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Abstract
Many modern services need to routinely perform tasks on a large scale. This prompts us to
consider the following question:

How can we design efficient algorithms
for large-scale computation?

In this thesis, we focus on devising a general strategy to address the above question. Our
approaches use tools from graph theory and convex optimization, and prove to be very effec-
tive on a number of problems that exhibit locality. A recurring theme in our work is to use
randomization to obtain simple and practical algorithms.

The techniques we developed enabled us to make progress on the following questions:

• Parallel Computation of Approximately Maximum Matchings. We put forth a new ap-
proach to computing O(1)-approximate maximum matchings in the Massively Parallel
Computation (MPC) model. In the regime in which the memory per machine isΘ(n),
i.e., linear in the size of the vertex-set, our algorithm requires only O((loglogn)2) rounds
of computations. This is an almost exponential improvement over the barrier ofΩ(logn)
rounds that all the previous results required in this regime.

• Parallel Computation of Maximal Independent Sets. We propose a simple randomized
algorithm that constructs maximal independent sets in the MPC model. If the memory
per machine isΘ(n) our algorithm runs in O(loglogn) MPC-rounds. In the same regime,
all the previously known algorithms required O(logn) rounds of computation.

• Network Routing under Link Failures. We design a new protocol for stateless message-
routing in k-connected graphs. Our routing scheme has two important features: (1) each
router performs the routing decisions based only on the local information available to it;
and, (2) a message is delivered successfully even if arbitrary k −1 links have failed. This
significantly improves upon the previous work of which the routing schemes tolerate
only up to k/2−1 failed links in k-connected graphs.

• Streaming Submodular Maximization under Element Removals. We study the prob-
lem of maximizing submodular functions subject to cardinality constraint k, in the
context of streaming algorithms. In a regime in which up to m elements can be removed
from the stream, we design an algorithm that provides a constant-factor approximation
for this problem. At the same time, the algorithm stores only O(k log2 k +m log3 k) ele-
ments. Our algorithm improves quadratically upon the prior work, that requires storing
O(k ·m) many elements to solve the same problem.
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• Fast Recovery for the Separated Sparsity Model. In the context of compressed sensing,
we put forth two recovery algorithms of nearly-linear time for the separated sparsity
signals (that naturally model neural spikes). This improves upon the previous algorithm
that had a quadratic running time. We also derive a refined version of the natural
dynamic programming (DP) approach to the recovery of the separated sparsity signals.
This DP approach leads to a recovery algorithm that runs in linear time for an important
class of separated sparsity signals. Finally, we consider a generalization of these signals
into two dimensions, and we show that computing an exact projection for the two-
dimensional model is NP-hard.

Key words: Large-Scale Tasks, Maximum Matching, Maximal Independent Set, Parallel
Computation, Network Routing, Submodular Maximization, Compressed Sensing, Separated
Sparsity
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Résumé
De nombreux services modernes doivent effectuer régulièrement des tâches à grande échelle.
Cela nous amène à considérer la question suivante :

Comment pouvons-nous concevoir des algorithmes efficaces
pour le calcul à grande échelle ?

Dans cette thèse, nous nous concentrons sur la conception une stratégie générale pour aborder
la question ci-dessus. Notre approche utilise des outils issus de la théorie des graphes et
de l’optimisation convexe, et se révèle très efficace sur un certain nombre des problèmes
qui exposent de localité. Un thème récurrent dans nos résultats consiste à tirer parti de la
randomisation pour obtenir des algorithmes simples et pratiques.

Les techniques développées nous ont permis de progresser sur les questions suivantes :

• Calcul parallèle de couplages appromixativement maximaux. Nous proposons une
nouvelle approche pour calculer des couplages O(1)-approximatifs maximaux dans
le modèle du Calcul Massivement Parallèle (MPC). Dans le régime où la mémoire dis-
ponible par machine estΘ(n), notre algorithme ne nécessite que O((loglogn)2) cycles
de calculs. C’est une amélioration presque exponentielle par rapport à la barrière de
Ω(logn) que tous les résultats précédents requièrent dans ce régime.

• Calcul parallèle d’ensembles indépendants maximaux. Nous proposons un algorithme
aléatoire simple qui construit des ensembles indépendants maximaux dans le modèle
MPC. Si la mémoire disponible par machine est Θ(n), notre algorithme s’exécute en
O(loglogn) cycles de calculs. Dans le même régime, tous les algorithmes précédemment
connus nécessitaient O(logn) cycles de calculs.

• Routage réseau avec échecs de connexions. Nous proposons un nouveau protocole
pour le routage des messages dans les graphes k-connectés. Notre schéma de routage a
deux caractéristiques importantes : (1) chaque routeur travaille avec pour seule base
les informations disponibles localement et (2) un message est transmis avec succès
même si k −1 connexions arbitraires ont échoué. Ceci améliore considérablement le
résultat précédent dont le schéma de routage ne tolérait que jusqu’à k/2−1 connexions
défaillantes dans un graphe k-connecté.

• Algorithmes de streaming pour maximisation sous-modulaire avec suppression d’élé-
ments. Nous étudions le problème de la maximisation des fonctions sous-modulaires
sujettes à contrainte de cardinalité k, dans le contexte des algorithmes de streaming.
Dans un régime dans lequel jusqu’à m éléments peuvent être retirés du stream, nous
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concevons un algorithme qui fournit un facteur constant d’approximation pour ce pro-
blème. En même temps, l’algorithme stocke seulement O(k log2 k +m log3 k) éléments.
Notre algorithme représente une nette amélioration par rapport aux résultats précé-
dents, qui nécessitaient de stocker O(km) éléments pour résoudre le même problème.

• Récupération rapide pour le modèle épars séparé. Dans le contexte de l’acquisition
comprimée, nous proposons deux algorithmes de récupération presque linéaires pour
des signaux épars séparés (qui modélisent de manière naturelle les pics neuronaux).
Ceci améliore l’algorithme précédemment connu dont le temps de récupération était
quadratique. Nous proposons également une version améliorée de notre algorithme
basée sur la programmation dynamique (DP) pour la récupération de signaux épars
séparés. Cette approche DP conduit à un algorithme de récupération qui s’exécute en
temps linéaire pour une classe importante de ces signaux. Finalement, nous considérons
une généralisation de ces signaux à deux dimensions, et montrons que calculer une
projection exacte pour le modèle bidimensionnel est NP-difficile.

Mots clefs : tâches à grande échelle, couplages maximaux, ensembles indépendants maxi-
maux, calcul parallèle, routage réseau, maximisation sous-modulaire, acquisition comprimée,
modèle épars séparé
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1 Introduction

The development of the Internet, combined with the availability of inexpensive storage, has led
to the accumulation of an immense amount of data. For example, in 2016, Google Knowledge
Graph encompassed 70 billion facts [Goo16]. Similarly, Amazon offers more than half a billion
products [Scr18], with an objective of recommending a personalized list of items to each
of more than 300 million active users [Sta16]. These two examples, along with many other
modern data-processing tasks, are performed on a large scale, and all have one property in
common – the data of interest does not fit on one machine. This gave rise to various models of
computation that naturally capture settings in which these tasks are performed. The design
of these models is affected by the way data is accessed, by the amount of memory available
at each computational unit, whether the result of computation is used only temporarily or
stored permanently in the memory, and by many other properties. To exploit their power, we
need to design efficient algorithms for these models. In this context, we explore four topics:
streaming algorithms, parallel computation, network routing, and compressed sensing.

Low-memory algorithms – the streaming setting

Streaming algorithms attempt to aggregate statistics of data by accessing each data item
only once. These algorithms were studied already in the 1980s [MP80, FM85], and they were
popularized by the work of Alon, Matias and Szegedy [AMS99]. Streaming algorithms are
designed to operate with a small memory and in scenarios in which the data is produced so
rapidly that it cannot even be stored. As they need only a small memory, these algorithms can
also be used in tasks for simultaneously aggregating many statistics (e.g., for active users) of a
collection of items (e.g., available products).

Low round complexity in parallel computation

In many large-scale scenarios, it is difficult (or even impossible) to construct the desired data
structure (e.g., the Knowledge Graph) by accessing the data only once and using a small mem-
ory. One way to approach these types of tasks is to gradually build the corresponding structure.
This is done in multiple steps (also called rounds), where each round consists of processing
— in parallel — the data across a number of machines. Over the last two decades, a num-
ber of frameworks have been developed for the purpose of large-scale parallel computation;
examples include MapReduce [DG04], Hadoop [Whi12], Dryad [IBY+07], or Spark [ZCF+10].
Due to their natural approach to processing massive data, these frameworks have gained
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great popularity and found a variety of applications. They are some of the key components
in computational operations carried out in the tech industry, big-data processing, machine
learning, clinical-data analysis, bioinformatics, weather forecasting, etc. As communication is
the bottleneck in parallel computation, it is desirable that algorithms designed for this setting
perform a few rounds.

Network routing with local decisions and under link failures

A proper choice of a model of computation (e.g., streaming, parallel) and the design of an
adequate algorithm are some of the defining features of efficient methods for solving large-
scale tasks. Nevertheless, an integral part of many large-scale computation systems is network
routing [MR17, Kur05]. For instance, parallel computation is carried by a number of machines
that communicate during this process, and the task of network routing is to ensure the delivery
of messages sent between machines. We also need the routing decisions made at every routing
device to be based only on the local information available to it. This type of protocol leads to
relatively small routing tables, that are usually necessary for obtaining fast routing, which leads
to overall efficient computation. Furthermore, communication links are prone to failures,
which has to be addressed. This setting brings additional challenges in the design of routing
protocols as, in addition to having access only to the local state of the network, they have to
tolerate link failures.

Recovery algorithms for structured compressed sensing

In the aforementioned examples, as a consequence of their limited memory, the computa-
tional devices have constrained access to data. Nevertheless, there are scenarios in which
the data can be accessed (or measured) only in a very specific way, regardless of the avail-
able memory. These scenarios gave rise to the area of compressed sensing. The purpose
of compressed sensing is to perform a small number of linear measurements of data (usu-
ally a sparse signal), then to recover the data from the acquired measurements. Seminal
results [Don06, CRT06, FR13] show that if the measurements satisfy certain regularity con-
ditions, such as the restricted isometry property (RIP), then from only O(k logn/k) linear
observations it is possible to recover a k-sparse n-dimensional vector in polynomial time.
This work found applications for medical imaging [LDP07], data-stream algorithms [GI10],
and sparse linear regression [HTW15].

A natural question is how to extend the notion of sparsity in order to model more complex
structures present in real-world data. For instance, wavelet coefficients can naturally be
arranged as a tree and, for many classes of images, the large wavelet coefficients form a subtree
of the wavelet coefficient tree. Ideally, utilizing such structure beyond "‘standard"’ sparsity
improves the statistical efficiency of a task of interest, e.g., by leading to o(k logn/k) number
of linear observations needed for sparse recovery. Indeed, there is now a large body of work on
structured sparsity, and there are several sparsity models that yield a provably better sample
complexity, both in theory and in practice (among others, [YL06, EM09, BCDH10, MJOB11,
RRN12, NRWY12, BBC14, HIS15a]). However, these improvements in sample complexity
require the recovery algorithms to optimize over a set with more complex structure. This
typically leads to recovery algorithms that have a worse running time than their “standard
sparsity” counterparts.
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1.1. Thesis Motivation

1.1 Thesis Motivation

The aforementioned scenarios prompt us to consider the following question:

How can we efficiently solve large-scale problems?

In this thesis, we mainly focus on developing new combinatorial tools and techniques that
can be applied in the context of memory-constrained computation. In light of this objective,
we address the following fundamental problems:

• Constructing approximate maximum matchings and maximal independent sets in
models of parallel computation.

• Designing stateless routing protocols that efficiently deliver messages, even when many
links in the network have failed.

• Maximizing submodular functions over large datasets when the elements are presented
in the streaming fashion and, in addition, elements can be retracted from the stream
once they have been seen.

• In the context of compressed sensing, designing fast recovery procedures for separated
sparsity signals (a classic model that naturally corresponds to neural spikes).

Most of the algorithms we design are randomized and stem from simple deterministic ap-
proaches. Each of these deterministic algorithms either does not always solve the underlying
task or, if it does solve the task, it is not efficient. Our methods remedy this situation by
making randomized decisions at the steps where, informally speaking, their deterministic
counterparts get stuck. We elaborate on this strategy in Section 1.3.

1.2 Overview of Our Contributions

In this section we give an overview of our results. In Section 1.3 we present the common theme
of our approaches and later, in separate chapters, explain each of the approaches in detail.

1.2.1 Parallel Computation of Approximately Maximum Matchings

Maximum matchings have been the cornerstone of algorithmic research since the 1950s and
their study inspired many important ideas, including the complexity class P [Edm65]. We
study this problem in the context of the Massively Parallel Computation (MPC) model. In
the MPC model, we have m machines at our disposal and each of them has S words of space.
Initially, each machine receives its share of the input. In our case, the input is a collection of
edges. The computation proceeds in synchronous rounds. In each round, the data is split
across the machines and processed locally. At the end, all the machines output their results,
and this output is used as the input in the next round. As communication is the bottleneck in
parallel computation, for given S, the main measure of complexity in this setting is the number
of rounds the computation requires.

Even though the maximum matching problem has been studied in models of parallel
computation for more than 30 years [Lub86, IS86, II86, LMSV11, AG15, AK17], it seems that all
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known techniques fail to improve upon theΩ(logn) MPC-round complexity when the memory
per machine is S =Θ(n) (on graphs of vertex-size n). We broke this barrier by designing an

algorithm that constructs a (1+ε)-approximate maximum matching in O
((

loglogn
)2

)
rounds,

for any constant ε> 0.

1.2.2 Parallel Computation of Maximal Independent Sets

Maximal independent set (MIS) is one of the most fundamental problems in algorithmic
graph theory. In the context of parallel computation, this problem has been studied since the
1980s [Lub86, ABI86, II86, IS86]. MIS was also studied in models of distributed computation,
such as LOCAL and CONGESTED-CLIQUE (e.g., [BEPS12, Gha17, CHPS17, BFS12, FN18]).

In the context of the MPC computation when the memory per machine is Θ(n) (on graphs
of vertex-size n), the prior work implies O(logn) round complexity for constructing MIS. We
design an algorithm that constructs MIS in O(loglogn) MPC-rounds of computation. If the
maximum degree of the input graph is bounded by ∆, then our algorithm constructs an MIS in
O(loglog∆) rounds. We show that the same algorithm can be executed in O(loglog∆) rounds
of CONGESTED-CLIQUE.

1.2.3 Network Routing under Link Failures

In the context of network routing, we study the task of computing routing tables in the setting
where

• Links used to pass messages through the network can fail. Each router detects which of
the links incident to it have failed.

• Each router performs stateless routing based only on the local information available to
it. That is, if a router receives a message through link e, then it forwards the message
through a link that is chosen as a function of the message destination, the link e, and
the set of failed links incident to the router.

Prior work shows how to design this type of routing tables that in k-connected networks
guarantee successful delivery if up to k/2−1 links have failed [EGR14]. We improve upon
this result and design a randomized routing protocol that in k-connected networks delivers
messages, even if arbitrary k −1 links have failed. This result is optimal in the parameter k,
because a failure of k links in a k-connected network could entirely disconnect a message
from its destination. Furthermore, our protocol performs randomized decisions only in case
the routing encounters a failed link, otherwise it is deterministic.

1.2.4 Streaming Submodular Maximization under Element Removals

For completeness, we first give a definition of submodularity.

Definition 1.1 (Submodular functions). Let V be a potentially large universe of elements. A
set function f : 2V →R≥0 is monotone if for any two sets X ⊆ Y ⊆V we have f (X ) ≤ f (Y ). The
function f is said to be submodular if for any two sets X ⊆ Y ⊆V and any element e ∈V \ Y it
holds that

f (X ∪ {e})− f (X ) ≥ f (Y ∪ {e})− f (Y ).
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The task of data summarization is to select a small representative subset (e.g., to recom-
mend a personalized list of items) out of a large dataset. This task, along with many other
real-world problems, can be viewed as monotone submodular function maximization.

Often, in these applications elements can be removed, e.g., from the recommended list of
items, a user removes items from the list that he has already bought. This gave rise to a task of
constructing a set of elements that retains a large value even after its small subset is removed.
Motivated by this scenario, we study the problem of maximizing submodular functions subject
to cardinality constraint k, in the streaming setting. Furthermore, we consider the regime in
which up to m items can be retracted from the stream. It is known there is a constant-factor
approximation for this problem if the algorithm is enabled to store O(k ·m) elements [MKK17].
We design an algorithm that quadratically improves upon this result. Specifically, we show an
algorithm that solves the same problem while storing only O(k log2 k +m log3 k) elements.

1.2.5 Fast Recovery for Separated Sparsity Signals

In the context of compressed sensing, we study recovery algorithms for the separated sparsity
model. Separated sparsity has been proposed as a model for neuronal spike trains, i.e., time
series data in which we record the activity of a single neuron (or a set of neurons) [HDC09,
DDJB10, HB11, DSRB13, FMN15]. An important aspect of neuronal activity patterns is that
neurons have a minimum refractory period between consecutive activity spikes. The separated
sparsity model formalizes this fact by assuming that the signals are not only k-sparse but also
that each non-zero entry in the signal vector has to be separated by at least a given number ∆
of zero entries. Prior work establishes a tight sample-complexity bound of O(k log(n/k−∆)) for
this setting, but the best known recovery algorithm has a time complexity of Õ(n2) [FMN15]
that quickly becomes impractical on large data sets.

In our work, we address this issue and provide new, faster algorithms that achieve the
same improved sample complexity while running in nearly-linear time. Our new algorithms
essentially match the time complexity of standard sparse recovery and show that we can utilize
separated sparsity without a significant increase in time complexity.

An outline of our results in context of the separated sparsity model is given below:

• We design both a randomized and a deterministic nearly-linear time recovery algorithm
for the separated sparsity model.

• We derive a refined version of the natural dynamic programming (DP) approach to the
recovery of the separated sparsity model. The time complexity of the resulting DP-based
algorithm improves from O(n2) to O(k(n − (k −1)∆)). Consequently, in the regime of
n/k −∆=O(1) of the separated sparsity model that requires O(k) measurements, our
algorithm has a time complexity of O(n +k2).

• We analyze the time complexity of the separated sparsity model in two dimensions; it is
a model in which the non-zeros in a matrix are separated by a certain minimum amount.
We show that, in contrast to the one-dimensional case, computing an exact projection
for the two-dimensional model is NP-hard.
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1.3 A General Strategy

At the core of this thesis is the following question:

How can we efficiently solve large-scale problems?

Many of the problems studied in the context of large-scale computation already have
efficient centralized algorithms, i.e., algorithms that are efficient if the entire computation is
performed on a single machine that has no memory restriction. However, large-scale compu-
tations are necessarily performed across many machines and/or with memory restriction. As
a result, translating efficient centralized algorithms to this setting is challenging.

In this thesis, we formulate a general strategy for performing such translation and then
demonstrate its effectiveness on a number of problems.

In a broad sense, our strategy focuses on translating centralized algorithms that perform
local computation into efficient memory-constrained algorithms. We show that in some cases
it is possible to simulate these local computations by using “small memory”. For instance,
consider a centralized graph algorithm that processes each vertex by considering only its
neighborhood, i.e., for each vertex it has to know only local information. Then, instead of
considering the whole neighborhood of a vertex, it could be possible to select a small but
representative vertex-neighborhood by a proper sampling. This would allow the simulated
algorithm to perform computation by using much smaller memory than the total input size.
However, due to the sampling, the resulting simulated algorithm behaves as the input instance
was perturbed. If the centralized algorithm is not “stable enough”, this simulation on a
perturbed input can output a solution which is far from the one corresponding to the actual
input. For instance, the centralized algorithm could make significantly different decisions
depending on whether the degree of a vertex is d or d −1. To circumvent this, we demonstrate
on a number of problems how to regularize constraints leading to such erratic behavior. The
regularization we apply depends on the problem we consider.

In the subsequent sections, we illustrate that this strategy improves state of the art for the
following problems:

• Maximal matching: Our starting point is a centralized algorithm that iteratively matches
vertices whose degree is above certain sharp threshold. To efficiently simulate this
algorithm in parallel setting, we apply our strategy as follows. We first show how to
sample neighborhoods of vertices so that the sample is small but also carries sufficient
information about the degrees of vertices. Then, instead of applying a sharp degree-
threshold to decide which vertices to match, we use a carefully chosen smooth one
which affects the final solution only by a little.

• Maximal independent set: We start from an algorithm that iteratively removes a maximum-
degree vertex and its neighborhood. Detecting such vertices requires too much com-
munication in a parallel setting. Instead of requiring to remove only maximum-degree
vertices, we allow removal of a relatively small number of other vertices as well. This
regularized constraint enables us to design a significantly more efficient algorithm for
parallel computation than directly simulating the starting one.

