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Abstract 

Multiscale integrative modeling stands at the intersection between experimental and computational 

techniques to predict the atomistic structures of important macromolecules. In the integrative 

modeling process, the experimental information is often integrated with energy potential and 

macromolecular substructures in order to derive realistic structural models. This heterogeneous 

information is often combined into a global objective function that quantifies the quality of the 

structural models and that is minimized through optimization. In order to balance the contribution 

of the relative terms concurring to the global function, weight constants are assigned to each term 

through a computationally demanding process. In order to alleviate this common issue, we suggest 

to switch from the traditional paradigm of using a single unconstrained global objective function to 

a constrained optimization scheme. The work presented in this thesis describes the different 

applications and methods associated with the development of a general constrained optimization 

protocol for multiscale integrative modeling.  

 The initial implementation concerned the prediction of symmetric macromolecular 

assemblies throught the incorporation of a recent efficient constrained optimizer nicknamed mViE 

(memetic Viability Evolution) to our integrative modeling protocol power (parallel optimization 

workbench to enhance resolution). We tested this new approach through rigorous comparisons 

against other state-of-the-art integrative modeling methods on a benchmark set of solved symmetric 

macromolecular assemblies. In this process, we validated the robustness of the constrained 

optimization method by obtaining native-like structural models. 

 This constrained optimization protocol was then applied to predict the structure of the 

elusive human Huntingtin protein. Due to the fact that little structural information was available 

when the project was initiated, we integrated information from secondary structure prediction and 

low-resolution experiments, in the form of cryo-electron microscopy maps and crosslinking mass 

spectrometry data, in order to derive a structural model of Huntingtin. The structure resulting from 

such integrative modeling approach was used to derive dynamic information about Huntingtin 

protein. 

 At a finer level of resolution, the constrained optimization protocol was then applied to dock 

small molecules inside the binding site of protein targets. We converted the classical molecular 
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docking problem from an unconstrained single objective optimization to a constrained one by 

extracting local and global constraints from pre-computed energy grids. The new approach was 

tested and validated on standard ligand-receptor benchmark sets widely used by the molecular 

docking community, and showed comparable results to state-of-the-art molecular docking 

programs.  

 Altogether, the work presented in this thesis proposed improvements in the field of 

multiscale integrative modeling which are reflected both in the quality of the models returned by the 

new constrained optimization protocol and in the simpler way of treating the uncorrelated terms 

concurring to the global scoring scheme to estimate the quality of the models. 

Keywords : Multiscale integrative modeling, molecular modeling, constrained optimization, 

Huntingtin, structure-based molecular docking.

 



 

 

Résumé 

La modélisation integrative à échelle multiple se situe à l’intersection des techniques experi-

mentales et informatiques pour prédire les structures atomistiques d’importantes macromolecules. 

Dans le processus de modélisation integrative, l’information expérimentale est souvent intégrée 

avec des potentielles d’energie et des sous-structures de macromolecules dans le but d’obtenir des 

models structurels réalistes. Ces termes de nature hétérogène sont souvent combinés en une seule 

fonction objective globale qui caractérise la qualité de ces modèles structurels et permet leur opti-

misation par le biais d’une minimisation. Afin d’équilibrer les contributions relatives aux termes 

contribuant à cette function objective globale, des constantes sont attribuées à chaque terme au 

moyen d’un processus de calcul coûteux. Dans le but de résoudre ce problème, nous suggérons de 

passer du paradigme traditional, consistant à utiliser une seule fonction global, à une optimisation 

sous contraintes. Le travail présenté dans cette thèse décrit les différentes applications et méthodes 

associées au developpement d’un protocole general d’optimisation sous contraintes pour la mo-

délisation intégrative à échelle multiple. 

 La mise en œuvre initiale concernait la prédiction d'assemblages macromoléculaires symé-

triques grâce à l'incorporation d'un optimiseur récent nommé mViE (memetic Viability Evolution) à 

notre protocole de modélisation intégrative power (parallel optimization workbench to enhance reso-

lution). Nous avons testé cette nouvelle approche au moyen de comparaisons rigoureuses à d'autres 

méthodes de modélisation intégrative sur un ensemble d'assemblages macromoléculaires symé-

triques déjà résolus. Dans ce processus, nous avons validé la robustesse de la méthode d'optimisa-

tion sous contrainte en obtenant des modèles structurels ressemblant à ceux résolus par méthode 

expérimentale. 

Ce protocole d'optimisation sous contrainte a ensuite été appliqué pour prédire la structure 

de la protéine Huntingtin humaine. Pour ce faire, nous avons intégré des informations issues de la 

prédiction de structure secondaire et des expériences à basse résolution, sous forme d’enveloppes de 

microscopie cryoélectronique et de données de spectrométrie de masse réticulaires. La structure 

résultant d'une telle approche de modélisation intégrative a été utilisée pour dériver des informa-

tions dynamiques sur la protéine Huntingtin. 
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À un niveau de résolution plus fin, le protocole d'optimisation sous contrainte a ensuite été 

appliqué pour amarrer des petites molécules à l'intérieur du site de fixation de protéines. Nous 

avons entrepris cela en extrayant des contraintes locales et globales à partir de grilles d'énergie pré-

calculées. Cette nouvelle approche a été testée et validée sur des complexes ligand-récepteur déjà 

résolus de façon expérimentale. Ainsi, nous avons obtenus des résultats comparables à des pro-

grammes d'amarrage moléculaire de pointe.  

En conclusion, les travaux présentés dans cette thèse proposent des améliorations dans le 

domaine de la modélisation intégrative à échelle multiple qui se traduisent à la fois par la qualité 

des modèles obtenus par le nouveau protocole d'optimisation sous contrainte, et par le traitement 

plus simple des termes non corrélés qui caractérisent de la qualité des modèles. 

Mots-clés : Modelisation intégrative à échelle multiple, modélisation moléculaire, optimisation sous 

contrainte, Huntingtin, amarrage moléculaire. 
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 Introduction Chapter 1

 

Adapted from the published papers: “The importance of dynamics in integrative modeling of supramolecular as-

semblies” Giorgio E. Tamò, Luciano A. Abriata and Matteo Dal Peraro, Current Opinion in Structural Biology, 2015, 

and “Assessment of data-assisted prediction by inclusion of crosslinking/mass-spectrometry and small angle X-

ray scattering data in the 12th Critical Assessment of protein Structure Prediction experiment” Giorgio E. Tamò, 

Luciano A. Abriata, Guilia Fonti and Matteo Dal Peraro. Proteins: structure, function and bioinformatics, 2018 

 

1.1 Integrative modeling for molecular assembly 

Supramolecular complexes are the cornerstone of cellular architecture and function. Large assem-

blies of macromolecules are involved in DNA remodeling, translation and transcription, RNA pro-

cessing, protein synthesis and degradation, import, export and injection of solutes through cell 

membranes and to different organelles, ATP synthesis, respiration and photosynthesis, packaging of 

viral nucleic acids, membrane reshaping, just to name some of the systems best characterized to 

date.  

Recent advances in cryo-electron microscopy (cryo-EM) mainly consisting in the use of di-

rect electron detector and better image processing methods 1, are today increasing the discovery and 

elucidation of near-atomistic resolution of medium to very large assemblies 2. In fact, the number of 

electron maps deposited yearly in the EM-databank is growing exponentially with a rate of >1000 

maps per year since 2015 (http://www-ebi.emdatabank.org/statistics.html). Noteworthy, the recent 

elucidation of large macromolecules including the 70s ribosome structure at 3.6Å3, the 26S pro-

teasome at 4.2 Å 4, the RNA-polymerase I  5, II 6 and III 7 at 3.8 Å, 3.4 Å anf 3.1 Å respectively, 

and even extremely large macromolecules such as the 150MDa human adenovirus 26 solved at 

3.7Å of resolution 8.  

In these remarkable examples, the structural elucidation of these dynamic complexes at at-

omistic resolution was key to shed light on their function. Nevertheless, whereas the atomic struc-

ture of single proteins and complexes of relatively low molecular weight can generally be obtained 

by NMR spectroscopy and/or X-ray crystallography, the atomistic structure of several supramolecu-

lar assemblies are not yet routinely accessible using cryo-EM experiments 9. Despite their tremen-
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dous gain in resolution for some macromolecules, the volumetric shapes obtained from cryo-EM 

techniques might often not have the resolution required to unambiguously define the atomic loca-

tion of constituent subunits. 

Fortunately, the lack of high resolution data for these elusive large macromolecules can be 

complemented with a broad array of experimental methods that can provide lower resolution infor-

mation about overall shape, symmetry, composition, contact sites between constituent molecules, 

angular and distance restraints between domains, as extensively reviewed in ref. 10.  

When high resolution data of the subunits composing the macromolecular complex are 

available, e.g. through X-ray or NMR experiments, these can be combined with experiments such as 

small-angle X-ray or neutron scattering (SAXS/SANS) experiments, cryo-electron microscopy 

(cryo-EM) or tomography which would provide coarser details of the assembly such as size, vol-

ume and shape. Moreover, contact information such as residue-residue contacts unveiled through 

mutagenesis, chemical cross-linking and ion mobility mass spectrometry 11, or even from coevolu-

tion analysis 12-14, can help to define assembly rules. 

In this context, computational approaches commonly called integrative modelling (IM) at-

tempts to consistently combine these heterogeneous, and sometime incomplete, data with the struc-

tures of the individual subunits that constitute a complex in order to generate models at near atomis-

tic resolution 15.  

To address this challenge, IM method traditionally converts the prediction of macromolecu-

lar assemblies into an optimization problem; that is, a problem that can be encoded as a fitness func-

tion that describes the quality of the assembly and that can be minimized/maximised by an efficient 

heuristic algorithm16-18. This function usually combines the experimental data, which can be trans-

lated to spatial structural constraints, and energy terms, as extracted from common force fields, in 

order to obtain physically plausible models. The experimental and energy terms are most often line-

arly combined into a single fitness function. In order to balance the relative contribution of each 

term concurring to the single fitness function, weighted constants are assigned. The computation of 

this weights remains challenging because they often require heavy computation and can be biased 

towards the training set they originate from. 

Another issue generally faced by IM approaches consists in protein flexibility. Precisely, the 

structure of subunits as determined in isolation often differ, with varying degrees, from the confor-

mation they adopt upon supramolecular assembly 19, further complicating the prediction of native 
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architectures. Such scenario might arise either from artifacts induced by the conditions under which 

the structure of individual subunits is solved and/or may arise from the native dynamics underlying 

the molecular recognition pathways that lead to assembly through mechanisms as diverse as con-

formational selection or induced fit. One way or the other, this calls for the inclusion in integrative 

modeling protocols of the global and local dynamics of the individual subunits undergoing macro-

molecular assembly. Notably, the inclusion of dynamic features cannot only lead to more reliable 

models, but can also reveal fine details of the assembly mechanism and the existence of multiple 

functional states. 

On one hand, some integrative modeling approaches use experimental restraints to drive de-

formations of the subunits upon assembly, gradually improving the fit to the experimental restraints. 

This typically involves biasing with the given restraints the algorithms that perform back-

bone/sidechain refinement, normal modes analysis 20 or molecular dynamics simulations of variable 

granularity 19,21 (Figure 1.1A). The other main avenue consists in using the experimental restraints 

to select conformations from existing ensembles, namely compiled from X-ray and NMR ensem-

bles, homology models, and/or MD trajectories (Figure 1.1B). Whereas the first set of strategies 

resembles and can potentially describe induced-fit mechanisms underlying protein recognition, the 

second class of approaches seems well positioned to capture structural assembly driven by confor-

mational selection.  
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Figure 1.1 | Integrative modeling strategies accounting for flexibility and dynamics.  
Integrative modeling requires as input the structures of the individual subunits composing the supramolecular complex. 

Structures should usually have high-resolution, but, when not available, coarser molecular representations can also be 

used, along with any experimental data (e.g., experimental inputs at decreasing levels of resolution are indicated in the 

orange box). Experimental restraints (e.g., cryo-EM maps in this example) can be used upfront to guide the prediction 

of supramolecular complexes (A), or, alternatively, conformations can be sampled without restraint biases and then 

filtered to satisfy them (B). In both approaches the flexibility of individual subunits within the complex can be account-

ed for with different accuracy, from local refinement of intermolecular interactions, to elastic network based structure 

deformation, to MD-based exploration of the conformational space (see the blue box). As a final result, integrative 

modeling methods aim at producing biologically relevant supramolecular assemblies consistent with the available set of 

experimental data. The protein structures used for this example correspond to the RNA polymerase II complex (PDB 

4A3D 22). 

 

1.1.1 Using experimental restraints to drive deformation of subunits 

A number of methods use experimental spatial restraints, as obtained from low-resolution experi-

ments, to directly drive the physical deformation of starting structures into consistent confor-

mations. With a very simple and coarse way to represent protein flexibility, Situs 23 performs very 

well at fitting assemblies to volumetric maps derived from EM experiments within a broad range of 

resolution (e.g., up to 30 Å 24). Within this approach flexibility is considered by converting starting 

structures into a skeleton that is allowed to sample conformations following distributions observed 
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in the Protein Data Bank. In this way the fitting protocol uses a knowledge-based force field on 

which restraints are implemented to penalize shape differences between the assembled model and 

the experimental volume 23. Although the dynamics of individual subunits is not completely sam-

pled, this is a simple way to enlarge the conformational space accessible for assembly, which has 

been successfully applied to several systems 25-28 most notably myosin fibers 24 and full muscle fil-

aments 29. 

Similar ways to adjust individual structures into assemblies make use of normal modes 

computed from a deformable elastic network, as done by DireX 30 and iMODfit 31,32. Recently, it 

has been also shown that the combination of diverse flexible fitting protocols of this kind can im-

prove pseudo-atomistic models based on intermediate-resolution EM maps, providing in turn a gen-

eral way to assess the fits 33.  

A possible limitation of this kind of approaches is that conformations generated by normal 

mode analysis might not always be physically accurate, but further refinement using force field 

based molecular dynamics (MD) simulations can improve over this drawback. Bock et al. 34 used 

this approach to fit atomic X-ray structures of the E. coli ribosome into a set of cryo-EM density 

maps captured at different stages of the tRNA translocation process. The subsequent MD analysis 

of the different states was able to reveal their progression along the tRNA translocation pathway, 

estimating the timescale of transitions and the key driving forces along the process. In the same 

vein, DireX has been recently used for the refined flexible fitting of cyclic nucleotide-binding po-

tassium channel crystal structure inside EM density maps corresponding to different conformational 

states. This helped in elucidating the ligand-induced gating mechanism of this protein 35.  

At the most accurate end of the dynamic treatment of assembly structures is the direct use of 

MD simulations restrained by experimental inputs, which profits from an accurate description of the 

physico-chemical features of the system. Within this group of methods, the molecular dynamics 

flexible fitting (MDFF) protocol 36 uses the gradient of the electron density distribution to compute 

forces that are added to those of a classical force field. This method has been widely applied since 

its introduction 37,38, one of its most recent and striking applications being the assembly of the HIV 

virus capsid into an 8 Å cryo-EM map 39. Illustrating the importance of incorporating protein dy-

namics in integrative modeling, assembly of the HIV capsid revealed that deformation of the planar 

hexamer-of-hexamer and pentamer-of-hexamer capsid units is required to properly describe protein-

protein contacts upon capsid assembly. 
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1.1.2 Using experimental restraints to select functional states from a conformational 
ensemble 

Dealing with a broad variety of experimental inputs as spatial restraints, including cryo-EM, SAXS, 

NMR and proteomics data, we find the Integrative Modeling Platform (IMP) 40. In order to satisfy 

the spatial restraints in an efficient manner, IMP makes use of a large variety of optimization algo-

rithms 40. This protocol has been successfully used to model the complex assemblies of the 26S 

proteasome 41, the nuclear pore complex 42-44 and recently the monooxygenase hydroxylase from M. 

capsulatus 45 and the 40S-elF1-elF3 translation initiation complex 46. Despite this framework does 

not directly consider dynamic features of the complex subunits during model prediction, functional 

states of large assemblies can be discriminated from the experimental data using Bayesian inference 
47,48. Recently, two distinct functional dynamic states of the two-component system PhoQ were 

found to optimally fit a set of disulfide cross-linking data, supporting thus a scissoring mode of sig-

nal transduction in sensor His-kinase receptors 49. 

Other protocols consider flexibility in a more explicit way, like Rosetta 50, where conforma-

tional ensembles can be generated from NMR experiments and Monte Carlo sampling, while further 

refinement of sidechain and backbone torsional angles is used incrementally to improve the quality 

of the assembled models 50. In a recent advancement, dubbed “fold-and-dock” 51, it is also possible 

to simultaneously sample the internal flexibility of individual subunits under symmetry constraints, 

which allowed folding of a symmetric homodimer from its sequence and available experimental 

data. Improvements in comparative modeling (i.e., RosettaCM 52) and the inclusion of density maps 

as fitting guides for local refinement or more extensive model rebuilding now allow reaching near 

atomic resolutions when starting from cryo-EM maps of 4-10 Å resolution 53. In a recent applica-

tion, this approach has produced multiple atomistic snapshots based on high-resolution cryo-EM 

data leading to novel proposals on how GTP hydrolysis leads to microtubule dynamic instability 

and depolymerization 54.  

Following similar premises is the well-established integrative modeling framework HAD-

DOCK 18,55. Initially designed to employ NMR data, it has also been used with evolutionary data 

predicting inter-protein contacts 13,56 and adapted to handle SAXS data 57. Conformational flexibil-

ity is here accounted in two main ways; i.e. by providing ensembles from NMR structures, collec-

tions of X-rays structures or simulation snapshots, rather than static structures to the search algo-

rithm 10, and by performing multidomain docking 58. This latter scheme, like early programs such as 
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FlexDock 59 and RNAbuilder 38, splits a flexible binding partner into subdomains based on an elas-

tic network model and treats the parts independently, but under the strong constraints that the two 

halves of a hinge must be spatially close in the complex 58. Using this recipe, the dimeric structure 

of ubiquitin bound to the deubiquitinating enzyme Josephin was determined, helping to pinpoint its 

cleavage site 60. In another recent example, this protocol has been used to build a complex of the 

interleukin 1 receptor bound to an antagonist, unveiling a conformational change as large as 20 Å 

upon binding 61. 

At the most accurate end of this array of methods, one can sample subunit intrinsic dynam-

ics using explicit MD simulations to determine conformational states which are relevant for the su-

pramolecular complex, and have an optimization algorithm select the best set of conformations by 

filtering them so as to satisfy the restraints. The great advantage of such approach is that native 

physico-chemical determinants are more thoroughly accounted for and conformations are not biased 

a priori. Such strategy is at the core of the power (parallel optimization workbench for enhancing 

resolution) framework developed in our laboratory 16. In this scheme, MD trajectories are indexed 

by principal component analysis and evolutionary based algorithms, like particle swarm optimiza-

tion, are used to efficiently select optimal conformations that fulfill the set of experimental re-

straints. This strategy has already proved successful for the prediction of large assemblies like the 

HIV1 hexameric capsomer complex, the basal body of Yersinia type III secretion system and the 

C4b-binding protein 16,62-64. Noteworthy, power was used to elucidate the assembly mechanism of 

the pore-forming toxin aerolysin 62, for which unbiased MD simulations were able to extensively 

characterize activated states of the monomeric toxin along the pore formation pathway, which were 

then used for the prediction of intermediate pre-pore and mature transmembrane pore states. This 

study revealed the role of the subunit intrinsic flexibility in driving a concerted swirling mechanism 

that mediates membrane pore insertion.  

 

1.2 Integrative modeling for predicting protein tertiary structures  

IM techniques have also been extended to elucidate the tertiary structure of proteins. In this case, 

the low-resolution experiments to be integrated for tertiary structure prediction can take the form of 

small angle X-ray scattering (SAXS) 57,65,66, crosslinking/mass-spectrometry (CLMS) 67 or even 

residue-residue contacts predicted from residue co-evolution analysis 68,69 can be integrated for 

tertiary structure predictions 70. Residue co-evolution analysis in particular relies on statistical 
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techniques to detect residues in multiple sequence alignments of homologous proteins which tend to 

mutate together 71. From such analysis, probable residue-residue contacts can be inferred and used 

to assist the modeling of tertiary protein structures. When supplemented with low-resolution 

experiments, the recent integration of co-evolution analysis has enabled to blindly model protein 

structures in a successul manner in the Critical Assessment of protein Structure Prediction (CASP) 
70,72,73. 

Briefly, CASP was created as an effort to objectively assess the state-of-the-art of protein 

structure prediction methods from amino acid sequences through an international competition in 

which groups have to predict protein structures secured by the organizers but which have not been 

released by the Protein Data Bank72. The predicted models are then evaluated against the respective 

experimentally solved structures (targets) in different tracks that look at specific features, such as 

global fold prediction, refinement of fold and side chain details, oligomer prediction, and of most 

relevance to this thesis, data-assisted modeling. This category in particular was included in the last 

12th edition of CASP and featured the evaluation of IM techniques used to predict protein structures 

(of less than 50 kDa) by combining CLMS and SAXS data.  

The main outcome from this data-assisted category was that co-evolution analysis applied to 

predict residue-residue contacts was a key factor when determining the tertiary protein structure 

from a their respective amino acid sequences70. In this case, assisting the modeling of protein struc-

tures with low-resolution experiments was useful only for few predicting groups but overall did not 

show meaningful improvements in the quality of the submitted structural models 73. Nevertheless, 

the existence of a CASP data-assisted category is very recent and we expect future improvements 

both in technical advancements in IM methods and in the quality of the low-resolution experimental 

data to assist the prediction. 

 

1.3 Integrative modeling for ligand-protein interactions 

Although on a much finer scale, structure-based small molecule docking (SMD) faces similar chal-

lenges as IM. SMD is part of the virtual screening (VS) process of the drug discovery pipeline and 

is used to suggest active compounds from a screening database to be tested experimentally, with the 

aim to obtain binding affinities in the μM (10-6) range. Practically, SMD consists in a computational 

approach where the structure of the target protein is available, either through experiments or model-

ling, and commercially available compounds from a large database are iteratively docked to the 
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target protein, then selected based on their estimated binding affinity. The aim of using VS over 

traditional high throughput screening experiments (HTS) is to significantly reduce the time and fi-

nancial costs often associated with obtaining hit compounds. Notably, in a study comparing hit rate 

enrichment of VS over HTS on the protein phosphatase-1B target, Doman et al. 74 found that in the 

400’000 compounds screened using experimental high throughput experiments, 85 compounds in-

hibited the enzyme with IC50 < 100 μM, giving an enrichement of 0.021%. In the same study, the 

authors also virtually screened 235’000 commercially available compounds against the same target. 

From this procedure, the binding affinity of the suggested 365 best-scoring molecules was experi-

mentally measured and 127 of them were found to have IC50 < 100 μM, giving a 1700-fold (34.8%) 

enrichment over the HTS method. In this study, the DOCK75 software was used. Other popular 

SMD methods include AutoDock suite76, Attracting cavity77, SwissDock 78 and HADDOCK 79. 

Noteworthy, the AutoDock Vina docking sofware is freely accessible, open-source and robustly 

benchmarked 76. Commercially available software include ICM 80 and Glide81/Gold82. Similar to IM 

protocols, SMD methods convert the virtual screening problem as an optimization problem were the 

SMD algorithm attempts to minimize a global fitness function qualifying and quantifying the quali-

ty of the binding between the small molecule and the target protein. 

The SMD procedure is traditionally decomposed in two distinct steps, which are referred to 

as sampling and ranking. Considering the target protein as a rigid receptor fixed in space, the sam-

pling step consists in exhaustively probing the roto-translations and internal flexibility of the small 

molecule, used as a ligand, in order to obtain a ligand-receptor pose similar to the native one. The 

second step consists in accurately estimating the binding affinity of the ligand-receptor poses gener-

ated from the sampling step.  

Unlike IM methods applied to protein structure prediction, SMD methods usually do not re-

ly on experimental data to drive the docking of ligand inside the binding site of a given receptor, but 

on scoring functions composed of carefully calibrated uncorrelated terms. In principle, if any in-

formation susceptible to drive the docking of ligand inside the binding site of receptors were availa-

ble, greater accuracy could be conferred to the docking procedure. Nevertheless, the tedious and 

computationally demanding process of re-calibrating an already established scoring function almost 

forbids the addition of new scoring terms without rebalancing their contribution. In case scoring 

function terms in the form of geometrical constraints can be computed prior to the docking, IM 

methods can use such constraints to drive the docking of ligands. 
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1.4 Objective of the thesis 

Currently, the atomistic structural determination of macromolecular complex remains a daunting 

challenge. Despite recent computational and experimental advances to increase structural resolution 

of these important biological systems, many avenues could be suggested for improvements and the 

structure of several important macromolecules remains to be elucidated. The work featured in this 

thesis proposes improvements in the computational methods employed to model important structur-

al complexes consisting both in protein-protein and protein-small molecule complexes. 

 

Constrained optimization for integrative modeling (Chapter 3). Most IM protocols attempt to 

model the macromolecular assembly problem as an unconstrained problem featuring a single objec-

tive, which could lead to non-optimal aggregation of heterogeneous components concurring to the 

global fitness function. As a possible solution to this problem, we suggest to shift from the tradi-

tional unconstrained optimization to a constrained optimization. To face this challenge we incorpo-

rated a novel constrained optimization algorithm called memetic viability evolution 83 into our in-

house IM protocol power. The aim of this approach was to separate the fitness function components, 

previously linearly combined into a single unconstrained fitness function, into constraints and ob-

jective separately. For validation purposes, we first benchmarked our new IM protocol on symmet-

rical assembly cases featured in the literature. After making sure our protocol was robust, we then 

took advantage of the flexibility the new protocol conferred and extended our analysis on symmet-

rical assembly complexes featuring volumetric maps as obtained from cryo-EM experiments. 

 

Towards a near-atomistic model of Huntingtin protein: integrative modelling to the rescue 

(Chapter 4). Huntingtin (Httn) is an important protein that is ubiquitously found in the cytoplasm 

of cells and which function has been associated with membrane vesicles and organelles 84,85, and 

more generally with membrane trafficking 86. Importantly, poly-glutamine (poly-Q) expansions at 

the N-terminus of Httn has been linked to the serious neurodegerative Huntington’s disease (HD), 

for which no treatment currently exists to slow or halt disease progression. HD is an inherited neu-

rodegenerative disorder that is autosomal dominant, and which was found to cause progressive 

damage to the brain until eventually leading to death. It was observed that HD operates by killing 

neuron cells located in the basal ganglia through structural aggregation. The extent of poly-Q ex-

pansion of Httn has been suggested as the main culprit for protein aggregation and thus of HD 
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symptoms. Nevertheless, how these factors are related is still unknown to date. Until the 21st of 

February 2018 (while this thesis was still being written), no atomistic structure of the Httn was 

available. On this date, the group Guo et al. 87 published the structure of the Q17-Httn solved from a 

4 Å cryo-EM map. Importantly in order to obtain a cryo-EM map at such high resolution, the au-

thors stabilized the Q17-Httn through the binding of the HAP40 protein 87, which likely induced 

conformational differences with this structure and the native monomeric Httn. Recently, we ob-

tained from our collaborators at the Song Lab (KAIST) single particle cryo-EM data solved at 8-11 

Å of the full-length monomeric Httn with varying degrees of poly-Qs and CLMS information speci-

fying the intra-protein residue contacts. The work described here is an attempt to model the full-

length Httn structure by combining the experimental information available prior to the publication 

of the Q17-Httn 87. We also used this new high-resolution structure to assess our modeling and de-

rive the native conformation of Httn in isolation, i.e. without the effect of HAP40, and the impact of 

poly-Q expansion on its flexibility. 

