of Tree 1 class in 2017 drone images compared to other
classes caused the failure of the classification. Grass cover is under-predicted in zone 3 for both
years and classified as soil instead. Different bushes and trees species are well distinguished.
When trained using training data sets with relative abundance of absence of a certain species,
models like RF and SVM are known to be not well adapted at predicting those species in areas
of high vegetation diversity [Savage et al., 2015]. They usually under-predict the target species
where it is absent or rare and over-predict it when it is abundant [Savage et al., 2015|. This
is what happened with trees and grasses classes. The first is over-predicted and the second
under-predicted.

Classification over drone images was only performed on small parts of a few images as a
proof of concept for bigger classifications. With more and, above all, more precise ground truth
it would be possible to perform satisfying classifications over the entire reserve using the same
models.

As far as satellite images are concerned, it is quite difficult to interpret the results. While
with drone images it was easy to visually check if the classification performed well, here the
small resolution only allows to check general patterns and it is complicated to say which objects
are actually represented by each class. Indeed, classes are never pure, even in the ground truth
polygons. For example, the Tree class not only comprehends trees, but also groups bushes;
and isolated bushes are also present in Grass 1 and Grass 2 polygons. In general, in dense
vegetated areas, with many woody vegetation like big trees or bushes close together, everything
is classified as tree. Therefore, in those areas, which are mostly in the west side of the reserve,
sand is under-predicted. On the other hand, when the vegetation is scarce, like on the north-east
part of Kuzikus, sand is over-predicted and vegetation in under-predicted. Everything depends
on what is captured by each pixel, which covers 10210 meters. If one pixel mostly represents
vegetation it will be classified as vegetation and if it mostly represents sand with some scarce
vegetation it will be classified as sand. The classification allows nevertheless to well define the
different soil covers in the Namibian reserve: on the eastern side there are a few trees and
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mostly red sand while the western part is more vegetated, with more trees, grasses and some
bush encroachment.

Despite the classifications were visually satisfying, the lack of ground truth performed on the
field did not allow to validate the results.

Statistics for all models, except K-Means, are very high and do not well represent the real
quality of the classification. The main reason is the small amount of ground truth, which allows
to check results only on a minimal part of the images. As a result, K-Means statistics under-
predict the performance of the algorithm and SVM and RF statistics over-predict them. A
better control is given by the graphs showing the median values of the spectra of each class,
which compare the median R, G, B and NIR values of the ground truth classes to all the pixels
of the classified images. From there it is possible to see the mistake in SVM classification for
2017 drone images, which was not visible in the statistics. The graphs show that classification
results only slightly differ from the original spectral signatures of most of the classes, confirming
that results are satisfying. It was noticed that the spectral signature of the Shadow class issued
from drone images classification is significantly higher than for ground truth data (figures 5.23
and 5.26). This can be explained by the fact that many pixels, belonging to other classes,
and thus with higher reflectances, are classified as shadow. The same phenomenon appears with
Limestone soil class in RF classification of satellite images, where the spectral signature decreases
(figures 5.29b and 5.30b). This time, samples with lower reflectances than this class are classified
as limestone soil. Moreover, the spectral signatures of non-vegetation classes differ between 2015
and 2017 drone images, while the objects represented by those classes did not change between
the two years. This could be due to the different sensors used in the two campaigns.

The models used are different and all have positive and negative aspects. K-Means is not
well adapted for this type of classification. It returns only clusters and not classes, which require
a post interpretation of results. The choice of the classes is subjective and the results change
according to the initial randomly picked centroids. On the other hand, supervised classification
methods like SVM and RF directly output a thematic map, without needing post interpretation,
but they strongly rely on the quality of the training data (e.g number of discriminative examples).
The two classifiers both work well with large data sets and high dimensionality. SVM has longer
processing times and some parameters to tune, but can handle non-linear separation and only
uses a subset of the data: the support vectors [de Morsier, 2017]. In the project it was noticed
that this classifier is more sensible to the input training set. RF has shorter processing times,
gives an estimate of the variable importance, do not over fit and generates an internal unbiased
estimate of the generalization error as the forest is built. Moreover, trees are not correlated
because they are all built with different training sets.