• Network routing: Some routing schemes address link failures by computing new routing
paths that are failure-free. In large networks, computing such paths usually leads to
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significant overhead in communication. We obtain an efficient routing scheme by
applying our strategy as follows. At a high level, instead of requiring that new routing
paths are always failure-free we require that they are often failure-free. Namely, some of
the new routing paths might still contain failed links, but we show that it happens rarely.

• Compressed sensing: We demonstrate that our strategy is also applicable in designing
fast algorithms. Namely, we consider a Lagrangian relaxation of the separated sparsity
projection problem. However, in some cases this relaxation does not provide the in-
tended solution. Intuitively, this happens as a certain structure of the problem is very
“unstable” under small perturbations of the corresponding Lagrangian parameter. We
apply our strategy by regularizing this structure. This, in turn, stabilizes the instance and
enables us to apply Lagrangian relaxation leading to a simple and efficient algorithm.

1.4 Thesis Outline

We present our results in separate chapters. Each of the chapters is self-contained, and the
reader can use the following condensed content-list to locate topics of interest:
In Chapter 2, we describe our result on constructing approximate maximum matchings
In Chapter 3, we describe our result on constructing maximal independent sets in parallel
computation
In Chapter 4, we present our work on network routing
In Chapter 5, we are devoted to describing our approach to streaming submodular maximiza-
tion
In Chapter 6, we present our results on the separated sparsity model

Each of the chapters begins with an introduction and a brief history about the underlying
problem. This content is followed by the definition of the model we consider or by the
problem setup. Next, we state our contributions and provide a section with related work. In
the remaining content, we first overview our approach and techniques. Then, we describe our
ideas in detail and present our proofs.

In Chapter 7, we provide some directions for future work that we find interesting.
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2 Approximate Maximum Matchings in
Parallel Computation
This chapter is based on a joint work with Artur Czumaj, Jakub Łącki, Aleksander Mądry,
Krzysztof Onak, and Piotr Sankowski. It has been accepted to the 50th ACM Symposium on
Theory of Computing (STOC) 2018 [CŁM+18] under the title

Round Compression for Parallel Matching Algorithms.

This paper has also been invited to the special issue of SIAM Journal on Computing.

2.1 Introduction

Over the last decade, massive parallelism became a major paradigm in computing, and we
have witnessed the deployment of a number of very successful massively parallel compu-
tation frameworks, such as MapReduce [DG04, DG08], Hadoop [Whi12], Dryad [IBY+07], or
Spark [ZCF+10]. This paradigm and the corresponding models of computation are rather
different from classical parallel algorithms models considered widely in literature, such as
the PRAM model. In particular, in this chapter, we study the Massive Parallel Computation
(MPC) model (also known as Massively Parallel Communication model) that was abstracted
out of capabilities of existing systems, starting with the work of Karloff, Suri, and Vassilvit-
skii [KSV10, GSZ11, BKS13, ANOY14, BKS14]. The main difference between this model and
the PRAM model is that the MPC model allows for much more (in principle, unbounded) local
computation. This enables it to capture a more “coarse–grained,” and thus, potentially, more
meaningful aspect of parallelism. It is often possible to simulate one clock step of PRAM in
a constant number of rounds on MPC [KSV10, GSZ11]. This implies that algorithms for the
PRAM model usually give rise to MPC algorithms without incurring any asymptotic blow up in
the number of parallel rounds. As a result, a vast body of work on PRAM algorithms naturally
translates to the new model.

It is thus natural to wonder: Are the MPC parallel round bounds “inherited” from the PRAM
model tight? In particular, which problems can be solved in significantly smaller number of
MPC rounds than what the lower bounds established for the PRAM model suggest?

In this chapter, we focus on one such problem, which is also one of the most central
graph problems both in sequential and parallel computations: maximum matching. In the
PRAM model we can compute (1+ε)-approximate matching in O(logn) rounds [LPP15] using
randomization. Deterministically, a (2+ ε)-approximation can be computed in O

(
log2 n

)
9



Chapter 2. Approximate Maximum Matchings in Parallel Computation

rounds [FG17]. We note that these results hold in a distributed message passing setting,
where processors are located at graph nodes and can communicate only with neighbors. In
such a distributed setting, Ω

(√
logn/loglogn

)
time lower bound is known for computing any

constant approximation to maximum matching [KMW06].

So far, in the MPC setting, the prior results are due to Lattanzi, Moseley, Suri, and Vassilvit-
skii [LMSV11], Ahn and Guha [AG15] and Assadi and Khanna [AK17]. Lattanzi et al. [LMSV11]
put forth algorithms for several graph problems, such as connected components, minimum
spanning tree, and maximum matching problem, that were based on a so-called filtering tech-
nique. In particular, using this technique, they have obtained an algorithm that can compute
a 2-approximation to maximum matching in O(1/δ) MPC rounds, provided that the space per
machine is S =Ω(

n1+δ), for any constant δ ∈ (0,1). Later on, Ahn and Guha [AG15] provided
an improved algorithm that computes a (1+ε)-approximation in O(1/(δε)) rounds, provided
S =Ω(

n1+δ), for any constant δ > 0. Both these results, however, crucially require that the
space per machine is significantly superlinear in n. In fact, if the space S is linear in n, which
is a very natural setting for massively parallel graph algorithms, the performance of both
these algorithms degrades to O(logn) parallel rounds, which matches what was known for
the PRAM model. Recently, Assadi and Khanna [AK17] showed how to construct randomized
composable coresets of size Õ(n) that give an O(1)-approximation for maximum matching.
Their techniques apply to the MPC model only if the space per machine is Õ(n

p
n).

We also note that the known PRAM maximal independent set and maximal matching
algorithms [Lub86, ABI86, II86] can be used to find a maximal matching (i.e., 2-approximation
to maximum matching) in O(logn) MPC rounds as long as space per machine is at least nΩ(1)

(i.e., S ≥ nc for some constant c > 0). We omit further details here, except mentioning that
a more or less direct simulation of those algorithms is possible via an O(1)-round sorting
subroutine [GSZ11].

The above results give rise to the following fundamental question: Can the maximum
matching be (approximately) solved in o(logn) parallel rounds in O(n) space per machine?
The main result of this chapter is an affirmative answer to that question. We show that, for any
S =Ω(n), one can obtain an O(1)-approximation to maximum matching using O

(
(loglogn)2

)
parallel MPC rounds. So, not only do we break the existingΩ(logn) barrier, but also provide
an exponential improvement over the previous work. Our algorithm can also provide a (2+ε),
instead of O(1)-approximation, at the expense of the number of parallel rounds increasing by
a factor of O(log(1/ε)). Finally, our approach can also provide algorithms that have o(logn)
parallel round complexity also in the regime of S being (mildly) sublinear. For instance, we
obtain O

(
(loglogn)2

)
MPC rounds even if space per machine is S = n/(logn)O(loglogn). The

exact comparison of our bounds with previous results is given in Table 2.1.

2.1.1 Model

In this work, we adopt a version of the model introduced by Karloff, Suri, and Vassilvit-
skii [KSV10] and refined in later works [GSZ11, BKS13, ANOY14]. We call it massive parallel
computation (MPC), which is a mutation of the name proposed by Beame et al. [BKS13].

In the MPC model, we have m machines at our disposal and each of them has S words
of space. Initially, each machine receives its share of the input. In our case, the input is a
collection E of edges and each machine receives approximately |E |/m of them.

The computation proceeds in rounds. During the round, each of the machines processes
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its local data without communicating with other machines. At the end of each round, machines
exchange messages. Each message is sent only to a single machine specified by the machine
that is sending the message. All messages sent and received by each machine in each round
have to fit into the machine’s local memory. Hence, their total length is bounded by S.1 This in
particular implies that the total communication of the MPC model is bounded by m ·S in each
round. The messages are processed by recipients in the next round.

At the end of the computation, machines collectively output the solution. The data output
by each machine has to fit in its local memory. Hence again, each machine can output at most
S words.

The range of values for S and m. If the input is of size N , one usually wants S sublinear in
the N , and the total space across all the machines to be at least N —so the input fits onto
the machines—and ideally not much larger. Formally, one usually considers S ∈Θ(

N 1−ε), for
some ε> 0.

In this chapter, the focus is on graph algorithms. If n is the number of vertices in the
graph, the input size can be as large asΘ

(
n2

)
. Our parallel algorithm requiresΘ(n) space per

machine (or even slightly less), which is polynomially less than the size of the input for dense
graphs.

Communication vs. computation complexity. The main focus of this work is the number
of (communication) rounds required to finish computation. Also, even though we do not
make an effort to explicitly bound it, it is apparent from the design of our algorithms that every
machine performs O(S polylogS) computation steps locally. This in particular implies that the
overall work across all the machines is O(r N polylogS), where r is the number of rounds and
N is the input size (i.e., the number of edges).

2.1.2 Our Results

In our work, we focus on computing an O(1)-approximate maximum matching in the MPC
model. We collect our results and compare to the previous work in Table 2.1. The table presents
two interesting regimes for our algorithms. On the one hand, when the space per machine is
S =O(n), we obtain an algorithm that requires O((loglogn)2) rounds. This is the first known
algorithm that, with linear space per machine, breaks the O(logn) round barrier. On the
other hand, in the mildly sublinear regime of space per machine, i.e., when S = O(n/ f (n)),
for some function f (n) that is no(1), we obtain an algorithm that still requires o(logn) rounds.
This, again is the first such result in this regime. In particular, we prove the following result.

Theorem 2.1

There exists an MPC algorithm that constructs an O(1)-approximation to maximum
matching with constant probability in O

(
(loglogn)2 +max

(
log n

S ,0
))

rounds, where S =
nΩ(1) is the amount of space on each machine.

1This for instance allows a machine to send a single word to S/100 machines or S/100 words to one machine,
but not S/100 words to S/100 machines if S =ω(1), even if the messages are identical.
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Source Approx. Space Rounds Remarks

[LMSV11] 2
n1+Ω(1) O(1)

Maximal matching
O(n) O(logn)

[AG15] 1+ε O
(
n1+1/p

)
O(p/ε) p > 1

2 nΩ(1) O(logn)
Maximal matching

Simulate [Lub86, ABI86, II86]

O(1)
O(n)

O
(
(loglogn)2

)
2+ε O

(
(loglogn)2 · log(1/ε)

)
ε ∈ (0,1/2)

here O(1)
O(n)/ f (n)

O
(
(loglogn)2 + log f (n)

)
2 ≤ f (n) =O

(
n1/2

)
2+ε O

(
(loglogn)2 + log f (n)

) · log(1/ε)

Table 2.1 – Comparison of our results for computing approximate maximum size matchings to
the previous results for the MPC model.

As a corollary, we obtain the following result that provides nearly 2-approximate maximum
matching.

Corollary 2.2. For any ε ∈ (0, 1
2 ), there exists an MPC algorithm that constructs a (2 + ε)-

approximation to maximum matching with 99/100 probability in O
(
(loglogn)2 +max

(
log n

S ,0
))·

log(1/ε) rounds, where S = nΩ(1) is the amount of space on each machine.

Assadi et al. [ABB+17] observe that one can use a technique of McGregor [McG05] to
extend the algorithm to compute a (1+ε)-approximation in O((loglogn)2) · (1/ε)O(1/ε) rounds.

It should also be noted that (as pointed out to us by Seth Pettie) any O(1)-approximation
algorithm for unweighted matchings can be used to obtain a (2+ε)-approximation algorithm
for weighted matchings (see Section 4 of his paper with Lotker and Patt-Shamir [LPP15] for
details). In our setting this implies that Theorem 2.1 yields an algorithm that computes a (2+ε)-
approximation to maximum weight matching in O((loglogn)2 · (1/ε)) rounds and O(n logn)
space per machine.

2.1.3 Related Work

We note that there were efforts at modeling MapReduce computation [FMS+10] before the
work of Karloff et al. Also a recent work [RVW16] investigates the complexity of the MPC
model.

In the filtering technique, introduced by Lattanzi et al. [LMSV11], the input graph is
iteratively sparsified until it can be stored on a single machine. For the matching problem, the
sparsification is achieved by first obtaining a small sample of edges, then finding a maximal
matching in the sample, and finally removing all the matched vertices. Once a sufficiently
small graph is obtained, a maximal matching is computed on a single machine. In the S =Θ(n)
regime, the authors show that their approach reduces the number of edges by a constant factor
in each iteration. Despite this guarantee, until the very last step, each iteration may make little
progress towards obtaining even an approximate maximal matching, resulting in a O(logn)
round complexity of the algorithm. Similarly, the results of Ahn and Guha [AG15] require
n1+Ω(1) space per machine to compute a O(1)-approximate maximum weight matching in a
constant number of rounds and do not imply a similar bound for the case of linear space.
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We note that the algorithm of Lattanzi et al. [LMSV11] cannot be turned easily into a fast
approximation algorithm when space per machine is sublinear. Even withΘ(n) space, their
method is able to remove only a constant fraction of edges from the graph in each iteration, so
Ω(logn) rounds are needed until only a matching is left. When S =Θ(n), their algorithm works
as follows: sample uniformly at randomΘ(n) edges of the graph, find maximal matching on
the sampled set, remove the matched vertices, and repeat. We do not provide a formal proof
here, but on the following graph this algorithm requires Ω̃(logn) rounds, even to discover a
constant factor approximation. Consider a graph consisting of t separate regular graphs of
degree 2i , for 0 ≤ i ≤ t −1, each on 2t vertices. This graph has t2t nodes and the algorithm
requires Ω̃(t ) rounds even to find a constant approximate matching. The algorithm chooses
edges uniformly at random, and few edges are selected each round from all but the densest
remaining subgraphs. Thus, it takes multiple rounds until a matching of significant size is
constructed for sparser subgraphs. This example emphasizes the weakness of direct edge
sampling and motivates our vertex sampling scheme that we introduce in our work.

Similarly, Ahn and Gupta [AG15] build on the filtering approach of Lattanzi et al. and design
a primal-dual method for computing a (1+ ε)-approximate weighted maximum matching.
They show that each iteration of their distributed algorithm either makes large progress in the
dual, or they can construct a large approximate matching. Regardless of their new insights,
their approach is inherently edge-sampling based and does not break the O(logn) round
complexity barrier when S =O(n).

Despite the fact that MPC model is rather new, computing matching is an important prob-
lem in this model, as the above mentioned two papers demonstrate. This is further witnessed
by the fact that the distributed and parallel complexity of maximal matching has been studied
for many years already. The best deterministic PRAM maximal matching algorithm, due to
Israeli and Shiloach [IS86], runs in O

(
log3 n

)
rounds. Israeli and Itai [II86] gave a randomized

algorithm for this problem that runs in O(logn) rounds. Their algorithm works as well in
CONGEST, a distributed message-passing model with a processor assigned to each vertex
and a limit on the amount of information sent along each edge per round. A more recent
paper by Lotker, Patt-Shamir, and Pettie [LPP15] gives a (1+ε)-approximation to maximum
matching in O(logn) rounds also in the CONGEST model, for any constant ε > 0. On the
deterministic front, in the LOCAL model, which is a relaxation of CONGEST that allows for
an arbitrary amount of data sent along each edge, a line of research initiated by Hańćkowiak,
Karoński, and Panconesi [HKP01, HKP99] led to an O

(
log3 n

)
-round algorithm by Fischer and

Ghaffari [FG17].

On the negative side, Kuhn, Moscibroda, and Wattenhofer [KMW06] showed that any
distributed algorithm, randomized or deterministic, when communication is only between
neighbors requires Ω

(√
logn/loglogn

)
rounds to compute a constant approximation to max-

imum matching. This lower bound applies to all distributed algorithms that have been
mentioned above. Our algorithm circumvents this lower bound by loosening the only pos-
sible assumption there is to be loosened: single-hop communication. In a sense, we assign
subgraphs to multiple machines and allow multi-hop communication between nodes in each
subgraph.

Finally, the ideas behind the peeling algorithm that is a starting point for this work can
be traced back to the papers of Israeli, Itai, and Shiloach [II86, IS86], that can be interpreted
as matching high-degree vertices first in order to reduce the maximum degree. A sample
distributed algorithm given in a work of Parnas and Ron [PR07] uses this idea to compute
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an O(logn) approximation for vertex cover. Their algorithm was extended by Onak and
Rubinfeld [OR10] in order to provide an O(1)-approximation for vertex cover and maximum
matching in a dynamic version of the problems. This was achieved by randomly matching
high-degree vertices to their neighbors in consecutive phases while reducing the maximum
degree in the remaining graph. This approach was further developed in the dynamic graph
setting by a number of papers [BHI15, BHN16, BHN17, BCH17]. Ideas similar to those in the
paper of Parnas and Ron [PR07] were also used to compute polylogarithmic approximation
in the streaming model by Kapralov, Khanna, and Sudan [KKS14]. Our version of the peeling
algorithm was directly inspired by the work of Onak and Rubinfeld [OR10] and features
important modifications in order to make our analysis go through.

Recent developments In a recent work, Assadi [Ass17] applied the round compression idea
to the distributed O(logn)-approximation algorithm for vertex cover of Parnas and Ron [PR07].
Using techniques from his recent work with Khanna [AK17], he gave a simple MPC algo-
rithm that in O(loglogn) rounds and n/polylog(n) space per machine computes an O(logn)-
approximation to minimum vertex cover.

Second, a new paper by Assadi et al. [ABB+17] provides an MPC algorithm that computes
O(1)-approximation to both vertex cover and maximum matching in O(loglogn) rounds and
Õ(n) space per machine (though the space is strictly superlinear). Their result builds on
techniques developed originally for dynamic matching algorithms [BS15, BS16] and compos-
able coresets [AK17]. It is worth to note that their construction critically relies on the vertex
sampling approach (i.e., random assignment of vertices to machines) introduced in our work.

2.2 Preliminaries

For a graph G = (V ,E) and V ′ ⊆V , we write G[V ′] to denote the subgraph of G induced by V ′.
Formally, G[V ′] def= (

V ′,E ∩ (V ′×V ′)
)
. We also write N (v) to denote the set of neighbors of a

vertex v in G .

2.3 Overview and Organization

In this section we present the main ideas and techniques behind our result. The result of this
chapter contains two main technical contributions.

First, our algorithm randomly partitions vertices across the machines, and on each machine
considers only the corresponding induced graph. We prove that it suffices to consider these
induced subgraphs to obtain an approximate maximum matching. Note that this approach
greatly deviates from previous works, that used edge based partitioning.

Second, we introduce a round compression technique. Namely, we start with an algorithm
that executes O(logn) phases and can be naturally implemented in O(logn) MPC rounds
and then demonstrate how to emulate this algorithm using only o(logn) MPC rounds. The
underlying idea is quite simple: each machine independently runs multiple phases of the
initial algorithm. This approach, however, has obvious challenges since the machines cannot
communicate in a single round of the MPC algorithm. The rest of the section is devoted to
describing our approach and illustrating how to overcome these challenges.
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2.3.1 Vertex Based Sampling

The algorithms for computing maximal matching in PRAM and their simulations in the MPC
model [Lub86, ABI86, IS86, II86] are designed to, roughly speaking, either halve the number
of the edges or halve the maximum degree in each round. Therefore, in the worst case those
algorithms inherently requireΩ(logn) rounds to compute a maximal matching.

On the other hand, all the algorithm for the maximal matching problem in the MPC
model prior to ours ([LMSV11, AG15, AK17]) process the input graph by discarding edges, and
eventually aggregate the remaining edges on a single machine to decide which of them are
part of the final matching. It is not known how to design approaches similar to [LMSV11, AG15,
AK17] while avoiding a step in which the maximal matching computation is performed on a
single machine. This seems to be a barrier for improving upon O(logn) rounds, if the space
available on each machine is O(n).

The starting point of our new approach is alleviating this issue by resorting to a more
careful vertex based sampling. Specifically, at each round, we randomly partition the vertex
set into vertex sets V1, . . . ,Vm and consider induced graphs on those subsets independently.
Such sampling scheme has the following handy property: the union of matchings obtained
across the machines is still a matching. Furthermore, we show that for the appropriate setting
of parameters this sampling scheme allows us to handle vertices of a wide range of degrees in
a single round, unlike handling only high-degree vertices (that is, vertices with degree within a
constant factor of the maximum degree) as guaranteed by [II86, IS86].

2.3.2 Global Algorithm

To design an algorithm executed on machines locally, we start from a sequential peeling
algorithm GlobalAlg (see Algorithm 1), that is a modified version of an algorithm used by
Onak and Rubinfeld [OR10]. The algorithm had to be significantly adjusted in order to make
our later analysis of a parallel version possible.

The execution of GlobalAlg is divided into Θ(logn) phases. In each phase, the algorithm
first computes a set H of high-degree vertices. Then it selects a set F of vertices, that we call
friends. Next the algorithm selects a matching M̃ between H and F , using a simple randomized
strategy. F is carefully constructed so that both F and M̃ are likely to be of orderΘ(|H |). Finally,
the algorithm removes all vertices in H ∪F , hence reducing the maximum vertex degree in the
graph by a constant factor, and proceeds to the next phase. The central property of GlobalAlg
is that it returns an O(1) approximation to maximum matching with constant probability
(Corollary 2.6). A detailed discussion of GlobalAlg is given in Section 2.4.