 

Constrained optimization for small molecule docking (Chapter 5). Due to the fact that thou-

sands to millions of compound molecules have to be tested against a given target, SMD protocols 

need to be fast and computationally efficient in term of resources used. During the sampling steps 

the best receptor/ligand poses need to be quickly identified from all other generated poses. This 

difficult task is commonly achieved using a fitness function that linearly combines quantitative fea-

tures describing the binding pose. The relative weight constants assigned to balance the relative 

contribution of these features require careful and tedious computations. This almost forbids the ad-

dition of new feature terms inside an already established fitness function. Nevertheless, by switch-

ing from an unconstrained to a constrained optimization protocol, we envision the addition of new 

features possible and effortless. To achieve this, a robust fitness function is kept as objective while 

an unlimited amount of new terms can be added as inequality constraints to guide the optimization 

towards feasible areas of the search space. Practically, the work described here attempts to solve the 

SMD problems as a constrained optimization problem with the power-mViE framework (Chapter 3). 

To do so, the well-established Autodock Vina fitness function is used as objective while energy 

grid-based parameters are added as inequality constraints to guide the assembly towards favorable 

areas of the optimization search space.    

 



 

24 

The present thesis is outlined as follows. First, we will briefly describe the computational tech-

niques and optimization concepts employed in this work (Chapter 2). Then we will introduce the 

topic of constrained optimization applied to macromolecular assembly with symmetrical assembly 

showcases (Chapter 3).  We will then extend this protocol into the integrative modelling of the full 

Httn protein by combining experimental information derived from cryo-EM and chemical cross-

linking (Chapter 4). Finally, the constrained optimization method is applied to flexible small mole-

cule docking with extensive testing and examples (Chapter 5). Eventually we close this thesis with 

conclusions and perspectives (Chapter 6), together with additional publications and Annexes related 

to the work presented. 
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 Methods Chapter 2

Parts adapted from: “Disentangling constraints using viability evolution principles in integrative modeling of mac-

romolecular assemblies” Giorgio Tamò, Andrea Maesani, Sylvain Traeger, Matteo T. Degiacomi, Dario Floreano, 

Matteo Dal Peraro. Scientific Report. 2017. 

 

Integrative modeling techniques aim at finding a reasonable prediction of macromolecular complex 

structures using the structural information from high-resolution subunits and low-resolution exper-

imental data. One of such established IM protocols is the parallel optimization workbench to en-

hance resolution (power) framework, which was extensively used in this work. Though it has been 

implemented to solve virtually any optimization problem, here, it has been applied mainly to solve 

macromolecular assembly problems. The in silico assembly of large macromolecular assemblies is 

considered difficult due to the large search space the individual subunits have to explore prior to 

multimerization and the multiple local minima of the fitness function used to quantify the quality of 

the structural models. To address this challenging task, power features state-of-the-art optimization 

algorithms which performance have been extensively tested 16,63,64.  

 

2.1 power general workflow and architecture 

The original power framework has been originally designed and implemented by Matteo T. 

Degiacomi. Related work can be found in his thesis and in ref. 62. The power framework has been 

conveniently divided into two main effector parts which are (i) the module designed to solve the 

optimization problem (e.g. symmetric assembly, asymetric assembly) and (ii) the heuristic 

algorithms performing the optimization. A module is a Python object composed of several classes 

(blue boxes in Figure 2.1) which manipulate the input data, interact with the optimizer (red box in 

Figure 2.1) and output a solution as final result. 
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Figure 2.1 | General workflow of power.  
The blue boxes represent the classes specific for the module designed to solve the optimization problem. In this sche-

matic, data describing the optimization problem proceeds from input (left) to output (right). The optimizer, here repre-

sented as a red box, is the engine directly responsible for solving the optimization problem. 

 

1. The protocol leading to the solution that solves the optimization problem starts with an input file 

containing specific keywords that will be read and incorporated within the module. In this case, the 

class Parser will verify the integrity of these keywords and translate them into Python variables. 

2. From the keywords variables translated into Python variables, the class Data fetches and loads 

the information necessary to undertake the optimization. For instance, in the case of 

macromolecular assembly, this information may take the form of protein structure coordinates, 

crosslinked residue information, cryo-EM volumetric maps, etc. 

3. Based on the data and on the keywords entered, the class Space will then define the search space 

of the optimizer. 

4-5. The information defined by the previous classes is then transferred to the class Fitness and 

Optimizer, which are the core of the optimization process leading to the obtention of the final 

solution that minimizes the fitness function. 

6. Once a termination criteria has been reached (e.g. convergence, budget of function evaluations, 

etc.) and global minimum is assumed to have been reached, the data is post-processed. The post-

processing step includes for instance data sorting, clustering, comparisons, etc. 

7. The final solution or clusters of representative solutions are returned. 
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2.2 Data : Experimental information to guide macromolecular assembly 

In order to predict the structure of macromolecules, power integrates information typically extracted 

from low-resolution experiments. Some of this information can be translated into spatial distances 

specifying residue-residue contacts or assembly dimensions that must be satisfied during the opti-

mization procedure, and that can take the form of residue mutations or cross-linking-mass-

spectrometry (CLMS) data.  

 Other types of low-resolution information can be used in a more direct manner during the 

assembly process by optimizing a specific function that quantitatively describes the fit of the com-

puted structural models and the experimental data. For instance, the satisfaction of cryo-EM data 

can be formulated as the maximization of a cross-correlation coefficient (ccc) which essentially 

quantifies the match between the electron densities present in the experimental density map and 

those simulated from the protein structure 23. In a similar fashion, the satisfaction of SAXS data can 

be formulated as the minimization of a χ2 value that quantifies the difference between the experi-

mental SAXS profile (Ln[I(q)] vs q2) and a simulated SAXS profile from the protein structure 88.  

 

2.3 Search space: sampling roto-translations and flexibility of protein subunits  

In an aim to derive structural models of macromolecular assemblies, the experimental information 

described previously is integrated with high-resolution structures of the subunits composing the 

macromolecular complex. The structures of subunits are typically obtained from high-resolution 

experiments such as X-ray crystallography or nuclear magnetic resonance (NMR). When high-

resolution experiments to characterise the structure of subunits are lacking, structural models can be 

computed from secondary structure prediction programs 89 or by homology to other know protein 

structures 90.  

2.3.1 Rigid assembly 

When predicting the assembly of symmetric protein assemblies in a rigid setting, the high-

resolution structure of only one subunit is necessary to reconstruct the whole assembly. Thus, tak-

ing advantage of the circular symmetry, the coordinates of only one subunit need to be modified 

since the whole assembly can be reconstructed from circular rotations of that single subunit. The 

search space parameters consist of [α, β, γ, r], where α, β, γ are the three Eulerian angles defining 

the subunit structure orientation according to the following transformation matrix: 



 

28 

 

, 

and r is the radius of the symmetric assembly. 

For asymmetric assemblies, the dimensions of the search space increase according to the 

number of protein subunits involved in the assembly. To reduce the search space, usually the big-

gest subunit is held rigid as a receptor while the other subunits used as ligand(s) are rotated and 

translated according to the parameters [α, β, γ, tx, ty, tz] where α, β, γ are the three Eulerian angles 

and tx, ty, tz are translations along the x, y and z axis. 

2.3.2 Flexible assembly 

The previous section described an ideal assembly case where the conformation of the unbound sub-

unit structure was similar to that of the bound subunit. Such cases are however rare and most often 

one has to sample the flexibility of the subunits before attempting to model the assembly. In this 

case subunit flexibility can be sampled before optimization using molecular dynamics (MD) simula-

tions, and used during optimization as a conformational ensemble added to the search space.  

 MD simulations aim to model the temporal evolution of an atomic ensemble through itera-

tively computing the forces acting on each atom, based on molecular mechanics force-fields. Brief-

ly this is done through integrating Newton’s equation of motion to determine the position and ve-

locity of every atom. The force F acting on the ensemble of atoms at position X(t) and time t is 

computed as the negative gradient of the molecular mechanics potential U(X(t)) (see below), as ex-

tracted from force fields, and is formulated as: 

(t)) 

This generic scheme is evaluated in an iterative manner and is commonly translated into the Verlet 

integration algorithm, which predicts the position Xn+1 and velocity Vn of atoms at timestep n, which 

are defined as:  

 and 

, 
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where  is the size of the timestep (typically in order of 2fs for atomistic MD) and M the mass 

associated with the atoms of the system.  

 If sampling a molecular system for an infinite amount of time, the ergodic theorem states 

that the time average computed over a measurable quantity would be equal to the ensemble average 

of the phase space (velocity and position) of that system. Given that sampling a system phase space 

for an infinite amount of time is clearly unfeasible using molecular dynamics techniques, this hy-

pothesis essentially allows to reduce the sampling to timescale long enough to observe a biological-

ly relevant event, with the assumption that the ergodic theorem is satisfied. 

 

2.4 Fitness: scoring the quality of the structural models  

2.4.1 Molecular mechanics 

To ensure physical plausibility of the structural models produced by power, i.e. preventing steric 

clashes for instance, potential energy functions are used. The potential energy of such molecular 

systems can be calculated using classical molecular mechanics techniques from their atomic posi-

tion. In this case, empirical models called force fields essentially capture the functional form and 

parameters describing the interaction between the atoms of the molecular system. The basic func-

tional form describing the atomic interactions as found in common force fields can be formulated as 

follows: 

, 

where, 

 

 

The potential  is computed based on the position r of the N atoms of the molecular system. 

The bonded terms  is applied to covalently bonded atoms and the non-bonded term 

 to all atoms separated by at least 3 covalent bonds. 
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 The bond stretching term  representing the displacements between 2 covalently linked 

atom and can be approximated as: 

 ,  

where  is the force constant constraining 2 covalently linked atoms around their equilibrium dis-

tance .  

 The angle potential  between 3 convalently linked atoms can be approximated as: 

, 

where  is a spring constant constraining the 3 atoms around the equilibrium angle . 

The dihedral potential  between 4 covalently bonded atoms can be approximated as: 

, 

where  is a force constant constraining the 4 atoms around the equilibrium angle  and n the 

dihedral multiplicity term defining the periodicity of the system minima (e.g. n=1 when the perio-

dicity of rotation is 360°, n=2 when the periodicity of rotation is 180°, etc) 

 The improper torsional angle term  for an out-of-plane atom is used to enforce 

correct chirality and planarity and can be approximated as: 

 

where  is the force constant constraining 4 covalently bonded atoms around the equilibrium angle 

.  

 The non-bonded term  describes the van der Waals interaction between 2 non-

covalently linked atoms or that are separated by at least 3 covalent atoms and can formulated as a 

simple 12-6 Lennard-Jones potential: 

, 

where r consists in the pairwise distance between two atoms within a distance usually truncated at 

12 Å,  is the energy minimum defining the optimal distance separating the two atoms, and  the 

depth of the potential well. 
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 The non-bonded term  describes the electrostatic interaction between 2 non-

covalently linked atoms and is formulated as: 

, 

where  and  are the charge of respective interacting atoms, r is the distance separating the at-

oms and  the dielectric permittivity of vacuum.  

 In IM methods, the calculation of potential energy is usually one of the most computational-

ly demanding process since it requires to be re-calculated at each iteration from the position of eve-

ry atoms for each new structural model. In order to alleviate such computational cost, coarse-

grained (CG) representation of macromolecular systems can also be used. Essentially, CG represen-

tation reduces and aggregates the information associated with groups of atoms into fewer beads of 

different chemico-physical properties 91. The net benefit of using CG representation over all-atom 

systems includes an acceleration in potential energy computation and a decrease in local energy 

minima traps associated with a smoother energy landscape 92. For these reasons, also the Martini 

force field for coarse grained modelling of proteins (version 2.6) 93 was incorporated into the power 

framework. 

2.4.2 Integrative modeling of macromolecular assembly with power 

The aim of the current IM approach is to predict the structure of macromolecular assembly by inte-

grating the information provided from low-resolution experiments describing the spatial connectivi-

ty between the subunits, sampling the roto-translational parameters of these subunits and by ensur-

ing their physical plausibility.  

Formally, the prediction of macromolecular assembly as stated above can be translated as an 

optimization problem. Let  be a function where . For an optimization problem, the 

fitness to be minimized is  and x a vector of design variables [x1, x2, …, xn]. The aim of the optimi-

zation procedure is to find the optimal solution  that defines , where 

the fitness function is at global minimum. 

 For homomultimeric assemblies featuring a circular symmetry, we want to find the optimal 

combination of rotations and translations set that will modify the subunit structures coordi-

nates (x1, y1, z1, … xn, yn, zn) so that the fitness function describing the quality of the assembly  is 

minimized.  
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The scoring term concurring to the fitness function  consists in the pseudo-potential energy 

function that computes the satisfaction of experimental data, which are translated into spatial 

distances:  

Edata = ,  

that combines the squared sum of the differences between target and observed spatial distances (n is 

the numbers of geometric constraints, oi is the Euclidian distance of the constraint i observed in the 

assembly model and ti its target distance value, as inferred from experimental data). 

The potential energy term used to avoid steric clashes in the structural models is a simple 9-

6 Lennard-Jones coarse energy potential 94 acting on the protein Cα-atoms in the form of : 

Ephys = , 

where r consists in the pairwise distance between the Cα interfacial atoms of the subunits within a 

distance of 12 Å,  = 4.7 Å and  = 1 kcal/mol). 

One critical aspect of any optimization procedure is to design a fitness function that 

accurately describes the system. This implies that the direct minimization of the fitness function 

should ideally improve model quality. When different terms concurrent to the same fitness function 

are minimized simultaneously, imbalances may arise. Here, when minimizing Edata and Ephys 

simultaneously without balancing their relative contribution, such imbalances can lead to models 

where either the geometric constraints have been satisfied but include steric clashes, or inversely to 

physically plausible models not satisfying the experimental data.  

 

2.5 Optimizers 

2.5.1 Unconstrained optimization with particle swarm optimization 

To balance the relative contributions of the fitness function components (e.g. Edata and Ephys), these 

terms can be linearly combined with weight constants as in: 

f( ) = w * Ephys + (1-w) Edata, 
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where w is the weight constant lowering the contribution of the energy component and which has 

been calibrated at 0.2 using a systematic analysis described in 16. 

In power, f is minimized with the heuristic particle swarm optimization algorithm (PSO). The latter 

is a robust heuristic optimization algorithm inspired by nature. It was invented in 1995 by James 

Kennedy and Russel Eberhart, and since then has been applied to several fields including transport 
95, geology 96, economics 97, and more particularly to integrative modelling of macromolecular as-

semblies16,98.  

PSO was originally designed to simulate the social behaviour as depicted by the movement 

of fish schools or bird flocks. Hence, it evolves a population of candidate solutions that are influ-

enced by the position and fitness of the best individual and by neighboring solutions according to 

the following pseudocode: 

Algorithm 1 

for each timestep t do:  
   for each particle p do:  

 
      inertia ← w ∗v(p,t −1)  
      personal ←cp∗rand(0,1)∗(x(p,t−1)−xbest(p))  

global ←cn∗rand(0,1)∗(x(p,t−1)−x′best) 
 
v(c,t)←inertia+personal +global  
 
if|v(p,t)|≥size(space)then  

v(p,t)←norm(v(p,t))∗size(space)  
end if  
 
x (p , t ) ← x (p , t − 1) + v (p , t )  
 
if f(x(p,t))≤ fbest(p)then  
   fbest(p)← f (x(p,t))  
   xbest(p)←x(p,t)  
end if  

 
   end for  
end for  
 

At initial time t, the velocity v and position x of each individual candidate solution (particle p) are 

randomised according to the boundaries specified by the search space. The fitness f(x) of every par-

ticle is evaluated based on the particle position x.  
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Then, at each iteration t, for each particle, the velocity v and position x are updated based on 

the particle’s best ever recorded position xbest, which is the position where f was minimal at fbest, and 

the position x’best of best neighboring particle. The velocity v is affected by three factors. One of 

them is the inertia w, which is essentially used to gradually slow down the velocity of the particle 

through the optimization as it decreases with every timestep t. The assumption behind the decrease 

of inertia is that as the optimization proceeds, interesting areas of the search space have been dis-

covered and thus the velocity of particle should decrease so as to search these areas more carefully. 

The other two factors cp and cn consist in weighting constants used to balance the influence of the 

particle best position xbest and the best neighbor position x’best on the particle new position at time t. 

The termination criterion is reached whenever the budget of function evaluation has been 

used or whenever a maximum number of timesteps have been reached. Other criteria include reach-

ing positional or fitness convergence. 

The current PSO algorithm featured in power contains a modification to avoid local minmi-

ma and is called PSO Kick and Reseed (PSO-KaR). Briefly, at each iteration, PSO-KaR checks 

whether the velocity or the fitness of any particle is below a pre-defined threshold value and if true, 

then randomly reinitialised that particle’s position and velocity. This approach was found efficient 

to increase the PSO sampling procedure. Particularly, when used to find the minimum of standard 

benchmark functions such as rastrigin or sine, PSO-KaR was able to find lower fitness minima than 

the original PSO as the dimensionality of the search space increased 16. 

Importantly, power with PSO-KaR was found suitable to solve symmetrical assembly cases 

with and without the inclusion of protein flexibility. In the assembly cases without flexibility, the 

subunits were considered as rigid and realistic spatial constraints were extracted a priori and used to 

guide the assembly during optimization. These symmetric rigid assembly cases consisted in the 

solved multimeric assembly structures of the chorismate mutase (pdbid 1xho), acyl carrier protein 

synthase (PDB-id 1fth), SM archeal protein (PDB-id 1i8f) and Escherichia coli Escj (PDB-id 1yj7). 

Starting from a set of spatial constraints and a structure of one of the subunits, structural models 

were computed with power with PSO-KaR and structurally assessed against their respective multi-

meric assembly structure. The structural similarity metric used to compare the obtained models with 

solved multimeric assemblies was the root-mean-square-deviation: 

, 
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where, given two protein structures having an equivalent number of N atoms, δ is the distance be-

tween N pairs of equivalent Cα atoms. For all the assembly cases mentioned above, power with 

PSO-KaR returned solutions with a Cα-RMSD < 2.5 Å, which is considered acceptable. 

2.5.2 Constrained optimization with memetic Viability Evolution 

2.5.2.1 Constrained optimization 

Constrained optimization problems are different to unconstrained ones in that they contain one or 

several inequality constraints to guide the solutions towards desired regions of the search space. 

Constrained optimization problems can be formulated as follow: 

min f(x), s.t.  

where  is the objective function to be minimized,  is a vector of design variables [x1, 

x2, …, xn], li and ui are and respectively the upper and lower admissible boundary ranges defining 

the search space of each variable xi, i  1,2, …, n, and  are the inequality constraints defined 

on each solution x. In this case, the aim of the optimization procedure is to find the optimal solution 

 that defines , where the fitness function as at global minimum and 

where the best solution  satisfies all inequality constraints so that . 

The macromolecular assembly problem was previously specified as an unconstrained fitness 

function f( ) = w * Ephys + (1-w) Edata. When redefining this problem in a constrained optimization 

perspective as for instance, min Ephys, s.t.  }, the net advantage of the redefinition is the 

loss of the weights constant w previously used to calibrate the relative contribution of Ephys and 

Edata. 

Such type of constrained optimization problems is considered difficult to solve using 

traditional evolutionary algorithms, due the typically large number of function evaluation needed to 

converge. Thus to face this challenge, a novel constrained optimizer called memetic viablity 

evolution (mViE) 83 was incorporated into the macromolecular assembly prediction protocol of 

power (see Chapter 3). 
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In order to optimize a given objective/fitness function, traditional heuristic evolutionary algorithms 

operate by selecting the candidate solutions with the best phenotypes (i.e. lowest objectives/fitness) 

and allowing them to reproduce by iteratively modifying their genotypes. Such fitness-based selec-

tion process is inspired from nature where competition has been determined as the main factor for 

driving the selection and reproduction of the fittest individuals. Traditional evolutionary algorithms 

relying on competition are usually suitable for optimization problems defined by a single objective 

that uniquely describes the problem. However, in cases where both constraints and objectives are 

present, a few methods have been implemented 99. Moreover, inherent to competition-based evolu-

tionary algorithm, by iteratively selecting individuals from a population of candidate solutions, 

there is gradual loss of genotype diversity which can be associated with early convergence to local 

minima 100.  

In an attempt to alleviate these issue, the work by Maesani et al. 101 suggest “an alternative 

abstraction to artificial evolution” in which the concept of competition to select the best individuals 

is replaced by that of viability. Unlike fitness-based evolution, viability evolution (ViE) selects in-

dividuals based on a set of criteria defined on physiological or environmental factors 102, called via-

bility boundaries101. Figuratively speaking, one can suggest that instead of competing against each 

other to reproduce, in ViE, individuals are selected for reproduction based on environmental factors 

that increasingly become harsher by constraining the individuals to increasingly smaller regions, 

where the minimum of the objective is found. 
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Figure 2.2 | The viability Evolution (ViE) algorithm (adapted from 101). 
A. Candidate solutions are randomly generated on a two-dimensional search space representing the viability boundaries 

defined on the inequality constraints f1 and f2 which satisfaction is illustrated by the grey square with horizontal lines. 

Practically the aim of the optimization is to slowly drive the solutions towards the grey-lined square where the 

constraints are satisfied. B. The viability boundaries are initially set and relaxed so as to encompass all the candidate 

solutions. C. The viability boundaries are tightened in both f1 and f2 toward the area where the constraints are satisfied. 

D-E. Solutions found outside the viability boundaries, generated either from mutations or reproduction, are eliminated. 

F. The process is repeated until the limits of the viability boundaries match those of the inequality constraints and 

solutions are obtained that satisfy these constraints.  

 

In the context of optimization problems featuring both constraints and objectives, viability 

boundaries take the form of adaptive inequality constraints that are tightened at each iteration to 

drive the solutions towards feasible region of the search space where constraints are satisfied 

(Figure 2.2). Practically, at the beginning of a constrained optimization process, viability boundaries 

defined on the problem constraints are relaxed beyond the lower and upper limits of the constraints 

to encompass all the individuals from a population of candidate solutions. At the first iteration of 

the algorithm, new candidate solutions are generated from reproduction or mutations. The viability 
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boundaries are then tightened and all individuals not satisfying the new boundary limits are 

eliminated. Viability boundaries are then continuously tightened around a population of individuals 

forced to produce offspring or mutate in order to escape the ever constrained boundaries 101.   

 

Building from the theory of viability evolution, memetic viability evolution (mViE) 101 is a novel 

and efficient constrained optimizer recently implemented by Maesani et al. 83. During optimization 

with mViE, the viability boundaries are applied to a population of search units that are based on 

Covariance Matrix Adaptation Evolution Strategy (1+1)-CMA-ES 103, which can be recombined 

together using a Differential Evolution (DE) 104 operators.  

 To date, the standard implementation of CMA-ES is considered as one of the most efficient 

heuristic optimization scheme for unconstrained problems featuring a single objective 105,106. Briefly 

in the CMA-ES method, candidate solutions are generated according to a multivariate normal 

distribution, which variable number equals the number of search space dimensions and which mean 

is iteratively updated based on the search space position of the fittest solutions 105. The dependency 

between the variables in the distribution is recorded through a covariance matrix that is iteratively 

adapted so as to increase the likelihood to produce better offspring (i.e. with better objective/fitness) 
105. Several flavours of the basic CMA-ES have been suggested to solve single-105 multi-objective 
107 or constrained optimization 108 problems. Of interest to this work, the standard CMA-ES termed 

(μ/λ)-CMA-ES evolves a population of λ individuals while the mViE algorithm features a variation 

termed (1+1)-CMA-ES, which essentially evolves one candidate solution at each iteration.  

In this case, the local exploration of the search space is undertaken by the (1+1)-CMA-ES  

search units while more global search are performed during DE recombinations. Compared to 

CMA-ES, DE is simpler evolutionary algorithm that was proven to have fast and smooth 

convergence on multimodal problems, i.e. problems with several local optima 104. DE operates by 

maintaining a population of candidate solutions and randomly recombining the parameters of three 

individuals into a new offspring with the aim to improve on the problem objective 104. 

In order to optimally balance the local/global search operations, a specific scheduler was 

implemented in the mViE algorithms. A global overview of the mViE algorithm can be found in 

algorithm 2: 
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Algorithm 2 
Psucc_local ← 0.5   
Psucc_global ← 0.5  
Cα ← 0.1   
Cβ ← 0.05  
initialize termination_criteria 
initialize local_search_units() 
relax_viability_boundaries(local_search_units) 
evaluate_constraints_and_objective(local_search_units) 
 
while termination_criteria not reached: 
   decision ← component_scheduler () 
 
   if decision is excecute_local_search then: 
      rank(local_search_units) 
      best ← select_best(local_search_units) 
      offspring ←  generate_offspring(local_search_units) 
      evaluate_constraints_and_objective(offspring) 
 
      if offspring is better than best then: 
         Psucc_local ← (1 − Cα) ∗ Psucc_local + Cα 
         best ← offspring 
 
      else if offspring is worse than best then: 
         if viability_boundaries not violated then: 
            Psucc_local ← (1 − Cβ) ∗ Psucc_local 
         else if viability boundaries violated then: 
            Psucc_local ← (1 − Cα) ∗ Psucc_local 
         end if 
 
      end if 
 
   else if decision is excecute_global_search then: 
  
      best ← select_best(local_search_units) 
      parents ← random_selection(local_search_units) 
      offspring ← recombine_random(parents) 
 
      evaluate_constraints_and_objective(offspring) 
 
      if offspring is better than parents then: 
 
         if offspring is better than best then:  
            Psucc_global ← (1 − Cα) ∗ Psucc_global + Cα 
            Psucc_local ← Psucc_global 
            best ← offspring 
         else if offspring worse than best then: 
            Psucc_global ← (1 − Cα) ∗ Psucc_global + Cβ 
         end if 
 
      else if offspring worse than parents then: 
         Psucc_global ← (1 − Cα) ∗ Psucc_global 
      end if 
   end if 
 
   update viability_boundaries(best) 
   update termination_criteria 
end while 
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The aim of mViE is to find solutions that satisfy the pre-defined constraints  and minimize 

the objective . To do this, it either deploys search units that perform local explorations of the 

search space or recombine the search units to explore the search space more globally. The decision 

on whether to advance either the local or global search operations is decided by the component 

scheduler function, which takes as input the parameters Psucc_local and Psucc_global probabilities as 

well as other parameters that keep count of the success of the local and global operations respective-

ly.  

 At the beginning of the mViE algorithm, the population of search units is randomly initial-

ized on the search space and the viability boundaries are relaxed to the maximal boundaries of the 

 constraints. At this time the probability of either advancing local or global search is equiva-

lent. As the optimization proceeds, these values are updated based on the carefully calibrated fading 

parameters Cα and Cβ. These values were calibrated so that the number of function evaluations are 

optimally spent between local and global search. 

 In case a local search is decided by the component scheduler through the variable ex-

cecute_local_search, an offspring is generated from the best ranked search units, in terms of objective 

and constraint satisfaction, and compared to the global best solution found. The idea is to penalise 

the offspring which fitness values and constraints satisfaction are worse than the ones of global best 

solution, whilst making sure the viability constraints are satisfied. Thus a higher penalty on the 

Psucc_local is assigned whenever not only the candidate offspring is worse than the best solution but 

also when it violates the viability boundaries. 

 In case of global search specified by the variable excecute_global_search, parents are first ran-

domly selected from the local_search_units and an offspring is obtained from recombination of these 

parents. In this case the highest penalty on the probability of global search success Psucc_global is 

assigned whenever the offspring is worse than both the parents and the global best solution.  

For both steps the viability boundaries defined on the constraints are tighthened on the 

succesful offspring according to the following : 

,  

where  is the constraint boundary defined on the constraint . 
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The mViE algorithm was shown to outperform state-of-the-art constrained optimizers on a 

standard set of difficult constrained optimization function 83, and thus was found suitable to be 

adapted to the prediction of macromolecular assemblies as shown in the next chapter. 
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 Disentangling constraints using viability evolution princi-Chapter 3
ples in integrative modelling of macromolecular assemblies 

Published as the following paper : “Disentangling constraints using viability evolution principles in integrative 

modeling of macromolecular assemblies” Giorgio Tamò, Andrea Maesani, Sylvain Traeger, Matteo T. Degiacomi, 

Dario Floreano, Matteo Dal Peraro. Scientific. Report. 2017. 
 