Forage quantity estimation

After classification, biomass was only estimated by pixel counting because of the lack of a model
to predict the volume or weight per surface [t/hal.

For satellite images, results gave higher biomass estimates in October than in May, which is
counter intuitive. Grass estimates were higher in October and woody vegetation cover was higher
in May. One explanation can be that in May all trees and bushes have bloomed and occupy a
bigger surface on the image, probably hiding some grass under their canopy. In October many of
them do not have leaves at leave grasses uncovered. Therefore, more pixels are classified as tree
in May and more are classified as grasses in October, but this still does not justify why there
is more total vegetation in October. Another explanation can be that the same ground truth
based on the May image was used for both May and October classifications. The fact that the
two images were not perfectly georeferenced between each other and that it was complicated to
do a correct ground truth could have caused misclassifications in the October image, leading to
an over estimation of the amount of vegetation.
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Considering drone images, biomass is probably under estimated due to the misclassification
of grasses. Moreover, many grass patches were not detected because they were hidden by the
shadows of trees. An option to improve their estimation would be interpreting what is under
shadows. According to Yu et al. [2006], shadow, in association with terrain effects, is one of
the significant barriers to vegetation classification with airborne high resolution multi-spectral
images.

Perennial and annual grasses

The absence of a ground truth on the field makes it impossible to say if Grass 1, Grass 2 and
Grass 3 classes for 2015 images and Grass 1 and Grass 2 classes for 2017 images are annual
or perennial grasses. Perennial grasses are easy to distinguish when they are 2 or 3 years old
because they are higher than other grasses and form small patches on their own, but when they
are young they can be easily confused with annual grasses [Reinhard, 2017|. Perennial class for
2015 classification was called like this because of assumptions made by the director of Kuzikus
|Reinhard, 2017] while looking at the images.

A few small areas of Kuzikus are fenced out for vegetation studies and mainly contain
perennial grasses |Reinhard, 2017|. One of these study plot was used to understand whether
grass classes used for classification are perennial or annual. Figure 6.2 shows two small areas of
the study plot in May 2015 (figure 6.2a) and in October 2017 (figure 6.2b) to give an example
of how perennial grasses should look like in these periods.

Y . ., , e - ,ﬁ'

(a) Example of perennial grass ap- (b) Example of perennial grass ap-
pearence in May 2015 pearence in October 2015

Figure 6.2: Appearence of perennial grass in (a) May 2015 and (b) October 2017

In 2015 drone images, the same type of grass as in figure 6.2a was visible at the bottom
right of figure 5.1a and at the bottom left of figures 5.1b and 5.1c. The spectral signature of
these patches was compared to the one of the grasses in the study plot to confirm that they are
perennial grasses with a positive response. Therefore, the class Perennial in 2015 classification
really represents perennial grasses. The other grass classes can be both young perennials or
annuals.

While in 2015 it was quite easy to visually distinguish old perennial grasses from annual
plants just by looking at the images, in 2017 this was not possible because all grasses looked the
same. Nevertheless, the same spectral signature analysis was performed comparing both Grass
1 and Grass 2 classes with the grasses in the study plot, leading to positive results for Grass 2.