2.3.3 Parallel Emulation of the Global Algorithm (Section 2.5)

The following two ways could be used to execute GlobalAlg in the MPC model: (1) place the
whole graph on one machine, and trivially execute all the phases of GlobalAlg in a single
round; or (2) simulate one phase of GlobalAlg in one MPC round while using O(n) space
per machine, by distributing vertices randomly onto machines (see Section 2.7.1 for details).
However, each of these approaches has severe drawbacks. The first approach requiresΘ(|E |)
space per machine, which is likely to be prohibitive for large graphs. On the other hand, while
the second approach uses O(n) space, it requiresΘ(logn) rounds of MPC computation. We
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Algorithm 1: GlobalAlg(G ,∆̃)
Global matching algorithm

Input: Graph G = (V ,E) of maximum degree at most ∆̃
Output: A matching in G

1 ∆← ∆̃, M ←;, V ′ ←V
2 while ∆≥ 1 do

/* Invariant: the maximum degree in G[V ′] is at most ∆ */

3 Let H ⊂V ′ be a set of vertices of degree at least ∆/2 in G[V ′]. We call vertices in H heavy.
4 Create a set F of friends by selecting each vertex v ∈V ′ independently with probability

|N (v)∩H |/4∆.
5 Compute a matching M̃ in G[H ∪F ] using MatchHeavy(H ,F ) and add it to M .
6 V ′ ←V ′ \ (H ∪F ), ∆←∆/2

7 return M

Algorithm 2: MatchHeavy(H ,F )
Computing a matching in G[H ∪F ]

Input: set H of heavy vertices and set F of friends
Output: a matching in G[H ∪F ]

1 For every vertex v ∈ F pick uniformly at random a heavy neighbor v? in N (v)∩H .
2 Independently at random color each vertex in H ∪F either red or blue.
3 Select the following subset of edges: E?← {(v, v?) : v ∈ F ∧ v is red∧ v? ∈ H ∧ v? is blue}.

4 For every blue vertex w incident to an edge in E?, select one such edge and add it to M̃ .

5 return M̃

achieve the best of both worlds by showing how to emulate the behavior of multiple phases
of GlobalAlg in a single MPC round with each machine using O(n) space, thus obtaining
an MPC algorithm requiring o(logn) rounds. More specifically, we show that it is possible to
emulate the behavior of GlobalAlg in O

(
(loglogn)2

)
rounds with each machine using O(n)

(or even only n/(logn)O(loglogn)) space.

Before we provide more details about our parallel multi-phase emulation of GlobalAlg,
let us mention the main obstacle such an emulation encounters. At the beginning of every
phase, GlobalAlg has access to the full graph. Therefore, it can easily compute the set of
heavy vertices H . On the other hand, machines in our MPC algorithm use O(n) space and
thus have access only to a small subgraph of the input graph (when |E |À n). In the first phase
this is not a big issue, as, thanks to randomness, each machine can estimate the degrees of
high-degree vertices. However, the degrees of vertices can significantly change from phase
to phase. Therefore, after each phase it is not clear how to select high-degree vertices in the
next phase without inspecting the entire graph again. Hence, one of the main challenges in
designing a multi-phase emulation of GlobalAlg is to ensure that machines at the beginning
of every phase can estimate global degrees of vertices well enough to identify the set of heavy
vertices, while each machine still having access only to its local subgraph. This property is
achieved using a few modifications to the algorithm.
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Preserving Randomness

Our algorithm partitions the vertex set into m disjoint subsets Vi by assigning each vertex inde-
pendently and uniformly at random. Then the graph induced by each subset Vi is processed
on a separate machine. Each machine finds a set of heavy vertices, Hi , by estimating the global
degree of each vertex of Vi . It is not hard to argue (using a standard concentration bound)
that there is enough randomness in the initial partition so that local degrees in each induced
subgraph roughly correspond to the global degrees. Hence, after the described partitioning,
sets H and

⋃
i∈[m] Hi have very similar properties. This observation crucially relies on the fact

that initially the vertices are distributed independently and uniformly at random.

However, if one attempts to execute the second phase of GlobalAlg without randomly
reassigning vertices to sets after the first phase, the remaining vertices are no longer distributed
independently and uniformly at random. In other words, after inspecting the neighborhood of
every vertex locally and making a decision based on it, the randomness of the initial random
partition may significantly decrease.

Let us now make the following thought experiment. Imagine for a moment that there
is an algorithm that emulates multiples phases of GlobalAlg in parallel and in every phase
inspects only the vertices that end-up being matched. Then, from the point of view of the
algorithm, the vertices that are not matched so far are still distributed independently and
uniformly at random across the machines. Or, saying in a different way, if randomness of some
vertices is not inspected while emulating a phase, then at the beginning of the next phase
those vertices still have the same distribution as in the beginning of that MPC round. But, how
does an algorithm learn about vertices that should be matched by inspecting no other vertex?
How does the algorithm learn even only about high-degree vertices without looking at their
neighborhood?
In the sequel we show how to design an algorithm that looks only "slightly" at the vertices
that do not end-up being matched. As we prove, that is sufficient to design a multi-phase
emulation of GlobalAlg.

We now discuss in more detail how to preserve two crucial properties of our vertex as-
signments throughout the execution of multiple phases: independent and nearly-uniform
distribution.

Independence (Lemma 2.9)

As noted above, it is not clear how to compute vertex degrees without inspecting their local
neighborhood. A key, and at first sight counter-intuitive, step in our approach is to estimate
even local degrees of vertices (in contrast to computing them exactly). To obtain the estimates,
it suffices to examine only small neighborhoods of vertices and in turn preserve the inde-
pendent distribution of the intact ones. More precisely, we sample a small set of vertices on
each machine, called reference sets, and use the set to estimate the local degrees of all vertices
assigned to this machine. Furthermore, we show that with a proper adjustments of GlobalAlg
these estimates are sufficient for capturing high-degree vertices.

Very crucially, all the vertices that are used in computing a matching in one emulated
phase (including the reference sets) are discarded at the end of the phase, even if they do not
participate in the obtained matching. In this way we disregard the vertices which position is
fixed and, intuitively, secure an independent distribution of the vertices across the machines

17



Chapter 2. Approximate Maximum Matchings in Parallel Computation

in the next phase.

We also note, without going into details, that obtaining full independence required modify-
ing how the set of friends is selected, compared to the original approach of Onak and Rubinfeld
[OR10]. In their approach, each heavy vertex selected one friend at random. However, as
before, in order to select exactly one friend would require examining neighborhood of heavy
vertices. This, however, introduces dependencies between vertices that have not been se-
lected. So instead, in our GlobalAlg, every vertex selects itself as a friend independently and
proportionally to the number of high-degree vertices (found using the reference set), which
again secures an independent distribution of the remaining vertices. The final properties of
the obtained sets in either approach are very similar.

Uniformity (Lemma 2.10)

A very convenient property in the task of emulating multiple phases of GlobalAlg is a uniform
distribution of vertices across all the machines at every phase – for such a distribution, we
know the expected number of neighbors of each desired type assigned to the same machine.
Obtaining perfect uniformity seems difficult—if not impossible in our setting—and we there-
fore settle for near uniformity of vertex assignments. The probability of the assignment of
each vertex to each machine is allowed to differ slightly from that in the uniform distribution.
Initially, the distribution of each vertex is uniform and with every phase it can deviate more
and more from the uniform distribution. We bound the rate of the decay with high probability
and execute multiple rounds as long as the deviation from the uniform distribution is negligi-
ble. More precisely, in the execution of the entire parallel algorithm, the sufficiently uniform

distribution is on average kept overΩ
(

logn

(loglogn)2

)
phases of the emulation of GlobalAlg.

11
2

1

1
2

µH(r)

r

Figure 2.1 – An idealized version of µH : R→ [0,1], in which n was fixed to a small constant
and the multiplicative constant inside the exponentiation operator was lowered.

In order to achieve the near uniformity, we modify the procedure for selecting H , the set of
high-degree vertices. Instead of a hard threshold on the degrees of vertices that are included
in H as in the sequential algorithm, we randomize the selection by using a carefully crafted
threshold function µH . This function specifies the probability with which a vertex is included
in H . It takes as input the ratio of the vertex’s degree to the current maximum degree (or, more
precisely, the current upper bound on the maximum degree) and it smoothly transitions from
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0 to 1 in the neighborhood of the original hard threshold (see Figure 2.1). The main intuition
behind the introduction of this function is that we want to ensure that a vertex is not selected
for H with almost the same probability, independently of the machine on which it resides.
Using a hard threshold instead of µH could result in the following deficiency. Consider a vertex
v that has slightly too few neighbors to qualify as a heavy vertex. Still, it could happen, with a
non-negligible probability, that the reference set of some machine contains so many neighbors
of v that v would be considered heavy on this machine. However, if v is not included in the set
of heavy vertices on that machine, it becomes clear after even a single phase that the vertex is
not on the given machine, i.e. the vertex is on the given machine with probability zero. At this
point the distribution is clearly no longer uniform.

Function µH has further useful properties that we extensively exploit in our analysis. We
just note that in order to ensure near uniformity with high probability, we also have to ensure
that each vertex is selected for F , the set of friends, with roughly the same probability on each
machine.

Organization

We start by analyzing GlobalAlg in Section 2.4. Then, Section 2.5 describes how to emulate of
a single phase of GlobalAlg in the MPC model. Section 2.6 gives and analyzes our parallel
algorithm by putting together components developed in the previous sections. The resulting
parallel algorithm can be implemented in the MPC model in a fairly straightforward way by
using the result of [GSZ11]. The details of the implementation are given in Section 2.7.

2.4 Global Algorithm

2.4.1 Overview

The starting point of our result is a peeling algorithm GlobalAlg that takes as input a graph G ,
and removes from it vertices of lower and lower degree until no edge is left. See page 16 for its
pseudocode. We use the term phase to refer to an iteration of the main loop in Lines 2–6.

Each phase is associated with a threshold ∆. Initially, ∆ equals ∆̃, the upper bound on
the maximum vertex degree. In every phase, ∆ is divided by two until it becomes less than
one and the algorithm stops. Since during the execution of the algorithm we maintain the
invariant that the maximum degree in the graph is at most ∆, the graph has no edge left when
the algorithm terminates.

In each phase the algorithm matches, in expectation, a constant fraction of the vertices
it removes. We use this fact to prove that, across all the phases, the algorithm computes a
constant-factor approximate matching.

We now describe in more detail the execution of each phase. First, the algorithm creates H ,
the set of vertices that have degree at least ∆/2 (Line 3). We call these vertices heavy. Then, the
algorithm uses randomness to create F , a set of friends (Line 4). Each vertex v is independently
included in F with probability equal to the number of its heavy neighbors divided by 4∆. We
show that E [|F |] =O(|H |) and G[H ∪F ] contains a matching of expected sizeΩ(|H |). This kind
of matching is likely found by MatchHeavy in Line 5.

Note that GlobalAlg could as well compute a maximal matching in G[H ∪F ] instead of
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calling MatchHeavy. However, for the purpose of the analysis, using MatchHeavy is simpler,
as we can directly relate the size of the obtained matching to the size of H . In addition, we
later give a parallel version of GlobalAlg, and MatchHeavy is easy to parallelize.

At the end of the phase, vertices in both H and F are removed from the graph, while the
matching found in G[H ∪F ] is added to the global matching being constructed. It is easy
to see, that by removing H , the algorithm ensures that no vertex of degree larger than ∆/2
remains in the graph, and therefore the bound on the maximum degree decreases by a factor
of two.

2.4.2 Analysis

We start our analysis of the algorithm by showing that the execution of MatchHeavy in each
phase of GlobalAlg finds a relatively large matching in expectation.

Lemma 2.3. Consider one phase of GlobalAlg. Let H be the set of heavy vertices. MatchHeavy
finds a matching M̃ such that E

[∣∣M̃ ∣∣]≥ 1
40 |H |.

Proof. Observe that the set E? is a collection of vertex-disjoint stars: each edge connects a
red vertex with a blue vertex and the red vertices have degree 1. Thus, a subset of E? forms a
valid matching as long as no blue vertex is incident to two matched edges. Note that this is
guaranteed by how edges are added to M̃ in Line 4.

The size of the computed matching is the number of blue vertices in H that have at least
one incident edge in E?. Let us now lower bound the number of such vertices. Consider an
arbitrary u ∈ H . It has the desired properties exactly when the following three independent
events happen: some v is selected in F and v selects u in Line 1; u is colored blue; and v is
colored red. The joint probability of the two latter events is exactly 1

4 . The probability that u is
not selected by some its neighbor v (either because v is not selected in F , or v is selected in F
but v does not select u in Line 1) is(

1− 1

4∆

)|N (u)∩V ′|
≤

(
1− 1

4∆

)∆/2

≤ exp

(
− 1

4∆
· ∆

2

)
≤ exp

(
−1

8

)
≤ 9

10
.

This implies that u is selected by a neighbor v ∈ F with probability at least 1
10 . Therefore,

with probability at least 1
10 · 1

4 = 1
40 , u is blue and incident to an edge in E?. Hence, E

[∣∣M̃ ∣∣]≥
1

40 |H |.

Next we show an upper bound on the expected size of F , the set of friends.

Lemma 2.4. Let H be the set of heavy vertices selected in a phase of GlobalAlg. The following
bound holds on the expected size of F , the set of friends, created in the same phase: E [|F |] ≤ 1

4 |H |.

Proof. At the beginning of a phase, every vertex u ∈V ′—including those in H—has its degree,
|N (u)∩V ′|, bounded by ∆. Reversing the order of the summation and applying this fact, we
get:

E [|F |] =
∑

v∈V ′

|N (v)∩H |
4∆

= ∑
u∈H

∣∣N (u)∩V ′∣∣
4∆

≤ |H | ·∆
4∆

= |H |
4

.
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We combine the last two bounds to lower bound the expected size of the matching com-
puted by GlobalAlg.

Lemma 2.5. Consider an input graph G with an upper bound ∆̃ on the maximum vertex degree.

GlobalAlg(G ,∆̃) executes T
def= blog∆̃c+1 phases. Let Hi , Fi , and M̃i be the sets H, F , and M̃

constructed in phase i for i ∈ [T ]. The following relationship holds on the expected sizes of these
sets:

T∑
i=1

E
[∣∣M̃i

∣∣]≥ 1

50

T∑
i=1

E [|Hi |+ |Fi |]

Proof. For each phase i ∈ [T ], by applying the expectation over all possible settings of the set
Hi , we learn from Lemmas 2.3 and 2.4 that

E
[∣∣M̃i

∣∣]≥ 1

40
E [|Hi |] and E [|Fi |] ≤ 1

4
E [|Hi |] .

It follows that

1

50
E [|Hi |+ |Fi |] ≤ 1

50
E [|Hi |]+ 1

200
E [|Hi |] = 1

40
E [|Hi |] ≤ E

[∣∣M̃i
∣∣] ,

and the statement of the lemma follows by summing over all phases.

We do not use this fact directly in our work, but note that the last lemma can be used to
show that GlobalAlg can be used to find a large matching.

Corollary 2.6. GlobalAlg computes a constant factor approximation to the maximum match-
ing withΩ(1) probability.

Proof. First, note that GlobalAlg finds a correct matching, i.e., no two different edges in M
share an endpoint. This is implied by the fact that M is extended in every phase by a matching
on a disjoint set of vertices.

Let T and sets Hi , Fi , and M̃i for i ∈ [T ] be defined as in the statement of Lemma 2.5.
Let MOPT be a maximum matching in the graph. Observe that at the end of the algorithm
execution, the remaining graph is empty. This implies that the size of the maximum matching
can be bounded by the total number of removed vertices, because each removed vertex
decreases the maximum matching size by at most one:

T∑
i=1

|Hi |+ |Fi | ≥ |MOPT| .

Hence, using Lemma 2.5,

E [|M |] =
T∑

i=1
E
[∣∣M̃i

∣∣]≥ 1

50

T∑
i=1

E [|Hi |+ |Fi |] ≥ 1

50
|MOPT| .

Since |M | ≤ |MOPT|, |M | ≥ 1
100 |MOPT| with probability at least 1

100 . Otherwise, E [|M |] would be
strictly less than 1

100 · |MOPT|+1 · 1
100 |MOPT| = 1

50 |MOPT|, which is not possible.
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2.5 Emulation of a Phase in a Randomly Partitioned Graph

In this section, we introduce a modified version of a single phase (one iteration of the main
loop) of GlobalAlg. Our modifications later allow for implementing the algorithm in the MPC
model. The pseudocode of the new procedure, EmulatePhase, is presented as Algorithm 3.
We partition the vertices of the current graph into m sets Vi , 1 ≤ i ≤ m. Each vertex is assigned
independently and almost uniformly at random to one of the sets. For each set Vi , we run a
subroutine LocalPhase (presented as Algorithm 4). This subroutine runs a carefully crafted
approximate version of one phase of GlobalAlg with an appropriately rescaled threshold ∆.
More precisely, the threshold passed to the subroutine is scaled down by a factor of m, which
corresponds to how approximately vertex degrees decrease in subgraphs induced by each of
the sets. The main intuition behind this modification is that we hope to break the problem up
into smaller subproblems on disjoint induced subgraph, and obtain similar global properties
by solving the problem approximately on each smaller part. Later, in Section 2.6, we design an
algorithm that assigns the subproblems to different machines and solves them in parallel.

Algorithm 3: EmulatePhase(∆,G?,m,D)
Emulation of a single phase in a randomly partitioned graph

Input:
• threshold ∆
• induced subgraph G? = (V?,E?) of maximum degree 3

2∆

• number m of subgraphs
• ε-near uniform and independent distribution D on assignments of V? to [m]

Output: Remaining vertices and a matching

1 Pick a random assignmentΦ : V?→ [m] from D

2 for i ∈ [m] do
3 Vi ← {v ∈V? :Φ(v) = i }
4 (V ′

i , Mi ) ← LocalPhase(i ,G?[Vi ],∆/m) /* LocalPhase = Algorithm 4 */

5 return
(⋃m

i=1 V ′
i ,

⋃m
i=1 Mi

)

We now discuss LocalPhase (i.e., Algorithm 4) in more detail. Table 2.2 introduces two
parameters, α and µR , and two functions, µH and µF , that are used in LocalPhase. Note
first that α is a parameter used in the definition of µH but it is not used in the pseudocode of
LocalPhase (or EmulatePhase) for anything else. It is, however, a convenient abbreviation in
the analysis and the later parallel algorithm. The other three mathematical objects specify
probabilities with which vertices are included in sets that are created in an execution of
LocalPhase.

Apart from creating its own versions of H , the set of heavy vertices, and F , the set of
friends, LocalPhase constructs also a set Ri , which we refer to as a reference set. In Line 1,
the algorithm puts each vertex in Ri independently and with the same probability µR . The
reference set is used to estimate the degrees of other vertices in the same induced subgraph
in Line 2. For each vertex vi , its estimate d̂v is defined as the number of v ’s neighbors in
Ri multiplied by µ−1

R to compensate for sampling. Next, in Line 3, the algorithm uses the
estimates to create Hi , the set of heavy vertices. Recall that GlobalAlg uses a sharp threshold
for selecting heavy vertices: all vertices of degree at least ∆/2 are placed in Hi . LocalPhase
works differently. It divides the degree estimate by the current threshold ∆? and uses function
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A multiplicative constant used in the exponent of µH :

α
def= 96lnn.

The probability of the selection for a reference set:

µR
def= (

106 · logn
)−1

.

The probability of the selection for a heavy set (used with r equal to the ratio of the estimated
degree to the current threshold):

µH (r )
def=

{
1
2 exp

(
α
2 (r −1/2)

)
if r ≤ 1/2,

1− 1
2 exp

(−α
2 (r −1/2)

)
if r > 1/2.

The probability of the selection for the set of friends (used with r equal to the ratio of the number
of heavy neighbors to the current threshold):

µF (r )
def=

{
max{r /4,0} if r ≤ 4,

1 if r > 4.

Table 2.2 – Global parameters α ∈ (1,∞) and µR ∈ (0,1) and functions µH : R→ [0,1] and
µF :R→ [0,1] used in the parallel algorithm. α, µR , and µH depend on n, the total number of
vertices in the graph.

µH to decide with what probability the corresponding vertex is included in Hi . A sketch of
the function can be seen in Figure 2.1. The function transitions from almost 0 to almost 1
in the neighborhood of 1

2 at a limited pace. As a result vertices of degrees smaller than, say,
1
4∆ are very unlikely to be included in Hi and vertices of degree greater than 3

4∆ are very
likely to be included in Hi . GlobalAlg can be seen as an algorithm that instead of µH , uses
a step function that equals 0 for arguments less than 1

2 and abruptly jumps to 1 for larger
arguments. Observe that without µH , the vertices whose degrees barely qualify them as heavy
could behave very differently depending on which set they were assigned to. We use µH to
guarantee a smooth behavior in such cases. That is one of the key ingredients that we need for
making sure that a set of vertices that remains on one machine after a phase has almost the
same statistical properties as a set of vertices obtained by new random partitioning.