3.1 Introduction 

Macromolecular assemblies are of paramount importance for the functioning of biological cells. 

Due to their size and complexity, using traditional experimental methods to elucidate their structure 

and dynamics remains to date a daunting task and a major challenge. Nevertheless, if high-

resolution structures of subunits as well as experimental low-resolution information describing their 

mode of assembly are available (e.g., describing residue contacts between protein subunits), these 

can be used to assemble the subunits into their native complex. Integrative modeling (IM) 10,43,109 is 

an in silico approach that integrates this experimental information with empirical energy potentials, 

as found in molecular force fields 110, to generate candidate model assemblies. Along with the re-

cent advances in structural biology 111,112, IM has gained importance by successfully predicting sev-

eral large molecular assemblies from their isolated subunit components 62,110,113-115. 

 The energetic and experimental components are usually aggregated into a fitness function 

that describes the quality of the candidate assemblies and that is minimized by a stochastic search 
16,18,110,116. In order to balance the contribution of the components, relative weights must be assigned 
16,113. The determination of optimal weights, besides being a tedious and computationally expensive 

process, can heavily influence assembly predictions 45,47. A further and more general issue consists 

in the fact that a unique fitness function, notwithstanding its correct component balancing, is often 

inadequate to select the best candidate assemblies generated by IM protocols 10. This inaccuracy 

results from the difficulty to correlate the quality of the candidate solutions to canonical scoring 

terms 117.  

Here we report a widely applicable IM protocol based on an evolutionary method that does 

not require the individual weighting of the fitness function components. The proposed protocol is 

based on a novel evolutionary method 101, where candidate solutions can survive and reproduce if 
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they satisfy a set of viability criteria defined on the problem objectives and constraints. In particu-

lar, we adopt a variation of the viability method, named memetic Viability Evolution (mViE) 83, 

which maintains and recombines multiple sub-population in order to optimize the balance between 

local and global search and has been shown to outperform several state-of-the-art methods on a 

standard benchmark suite of constrained optimization problems 83,108 (see Methods). Therefore, 

rather than mixing objectives and constraints in a single fitness function, this method modifies in-

dependently the viability criteria for each objective and constraint during evolution, driving thus the 

solutions towards desired regions of the search space. Practically, this allows for a natural partition-

ing of the fitness function components. In the case of macromolecular assembly prediction, this 

means that fitness function components can be treated independently as objectives and inequalities 

representing constraints on the search space. The resulting assembly protocol based on mViE is 

featured as an extension of our protein assembly framework power (http://lbm.epfl.ch/resources) 
16,62, and it is benchmarked here on an extended set of known symmetrical assemblies. 

 

3.2 Results and discussion 

3.2.1 Viability evolution applied to assembly prediction 

We initially tested mViE on a benchmark set of symmetric assemblies where inputs are given as (i) 

high resolution structures of the subunits, (ii) realistic spatial constraints describing connectivity 

among subunits (as derived from cross-linking mass spectrometry experiments, e.g.), and/or (iii) 

volumetric density maps as obtained by cryo-Electron Microscopy (EM), e.g. (Figure 3.1a). During 

the prediction of plausible assemblies (Figure 3.1b), we used mViE to explore the assembly con-

formational space of subunits. At first, mViE attempts to find non-violating structural models, 

termed viable, by using the coarse energy potential as well as residue distances as viability bounda-

ries. This is to ensure that structural models without steric clashes which satisfy the imposed dis-

tances of contacting interfacial residues are found (Figure 3.1b). Then, mViE attempts to maximize, 

as objective, the diversity of viable solutions. These solutions are clustered, fitted into their assem-

bly density maps provided as input 24 and finally ranked according to a cross-correlation coefficient 

(ccc) value (Figure 3.1c and 2a, see Methods). Low-resolution volumetric maps or, in general, addi-

tional experimental inputs are not always available to rank the candidate solutions. Clustering algo-

rithms can alone identify best solutions as they tend to predominantly sample regions of the search 

space associated to the most native-like assembly 118. Moreover, multi-resolution energy scoring 
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functions can be applied to assess assembly predictions on the sole basis of intermolecular contacts 
119, as for instance using recent machine learning protocols to discriminate true protein-protein in-

terfaces from incorrect ones 120,121.  Eventually, final clustered solutions can be further refined using 

more sophisticated and computationally expensive techniques. 
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Figure 3.1 | Assembly prediction using mViE algorithm.  
a. The protocol requires as input structures at atomic resolution of the subunits forming the assembly, a set of spatial 

constrains obtained by experiments that characterize the connectivity of the complex, and/or volumetric density maps 

providing information about the general complex architecture. b. mViE uses a population of multiple search units that 

try to independently minimize each constraint violation defined either as energy for the coarse energy potential or as 

C{1, 2, … m} for the residue spatial distances. Once a search unit discovers assemblies that satisfy all the constraints, i.e. 

that are within the viability upper and lower boundaries defined on the constraints (black arrows on left panel), it tries to 

discover assemblies that maximize the diversity with respect to the assemblies predicted by the other search units. This 

is performed by favoring solutions that are at a larger Euclidean distance in the search space with respect to other local 

search units. c. Candidate assemblies that do not violate the constraints are (d) hierarchically clustered and the clusters 

centroids are extracted. e. The centroids are ranked on their cross-correlation coefficient (ccc) computed against the 

provided density map and the top-ranked predictions are returned to the user. Notice that density maps can be used a 

priori as objective or a posteriori for ranking. 

 

3.2.2 Performance and versatility of mViE : switching constraints and objectives 

In order to assess the feasibility and performance of this new protocol, we collected 18 symmetrical 

assemblies for which the multimeric conformation is already known, and compared the results with 

previously proposed methods including a Particle Swarm Optimization (PSO) power 16, Multifit 122 

and SymmDock 123 (see Methods and Supplementary Table S1). For each of the assembly cases, 

EM maps at 15 Å resolution were synthetically generated and used to rank the best candidate solu-

tions. Ranking by density maps was more efficient in extracting the best models compared to using 

solely the coarse energy potential, as demonstrated by a better correlation between relative model 

rmsd and ccc value (Figure3.2a and Supplementary Fig. S1 and Table S2). Remarkably, mViE is on 

par or better (in 13 out 18 protein prediction problems, mViE returned solutions with lower RMSD 

values than other prediction protocols, Figure3.2b and Supplementary Table S3) than existing IM 

protocols while it did not require an aggregated fitness function and, most importantly, the a priori 

identification of weights for the fitness components.  

 In the previous assessment, density map fitting was used as a post-processing step to rank 

the best assemblies returned by mViE. However, taking advantage of the flexibility of mViE, this 

kind of input can be used upfront as objective, while the interfacial residue distances and energy 

potential are still used as constraints on the search space. When applied to a selected set of com-

plexes (i.e., GroEL, GTP-cyclohydrolase, and lymphokine complexes, see Online Methods) we 

could observe a significant improvement in term of solution quality (P<0.05, Wilcoxon-Rank-Sum-

Test, Figure3.2c-e and Supplementary Fig. S2), demonstrating the flexibility of mViE in effortless-
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ly handling additional and diverse components concurring to global fitness. Along the same lines, 

mViE was further tested on the problem of blindly docking protein subunits into density maps 

alone, i.e., without any additional distance constraint. We thus used solely the ccc value as objective 

to be maximized upon satisfaction of the energy potential as constraint. We found that mViE was 

able to successfully assemble complexes inside their density map for all the three selected assem-

blies (Cα RMSD < 2.5 Å, Figure3.2f and Supplementary Fig. S2).  

To better understand how geometric constraints affect the outcome of mViE, a comprehensive 

benchmark was performed on the same selected targets (see Methods and Supplementary Fig. S3). 

We found that increasing the number of distance constraints improved the quality of solutions more 

directly than changing the accuracy of the constraints, (P<0.05, Jonckeere-Terpstra-Test, Fig-

ure3.2c-d and Supplementary Fig. S2). Changing density map resolution on the other hand seemed 

to have little effect on solutions quality. Specifically, the best solutions extracted with density maps 

at a resolution of 15 Å were not different (P>0.05, Wilcoxon-Rank-Sum-Test, Figure3.2e and Sup-

plementary Fig. S2) than those ranked with a resolution of 25 Å.  
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Figure 3.2 | Performance assessment of mViE.  
a. Cross-correlation-coefficient (ccc) and backbone RMSD landscape of the lymphokine assembly models is shown as 

representative result. b. Performance comparison between mViE, PSO, and the best candidate assemblies of related 

protein predictions as reported in the literature16,122,123 on 18  symmetrical protein assembly predictions. c. Effect of 

number of geometric spatial constraints on the quality of candidate assemblies returned by mViE on the GTP-

cyclohydrolase homo 5-mer assembly problem (used as representative case, see Supplementary Fig. S2 for extended 

data). Here the spatial constraints and potential energy were used as constraints on the search space, population diversi-

ty as objective and density map ranking as a post-processing step. d. Effect of the quality of spatial constraints (meas-

ured as error ± Å) on the quality of candidate assemblies returned by mViE on the GTP-cyclohydrolase homo 5-mer 

assembly problem. The assembly conditions were the same as in panel (c.) e. Results of mViE protocol using density 

map fitting during assembly of GTP-cyclohydrolase. The optimization was undertaken by using ccc as an objective to 

be maximized once the spatial and energy constraints are satisfied. f. Blind docking using mViE on the GTP-

cyclohydrolase assembly problem. As input were provided a density map of 15 Å and one of the homo 5-mer subunit. 

The ccc was used as objective to be maximized during the optimization. Only the energy potential was used as con-

straint during the optimization procedure.  

 

3.2.3 Assessing the quality of experimental constraints 

While the assembly problems described so far were ideal cases where experimental constraints used 

as input were in fact correct, in reality ambiguity in the experimental constraints can arise, for ex-

ample due to intrinsic limitations of techniques or multiple conformational states of the assembly. 

Unfortunately, in these cases correct and erroneous experimental constraints are difficult to discrim-

inate a priori and are both used, possibly leading to incorrect models. A promising approach to 

solve this challenging problem has been recently proposed within a Bayesian framework 47,113,114. 

Within our scheme, mViE search units naturally return solutions that maximize the number of con-

straints satisfied. Thus, if we realistically assume that the number of incorrect experimentally de-

rived constraints never outnumbers the number of correct constraints, we can expect mViE to return 

solutions that satisfy a greater majority of correct constraints. To test this hypothesis, we syntheti-

cally increased the number of wrong constraints (see Methods and Supplementary Table S4), and 

could observe that for all the 3 selected cases, mViE was eventually able to return models satisfying 

a greater majority of correct constraints Figure 3.3.a-b). Therefore, when dealing with a large 

amount of experimental constraints, mViE represents a promising method to effectively maximize 

the probability to select native structural features while discarding erroneous or inconsistent exper-

imental inputs during model prediction. 
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Figure 3.3 | Detection of wrong constraints using mViE.  

a. Protein-protein interaction example where 4 interfacial residue contacts are used as inputs, in this case 2 of these 

constraints are correct (grey colored circles) and two are erroneous (red colored circles). b.  Wrong constraints inclusion 

effect on returned model quality. The quality of the models was assessed by calculating the Precision/Positive Predic-

tive Value [PPV=TP/(TP/FP)] representing how well good constraint (TP) were correctly satisfied in the returned mod-

els against wrongly satisfied “bad” constraints (FP). On the x-axis, the 1T-1F label means that 1 correct and 1 wrong 

spatial constraints were used during the optimization process.  

 

3.2.4 Predicting the interface of the PhoQ periplasmic sensor 

We finally applied mViE to the assembly of the PhoQ perisplasmic sensor 124. In order to recon-

struct the biological PhoQ homo-dimer interface, we used subunit model structures of PhoQ and a 

set of crosslinking fractional data as experimental inputs 124. In this case we were able to directly 

model the PhoQ complex as a constrained optimization problem; in particular, the energy potential 

and the distance between Cb of the most highly cross-linked residues were used as constraints on 

the search space (see Methods). Since the distance between disulfide cross-linked residues is corre-

lated to their degree of cross-linking 124, we used as objective the Pearson correlation coefficient (R) 

between the fractional cross-linking profiles and the Cb distances between cross-linked residues. 

The predicted PhoQ interface was in agreement with the crosslinking profile obtained experimental-

ly (Pearson R = 0.91, p<0.05, Figure 3.4a-b). Compared to the original study where 774,165 models 

were generated 124 to find the optimal solutions, less than 3000 models were generated with mViE. 
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Figure 3.4 | Assembly of the periplasmic sensor.  
a. Best model of the PhoQ periplasmic sensor obtained by mViE. The colors of residue Cb atoms represent the degree 

of crosslinking from highly (red) to poorly (blue) crosslinked. b. Fraction crosslinking vs. Cb distance for the best struc-

tural model of the PhoQ periplasmic sensor. 

 

3.3 Conclusion 

In conclusion, here we described and experimentally validated a new viability evolutionary algo-

rithm that shows great flexibility and efficiency when applied to integrative modeling problems. 

This new method enables the independent treatment of experimental data without the need of identi-

fying weights and combination of individual constraints into an aggregated fitness function. The 

method can thus handle a large and heterogeneous variety of experimental inputs related to molecu-

lar assemblies, and assess at the same time the quality of the predicted models and experimental 

inputs used in model prediction. This method could be extended to more challenging and general 

cases such as the prediction of large non-symmetric heteromultimeric complexes. The absence of 

symmetry would increase computational demand due to a larger number of dimensions to be ex-

plored, likely requiring more spatial constraints to help convergence toward predicted assemblies 

consistent with the initial inputs.  

 

3.4 Methods and materials 

power framework for macromolecular assembly. Please refer to section Methods 2.4 for the details 

regarding the symmetric assembly optimization protocol featured in power as well as the uncon-

strained single objective used to quantify the quality of the structural models. 
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Prediction protocol based on viability evolution. mViE was incorporated into the power framework 

in order to model the prediction of symmetric assemblies as a constrained optimization problem 

without aggregating geometric distances (Edata) and energy potential (Ephys) in the same fitness func-

tion. In this case Edata was used as a constraint on the search space to guide the assembly of the sub-

units. During optimization, the energy potential (Ephys) can be used in two different ways. On one 

hand, Ephys can be used as an objective to be minimized once the Edata, used as constraints, have 

been satisfied in the form of: 

min Ephys, s.t.  }   

where li and ui are the lower and upper target boundaries of each of the n contacting residue dis-

tances, respectively. On the other hand, Ephys can be used together with Edata as a constraint on the 

search space. In this case, maintaining Ephys < 0 would make sure that the assemblies are not only 

without steric clashes but also in close proximity. 

Population diversity is a measure of how diverse the population of mViE search units are 

from a candidate solution x generated any time during optimization. Maximizing this term during 

optimization would increase the diversity of candidate solutions by a better exploration of the feasi-

ble search space, i.e. toward regions of the search space where candidate solutions do not violate 

constraints. Diversity can be measured as: 

    

where xt is the parameter of a candidate solution generated at step t of the optimization, X the pa-

rameter of a mViE local search unit i from a population of size n.  

In the case where Ephys and Edata are used as constraints on the search space, population di-

versity can be used as objective to be maximized once the candidate solutions have satisfied the 

above constraints in the form: 

max diversity, s.t.  
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Ranking of candidate solutions with electron density maps. Due to the fact that a large number of 

solutions were generated during optimization, representative structures of the best models needed to 

be extracted. To do so, an integrated hierarchical clustering algorithm that selects centroids of clus-

tered solutions with respective backbone root-mean-square-deviation (Cα-RMSD) lower than 1 Å 

was used. Input density maps of the reference structures were simulated using the SITUS 23 package 

command kercon, to rank the centroid of each cluster at resolutions 15 and 25 Å. 

The centroids were then independently fitted in the simulated maps using the SITUS module 

colores and ranked according to a cross-correlation coefficient (ccc), which described the overlap 

between model and map. SITUS can fit structures into density maps with resolutions as low as 30 Å 

thanks to an intermediate step of Laplace transformation of the map that improves shape definition 
23.  

 

Assessing the performance of mViE against PSO. In order to assess the performance of the mViE 

protocol against a previously published algorithm Particle Swarm Optimization (PSO), we chose 18 

symmetrical complexes for which the atomistic structure has already been solved and that are avail-

able in the protein databank. As the evolutionary algorithms performing the search were stochastic, 

we repeated each test for 10 independent runs. Each execution could sample 20,000 candidate pre-

dictions before terminating. Information on the stoichiometry of the assemblies and the chosen in-

terfacial spatial restraints can be found in the Supplementary Table S1.  

As a general rule, a large number of interfacial spatial constraints leads to models of better 

quality. However, it has been observed that for our benchmarks set no more than three spatial con-

straints are necessary to efficiently guide the optimization process towards the assembly of realistic 

models 16; hence the limitation of the number of spatial constraints generally to three per assembly 

prediction. In order to account for possible experimental noise on the target measures, an error of 2 

Å was chosen per constraint, as previously done in ref 16. Typical resolutions of macromolecular 

density maps range from 5 to 25 Å 122,125,126; thus, an averaged resolution level of 15 Å was chosen 

for the evaluation mViE and PSO. 

Evaluation of each method performance was achieved by computing the Cα-RMSD between 

the already solved reference structures and the best representative structures of the candidate solu-

tions, ranked by ccc. For each prediction problem, the top 5 ranking solutions were returned by each 
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method as RMSD distances from the true assembly structure, resulting in 50 for each protein pre-

diction problem per assembly protocol. 

 

Effect of spatial constraints on candidate solution assembly. With the aim to cover a broad spec-

trum of protein assembly cases, we chose 3 proteins complex of different size and stoichiometry. 

These were the lymphokine, GTP-cyclohydrolase and GroEL homo-multimers (Supplementary 

Figs. S3a-b). These protein complexes were assembled under different conditions with the mViE 

protocol to assess how spatial constraints; both in quality and quantity, and density map resolution 

were affecting the quality of the candidate solutions. To address this task, 5 important contacting 

residues were identified within the interface of each of the 3 protein complexes and were chosen to 

serve as spatial restraints during optimization (Supplementary Fig. S3c). For every optimization run 

the spatial constraints to be satisfied were randomly chosen in order to avoid bias toward preferred 

configurations and incremented gradually from 1 to 3 random restraints per run. To test for the ef-

fect of experimental error, the Euclidian distance for each of the spatial restraints was incremented 

from 2 to 6 Å. Finally, the density map resolution chosen to rank the best assemblies varied from 15 

to 25 Å. In order to increase the significance of the statistics, 5 trials were performed for each con-

dition. A total of 10,000 candidate predictions were generated per trial. 

 

Density map fitting as objective. Taking advantage of the fact that mViE does not require the com-

putation of weights to balance the contribution of scoring function components, we directly used the 

ccc value during optimization instead of using it to rank the best models. Thus, for the three protein 

cases, the spatial as well as energetic terms of the traditional scoring function were used as inequali-

ty constraints on the search space. The ccc value was used as an objective to be maximized at each 

optimization step. Similarly to above, density map resolution and spatial constraint accuracy were 

varied from 15 to 25 Å and 2 to 6 Å respectively. In this case however, only one spatial constraint 

was randomly chosen for each optimization run, which was repeated in 5 trials. 

In order to reduce computation time and keep the optimization in 4 dimensions [α, β, γ, x], 

the SITUS package was used every 1000 steps to align the input density map with the representative 

structures of the candidate models generated by mViE. In the normal optimization steps, the gener-

ated models were then aligned to the best SITUS fitted structure and the ccc value was computed. 

Blindly docking proteins inside density maps is a more difficult problem because the only infor-
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mation available consists of the density map of the fully assembled complex and the subunits struc-

tures. Thus for this problem, we did not use the residue contact information defined as spatial con-

straints as in the previous assembly cases. Instead, we used solely the information provided from 

the input density map of the complex at 15 Å and the energy potential as the 9-6 Lennard-Jones. In 

this case, the ccc was used as objective to be maximized and the energetic term as an inequality 

constraint (Ephys < 0). Moreover, we did not use the SITUS package to align the best structures to 

their input density map. Instead, any model generated was first translated to the center of the density 

map and assembled in 4 dimensions [α, β, γ, x]. In the same optimization step, the fully assembled 

complex was roto-translated in 6 dimensions in order to fit the complex inside the density map. This 

amounted to a total of 10 parameters to be optimized by mViE. Due to the inherent difficulty of the 

problem, a budget of 100,000 functions evaluations was used to blindly dock each of the three pro-

tein cases, with 5 trials per run. 

 

Discerning good from bad experimental spatial constraints. During the optimization driven as-

sembly process, the presence of wrong spatial constraints in the constraints dataset may lead to in-

correct models. It is therefore important to assess how the inclusion of wrong constraints can affect 

the quality of the predictions returned by assembly protocols. To this end, we chose three protein 

structures, which were the lymphokine, GTP-cyclohydrolase and GroEL homo-multimers, in order 

to test how the inclusion of erroneous spatial constraints into mViE affected the quality of solutions. 

For each protein case, a total of 5 correct and 5 wrong restraints were selected. The correct con-

straints corresponded to true contacts and the wrong ones, which corresponded to non-native resi-

due contacts, were each selected randomly across the interacting proteins surface (Supplementary 

Table S4).  

Both types of constraints were used by mViE to assemble protein models. Based on the as-

sumption that wrong constraints should never outnumber corrects ones, they were gradually added 

from 1 to 4 in a random fashion together with correct ones. At the end of each run, models satisfy-

ing the highest numbers of constraints were selected and assessed for how good they were at dis-

criminating good from bad constraints according to: 
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where PPV is the precision score, TP and FP are the number of true positive and false positive satis-

fied constraints respectively. In this case a TP corresponds to a good constraint being correctly sat-

isfied and FP to a wrong constraint being incorrectly satisfied in a candidate assembly. A total PPV 

score of 1.0 implies that the candidate model assembly satisfied only correct constraints and in-

versely for a score of 0.0. 

  

Assembly of the PhoQ homo-dimer. In order to reconstruct the physiological perisplasmic sensor 

homo-dimer of the PhoQ two-component signaling system (TCS) from a structural model, disulfide 

scanning mutagenesis experiments were undertaken by 124. In these experiments, cysteine substitu-

tions were performed on 16 residues spanning the N-terminal helix of the periplasmic region. For 

each of these residues, the degree of crosslinking was reported in Supplementary Table S5. Given 

that the degree of crosslinking roughly correlates with Cb distance, this information could be used 

in the original study 124 to reconstruct the physiological complex from the assembly subunits using a 

rigid-body grid search where translation and rotations are applied to one of the subunits while main-

taining the other fixed. After generating several candidate assemblies, the best models were selected 

by their absence of steric clashes and by their Pearson correlation (R) value characterizing the corre-

lation between the percentage of cross-linked residues curve, and Cb distance from residues span-

ning the N-terminal helix of the models.  

This problem was ideal to test our new protocol on a real biological case since it could be 

translated into a constrained optimization problem. Thus we used the same subunit model as used as 

in the study of 124. Instead of using a grid search to sample the configuration of the homodimer in-

terface, we used mViE. In the aim to get candidate assemblies resembling the physiological dimer, 

the Pearson value R between Cb distance and fractional crosslinking Cb distances was used as ob-

jective to be maximized upon satisfaction of the constraints. These were the Cb distance between 

the most highly cross-linked residue (Arg50, crosslinking degree 0.95, Supplementary Table S5) 

and potential energy to avoid steric clashes. The best model was extracted and minimized using 

CHARMM27 127. Our results were then compared with those obtained in 124. 

 

Statistical analysis. Due to the ordinal and non-parametric nature of the RMSD values describing 

the quality of the best solutions returned by PSO and mViE, non-parametric statistical tests were 
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used to evaluate significance of the results. In this paper, the Wilcoxon Rank Sum and Jonckheere-

Terpstra tests were used. 

3.5 Supplementary information 

 

Table S1. Protein prediction problems used to compare mViE and PSO. 
 

Protein Name (PDBid)   Stoichiometry   Spatial restraint type   Target (+/- 2Å) 
11S regulator (1avo) 7 resid 196 - 181 6 

resid 203 - 118 10 
        resid 221 - 133   8 

Acyl carrier (1fth) 3 width 60 
height 47 

        resid 10 - 105   9 
Alpha hemolysin (7ahl) 7 resid 2 - 56 11 

resid 162 - 35 6 
        resid 128 - 131   7 

Archeal sm (1i8f) 7 width 65 
height 37 

        resid 29 - 29   4 
Chaperonin (1h5x) 7 resid 95 - 7 4 

resid 61 - 57 12 
        resid 56 - 55    10 

chorismate mutase 
(1xho) 3 width  49 

height 44 
        resid 74 - 74   4.5 

Epimerase (1eq2) 5 resid 85 - 34 5 
        resid 142 - 39    7 

GP41 (1f23) 3 resid 26 - 46 8 
resid 11 - 63 15 

        resid 2 - 71   9 
Groel (1oel) 7 resid 518 - 37  9 

resid 257 - 269 5 
        resid 283 - 181   5 

GTP_cyclohydrolase 
(1fb1) 5 resid 241 - 243 9 

resid 224 - 134 6 
        resid 183 - 126   7 

lumazine synthase 
(1ejb) 5 width  77 

height 46 
resid 103 - 103 14 

        resid 103 - 107   6 
Lymphokine (1tnf) 3 resid 124 - 15 7 

        resid 103 - 104   8 
malporin sucrose (1af6) 3 resid 197 - 18 5 

resid 81 - 66 8 
        resid 58 - 361   7 

PA7 (1tzo) 7 resid 185 - 200 8 
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resid 308 - 669 6 
        resid 479 - 470   6 

snRNP protein (1h64) 7 resid 22 - 65  10 
        resid 5 - 41   6 

tobacco virus (3kml) 17 height 32 
resid 13 - 13 33 

        resid 25 - all    -26 
trans regulator (1ny6) 7 resid 266 - 207 9 

        resid 299 - 364   10 
yjgF gene (1qu9) 3 resid 109 - 112 7 

resid 72 - 21 6 
 
 
 
 
Table S2. Evaluation of ranking methods using density map cross-correlation coefficient and 
energy potential.   
The relationship between ccc and energy to RMSD respectively was computed using Pearson’s correlation. The r-value 
indicates the level of correlation between RMSD and ranking method, in this case a value of 1.0 indicates a perfect 
correlation. The superscripts indicate * P < 0.05, ** P < 0.01, *** P < 0.001 using a Pearson correlation test, n.s. no 
statistical significance.  
 
  ccc energy 

protein predictions r-val p-val r-val p-val 
acyl_carrier 0.925 *** 0.003 n.s 
archael_sm 0.907 *** 0.028 n.s 

chorismate_mutase 0.072 n.s 0.132 n.s 
groel 0.928 *** -0.01 n.s 

GTP_cyclohydrolase 0.915 *** 0.122 n.s 
lumazine_syntase 0.869 *** 0.003 n.s 
malporin_sucrose 0.875 *** 0.035 n.s 

tobacco_virus 0.74 *** 0.03 n.s 
yjgF_gene 0.722 *** 0.088 n.s 

alpha_hemolysin 0.973 *** 0.044 n.s 
chaperonin 0.652 *** 0.024 n.s 

GP41 0.03 n.s -0.081 n.s 
lymphokine 0.803 *** 0.023 n.s 

PA7 0.913 *** 0.026 n.s 
snRNP_protein 0.764 *** 0.042 * 

11S_regulator 0.868 *** 0.108 * 
trans_regulator 0.649 *** 0.037 * 

epimerase 0.6812 *** 0.0137 n.s 
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Table S3. Performance comparison between mViE, PSO and other IM protocols.  
The best models extracted with mViE were compared to the best models obtained from an earlier implementation of 
power [a], SymmDock[b] and Multifit[c] as extracted from the literature. Values in bold format indicate the assembly 
protocol that obtained the most native resembling models. 
 