According to the season it is possible to distinguish more or less objects and more or less
easily. The second campaign aimed at mapping the vegetation in the dry season to better
distinguish perennial from annual plants, in particular grasses. At that moment, a few perennial
grasses were starting to get green (figure 1.5), but they were not green enough to be well spotted
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on the images. They were already green at the bottom but still yellow on the top and as the
images are taken from above, the green was hidden by the yellow on top and was not visible.
More knowledge about the phenology of grasses would be useful to better decide the period
for a drone flight campaign and correctly spot perennial grasses. Moreover, as grasses are a
small detail on the images, in order to correctly classify them it would be necessary to have
precisely georeferenced images and perfect superposition of R, G, B and NIR bands. This could
be achieved with a sensor able to capture all of them together. Nevertheless, the campaign in
October eased the distinction between perennial and annual trees (Tree 1 and Tree 2 classes in
2017 classification).

Comparison between UAV and satellite data

Different type of information can be retrieved from satellite and drone images. With the first, it
is possible to have a general overview of big areas in just one image, but this image do not have
many details. Moreover, the main problem of freely available satellite imagery, like Sentinel-
2, is their coarse spatial resolution. The second type of images can have high levels of detail
but images are smaller and the general overview of the area is missing. One of the principal
limitations of using UAVs is the relative small spatial extent of the mappings.

Vegetation appears differently according to the scale of observation. At large scale a tree
consist of leaves, branches, litter and soil, all having different reflectance spectra. At the small
scale of coarse satellite images all these components are not spatially resolved and the pixels
that capture them represent the composite spectral response of these components [Smith et al.,
1990]. Those mixed pixels often result in either overestimation or underestimation of land cover
[Giri et al., 2013]. This phenomenon is particularly important in semi arid regions, where the
low density of the vegetation causes the spectral dominance of the background soil [Moleele
et al., 2001]. This problem can be solved by separating the spectral contributions of the scene
components and transforming radiance data into fractions of a few dominant spectra [Smith
et al.,, 1990]. The technique of estimating the proportion of different type of vegetation in
a pixel is called unmixing |Keshava, 2003] and requires to have a “pure” pixel to know the
signature of a specific type of soil cover (e.g. tree, bush, sand, ...). Unfortunately, in semi arid
landscape and with Sentinel-2 data, which has 10 m resolution this is quite difficult because one
pixel rarely represent only one type of soil cover. Figure 6.3 shows an example of the footprint
of a Sentinel-2 pixel in this kind of landscape, the background image is figure 5.1a. In one pixel
there are one tree with its shadow, one bush, some soil and different types of grass.

Figure 6.3: Size of a Sentinel-2 pixel, 10210 meters. The background image is zone 1 in 2015

Despite the disadvantage of the coarse resolution, satellite imagery offers a high temporal
resolution, which can allow to study the vegetation evolution. Landsat, for example, offers the
"world’s most extensive collection of continuously acquired satellite data” [Giri et al., 2013].

For detailed vegetation studies, though, high spatial resolution UAV imagery provides more
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information than coarse spatial resolution satellite data, which have often proven "insufficient or
inadequate for differentiating species-level vegetation” [Zhang et al., 2015]. Ultra-high resolution
images allow to see small details and even to distinguish single plants, but this cause high
computational times for the algorithms and salt and pepper effects in the classification results.
In these images, one single pixel “is not closely related to vegetation physiognomy as a whole",
but "vegetation always shows heterogeneity as a result of irregular shadow or shade”, for example
in tree crowns [Yu et al., 2006]. This problem, together with the salt and pepper effect, can
be partially solved by grouping contiguous pixels and using this objects instead of single pixels
during classification.

Drone and satellite data can be used together to take advantage of the best quality of both.
The lower resolution of satellite data compared to drone ones only allows to distinguish small
objects, but permits to have a general idea of the patterns on the ground. Drone images, on the
other hand, allow to distinguish small objects and can be used as a ground truth for satellite
images, without needing to do it on the field. Using drone images as a ground truth could help
the unmixing procedure by giving relevant predictions of the proportion of different soil cover
represented by a pixel of a satellite image.
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CHAPTER [

CONCLUSION & PERSPECTIVES

In this research, the land cover of Kuzikus Wildlife Reserve, in the south-eastern Kalahari region
of Namibia, was classified using ultra-high resolution UAV images and coarse resolution Sentinel-
2 satellite images. The main goal was to provide a rough estimation of the quantity of food for
wildlife at the end of the growing season.