Finally, in Line 4, LocalPhase creates a set of friends. This step is almost identical to
what happens in the global algorithm. The only difference is that this time we have no upper
bound on the number of heavy neighbors of a vertex. As a result that number divided by
4∆? can be greater than 1, in which case we have to replace it with 1 in order to obtain a
proper probability. This is taken care of by function µF . Once Hi and Fi have been created, the
algorithm finds a maximal matching Mi in the subgraph induced by the union of these two sets.
The algorithm discards from the further consideration not only Hi and Fi , but also Ri . This
eliminates dependencies in the possible distribution of assignments of vertices that have not
been removed yet if we condition this distribution on the configuration of sets that have been
removed. Intuitively, the probability of a vertex’s inclusion in any of these sets depends only
on Ri and Hi but not on any other vertices. Hence, once we fix the sets of removed vertices,
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Algorithm 4: LocalPhase(i ,Gi ,∆?)
Emulation of a single phase on an induced subgraph

Input:
• induced subgraph number i (useful only for the analysis)
• induced subgraph Gi = (Vi ,Ei )
• threshold ∆? ∈R+

Output: Remaining vertices and a matching on Vi

1 Create a reference set Ri by independently selecting each vertex in Vi with probability µR .

2 For each v ∈Vi , d̂v ←|N (v)∩Ri |/µR .
3 Create a set Hi of heavy vertices by independently selecting each v ∈Vi with probability

µH
(
d̂v /∆?

)
.

4 Create a set Fi of friends by independently selecting each vertex in v ∈Vi with probability
µF (|N (v)∩Hi |/∆?).

5 Compute a maximal matching Mi in G[Hi ∪Fi ].
6 return (Vi \ (Ri ∪Hi ∪Fi ), Mi )

the assignment of the remaining vertices to subgraphs is fully independent.2 The output
of LocalPhase is a subset of Vi to be considered in later phases and a matching Mi , that is
used to expand the matching that we construct for the entire input graph. We now introduce
additional concepts and notation. They are useful for describing and analyzing properties of
the algorithm. A configuration describes sets Ri , Hi , and Fi , for 1 ≤ i ≤ m, constructed in an
execution of EmulatePhase. We use it for conditioning a distribution of vertex assignments
as described in the previous paragraph. We also formally define two important properties of
distributions of vertex assignments: independence and near uniformity.

Configurations. Let m and V? be the parameters to EmulatePhase: the number of sub-
graphs and the set of vertices in the graph to be partitioned, respectively. We say that

C = (
{Ri }i∈[m], {Hi }i∈[m], {Fi }i∈[m]

)
is an m-configuration if it represents a configuration of sets Ri , Hi , and Fi created by EmulatePhase
in the simulation of a phase. Recall that for any i ∈ [m], Ri , Hi , and Fi are the sets created (and
removed) by the execution of LocalPhase for Vi , the i -th subset of vertices.

We say that a vertex v is fixed by C if it belongs to one of the sets in the configuration, i.e.,

v ∈ ⋃
i∈[m]

(Ri ∪Hi ∪Fi ) .

Conditional distribution. Let D be a distribution on assignments ϕ : V? → [m]. Suppose
that we execute EmulatePhase for D and let C be a non-zero probability m-configuration—
composed of sets Ri , Hi , and Fi for i ∈ [m]—that can be created in this setting. Let V ′

? be
the set of vertices in V? that are not fixed by C . We write D[C ] to denote the conditional
distribution of possible assignments of vertices in V ′

? to [m], given that for all i ∈ [m], Ri , Hi ,
and Fi in C were the sets constructed by LocalPhase for the i -th induced subgraph.

2By way of comparison, consider observing an experiment in which we toss the same coin twice. The bias of
the coin is not fixed but comes from a random distribution. If we do not know the bias, the outcomes of the coin
tosses are not independent. However, if we do know the bias, the outcomes are independent, even though they
have the same bias.
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Near uniformity and independence. Let D be a distribution on assignmentsϕ : Ṽ → [m] for
some set Ṽ and m. For each vertex v ∈ Ṽ , let pv : [m] → [0,1] be the probability mass function
of the marginal distribution of v ’s assignment. For any ε≥ 0, we say that D is ε-near uniform
if for every vertex v and every i ∈ [m], pv (i ) ∈ J(1±ε)/mK. We say that D is an independent
distribution if the probability of every assignment ϕ in D equals exactly

∏
v∈V ′ pv (ϕ(v)).

Concentration inequality. We use the following version of the Chernoff bound that depends
on an upper bound on the expectation of the underlying independent random variables. It
can be shown by combining two applications of the more standard version.

Lemma 2.7 (Chernoff bound). Let X1, . . . , Xk be independently distributed random variables

taking values in [0,1]. Let X
def= X1 +·· ·+Xk and let U ≥ 0 be an upper bound on the expectation

of X , i.e., E[X ] ≤U . For any δ ∈ [0,1], Pr(|X −E[X ]| > δU ) ≤ 2exp(−δ2U /3).

Concise range notation. Multiple times throughout this chapter, we want to denote a range
around some value. Instead of writing, say, [x−δ, x+δ], we introduce a more concise notation.
In this specific case, we would simply write Jx ±δK. More formally, let E be a numerical
expression that apart from standard operations also contains a single application of the binary
or unary operator ±. We create two standard numerical expressions from E : E− and E+ that

replace ± with − and +, respectively. Now we define JEK def= [min{E−,E+},max{E−,E+}].

As another example, consider E = p
101±20. We have E− = p

101−20 = 9 and E+ =p
101+20 = 11. Hence

qp
101±20

y= [min{9,11},max{9,11}] = [9,11].

We now show the properties of EmulatePhase that we use to obtain our final parallel
algorithm.

2.5.1 Outline of the Section

We start by showing that EmulatePhase computes a large matching as follows. Each vertex
belonging to Hi or Fi that EmulatePhase removes in the calls to LocalPhase can decrease
the maximum matching size in the graph induced by the remaining vertices by one. We show
that the matching that EmulatePhase constructs in the process captures on average at least a
constant fraction of that loss. We also show that the effect of removing Ri is negligible. More
precisely, in Section 2.5.2 we prove the following lemma.

Lemma 2.8. Let ∆, G? = (V?,E?), m, and D be parameters for EmulatePhase such that

• D is an independent and ε-near uniform distribution on assignments of vertices V? to
[m] for ε ∈ [0,1/200],

• ∆
m ≥ 4000µ−2

R ln2 n,

• the maximum degree of a vertex in G? is at most 3
2∆.

For each i ∈ [m], let Hi , Fi , and Mi be the sets constructed by LocalPhase for the i -th induced
subgraph. Then, the following relationship holds for their expected sizes:∑

i∈[m]
E [|Hi ∪Fi |] ≤ n−9 +1200

∑
i∈[m]

E [|Mi |] .
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Note that Lemma 2.8 requires that the vertices are distributed independently and near
uniformly in the m sets. This is trivially the case right after the vertices are partitioned
independently at random. However, in the final algorithm, after we partition the vertices, we
run multiple phases on each machine. In the rest of this section we show that running a single
phase preserves independence of vertex distribution and only slightly disturbs the uniformity
(Lemma 2.9 and Lemma 2.10). As we have mentioned before, independence stems from the
fact that we use reference sets to estimate vertex degrees. We discard them at the end and
condition on them, which leads to the independence of the distribution of vertices that are
not removed.

Lemma 2.9. Let D be an independent distribution of assignments of vertices in V? to [m]. Let C

be a non-zero probability m-configuration that can be constructed by EmulatePhase for D. Let
V ′
? be the set of vertices of V? that are not fixed by C . Then D[C ] is an independent distribution

of vertices in V ′
? on [m].

Independence of the vertex assignment is a very handy feature that allows us to use
Chernoff-like concentration inequalities in the analysis of multiple phase emulation. How-
ever, although the vertex assignment of non-removed vertices remains independent across
machines from phase to phase, as stated by Lemma 2.9, their distribution is not necessarily
uniform. Fortunately, we can show it is near uniform.
The proof of near uniformity is the most involved proof in this chapter. In a nutshell, the
proof is structured as follows. We pick an arbitrary vertex v that has not been removed and
show that with high probability it has the same number of neighbors in all sets Ri . The same
property holds for v ’s neighbors in all sets Hi . We use this to show that the probability of a
fixed configuration of sets removed in a single phase is roughly the same for all assignments of
v to subgraphs. In other words, if v was distributed nearly uniformly before the execution of
EmulatePhase, it is distributed only slightly less uniformly after the execution.

Lemma 2.10. Let ∆, G? = (V?,E?), m, and D be parameters for EmulatePhase such that

• D is an independent and ε-near uniform distribution on assignments of vertices V? to
[m] for ε ∈ [0, (200lnn)−1],

• ∆
m ≥ 4000µ−2

R ln2 n.

Let C be an m-configuration constructed by EmulatePhase. With probability at least 1−n−4

both the following properties hold:

• The maximum degree in the graph induced by the vertices not fixed in C is bounded by
3
4∆.

• D[C ] is 60α
((
∆
m

)−1/4 +ε
)
-near uniform.

2.5.2 Expected Matching Size

Now we prove Lemma 2.8, i.e. we show that EmulatePhase computes a large matching. In the
proof we argue that the expected total size of sets Hi and Fi is not significantly impacted by
relatively low-degree vertices classified as heavy or by an unlucky assignment of vertices to
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subgraphs resulting in local vertex degrees not corresponding to global degrees. Namely, we
show that the expected number of friends a heavy vertex adds is O(1) and at the same time the
probability that the vertex gets matched isΩ(1).

Lemma 2.8. Let ∆, G? = (V?,E?), m, and D be parameters for EmulatePhase such that

• D is an independent and ε-near uniform distribution on assignments of vertices V? to
[m] for ε ∈ [0,1/200],

• ∆
m ≥ 4000µ−2

R ln2 n,

• the maximum degree of a vertex in G? is at most 3
2∆.

For each i ∈ [m], let Hi , Fi , and Mi be the sets constructed by LocalPhase for the i -th induced
subgraph. Then, the following relationship holds for their expected sizes:∑

i∈[m]
E [|Hi ∪Fi |] ≤ n−9 +1200

∑
i∈[m]

E [|Mi |] .

Proof. We borrow more notation from EmulatePhase and the m executions of LocalPhase
initiated by it. For i ∈ [m], Vi is the set inducing the i -th subgraph. Value ∆? = ∆

m is the
rescaled threshold passed to the executions of LocalPhase. Ri is the reference set created by
LocalPhase for the i -th induced subgraph.

For each induced subgraph, LocalPhase computes a maximal matching Mi in Line 5.
While such a matching is always large—its size is at least half the maximum matching size—it
is hard to relate its size directly to the sizes of Hi and Fi . Therefore, we first analyze the size of a
matching that would be created by MatchHeavy(G?[Hi ∪Fi ], Hi ,Fi ). We refer to this matching
as M̃i and we later use the inequality

∣∣M̃i
∣∣≤ 2 |Mi |.

We partition each Hi , i ∈ [m], into two sets: H ′
i and H ′′

i . H ′
i is the subset of vertices in Hi of

degree less than 1
8∆ in G?. H ′′

i ,t+1 is its complement, i.e., H ′′
i

def= Hi \ H ′
i . We start by bounding

the expected total size of sets H ′
i . What is the probability that a given vertex v of degree less

than 1
8∆ is included in

⋃
i∈[m] Hi ? Suppose that v ∈Vk , where k ∈ [m]. The expected number

of v ’s neighbors in Rk is at most (1+ ε) ·µR · 1
8∆/m ≤ 3

16µR∆? due to the independence and
ε-near uniformity of D[C ]. Using the independence, Lemma 2.7, and the lower bound on ∆?,
we obtain the following bound:

Pr

[
µR d̂v > 1

4
µR∆?

]
≤ 2exp

(
−1

3
·
(

1

3

)2

· 3

16
µR∆?

)
≤ 2exp(−27lnn) = 2n−27.

If d̂v ≤ 1
4∆?, the probability that v is selected to Hk is at most µH (d̂v /∆?) ≤µH (1/4) ≤ 1

2 n−12.
Hence v is selected to Hk —and therefore to H ′

k —with probability at most 2n−27+ 1
2 n−12 ≤ n−12.

This implies that
∑

i∈[m]E
[∣∣H ′

i

∣∣]≤ n ·n−12 = n−11.

We also partition the sets of friends, Fi for i ∈ [m], into two sets each: F ′
i and F ′′

i . This
partition is based on the execution of MatchHeavy for the i -th subgraph. In Line 1, this
algorithm selects for every vertex v ∈ Fi a random heavy neighbor v? ∈ Hi . If v? ∈ H ′

i , we
assign v to F ′

i . Analogously, if v? ∈ H ′′
i , we assign v to F ′′

i . Obviously, a heavy vertex in H ′
i

can be selected only if H ′
i is non-empty. By Markov’s inequality and the upper bound on∑

i∈[m]E
[∣∣H ′

i

∣∣], the probability that at least one set H ′
i is non-empty is at most n−11. Even if
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for all i ∈ [m], all vertices in Fi select a heavy neighbor in H ′
i whenever it is available, the total

expected number of vertices in sets F ′
i is at most

∑
i∈[m]E

[∣∣∣F ′
i ,t+1

∣∣∣]≤ n ·n−11 = n−10.

Before we proceed to bounding sizes of the remaining sets, we prove that with high
probability, all vertices have a number of neighbors close to the expectation. Let ϕ : V?→ [m]
be the assignment of vertices to subgraphs. We define E as the event that for all v ∈V?,∣∣∣∣ 1

m
|N (v)∩V?|−

∣∣N (v)∩Vϕ(v)
∣∣∣∣∣∣≤ 1

16
∆?.

Consider first one fixed v ∈ V?. The degree of v in G? is |N (v)∩V?| ≤ 3
2∆. Due to the near-

uniformity and independence,∣∣∣∣ 1

m
|N (v)∩V?|−E

[∣∣N (v)∩Vϕ(v)
∣∣]∣∣∣∣≤ ε · 3

2

∆

m
≤ 3

400
∆?.

This in particular implies that E
[∣∣N (v)∩Vϕ(v)

∣∣]≤ (3
2 + 3

400

)
∆? ≤ 2∆?. Using the independence

of D, Lemma 2.7, and the lower bound on ∆? (i.e., ∆? = ∆
m ≥ 4000µ−2

R ln2 n = 4 ·1015 · ln4 n),

Pr

[∣∣E[∣∣N (v)∩Vϕ(v)
∣∣]− ∣∣N (v)∩Vϕ(v)

∣∣∣∣> 1

20
∆?

]
≤ 2exp

(
−1

3
·
(

1

20
· 1

2

)2

·2∆?

)
≤ 2exp

(−(1012 +3)lnn
)

≤ n−(1012+2) ≤ n−12.

As a result, with this probability, we have∣∣∣∣ 1

m
|N (v)∩V?|−

∣∣N (v)∩Vϕ(v)
∣∣∣∣∣∣≤ 1

20
∆?+ 3

400
∆? ≤ 1

16
∆?.

By the union bound, this bound holds for all vertices in V? simultaneously—and hence E

occurs—with probability at least 1−n ·n−12 = 1−n−11.

If E does not occur, we can bound both
∑

i∈[m]

∣∣H ′′
i

∣∣ and
∑

i∈[m]

∣∣F ′′
i

∣∣ by n. This contributes
at most n−11 ·n = n−10 to the expected size of each of these quantities. Suppose now that E

occurs. Consider an arbitrary v ∈ H ′′
i for some i . The number of neighbors of v in Vi lies in the

range
[1

8∆?− 1
16∆?, 3

2∆?+ 1
16∆?

]⊆ [ 1
16∆?,2∆?

]
. Moreover, the expected number of vertices

w ∈ F ′′
i that select v in w? in Line 1 of MatchHeavy is bounded by 2∆? · 1

4∆?
= 1

2 . It follows that

E
[∣∣F ′′

i

∣∣]≤ 1
2 E

[|H ′′
i |

]
, given E . We now lower bound the expected size of M̃i given E . What is

the probability that some vertex w ∈ Fi selects v as w? in MatchHeavy and (v, w) is added to
M̃i ?

This occurs if one of v ’s neighbors w is added to Fi and selects v as w?, and additionally,
v and w are colored blue and red, respectively. The number of v ’s neighbors is at least 1

16∆?.
Since each vertex w in Vi has at most 2∆? neighbors, the number of heavy neighbors of w is
bounded by the same number. This implies that in the process of selecting Fi , only the first
branch in the definition of µF is used and each vertex w is included with probability exactly
equal to the number of its neighbors in Hi divided by 4∆t+1. Then each heavy neighbor of w
is selected as w? with probability one over the number of heavy neighbors of w . What this
implies is that each neighbor w of v is selected for Fi and selects v as w? with probability
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exactly (4∆?)−1. Hence the probability that v is not selected as w? by any of its at least 1
16∆?

neighbors w can be bounded by(
1− 1

4∆?

) 1
16∆? ≤ exp

(
− 1

4∆?
· 1

16
∆?

)
= e−1/64.

Therefore the probability that v is selected by some vertex w ∈ Fi as w? is at least 1−e−1/64 ≥
1/100. Then with probability 1/4, these two vertices have appropriate colors and this or an-
other edge incident to v with the same properties is added to M̃i . In summary, the probability
that an edge (v, w) for some w as described is added to M̃i is at least 1/400. Since we do not
count any edge in the matching twice for two heavy vertices, by the linearity of expectation
E
[∣∣M̃i

∣∣]≥ 1
400 E

[|H ′′
i |

]
given E . Overall, given E , we have

∑
i∈[m]

E
[∣∣H ′′

i

∣∣+ ∣∣F ′′
i

∣∣]≤ 3

2

∑
i∈[m]

E
[∣∣H ′′

i

∣∣]≤ 600
∑

i∈[m]
E
[∣∣M̃i

∣∣] .

In general, without conditioning on E ,∑
i∈[m]

E
[∣∣H ′′

i

∣∣+ ∣∣F ′′
i

∣∣]≤ 2 ·n−10 +600
∑

i∈[m]
E
[∣∣M̃i

∣∣] .

We now combine bounds on all terms to finish the proof of the lemma.∑
i∈[m]

E [|Hi ∪Fi |] ≤
∑

i∈[m]
E
[∣∣H ′

i

∣∣+ ∣∣F ′
i

∣∣+ ∣∣H ′′
i

∣∣+ ∣∣F ′′
i

∣∣]
≤ n−11 +n−10 +2n−10 +600

∑
i∈[m]

E
[∣∣M̃i

∣∣]
≤ n−9 +1200

∑
i∈[m]

E [|Mi |] .

2.5.3 Independence

Next we prove Lemma 2.9. We start with an auxiliary lemma that gives a simple criterion under
which an independent distribution remains independent after conditioning on a random
event. Consider a random vector with independently distributed coordinates. Suppose that
for any value of the vector, a random event E occurs when all coordinates “cooperate”, where
each coordinate cooperates independently with probability that depends only on the value
of that coordinate. We then show that the distribution of the vector’s coordinates given E

remains independent.

Lemma 2.11. Let k be a positive integer and A an arbitrary finite set. Let X = (X1, . . . , Xk ) be
a random vector in Ak with independently distributed coordinates. Let E be a random event
of non-zero probability. If there exist functions pi : A → [0,1], for i ∈ [k], such that for any
x = (x1, . . . , xk ) ∈ Ak appearing with non-zero probability,

Pr[E |X = x] =
k∏

i=1
pi (xi ),

then the conditional distribution of coordinates in X given E is independent as well.

29



Chapter 2. Approximate Maximum Matchings in Parallel Computation

Proof. Since the distribution of coordinates in X is independent, there are k probability mass
functions p ′

i : A → [0,1], i ∈ [k], such that for every x = (x1, . . . , xk ) ∈ Ak , Pr[X = x] =∏k
i=1 p ′

i (xi ).
The probability of E can be expressed as

Pr[E ] = ∑
x=(x1,...,xk )∈Ak

Pr[E ∧X = x] = ∑
x=(x1,...,xk )∈Ak

Pr[X=x]>0

Pr[E |X = x] ·Pr[X = x]

= ∑
x=(x1,...,xk )∈Ak

k∏
i=1

pi (xi )p ′
i (xi ) =

k∏
i=1

∑
y∈A

pi (y)p ′
i (y).

Note that since the probability of E is positive, each multiplicative term
∑

y∈A pi (y)p ′
i (y),

i ∈ [k], in the above expression is positive. We can express the probability of any vector
x = (x1, . . . , xk ) ∈ Ak given E as follows:

Pr[X = x|E ] = Pr[E ∧X = x]

Pr[E ]
= Pr[E |X = x] ·Pr[X = x]

Pr[E ]

=
∏k

i=1 pi (xi )p ′
i (xi )∏k

i=1

∑
y∈A pi (y)p ′

i (y)
=

k∏
i=1

pi (xi )p ′
i (xi )∑

y∈A pi (y)p ′
i (y)

.