  Best Models RMSDs (Å-Cα)   
protein predictions mVie PSO Literature (ref) 
acyl carrier 1.50 1.50 1.91 a 
archeal SM 1.09 1.34 0.95 a 
chorismate mutase 1.49 1.61 1.52 a 
groel  1.86 1.89 2.76 b 
GTP cyclohydrolase 1.01 0.94 1.24 b 
lumazine synthase 1.60 1.72 1.89 a 
tobacco virus 0.95 1.17 - - 
malporin sucrose 0.64 7.23 1.21 b 
ygjf gene 1.27 1.45 2.03 b 
alpha hemolysin 0.75 1.05 2.15 c 
chaperonin 0.57 0.74 2.25 b 
GP41 2.40 2.75 0.95 b 
lymphokine 1.41 1.45 1.62 b 
PA7 0.84 0.86 3.17 b 
snRNP protein 0.70 0.91 3.44 b 
11S regulator 1.92 1.89 0.63 b 
trans regulator 2.34 2.67 1.36 b 
epimerase 1.56 2 2.88 b 
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Table S4. True and False spatial constraints selected for the Lymphokine, GTP-
cyclohydrolase and GroEL assembly cases.   
Carbon-α distances between the residues of the subunits are expressed in Å. 

  True restraints False restraints 
protein name  Subunit 1 Subunit 2 Distance[Å] Subunit 1 Subunit 2 Distance[Å] 
Lymphokine Phe124 His15 7 Arg31 Ala145 36 
  Glu103 Arg104 8 Gln102 Asn34 33 
  Glu116 Lys98 13 Lys98 His15 15 
  Lys98 Glu116 6 Gly54 Val150 22 
  Tyr119 Tyr119 8 Gly122 Lys112 30 
GTP Cyclo. Lys220 Asp136 6 Ser228 Ser166 18 
  Glu183 His126 7 Pro238 Phe122 20 
  Lys224 Asp134 6 Leu82 Glu61 30 
  Leu245 Leu247 7 Arg216 Lys93 32 
  Arg241 Glu243 9 Als208 Glu243 18 
GroEL Glu518  Asn37 9 Gly256 Phe44 14 
  Glu257 Lys272 11 Asp5 Lys34 24 
  Glu255 Lys207 8 Asp359 Gly459 46 
  Arg197 Glu386 14 Glu255 Val387 19 
  Asp283 Thr181 5 Glu76 Glu209 22 

 
 
Table S5. Related to Materials and Methods section; Experimental crosslinking data adapted 
from residues 47 to 62 spanning the N-terminal helix of the periplasmic sensor domain 3BQ8. 
The theoretical values below are adapted computed using equation [1] found in the work by Goldberg et al. 2008. 
 

  Degree of Crosslinking 
Residue Experimental Theoretical 

T47 0.69 0.84 
T48 0.38 0.57 
F49 0.32 0.31 
R50 0.95 0.75 
L51 0.92 0.72 
L52 0.81 0.3 
R53 0.5 0.61 
G54 0.85 0.82 
E55 0.09 0.37 
S56 0.34 0.46 
N57 0.81 0.85 
L58 0.71 0.5 
F59 0.28 0.34 
Y60 0.92 0.8 
T61 0.48 0.65 
L62 0.12 0.29 
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Figure S1. Assessment of the effect of ccc/energy on backbone RMSD of the model assemblies. 
(Top Panel) The symmetrical assembly models of the Lymphokine and YJGF gene product were evaluated for a rela-
tionship between backbone RMSD and energy as defined by a Lennard-Jones potential.  Following the energy gradient 
may help reaching search areas were assemblies having minimal RMSD are found (black arrow). However, the pres-
ence of energy wells can mislead an optimization method (red arrows). In some cases, as in the YJGF gene product, this 
is even more troublesome as energy wells corresponding to configurations with higher RMSD have the lowest energy. 
(Bottom Panel) In contrast, there was for the same assembly cases a more correlating relationship between RMSD and 
cross-correlation-coefficient computed against Cryo-EM volumetric maps. 
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Figure S2. Performance assessment of mViE on the GroEL (1) and Lymphokine (2) assembly 
cases.  
a. Effect of number of geometric spatial constraints on the quality of candidate assemblies returned by mViE. Here the 
spatial constraints and potential energy were used as constraints on the search space, population diversity as objective 
and density map ranking as a postprocessing step. For the assembly cases of GroEL, increasing the number of spatial 
restraints had a more significant and drastic effect on the quality of constraints than in the case of the Lymphokine case 
b. Effect of the quality of spatial constraints (measured as error ± Å) on the quality of candidate assemblies returned by 
mViE. The assembly condition were the same as in a. In this case of Lymphokine and GroEL, increasing the quality of 
spatial restraints had little effect on the quality of the assemblies returned by mViE c. Results of mViE protocol using 
density map fitting during assembly of GroEl (1) and Lymphokine (2). The optimization was undertaken by using ccc 
as an objective to be maximized once the geometry and energy constraints are satisfied. d. Blind docking using mViE 
on the GroEL and Lymphokine assembly problems. As input were provided a density map of 15 Å and one of the  mul-
timer subunits. The ccc was used as objective to be maximized during the optimization. Only the 9-6 Lennard Jones 
energy potential was used as constraint. 
  

***

*

***6

5

4

1 2 3 1 2 3

3

2

0

1

number of restraints (a.u) number of restraints (a.u)

R
M

S
D

 (
Å

)

error ± 2 (Å) error ± 4 (Å) error ± 6 (Å) no restraints 

n.s

*

1 2 3
number of restraints (a.u)

15 25
density map 
resolution (Å)

15 25
density map 
resolution (Å)

*

1 2 3
number of restraints (a.u)

3

2

0

1R
M

S
D

 (
Å

)

n.s n.s
n.s



 

62 

 

 

  
 
Figure S3. Circular assembly cases used for the performance assessment of mViE. A-B.  
Assembly cases of the Lymphokine (1), GTP-Cyclohydrolase (2) and GroEL (3). C. Important interfacial residues cho-
sen as spatial restraints during the assessment performance of mViE and corresponding color codes (See Methods).  
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 Structural analysis of Huntingtin to reveal the link be-Chapter 4
tween protein flexibility and disease  

 

4.1 Introduction 

Huntington’s disease (HD) is a neurodegenerative disorder that equally affects approximately 1 in 

10’000 men and women of European descent 128, with devastating life consequences. It is an inher-

ited autosomal dominant disease which causes progressive damage to the brain and which resulting 

symptoms include memory loss, impaired locomotion, and eventually death. Unfortunately, still 

today, no therapeutic treatment exists to cure or even slow down the progression of the disease. 

Similar to other notorious neurodegenerative disorder such as Alzheimer’s or Parkinson’s disease, 

evidence suggests that HD’s symptoms are due to the systematic death of neuron located in the ba-

sal ganglia 129. While the cellular mechanisms underlying the cause of the disease are still unknown, 

molecular studies suggest differences in a gene encoding for Huntingtin protein (Httn). In particu-

lar, compared to healthy individuals, patients suffering from HD typically have a poly-expansion of 

CAG trinucleotide repeat at the beginning of the gene, which is translated as a large poly-glutamine 

segment at the N-terminal region of the Httn 67. Interestingly, the length of the poly-glutamine tract 

was linked to the severity and onset of the disease, with a general acceptance that a poly-Q expan-

sion above 36 repeats was associated with the disease through a “toxic gain of function”129 (Figure 

4.1). 
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Figure 4.1 | Schematic representation of Huntingtin main structural elements. 
Huntingtin is divided into five segments (NTD-1, NDT-2, CTD-1, UCD and CTD-2) based on the location of protease 

sensitivity sites as described in the study by 130. The Huntingtin structure is composed mainly of HEAT repeats 

elements which are separated by flexible regions. The first ~100 amino-acids of the N-terminal region of the protein are 

characterised by the presence of an extended poly-proline (poly-P) and poly-glutamine (poly-Q) region. The extent of 

poly-Q expansion (poly-Q > 36) has been linked to the apparition of Huntington’s disease symptom.  

  

For convenience and ease of reference, the Httn protein sequence was divided in five subdomains 

consisting in two amino-termini (NTD-1 and NTD-2) and three carboxyl termini (CTD-1, UCD and 

CTD-2), as previously referred to by 67, and which were defined based on the location of protease 

sensitive sites 130 (Figure 4.1). The wild type (Q < 36) Httn is a large soluble protein (~350kDa, 

~3140 amino acids) that is ubiquitously found in the cytoplasm of cells and which function has been 

associated with membrane vesicles and organelles 84,85, and membrane trafficking 86. When mutated 

(Q > 36), Httn was observed to form aggregation bodies in neurons. Although not determined as the 

root cause for toxicity, Httn aggregation was found to be associated with the disruption of several 

important cellular function including the ubiquitination and endosomal degradation pathway, induc-

tion of apoptosis and Ca2+ signaling 129,131-133. Despite the fact that several studies have been con-

ducted as an attempt to understand the causal link between poly-Q expansion and toxicity, still very 

little is known to date. 
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Also lacking to date is structural information related to the full Httn protein, which is be-

lieved to the important for understanding toxicity and subsequently to develop potential therapies. 

Despite a few studies that solved, via X-ray crystallography, the atomistic structure of first Httn N-

terminal amino acids 131,134, most of what is currently known about the structure comes from com-

parisons between Httn and other proteins sharing sequence similarities 135-137. Importantly, such 

structural comparisons have suggested the presence of HEAT (huntingin with elongation factor 3, 

p65 regulatory A subunit of protein phosphatase 2A and TOR1) domains, which are composed of 

tandem arrays of Helix-turn-Helix arranged in long solenoid structures. HEAT domains were pre-

dicted to be important for cellular function by mediating protein-protein interactions 138.   

Although high-resolution experiments revealing the atomistic structure of the Httn are lack-

ing, low-resolution experiments such those undertaken by our collaborators in the Song’s lab 

(KAIST) 67, have recently shed light on the global structure of Httn. Notably in their work, cryo-

electron microscopy (cryo-EM) combined with crosslinking mass spectrometry (CLMS) experi-

ments have revealed that Httn folds in a hollow spherical solenoid structure with its C-terminal tail 

contacting the rest of the protein 67. As an extension of this remarkable study, within our collabora-

tion they recently obtained single-particle cryo-EM maps of ~7 Å resolution at different poly-Q 

expansion length (Q21, Q23 and Q78), together with CLMS data indicating the intra-Httn residue 

contacts. When analysed in isolation, such type of low-resolution experiments can only provide 

coarse details such the global shape of the protein or the general arrangement of its subunit constit-

uents 110. However, when integrated with IM approaches greater resolution can be reached.  

In the true spirit of integrative modeling, we applied in this work the power framework to 

elucidate the structure of the Httn protein. To address this challenging task, we combined the infor-

mation provided from recently obtained experimental data, which consisted in Httn cryo-EM maps 

and respective CLMS data, together with atomistic models of the Httn α-helices arranged in HEAT-

like super structures. The sequence and position of the α-helices were obtained by applying the sec-

ondary structure prediction webservers PSI-pred 89 and J-pred 139 on the amino sequence of full 

length Httn. Each of these helices was then modeled into atomistic structure using MODELLER 90. 

We took advantage of our recently implemented constrained optimization protocol power to flexibly 

fit the α-helix models into the provided cryo-EM maps while simultaneously satisfying the spatial 

constraints described in the CLMS experiments. This allowed us to produce realistic atomic struc-

tures of the Httn, which we believe will help understanding the causal association between mutated 
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Httn and HD. Notably, while writing this thesis a high-resolution cryo-EM structure of Httn was 

solved 87, and its implication for the present work are discussed in section 4.5. 

 

4.2 Experimental data 

The experimental information integrated by power-mViE to model the structure of Httn was obtained 

directly from our collaborators in the song lab (KAIST). These were cryo-EM data of the Q23- and 

Q21-Httn as well as crosslinking-mass-spectrometry (CLMS) data. 

4.2.1 Cryo-EM 

4.2.1.1 Sample and grid preparation (undertaken by Taeyang Jung in Song lab, KAIST) 

FLAG-tag Httn was expressed from pALHD (Q2,23,46,67,78) in the Baculovirus Expression sys-

tem (Invitrogen). The Sf9 cell lysate, obtained by freezing/thawing in buffer A (50 mM Tris-HCl 

pH 8.0, 500 mM NaCl, and 5% glycerol) containing complete protease inhibitor cocktail and 

PhosSTOP phosphatase inhibitor cocktail (Roche Applied Science), was spun at 15,000 rpm (2 

hours). The supernatant was incubated with M2 anti-FLAG beads (Sigma) (2 hours, 4 °C). The non-

specifically bound proteins were removed by washing extensively with buffer A. To obtain Httn 

with reduced global phosphorylation, M2-bead bound Httn proteins were subjected to calf intestinal 

phosphatase (CIP) treatment (in 1X NEB buffer 3 and 1U of enzyme per 10 μg huntingtin) at room 

temperature for 1-2 hours. CIP was removed by washing extensively with buffer A. FLAG-Httn 

was eluted with a buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 5% glycerol) containing 0.4 

mg/ml FLAG peptide and loaded onto a calibrated Superose 6TM 10/300 column, equilibrated with 

50 mM Tris-HCl pH 8.0 and 150 mM NaCl. FLAG-Httn eluted discretely and was estimated to be 

at least 90% pure by Coomassie staining. Full-length FLAG-tag Httn were subjected to ultracentrif-

ugation at 33,000 rpm for 16 hours with 5-20% sucrose gradient in presence of 0-0.2% glutaralde-

hyde gradient. A fraction containing only the monomer Httn was collected and the protein was con-

centrated to above 0.5 mg/ml. For cryoEM, 3.5 ul of sample loaded on the R2/1 300 mesh quantifoil 

grids covered with Graphene oxide. The grids were vitrified by plunge freezing in ethanol using a 

vitrobot II with 8 seconds blotting time. The grids were then moved to liquid nitrogen and loaded 

into the autoloader of Titan Krios microscope with a Gatan K2 Summit direct detector.  
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4.2.1.2 Data acquisition 

The images of Q23-Httn with Volta phase plate (Q23-Httn-VPP) were taken in the Diamond Light 

Source in UK and Q23-Httn without VPP was taken in Scilife Lab in Sweden. For all data set, the 

calibrated magnification was 130,000 and it was corresponding to 1.06 Å/pixel. Images were col-

lected at a dose of 3 ~ 4 Electrons per A2 in 6 ~ 8 seconds with 32 to 40 sub-frames. The data was 

automatically collected with EPU software and focusing was performed next to each hole with drift 

protection. The target defocus set to -500, and -700 nm for VPP images, and -1.5 to -4.0 for the 

ones without VPP images. The VPP was replaced to a new position after every 60 images. The gain 

images were applied while recording movie frames.  

4.2.1.3 Image processing 

Movie frame stacks were imported into Scipion software to have access to various program suited 

for further image processing. MotionCor2 used for beam induced motion correction and dose 

weighted and un-dose weighted micrographs were generated. The CTF estimation was done by us-

ing CTFFIND4, and option for detecting extra phase shift was applied on VPP images. Good imag-

es were selected based on estimated CTF resolution (<6 Å), defocus range (for normal images, < 

4.0,  > 1.5 nm, and for VPP images, < 1.0, and > 0.2 nm), and the thickness of graphene oxide. The 

particle picking was performed with RELION autopicking using small sets of 2D template generat-

ed from manually picked 15k particles. The particles were extracted from dose-weighted micro-

graphs with 240 x 240 pixel box size and the contrast was inverted for further image processing. 

The particle sets were cleaned by 4 rounds of reference free RELION 2D classification, and only 

particles in good 2D classes were subjected to build 3D initial model using RELION 3D model. 

Then 3D classification and 3D auto refinement were performed in RELION for final density maps. 

The overall resolution of Q23-Htnn and Q23-Httn-VPP were, 8 Å and 11 Å, respectively. 
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Figure 4.2 | Q23- and Q78-Httn specific CLMS data, adapted from 67. 
The 3144 amino acid sequence of Q23-Httn is shown as a yellow bar with the poly-Q region indicated by a green ar-

rowhead. The short-, mid- and long-range intra protein contact described by the CLMS data are represented in the 

green, blue and red colors respectively for Q23-Httn and Q78-Httn. At the bottom of the image is shown the five Httn 

substructures. 

 

4.2.2 Cross-linking-mass-spectrometry 

The experimental procedure describing the acquisition of CLMS data is described in detail in the 

work of our collaborator 67 (Figure 4.2), and thus would not be described further in this thesis. Im-

portantly for the work described here, the CLMS information described 96 intra-protein residue 

contacts in the Q23-Httn. The crosslinking reagent used was disuccinimidyl suberate (DSS) and the 

targeted residues were the lysines (Lys) of the Httn proteins. 
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4.3 Predicting Httn substructures 

In studies where the resolution is lower than 4 Å, the information provided from the cryo-EM densi-

ty maps is sufficient to guess atomistic coordinates and hence obtain a comprehensive atomistic 

models of proteins 3-6. Being at a maximal resolution of 8 Å, it not possible to apply the same meth-

odology to model the atomistic structure of Httn solely from the EM density maps, hence the deci-

sion to use IM approaches. At the core of IM methods, high-resolution structures of the macomole-

cule subunits, which can be obtained from standard experiments, are combined with experimental 

data that describe their mode of assembly. In this case, except for a small crystallized fragment of 

Exon 1 containing the N-terminal 17 polyQs (PDB-id 3ior), no structure solved at atomistic details 

are available for Httn to be integrated with the experimental data. 

 

Figure 4.3 | Secondary structure prediction of the full-length Httn sequence.  
The full Q23-Httn amino structure is displayed here together with the secondary structure elements prediction. In this 

case, the secondary structure assignment was based on the consensus between PSI-pred and J-pred. This means that for 

a given amino acid residue, both PSI-pred and J-pred should be predict the same secondary structure element for it to be 

shown. 
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Thus, the only avenue left was to model the individual subunits composing the Httn protein and 

attempt to integrate these models with the cryo-EM and CLMS data, in the aim to derive a near- 

atomistic model. To address this challenging task, we first predicted the secondary structure ele-

ments using widely available secondary structure (SS) prediction servers. In this scope, the fasta 

sequence of the wild-type (Q23) human Httn was retrieved and subjected to SS prediction servers 

PSI-pred 89 and J-pred 139. Similar to the study by ref. 140, the decision on whether to assign amino 

acids to a certain secondary structure element was based on a consensus between PSI-pred and J-

pred predictions. This initial analysis led to the observation that 1431/3140 (45%) of amino acids 

were predicted to be part of 111 α-helices (Figure 4.3).  

 

Table 1 | Summary of HEAT repeats predicted from the literature. 

 

 

 

 

 

 

 

Interestingly, a significant proportion of the α-helices assigned by the SS were predicted to form 

HEAT repeat structures (Table 1). In fact, from the different studies undertaken to predict the loca-

tion and length of the HEAT repeats in Httn, there seem to be a consensus that the Httn amino acid 

sequence is composed of four large segments forming HEAT repeats, which cover ~40% of the 

total sequence 135-137 (Table 1). 

  

Reference HEAT-1 HEAT-2 HEAT-3 HEAT-4 

Andrade (1995) 
205-329 745-942 1534-1710 - 

Palidwor (2009) 
114-413 672-969 - 2667-2938 

Tartari (2008) 
124-391 803-1100 1425-1710 2798-3107 

Modelled segment 91-401 664-944 1412-1701 2663-2970 

Length 310 280 289 307 

% of total seq. 9.86 8.91 9.19 9.76 
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4.4 Modeling the Q23-Httn structure with power 

4.4.1 Modeling and docking Httn substructures 

In an initial unsuccessful strategy to predict the full-length Httn structure, we used power-mViE to 

rigidly dock four major HEAT repeats into the 8 Å Q23-Httn cryo-EM map (Figure 4.4a, top panel) 

by integrating the available heterogeneous experimental data. As a summary of the approach, the 

atomistic structures of the four HEAT repeats were modeled according to secondary structure pre-

dictions (Figure 4.3) and literature information (Table 1). The comparative cryo-EM analysis sug-

gesting the position of NTD1 and NTD2 (Figure 4.4b) was used to dock the first HEAT structure at 

the location of NTD1. The CLMS data was used during the rigid docking of the other three HEAT 

structures as constraints to ensure the inter-HEAT residue contacts defined by crosslinked Lys were 

satisfied.  

Eventually, we obtained a model that was satisfactory in the way that all the HEAT struc-

tures fitted well inside the density map (ccc = 0.8), no steric clashes were present and all the cross-

linked distances were satisfied. Unfortunately, upon further analyzing the suggested structure and 

interacting with the experimentalist group it became apparent that this model, which contained 

~40% of the Httn structure, occupied most of the volume of density map and thus left no other 

space to model the remaining 60% of the structure. The reason behind this setback was that treating 

the HEAT structures to be assembled into Httn macromolecules as rigid instead flexible structures 

forced them to occupy more space inside the density map, subsequently preventing the addition of 

the remaining Httn structure. 
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Figure 4.4 | Cryo-EM maps of the full-length Huntingtin.  
a. The two top panels describe cryo-EM maps obtained from monomeric full-length Httn protein featuring poly-Q ex-

pansion of 23 with and without VPP with estimated resolution of 8 Å and 11 Å respectively. The bottom panel de-

scribes the Huntingtin protein featuring a poly-Q expansion of 21 fused to a eGFP in between NTD-1 and NTD-2 (also 

shown in Figure 4.6) with an estimated resolution at 15 Å. b. Comparison between cryo-EM maps obtained for Q21-

Httn with a fused GFP in between NTD1 and NDT2 (NTD1-eGFP-NTD2, left panel) and Q23-Httn (right panel). The 

eGFP was docked into NTD1-eGFP-NTD2 and was used to determine the location of NTD1 and NTD2 on the Q23-

Httn. 
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In an effort to overcome the setbacks of the previous strategy, we devised a second strategy that 

consisted in modeling the individual α-helices using the electron density information of the cryo-

EM map. Unlike the previous approach, the relative ordering of the α-helices modeled into HEAT 

repeats and their spatial relationship to one another were not taken into account during modeling. 

This greatly simplified the modeling problem in which the task consisted solely in finding the loca-

tion of helices strands inside a density map of medium resolution. A few methods have been im-

plemented to solve such type of problem, with usually a good documentation and ample test cases 
141,142.  

Thus, starting with as input the 8 Å Q23-Httn density map, we used the volume tracer meth-

od implemented within the SITUS package 142 and the find_helix_strand command of the PHENIX 

package 141 to detect the position of α-helices within the Q23-Httn density map. Nevertheless, none 

of these methods could detect and model α-helices in a satisfactory manner, which could possibly 

be due either to the low resolution of the density map or to methodological reasons related to the 

respective detecting methods. 

Due to the fact that current methods seemed inadequate to detect the location of α-helices, 

we envisioned an alternative strategy that consisted in flexibly docking the individual α-helices into 

the Q23-Httn density map so as to detect the location of helices. In this case, flexibility was taken 

into account by modifying the length of the α-helices during the assembly process.  

Practically, the initial phase of the strategy consisted in producing 60 assembly models, each 

obtained by iteratively docking 100 α-helices with power-mViE (Figure 4.5A) following the optimi-

zation protocol formulated as: 

Max ccc(x), s.t.  

Where the objective function  is the cross-correlation-coefficient 

describing the fit between protein subunits and the provided density map (L corresponds to a 3x3x3 

Laplacian filter kernel used to convolute the input density maps with the aim to increase the preci-

sion of the density map fitting126. N is the number of overlapping voxels between the density maps, 

Nsol the total number of voxel of the candidate solution density map,  is the ith voxel of 

the reference density map and  its counterpart from the candidate monomer assembly); 
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Ephys =  is a simple 9-6 Lennard-Jones coarse energy potential 94 to avoid steric 

clashes (r consists in the pairwise distance between the Cα interfacial atoms of the subunits within a 

distance of 12 Å,  = 4.7 Å and  = 1 kcal/mol);  

For each of the 60 assembly models, the aim of the optimization was to individually and 

successively fit the 100 α-helices into the Q23-Httn density map (through ccc maximization), by 

sampling the α-helix parameters [x, y, z, α, β, γ, len], where x, y, z are translations, α, β, γ the orien-

tations and len the flexible length of the α-helices (varying from 13 to 25 amino acids), whilst satis-

fying the constraint specified by  to prevent steric clashes. The relative ordering, residue 

type and the spatial relationship between α-helices were not considered during the docking. There-

fore, each α-helix structure was modeled as a simple poly-Ala α-helix where only the backbone Cα-

atoms were considered during docking and no inter-helical constraints were imposed by CLMS 

data. The docking of each of the 100 helix was allocated a budget of 300’000 function evaluations, 

summing up to a total 1.8 billion function evaluations for the 60 assembly models.  
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Figure 4.5 | Modeling and docking process of Httn α-helices into Q23-Httn cryo-EM map. 
A. The docking procedure was undertaken with power-mViE and consisted in iteratively docking 100 modeled poly-Ala 

helices, by simultaneously sampling their roto-translations and modifying their length, into the provided 7 Å cryo-EM 

map of the Q23-Httn. B. (top panel) A total of 60 models, each featuring 100 docked helices, were subjected to a 

dedicated clustering algorithm. (bottom panel) The aim of the clustering algorithm was to extract the Q23-Httn cryo-

EM map areas most populated by the poly-Ala of different models. This was done first by assessing the structural 

overlap between the helices of different Httn models (here, 3 models out of the 60 are represented with different tones 

of blue). In this case, individual helices of different models found to be in similar density map locations (Cα-RMSD < 4 

Å, “good”) were clustered together and helical centroids were extracted and added to the final model (C.). 

 

Then, the α-helices found at identical locations in most of the 60 models were combined (Figure 

4.5B). Given that the helices were fitted into the Q23-Httn map by matching their simulated elec-

tron densities to the one of the map, the motivation behind this approach was to detect the density 

map areas more likely to be populated by the docked α-helices. We then implemented a dedicated 

clustering algorithm to detect these populated areas and to extract the α-helices overrepresented in 

these areas. Briefly, the approach of the clustering method was to (i) compute the distance (Cα-

RMSD) between helices of different models, (ii) detect clusters of α-helices where the distance be-

tween models were minimal (Cα-RMSD < 4 Å) and which location was consistent between models 

(Figure 4.5B, bottom-panel), (iii) extract, out of each α-helices clusters, a representative α-helix to 

be included in the final model, and (iv) compute the structural distance between these representative 

α-helices to make sure their atoms do not overlap and hence obtain a clash free model. For the sake 

of better understanding, the main idea is illustrated in Figure 4.5B (bottom-panel), where α-helices 

from 3 models out of 60 are shown in different tones of blue. In this idealized visual representation, 

the clustering algorithm would select and then extract representative α-helix out of the cluster de-

picted on the left panel (“good”) rather than the one the right (“bad”) because the α-helices on the 

left panel have a better positional and structural agreement between different models.  

Eventually, a model containing 114 α-helices was obtained, which roughly corresponded to 

the total number of α-helices predicted by SS prediction software (111). Using the semi-automated 

fit_in_map command of the UCSF Chimera software143, the fitting of each representative α-helices 

inside the density map was refined further. During the refinement, α-helices found outside the vol-

ume of the density map and in areas of low densities were removed from the model, leaving 96 hel-

ices, which according to the SS prediction results, consisted in the number of predicted helices with 

at least 8 residues.  
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4.4.2 Ordering Httn helices via Monte Carlo optimization

Resulting from the initial phase, we obtained a poly-Ala model scaffold describing the most proba-

ble helical location inside the Q23-Httn density map (Figure 4.5C). 
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Figure 4.6 | Amino acid sequence of Q23-Httn and modeled Helices. 

The full-lenght amino acid sequence of Q23-Httn is represented in the top line of each numbered row. At the bottom 

line of each numbered row are the associated secondary structure elements as predicted from the consensus between J-

Pred and PSI-pred. The seven major regions describing the probable HEAT repeats structure within Q23-Httn are 

represented by the seven rainbow colors. The 96 modeled longest helices ( 8 residues) used to find the real location of 

Httn helices inside the previously modeled poly-Ala scaffold (Figure 4.5) are numbered and shown with bold format.