Drone images acquired during two different campaigns - May 2015 and October 2017 - were
classified using K-means, Support Vector Machine and Random Forest algorithms. The last
two classifiers gave the best results and allowed to distinguish between 10 soil cover classes in
2015 images and 9 in 2017 images. The classes mainly represented vegetation species: different
tree, bush and grass species. Perennial grasses were of particular interest and were spotted on
multiple images from both years.

Sentinel-2 images were classified with Random Forest classifier, which allowed to distinguish
the principal land cover patterns: low and high vegetation, sand and bare soil. Results were
compared to drone orthophotos over a few areas to observe the performance of the algorithm in
more detail. Despite the low resolution (10m) of Sentinel-2 images, Random Forest succeeded
in correctly differentiating vegetation from non-vegetation soil cover the most of the time.

The main difficulties of this research concerned the preparation of data for the classification,
in particular the ground truthing process. For drone images, features were calculated combining
spectral bands of images acquired by different sensors. The incorrect superposition of those
images negatively influenced the quality and quantity of the ground truth samples and in con-
sequence the performance of the classification algorithms, often leading to unrealistic statistics.
For satellite images, the ground truthing process was even more complicated because of the dif-
ficulty of correctly delimiting polygons on coarse resolution images. Despite classification results
for both drone and satellite images are visually satisfying, the lack of a valuable ground truth
does not allow to validate the results.

Ultra-high resolution drone data and coarse resolution satellite data offer different and com-
plementary information about soil cover. The first gives high level of details, but only covers
small areas and does not allow to have a bigger overview of the study area and its surrounding.
The second type of data can cover larger areas but gives less details on specific zones. Thanks
to their high resolution, drone images could be used to help extracting useful information from
satellite data. For example, they could be used as a ground truth to quantify the contribution
of different vegetation species to the spectral signature of single pixels on satellite images. This
information would facilitate the long term exploitation of satellite data to estimate the fodder
quantity.

In conclusion, this research proved that plant recognition from ultra-high resolution UAV
images is possible and that these data can be combined to satellite imagery to help farmers in
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the resource management of their properties. More accurate ground truths and a better under-
standing of plants’ phenology would significantly improve the biomass estimation. Moreover, the
collection of field data would help building models to provide not only estimates about fodder
quantity, but also its quality.
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CHAPTER 8

APPENDIX
A Selected satellite dates
2015 2016 2017
January - 13 -
February - 19 16
March - 10, 23 -
April - 9 4, 27
May - - 24
June - - 23
July - 18 23
August 16 10 22
September 22 9 21
October 22 19 21
November 21 18 20
December 21 28 -

Table 1: Dates of selected satellite images for the temporal analysis. In bald the images chosen for classifi-

cation

B Gini index

The Gini index is a measure of purity of the classes.
Its general formula of the Gini index at node ¢ with k classes is:

c=k

Gini(t)=1-Y P?

c=0
P, is the proportion of observations with target variable value c.
The Gini of a split is given by:

Gini(s,t) = Gini(t) — PLGini(ty) — PrGini(tg)

and is calculated for every variable and split value.
s: split
t: node
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C. CONFUSION MATRICES

Gini(t): Gini index of node t
Pr: proportion of observation in left node after split s
Gini(tr,): Gini of left node after split s
Pgr: proportion of observation in right node after split s
Gini(tr): Gini of right node after split s
The best split is given by the highest Gini [Institute, 2015b], [Institute, 2015a], [Losch, 2017].