We define p ′′
i : A → [0,1] as p ′′

i (x)
def= pi (xi )p ′

i (xi )/
∑

y∈A pi (y)p ′
i (y) for each i ∈ [k]. Each p ′′

i

is a valid probability mass function on A. As a result we have Pr[X = x|E ] = ∏k
i=1 p ′′

i (xi ),
which proves that the distribution of coordinates in X given E is still independent with each
coordinate distributed according to its probability mass function p ′′

i .

We now prove Lemma 2.9 by applying Lemma 2.11 thrice. We refer to functions pi , that
describe the probability of each coordinate cooperating, as cooperation probability functions.

Lemma 2.9. Let D be an independent distribution of assignments of vertices in V? to [m]. Let C

be a non-zero probability m-configuration that can be constructed by EmulatePhase for D. Let
V ′
? be the set of vertices of V? that are not fixed by C . Then D[C ] is an independent distribution

of vertices in V ′
? on [m].

Proof. C can be expressed as

C = (
{R?

i }i∈[m], {H?
i }i∈[m], {F?

i }i∈[m]
)

for some subsets R?
i , H?

i , and F?
i of V?, where i ∈ [m]. We write Φ to denote the random

assignment of vertices to sets selected in Line 1 of EmulatePhase. Φ is a random variable
distributed according to D.

Let ER be the event that for all i ∈ [m], the reference set Ri generated for the i -th induced
subgraph by LocalPhase equals exactly R?

i . A vertex v that is assigned to a set Vi is included
in Ri with probability exactly µR , independently of other vertices. Hence once we fix an
assignmentϕ : V?→ [m] of vertices to sets Vi , we can express the probability of ER as a product
of probabilities that each vertex cooperates. More formally, Pr[ER |Φ=ϕ] =∏

v∈V? qv (ϕ(v)) for
cooperation probability functions qv : [m] → [0,1] defined as follows.

• If v ∈ ⋃
i∈[m] R?

i , there is exactly one i ∈ [m] such that v ∈ R?
i . If v is not assigned to

Vi , ER cannot occur. If it is, v cooperates with ER with probability exactly µR , i.e., the

30



2.5. Emulation of a Phase in a Randomly Partitioned Graph

probability of the selection for Ri . For this kind of v , the cooperation probability function
is

qv (i )
def=

{
µR if v ∈ R?

i ,

0 if v 6∈ R?
i .

• If v 6∈ ⋃
i∈[m] R?

i , v cooperates with ER if it is not selected for Rϕ(v), independently of
its assignment ϕ(v), which happens with probability exactly 1−µR . Therefore, the

cooperation probability can be defined as qv (i )
def= 1−µR for all i ∈ [m].

We invoke Lemma 2.11 to conclude that the conditional distribution of values ofΦ given ER is
independent as well.

We now define an event EH that both ER occurs and for all i ∈ [m], Hi , the set of heavy
vertices constructed for the i -th subgraph equals exactly H?

i . We want to show that the
conditional distribution of values of Φ given EH is independent. Note that if Φ is selected
from the conditional distribution given ER (i.e., all sets Ri are as expected) and we fix the
assignment φ : V?→ [m] of vertices to sets Vi , then each vertex v ∈V? is assigned to Hφ(v)—
this the only set Hi to which it can be assigned—independently of other vertices. As a result,
we can express the probability of EH given ER and ϕ being the assignment as a product of
cooperation probabilities for each vertex. More precisely, Pr[EH |Φ=ϕ,ER ] =∏

v∈V? q ′
v (ϕ(v))

for cooperation probability functions q ′
v : [m] → [0,1] defined as follows, where ∆? is the

threshold used in the m executions of LocalPhase.

• If v ∈ ⋃
i∈[m] H?

i , then there is exactly one i such that v ∈ H?
i . EH can only occur if

v is included in the corresponding Hi . This cannot happen if v is not assigned to
the corresponding Vi by ϕ. If v is assigned to this Vi , it has to be selected for Hi ,
which happens with probability µH

(|N (v)∩R?
i |/(µR∆?)

)
. The cooperation probability

function can be written in this case as

q ′
v (i )

def=
{
µH (|N (v)∩R?

i |/(µR∆?)) if v ∈ H?
i ,

0 if v 6∈ H?
i .

• If v 6∈⋃
i∈[m] H?

i , v cannot be included in Hi corresponding to the set Vi to which it is
assigned for EH to occur. This happens with probability 1−µH (|N (v)∩R?

i |/(µR∆?)).

Hence, we can define q ′
v (i )

def= 1−µH (|N (v)∩R?
i |/(µR∆?)) for all i ∈ [m].

We can now invoke Lemma 2.11 to conclude that the distribution of values ofΦ given EH is
independent.

Finally, we define EF to be the event that both EH occurs and for each i ∈ [m], Fi , the set
of friends selected for the i -th induced subgraph, equals exactly F?

i . We observe that once
Φ is fixed to a specific assignment ϕ : V? → [m] and EH occurs (i.e., all sets Ri and Hi are
as in C ), then each vertex is independently included in Fϕ(v) with some specific probability
that depends only on Hϕ(v), which is already fixed. In this setting, we can therefore express
the probability of EF , which exactly specifies the composition of sets Fi , as a product of
values provided by some cooperation probability functions q ′′

v : [m] → [0,1]. More precisely,
Pr[EF |Φ=ϕ,EH ] =∏

v∈V? q ′′
v (ϕ(v)) for q ′′

v that we define next.
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• If v ∈⋃
i∈[m] F?

i , then there is exactly one i such that v ∈ F?
i . EF cannot occur if v is not

assigned to Vi and selected for Fi . Hence, the cooperation probability function for v is

q ′′
v (i )

def=
{
µF (|N (v)∩H?

i |/∆?) if v ∈ F?
i ,

0 if v 6∈ F?
i .

• If v 6∈⋃
i∈[m] F?

i , to whichever set Vi vertex v is assigned, it should not be included in Fi

in order for EF to occur. Hence, q ′′
v (i )

def= 1−µF (|N (v)∩H?
i?,t |/∆t ).

We invoke Lemma 2.11 to conclude that the distribution of values ofΦ given EF is indepen-
dent as well. This is a distribution on assignments for the entire set V?. If we restrict it to
assignments of V ′

? ⊆V?, we obtain a distribution that first, is independent as well, and second,
equals exactly D[C ].

2.5.4 Near Uniformity

In this section we prove Lemma 2.10. We begin by showing a useful property of µH (see
Table 2.2 for definition). Recall that GlobalAlg selects H , the set of heavy vertices, by taking
all vertices of degree at least ∆/2. In LocalPhase the degree estimate of each vertex depends
on the number of neighbors in the reference set in the vertex’s induced subgraph. We want the
decision taken for each vertex to be approximately the same, independently of which subgraph
it is assigned to. Therefore, we use µH —which specifies the probability of the inclusion in
the set of heavy vertices—which is relatively insensitive to small argument changes. The next
lemma proves that this is indeed the case. Small additive changes to the parameter x to µH

have small multiplicative impact on both µH (x) and 1−µH (x).

Lemma 2.12 (Insensitivity of µH ). Let δ ∈ [0, (α/2)−1] = [0, (48lnn)−1]. For any pair x and x ′ of
real numbers such that |x −x ′| ≤ δ,

µH (x ′) ∈ JµH (x)(1±αδ)K

and

1−µH (x ′) ∈ J(1−µH (x))(1±αδ)K .

Proof. We define an auxiliary function f :R→ [0,1]:

f (r )
def=

{
1
2 exp

(
α
2 r

)
if r ≤ 0,

1− 1
2 exp

(−α
2 r

)
if r > 0.

It is easy to verify that for all r ∈R, µH (r ) = f (r −1/2) and 1−µH (r ) = f (−(r −1/2)). Therefore,
in order to prove the lemma, it suffices to prove that for any r and r ′ such that |r − r ′| ≤ δ,

f (r )(1−αδ) ≤ f (r ′) ≤ f (r )(1+αδ), (2.1)

i.e., a small additive change to the argument of f has a limited multiplicative impact on the
value of f .
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Note that f is differentiable in both (−∞,0) and (0,∞). Additionally, it is continuous in the
entire range—the left and right branch of the function meet at 0—and both the left and right
derivatives at 0 are equal. This implies that it is differentiable at 0 as well. Its derivative is

f ′(r ) =
{
α
4 ·exp

(
α
2 r

)
if r ≤ 0,

α
4 ·exp

(−α
2 r

)
if r > 0,

which is positive for all r , and therefore, f is strictly increasing. Note that f ′ is increasing in
(−∞,0] and decreasing in [0,∞). Hence the global maximum of f ′ equals f ′(0) =α/4.

In order to prove Inequality 2.1 for all r and r ′ such that |r − r ′| ≤ δ, we consider two cases.
Suppose first that r ≥ 0. By the upper bound on the derivative of f ,

f (r )− α

4
· |r − r ′| ≤ f (r ′) ≤ f (r )+ α

4
· |r − r ′|.

Since r ≥ 0, f (r ) ≥ 1/2. This leads to

f (r )− f (r ) · α
2
· |r − r ′| ≤ f (r ′) ≤ f (r )+ f (r ) · α

2
· |r − r ′|.

By the bound on |r − r ′|,
f (r )(1−αδ) ≤ f (r ′) ≤ f (r )(1+αδ),

which finishes the proof in the first case.

Suppose now that r < 0. Since f is increasing, it suffices to bound the value of f from
below at r −δ and from above and at r +δ. For r −δ, we obtain

f (r −δ) = 1

2
exp

(α
2

(r −δ)
)
= f (r )exp

(
−α

2
δ
)

≥ f (r )
(
1− α

2
δ
)
≥ f (r )(1−αδ).

For r +δ, let us first define a function g :R→R as

g (y)
def= 1

2
exp

(α
2

y
)

.

For y ≤ 0, f (y) = g (y). For y > 0, g ′(y) ≥ f ′(y) and hence, for any y ∈R, g (y) ≥ f (y). As a result,
we obtain

f (r +δ) ≤ g (r +δ) = 1

2
exp

(α
2

(r +δ)
)
= f (r ) ·exp

(α
2
δ
)

.

By the bound on δ in the lemma statement, α
2 δ ≤ 1. It follows from the convexity of the

exponential function that for any y ∈ [0,1], exp(y) ≤ y ·exp(1)+ (1− y) ·exp(0) ≤ 3y + (1− y) =
1+2y . Continuing the reasoning,

f (r +δ) ≤ f (r ) ·
(
1+2 · α

2
δ
)
= f (r )(1+αδ),

which finishes the proof of Inequality (2.1).

The main result of this section is Lemma 2.10 that states that if a distribution D of vertex
assignments is near uniform, then EmulatePhase constructs a configuration C such that
D[C ] is near uniform as well, and also, the maximum degree in the graph induced by the
vertices not removed by EmulatePhase is bounded.
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Lemma 2.10. Let ∆, G? = (V?,E?), m, and D be parameters for EmulatePhase such that

• D is an independent and ε-near uniform distribution on assignments of vertices V? to
[m] for ε ∈ [0, (200lnn)−1],

• ∆
m ≥ 4000µ−2

R ln2 n.

Let C be an m-configuration constructed by EmulatePhase. With probability at least 1−n−4

both the following properties hold:

• The maximum degree in the graph induced by the vertices not fixed in C is bounded by
3
4∆.

• D[C ] is 60α
((
∆
m

)−1/4 +ε
)
-near uniform.

Proof overview (of Lemma 2.10). This is the most intricate proof of the entire chapter.
We therefore provide a short overview. First, we list again the variables in EmulatePhase

and LocalPhase to which we refer in the proof and define additional convenient symbols.
Then we introduce five simple random events (Events 1–5) that capture properties needed to
prove Lemma 2.10. In Claim 2.13, we show that the probability of all these events occurring
simultaneously is high. The proof of the claim follows mostly from a repetitive application
of the Chernoff bound. In the next claim, Claim 2.14, we show that the occurrence of all the
events has a few helpful consequences. First, high degree vertices get removed in the execution
of EmulatePhase (which is one of our final desired properties). Second, each vertex v that is
not fixed in C has a very similar number of neighbors in all sets Ri and it has a very similar
number of neighbors in all sets Hi . In the final proof of Lemma 2.10, we use the fact that this
implies that to whichever set Vi vertex v was assigned in EmulatePhase, the probability of its
removal in EmulatePhase was more or less the same. This leads to the conclusion that if v
was distributed nearly uniformly in D, it is distributed only slightly less uniformly in D[C ].

Notation. To simplify the presentation, for the rest of Section 2.5.4, we assume that ∆, G? =
(V?,E?), m, and D are the parameters to EmulatePhase as in the statement of Lemma 2.10.
Additionally, for each i ∈ [m], Ri , Hi , and Fi are the sets constructed by LocalPhase for the
i -th subgraph in the execution of EmulatePhase. We also write C to denote the corresponding
m-configuration, i.e., C = (

{Ri }i∈[m], {Hi }i∈[m], {Fi }i∈[m]
)
. Furthermore, for each v ∈V?, d̂v is

the estimate of v ’s degree in the subgraph to which it was assigned. This estimate is computed
in Line 2 of LocalPhase. We also use ∆? to denote the rescaled threshold passed in all calls to
LocalPhase, i.e., ∆? = ∆

m .

We also introduce additional notation, not present in EmulatePhase or LocalPhase. For
each v ∈ V?, dv

def= |N (v)∩V?|, i.e., dv is the degree of v in G?. For each vertex v ∈ V?, we

also introduce a notion of its weight: wv
def= µH (dv /∆), which can be seen as a very rough

approximation of v ’s probability of being selected for the set of heavy vertices. For any v ∈V?
and U ⊆V?, we also introduce notation for the total weight of v ’s neighbors in U :

Wv (U )
def= ∑

u∈N (v)∩U
wu .
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Finally, for all i ∈ [m] and v ∈ V?, we also introduce a slightly less intuitive notion of the
expected number of heavy neighbors of v in the i -th subgraph after the degree estimates are
fixed in Line 2 of LocalPhase and before vertices are assigned to the heavy set in Line 3:

hv,i
def= ∑

u∈N (v)∩Vi

µH
(
d̂u/∆?

)
.

Obviously, each hv,i is a random variable.

Convenient random events. We now list five random events that we hope all to occur si-
multaneously with high probability. The first event intuitively is the event that high-degree
vertices are likely to be included in the set of heavy vertices in Line 3 of LocalPhase.

Event 1

For each vertex v ∈V? such that dv ≥ 3
4∆,

µH
(
d̂v /∆?

)≥ 1− 1

2
n−6.

Another way to define this event would be to state that d̂v for such vertices v is high, but
this form is more suitable for our applications later. The next event is the event that all such
vertices are in fact classified as heavy.

Event 2

Each vertex v ∈V? such that dv ≥ 3
4∆ belongs to

⋃
i∈[m] Hi .

The next event is the event that low-degree vertices have a number of neighbors in each set Ri

close to the mean. This implies that if we were able to move a low-degree vertex v to Vi , for
any i ∈ [m], its estimated degree d̂v would not change significantly.

Event 3

For each vertex v ∈V? such that dv < 3
4∆ and each i ∈ [m],∣∣∣∣ 1

µR
|N (v)∩Ri |− dv

m

∣∣∣∣≤∆3/4
? + 3

4
ε∆?.

As a reminder, we use Wv (U ) to denote the expected number of vertices in N (v)∩U that are
selected as heavy, where every vertex u is selected with respect to its global degree du . The
next event shows that Wv (Vi ) does not deviate much from its mean.

Event 4

For each vertex v ∈V? such that dv < 3
4∆ and each i ∈ [m],

|Wv (Vi )−Wv (V?)/m| ≤∆3/4
? + 3

4
ε∆?.

Recall that hv,i intuitively expresses the expected number of v ’s neighbors in the i -th induced
subgraph at some specific stage in the execution of LocalPhase for the i -th induced subgraph.
The final event is the event that for all bounded hv,i , the actual number of v ’s neighbors in Hi

does not deviate significantly from hv,i .
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Event 5

For each vertex v ∈V? and each i ∈ [m], if hv,i ≤ 2∆?, then∣∣|N (v)∩Hi |−hv,i
∣∣≤∆3/4

? .

High probability of the random events. We now show that the probability of all the events
occurring is high. The proof follows mostly via elementary applications of the Chernoff bound.

Claim 2.13. If ε ∈ [0,1/100] and ∆
m ≥ 4000µ−2

R ln2 n, then Events 1–5 occur simultaneously with
probability at least 1−n−4.

Proof. We consider all events in order and later show by the union bound that all of them hold
simultaneously with high probability. In the proof of the lemma, we extensively use the fact
that ∆? = ∆

m ≥ 4000µ−2
R ln2 n = 4 ·1015 · ln4 n.

First, we consider Event 1 and Event 2, which we handle together. Consider a vertex
v such that dv ≥ 3

4∆. Let i? be the index of the set to which it is assigned. Since D is ε-
near uniform, the expectation of |N (v)∩Ri? |, the number of v ’s neighbors in Ri? , is at least
(1− ε) 3

4µR
∆
m ≥ 297

400µR∆?. Since vertices are both assigned to machines independently and
included in the reference set independently as well, we can apply Lemma 2.7 to bound the
deviation with high probability. The probability that the number of neighbors is smaller than
9

10 · 297
400µR∆? ≥ 5

8µR∆? is at most

2exp

(
−1

3
·
(

1

10

)2

· 297

400
µR∆?

)
≤ 2exp

(
− 1

405
µR∆?

)
≤ 2n−9 ≤ 1

2
n−6.

Hence with probability at least 1− 1
2 n−6, d̂v ≥ 5

8∆? andµH
(
d̂v /∆?

)≥ 1− 1
2 n−6. If this is the case,

v is not included in the set of heavy vertices in Line 3 of LocalPhase with probability at most
1
2 n−6. Therefore, v has the desired value of µH

(
d̂v /∆?

)
and belongs to Hi? with probability at

least 1−n−6. By the union bound, this occurs for all high degree vertices with probability at
least 1−n−5, in which case both Event 1 and Event 2 occur.

We now show that Event 3 occurs with high probability. Let v be an arbitrary vertex such

that dv < 3
4∆ and let i ∈ [m]. Let Xv,i

def= |N (v)∩Ri |. Xv,i is a random variable. Since D is
ε-near uniform, E

[
Xv,i

] ∈ J(1±ε)µR dv /mK. In particular, due to the bounds on dv and ε,
E [Xv,i ] ≤µR∆?. Due to the independence, we can use Lemma 2.7 to bound the deviation of
Xv,i from its expectation. We have

Pr
(|Xv,i −E[Xv,i ]| >µR∆

3/4
?

)≤ 2exp

(
−1

3
·
(

1

∆1/4
?

)2

·µR∆?

)

= 2exp

(
−1

3
µR∆

1/2
?

)
≤ 2n−21.

Hence with probability 1−2n−21, we have∣∣∣∣Xv,i −µR
dv

m

∣∣∣∣≤ ∣∣Xv,i −E[Xv,i ]
∣∣+ ∣∣∣∣E[Xv,i ]−µR

dv

m

∣∣∣∣≤µR∆
3/4
? +εµR

dv

m

≤µR∆
3/4
? + 3

4
εµR∆?.
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By dividing both sides by µR , we obtain the desired bound∣∣∣∣ Xv,i

µR
− dv

m

∣∣∣∣= ∣∣∣∣ 1

µR
|N (v)∩Ri |− dv

m

∣∣∣∣≤∆3/4
? + 3

4
ε∆?.

By the union bound, this holds for all v and i of interest—and therefore, Event 3 occurs—with
probability at least 1−|V?| ·m ·2n−21 ≥ 1−n−5.

We now move on to Event 4. Consider a vertex v such that dv < 3
4∆ and i ∈ [m]. Note

that since the weight of every vertex is at most 1, Wv (V?)/m ≤ dv /m < 3
4∆?. Since D[C ] is

ε-near uniform, E [Wv (Vi )] ∈ J(1±ε)Wv (V?)/mK. In particular, E [Wv (Vi )] ≤ 101
100Wv (V?)/m ≤

101
100 · 3

4∆? ≤∆?. Since vertices are assigned to machines independently, we can apply Lemma 2.7
to bound the deviation of Wv (Vi ) from the expectation:

Pr
(|Wv (Vi )−E [Wv (Vi )]| >∆3/4

?

)≤ 2exp

(
−1

3
·
(

1

∆1/4
?

)2

·∆?
)

= 2exp

(
−1

3
∆1/2
?

)
≤ 2n−21.

As a result, with probability at least 1−2n−21,

|Wv (Vi )−Wv (V?)/m| ≤ |Wv (Vi )−E [Wv (Vi )]|+ |E [Wv (Vi )]−Wv (V?)/m|
≤∆3/4

? +εWv (V?)/m ≤∆3/4
? +εdv /m ≤∆3/4

? + 3

4
ε∆?.

By the union bound, this holds for all v and i of interest—and therefore, Event 4 occurs—with
probability at least 1−|V?| ·m ·2n−21 ≥ 1−n−5.