 

Using the helical positions we detected earlier, the next phase was to correctly map the location of 

the true Httn helices by aligning them to the fixed poly-Ala α-helices, used as scaffold. For the sake 

of consistency with the number of poly-Ala α-helices, the longest ( 8 residues) 96 Httn helical 

structures were modeled based on the SS prediction. Details regarding the modeled α-helices amino 

acid composition and their numbering can be found in sequence found in Figure 4.6. 

 The task of finding the correct Httn α-helices location and ordering inside the density map 

was converted into an optimization problem where the discrete search space consisted in all the 

possible alignments of Httn helices on the poly-Ala α-helices and the objective function combined 

the satisfaction of residue distance specified by the CLMS and eGFP experiments, and the distance 

between consecutive α-helices.  

Using a grid search to sample all the possible alignment through permutations would have 

amounted to 96!  iterations/function evaluations, which would have taken far too long 

even with modern computational resources. Thus we decided to use the optimization capabilities of 

power to solve this optimization problem. However, given that the current power optimizer (mViE 

and PSO) work best on a continuous search space rather than a discrete one, which is featured here, 

we designed a simple Monte Carlo optimization algorithm within power to the find the optimal Httn 

helical locations according to the algorithm: 
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Algorithm 3 

aligned_helices ← Randomize_Helix_alignments(Scaffold_helices, Httn_Helices) 
best_score ← compute_spatial_distances(Aligned_helices) 
 
for each timestep t do:  
 
   helix_to_swap_1 ← random_integer(1,96) 
   helix_to_swap_2 ← random_integer(1,96) 
    
   if helix_to_swap_1 != helix_to_swap_2 then 
      trial_alignment ← swap_helices_location(helix_to_swap_1, helix_to_swap_2) 
   end if  
 
   score ← compute_spatial_distances(Aligned_helices) 
 
   if score < best_score then 
      best_score ← score 
      aligned_helices ← trial_alignment 
   end if 
 
end for  
 
return aligned_helices 
 

At timestep t=0, each of the 96 helix structures stored in the vector Httn_Helices is structurally 

aligned on a randomly chosen poly-Ala helix stored in Scaffold_helices and their structural coordi-

nates are recorded in the vector aligned_helices. Then an initial score is computed as the addition of 

satisfaction values (0 if satisfied, 1 if not) on all the measured inter-helical crosslinked Lys distanc-

es and the distance between successive helices (i.e. distance between helix 1 and helix 2, … helix 

95 and helix 96) and is considered as best_score. Then at each timestep t, the location of two ran-

domly chosen helices aligned on the scaffold is swapped and their new structural coordinates are 

recorded as a tentative move in trial_alignment. From the new structural coordinates, a new score 

is computed. If the trial helical alignment combination is found to satisfy the experimental data bet-

ter than the previous alignment combination, it is kept for the next iteration and the best_score is 

updated.  

In this optimization process, a crosslink distance found below 45 Å and inter-helical dis-

tances below 20 Å were considered satisfied. The reason for choosing a crosslink cutoff distance of 

45 Å rather than the traditional 35 Å associated with DSS crosslinks 67, is that 98% (94/96) of the 

Httn crosslinked Lys were located on flexible regions which were not modeled. Due to the fact that 

only defined helical elements were considered in the current modeling process, the crosslinks locat-
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ed on these loops/flexible regions were reported onto the nearest atoms of the modeled helices, so 

as not to discard precious structural information to guide the optimization process. 

In order to further guide the optimization process and reduce the search space complexity, 

we used the information provided from the eGFP experiments (Figure 4.4) and fixed the position of 

helices at amino acid position 98 and 374 (respectively numbered as helices 1 and 14 in Figure 4.6) 

on the poly-Ala helix scaffold so that they are located at the beginning and end of NTD1. 

 

Figure 4.7 | Final model obtained for Q23-Httn and experimental data satisfaction assessment. 
Top panel. The helices assigned to respective HEAT repeat structures were colored in rainbow colors according to 

Figure 4.6, other helices were colored in white. The modeled α-helices agree well with the densities of the 8 Å Q23-

Httn cryo-EM map (ccc = 0.7). Middle panel. The CLMS data describing intra-protein contacts, which is predominant-

ly found on residues located on loop/flexible regions, were represented as red lines separating the helices Cα-Cα atoms. 

The average distance of crosslinked Cα-Cα atoms was 27.9 Å. Bottom panel. The Q23-Httn model was rigidly docked 

into the cryo-EM map featuring a fused GFP between NTD-1 and NTD-2 (see Figure 4.4). In this case a GFP structure 
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(pdbid: 1gfl) was also docked in the map. In the NTD1-eGFP-NTD2 cryo-EM map (see Figure 4.4), GFP is located in 

the cleft between the HEAT structures colored in red and orange. In the Q23-Httn amino acid sequence (Figure 4.6), 

The GFP was fused in the middle of a ~300 amino acid-long flexible region (unresolved in the cryo-EM map) at residue 

position 466, which was separated by ~130 amino acids from the red HEAT structure and ~200 residues from the or-

ange HEAT structure. Due to this relatively long distance, the GFP might appear instead closer to the green and cyan 

HEAT structures. Nevertheless in the cryo-EM map, it is located close to helix 14, which is in between the red and 

orange HEAT structures (closest Cα-Cα atoms < 10 Å, see Figure 4.6). 

 

Eventually, after visually inspecting and carefully analyzing all the best models produced by the 

Monte Carlo optimization, we narrowed down a model that best described the structure of the Httn 

protein. The criteria for the selection of this model were that the 96 helices should follow a logical 

order between each other to be structurally plausible and that the information described by the 

CLMS and eGFP data should be best satisfied. We further refined that model using the UCSF Chi-

mera software 143 in order to correctly orient the helices with respect to each other and to refine their 

position within the density map as the density map was not directly used during the Monte Carlo 

optimization. We then obtained a final structure, which modeled helices position and relationship to 

one another seemed to agree with the Q23-Httn cryo-EM map (Figure 4.7, top panel). The analysis 

on the satisfaction of the DSS crosslinks mapped to the helices (Figure 4.7, middle panel) revealed 

that the crosslinks tended to be more concentrated in the region spanning the HEAT structures here 

labeled as 1, 2, 3, 6 and 7 (Figure 4.7, middle panel). The reason for crosslink to aggregate in spe-

cific protein location remains unclear as it could be related to several causes including surface ac-

cessibility or to the condition in which the crosslinking was performed 144. The average distance 

between crosslinked residues (Cα-atoms) was 27.9 Å (± 13.44 Å), which was below the 45 Å cutoff 

distance used for the optimization process and more importantly, also below the standard 35 Å cut-

off value used for DSS crosslinks. Eventually the model was found to satisfy the suggested location 

of eGFP in the NTD1-eGFP-NTD2 cryo-EM map with the close spatial proximity of helix 14 (lo-

cated between the HEAT structures 1 and 2 colored in red and orange where the eGFP was fused) to 

the fused eGFP protein (Cα-Cα atoms < 10 Å, Figure 4.7, bottom panel). 

 

4.5 Structural assessment of the Q23-Httn model  

While still in the process of refining the model presented in Figure 4.7, in the very last weeks, the 

structure of the Q17-Httn protein was solved from a 4 Å cryo-EM map 87. Remarkably in this work, 

single particle cryo-EM was used to obtain a high-resolution structure by binding the Q17-Httn 
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structure to HAP40, which is a long HEAT repeat forming protein that is naturally found to interact 

with Httn. Given the very recent availability of an experimentally solved Httn structure, we per-

formed a structural comparison between our final model and the Q17-Httn structure recently pub-

lished (PDB-id: 62z8, Figure 4.8).  

4.5.1 Structural comparison of Q17- against Q23-Httn 

 

Figure 4.8 | Structural comparison between HEAT structures of the Q23-Httn model and 4 Å 

resolution Q17-Httn. 
a. Global comparison of the Q23-Httn modelled from the 8 Å cryo-EM map and Q17-Httn solved from a 4 Å cryo-EM 

map (pdbid 62z8). The helices of the Q23-Httn structure are represented as cartoons 145 atomic models while the helices 

of Q17-Httn are represented as tubes. The HAP40 protein structure normally bound to Q17-Httn was removed. b. Local 

comparison between HEAT structures of Q23-Httn and Q17-Httn. The Cα–atoms of the Q23-Httn HEAT structures 

(rainbow colors) were superimposed onto the respective Q17-Httn HEAT structures (grey color) with Pymol 146 and the 

structural difference were reported as Cα-rmsd values.  
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Visual inspection of our Q23-Httn model against the published Q17-Httn structure revealed that 

both structures were mostly composed of defined helical structures which arranged into HEAT re-

peats. Global structural alignments of both Q23-Httn and Q17-Httn indicated that N-terminal 

HEAT1 and HEAT2 as well as C-terminal HEAT6 and HEAT7 were in similar geographical loca-

tions (Figure 4.8a). Conversely, HEAT3, HEAT4 and HEAT5 had several geographical disagree-

ments between the Q17- and Q23-Httn structures. Local structural alignments between the Cα–

atoms of respective HEAT repeats revealed as well that the overall topology of the helices forming 

the HEAT repeats were not well respected between Q17- and Q23-Httn (Figure 4.8b). More pre-

cisely, the structural differences, quantified by Cα-rmsd values, ranged from 10.3 Å (HEAT2, Fig-

ure 4.8b) to 20.1 Å (HEAT3, Figure 4.8b). The biological reason for having >10 Å Cα-rmsd values 

between HEAT structures of respective Httn models could be related to the inherent flexibility of 

HEAT structures which might naturally vary from one Httn structure to another. There is also the 

possibility that structural differences observed in the local HEAT structures was induced by the 

presence of HAP40 bound to Q17-Httn and absent in Q23-Httn, which might have led to more 

global conformational changes of the entire protein. Obviously, we do not discard the possibility 

that structural inaccuracies could have arisen from the method employed to model and fit the indi-

vidual helices that formed the HEAT structures. In fact, we noticed that our method had the tenden-

cy to model more compact HEAT structures compared to ones solved in the 4 Å Q17-Httn cryo-EM 

map(Figure 4.8b). This was especially observed in HEAT1, HEAT2, HEAT3 and HEAT5 struc-

tures where the overall Q17-Httn structures appeared more elongated than the respective Q23-Httn 

structures.  

4.5.2 Assessment of Q17-Httn experimental data satisfaction 

In order to further rationalise the structural differences that occurred between the Q23-Httn and 

Q17-Httn structures, the satisfaction of the experimental data used to model Q23-Httn was assessed 

on the new Q17-Httn structure. First, the Q17-Httn without bound HAP40 was docked inside the 8 

Å Q23-Httn map used to model our structure. This analysis showed that the Q23-Httn cryo-EM 

map electron densities that should have described the location of the Q17-Httn N-terminal regions 

(HEAT1 in red, HEAT2 in orange and flanking in white, Figure 4.9a) were in fact missing. In this 

respect, we suggest the absence of electron densities in the N-terminal region of the Q23-Httn cryo-

EM map could have strongly contributed to the structural discrepancies observed between our mod-

el and the cryo-EM Httn structures.   
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Figure 4.9 | Structural analysis of Q17-Httn bound to HAP40 (pdbid 62z8) and experimental 

data satisfaction.  
a. The Q17-Httn HEAT structures are colored according to the rainbow colors described in Figure 4.6. The Q17-Httn 

structure was docked into the 8 Å Q23-Httn cryo-EM map and revealed that important densities were missing the N-

terminal regions of the cryo-EM map (illustrated by the red, yellow and white HEAT repeat structures not matching the 

density location). b. The Q17-Httn structure is colored in grey, the bound HAP40 in green and the crosslinked residue 

distances mapped on the Cα-atoms are colored in red. Here are reported the crosslink distances found above the upper 

distance limit of 45 Å.  

 

Furthermore, we assessed the level of CLMS data satisfaction by mapping crosslinked residue 

distances onto the Q17-Httn structure (Figure 4.9b). In this analysis, we observed that the average 

distance between Cα-atoms of the crosslinked residues was larger (33.9 Å ± 25.44 Å) than our Q23-

Httn model (27.9 Å ± 13.44 Å), where the longest violated distances recorded were 115 Å and 63.3 

Å for Q17- and Q23-Httn respectively. Further analysis of Q17-Httn structure led to the understand-

ing that these violated distances were in fact mapping the residues separated by the HAP40 protein 

(colored in green in Figure 4.9b), which, should have been in close proximity in the Q17-Httn mon-

omeric form. The presence of HAP40 could have led to significant conformational changes in Q17-

Httn which in turn could represent some of the underlying reasons for the differences observed 

when comparing our Q23-Httn structure that of Q17-Httn.   
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4.6 Discussion and conclusions 

In this work, we described the integrative modeling of Q23-Httn structure with the power framework 

by combining cryo-EM and CLMS data. The choice for using power was based on the difficulty 

encountered by other state-of-the-art software to model and assemble helical structures inside the 

available 8 Å cryo-EM map. The obtained Q23-Httn structural model, computed through docking, 

clustering and finding the correct spatial arrangement of the modeled helices, was found to satisfy 

the experimental data. Recent availability of a Q17-Httn atomistic structure solved from a 4 Å cryo-

EM map enabled to assess the quality of our Q23-Httn model. Similarly to the solved Q17-Httn 

structure, the Q23-Httn structure also featured a multitude of helices as components of larger HEAT 

structures. Additionally, the extreme N-terminal and C-terminal HEAT structures were found to 

have similar geographical locations. Unlike the Q17-Httn structure however, the HEAT structure 

located more centrally in the amino-acid sequences were found to have different geographical loca-

tion. Such differences were found to be more pronounced when comparing the individual HEAT 

structures, where differences were > 10 Å (Cα-rmsd) between respective Q17- and Q23-Httn HEAT 

structures. Assessing the satisfaction of Q17-Httn on experimental data used to model Q23-Httn led 

to the understanding that the observed structural differences might have occurred for varying rea-

sons.  

A possible reason for the structural discrepancy could have been related to the inherent na-

ture of HEAT repeats to form flexible solenoid rods, which likely created differences from one Httn 

structure to another. Other reasons could have been related to the poor resolution of the available 

cryo-EM maps, limited amount of CLMS data and intrinsic methodological errors associated with 

the current approach used to model the Q23-Httn structure. However, it was not possible to com-

pare the performance of our approach to similar ones since there was no evidence in the literature of 

methods that have attempted to model such large proteins (~350 kDa) from cryo-EM maps obtained 

at a resolution of 8 Å or lower, by modeling and docking the individual helical structures. In order 

to root out the possibility that structural differences in Q23- and Q17-httn might have arisen be-

cause of inaccuracies in our suggested method, a thorough evaluation of the robustness of the meth-

od would have to be undertaken. Such robustness assessment would be undertaken on other large 

macromolecules solved from cryo-EM experiments also featuring several HEAT repeats, such as 

the 3825 amino acid-long transcription co-activator complex SAGA (Tra1, pdbid: 5oej, mass: 437 

kDa) solved from 5.7 Å cryo-EM map.  



 

86 

We also suggest a possible reason for Q23- and Q17-Httn structural differences was related 

to the quality of the experimental data used to assist the modelling of Q23-Httn. Precisely, structural 

alignments followed by visual inspection of the Q17-Httn structure against the 8 Å Q23-Httn cryo-

EM map revealed missing densities in the N-terminal regions which might have led not only to a 

generally more compact Q23-Httn structure (also reflected in the more compact shape of HEAT1, 

HEAT2, HEAT3 and HEAT5), but also to mismatches when trying to map the geographical loca-

tion of the respective HEAT structures. Finally, the violation of several crosslinked residue distanc-

es by Q17-Httn indicated that the presence of the bound HAP40 likely conferred a conformation 

change in the overall Q17-Httn, which was difficult to predict from the monomeric 8 Å Q23-Httn 

cryo-EM structure, and which was probably also responsible for the structural differences observed 

in the cryo-EM maps and related models.  

Importantly, the presence of the bound HAP40 protein was instrumental to stabilize the 

Q17-Httn structure and enabled its atomistic resolution at 4 Å 87. Nevertheless, the structure ob-

tained from this work does not directly allow to understand the role of poly-Q expansion and Hun-

tington’s disease. Instead, we suggest this relationship can be elucidated through functional and 

structural comparisons between the monomeric forms of Httn with different poly-Q expansions 

(wild-type and disease). In this respect, the Song lab obtained both monomeric Q23- and Q78-Httn 

cryo-EM maps. The initial aim of this challenging project was to model a reasonable Httn structure 

from the cryo-EM with the best resolution (here, the Q23-Httn map at 8 Å). Upon model validation, 

the next phase of the global aim was to extrapolate the Q23-Httn model into the Q78-Httn cryo-EM 

map obtained at lower resolution of 10 Å, and rationalize the structural similarity/differences that 

might indicate a reason for the disease. 

Instead of a setback to the overall aim, the recent availability of a higher resolution Q17-

Httn structure can be used, instead of our model, for the goal specified above. First however, the 

impact of the bound HAP40 on the overall Httn structure would have to be understood. In this aim, 

we are now performing molecular dynamics simulations on the Q17-Httn structure without HAP40 

in order to relax its structure in isolation, as in our samples, and thus observe the impact of HAP40 

on the overall Httn architecture. As shown by preliminary results, we expect that Httn will assume a 

more compact conformation resembling more closely those observed in our cryo-EM maps. After 

careful analysis of the results obtained from MD simulations, we plan on filtering using power, the 

different conformations sampled through MD to find the ones which best satisfy the monomeric 

Q23-Httn experimental data as well as CLMS data. We would then flexibly fit this monomeric WT 
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Httn to the 10 Å cryo-EM map of Q78-Httn using available programs such as MDFF 36. Eventually, 

we think this procedure would be useful to shed light on the structural differences induced by the 

extent of poly-Q expansion and help understand the relationship between Httn structure and disease. 
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 Using energy grids to constrain the search space of small Chapter 5
molecules during molecular docking 

 

5.1 Introduction 

The field of computer-aided drug discovery has emerged over four decades ago with the ultimate 

goal of providing the most accurate predictions that would enable the cost- and time-efficient deliv-

ery of new drugs. A major part of the drug discovery pipeline involves structure-based drug design 

(SBDD), which has been no less than instrumental in the development of important drug including 

the imatinib (Gleevec) 147 against Abl tyrosine kinase, Amprenvir (Agenerase)148 against HIV pro-

tease or zanamivir (Relenza) against neuraminidase 149. 

Given the three-dimensional structure of a target protein, the typical goal of SBDD is to 

suggest potent inhibitors (i.e. with binding affinities in the nM range) in the form of an optimized 

lead compound, that would undergo phase I clinical trials 150,151. To address this challenging task, 

the SBDD process features many iterative cycles synergizing cutting edge experimental and in sili-

co methods. In the early cycles of the SBDD, which includes the identification of hit compounds 

with binding affinities in the μM (10-6) range, two types of approaches are commonly used. The 

first experimental approach consists in using an experimental high throughput screening method 

(HTC) where a large number of compounds are tested against the target protein, and their associated 

binding affinities recorded. 

In order to alleviate the substantial time and financial cost associated with HTC, the second 

avenue consists in using virtual screening (VS) methods for the in silico hit identification, with the 

aim of screening commercially available compounds against the target protein, using structure-

based small molecule docking methods (SMD) 152. In the remarkable study of Doman et al. 74 where 

compounds against protein phosphatase-1B target were screened, VS has been reported to provide a 

much greater enrichment, in term of number of compounds tested to have IC50 < 100 μM over all 

suggested compounds, when compared to experimental HTC methods. 

Given the three-dimensional structures of the unbound protein target and a database of com-

pounds, SMD methods aim to predict the most probable bound conformation of a ligand in the tar-
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get binding site first by generating ligand-receptor poses then by estimating their binding energy. 

To date, more than 60 SMD methods have been implemented, which strength and limitations have 

been extensively reviewed in the literature 153-157. Amongst the most popular docking methods one 

can find GOLD (Genetic Optimization for Ligand Docking) 82, which uses a genetic algorithm to 

sample the conformational flexibility of the ligand and that of protein residues located in the bind-

ing site. Another popular method is ICM (Internal Coordinate Mechanics) 80,158, which uses a Monte 

Carlo minimization to sample the internal coordinates of the ligand with the aim to rapidly find its 

correct binding pose. Also featuring a Monte Carlo-based optimization to sample ligand confor-

mation and position, Autodock Vina 76 is currently one of the most cited docking method in the sci-

entific literature 159,160 with over 1000 citations in 2015 161. Another recent and efficient docking 

method called AC (Attracting Cavity) 77 has been implemented which is based on energy minimiza-

tions on smooth energy landscapes calculated on a cloud of points surrounding the receptor binding 

site. 

Importantly, GOLD, ICM, AC and Autodock Vina have displayed great accuracies to pre-

dict the bounds conformation of ligands and their estimated binding energies. To achieve such per-

formance, they rely on carefully calibrated global scoring functions composed of linearly added 

energy terms76 including Lennard Jones potentials, Coulomb potentials, desolvation or hydrophobi-

city 76,77,80,82. Coefficients in the form of weight constants are assigned to balance the contribution 

of these uncorrelated terms, which can be obtained from regression analyses by iteratively fitting 

the scoring function to experimentally determined binding affinities.  

One major limitation of such approach is that, added to the costly calculation of these 

weights, the regression coefficients can be heavily dependent on the dataset used to compute 

them162. More importantly, the addition of new terms to an already optimized scoring function is 

nearly impossible without rebalancing their contribution. This limitation comes from the fact that 

the docking problem is treated as an unconstrained single objective optimization.  

In an attempt to optimize several scoring terms without balancing them, Gu et al.162 convert-

ed the SMD problem to a multi-objective optimization where multiple scoring functions were min-

imized simultaneously by a genetic algorithm. This approach was tested against the GOLD test set 

and showed remarkable docking accuracies compared to other popular molecular docking methods 

including GOLD 82, Glide 81, Surflex 163 and Dock 164. 
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Another way to circumvent this problem would be to use a constrained optimization scheme, 

which aims at minimizing a single objective function while ensuring the satisfaction of pre-defined 

constraints 83. The advantage of this optimization scheme is that an unlimited amount of constraints 

can be added to guide and accelerate the optimization process without balancing their contribution. 

Constrained optimization has been applied in various fields including medicine 165, optics 166, engi-

neering 167 and recently to the in silico prediction of protein macromolecular assembly 17. Particu-

larly in this recent work, the protein-protein docking problem was converted into a constrained op-

timization, where the power (parallel optimization workbench to enhance resolution) 16,62 framework 

coupled to a recent constrained optimizer named mViE (memetic viability evolution) 83 was used to 

dock symmetric and hetero-dimeric protein assemblies, by using experimental data to guide the 

assembly process 17 (See Chapter 3). 

Unlike the protein-protein docking problem converted to a constrained optimization where 

experimental data are used as constraints, in SMD, no experimental data is usually available to as-

sist the docking of small compounds into the target binding site. More generally, to our knowledge, 

no constrained optimization application has yet been reported to predict the docking of small mole-

cules. The reason behind this could be related either to the difficulty to find features to be used as 

constraints or to the general complexity of the optimization problem. 

Thus in this work, we sought to design a constrained optimization method suitable for dock-

ing small molecules. To address this task, we modified our previously implemented constrained 

optimization protocol power-mViE by introducing an objective function similar to the one found in 

AutoDock Vina 76 and inequality constraints in the form of receptor-ligand physicochemical proper-

ties, extracted from energy grids. In order to test and validate the method, we used high-resolution 

receptor-ligand complexes of the PDBbind core set 168 to extract and calibrate the constraints, and 

the Astex diverse set169 as the validation set. On a rigid docking setting with the PDBbind core set, 

our constrained molecular docking approach showed almost a four-fold increase in accuracy com-

pared to an unconstrained docking. On a flexible docking setting with the Astex diverse set, we ob-

tained docking accuracies comparable to that of state-of-the-art software including the AutoDock 

Vina program. In this study, constraints were extracted from energy grids generated in the binding 

site of a rigid receptor, and were used to guide the docking of a flexible ligand. While the results 

obtained using this approach are comparable to other successful SMD methods, we envision that the 

use of constraints extracted from energy grids would be critical for docking ligands more accurately 
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when also the native dynamics of the target protein, as for instance accounted from molecular dy-

namics simulations, is considered during docking. 

 

5.2 Methods 

The suggested constrained molecular docking protocol requires as input the atomistic structures of 

the ligand, and the receptor (Figure 5.1). From these structures, atom types are assigned based on 

the Xscore nomenclature 76,170. Then, local and global constraints to assist the docking are computed 

from atom type-based pre-computed energy grid maps, using the procedure outlined in following 

methods section. 

These local and global constraints are simultaneously used during optimization to guide the 

docking of the ligand inside the receptor binding site. In order to quantify the binding energy of the 

poses during docking, a scoring function similar to that of AutoDock Vina is minimized. At the end 

of the optimization, the best receptor-ligand pose, i.e. the pose with the lowest energy which satis-

fies all the constraints, is returned.  
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Figure 5.1 | Constrained ligand docking workflow.  
The power-mViE molecular docking method takes as input the isolated structure of the receptor and the ligand. Atom 

types are assigned to both receptor and ligand structures based on the Xscore nomenclature using MGLTools 

(http://mgltools.scripps.edu/). Then, grid maps recapitulating the energy of interaction between each ligand atom type 

and receptor atoms are computed and constraints used to guide the ligand docking into favorable regions of the binding 

site are extracted. A constrained optimization is then run with the aim of minimizing an objective function estimating 

binding energy similar to that of AutoDock Vina, while ensuring the satisfaction of the constraints computed in the 

previous step. At the end of the optimization run, the receptor-ligand associated with the lowest estimated binding ener-

gy that satisfies all the constraints is returned. 
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5.2.1 The constrained optimization strategy 

The constrained optimization procedure that minimizes the energy function while satisfying the 

constraints was encoded within the power framework coupled with the constrained optimizer mViE. 

Briefly, mViE advances a population of solutions based on (1+1)-CMAES to locally explore 

the search space and recombines these local units using a differential evolution (DE) operator to 

perform a global search 83. In this context, mViE attempts to find candidate solutions that satisfy 

pre-defined inequality constraints using the concept of viability evolution 83,101, which is an abstrac-

tion of artificial evolution and aims at selecting the promising candidate solution by adapting 

boundaries, termed viability boundaries, set around the inequality constraints. Initially relaxed 

around the constraints, these viability boundaries are gradually tightened during optimization. Only 

the solutions not violating these boundaries are termed viable and are selected for the next itera-

tions. This has the effect of gradually driving the solutions towards “feasible” areas of the search 

space where the constraints are satisfied and the objective is minimal 101. The minute workings of 

mViE can be found in the work of Maesani et al. 83 and is also summarized in Chapter 2.  

5.2.2 General formulation of the docking problem 

In the context of molecular docking, power-mViE was used to sample the position, orientation and 

flexibility of the ligand encoded in a vector of design variables X = [x, y, z, α, β, γ, ens], where x, y 

and z correspond to the three translations, α, β and γ to the three Eulerian angles defining the ligand 

orientation and ens the ligand conformational ensemble generated by sampling torsional angles of 

the ligand rotatable bonds, in order to solve the docking problem generally formulated as: 

 

min f(X), s.t.                                                                (1) 

 

where f(X) is the objective function to be minimized, li and ui the lower and upper boundary ranges 

defining the search space of the variable Xi, and  the inequality constraints defined on each 

solution X.  
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5.2.3 Objective function 

The objective function featured in AutoDock Vina 76 was integrated in the new power-mViE molecu-

lar docking method due its proven robustness, and detailed description. Given the atomistic pair-

wise interaction term , where rij is the measured Euclidian distance between 

the ith and jth atoms and Rt the van der Waals radius of these atoms of type t, the objective function 

f(X) is defined as:  

 

       (2) 

where 

            (3) 

 

          (4) 

 

         (5) 

 

,        (6) 

 

       (7) 

In the AutoDock Vina scoring function (eq. 2), the steric terms from eq. 3, eq. 4 and eq. 5 essential-

ly reproduce the attractive and repulsive parts found in a standard Lennard-Jones potential and are 
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applied to every atom irrespective of their type. Instead, the hydrophobic term depicted in eq. 6 is 

applicable only when both atoms involved in the interaction are hydrophobic. Similarly to eq. 7, the 

hydrogen bonding term is only applied whenever one of the atoms participating in the interaction is 

a hydrogen bond acceptor and the other a hydrogen bond donor. The coefficients , , , , 

 were respectively calibrated at -0.0356, -0.00516, 0.840, -0.0351 and -0.587 in the original study 

by Trott and Olson 76 to balance the contribution of the steric terms. 