C Confusion matrices

Soil Wood.y Shadow Grass Road
Vegetation
Soil 12103 677 0 22965 2048
Woody 1312 34141 24594 8481 4363
Vegetation

Shadow 0 584 12758 0 22
Grass 16385 5611 31 13462 7643
Road 1724 0 0 9828 5320

Table 2: Confusion matrix for K-Means classification on drone images from May 2015

Wood
Soil Veget:,- Shadow Grass Road Tree No
tion Leafs
Soil 48978 939 3 1 11359 11584
Woody
Vegeta- 12642 106350 38659 6129 10 28
tion
Shadow 0 21131 8558 2 0 0
Grass 4735 0 6118 9975 1551 4790
Road 20154 0 1 3 22007 0
T}eeeago 0 2162 5002 11069 0 15
Table 3: Confusion matrix for K-Means classification on drone images from October 2017
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C. CONFUSION MATRICES

Road Tree Shadow Soil Bush | Grass | Grass | Grass Perennlia ush
1 1 2 3 2
Road | 16773 29 0 325 0 0 0 0 0 0
Tree 0 36019 0 0 5 9 0 0 1 3
Shadow 0 7 7907 0 102 0 0 0 3 0
Soil 149 39 0 15451 4 12 6 8 3 0
B‘iSh 0 20 97 0 5142 0 0 54 88 0
Grass
N 0 57 0 23 0 5593 12 18 18 0
Grass
N 0 1 0 18 4 42 4270 37 9 0
Grass
N 0 13 0 13 76 3 22 10960 | 162 3
Perennlial 0 54 19 0 85 26 5 56 4274 5
B‘;Sh 0 47 8 0 29 0 0 5 15 2193
Table 4: Confusion matrix for SVM classification on drone images from May 2015
Road Tree Shadow| Soil BliSh Grlass Grzass Tree 2 Bl;Sh
Road | 31896 19 0 25 0 0 0 0 0
Tree 0 70054 1 0 0 0 0 39 66
Shadow] 0 103 18269 11 3 0 0 0 55
Soil 7 39 174 36850 0 0 8 0 0
B‘iSh 0 91 2 0 3694 0 0 42 0
Grfss 0 65 0 2 0 2205 0 0 0
Grz"‘ss 0 40 0 6 0 0 13980 0 2
Tree 2 0 101 4 0 7 0 1 20535 0
B‘;Sh 0 85 51 0 0 0 1 0 3362

Table 5: Confusion matrix for SVM classification on drone images from October 2017
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C. CONFUSION MATRICES

Road Tree Shadow Soil Bush | Grass | Grass | Grass Perennlia ush
1 1 2 3 2
Road | 25094 0 0 585 0 1 5 0 4 0
Tree 0 53945 8 2 17 59 0 0 24 0
Shadow 0 11 11627 0 351 0 0 0 2% 12
Soil 204 33 0 23149 0 34 30 53 6 0
B‘iSh 0 63 81 0 7424 0 16 233 282 1
Grass
N 0 16 0 41 0 8382 19 67 58 0
Gr;ss 0 2 0 25 0 83 6253 136 73 0
Gr;SS 0 0 0 119 22 14 51 16400 | 272 0
Perennial 0 43 0 0 66 30 17 203 6419 9
B‘;Sh 0 137 1 0 626 1 0 2 351 2328
Table 6: Confusion matrix for RF classification on drone images from May 2015
Road Tree Shadow| Soil BliSh Grlass Grzass Tree 2 Bl;Sh
Road | 47774 2 0 122 0 7 3 0 0
Tree 1 118442 23 6 50 0 7 3184 183
Shadow| 0 18 26626 0 12 0 0 1 64
Soil 85 0 392 55101 0 5 34 0 0
B‘iSh 0 94 32 0 5465 0 1 151 0
Grfss 0 0 0 5 4 3390 8 3 0
Grz"‘ss 0 0 0 5 0 10 21026 0 2
Tree 2 0 402 21 0 87 4 1 30458 0
B‘;Sh 0 82 66 0 0 0 5 0 5095
Table 7: Confusion matrix for RF classification on drone images from October 2017
Grass 1 Grass 2 Sand 1 Sand 2 Soil Tree
Grass 1 2424 182 0 0 0 103
Grass 2 100 2013 3 0 0 105
Sand 1 5 2862 6 0 86
Sand 2 0 0 10 1937 0 12
Soil 0 2 0 0 3571 0
Tree 88 84 78 5 7 1038