To show that Event 5 occurs with high probability, recall first that hv,i is the expected
number of v ’s neighbors to be added in Line 3 to Hi in the execution of LocalPhase for the
i -th subgraph. Note that the decision of adding a vertex to Hi is made independently for each
neighbor of v . Fix a v ∈V? and i ∈ [m] such that hv,i ≤ 2∆?. We apply Lemma 2.7 to bound the
probability of a large deviation from the expectation:

Pr
(∣∣|N (v)∩Hi |−hv,i

∣∣>∆3/4
?

)≤ 2exp

(
−1

3
·
(

1

2∆1/4
?

)2

·2∆?

)

= 2exp

(
−1

6
∆1/2
?

)
≤ 2n−10.

By the union bound the probability that this bound does not hold for some v and i such that
hv,i ≤ 2∆? is by the union bound at most |V?| ·m ·2n−10 ≤ n−5. Hence, Event 5 occurs with
probability at least 1−n−5.

In summary, Events 1–5 occur simultaneously with probability at least 1−4 ·n−5 ≥ 1−n−4

by another application of the union bound.

Consequences of the random events. We now show that if all the random events occur,
then a few helpful properties hold for every vertex v that is not fixed by the constructed
configuration C . Namely, v ’s degree is at most 3

4∆, the number of v ’s neighbors is similar in all
sets Ri is approximately the same, and the number of v ’s neighbors is similar in all sets Hi .
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Claim 2.14. If Events 1–5 occur for ε ∈ [0, (200lnn)−1] and ∆
m ≥ 4000µ−2

R ln2 n, then the following
properties hold for every vertex v ∈V? that is not fixed by C :

1. dv < 3
4∆.

2. There exists χv such that for all i ∈ [m],

|N (v)∩Ri |/µR ∈
s
χv ±

(
∆3/4
? + 3

4
ε∆?

){
.

3. There exists ψv ∈ [
0, 3

4∆?
]

such that for all i ∈ [m],

|N (v)∩Hi | ∈
q
ψv ±α

(
∆3/4
? +ε∆?

)y
.

Proof. We use in the proof of the claim the fact that ∆? = ∆
m ≥ 4000µ−2

R ln2 n = 4 ·1015 · ln4 n. To
prove the lemma, we fix a vertex v that is not fixed by C . The first property is directly implied
by Event 2. Suppose that dv ≥ 3

4∆. Then v is included in the Hi corresponding to the subgraph
to which it has been assigned and v is fixed by C . We obtain a contradiction that implies that
dv < 3

4∆.

For the second property, we now know that dv < 3
4∆. The property follows then directly

from Event 3 with χv
def= dv /m.

The last property requires a more complicated reasoning. We set ψv
def= Wv (V?)/m < 3

4∆?.
Consider any i ∈ [m]. By Event 4,

Wv (Vi ) ∈
s
ψv ±

(
∆3/4
? + 3

4
ε∆?

){
. (2.2)

Consider now an arbitrary u ∈V?. We bound the difference between wu =µH (du/∆), which
can be seen as the ideal probability of the inclusion in the set of heavy vertices, andµH

(
d̂u/∆?

)
,

the actual probability of this event in Line 3 of the appropriate execution of LocalPhase. Let

δ?
def= α

(
∆−1/4
? + 3

4ε
)
. We consider two cases.

• If du < 3
4∆, by Event 3, the monotonicity of µH , and Lemma 2.12,

µH
(
d̂u/∆?

) ∈s
µH

(
du

∆
±

(
∆−1/4
? + 3

4
ε

)){
⊆ Jwu · (1±δ?)K .

Note that Lemma 2.12 is applied properly because∆−1/4
? +3

4ε≤ (200lnn)−1+(200lnn)−1 ≤
(48lnn)−1.

• If du ≥ 3
4∆, by Event 1, µH

(
d̂u/∆?

) ∈ [
1− 1

2 n−6,1
]
. Concurrently, wu ∈ [

µH (3/4),1
] =[

1− 1
2 n−12,1

]
. Because ∆? is relatively small, i.e., ∆? ≤ n,

µH
(
d̂u/∆?

) ∈ q
wu

(
1±∆−1/4

?

)y⊆ Jwu · (1±δ?)K ,

which is the same bound as in the previous case.
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It follows from the bound that we just obtained and the definitions of Wv and hv,i that

hv,i =
∑

u∈N (v)∩Vi

µH
(
d̂u/∆?

) ∈
t

(1±δ?) ·
∑

u∈N (v)∩Vi

wu

|

= JWv (Vi ) · (1±δ?)K . (2.3)

We now combine bounds (2.2) and (2.3):

hv,i ∈
[
ψv (1−δ?)−

(
∆3/4
? + 3

4
ε∆?

)
(1+δ?) ,ψv (1+δ?)+

(
∆3/4
? + 3

4
ε∆?

)
(1+δ?)

]
⊆

s
ψv ±

(
ψvδ?+

(
∆3/4
? + 3

4
ε∆?

)
(1+δ?)

){
.

Due to the lower bound on ∆?, we obtain δ? ≤α(
(200lnn)−1 + (200lnn)−1

)≤ 1. This enables
us to simplify and further transform the bound on hv,i :

hv,i ∈
s
ψv ±

(
ψvδ?+2

(
∆3/4
? + 3

4
ε∆?

)){
⊆

s
ψv ±

(
3

4
α∆3/4

? + 9

16
αε∆?+2∆3/4

? + 3

2
ε∆?

){
⊆

s
ψv ±α

(
4

5
∆3/4
? +ε∆?

){
.

By applying the bound on ∆? again, we obtain a bound on the magnitude of the second term
in the above bound:

α

(
4

5
∆3/4
? +ε∆?

)
=α

(
4

5
∆−1/4
? +ε

)
∆? ≤ 96lnn

(
1

200lnn
+ 1

200lnn

)
∆? ≤∆?.

This implies that hv,i ≤ ψv +∆? ≤ 2∆?. The condition in Event 5 holds, and therefore,∣∣|N (v)∩Hi |−hv,i
∣∣≤∆3/4

? . We combine this with the bound on hv,i to obtain

|N (v)∩Hi | ∈
s
ψv ±

(
α

4

5
∆3/4
? +αε∆?+∆3/4

?

){
⊆ q

ψv ±α
(
∆3/4
? +ε∆?

)y
.

Wrapping up the proof of near uniformity. We now finally prove Lemma 2.10. Recall that
it states that an ε-near uniform D is very likely to result in a near uniform D[C ] with a
slightly worse parameter and that all vertices not fixed by C have bounded degree. The proof
combines the last two claims: Claim 2.13 and Claim 2.14. We learn that C , the m-configuration
constructed in the process is very likely to have the properties listed in Claim 2.14. One of
those properties is exactly the property that all vertices not fixed by C have bounded degree.
Hence we have to prove only the near uniformity property. We accomplish this by observing
that the probability of C equal to a specific m-configuration C? with good properties—those
in Claim 2.14—does not depend significantly on to which induced subgraph a given vertex v
not fixed in C? is assigned. This can be used to show that the conditional distribution of v
given that C =C? is near uniform as desired.
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Proof of Lemma 2.10. By combining Claim 2.13 and Claim 2.14, we learn that with probability
at least 1−n−4, all properties listed in the statement of Claim 2.14 hold for C , the configuration
constructed by EmulatePhase. Since one of the properties is exactly the same as in the
statement of Lemma 2.10, it suffices to prove the other one: that D[C ] is 60α

(
∆−1/4
? +ε)-near

uniform for C with this set of properties.

Fix C̃ = (
{R̃i }i∈[m], {H̃i }i∈[m], {F̃i }i∈[m]

)
to be an m-configuration that has non-zero probabil-

ity when EmulatePhase is run for D and has the properties specified by Claim 2.14. Consider
an arbitrary vertex v ∈ V?. In order to prove the near uniformity of D

[
C̃

]
, we show that v

is assigned by it almost uniformly to [m]. Let E be the event that EmulatePhase constructs
C̃ , i.e., C = C̃ . For each i ∈ [m], let E→i be the event that v is assigned to the i -th induced
subgraph. Let p : [m] → [0,1] be the probability mass function describing the probability of
the assignment of v to each of the m subgraphs in D. Obviously, p(i ) = Pr[E→i ] for all i ∈ [m].
Due to the ε-near uniformity of D, p(i ) = q

1
m (1±ε)

y
.

For each i ∈ [m], let qi
def= Pr[E |E→i ]. In order to express all qi ’s in a suitable form, we

conduct a thought experiment. Suppose v were not present in the graph, but the distribution
of all the other vertices in the modified D remained the same. Let q? be the probability of
E , i.e., C = C̃ , in this modified scenario. How does the probability of E change if we add v
back and condition on its assignment to a machine i ? Note first that conditioning on E→i does
not impact the distribution of the other vertices, because vertices are assigned to machines
independently in D. In order for E still to occur in this scenario, v cannot be assigned to any
of R̃i , H̃i , or F̃i , for which it is considered. Additionally, as long as this the case, v does not
impact the behavior of other vertices, which only depends on the content of these sets and
independent randomized decisions to include vertices. As a result we can express qi as a
product of q? and three probabilities: of v not being included in sets R̃i , H̃i , or F̃i .

qi = q? ·
(
1−µR

) ·(1−µH

(∣∣N (v)∩ R̃i
∣∣/µR

∆?

))
·
(

1−µF

(∣∣N (v)∩ H̃i
∣∣

∆?

))
. (2.4)

Using the properties listed in Claim 2.14, we have

∣∣N (v)∩ R̃i
∣∣/µR ∈

s
χv ±

(
∆3/4
? + 3

4
ε∆?

){
,

and ∣∣N (v)∩ H̃i
∣∣ ∈ q

ψv ±α
(
∆3/4
? +ε∆?

)y
,

where χv and ψv are constants independent of machine i to which v has been assigned
and ψ≤ 3

4∆?. In the next step, we use these bounds to derive bounds on the multiplicative
terms in Equation (2.4) that may depend on i . We also repeatedly use the bounds ∆? = ∆

m ≥
4000µ−2

R ln2 n = 4 ·1015 · ln4 n and ε ≤ (200lnn)−1 from the lemma statement. First, due to
Lemma 2.12,

1−µH

(∣∣N (v)∩ R̃i
∣∣/µR

∆?

)
∈

s
1−µH

(
χv

∆?
±

(
∆−1/4
? + 3

4
ε

)){

⊆
s(

1−µH

(
χv

∆?

))
·
(
1±α

(
∆−1/4
? + 3

4
ε

)){
.
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(Note that the application of Lemma 2.12 was correct, because ∆−1/4
? + 3

4ε ≤ (200lnn)−1 +
(200lnn)−1 < (96lnn)−1.) Second,

1−µF

(∣∣N (v)∩ H̃i
∣∣

∆?

)
∈

s
1−µF

(
ψv

∆?
±α(

∆−1/4
? +ε)){ .

Since ψv /∆? ≤ 3
4 and α

(
∆−1/4
? +ε)≤ (96lnn) · ((200lnn)−1 + (200lnn)−1

)< 1, the argument to
µF in the above bound is always less than 4, and therefore, only one branch of µF ’s definitions
gets applied. Hence, we can eliminate µF :

1−µF

(∣∣N (v)∩ H̃i
∣∣

∆?

)
∈

s
1− ψv

4∆?
± α

4

(
∆−1/4
? +ε){ .

Since 1− ψv

4∆?
≥ 3

4 , we can further transform the bound to

1−µF

(∣∣N (v)∩ H̃i
∣∣

∆?

)
∈

s(
1− ψv

4∆?

)(
1± α

3

(
∆−1/4
? +ε)){ .

Let δ1
def= α

(
∆−1/4
? + 3

4ε
)

and δ2
def= α

3

(
∆−1/4
? +ε). As a result, every qi can be expressed as qi =

ηvλiλ
′
i , where ηv is a constant independent of i , λi ∈ J1±δ1K, and λ′

i ∈ J1±δ2K. For every i ,
we can also write

Pr[E ∧E→i ] = Pr[E |E→i ] ·Pr[E→i ] = ηvλiλ
′
i ·p(i ) = ηv

m
λiλ

′
iλ

′′
i ,

where λ′′
i ∈ J1±εK. We now express the conditional probability of v being assigned to the i -th

subgraph in D given E :

Pr[E→i |E ] = Pr[E ∧E→i ]∑m
j=1 Pr[E ∧E→ j ]

= λiλ
′
iλ

′′
i∑m

j=1λ jλ
′
jλ

′′
j

.

Note that for any i , this implies that

1

m
· (1−δ1)(1−δ2)(1−ε)

(1+δ1)(1+δ2)(1+ε)
≤ Pr[E→i |E ] ≤ 1

m
· (1+δ1)(1+δ2)(1+ε)

(1−δ1)(1−δ2)(1−ε)
. (2.5)

Observe that
δ1 ≤ (96lnn) · ((7000lnn)−1 + (250lnn)−1)< 1/2,

and

δ2 ≤ 1

3
· (96lnn) · ((7000lnn)−1 + (200lnn)−1)< 1/2.

Hence all of δ1, δ2, and ε are at most 1/2. We can therefore transform (2.5) to

1

m
· (1−δ1)2(1−δ2)2(1−ε)2 ≤ Pr[E→i |E ] ≤ 1

m
· (1+δ1)(1+δ2)(1+ε)(1+2δ1)(1+2δ2)(1+2ε),

and then
1

m
· (1−2δ1 −2δ2 −2ε) ≤ Pr[E→i |E ] ≤ 1

m
· (1+45δ1 +45δ2 +45ε).

Hence

Pr[E→i |E ] ∈
r 1

m
· (1±45(δ1 +δ2 +ε))

z
⊆

r 1

m
· (1±60α

(
∆−1/4
? +ε))z ,

which finishes the proof that D
[
C̃

]
is 60α

(
∆−1/4
? +ε)-near uniform.
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2.6 Parallel Algorithm

In this section, we introduce our main parallel algorithm. It builds on the ideas introduced in
EmulatePhase. EmulatePhase randomly partitions the graph into m induced subgraphs and
runs on each of them LocalPhase, which resembles a phase of GlobalAlg. As we have seen,
the algorithm performs well even if vertices are assigned to subgraphs not exactly uniformly so
long as the assignment is fully independent. Additionally, with high probability, if we condition
on the configuration of sets Ri , Hi , and Fi that were removed, the distribution of assignments
of the remaining vertices is still nearly uniform and also independent.

These properties allow for the main idea behind the final parallel algorithm. We partition
vertices randomly into m induced subgraphs and then run LocalPhase multiple times on
each of them with no repartitioning in the meantime. In each iteration, for a given subgraph,
we halve the local threshold ∆?. This corresponds to multiple phases of the original global
algorithm. As long as we can show that this approach leads to finding a large matching, the
obvious gain is that multiple phases of the original algorithm translate to O(1) parallel rounds.
This approach enables our main result: the parallel round complexity reduction from O(logn)
to O((loglogn)2).

Algorithm 5: ParallelAlg(G ,S)
The final parallel matching algorithm

Input:
• graph G = (V ,E) on n vertices
• parameter S ∈Z+ such that S ≤ n and S = nΩ(1) (each machine uses O(S) space)

Output: matching in G

1 ∆← n, V ′ ←V , M ←;
2 while ∆≥ n

S (200lnn)32 do
/* High-probability invariant: maximum degree in G[V ′] bounded by 3

2∆

*/

3 m ←
⌊√

n∆
S

⌋
/* number of machines used */

4 τ← ⌈ 1
16 log120α (∆/m)

⌉
/* number of phases to emulate */

5 Partition V ′ into m sets V1, . . . , Vm by assigning each vertex independently uniformly at
random.

6 foreach i ∈ [m] do in parallel
7 If the number of edges in G[Vi ] is greater than 8S, Vi ←;.

8 for j ∈ [τ] do (Vi , Mi , j ) ← LocalPhase
(
i ,G[Vi ],∆/

(
2 j−1m

))
9 V ′ ←⋃m

i=1 Vi

10 M ← M ∪⋃m
i=1

⋃τ
j=1 Mi , j

11 ∆←∆/2τ

12 Compute degrees of vertices V ′ in G[V ′] and remove from V ′ vertices of degree at least 2∆.
13 Directly simulate M ′ ← GlobalAlg(G[V ′],2∆), using O(1) rounds per phase.
14 return M ∪M ′

We present ParallelAlg, our parallel algorithm, as Algorithm 5. We write S to denote a
parameter specifying the amount of space per machine. After the initialization of variables,
the algorithm enters the main loop in Lines 2–11. The loop is executed as long as ∆, an
approximate upper bound on the maximum degree in the remaining graph, is large enough.

42



2.6. Parallel Algorithm

The loop implements the idea of running multiple iterations of LocalPhase on each induced
subgraph in a random partition. At the beginning of the loop, the algorithm decides on m,
the number of machines, and τ, the number of phases to be emulated. Then it creates a
random partition of the current set of vertices that results in m induced subgraphs. Next
for each subgraph, the algorithm first runs a security check that the set of edges fits onto a
single machine (see Line 7). If it does not, which is highly unlikely, the entire subgraph is
removed from the graph. Otherwise, the entire subgraph is sent to a single machine that runs
τ consecutive iterations of LocalPhase. Then the vertices not removed in the executions
of LocalPhase are collected for further computation and new matching edges are added to
the matching being constructed. During the execution of the loop, the maximum degree in
the graph induced by V ′, the set of vertices to be considered is bounded by 3

2∆ with high
probability. Once the loop finishes, we remove from the graph vertices of degree higher than
2∆—there should be none—and we directly simulate GlobalAlg on the remaining graph,
using O(1) rounds per phase.

2.6.1 Properties of Thresholds

Before we analyze the behavior of the algorithm, we observe that the value of ∆
m inside the main

loop is at least polylogarithmic and that the same property holds for the rescaled threshold
that is passed to LocalPhase.

Lemma 2.15. Consider a single iteration of the main loop of ParallelAlg (Lines 2–11). Let ∆
and m be set as in this iteration. The following two properties hold:

• ∆/m ≥ (200logn)16.

• The threshold ∆/
(
2 j−1m

)
passed to LocalPhase in Line 8 is always at least (∆/m)15/16 ≥

4000µ−2
R ln2 n.

Proof. Let τbe also as in this iteration of the loop. The smallest threshold passed to LocalPhase

is ∆/(2τ−1m). Let λ
def= S∆/n, where S is the parameter to ParallelAlg. Due to the condition

in Line 2, λ≥ (200lnn)32. Note that ∆= λn/S. Hence m ≤p
n∆/S = n

S

p
λ. This implies that

∆/m ≥p
λ≥ (200lnn)16, which proves the first claim. Due to the definition of τ,

2τ−1 ≤ (120α)τ−1 ≤ (∆/m)1/16.

This implies that

∆/(2τ−1m) ≥ (∆/m)15/16 ≥ (200lnn)15 > 4 ·1015 · ln4 n = 4000µ−2
R ln2 n.

We also observe that the probability of any set of vertices deleted by the security check
in Line 7 of ParallelAlg is low as long as the maximum degree in the graph induced by the
remaining vertices is bounded.

Lemma 2.16. Consider a single iteration of the main loop of ParallelAlg and let ∆ and V ′ be
as in that iteration. If the maximum degree in G[V ′] is bounded by 3

2∆, then the probability of
any subset of vertices deleted in Line 7 is n−8.
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Proof. Let m be as in the same iteration of the main loop of ParallelAlg. Consider a single
vertex v ∈ V ′. The expected number of v ’s neighbors assigned to the same subgraph is at
most 3

2∆/m. Recall that due to Lemma 2.15, ∆
m ≥ 200lnn. Since the assignment of vertices to

machines is fully independent, by Lemma 2.7 (i.e., the Chernoff bound), the probability that v
has more than 2∆/m neighbors is bounded by

2exp

(
−1

3
·
(

1

3

)2

· 3

2
· ∆

m

)
≤ 2exp

(
− 1

18
·200lnn

)
≤ n−10.

Therefore, by the union bound, with probability 1−n−9, no vertex has more than 2∆ neighbors
in the same induced subgraph. As |V ′| ≤ n, the expected number of vertices in each set Vi

constructed in the iteration of the main loop is at most n/m ≥ ∆/m ≥ 200lnn. What is the
probability that |Vi | > 2n/m? By the independence of vertex assignments and Lemma 2.7, the
probability of such event is at most

2exp

(
−1

3
· n

m

)
≤ 2exp

(
−1

3
·200lnn

)
≤ n−10.

Again by the union bound, the event |Vi | ≤ 2n/m, for all i simultaneously, occurs with proba-
bility at least 1−n−9. Combining both bounds, with probability at least 1−2n−9 ≥ 1−n−8, all
induced subgraphs have at most 2n/m vertices and the degree of every vertex is bounded by
2∆/m. Hence the number of edges in one induced subgraph is at most 1

2 · 2n
m · 2∆

m = 2n∆
m2 . By the

definition of m and the setting of parameters in the algorithm, m ≥ 1
2

√
n∆
S , where S is the pa-

rameter to ParallelAlg. This implies that the number of edges is at most 2n∆/
(

1
2

√
n∆
S

)2
= 8S

in every induced subgraph with probability 1−n−8, in which case no set Vi is deleted in Line 7
of ParallelAlg.