 The choice for the Autodock Vina energy function as the objective implemented in power-

mViE was based on the fact it was open source, well-document and showed remarkable results 

when integrated into other molecular docking programs 162,171,172. Nevertheless, given the flexibility 

of the power-mViE protocol, in principle any objective function can be integrated or developed. 

5.2.4 Constraint terms 

The information encoded in the physicochemical interactions between the receptor and ligand was 

used as constraints to guide the docking procedure. Precisely, inequality constraints indicating the 

ideal ligand position and conformation inside the binding site were extracted as spatial distances 

from pre-computed grid maps of interaction energies for different atom types (Figure 5.1).  

Assuming the knowledge of the receptor binding site location, a cubic lattice box was first 

generated at that location with evenly spaced voxels (Figure 5.2, panel 1). Voxels found at a Euclid-

ian distance too close to any receptor atoms were removed, therefore leaving only non-overlapping 

voxels, from which two types of constraints were extracted: local and global.  
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Figure 5.2 | Constraint generation from energy grid maps. 
 1. A grid map represented by a cubic lattice box is generated at the location of the receptor active site. 2. Non-

overlapping voxels from the lattice box are extracted by removing voxels found too close to the receptor atoms 3. The 

energy quantifying the interaction between the non-overlapping voxels and receptor atoms is recorded, for each atom 

type. Voxels are ranked based on their interaction energy calculated by eq. 2. The lowest energy voxels are extracted 

and used in two different ways (a-b). a. After clustering, the voxel centroids are used as local constraints during docking 

by acting as docking “anchors”. b. Alternatively, the lowest-energy voxels for each atom type are combined based on 

their coordinates and are converted as global anchors. 4. The ligand is docked to the binding site by minimizing the 

objective function estimating the binding energy while simultaneously satisfying the global and local constraints. For 

the global constraint satisfaction, the ligand is spatially constrained into the cloud of voxels. Instead, for the local con-

straint, each ligand atom is spatially anchored to the voxel of the same atom type (same color in figure).  

 

Local constraints assist the docking procedure by locally anchoring the ligand atoms to pre-

dicted grid points of the same atom type (Figure 5.2, panel a). From the atomistic structure of the 

ligand, atom types are defined based on the Xscore nomenclature170 and include five atom types: 

hydrophobic (H), hydrogen bond acceptor (A), hydrogen bond donor (D), polar (P) and metal (M). 

Probes, each with the property of the ligand atom types, are iterated over each non-overlapping 

voxel and the energy of interaction between the atom-type probe and the receptor atoms is evaluat-

ed using eq. 2 (Figure 5.2, panel 3). The non-overlapping voxels associated with the lowest interac-

tion energies are extracted and then subjected to clustering. The resulting cluster centroids are then 

used as anchors during docking (Figure 5.2, panel 4) in the form of local inequality constraint of the 

type  where the  is the smallest 

Euclidian distance measured between one of the ligand atom and a centroid with a similar atom 

type, for all the atom types m of the ligand, and Ldist is a cutoff distance expressed in . In this 

case, the constraints are considered satisfied whenever at least one ligand atom of each atom type is 

found below the cutoff distance Ldist of any anchoring centroid with the same atom type (Figure 

5.2, panel 4). 

Global constraints were computed using all the non-overlapping voxels to extract a cloud of 

grid points (Figure 5.2, panel b). To extract local constraints, a clustering was performed on the 

lowest energy non-overlapping voxels (Figure 5.2, panel a). For global constraints, the lowest ener-

gy voxels were combined, based on their 3D coordinates, to form a cloud of grid points located in-

side the binding site and to be used as a global anchor (Figure 5.2, panel 3 and b). The main idea 

behind this approach was to derive spatial distances that would constrain the ligand inside the bind-

ing site where the energies were minimal. Practically, this was done with the global inequality con-
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straint , where the  is the average Euclidian dis-

tance computed from all ligand atoms and their respective nearest voxels located in the cloud of 

grid points, and Gdist the cutoff distance ( ) below which the constraint is considered satisfied. 

This leads us to the formal definition of the molecular docking problem as:  

 

   (8) 

 

5.2.5 Training the energy grid map parameters to obtain optimal constraints 

The cutoff distance values associated with Ldist and Gdist were determinant for the quality of the 

local and global constraints as defined in eq. 8 because cutoff distances that are too high would not 

be specific enough to constrain the ligand in a desirable area of the binding site, and conversely 

cutoff values that are too low might be too specific and be satisfied only by a subset of receptor-

ligand complexes. In turn, the values of Ldist were dependent on the parameter values related to the 

construction and extraction of grid voxels.  

Thus, a comprehensive training benchmark was undertaken to find a set of grid parameter 

values that minimized Ldist and Gdist whilst ensuring they were satisfied in most receptor-ligand 

complexes. A simple combinatorial approach was performed to find the optimal grid parameter val-

ues, which were: the distance cutoff that defined an overlap between grid voxels and receptor atom, 

the number of low-energy voxels used to compute the constraints and the distance separating each 

voxel of the grid map. Precisely, we combined values ranging from 2.6 to 3.3 Å for the distance 

cutoff defining an overlap between grid voxels and receptor atom, values ranging from 500 to 2000 

voxels for the number of low-energy voxels recorded; and values ranging from 0.375 Å to 1.5 Å 

defining the voxel spacing of the grid map. 

 For this benchmark, the receptor-ligand complexes were extracted from the PDBbind core 

set 168, which was used as the training set and contained 195 high-resolution crystal structures com-

piled particularly for the evaluation of docking methods. For each combination of these three pa-

rameter values, a grid map was generated on bound receptor-ligand complexes, the value of 
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 and  were recorded and a rigid docking was performed to 

evaluate the quality of the constraints. 

5.2.6 Step-by-step docking protocol 

As a first assessment and in effort to validate the improvement provided by the constraints, docking 

was performed on the training set (PDBbind core set) considering both the ligand and the receptor 

as rigid structures. In this case, the location of the binding site was known. Only the binding pocket 

residues (protein residues within 10 Å from the ligand center of mass) were used as the receptor 

instead of the whole protein to speed up the calculation. In order to simulate a realistic docking 

case, the geometric center of the binding site (represented by the bound ligand center of mass) was 

randomized. The ligand was then removed and its orientation and position were randomized. For 

both ligand and receptor, the atom types were assigned using the MGLTools (available at 

http://mgltools.scripps.edu/). The boundaries delimiting the ligand search space were represented as 

a cubic box of 23.0 Å, which center corresponded to the randomized binding site geometric center. 

For comparative purposes, the number of function evaluations attributed to each receptor-ligand 

docking was consistent between docking methods and approximated the number function evalua-

tion attributed to a standard rigid docking performed by AutoDock Vina, which was set to 120,000 

function evaluations. 

 A second, more unbiased and exhaustive, round of assessment was undertaken on the Astex 

diverse set 169, which contained 85 docking cases of high resolution receptor-ligand complexes. As 

the grid parameters and constraints were not trained on this set, it served as the basis for an unbi-

ased test. Moreover, unlike the previous assessment where both the ligand and the receptor were 

treated as rigid bodies, here the flexibility of the ligand was included in the search space in the form 

of a conformational ensemble. To account for the larger search space, the size of the box defining 

the search space and the budget of function evaluations were increased to 25.0 Å and 200,000 re-

spectively. Eventually for all optimization methods, the average CPU time required to compute a 

docking on a single-threaded execution (For AutoDock Vina: AutoDock Vina parameter --cpu 1) 

was recorded and performed with a Xeon E3-1200 3.6 GHz. 

5.2.7 Generation of ligand conformation ensemble 

Here, the flexibility of the ligand was generated in isolation from the target binding site and added 

to the ligand search space during optimization. To address this task, we implemented a systematic 

rotatable bond sampler to generate ligand conformers. 
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 The aim of the suggested implementation was to systematically generate all possible energy 

favorable conformations of the ligand and eventually add this ensemble of poses, treated as a con-

formational database, to the optimization search space. Specifically, for a given ligand, the number 

of active rotatable bonds was extracted using the MGLTools. Then, discrete angle increments of 

120° were performed for each rotatable bond. In order to filter out physically implausible ligand 

conformations, the internal ligand energy was computed on each atom pair separated by at least 3 

covalent bonds (1-4 LJ contributions) using a simple 12-6 Lennard-Jones potential, at each step of 

the permutation. In this case, ligand conformers with energies > 0.0 kcal/mol were not included in 

the conformational ensemble. The conformers were added as an extra dimension in the optimization 

space and used for the assessment of the Astex diverse set.  

5.2.8 Metrics to evaluated accuracy 

At end of the docking protocol, the accuracy of the docking was evaluated. For each receptor-ligand 

complex, the docked ligand pose associated with the lowest interaction energy (rank_1) was ex-

tracted. In the case of power-mViE, an additional selection criterion was that the best pose should 

also satisfy all the pre-defined constraints of equation (8). The position and conformation of the 

rank_1 ligand pose were compared to that of the original crystal structure using the standard struc-

tural similarity metric , where averaging is done over the N pairs of equiva-

lent heavy atoms and δi is the distance between the two atoms in the i-th pair. In this case, a docking 

was considered successful if the structure of the docked ligand was < 2.0 Å from the original crystal 

structure. Eventually, a success rate was issued by simply dividing the number of successful dock-

ing cases over all docking cases. This standard evaluation protocol has been in used in several stud-

ies 76,77,80 in order to benchmark and validate newly developed SMD methods.  

 

5.3 Results and discussion 

The molecular docking method suggested herein takes inspiration from a recent study in which the 

prediction of macromolecular assemblies was modeled as an optimization problem17 (See Chapter 

3). Given a receptor molecule that is held fixed in space and a ligand that is moved around the re-

ceptor, our in-house docking protocol power-mViE attempts to minimize a scoring function describ-

ing the quality of candidate poses by sampling the rotation, orientation and conformation of the lig-
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and, while simultaneously satisfying pre-defined local and global constraints describing the ideal 

position of the ligand inside the binding site.  

5.3.1 Unconstrained rigid docking 

As a first exploratory step, we used power-mViE to rigidly dock each of the 195 ligands extracted 

from the PDBbind dataset into their respective binding sites in an unconstrained setting, that is, by 

minimizing solely the objective function defined in eq. 2.  

This unconstrained molecular docking enabled the correct docking of 36/195 receptor-ligand 

complexes (accuracy: 18.5%, Heavy atom RMSD < 2.0 Å, Figure 5.3a). As an attempt to under-

stand the cause of such a low accuracy, several ligand poses were generated at RMSD distances 

ranging from 0.0 to > 10.0Å, from the bound ligand, then ranked by an energy score calculated us-

ing eq. 2, for each of the 195 PDBbind receptor-ligand complexes. In this case, the energy function 

was able to correctly rank 91% of the receptor-ligand poses for all the PDBbind complex. Thus it 

was clear the low docking accuracy obtained with the unconstrained power-mViE protocol was due 

mostly to the optimizer inefficiency rather than the inaccuracy of the energy function. In fact the 

energy landscape associated with this objective function contained several local minima, which 

complicated the docking process. The difficulty to find an efficient optimization protocol was also 

reflected in the original study describing the AutoDock Vina implementation 76 in which several 

state-of-the-art optimizers were tested to efficiently minimize the scoring function. 
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Figure 5.3 | Comparison of Docking accuracies between power-mViE and AutoDock Vina. 
 a. Accuracies were computed from the 195 receptor-ligand complexes found in the PDBbind core set, in rigid docking 

setting. b. Reported here are the maximal accuracies obtained by flexibly docking 84 complexes of the Astex diverse set 

using 5 different sets of random geometric centers (see section 5.3.3).  

 

5.3.2 Constrained rigid docking

In this work, we envisioned to switch from an unconstrained optimization paradigm to a constrained 

one by supplementing the AutoDock Vina objective function (eq. 2) with local and global con-

straints, where the aim was to “anchor” the ligand to desirable regions of the search space. Briefly, 

these local and global constraints were extracted from grid maps in the form of a cubic lattice box 

where atom-type specific energies were computed on each grid voxel (see Methods). The local con-

straints consisted of voxel centroids extracted by clustering the lowest energy voxels according to 

their atom types (Figure 5.2, panel a) and the global constraint was obtained by combining the co-

ordinates of the lowest energy voxels into one global cloud of grid voxels (Figure 5.2, panel b). Lo-

cal constraints were considered satisfied whenever at least one ligand atom of each atom type was 

found below the cutoff distance Ldist of any anchoring centroid of the same atom type. The satis-

faction of global constraints was computed by making sure the average distance between all the 

ligand atoms and their nearest cloud voxel was smaller than the global cutoff value Gdist.   
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Each constraint type (local and global) required the computation of distinct grids, each asso-

ciated with different parameter values. The cloud of voxels defining the global constraint required a 

voxel spacing of 0.375 Å, a cutoff distance defining an overlap between voxel and receptor atoms 

of 2.8 Å and fixed number 500 low-energy voxels to be combined based on their 3D coordinates, 

for each atom type. In this respect Gdist was calibrated at 1.5 Å. Conversely, the extraction of the 

centroid voxels defining the local constraints required a voxel spacing of 1.0 Å, a cutoff distance 

defining an overlap between voxel and receptor atoms of 3.0 Å and fixed number 600 low-energy 

voxels to be clustered, for each atom type. In this case, the cutoff distance Ldist, applied to all atom-

type voxels, was calibrated at 2.0 Å.    

 The optimal set of parameters was obtained through an exhaustive rigid docking benchmark 

on the PDBbind core set consisting in 195 receptor-ligand complexes where the docking accuracy 

(86.7%) was on par with the accuracy obtained with AutoDock Vina (84.6%, Figure 5.3, left panel). 

Noteworthy, the AutoDock Vina docking program was trained on receptor-ligand complexes from 

the PDBbind refine set 76. In the study describing the implementation of AutoDock Vina, the au-

thors recorded an accuracy of 78% for the flexible docking of 190 complexes, compared to accura-

cies >80% for rigid docking, as obtained in this study. More generally, docking accuracies from 

rigid-body docking methods are higher compared to flexible docking ones 155, since rigid docking 

problems have a smaller search space with only six degrees of freedom consisting of three transla-

tions and three rotations. Several Fast-Fourrier-Transform (FFT)-based programs currently exist 

which specialize in ligand docking in a rigid setting 155,173 with greatly reduced computation time 

when compared to molecular docking programs using stochastic optimization such as power-mViE.  

Another way to speed up computation is to use pre-computed grid maps that store the inter-

action energies between ligand and receptor and subsequently simplify the energy calculation dur-

ing docking174. Such approach was used by the AutoDock program with the AutoGrid feature 161 as 

well as ICM 80. Grid maps have also been used to detect the location of the binding pocket 175,176. 

In this work, the pre-computed grid maps were not used to accelerate the receptor-ligand en-

ergy calculation nor to find potential binding sites. Rather they were used to derive a set of local 

and global constraints to guide the docking process. Importantly, we found that supplementing the 

objective function with these local and global constraints (eq. 8) considerably improved our initial 

docking accuracy from 18.5% (unconstrained power-mViE) to 86.7% (constrained power-mViE).  
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5.3.3 Constrained flexible docking 

The constrained molecular docking approach was further extended to flexibly dock ligands inside 

their respective binding sites. In this case, the receptor was still kept rigid while the ligand flexibil-

ity was sampled. We tested this approach on the Astex diverse set169, which contained 85 high reso-

lution receptor-ligand complex structures. In the previously described rigid docking benchmark, a 

single randomly chosen binding site geometric center was used to train the grid parameter values as 

well the constraints cutoff values Ldist and Gdist. This was done due to the relatively long computa-

tion time required to complete the benchmark and one could argue that the parameters obtained via 

this benchmark could be biased towards these specific geometric centers. Therefore, in order to 

evaluate how the location of the geometric center affected the outcome of the power-mViE molecu-

lar docking, 5 different sets of the 85 complexes were created, each with different binding site geo-

metric centers. For each of the 5 sets, geometric centers were randomized from the ligand center of 

mass with continuous values ranging from ± 2.0 Å in the x, y and z plane. For each of the 5 sets, 5 

trials were performed to increase the statistics, giving a total of 25 * 85 docking trials. The Ldist, 

Gdist and grid parameters were the same as those extracted from the rigid docking benchmark. 

 Ligand flexibility was encoded as a pre-generated ensemble of ligand conformers obtained 

through incrementing the torsional angles in a combinatorial approach (see Methods). This con-

former ensemble was added as an extra search space dimension and contained the crystal confor-

mation of the ligand. The accuracy computed from this flexible docking method was compared to 

the one obtained using AutoDock Vina in exactly the same conditions (i.e. geometric center loca-

tion, starting from bound ligand structure, equal number of function evaluations) and are shown in 

Table 1 and Figure 5.3, right panel. 
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Table 2 | Flexible docking of Astex diverse set and reported accuracies for power-mViE and 
AutoDock Vina respectively.  

    power-mViE   AutoDock Vina 

  trial number accuracy (%) mean accuracy(%)   accuracy (%) mean accuracy (%) 

random center 1 1 72.6 

72.3 ± 3.0 

  73.8 

71.7 ± 1.6 

  2 66.7   71.4 

  3 73.8   70.2 

  4 73.8   72.6 

  5 70.2   70.2 

random center 2 1 69.0 

71.2 ± 4.1 

  73.8 

72.6 ± 1.2 

  2 76.2   73.8 

  3 75.0   72.6 

  4 67.9   71.4 

  5 67.9   71.4 

random center 3 1 69.0 

68.6 ± 2.0 

  71.4 

71.9 ± 2.0 

  2 66.7   71.4 

  3 71.4   73.8 

  4 66.7   69.0 

  5 69.0   73.8 

random center 4 1 77.4 

72.4 ± 4.2 

  70.2 

72.1 ± 1.4 

  2 76.2   72.6 

  3 67.9   73.8 

  4 70.2   71.4 

  5 70.2   72.6 

random center 5 1 69.0 

71.4 ± 1.9 

  69.0 

70.5 ± 1.0 

  2 71.4   70.2 

  3 70.2   70.2 

  4 73.8   71.4 

  5 72.6   71.4 

 overall mean accuracy (%) 71.0 ± 3.2     71.8 ± 1.5    

 overall max accuracy (%)  77.4     73.8   

overall min accuracy (%)  66.7     69.0   

 

In this evaluation, we found that the results obtained using power-mViE protocol matched those ob-

tained with AutoDock Vina (Figure 5.3, right panel). Importantly, the location of the geometric cen-

ter used to compute the constraints did not seem to influence the accuracy of the flexible docking 

(Table 2) with an average accuracy estimated at 71.0% ± 3.2% for all the 25 docking trials. These 

results were found comparable with those obtained using AutoDock Vina with respective geometric 

centers (mean accuracy: 71.8% ± 1.5%). Notably, the maximal accuracies obtained both for Auto-

Dock Vina (73.8%) and power-mViE (77.4%) flexible docking protocols (Table 2) were comparable 

to the AutoDock Vina accuracies (76.5%) described in the study by Zoete et al. 77 obtained with 
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similar conditions. From the Astex diverse set, used to validate the method, 5 receptor-ligand com-

plexes which included 1GPK, 1HNN, 1N1M, 1N2V and 1OYT were also present in the PDBbind 

core set, used to train the grid parameters. Removing these 5 docking cases when computing the 

overall accuracy did not lead to a different overall mean accuracy (70.2% ± 3.2%). On the same 

Astex diverse set and starting from the bound ligand conformation, AC obtained docking a maximal 

accuracy of 88.2%77, which were higher than those obtained both by the power-mViE (77.4%) and 

AutoDock Vina (73.8%) in this work. When starting from a random conformer, the highest ranking 

molecular docking programs were ICM with 91%80, GOLD with 87%82 and AC with 83.5 %77. 

The results presented here have to be reflected with care since the strategy to sample ligand 

flexibility was different between AutoDock Vina and power-mViE. Precisely, AutoDock Vina sam-

ples the angles of each ligand torsion during optimization while power-mViE assigns a structure 

from a pre-computed conformer ensemble 76. The strategy to sample from a pre-computed set of 

ligand conformers through a systematic search is a conceptually simpler method compared to sam-

pling each of the ligand torsions 153,154.  

Nevertheless when generating conformers of the 1YGC ligand, which contained 14 active 

torsions, by systematically incrementing each torsional angle by 120°, memory failures occurred. 

Such inconvenience has already been reported in the literature 154 and is called a “combinatorial 

explosion” problem where the memory required to store and sample a large number of conformers 

far exceeds the available computer memory. For this reason, 84 complexes instead of the 85 fea-

tured in the Astex diverse set were taken into account and presented in Figure 5.3 and Table 2. 

When attempting to reduce the angular increments to 60° or 35°, memory errors were encountered 

that prevented to further test the method. Thus we did not evaluate the robustness of our method 

when starting from random ligand conformation because it required a finer angular increment. 

A possible solution to circumvent this problem could be to incrementally grow the ligand in-

to the binding site177. This method in particular was applied by the Dock 178 and FlexX179 programs 

and involves iteratively docking ligand fragments into the binding site then covalently linking them. 

Implementing a similar sampling strategy for the next molecular docking implementation of power-

mViE would certainly alleviate the combinatorial memory problem and increase the robustness of 

the approach.  

In term of average CPU time required for each of the 84 flexible docking cases, AutoDock 

Vina was faster (50s ± 40s) than power-mViE (5min ± 42s). In the present analysis where a limited 
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amount of docking rounds were performed, such time differences do not significantly affect the 

usability of power-mViE. However, in docking cases where a large number of compounds need to be 

virtually screened, power-mViE would be less competitive than Autodock Vina. Being the first im-

plementation of power-mViE for ligand docking, we expect to reduce the computational time associ-

ated with docking in the future implementation of the method, either by a better engineering of the 

docking algorithm or by incorporating multi-parallel optimization. 

5.3.4 Evaluation of successes and failures 

For each of the 84 flexible docking cases featured in the Astex diverse set, the number of successful 

trials (i.e. where the best ligand pose is found at RMSD < 2.0 Å of the bound ligand) was computed 

over the 25 trials. In 44 receptor-ligand docking cases, both AutoDock Vina and power-mViE con-

sistently found the native ligand binding mode with success rates ≥ 76% (20/25 trials).  

Conversely, in 10 docking cases which comprises complexes 1GM8, 1HVY, 1JD0, 1JJE, 

1Q41, 1R58, 1SQ5, 1TZ8, 1W1P and 1UVF, neither AutoDock Vina nor power-mViE could con-

sistently find the ligand binding mode as found in the native receptor-ligand complex (success rates 

≤ 20%, 5/25 trials). Upon visual inspection of the receptor-ligand complex structures and searching 

through the literature, it appeared that some of these cases were in fact “usual suspects” previously 

labeled as difficult docking cases 77,80. The reason behind such difficulty lies in the presence of ex-

plicit water molecules mediating critical receptor-ligand hydrogen bonding interactions in the native 

complex structure which are removed prior to docking. This was attributed as the root cause for the 

docking failures of 1GM8, 1HVY, 1JD0, 1SQ5 and 1W1P. Another reason for failure is due to the 

ligand interaction with metal ions as in complexes 1JD0 or 1JJE. The reason for the failure of other 

docking cases could not be detected through the visual inspection of the complex crystal structure 

and thus was attributed to limitations in the scoring function accuracy.  
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Figure 5.4 | Docking success and failures of AutoDock Vina and power-mViE.  
a. Best ligand poses returned by the power-mViE and AutoDock Vina methods for 1UML (left panel) and associated 

local and global constraints satisfaction (right panel). b. Best ligand poses returned by the power-mViE and AutoDock 

Vina methods for 1YWR (left panel) and associated local and global constraints satisfaction (right panel). For the repre-

sentation of constraint satisfaction for both 1UML and 1YWR (right panels), the white cloud surface represents the 

global constraint, the full blue circles represent the satisfied local polar centroids (Ldist < 2 Å), which are located close 

to polar ligand atoms also colored in blue, and the empty white circles represent unsatisfied polar centroids. 

 

More interesting docking cases consisted of those where AutoDock Vina and power-mViE showed 

conflicting success rates. For complexes 1MMV and 1UML (Figure 5.4a) in particular, AutoDock 

Vina succeeded with a rate of 100% for the 25 trials, while power-mViE was always ≤ 20% (5/25 

trials). Visual inspection of the native complex structures did not reveal the presence of neither wa-

ter molecules nor metal ions mediating the interactions between ligand and receptors. In order to 

check whether the local and global constraints may have wrongly anchored the ligand into undesir-
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able areas of the binding site, we computed the local and global constraint satisfaction as well the 

energy score, according to eq. 2, for the best (lowest estimated binding energy) receptor-ligand pos-

es returned by AutoDock and power-mViE. Such analysis showed that both the correctly docked 

lowest-energy poses computed by AutoDock Vina and the wrongly docked best poses of power-

mViE were found to satisfy the local and global constraints. However, the lowest energies recorded 

for best poses of 1MMV (-10.9 kcal/mol) and 1UML (-16.3 kcal/mol) returned by AutoDock Vina 

were lower than the ones computed on the crystal structures of 1MMV (-9.6 kcal/mol) and 1UML (-

14.9 kcal/mol) respectively, which in turn were lower than the best pose computed by power-mViE 

(1MMV: -8.67 kcal/mol, 1UML: -11.7 kcal/mol). This showed in these two cases that while the 

constraints were satisfied in the best poses returned by both power-mViE and AutoDock Vina, fail-

ure to compute better poses by power-mViE was probably due to the fact that it was unable to over-

come a local energy minimum. A possible solution to better find the correct binding pose could be 

either to increase the number of function evaluations for these two cases or refine the constraints 

further so as to more precisely anchor the ligand into the binding site.  

Conversely, power-mViE correctly docked the ligand of complexes 1MEH, 1N2V, 1R55 

with success rates of ≥ 84% (21/25 trials) while AutoDock Vina consistently failed to find the na-

tive binding mode (0% success rate) for these complexes. Interestingly, visual inspection of these 

complexes revealed that both 1MEH and 1N2V contained water molecule, and 1R55 a Zn ion 

bridging the interaction between the ligand and receptor protein. These have been previously noted 

as being particularly difficult docking cases77,80. Comparisons between the estimated binding energy 

associated with the power-mViE best poses (1MEH: -10.2 kcal/mol, 1N2V: -8.4 kcal/mol, 1R55: -

9.3 kcal/mol), the energies from the best AutoDock Vina poses (1MEH: -10.4 kcal/mol, 1N2V: -8.6 

kcal/mol, 1R55: -10.2 kcal/mol) and crystal structures (1MEH: -9.7 kcal/mol, 1N2V: -8.0 kcal/mol, 

1R55: -8.0 kcal/mol) indicated that both power-mViE and AutoDock Vina found lower energies than 

that of the complex structure. Moreover, the local and global constraints were satisfied on the best 

poses returned by both power-mViE and AutoDock Vina and on the three complex crystal structures. 

Thus, we suggest the reason for the success of power-mViE in this case might be due to a combined 

effect of constraints anchoring the ligand to a suitable region of the binding mode and to the coarse 

angular step of 120° which might have prevented the ligand to adopt a conformation leading to a 

non-native binding mode. 