Table 8: Confusion matrix for RF classification on the Sentinel-2 image from May 2017
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D. STANDARD DEVIATION OF SPECTRAL SIGNATURES

Grass 1 Grass 2 Sand 1 Sand 2 Soil Tree

Grass 1 2349 257 0 1 0 103
Grass 2 195 1947 5 0 0 73
Sand 1 1 7 2858 2 0 93
Sand 2 0 5 3 1928 0 23
Soil 0 0 0 0 3569 3

Tree 71 87 90 5 6 1041

Table 9: Confusion matrix for RF classification on the Sentinel-2 image from October 2017

D Standard deviation of spectral signatures

drone May 2015
Standard deviation of spectral signature per class

Before classification
1 T T T T

-Road
-Tree1
I shadow
I Bush1
051 1 | Grass1
[ Grass2
[ 1Grass3

["1Perennial
0 JIIIIIDDDD_-IIILTHH _'-l.nnrlﬂ -IIILI'II‘IHH [ ]Bush2

B G NIR R

After RF classification

-Road
-Tree1
I Shadow
I Bush1
0.5+ 1 | [ Grass1
[ Grass2
[ Grass3

[—JPerennial
0 [ 1Bush2

B G NIR R

Standard deviation

After SVM classification

-Road
I Treet
N shadow
I Bush1
05+ 1 | [ Grass1
[ Grass2
[ 1Grass3

[1Perennial
0 [ 1Bushz
B G NIR R
Spectral bands

Figure 1: Standard deviation of spectral signature by class, drone May 2015
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D. STANDARD DEVIATION OF SPECTRAL SIGNATURES

drone October 2017
Standard deviation of spectral signature per class

1 Before classification

-Road
I Tree
I Shadow
0.5 I Bush1

' I Grasst
[ Grass?
[ ITree2

o Lamcledl, oo bl ol il | (——Jeuen:
R RE

B G NIR

After RF classification

-Road
I Treet
N Shadow
05 | | | Bush1
' I Grass1
[ Grass?
[ Tree2

o Lattindl, i ol el alli | e
G NIR R RE

Standard deviation

After SVM classification

I Road
I Treet
I shadow
N Bush1
I Grass1
[ |Grass2

[ Treez
0_-.-II'H_|H e el -Llnl_ﬂn Ihlrﬂ% C—JBush?
B G NIR R RE
Spectral bands

0571 1

Figure 2: Standard deviation of spectral signature by class, drone October 2017
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D. STANDARD DEVIATION OF SPECTRAL SIGNATURES

Sentinel-2 May 2017
Standard deviation of spectral signature per class
Before classification

1 T T T T

B Grass 1
N Grass 2
N sand 1

[ sand2

[ JLimestone soil
|:|Tree

Standard deviation

B G NIR R
Spectral bands

After classification

B Grass 1

I Grass 2

I sand 1

[ sand 2

[ lLimestone sail

o Lmmmccl] Bl B ] M ]| e

B G NIR R
Spectral bands

Standard deviation
=
o

Figure 3: Standard deviation of spectral signature by class, Sentinel-2 May 2017

Sentinel-2 October 2017
Standard deviation of spectral signature per class
Before classification

c 1 T T
'% B Grass 1
= I Grass 2
3 05 | | sand 1
B [ sand 2
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Spectral bands

c After classification
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T 05 | | sand 1
g : [ sand 2
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B G NIR R
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Figure 4: Standard deviation of spectral signature by class, Sentinel-2 October 2017
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