2.6.2 Matching Size Analysis

The parallel algorithm runs multiple iterations of LocalPhase on each induced subgraph, with-
out repartitioning. A single iteration on all subgraphs corresponds to running EmulatePhase
once. We now show that in most cases, the global algorithm simulates EmulatePhase on a
well behaved distribution with independently assigned vertices and all vertices distributed
nearly uniformly conditioned on the configurations of the previously removed sets Ri , Hi ,
and Fi . We also show that the maximum degree in the remaining graph is likely to decrease
gracefully during the process.

Lemma 2.17. With probability at least 1−n−3:

• all parallel iterations of LocalPhase in ParallelAlg on each induced subgraph corre-
spond to running EmulatePhase on independent and (200lnn)−1-near uniform distri-
butions of assignments,

• the maximum degree of the graph induced by the remaining vertices after the k-th simu-
lation of EmulatePhase is 3

2∆/2k .

Proof. We first consider a single iteration of the main loop in ParallelAlg. Let ∆, τ, and m

be set as in this iteration of the loop. For j ∈ [τ], let ∆ j
def= ∆/

(
2 j−1m

)
be the threshold passed
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to LocalPhase for the j -th iteration of LocalPhase on each of the induced subgraphs. The
parallel algorithm assigns vertices to subgraphs and then iteratively runs LocalPhase on each
of them. In this analysis we ignore the exact assignment of vertices to subgraphs until they
get removed as a member of one of sets Ri , Hi , or Fi . Instead we look at the conditional
distribution on assignments given the configurations of sets Ri , Hi , and Fi removed in the
previous iterations corresponding to EmulatePhase. We write D j , 1 ≤ j ≤ τ, to denote this
distribution of assignments before the execution of j -th iteration of LocalPhase on the
induced subgraphs, which corresponds to the j -th iteration of EmulatePhase for this iteration
of the main loop of ParallelAlg. Additionally, we write Dτ+1 to denote the same distribution
after the τ-th iteration, i.e., at the end of the execution of the parallel block in Lines 6–8
of ParallelAlg. Due to Lemma 2.9, the distributions of assignments are all independent.
We define ε j , j ∈ [τ+1], to be the minimum positive value such that D j is ε j -near uniform.
Obviously, ε1 = 0, since the first distribution corresponds to a perfectly uniform assignment.
We want to apply Lemma 2.10 inductively to bound the value of ε j+1 as a function of ε j with
high probability. The lemma lists two conditions: ε j must be at most (200lnn)−1 and the
threshold passed to EmulatePhase has to be at least 4000µ−2

H ln2 n. The latter condition holds
due to Lemma 2.15. Hence as long as ε j is sufficiently small, Lemma 2.10 implies that with
probability at least 1−n−4,

ε j+1 ≤ 60α

((
∆

2τ−1m

)−1/4

+ε j

)
≤ 60α

((
∆

m

)−15/64

+ε j

)
,

and no high degree vertex survives in the remaining graph. One can easily show by induction

that if this recursion is satisfied for all 1 ≤ j ≤ τ, then ε j ≤ (120α) j−1 ·( ∆m )−15/64
for all j ∈ [τ+1].

In particular, by the definition of τ and Lemma 2.15, for any j ∈ [τ],

ε j ≤ (120α)τ−1 ·
(
∆

m

)−15/64

≤
(
∆

m

)1/16

·
(
∆

m

)−15/64

≤
(
∆

m

)−11/64

≤ (200lnn)−1,

This implies that as long the unlikely events specified in Lemma 2.10 do not occur for any
phase in any iteration of the main loop of ParallelAlg, we obtain the desired properties: all
intermediate distributions of possible assignments are (200lnn)−1-near uniform and the max-
imum degree in the graph decreases at the expected rate. It remains to bound the probability
of those unlikely events occurring for any phase. By the union bound, their total probability is
at most logn ·n−4 ≤ n−3.

We now prove that the algorithm finds a large matching with constant probability.

Theorem 2.18

Let MOPT be an arbitrary maximum matching in a graph G . With Ω(1) probability,
ParallelAlg constructs a matching of sizeΩ(|MOPT|).

Proof. By combining Lemma 2.16 and Lemma 2.17, we learn that with probability at least
1−n ·n−8 −n−3 ≥ 1−2n−3, we obtain a few useful properties. First, all relevant distributions
corresponding to iterations of EmulatePhase are independent and (200lnn)−1-near uniform.
Second, the maximum degree in the graph induced by vertices still under consideration is
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bounded by 3
2∆ before and after every simulated execution of EmulatePhase, where ∆ is the

corresponding. As a result, no vertex is deleted in Lines 7 or 12 due to the security checks.

We now use Lemma 2.8 to lower bound the expected size of the matching created in every
EmulatePhase simulation. Let τ? be the number of phases we simulate this way. We have
τ? ≤ logn. Let H j , F j , and M j be random variables equal to the total size of sets Hi , Fi , and Mi

created in the j -th phase. If the corresponding distribution in the j -th phase is near uniform
and the maximum is bounded, Lemma 2.8 yields

E
[
H j +F j

]≤ n−9 +1200 ·E[
M j

]
,

i.e.,

E
[
M j

]≥ 1

1200

(
E
[
H j +F j

]−n−9) .

Overall, without the assumption that the conditions of Lemma 2.8 are always met, we obtain a
lower bound ∑

j∈[τ?]
E
[
M j

]≥ ∑
j∈[τ?]

1

1200

(
E
[
H j +F j

]−n−9)−2n−3 · n

2
,

in which we consider the worst case scenario that we lose as much as n/2 edges in the size of
the constructed matching when the unlikely negative events happen. ParallelAlg continues
the construction of a matching by directly simulating the global algorithm. Let τ′? be the
number of phases in that part of the algorithm. We define H′

j , F′
j , and M′

j , for j ∈ [τ′?], to be

random variables equal to the size of sets H , F , and M̃ in GlobalAlg in the j -th phase of the
simulation. By Lemma 2.5, we have∑

j∈[τ′?]

E
[

M′
j

]
≥ ∑

j∈[τ′?]

1

50

(
E
[

H′
j +F′

j

])
.

By combining both bounds we obtain a lower bound on the size of the constructed matching.
Let

M?
def= ∑

j∈[τ?]
E
[
M j

]+ ∑
j∈[τ′?]

E
[

M′
j

]
be the expected matching size, and let

V?
def= ∑

j∈[τ?]
E
[
H j +F j

]+ ∑
j∈[τ′?]

E
[

H′
j +F′

j

]
.

We have

M? ≥ 1

1200
V?− 1

n2 .

Consider a maximum matching MOPT. At the end of the algorithm, the graph is empty. The
expected number of edges in MOPT incident to a vertex in one of the reference sets is bounded
by |MOPT| ·2µR · logn ≤ 10−5|MOPT|. The expected number of edges removed by the security
checks is bounded by n

2 ·n−3. Hence the expected number of edges in MOPT deleted as incident
to vertices that are heavy or are friends is at least (1−10−5)|MOPT| −1/(2n2). Since we can
assume without the loss of generality that the graph is non-empty, it is at least 1

2 |MOPT|.
Hence V? ≥ 1

2 |MOPT|, and M? ≥ 1
2400 |MOPT|− 1

n2 . For sufficiently large n (say, n ≥ 50), M? ≥
Ω (|MOPT|) and by an averaging argument, ParallelAlg has to output an O(1)-multiplicative
approximation to the maximum matching withΩ(1) probability. For smaller n, it is not difficult
to show that at least one edge is output by the algorithm with constant probability as long as it
is not empty.
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Finally, we want to argue that the above procedure can be used to compute 2+ε approxi-
mation to maximum matching at the cost of increasing the running time by a factor of log(1/ε).
The idea is to; execute algorithm ParallelAlg to compute constant approximate matching;
remove this matching from the graph; and repeat.

Corollary 2.19. Let MOPT be an arbitrary maximum matching in a graph G. For any ε> 0, exe-
cuting ParallelAlg on G and removing a constructed matching repetitively, O(log(1/ε)) times,
finds a multiplicative (2+ε)-approximation to maximum matching, withΩ(1) probability.

Proof. Assume that the ParallelAlg succeeds with probability p and computes c-approximate
matching. Observe that each successful execution of ParallelAlg finds a matching Mc of
size at least 1

c |MOPT|. Removal of Mc from the graph decreases the size of optimal matching
by at least 1

c |MOPT| and at most by 2
c |MOPT|, because each edge of Mc can be incident to at

most two edges of MOPT. Hence, when the size of the remaining matching drops to at most
ε|MOPT|, we have an 2+ε-multiplicative approximation to maximum matching constructed.
The number t of successful applications of ParallelAlg need to satisfy.(

1− 1

c

)t

≤ ε.

This gives t =O(log(1/ε)). In dt/pe =O(log(1/ε)) executions, we have t successes with proba-
bility at least 1/2 by the properties of the median of the binomial distribution.

2.7 MPC Implementation Details

In this section we present details of an MPC implementation of our algorithm. We also analyze
its round and space complexity. In the description we heavily use some of the subroutines
described in [GSZ11]. While the model used there is different, the properties of the distributed
model used in [GSZ11] also hold in the MPC model. Thus, the results carry over to the MPC
model.

The results of [GSZ11] allow us to sort a set A of O(N ) key-value pairs of size O(1) and for
every element of a sorted list, compute its index. Moreover, we can also do a parallel search:
given a collection A of O(N ) key-value pairs and a collection of O(N ) queries, each containing
a key of an element of A, we can annotate each query with the corresponding key-value pair
from A. Note that multiple queries may ask for the same key, which is nontrivial to parallelize.
If S = nΩ(1), all the above operations can be implemented in O(1) rounds.

The search operation allows us to broadcast information from vertices to their incident
edges. Namely, we can build a collection of key-value pairs, where each key is a vertex and
the value is the corresponding information. Then, each edge {u, v} may issue two queries to
obtain the information associated with u and v .

2.7.1 GlobalAlg

We first show how to implement GlobalAlg, which is called in Line 13 of ParallelAlg.

Lemma 2.20. Let S = nΩ(1). There exists an implementation of GlobalAlg in the MPC model,
which with high probability executes O(ln∆̃) rounds and uses O(S) space per machine.
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Proof. We first describe how to solve the following subproblem. Given a set X of marked
vertices, for each vertex v compute |N (v)∩X |. When all vertices are marked, this just computes
the degree of every vertex.

The subproblem can be solved as follows. Create a set AX = {(u, v) | u ∈ V , v ∈ X , {u, v} ∈
E }∪ {(v,−∞), (v,∞) | v ∈ V }, and sort its elements lexicographically. Denote the sorted se-
quence by QX . Then, for each element of AX compute its index in Q A .

Note that |N (v)∩X | is equal to the number of elements in QX between (v,−∞) and (v,∞).
Thus, having computed the indices of these two elements, we can compute |N (v)∩X |.

Let us now describe how to implement GlobalAlg. We can compute the degrees of all
vertices, as described above. Once we know the degrees, we can trivially mark the vertices
in H . The next step is to compute F and for that we need to obtain |N (v)∩H |, which can be
done as described above.

After that, GlobalAlg computes a matching in G[H ∪F ] by calling MatchHeavy (see Algo-
rithm 2). In the first step, MatchHeavy assigns to every v ∈ F a random neighbor v? in H . This
can again be easily done by using the sequence QH (i.e. QX build for X = H). Note that for
each v ∈ F we know the number of neighbors of v that belong to H . Thus, each vertex v can
pick an integer rv ∈ [1, |N (v)∩H |] uniformly at random. Then, by adding rv and the index of
(v,−∞) in QH , we obtain the index in QH , which corresponds to an edge between v and its
random neighbor in H . The remaining lines of MatchHeavy are straightforward to implement.
The vertices can trivially pick their colors. After that, the set E? can be easily computed by
transmitting data from vertices to their adjacent edges. Implementing the following steps of
MatchHeavy is straightforward. Finally, picking the edges to be matched is analogous to the
step, when for each v ∈ F we picked a random neighbor in H .

Overall, each phase of GlobalAlg (that is, iteration of the main loop) is executed in O(1)
rounds. Thus, by Lemma 2.5, GlobalAlg can be simulated in O(ln∆̃) rounds as advertised.

2.7.2 Vertex and Edge Partitioning

We now show how to implement Line 5 and compute the set of edges that are used in each call
to LocalPhase in Line 8 of ParallelAlg. Our goal is to annotate each edge with the machine
number it is supposed to go to. To that end, once the vertices pick their machine numbers,
we broadcast them to their adjacent edges. Every edge that receives two equal numbers x is
assigned to machine x.
In the implementation we do not check whether a machine is assigned too many edges (Line 7),
but rather show in Lemma 2.16 that not too many edges are assigned with high probability.

2.7.3 LocalPhase

We now discuss the implementation of LocalPhase. Observe that LocalPhase is executed
locally. Therefore, the for loop at Line 8 of ParallelAlg can also be executed locally on each
machine. Thus, we only explain how to process the output of LocalPhase.

Instead of returning the set of vertices and matched edges at Line 6 of LocalPhase, each
vertex that should be returned is marked as discarded, and each matched edge is marked as
matched. After that, we need to discard edges, whose at least one endpoint has been discarded.
This can be done by broadcasting information from vertices to adjacent edges. Note that some
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of the discarded edges might be also marked as matched.

2.7.4 Concluding Proofs

Lines 5, 7 and 8 can be implemented as described in sections 2.7.2 and 2.7.3. Lines 9 and 10
do not need an actual implementation, as by that point all the vertices that are not marked as
discarded constitute V ′, and all the edges incident to V \V ′ will be marked as discarded. Sim-
ilarly, all the matched edges will be marked as matched by the implementation of LocalPhase.
All the edges and vertices that are marked as discarded will be ignored in further processing.
After all the rounds are over, the matching consists of the edges marked as matched.

Let ∆? be the value of ∆ at Line 12, and hence the value of ∆ at the end of the last while
loop iteration. Let ∆′ be the value of ∆ just before the last iteration, i.e. ∆? = ∆′/2τ, for the
corresponding τ. Now consider the last call of LocalPhase at Line 8. The last invocation has
∆′/(2τ−1) as a parameter. On the other hand, by Claim 2.13 and Claim 2.14 we know that after
the last invocation of LocalPhase with high probability there is no vertex that has degree
greater then 3

4∆
′/(2τ−1) < 2∆?. Therefore, with high probability there is no vertex that should

be removed at Line 12, and hence we do not implement that line either.

An implementation of Line 13 is described in Section 2.7.1. Finally, we can state the
following result.

Lemma 2.21. There exists an implementation of ParallelAlg in the MPC model that with
high probability executes O

(
(loglogn)2 +max

(
log n

S ,0
))

rounds.

Proof. In the proof we analyze the case S ≤ n. Otherwise, for the case S > n, we think of each
machine being split into bS/nc "smaller" machines, each of the smaller machines having space
n.

We will analyze the number of iterations of the while loop ParallelAlg performs. Let ∆i

and τi be the value of ∆ and τ at the end of iteration i , respectively. Then, from Line 3 and
Line 4 we have

τi =
⌈

1

16
log120α (∆i−1/m)

⌉
≥ 1

16
log120α (∆i−1/m) ≥ 1

16
log120α

√
S∆i−1

n
.

Define γ
def= 1

32log2 120α . By plugging in the above bound on τi , from Line 11, we derive

∆i =∆i−1 ·2τi ≤∆i−1 ·2− 1
16 log120α

√
S∆i−1

n =∆i−1 ·2− log2
S∆i−1

n
32log2 120α =∆1−γ

i−1

(n

S

)γ
(2.6)

To obtain the number of iterations the while loop of ParallelAlg performs, we derive for
which i ≥ 1 the condition at Line 2 does not hold.

Unraveling ∆i−1 further from (2.6) gives

∆i ≤∆(1−γ)i

0

(n

S

)γ∑i−1
j=0(1−γ) j

≤ n(1−γ)i
(n

S

)γ 1−(1−γ)i

1−(1−γ) = n(1−γ)i
(n

S

)1−(1−γ)i

(2.7)

Observe that (c loglogn)−1 ≤ γ≤ (32loglogn)−1 < 1/2, for an absolute constant c and n ≥ 4.
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For S ≤ n and as γ< 1/2 we have

(n

S

)1−(1−γ)i

≤ n

S
. (2.8)

On the other hand, for i? = loglogn
γ ≤ c(loglogn)2 we have

n(1−γ)i? < logn. (2.9)

Now putting together (2.7), (2.8), and (2.9) we conclude

∆i? <
n

S
lnn,

and hence the number of iteration the while loop of ParallelAlg performs is O
(
(loglogn)2

)
.

Total round complexity. Every iteration of the while loop can be executed in O(1) MPC
rounds with probability at least 1−1/n3. Since there are O

(
(loglogn)2

)
iterations of the while

loop, all the iterations of the loop can be performed in O
(
(loglogn)2

)
many rounds with

probability at least 1−1/n2.

On the other hand, by Lemma 2.20 and the condition at Line 2 of ParallelAlg, the com-
putation of Line 13 of ParallelAlg can be performed in O

(
log

(n
S (lnn)32

))
rounds. Putting the

both bounds together we conclude that the round complexity of ParallelAlg is O
(
(loglogn)2 + log n

S

)
for the case S ≤ n. For the case S > n (recall that in this regime we assume that each machine
is divided into machines of space n) the round complexity is O

(
(loglogn)2

)
.
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3 Maximal Independent Sets in Parallel
Computation
This chapter is based on a joint work with Mohsen Ghaffari, Themis Gouleakis, Christian
Konrad, and Ronitt Rubinfeld. It has been accepted to ACM Symposium on Principles of
Distributed Computing (PODC) 2018 [GGK+18] under the title

Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex Cover.

3.1 Introduction

In this chapter, we study one of the most fundamental problems in algorithmic graph theory –
maximal independent set (MIS). The study of this problem in models of parallel computation
dates back to PRAM algorithm. A seminal work of Luby [Lub86] gives a simple randomized
algorithm for constructing MIS in O(logn) PRAM rounds. Similar results, also in the context
of PRAM algorithms, were obtained in [ABI86, II86, IS86]. Since then, MIS was studied quite
extensively in various models of computation. We design a simple randomized algorithm that
constructs MIS in the MPC and the CONGESTED-CLIQUE model.

3.1.1 Model

We consider two closely related models: Massively Parallel Computation (MPC), and the
CONGESTED-CLIQUE model of computing. We refer a reader to Section 2.1.1 for the defini-
tion of the MPC model.

CONGESTED-CLIQUE

The CONGESTED-CLIQUE model was introduced by Lotker, Pavlov, Patt-Shamir, and Pe-
leg [LPPSP03] and has been studied extensively since then, see e.g., [PST11, DLP12, BHP12,
Len13, DKO14, Nan14, HPS14, HP14, CHKK+15, HPP+15, BFARR15, Gha16, GP16, Kor16, HKN16,
CHPS17, Gha17, JN18]. In this model, we have n players which can communicate in syn-
chronous rounds. In each round, every player can send O(logn) bits to every other player.
Besides this communication restriction, the model does not limit the players, e.g., they can
use large space and arbitrary computations; though, in our algorithms, both of these will be
small. Furthermore, in studying graph problems in this model, the standard setting is that we
have an n-vertex graph G = (V ,E), and each player is associated with one vertex of this graph.
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Initially, each player knows only the edges incident on its own vertex. At the end, each player
should know the part of the output related to its own vertex, e.g., whether its vertex is in the
computed maximal independent set or not, or whether some of its edges is in the matching or
not.

We emphasize thatCONGESTED-CLIQUEprovides an all-to-all communication model. It
is worth contrasting this with the more classical models of distributed computing. For instance,
the LOCAL model, first introduced by Linial [Lin87], allows the players to communicate only
along the edges of the graph problem G (with unbounded size messages).

3.1.2 Our Results

In Section 3.4 we present an algorithm for constructing MIS in the MPC and the CONGESTED-
CLIQUE model.

Theorem 3.1

For any graph with maximum degree ∆, there is an algorithm that with high probability
computes an MIS in O(loglog∆) rounds of the MPC model, with Θ(n) space per each
machine. Moreover, the same algorithm can be adapted to compute an MIS in O(loglog∆)
rounds of the CONGESTED-CLIQUE model.

3.1.3 Related Work

Maximal independent set has been central in the study of graph algorithms in both the
parallel and the distributed models. The seminal work of Luby [Lub86] and Alon, Babai,
and Itai [ABI86] provide O(logn)-round parallel and distributed algorithms for constructing
MIS. The distributed complexity in the LOCAL model was first improved by Barenboim
et al.[BEPS12] and consequently by Ghaffari [Gha16], which led to the current best round

complexity of O(log∆)+ 2O(
p

loglogn). In the CONGESTED-CLIQUE model of distributed
computing, Ghaffari [Gha17] gave another algorithm which computes an MIS in Õ(

√
log∆)

rounds. A deterministic O(logn log∆)-round CONGESTED-CLIQUE algorithm was given by
Censor-Hillel et al. [CHPS17].