 The docking cases of 1YWR (power-mViE: 72%, AutoDock Vina: 0%, Figure 5.4b) and 

1G9V (power-mViE: 52%, AutoDock Vina: 0%) were found to also be worth mentioning since they 
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illustrated how the use of constraints helped find the correct binding mode of the ligand. Visual 

inspection of the 1YWR crystal structure did not reveal the presence of neither water nor metal ion 

molecules inside the binding site. Evaluating the level of constraint satisfaction on the best poses 

returned by AutoDock Vina over the 25 trials showed that a local constraint specifying the mini-

mum distance between a polar centroid voxel and a polar atom of the ligand was always > 2.0 Å 

which is above the Ldist cutoff value, and thus violates that local constraint (Figure 5.4b). Unlike 

the AutoDock Vina best poses, both the crystal structure 1YWR and the best power-mViE poses 

were found to satisfy all the local and global constraints (Figure 5.4b). Additionally, the estimated 

binding energy associated with the best pose returned by power-mViE (-13.7 kcal/mol) was lower 

than the ones of the crystal structure (-12.4 kcal/mol), which was in turn lower than the best Auto-

Dock Vina pose (-12.0 kcal/mol). This remarkable example served as a showcase illustrating how 

the use of constraints by power-mViE was useful in anchoring the ligand in favorable regions of the 

binding site where the minimal binding energy was found, leading to a pose resembling that of the 

native binding mode.  

Anecdotic cases like those of 1MEH, 1N2V, 1R55, and particularly 1YWR put forward the 

usefulness of using pre-computed constraints to assist the docking of ligands inside their binding 

site. Noteworthy, 1MEH and 1N2V featured water- mediated ligand-receptor interactions and 1R55 

contained Zn ions in the binding site. Such cases are considered difficult to solve. Nevertheless, 

similar water- and metal ion-mediated docking cases such as 1GM8, 1HVY, 1JD0, 1JJE, 1Q41, 

1R58, 1SQ5, 1TZ8, 1W1P and 1UVF still remain elusive to most SMD algorithms including power-

mViE and AutoDock Vina. If present in the crystallographic structure of the binding site, a suggest-

ed strategy to improve the docking performance is to keep and optimize the orientation and position 

of the water hydrogen atoms, using specific energy minimizations 180,181. If not present in the recep-

tor crystallographic structure, water molecules can be added into the binding site using grid-based 

or molecular dynamics simulations and can be selected based on their energetic stability for docking 
182. The presence of metal ions can hinder the performance of molecular docking programs because 

it may affect the hydration and protonation states of charged residues183, which are factors still dif-

ficult to predict using available methods as they often require more expensive calculation at the 

quantum level184. 
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5.4 Conclusion 

In the work presented here, we applied the principles of constrained optimization to assist the dock-

ing of small molecules inside the binding site of their respective targets. Precisely, local and global 

constraints were extracted from pre-computed energy grid maps at the location of the binding site. 

These constraints were essentially used during docking to anchor ligands inside desirable binding 

site areas by constraining their global position inside low-energy areas, and by locally matching 

ligand atoms to areas favouring their associated atom types.  

Using power-mViE on a constrained rigid docking setting, we combined these local and 

global constraints together with the AutoDock Vina scoring function and witnessed an almost four-

fold improvement in docking accuracy compared to a rigid docking setting where an unconstrained 

optimization was performed. Moreover, in a flexible docking setting, we obtained accuracies com-

parable to state-of-the art SMD methods.  

Despite the encouraging results obtained in this work, we suggest necessary improvements 

for the future implementation of the method. Namely, we encountered the problem known as 

‘’combinatorial explosion’’ when computing the different ligand conformers used as an ensemble to 

be sampled during the optimization. As a possible solution to this problem and to increase the ro-

bustness of our approach, we suggest a sampling method similar to Dock 178 and FlexX179 pro-

grams, which consists in first dividing the ligand into fragments and then individually docking the 

fragments by respecting their covalent bonding. 

Similar to other SMD methods 77,80, we faced difficulties in docking cases where water or 

metal ions were mediating the interaction between ligand and their receptor. A suggested approach 

to improve docking accuracies when water mediates ligand-receptor interactions could be to first to 

refine the hydrogen atom positions of the water molecules found in the complex crystal structure, 

then to use these waters as part of the receptor structure during docking 180,181. When not present in 

the complex crystal structure, water molecules can be added using molecular dynamics-based tech-

niques, which assess their relative positional retention inside the binding site 182. As for docking 

cases where protein-ligand interactions are mediated through a metal ion, more refined techniques 

are suggested which include calculation at the quantum level 184. 

Finally, we envision this approach to be advantageous in more difficult, but more realistic 

docking cases such as those where both the ligand and receptor flexibility are sampled during opti-

mization. Instead of using a single receptor conformation, the inclusion of receptor flexibility in 
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SMD holds promise for increasing docking accuracy and capturing a better physical representation 

of the ligand-receptor interactions 160,185.  In the best-case scenario, receptor flexibility can be ac-

counted for by including different experimentally solved structures of the protein target in the SMD 

process, determined for instance via X-ray crystallography or NMR. However in more realistic 

docking cases where only a single conformation of the receptor is available, receptor flexibility can 

be sampled using in silico methods. A popular way to treat receptor flexibility using in silico meth-

ods consists in using amino-acid side-chain rotamer libraries 186, which locally samples the binding 

site flexibility based on experimentally observed amino-acid side-chain conformations. This ap-

proach however has limited use in docking cases where the binding site is expected to undergo sub-

stantial backbone conformational change in order to accommodate the ligand 153, e.g. in loop-

forming active sites 187 or cryptic pockets 188. For such flexible cases, more expensive techniques, 

including molecular dynamics simulations, can be used on the receptor in its apo form to generate 

different snapshots of binding site conformations. This ensemble of binding site conformations can 

be used directly during docking, as in ICM (4D docking) 158,189 and is expected to provide not only 

significant enrichment in VS but also more chemically diverse hits.   
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 Conclusion and perspectives Chapter 6

Partly adapted from the published paper: “Assessment of data-assisted prediction by inclusion of crosslinking/mass-
spectrometry and small angle X-ray scattering data in the 12th Critical Assessment of protein Structure 
Prediction experiment” Giorgio E. Tamò, Luciano A. Abriata, Guilia Fonti and Matteo Dal Peraro. Proteins: 
structure, function and bioinformatics., 2018 

 

Integrative modeling (IM) techniques have emerged as powerful tools to model the architecture of 

important proteins 43,49,62,190 by combining computational methods with experimental information. 

Such experimental inputs can take the form of crosslink/mass-spectrometry (CLMS) 11,67,140 exper-

iments that can be used to pinpoint contacting residues, greatly helping the modeling process of 

protein structure. Another important experimental input consists in low-resolution structural data 

describing shape, volume or subunit arrangement such as small-angle X-ray scattering (SAXS) data 

or cryo-electron microscopy (EM).  

In particular, the last decade bears witness to remarkable advancements in the field of cryo-

EM, which mainly consisted in the use of direct electron detector and better image processing 

methods 1. Such advances have recently allowed the structural elucidation of larger and larger pro-

tein macromolecules at atomistic resolution (<4 Å) 3,5,8. 

 Through the integration of the previously mentioned heterogeneous experimental infor-

mation together with biophysics-based energy potentials, the ultimate goal of IM techniques is to 

model native-like atomistic structures of important macromolecular assemblies 18. Subsequently, the 

evolution of the IM methods closely follows the progress and advances of the low-resolution exper-

iments they rely on to model their predictions. In this respect, the final accuracy, in term of structur-

al similarity to the native structure, conferred to a macromolecular structure predicted using IM 

techniques would be strongly dependent on the accuracy depicted in the integrated experimental 

data. 

 Therefore, whenever the experimental techniques commonly used to assist the integrative 

modelling of macromolecular structures gain sufficient accuracy to elucidate their structure at atom-

istic level, the use of IM approach for such modelling problems should be carefully evaluated. As a 

striking example to illustrate the previous point, during the present work to model the large Q23-
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Httn monomeric structure from a 8 Å cryo-EM map and CLMS data (Chapter 4), an independent 

study 87 described cryo-EM experiments that enabled the resolution at 4 Å of the Q17-Httn struc-

ture. Fortunately in this case, we could still proceed from our previous work to predict the mono-

meric Httn structure since the solved 4 Å Httn structure was stabilised through binding a HAP40 

protein, where Httn likely changed conformation in order to bind HAP40.  

More generally however, the acceleration of cryo-EM-based macromolecular structure de-

termination suggests a gradual shift of focus from the IM community. Instead of targeting the struc-

tural elucidation of large macromolecules that are getting increasingly more reachable by cryo-EM 

experiments, IM efforts would gradually shift towards larger macromolecular, even cellular, assem-

blies such as those now being elucidated by cryo-electron tomography with resolution averaging 15 

Å 191. Coming together with an increase in size, the complexity of such large systems would require 

IM method to be able to integrate more heterogeneous experiments and to better treat protein flexi-

bility. 

Still currently, state-of-the art methods applied to predict both large and small molecular 

complexes usually rely on carefully calibrated scoring functions to quantify the quality of their 

structural models. Importantly here, the scoring function featured in these methods often contain 

uncorrelated term which are linearly added and which relative contribution have been balanced by a 

tedious weight assignment process. Moreover, this weight assignment process often does not permit 

the addition of other uncorrelated terms without needing to rebalance the contribution of all the 

other terms.  

In this work, we suggested the use of constrained optimization as a way to alleviate the 

previously mentioned issues, which are omnipresent in multiscale integrative modeling. Precisely, 

we incorporated within our in-house integrative modeling protocol power a novel and robust 

constrained optimizer called memetic Viability Evolution (mViE). The application of this 

constrained optimization protocol for multiscalte integrative modeling, nicknamed power-mViE, was 

achieved in various projects which are described in the chapters of the thesis. Essentially, our 

constrained IM approach enabled the optimization of terms related to the global scoring scheme 

separately without re-balancing their contribution. More importantly, it enabled to seamlessly add 

any term to the scoring function without rebalancing the relative contributions. 

Although the work described here has been applied to model both large (Chapters 3 and 4) 

and fine (Chapter 5) molecular systems, we predict its usefulness would extend to model larger 



 

117 

biological systems such as those requiring the integration of several heterogeneous experimental 

data. 

The in silico elucidation of such larger assemblies will however require benchmarks and 

methods to accurately evaluate the robustness of state-of-the-art IM methods. To date, there seems 

to be a lack of rigorous assessement protocols to validate IM methods used to predict the structure 

of large asymmetric macromolecules (>50 kDa) by integrating low-reslution experiments such as 

cryo-EM, SAXS or CLMS. Remarkable efforts have recently been noticed from the protein 

modeling community with the inclusion of data-assisted categories in the CASP11 and CASP12 

experiments, in which NMR, CLMS and SAXS data were used to assist the modeling of protein 

structures. Although highly promising, it is still in relative infancy and does not include large 

protein structures which size >300kDa, such as the Httn protein (~350 kDa). We believe the 

addition of a data-assisted category for modeling protein of this size would be beneficial for the 

future, which brings the challenge of solving the structure of bigger and bigger proteins. 

Furthermore, the work featured in this thesis has triggered the development of other projects 

related to the modeling of protein structures. One of these projects consists in fitting largely 

asymetric protein assemblies (more than four asymmetric protomers) inside low-resolution cryo-

EM maps (>10 Å). This type of modeling problem is still very difficult to solve today due to the 

very large degrees of freedom associated with sampling both the roto-translations and flexibility of 

each of the assembly protomers performed through optimization 192. In the same spirit as in 

Chapter 5, where voxel centroids were used to constrain the search space of small molecules inside 

their receptor binding site, the idea for accelerating the fit of asymmetric assemblies would be to 

pre-generate and detect, from the experimental EM map, areas of high electron densities to be used 

as anchors by the protomeric subunits during docking.  

Another possible extension of the constrained approach is to solve the difficult problem of 

protein-protein docking. Though also not reported in this thesis, preliminary studies have been 

undertaken in which we aimed to detect, using an artifial neural network (ANN), the native binding 

mode of protein-protein interfaces. Practically, this can be achieved by training an ANN on several 

protein-protein decoys and by assessing whether the ANN correctly classified the protein interfaces 

as native or non-native. This early analysis led to a classification accuracy of ~80% on the protein-

protein benchmark set 193, which showed great promise. In this scope, we envision to integrate the 

trained ANN together with relevant low-resolution experiment to the scoring scheme of power-mViE 

in order to further perfect the current modeling procedure. Although applied to protein-protein 
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docking, the same machine learning principles could be extended to our SMD method to better 

characterise the ligand-receptor interactions and could serve as more robust estimation of binding 

affinity, which in turn would lead to higher docking accuracies.   

Other developments related to the work featured in this thesis include the creation of a 

dedicated website, which should be online shortly and which would serve as an IM platform to 

distribute, maintain and further develop the power framework. As a future development, we plan on 

including a dedicated module to evaluate the fit between proteins and SAXS data, the treatment of 

protein flexibility through normal mode analysis and MD simulations, and finally the seamless 

addition of novel efficient optimizers.   
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Abstract
Integrative modeling approaches attempt to combine experiments and computation to derive

structure-function relationships in complex molecular assemblies. Despite their importance for the

advancement of life sciences, benchmarking of existing methodologies is rather poor. The 12th

round of the Critical Assessment of protein Structure Prediction (CASP) offered a unique niche to

benchmark data and methods from two kinds of experiments often used in integrative modeling,

namely residue-residue contacts obtained through crosslinking/mass-spectrometry (CLMS), and

small-angle X-ray scattering (SAXS) experiments. Upon assessment of the models submitted by

predictors for 3 targets assisted by CLMS data and 11 targets by SAXS data, we observed no sig-

nificant improvement when compared to the best data-blind models, although most predictors did

improve relative to their own data-blind predictions. Only for target Tx892 of the CLMS-assisted

category and for target Ts947 of the SAXS-assisted category, there was a net, albeit mild, improve-

ment relative to the best data-blind predictions. We discuss here possible reasons for the relatively

poor success, which point rather to inconsistencies in the data sources rather than in the methods,

to which a few groups were less sensitive. We conclude with suggestions that could improve the

potential of data integration in future CASP rounds in terms of experimental data production,

methods development, data management and prediction assessment.

K E YWORD S

critical assessment of structure prediction, cross-linking mass-spectrometry, integrative modeling,

small-angle x-ray scattering, structural biology

1 | INTRODUCTION

Integrative modeling (IM) techniques are today emerging as powerful

tools to model the architecture of proteins1–3 by combining computa-

tional methods with experimental information. Such experimental

inputs usually take the form of low-resolution structural data describing

shape, volume, or subunit arrangement such as cryo-electron micros-

copy (EM) or small-angle X-ray scattering (SAXS) data.4–6 In contrast,

spatial restraints extracted from crosslink/mass-spectrometry experi-

ments7 can be used to pinpoint contacting residues, greatly helping the

modeling process of protein structure.1 IM techniques are commonly

used to model protein quaternary structures1–3 but can in principle be

extended to model protein tertiary structure as well. Moreover, even

residue-residue contacts predicted from residue co-evolution analysis

can be integrated for tertiary and quaternary structure predictions,8–10

with associated uncertainty and noise that have to be considered by

these methods.11 Although IM has been successfully applied to reveal

the structures of several large important macromolecules,12–16 there is

still no standard benchmark procedure to rigorously assess the per-

formance of current IM approaches on predicting protein tertiary struc-

tures.8,17 This work describes one of such effort, which took place in

the context of the Critical Assessment of protein Structure Prediction

(CASP).
Abbreviations: CASP, critical assessment of protein structure prediction;

CLMS, crosslinking/mass-spectrometry; SAXS, small-angle x-ray scattering.
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CASP attempts to objectively assess the state of the art of protein

structure prediction from amino acid sequences through an international

competition in which groups have to predict protein structures secured

by the organizers but which have not been released by the Protein Data

Bank.17,18 The predicted models are then evaluated against the respec-

tive experimentally solved structures (targets) in different tracks that

look at specific features, such as global fold prediction, refinement of

fold, and side-chain details, oligomer prediction, and of most relevance

to this article, data-assisted modeling. The data-assisted modeling usu-

ally takes place on a subset of the targets that undergo data-blind fold

prediction, whose predictions we also analyzed in a recent article.19

CASP11 was the first edition to incorporate experimental inputs to

protein tertiary structure prediction in a data-assisted prediction cate-

gory20 featuring simulated NMR data about ambiguous distance

restraints,21 and residue-residue contacts determined experimentally

from crosslinking/mass-spectrometry (CLMS) data20 based on the photo-

CLMS protocol established by Brock and Rappsilber.22 For this 12th edi-

tion of CASP (CASP12), organizers managed to include (1) CLMS data

produced by the same approach as in CASP11 and obtained also by the

Rappsilber group,22 and (2) SAXS data obtained from the collaboration

with the SIBYLS Beamline facility at the Advanced Light Source Synchro-

tron. Of importance to the practical aspects of implementation during

CASP, both the CLMS and SAXS methods used were streamlined to

quickly collect data from the same samples used for target crystallization.

In this article, we report the assessment of data-assisted predic-

tions based on SAXS and CLMS data for protein structure prediction in

CASP12. We describe results for each target in comparison to the

data-blind models, which we also assessed.19 We discuss the outcome

of our assessment in the context of the employed data, the methods

used by the predictors and the logistics of the CASP experiment.

2 | METHODS

2.1 | Analysis of CLMS data

The CLMS-assisted category contained 3 targets that were named Tx892,

Tx894, and Tx895. In this category, we considered predicting groups that

submitted at least 1 models for the 3 targets. These 11 groups were

Unres, Laufer_seed, bugre, Spiders, M2O, Rbo_Human, Kias-Gdansk, Dal-

ton, Font, Lee, and Goal. The predictor names associated with each of the

group nicknames can be found on the CASP webpage (http://prediction-

center.org/casp12/docs.cgi?view5groupsbyname).

For each of the 3 Tx targets, we evaluated how the solved crystal

structure and predicted models fitted the CLMS data by identifying the

pairs of residues predicted to form crosslinks within different Ca-Ca

distances, and analyzing the confidence level values associated with

each predicted contact. These confidence levels were calculated in ref.

23 and were made available to us through the Prediction Center.24

2.2 | Analysis of SAXS data

A total of 11 targets named Ts894, Ts895, Ts866, Ts886, Ts896,

Ts899, Ts901, Ts909, Ts941, Ts942, and Ts947 were selected for the

SAXS-assisted category. Groups who submitted target predictions

were Floudas, Spiders, Unres, Rbo_Human, Grudinin_DeepL, Multicom,

dimaiolab, Grudinin, Kias_Gdansk, and Lee. More detail about each

group participant can be found on the CASP webpage (http://predic-

tioncenter.org/casp12/docs.cgi?view5groupsbyname).

We used SCÅTTER25 to generate Guinier plots (Supporting Infor-

mation Figure S1 and Table S1), and, based on the linearity of the ln[I

(q)] versus q2 plot, classified the samples as monodispersed (if linear) or

aggregated (if not linear). For the current SAXS-assisted targets, the

information regarding the molecular mass and oligomeric states was

obtained from ref.23

The agreement between the experimental data and the structure

of both models and targets was assessed using the software Crysol26

by calculating the v value, which quantifies the difference between the

experimental SAXS profile and simulated SAXS profile generated from

the model. We used the SITUS27 package to dock the structures inside

the computed SAXS envelopes using the kercon module and quantified

the fit between the structure and envelop with the cross-correlation

(cc) value.

2.3 | Improvement assessment of data-assisted

predictions

The relative improvement of data-assisted models over their equivalent

models predicted in the data-blind category was evaluated. This was

done by visual inspection and structural comparison between the mod-

els and respective crystal structures using structural similarity metrics.

These included the Global Distance Test Total Score (GDTTS),28 which

is a standard measure of model quality used in CASP. This metric com-

putes the maximum number of model residues that can be superim-

posed on the target structure under the cutoffs values of 1, 2, 4, and 8

Å, normalized by the number of residues. It ranges from 0 to 100 with

the highest value describing models whose Ca atoms can all be aligned

within 1 Å from their positions in the reference structure. The GDTTS

is computed using an automated procedure and is normally available

for each of the models from the Prediction Center.24 For some compar-

isons that we did, where GDTTS was not available, it was computed

using the maxCluster package.29

To complement the scoring obtained from GDTTS upon model

evaluation relative to the targets, other metrics including QCS,30 Hand-

edness,31 DFM,31 CoDM,31 and TMalign scores32 were used. The

QCS30 score compares structural similarities between secondary struc-

ture elements. The Handedness and DFM scores31 use the relative ori-

entations and distortions of atom tetrads to estimate conformation

differences. CoDM31 measures residue-residue distance matrices cor-

relations to quantify the structural differences between protein struc-

tures. The TMalign score32 is a sequence-independent version of the

TM score for measuring structural similarity by weighting and combin-

ing distance residue-residue distances in model and target. All these

scores were available from the Prediction Center.24 Root-mean-square-

deviations (rmsd) between Ca atoms were computed using PyMol.33
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3 | RESULTS

3.1 | CLMS driven data-assisted modeling

In the CLMS-assisted category of CASP12, predictors were asked to

model 3 target structures, namely Tx892, Tx894, and Tx895. For each

target, the information available to the predictors was the amino acid

sequence, the pairs of residues found crosslinked by mass spectrome-

try (MS), and the confidence level associated with each crosslinked

pair. The confidence level, which range from 0.8 to 0.95, is estimated

directly by the group providing these data.23 We here analyze the mod-

els produced by the 11 predictors for these 3 targets employing the

cross-linking data, in comparison to the target structures; and interpret

results in the context of domain difficulty, the available data-blind mod-

els, and the quality of the CLMS data as defined based on the target

structure.

Target Tx892 was expected to be rather hard for modeling

because sequence- and structure-level searches to the Protein Data

Bank do not retrieve any clear templates, especially for the sequence

segment 84–193.34 Ranking of models by GDTTS, Handedness, DFM,

CoDM, and TM scores all invariably point at models 1 and 2 by the

Goal group and model 1 by Lee as best models. Importantly, regarding

the assessment of data-driven modeling, these 3 models score slightly

better than the best data-blind models, according to all 6 scores (e.g.,

reaching GDTTS in the range 48.1–49.4 versus 42.6 for the best data-

blind model). These models were found to be structurally similar to

each other (<1.5 Å Ca-rmsd). Model 1 submitted by Goal was the best

model by GDTTS, and is displayed in Figure 1.

Upon visual comparison of the top data-assisted models to the tar-

get structures, it becomes clear that the region spanning residues 84–

193 is modeled less accurately than the remaining N-terminal region

(residues 15–83). In the crystal structure the residue segment 125–138

lacked any regular structure, but was modeled as an a-helix in the 3

best models (Figure 1C). The topology of both domains is captured rea-

sonably well, but not their overall arrangement, which decreases the

overall score of the full model. In detail, the region 15–83 of the best

model superimposes very well with the corresponding region in the tar-

get structure (Ca-rmsd51.7 Å), whereas the region 84–193 aligns

with a Ca-rmsd of 5.8 Å.

FIGURE 1 Assessment of CLMS-based modeling for target Tx892. A, Target crystal structure (top), best model 1 of Goal (middle), and
worst model (bottom) in terms of GDTTS. Pairs of residues expected to be close in space according to CLMS data at 3 confidence levels
are connected by lines color-coded by the actual distance as measured in the target crystal structure. B, Top: Distribution of Ca-Ca distan-
ces, as measured in the target crystal structure, for pairs of residues crosslinked at confidence levels of 0.8, 0.9, and 0.95. The un-
normalized and un-smoothened distribution can be found in the Supporting Information Figure S2. Bottom: Fraction of crosslinks satisfied
by each model against their GDTTS scores, for all submitted CLMS-assisted models. C, Structural alignment of the best Tx892 model on the
target crystal structure aligned considering residues 84–193 (i.e., domain 2: Tx-D2) to highlight the different arrangements of the 2 domains
in the model compared to the target structure. Helix H1 illustrates a normally disordered region being modeled as a defined secondary
structure
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Modeling based on CLMS data resulted in a modest improvement

on the best predictions for this target, relative to the data-blind predic-

tions; but did not contribute to a major improvement of the fold.

Although part of this could be due to methodological problems or to

problems with CLMS data quality, we investigated other potential

explanations. CLMS data as provided by the experimentalist group con-

sists of pairs of crosslinked residues accompanied by confidence levels.

For Tx892 we observe that at the highest confidence level (0.95), 98%

of the residue pairs actually have Ca-Ca distances lower than 25 Å,

which is the upper bound suggested by Belsom et al.22 (Figure 1A,B).

At lower confidence levels the distributions of Ca-Ca distances shift

slightly to higher values, but still most contacts remain within 25 Å (Fig-

ure 1A,B). One could propose that either (1) the density of residue-

residue crosslinks across the whole protein is not high enough, or too

heterogeneous, to effectively help modeling; or (2) the 25 Å cutoff dis-

tance is just too large to lead to concrete improvements in model qual-

ity. Visually from Figure 1A the CL density looks well distributed, with

a slight tendency for crosslinked residues spanning a-helices to be

around the central core of the protein. The effect of the rather long 25

Å upper bound distance of the CLMS-derived contacts would then be

more important, especially considering that the protein’s main axes

measure around 49, 36, and 29 Å Indeed, the worse model, with a

FIGURE 2 Assessment of CLMS-based modeling for Tx894–895. A, Target crystal structure (top), best model 2 of Lee (middle) and worst
model (bottom) in terms of GDTT for target Tx894 (in white) and Tx895 (in black). Pairs of residues expected to be close in space according to
CLMS data at 3 confidence levels are connected by lines color-coded by the actual distance as measured in the target crystal structure. B, Top:
Distribution of Ca-Ca distances, as measured in the target crystal structure, for pairs of residues crosslinked at confidence levels of 0.8, 0.9, and
0.95. The un-normalized and un-smoothened distributions can be found in the Supporting Information Figure S2. Bottom: Fraction of crosslinks
satisfied by each Tx894–895 complex model against their GDTTS scores, for all submitted CLMS-assisted models. C, Structural alignment of the
best Tx894 and Tx895 models against the target crystal structure. D, Fraction of crosslinks satisfied by each Tx894 and Tx895 model, sepa-
rately, against their GDTTS scores, for all submitted CLMS-assisted models and based on distance cutoff value of 25 Å
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GDTTS of 10.0, still satisfies >80% of the CL distances, even 94% at

0.95 confidence level (Figure 1A, bottom panel). As we show also in

Figure 1A bottom panel, the worst model still satisfies most crosslinked

pairs, giving support to our idea that the 25 Å upper bound distance

for the CLMS experiment is way too large, at least for a protein of this

size. Last, the observation that this (worst) model even satisfies CLMS

constraints between a pair of residues located actually far from each

other in the target structure (red line) shows (although it does not

prove) that incorporation of some constraints might actually have been

deleterious.

Targets Tx894 and Tx895 constitute a heterodimer, crystallized as

such and now released in the PDB as 5hkg. Predictors were informed

that these 2 targets form a dimer but were instructed to submit them

as separate protomers that would represent their model of the dimer

when put together. Tx895 is expected to be an easy target because

sequence- and structure-level searches on the PDB returned sufficient

templates.34 Based on the same criteria, residue region 271–324 of

Tx894 is expected to be easy to model, whereas residue region 182–

270 is expected to be difficult.

GDTTS, Handedness, DFM, CoDM, and TM unequivocally indi-

cate that the best models submitted for Tx894 were models 2, 4,

and 5 from Goal with GDTTS ranging from 52.0 to 53.0, versus 59.1

for the best data-blind model. For Tx895, the best models were

model 1 and 2 of Lee and model 4 of Goal with GDTTS from 72.9 to

74.8, versus 75.4 for the best data-blind model. For Tx894 and

Tx895, respectively, the top 3 best models were structurally very

similar to each other (<1.0 Å Ca-rmsd). Clearly in this case, incorpo-

ration of the CLMS data did not produce models better than the

best models submitted in the data-blind category; actually, they are

slightly worse (see below).

From the alignment of Tx894 and Tx895 best models (model 2 of

Goal for Tx894 and model 2 of Lee for Tx895, Figure 2C) against their

respective crystal structure, we observed that the target structure

topology was well respected, especially in regions where secondary

structure elements were defined. Structural disagreements were found

mostly in flexible/disordered regions. This trend is best illustrated in

the modeling of Tx895 (Figure 2C, bottom panel), in which the first 86

out of 120 residues found in secondary structure regions aligned very

well with the respective crystal structure (<1.0 Å Ca-rmsd), but the

inclusion of the following region (residues 87–124) resulted in a higher

Ca-rmsd of 4.4 Å.

Both the Tx894 and Tx895 best models were modeled worse than

in the best models of the data-blind category. In order to rationalize

this lack of improvement, we first assessed the agreement between the

CLMS experimental data and the target crystal structure (pdb id 5hkg).

In this case, at the highest confidence interval (0.95), 96% of the Ca-

Ca crosslinked residue distances were found below 25 Å (Figure 2A,

top panel). Even, at lower confidence intervals, still>90% of Ca-Ca

crosslinked residue distances were found below 25 Å (Figure 2A,B, top

panel). Then we assessed the agreement between CLMS data and

models (Figure 2B, bottom panel and 2D). In this case, the best models

were found to have a high fraction of satisfied CL distances, but were

of low GDTTS (<35.0). This again highlights the fact that a threshold of

25 Å might be too permissive and allow residues far in the structure to

be considered as contacts.

Moreover, if the predictors used all data with confidence level

above 0.8, it might have happened that this 10% of incorrect CLMS-

derived contacts led to deformations, and thus worsening, of the

models.

3.2 | SAXS-driven data-assisted modeling

CASP12 featured for the first time the inclusion of SAXS data to assist

target modeling. In this SAXS-assisted category, 10 predictors submit-

ted models for 11 targets with varying degree of oligomerization and

templates availability. The information available to the predictors was

the amino acid sequence of the targets and their experimentally

derived SAXS profiles. Here, we analyze the models produced by the

predicting groups which used SAXS data to assist their modeling, in

comparison to the target structures. We then interpret the results in

context of modeling difficulty, available data-blind models and quality

of the SAXS data.

On a general note, it is important to mention that the stoichiome-

try of models predicted by SAXS was not always consistent with the

crystal structure of the target, like in the cases of Ts866 and Ts886,

which consisted of 6 and 12 subunits, respectively, in their crystal

structure (PDB id 5uw2 and 5fhy), but were observed to be different in

SAXS23 (Table 1). Moreover, the fit between SAXS experiments and

target structures should be interpreted with care since a significant

proportion of flexible residues (2–56%, Table 1),23 which are present in

the target sequence, were unresolved in the crystal structures. Ts886

in particular is a very elongated protein and was found to be very flexi-

ble from the non-linearity observed in the Guinier plots (Supporting

Information Table S1 and Figure S1), and missed 50% if its residues in

the crystal structure (Table 1). Therefore, given the large discrepancy

the modeling of Ts886 will not be further discussed during this assess-

ment, where we report a detailed analysis of the most notable predic-

tions assisted by SAXS data.

Target Ts909 is present as a trimer in its crystal structure (pdb id

5q5n) and is expected to be easy to model having a good structural

template readily available (pdb id 3suc: chain A).34 All the scoring

schemes used point to model 1 and 2 of Lee, model 2 from Grudinin

and model 5 of Kias-Gdansk as highest quality models with GDTTS

ranging from 56.2 to 61.9 versus 62.0 for the data-blind predictions.

Therefore, inclusion of the SAXS data did not lead to significant global

improvements.

Structural alignments between the best model of Lee and 1

protomer of the target structure showed good superimposition of

the b-strand regions with respect to the same atoms in the crystal

structure (1.6 Å Ca-rmsd with 227 out of 333 residues, Figure 3A,

top panel), but the addition of the flexible loops was responsible

for the decrease in model quality (6.5 Å Ca-rmsd). It would have

been interesting to understand how the SAXS data, which captured

structural information of the whole assembly, was used during the

modeling of Ts909. Unfortunately, since predictors were requested
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to submit an isolated protomer, this analysis could not be

performed.

Targets Ts894 and Ts895, presented in the CLMS section as

Tx894–895, are the only targets in this CASP edition for which 2 dif-

ferent sources of data were provided for assisting predictions. Unfortu-

nately, CLMS and SAXS data were not simultaneously used, thus, while

we described above how CLMS affected prediction, we separately

report here the role of SAXS data on modeling. The best models for

Ts894 according to our 6 scoring metrics were model 2 of Grudinin

and models 1 and 3 by the Lee group, with GDTTS of 51.4 and 50.5,

respectively, versus 59.1 for the best data-blind model. For Ts895, the

5 best models were submitted by the Lee group and were completely

TABLE 1 Summary information of SAXS-assisted target predictiona

Target
Stoichiometry
from SAXS

Mass (kDa)
from SAXS

Mass (kDa)
from seq.

v Target
(X-ray)

% seq missing in
x-ray

Monomers Ts896 monomer 24 54 2.77 10

Ts899 monomer 57 47 6.94 15

Ts941 monomer 45 51 17.42 56

Ts942 monomer 65 54 11.16 21

Ts947 monomer 18 25 24.65 20

Multimers Ts894–895 heterodimer 30 51 26.83 2

Ts886 dimer . . . 39 1394.38 50

Ts901 Filament 216 36 . . . 11

Ts909 Trimer 85 37 21.45 10

Ts866 Large Heteromer 142 13 . . . 36

aThe data relative to target stoichiometry, molecular mass, and percentage of residue unresolved in X-ray were obtained from ref.23

FIGURE 3 Assessment of SAXS-based modeling for targets Ts894–895, Ts896, Ts909, and Ts947. A, Structural alignments of best Ts909
and Ts947 models against their respective crystal structure. B, Evaluation of fit between Ts894–895, Ts896, and Ts947 crystal structure
and SAXS data. Residue regions 39–124, 125–325, and 326–486 of Ts896 were colored in blue, red, and gray, respectively. C, v value asso-
ciated with each Ts894–895, Ts896, and Ts947 model, separately, against their GDTTS scores, for all submitted models. Models with lowest
v value were extracted, fitted into their SAXS envelope and color-coded similarly to the crystal structure
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identical to each other with GDTTS of 72.5 versus 75.4 for the best

data-blind model. Also in this case, the inclusion of the SAXS data did

not lead to any clear improvement.

The main structural differences between the crystal structure of

Ts894 against the model 2 of Grudinin, and the crystal structure of

Ts895 against model 5 of Lee, came from the misalignment of the flexi-

ble regions. Indeed, when aligning the best Ts895 model to its crystal

structure, a Ca-rmsd of <1.0 Å was obtained using 83 out of 120 resi-

dues which were associated with secondary structure elements,

whereas the addition of the remaining 37 residues, which were part of

flexible regions (residues 1–15, 54–68, and 74–81), increased the Ca-

rmsd to 4.5 Å. From this analysis, it can be inferred that the lack of

improvement in the SAXS-assisted models for Ts894–895 was due to

structure differences in the flexible regions.

The differences we observe do not exclude though that they could

be due to the integration of SAXS data pointing to protein conforma-

tions different than observed in the crystal structure. In fact, the

Ts894–895 crystal structure did not fit very well the SAXS data

(v526.8, Figure 3B, top panel), and could point to the presence of dif-

ferent dimeric structure conformations in the sample solution. Analyzing

using EPPIC35 whether any of the dimer configurations present in the

crystal unit cell of Ts894–895 (PDB id 5hkq) could alternatively and bet-

ter fit the SAXS data led to no suitable dimeric conformation. Models

with the lowest v values did not resemble the crystal structure (Figure

3C, top panel), showing that the predictors’ efforts in using the SAXS

data actually led them to make models worse. Overall, we conclude that

the SAXS data was not overall useful to model target Ts894–895.

Target Ts896 had several templates for the region 39–325, which

itself could be visually separated into 2 regions (residues 39–124 and

125–325) linked by a long loop (residues 121–127), but no clear tem-

plates for region 326–486,34 making the later hard to model. GDTTS-

and QCS-based ranking points at model 1 and 3 of Lee as best models,

while TM ranking puts model 2 of Multicom as being the best models,

even though their GDTTS were low (21.9–22.2 versus 24.5 for the

best data-blind model). Such low GDTTS values, however, are close to

what “random spaghetti” models would have, so the values are hard to

compare. The QCS metric30 compares secondary structures at low

GDTTS and is designed to match the results of visual inspection. For

model 3 of Lee and the best data-blind models, QCS reaches a value of

55.1, meaning that there is some resemblance of these models to the

target.

Visually, the 2 models by the Lee group were structurally similar to

each other (2.7 Å Ca-rmsd). These 2 models and Multicom’s model

appeared different from the crystal structure when considering Ca-

rmsd (>20 Å), despite the high QCS score.

We then aligned separately the regions and found that the second-

ary structure region of region 39–124 was well modeled (1.1 Å Ca-

rmsd when considering 61/86 residues and 5.6 Å when all residues

considered), but the other regions were not so well modeled (>10 Å

Ca-rmsd). It is possible that also that their spatial arrangement was not

captured. Since SAXS information can help infer spatial arrangement

between structural domains,4 we evaluated its agreement against the

crystal structure and submitted models (Figure 3B, middle panel).

Though the crystal structure had a low v (2.8) with respect to the

SAXS data, computing the v of all Ts896 models showed a tendency to

decrease GDTTS upon minimizing v. This means that incorporating

SAXS data during modeling effectively decreased model resemblance

to the crystal structure, explaining why Ts896 models failed to improve

over the data-blind models.

Target Ts947 is expected to be very easy to model, as there are

several templates available in the Protein Data Bank.34 Ideally, incorpo-

ration of experimental data should help to refine details about loop

conformations. In this case, the 5 best models submitted were all pro-

duced by Lee, with GDTTS scores ranging from 67.1 to 70.0 compared

to 65.9 for the best model obtained in the data-blind category. These 5

models were structurally very similar in the C-terminal region spanning

residues 97–216 (<0.4 Å Ca-rmsd) and differed in the N-terminal

region spanning residues 42–96 (>3.0 Å Ca-rmsd). The best model 1

of Lee was also found to be very similar to the crystal structure, espe-

cially in regions were secondary structure elements were defined (Ca-

rmsd<1.0 Å when considering 119 out of 175 residues, Figure 3A bot-

tom panel). Adding the remaining 56 residues, associated with more

flexible parts, decreased the quality of the alignment (8.9 Å Ca-atoms).

For this target, although the crystal structure did not seem to fit

the SAXS data well (v524.7, Figure 3B, bottom panel), the models do

show a tendency to increase their GDTTS upon minimizing v. This sug-

gests, somewhat paradoxically, that using SAXS data, which was seem-

ingly inconsistent with the crystal structure, did help in modeling of

Ts947.

4 | DISCUSSION

4.1 | CLMS-assisted category

In the CLMS-assisted category the 2 best performing groups were Goal

and Lee (Figure 4B, top and middle panel), both of which came from

the same group. Similar to the Kias-Gdansk predicting group, Lee/

Goal36 adds CLMS data as restraints to the energy function describing

the quality of their models.

Compared to the global best models submitted in the data-blind

category, Lee/Goal showed marginal to no improvement in DGDTTS

ranging from 25.4 to 6.8 for the 3 targets, and was the only group to

improve relative to its own data-blind models with improvement for

target Tx892 as high as 21.5 DGDTTS (Figure 4B, bottom panel). This

means that unlike the other groups, Lee/Goal managed not to decrease

the quality of their models by adding CLMS data. In fact, the other 6

groups that submitted models in both categories worsened the quality

of their models (mean DGDTTS<0.0, Figure 4A,B, middle panels).

Generally, the quality of the best models submitted for the 3 tar-

gets in the CLMS category did not improve relative to the best models

submitted in the data-blind category (Figure 4A, top panel), even

though they were found to satisfy most of the CL distances under the

distance cutoff of 25 Å at the highest confidence level (0.95). In partic-

ular, this trend was observed when evaluating the fraction of satisfied

CLs both for the CLMS-assisted (Figure 1) and data-blind Tx892 mod-

els (Supporting Information Figure S3).
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On top of possible problems in the methodologies used by the pre-

dictors, we envision 2 main reasons as to why integrating CLMS data to

the models of targets did no increase their quality. First, this could be

related to the density distribution of crosslinks, which could be in turn

related to a number of factors including surface accessibility, environ-

mental reactivity or digestion cleavage site distribution.20 Second, the

cutoff distance of 25 Å to discriminate contacting crosslinked residues in

models was too permissive to accurately determine true residue contacts.

When assessing the relationship between cutoff distance and ability to

separate good models from bad (in term of GDTTS, Supporting Informa-

tion Figure S4), we found that lowering the cutoff value did not result in

a better estimation of model quality. This leaves us with the suggestion

that the chemical spacer used to crosslink residue was probably too long

and could crosslink distant residues in the target structure.

FIGURE 4 Evaluation of model quality in the CLMS-assisted category. A, Top: Evaluation of best models submitted for each target and com-
parison to best data-blind models. Middle: Improvement analysis of CLMS-assisted over data-blind models. Only groups who submitted in both
categories were considered. Mean DGDTTS>0.0 implied that groups improved on their data-blind model while using CLMS data and con-
versely for values <0.0. Bottom: Evaluation of groups ability to correctly estimate the quality of their model. The GDTTS of what groups con-
sidered as their best models (model 1) was plotted against the GDTTS of the best model of the remaining 4. Points above the diagonal
separation line represent models correctly estimated as best by predictors. B, Top: Evaluation of best models submitted by each group for all
targets. The dot inside the boxplots represents the mean GDTTS (vertical axis) of the best models. Middle: Evaluation of global improvement of
CLMS-assisted over data-blind best models for each group. The numbers below the boxplots indicate the number of targets each group submit-
ted models for. Bottom: Evaluation of local improvement of CLMS-assisted over data-blind best models for each group. Only groups that sub-
mitted models in both the CLMS assisted and data-blind were considered
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Moreover, conflicting contacts were observed in the target crystal

structures and appeared as residues expected to form crosslinks but

which are found separated by long distance in the crystal structure.

Conflicting contacts could be either due to wrongly assigned cross-

linked residues from the MS analysis or could point to the existence of

extensive protein flexibility (either fast dynamics, slow conformational

fluctuations, or actually having multiple static conformers) that results

in artefactual pairs of residues appearing in contact despite being far in

the target. Moreover, conflicting contacts can also be caused by the

presence of other protein particles, which would form inter-protein

crosslinks. Unfortunately, the presence of such conflicting data

increases the challenges for prediction as one must find a way to filter

out the conflicting contacts during the modeling process37–39 or

include only the residue pairs at high confidence intervals as distance

constraints during modeling.

Finally, all the 11 groups submitting CLMS-based models had diffi-

culty estimating the quality of their own models with only 6 out of the

23 correct estimations of their first model as their highest quality

model (Figure 4A, bottom panel).

4.2 | SAXS-assisted category

The models predicted in the SAXS-assisted category did not show sig-

nificant improvement when compared to the data-blind ones. Never-

theless, the top performers in this category (Lee, Kias-Gdansk, and

Grudinin, Figure 5B, top-right panel) performed relatively well on the

homo-multimeric targets Ts866 and Ts909. This means that unlike

other groups, the top performers did not decrease the quality of their

models when adding SAXS data.

This result was found interesting since the task of modeling struc-

tures in a multimeric state is often more complicated than that of mod-

eling monomers in isolation. This is because the proximity of 1

protomer can influence the conformations of others. Predicting this

type of conformational rearrangement is still a longstanding problem in

structural biology40 and constitutes one of the main challenges to be

faced in the Critical Assessment of PRediction of Interaction (CAPRI41),

as further described in ref.42

We also observed that the best Ts866 and Ts909 models submitted

by these groups shared close structural similarities to the best models

submitted in the data-blind category, which could be explained by the

fact that some predictors used pre-computed models extracted from

widely available webservers as a starting point for their own prediction.

For instance, Kias-Gdansk extracted restraints from models computed

from webservers, such as Goal,36 Rosetta-Baker,43 Quark,44 and iTasser45

in order to drive the modeling of their predictions. For homo-oligomeric

targets, Kias-Gdansk initially assembled the protomers into their multi-

meric state and refined their best multimeric models with SAXS data.

The modeling strategy consisting in refining pre-computed models

with SAXS data was also employed by the Grudinin group. In the case

of homo-oligomeric targets, the Grudinin group started by modeling

the complex by first assembling the multimeric structure using SAM,46

a symmetric assembly protocol based on fast Fourier transform. Their

best multimeric models were then relaxed by minimizing the v values

with respect to pre-computed normal modes.47

Other positive results for the top performers include monomeric tar-

gets Ts942 and Ts947. For these targets, the Grudinin group improved

the quality of their own Ts942 and Ts947 models over their T0 equiva-

lents with DGDTTS of 9.9 and 17.7, respectively. The predictors Grudi-

nin, Lee, and Multicom, used amongst other metrics v to quantify the

difference between the experimental and theoretical SAXS profiles.

The group Multicom48 used not only the v value but also other

metrics, including radius of gyration (Rg), to quantify the fit between

models and SAXS data. Unlike most groups, Kias-Gdansk did not use

the v value but the SAXS distance-distribution profile converted to a

maximum-likelihood penalty and used as a restraint term inside their

pseudo-energy function. During our analysis, we could not see any

meaningful improvement in terms of model quality between these

groups compared to others that minimized only the v value (Figure 5B).

Despite a few remarkable results achieved by the individual top

performing groups of this category, generally no meaningful

improvement was observed amongst groups in term of mean GDTTS

over the data-blind category (Figure 5B, middle panel). Although for

some targets using the SAXS data tended to increase model GDTTS,

as for Ts942 and Ts947, (Figure 3B, bottom panel), they overall

failed to globally improve over the data-blind ones (Figure 5A). For

these models, secondary structure elements were in general well

modeled, unlike the disordered/flexible regions, which contributed

to decrease their GDTTS (Figure 3A, bottom panel). Though struc-

tural information related to the flexible/disordered protein regions is

described by the SAXS data, it is unlikely that including it would

improve the modeling of these regions to resemble one of the crys-

tal structure. Briefly, this is due to the fact that SAXS data captures

the contribution from all conformations a protein can adopt in solu-

tion, while the X-ray structure represents only one of those confor-

mations trapped in the crystal lattice.

On the other hand, there were models that were globally badly

modeled (mean GDTTS<25.0) and where using SAXS data had the

opposite effect of decreasing model quality. For Ts896, Ts899, and

Ts941 in particular, minimizing v tended to lower their GDTTS (Figure

3B, Middle panel). This implies that predicting groups relying on minimi-

zation of the v such as Grudinin or Lee, are likely to be led astray. One

way to solve this issue for future CASP rounds would be to enforce

the structural compatibility between SAXS data and target crystal

structures, prior to distribution of data for predictions.

Similarly, to the CLMS-assisted category, groups had difficulties

estimating the relative quality of their own models. This was illustrated

in Figure 5A, bottom panel, with only 28 of the 82 models correctly

assigned as first best model.

4.3 | Open challenges in data-assisted protein

structure prediction

The current installment of CASP12 featured proportionally more diffi-

cult targets compared to the ones presented in CASP11.34 Despite this

difficulty, the outcome of this edition of data-assisted prediction can
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be considered promising, providing the fact that this category is still in

its infancy and a completely new data source was introduced for the

first time (i.e., SAXS). Generally, for models submitted in the data-

assisted category, no significant improvement was observed with

respect to the data-blind ones. Therefore, there still is a number of

challenges that need to be faced in order to truly benefit from the

potential of integrating additional experimental for assisting CASP

experiments.

Similar to previous CASP editions the time allocated to submit

models was short (�2 weeks for regular prediction and another �2

weeks for data-assisted prediction), which constitutes one of the main

challenges faced by the predictors. One way some predictors bypassed

this issue was to start from models pre-computed from modeling web-

servers. For instance, this strategy was adopted by the predicting

groups Kias-gdanks, Grudinin, and Spiders, who optimized pre-

computed structures modeled from well-established webservers.

FIGURE 5 Evaluation of model quality in the SAXS-assisted category. A, Top: Evaluation of best models submitted for each target and compari-
son to best data-blind models. Middle: Improvement analysis of SAXS-assisted over data-blind models. Only groups who submitted in both cate-
gories were considered. Mean DGDTTS>0.0 implied that groups improved on their data-blind model while using SAXS data and conversely for
values <0.0. Bottom: Evaluation of groups ability to correctly estimate the quality of their model. The GDTTS of what groups considered as their
best models (model 1) was plotted against the GDTTS of the best model of the remaining 4. Points above the diagonal separation line represent
models correctly estimated as best by predictors. B, Top: Evaluation of best models submitted by each group for all targets. The dot inside the
boxplots represents the mean GDTTS (vertical axis) of the best models. Middle: Evaluation of global improvement of SAXS-assisted over data-
blind best models for each group. The numbers below the boxplots indicate the number of targets each group submitted models for. Bottom:
Evaluation of local improvement of SAXS-assisted over data-blind best models for each group. Only groups that submitted models in both the
SAXS-assisted and data-blind were considered
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The other time-related challenge is linked to CLMS and SAXS data

collection. This task has to follow the deposition of targets and requires

an additional level of management, which will likely need to be further

automatized with the experimental groups and/or facilities in order to

provide data in a time-effective manner. A period of only 2 weeks

between sample arrival and the CASP deadline for prediction was avail-

able to perform data collection and analysis. For the SAXS experimen-

talists, such tight timeframe possibly hindered the task of performing

thorough testing and quality assessment of the data. Surely, with time

the workflow of this pipeline will be improved, but extending the time

needed for prediction within this category could be anyway beneficial

for both supporting experimentalists and predictors.

Another challenge is related to the small amount of targets and

low participation of groups in the current data-assisted category, which

produced a small statistics. With growing advances both in the experi-

mental techniques and in methods development, we expect not only

more targets to be featured, but also more groups to actively partici-

pate in the data-assisted category. This will eventually increase the sta-

tistical relevance of the assessment and enable to draw clearer

conclusions on the significance of data-assisted model prediction. As

for now, despite an overall quite poor improvement in data-assisted

modeling, anecdotic cases showed a promising potential for integrative

modeling applied to protein structure prediction.

Eventually, the poor improvement in data-assisted models might

be related to the fact that both CLMS and SAXS data could have cap-

tured different protein conformations than that of the target crystal

structure. In the case where crystal or NMR structures are the only ref-

erence to structurally validate a model, full data consistency between

the experimental data and target structures would have to be ensured

before the prediction period begins. Though this approach would cer-

tainly be more demanding and time consuming, it would provide true

complementarity between the structural information featured in the

CLMS, SAXS and crystallography experiments, and ensure a more strin-

gent assessment of predictions.

In particular for the 3 targets featured in the CLMS-assisted cate-

gory, the models were found to satisfy most of the crosslinked residue

distances under 25 Å but globally failed to improve over the data-blind

models. We suggest this problem is related to the length of the cross-

link spacer used for the CASP12 experiment, which might be too long

and could erroneously indicate contacts between residues that are far

apart in the structure. A possible suggestion for the next CASP rounds

could be to choose a shorter crosslink spacer. However, compatibility

with the photo-CLMS protocol established by Brock and Rappsilber22

would have to be ensured. For small proteins, as the ones featured in

the CLMS-assisted category, such long spacer would not enable to

accurately pinpoint residue contact, but would certainly be helpful for

bigger proteins.

Moreover, depending on their size and complexity, crosslink spacer

as well as the residues they crosslink could be very flexible and wrap

around protein surfaces. Subsequently, 2 crosslinked residues could in

principle be separated by a distance different than the one specified by

the crosslink spacer length.49,50 In this case Euclidian distances used as

constraints, as was done by Lee/Gaol, Kias-Gdansk, and other

studies,37,38,48 either during modeling or as a selective filter on the

computed models, are not adequate to capture this flexibility. Using

computational methods such as Xwalk,51 which uses non-linear distan-

ces to describe crosslink interaction between residues could help.

Furthermore, false contacts predicted by MS can be mixed with

correct ones that are usually difficult to distinguish. In order to deal

with such complication, methods using a Bayesian framework52,53 or

which output models maximizing the number of satisfied constraints

have been implemented.38 Although such approaches are more compu-

tationally demanding, we think they could be useful in better treating

CLMS data and could lead to improvement in model quality by more

efficiently filtering out false positives.

As for the SAXS-assisted category, generally no meaningful

improvement was observed. In cases where the GDTTS of models was

high but not higher than the best data-blind models, the overall fold of

the proteins was well modeled, especially in the well-defined secondary

structure regions. In these cases, the difference between the crystal

structure and the SAXS-assisted model came from the flexible/disor-

dered regions, which information is captured by the SAXS experiments

but could not be used to model structures to resemble the X-ray struc-

tures. This point to a more general issue related to the fact that crystal-

lography and SAXS experiments might be capturing different

conformations of the same target and such would prove difficult to

combine structurally.

Moreover, it also happens that the interface between protomers

described in the crystal structures could rather be artifacts of the tech-

nique rather than a real physiological interface. In such cases, combin-

ing the SAXS information describing the solution assembly to the

crystal interfaces would be unsuccessful. Thus, in order to reliably score

models obtained by adding SAXS information, a different metric to

evaluate model quality by including the flexibility that SAXS describes

would be preferable. As suggested in Ref. [20] this new metric could

consist in inferring for instance the function of the target from the

modeled structure or in answering specific biological questions in order

to guide life-scientists to propose new experiments. In fact, we do not

discard, especially for oligomeric complexes, the possibility that good

models originating from SAXS data integration (i.e., having low v) would

prove to be more biologically relevant, that is, having loops of domain

conformations more suitable to perform their biological function than

their respective models more closely resembling the X-ray conformer

(i.e., having low GDTTS).

In this CASP, we noticed a case of possible sample aggregation for

Ts886 and a different oligomerization state of Ts866 when compared

to their reference crystal structures. Together with ensuring comple-

mentarity between experiments and target crystal structure, supple-

menting the SAXS experiments with size-exclusion-chromatography

(SEC-SAXS) would likely improve the separation of aggregates from

sample and ensure a better sample quality for future CASP rounds.

Additionally, more precise methods such as multi-angle laser light scat-

tering (MALLS) could be used to estimate molecular weight and even-

tually get a better estimation of the target complex stoichiometry, even

though this will certainly increase the complexity and timeframe

needed for the supporting experimental pipeline.
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5 | CONCLUSIONS

This edition of CASP featured CLMS-assisted and SAXS-assisted cate-

gories, made possible by the efforts of the CASP organizing committee

that managed to coordinate work from multiple supporting groups.

Although for a few models some groups performed slightly better than

in the top data-blind category, generally no significant improvements

were noticed upon inclusion of CLMS and SAXS data. Nevertheless,

due to its early age, added to the small number of targets and of partic-

ipating groups when compared to other well-established CASP catego-

ries, we feel that it is still premature to draw any definitive conclusion

on the impact of experimental data on structure prediction. We have

suggested some general recommendations regarding both the improve-

ment of the assessment criteria for data-assisted prediction and the

experimental data acquisition and quality control. We hope that the

future CASP rounds will increasingly feature more targets with addi-

tional experimental information and more participation from the pre-

dicting groups. With the recent advances of the cryo-EM field, both in

terms of resolution and data acquisition, we think that the inclusion of

medium-to-low resolution cryo-EM data for future editions of this

CASP category would be an interesting extension. Eventually, in the

true spirit of integrative modeling, we think that having a category

which simultaneously combines all sorts of experimental data would

have to be the final and overarching goal for data-assisted protein

structure and assembly prediction in CASP. Crosslinking data for

instance has already been shown to be compatible with several low

resolution data including SAXS.4 All of the above would enable the col-

lection of relevant data, which in turn will contribute to give a clearer

picture on the impact of integrative modeling methods for tertiary and

quaternary protein structure prediction.
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