It is also worth referring to the literature on one particular MIS algorithm, known as the
randomized greedy MIS, which is relevant to what we do for MIS. In this algorithm, we permute
the vertices uniformly at random and then add them to the MIS greedily. Blelloch et al. [BFS12]
showed that one can implement this algorithm in O(log2 n) parallel/distributed rounds, and
recently Fischer and Noever [FN18] improved that to a tight bound of Θ(logn). We will show a
O(loglog∆)-round simulation of the randomized greedy MIS algorithm in the MPC and the
CONGESTED-CLIQUE model.

3.2 Preliminaries

For a graph G = (V ,E ) and a set V ′ ⊆V , G[V ′] denotes the subgraph of G induced on the set V ′,
i.e., G[V ′] = (V ′,E ∩(V ′×V ′)). We use N (v) to refer to the neighborhood of v in G . Throughout

the chapter, we use n
def= |V | to denote the number of vertices in the input graph.
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3.3 Overview and Organization

Our MIS algorithm is based on the randomized greedy MIS algorithm (RandGreedyMIS). This
algorithm ranks/permutes vertices 1 to n randomly and then greedily adds vertices to the MIS,
while walking through this permutation. We provide this algorithm below.

Algorithm 6: RandGreedyMIS(G)
Randomized greedy MIS algorithm

Input: Graph G = (V ,E)
Output: An MIS in G

1 V ′ ←V
2 Choose a permutation π : [n] → [n] uniformly at random.
3 while V ′ 6= ; do
4 Select the vertex v which according to π has the smallest rank in V ′.
5 Add v to the MIS.
6 Remove v and N (v) from V ′.

7 return the constructed MIS

This algorithm has been studied before in the literature of parallel algorithms [FN18,
BFS12]. One of the features of RandGreedyMIS is that, informally speaking, high-degree
vertices get removed quickly and hence the maximum degree of the graph decreases at a
high rate. In the rest of this chapter, we show how to efficiently implement a variant of this
algorithm in only O(loglog∆) MPC and CONGESTED-CLIQUE rounds.

3.4 Maximal Independent Set

In this section, we simulate RandGreedyMIS in O(loglog∆) rounds of the MPC and theCONGESTED-
CLIQUE model, thus proving the following result:

Theorem 3.1

For any graph with maximum degree ∆, there is an algorithm that with high probability
computes an MIS in O(loglog∆) rounds of the MPC model, with Θ(n) space per each
machine. Moreover, the same algorithm can be adapted to compute an MIS in O(loglog∆)
rounds of the CONGESTED-CLIQUE model.

3.4.1 A Variant of RandGreedyMIS

We first formulate a variant of RandGreedyMIS, that we call RandMPCMIS and show how to
implement in the CONGESTED-CLIQUE and the MPC model.
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Algorithm 7: RandMPCMIS(G)
A variant of RandGreedyMIS

Input: Graph G = (V ,E)
Output: An MIS in G

1 V ′ ←V
2 Choose a permutation π : [n] → [n] uniformly at random.
3 repeat
4 Select the vertex v which according to π has the smallest rank in V ′.
5 Add v to the MIS.
6 Remove v and N (v) from V ′.
7 until the next rank is at least n/log10 n and the maximum degree in G[V ′] is at most log10 n
8 Run O(loglog∆) rounds of the Sparsified MIS Algorithm of [Gha17] on G[V ′]. Remove from V ′

the constructed MIS and its neighborhood.
9 Deliver G[V ′] to a single machine and find its MIS.

10 return union of the constructed MIS sets

3.4.2 Simulation of RandMPCMIS in O(loglog∆) Rounds of MPC and CONGESTED-
CLIQUE

Simulation in the MPC model We now describe how to simulate RandMPCMIS in the MPC
model withΘ(n) space per machine. In each iteration, we consider an induced subgraph of G
that is guaranteed to have O(n) edges and simulate the above algorithm on that graph. We
show that the total number of edges drops fast enough, so that O(loglog∆) rounds will suffice.

More concretely, we first consider the subgraph induced by vertices with ranks 1 to n/∆α,
for α= 3/4. This subgraph has O(n) edges, with high probability. So we can deliver it to one
machine, and have it simulate the algorithm up to this rank. Now, this machine sends the
resulting MIS to all other machines. Then, each machine removes its vertices that are in MIS
or neighboring MIS. In the second phase, we take the subgraph induced by remaining vertices
with ranks n/∆α to n/∆α

2
. Again, we can see that this subgraph has O(n) edges (a proof is

given below), so we can simulate it in O(1) rounds. More generally, in the i -th iteration, we
will go up to rank n/∆α

i
.

Once the next rank becomes n/log10 n, which as we show happens after O(loglog∆)
rounds, the maximum degree of the graph is some value∆′ ≤O

(
log11 n

)
(see Lemma 3.2). Note

that clearly also ∆′ ≤∆. At that point, we apply the MIS Algorithm of [Gha17] for sparse graphs
to the remaining graph. This algorithm is applicable whenever the maximum degree is at most

2
O

(p
logn

)
(see Theorem 1.1 of [Gha17]). After O(loglog∆′) rounds, w.h.p., that algorithm finds

an MIS which after removed along with its neighborhood results in the graph having O(n)
edges. Now we deliver the whole remaining graph to one machine where it is processed in a
single MPC round.

We note that the Algorithm of [Gha17] performs only simple local decisions with low
communication, and hence every iteration of the algorithm can be implemented in O(1) MPC
rounds, withΘ(n) space per machine, by using standard techniques.

Simulation in CONGESTED-CLIQUE We now argue that each iteration of the described
MPC simulation can be implemented in O(1) rounds of CONGESTED-CLIQUE. For that, in
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each iteration, we make all vertices with permutation rank in the selected range send their
edges to the leader vertex. Here, the leader is an arbitrarily chosen vertex, e.g., the one with the
minimum identifier. As we show below, the number of these edges per iteration is O(n) with
high probability, and thus we can deliver all the messages to the leader in O(1) rounds using
Lenzen’s routing method [Len13]. Then, the leader can compute the MIS among the vertices
with ranks in the selected range. It then reports the result to all the vertices in a single round,
by telling each vertex whether it is in the computed independent set or not. A single round of
computation, in which the vertices in the independent set report to all their neighbors, is then
used to remove all the vertices that have a neighbor in the independent set (or are in the set).
After these steps, the algorithm proceeds to the next iteration.

Regarding the round complexity of the algorithm once the rank becomes n/log10 n: The
work [Gha17] already provides a way to solve MIS in O(loglog∆′) CONGESTED-CLIQUE

rounds for any ∆′ = 2
O

(p
logn

)
. Here, ∆′ is the maximum degree of the graph remained after

processing the vertices up to rank n/log10 n, and, as we show by Lemma 3.2, it holds ∆′ ≤
polylogn ¿ 2

O
(p

logn
)
. Hence, the overall round complexity is again O(loglog∆) rounds.

3.4.3 Analysis

Since by the i -th iteration the algorithm has processed the ranks up to n/∆α
i
, the rank

n/log10 n is processed within O(loglog∆) iterations. In the proof of Theorem 3.1 presented
below, we prove that with high probability the number of edges sent to one machine per phase
is O(n). Before that, we present a lemma that will aid in bounding the degrees and the number
of edges in our analysis.

Lemma 3.2. Suppose that we have simulated the algorithm up to rank r . Let Gr be the remain-
ing graph. Then, the maximum degree in Gr is O(n logn/r ) with high probability.

Proof. We first upper-bound the probability that Gr contains a vertex of degree at least d .
Then, we conclude that the degree of every vertex in Gr is O(n logn/r ) with high probability.

Consider a vertex v whose degree is still d . When the sequential algorithm considers one
more vertex, which is selected by choosing a random vertex among the remaining vertices,
then vertex v or one of its neighbors gets chosen with probability at least d/n. If that happens,
then v is removed. The probability that this does not happen throughout ranks 1 to r is
at most (1−d/n)r ≤ exp(−r d/n). Now, the probability that a vertex in Gr has degree more
than 20n logn/r is at most 1/n5, which implies that, the maximum degree of Gr is at most
20n logn/r with probability at least 1−n−4.

We are now ready to prove the main theorem of this section.

Proof of Theorem 3.1. We first argue about the MPC-round complexity of the algorithm, and
then show that it requiresΘ(n) space.

Round complexity Recall that the algorithm considers ranks of the form ri
def= n/∆α

i
, until

the rank becomes n/log10 n or greater. When that occurs, it applies other algorithms for
O(loglog∆) iterations, as described in Section 3.4.2. Hence, the algorithm runs for at most
i?+loglog∆ iterations, where i? is the smallest integer such that rank ri? = n/∆α

i? ≥ n/log10 n.
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A simple calculation gives i? ≤ log4/3 log∆, for α= 3/4. Furthermore, every iteration can be
implemented in O(1) rounds as discussed above.

Space requirement We first discuss the space required to implement the process until the
rank becomes O

(
n/log10 n

)
. By Lemma 3.2 we have that after the graph up to rank ri is

simulated, the maximum degree in the remaining graph is O(n logn/ri ) w.h.p. Observe that it
also trivially holds in the first iteration, i.e., the initial graph has maximum degree O(n). Let Gi

be the graph induced by the ranks between ri and ri+1. Then, a neighbor u of vertex v appears
in Gi with probability (ri+1 − ri )/(n − ri ) ≤ ri+1/n. Hence, the expected degree of every vertex
in this graph is at most

µ
def=Θ(n logn/ri · ri+1/n) =Θ

(
∆(1−α)αi

logn
)

.

Since µ≥ logn, by the Chernoff bound we have that every vertex in Gi has degree O(µ) w.h.p.
Now, since there are O(ri+1) vertices in Gi , we have that Gi contains

O
(
ri+1∆

(1−α)αi
logn

)
=O

(
n∆−αi /2 logn

)
(3.1)

many edges w.h.p., where we used that α = 3/4. Recall that the algorithm iterates over the
ranks until the maximum degree becomes less than log10 n. Also,Θ(n logn/ri ) upper-bounds
the maximum degree (see Lemma 3.2). Hence, we have

Θ(n logn/ri ) ≥ log10 n =⇒ ∆α
i ≥Ω(

log9 n
)

.

Combining the last implication with (3.1) provides that Gi contains O(n) edges w.h.p.

After the rank becomes n/log10 n or greater, we run the CONGESTED-CLIQUE algorithm
of [Gha17] for O(loglog∆) iterations. That algorithm performs only simple local decisions
with low communication. Hence, by using standard techniques, every iteration of the algo-
rithm can be implemented in O(1) MPC rounds with Θ(n) space per machine. Finally, the
graph remaining after running O(loglog∆) iterations of that algorithm contains O(n) edges
w.h.p. (see Lemma 2.11 of [Gha17]). Hence, we deliver the remaining graph to one machine
and construct its MIS.
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4 Network Routing under Link Failures

This chapter is based on a joint work with Marco Chiesa, Andrei Gurtov, Aleksander Mądry,
Ilya Nikolaevskiy, Michael Schapira, and Scott Shenker. It has been accepted to the 43rd Inter-
national Colloquium on Automata, Languages, and Programming (ICALP) 2016 [CGM+16]
under the title

On the Resiliency of Randomized Routing Against Multiple Edge Failures.

The techniques that we develop in this chapter are applicable in a context broader than
presented in the sequel. For details, we point a reader to our work [CNM+16] and [CNM+17].

4.1 Introduction

Routing on the Internet (within organizational networks and between them) typically involves
computing a set of destination-based routing tables (i.e., tables that map the destination
IP address of a packet to an outgoing link). Whenever a link or node fails, routing tables
are recomputed by invoking the routing protocol to run again (or having it run periodically,
independent of failures). This produces well-formed routing tables, but results in relatively
long outages after failures as the protocol is recomputing routes.

As many critical applications rely on the Internet, such outages became unacceptable.
As a result, fast failover techniques have been employed to facilitate immediate recovery
from failures. The most well-known of these is Fast Reroute in MPLS where, upon a link
failure, packets are sent along a precomputed alternative path without waiting for the global
re-computation of routes [PSA05]. This, and other similar forms of fast failover thus enable
rapid response to failures but are limited to the set of precomputed alternate paths. Most
of the existing approaches protect only from single failure, however in many scenarios (e.g.
overlay networks [EGR14], highly-connected large datacenter networks [GJN11]) multiple
failures at the same time may be a common occurrence.

The fundamental question that we ask in this chapter is:

How resilient can failover routing be?

That is, how many link failures can failover routing schemes tolerate before connectivity is
interrupted (i.e., packets are trapped in a forwarding loop, or hit a dead end)? The answer

57



Chapter 4. Network Routing under Link Failures

to this question depends on both the structural properties of the graph, and the limitations
imposed on the design of routing scheme.

Clearly, if it is possible to store arbitrary amount of information in the packet header,
perfect resiliency can be achieved by collecting information about every failed link that is
hit by a packet [LCR+07, SCR13]. Such approaches are not feasibly deployable in modern
networks as the header of a packet may be too large for the routing tables. Our focus is thus
on failover routing schemes that do not involve any change in the packet headers. Another
traditional approach to achieving high resiliency is implementing stateful routing, i.e., storing
information at a node every time a packet is being received from a different incoming link
(see, e.g., link reversal [GB81] and other approaches [LPS+13, LYSS11]). As current routing
protocols do not allow network operators to implement such stateful failover routing, our goal
is to design protocols that correspond to a stateless, or static, failover routing.

Specifically, we consider a particularly simple and practical form of static failover routing:
for each incoming link, a router maintains a destination-based routing table that maps the
destination address of a packet and the set of non-failed (“active”) links, to an output link. The
router can locally detect which outgoing links are down and forwards packets accordingly.
One should note that maintaining such per-incoming-link destination-based routing tables
is necessary; not only is destination-based routing unable to achieve robustness against
even a single link failure [KGGZ11], but it is even computationally hard to devise failover
routing schemes that maximize the number of nodes that are protected [AZ08, BS13, KGGZ11,
SCK+03]. We only consider link failures, not router failures (which are not always detectable
by neighboring routers, and so such fast failover techniques may not apply).

A failover routing algorithm is responsible for computing, for each node (vertex) of a
network (graph), a routing function that matches an incoming packet to an outgoing edge. A
set of such routing functions for each vertex guarantees reachability between a pair of vertices,
u and v , for which there exists a connecting path in the graph, if any packet directed to node v
originated at node u is correctly routed from u to v .

We are interested in routing functions that rely solely on information that is locally avail-
able at a node (e.g., the set of non-failed edges, the incoming link along which the packet
arrived, and any information stored in the header of the packet).

While it is known that every k-connected network cannot be partitioned by deleting at
most k −1 links, it is not known whether any static “deterministic” routing (i.e., the outgoing
port of each packet is always uniquely determined at a vertex v by its incoming link and the
failed edges incident at v) achieves such resiliency.

On the other hand, routing based on random walks, i.e., choosing the outgoing link at
random, achieves the best possible resilience as they will eventually deliver a packet to the
destination as long as the network is connected. But, it comes with a huge cost. Namely, a
random walk might traverse the whole network even when there is no single failed link. In fact,
the expected delivery time of a packet would be as large asΘ(|V |3) in some network topolo-
gies [BW90]. Furthermore, a random walk almost never reaches the destination following the
shortest path. So, although extremely robust, when it comes to the time needed to deliver a
packet to the destination, the behavior of random walks is undesirable.
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4.1.1 Model

We represent our network as an undirected multigraph G = (V (G),E (G)), where each router in
the network is modeled by a vertex in V (G) and each link between two routers is modeled by
an undirected edge in the multiset E(G). When it is clear from the context, we simply write V
and E instead of V (G) and E (G). We denote an (undirected) edge between x and y by {x, y}. A
graph is k-edge-connected if there exist k edge-disjoint paths between any pair of vertices of G .

Each vertex v routes packets according to a routing function that matches an incoming
packet to a sequence of forwarding actions. Packet matching is performed according to the set
of active (non-failed) edges incident at v , the incoming edge, and any information stored in
the packet header (e.g., destination label, extra bits), which all are locally available at a vertex.

Since our focus is on per-destination routing functions, we assume that there exists a
unique destination d ∈V to which every other vertex wishes to send packets and, therefore,
that the destination label is not included in the header of a packet. Forwarding actions consist
of routing packets through an outgoing edge, rewriting some bits in the packet header, and
creating duplicates of a packet.

In our work we consider randomized routing functions, in which a vertex forwards a packet
through an outgoing edge with a probability based only on the incoming port and the set of
active outgoing edges. We present the formal definitions of the randomized routing model in
Section 4.1.2.

The STATIC-ROUTING-RESILIENCY (SRR) problem. Given a graph G , a routing function f is
k-resilient if, for each vertex v ∈V , a packet originated at v and routed according to f reaches
its destination d as long as at most k edges fail and there still exists a path between v and d .
The input of the SRR problem is a graph G , a destination d ∈V (G), and an integer k > 0, and
the goal is to compute a set of resilient routing functions that is k-resilient.

4.1.2 Our Results

In this chapter, we show how randomness can be used to achieve k −1 resilient routing in
k-connected networks while significantly outperforming random walks in terms of number of
traversed nodes. Namely, we introduce Randomized failover routing (RND) in which outgoing
edge is chosen for packets in a probabilistic manner based on the destination label, the
incoming edge, and the set of non-failed edges. The randomized protocol that we present
provides bound on the expected delivery time that gracefully grows with the number of actual
link failures.

Our randomized routing functions provide delivery in case of any k −1 link failures for any
k-connected graph. We achieve that by leveraging the standard decomposition of k-connected
graphs into k arc-disjoint spanning arborescences T [Edm72]. We also provide a bound on
the expected number of hops that our algorithm performs, which is O(Hk) for any k−1 failures
and O(H) for αk failures, where H is the length of the longest branch of any arborescence
of T and α< 1 is a constant. Furthermore, our routing functions are deterministic as long
as the routing does not encounter any failure. Hence, packets belonging to the same logical
connection are routed along the same path, minimizing reordering complexity at the receiver
side. More precisely, we show the following theorem.
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Theorem 4.1

Given a k-connected graph G and a destination d , there exists a (k−1)-resilient algorithm

that delivers a packet to d after O
(

k
k− f H

)
hops in expectation, where H is the length of a

longest path of any arborescence of T and f the number of failed edges. The algorithm
uses randomization only when encounters a failed edge. In particular, if f = 0, the
algorithm is deterministic.

4.1.3 Related Work

Past work [AZ06, YLS+14] (1) designed such routing functions with guaranteed robustness
against only a single link/node failure [ERC07, FGP+12, NLY+07, WN07, ZWB13, ZNY+05], (2)
achieved robustness against bk

2 −1c edge failures for k-connected graphs [EGR14], and (3)
proved that it is impossible to be robust against any set of edge failures that does not partition
the network [FGP+12].

Thanks to its flexibility and oblivious behavior, another line of study was motivated by
randomization. Namely, some of the previous work developed randomized routing schemes,
usually to directly or indirectly achieve low congestion and/or balance the network load. In
particular, Busch et al. [BHW00] use randomization to adjust packet priorities, which in turn
allows them to control deflection of packets.

Valiant [Val82] proposed a randomized routing algorithm with the goal to balance the load
of the underlying network. Since then, that scheme is called Valiant Load-Balancing (VLB),
whose one of the main ingredients is randomization. VLB was extensively used in designing
networks. Zhang-Shen et al. [ZSM08] employed VLB to design fault-tolerant networks with
guaranteed no congestion under few router or link failures. Greenberg et al. [GHJ+09] adopt
VLB to reduce volatility of traffic and failure pattern of their data centers. In [SW06], Shepherd
et al. extend VLB in order to build cost-effective networks robust to changes in demand
patterns.

Beraldi [Ber09] presents a search protocol for mobile networks that is based on modified
random walks, i.e. based on biased random walks with look-ahead. Motivated by the success
of ant-colonies in their search for food, Günes et al.[GKB03] studied ant algorithms, which in
their heart rely on randomization, as an approach to designing on-demand ad-hoc routing
algorithms.

Chiesa et al. [CNM+16] studied resilience under link failures in k-connected networks.
They devise static routing schemes that are resilient under k − 1 failures in the following
regimes: (1) if the routers are allowed to use three bits in the packet header for read/write
operation, or (2) if the network supports broadcasting. A building block of those schemes is
the result that every k-connected graph contains k arc-disjoint arborescences rooted at the
same vertex [Edm72].

4.2 Preliminaries

We denote a directed arc from x to y by (x, y) and by ~G the directed copy of G , i.e. a directed
graph such that V (~G) =V and {x, y} ∈ E if and only if (x, y), (y, x) ∈ E(~G).
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a

b

d

c

Figure 4.1 – A 3-connected graph with 3 arc-disjoint arborescences colored red, blue, and
green.

A subgraph T of ~G is an r -rooted arborescence of ~G if (i) r ∈ V , (ii) V (T ) ⊆ V , (iii) r is the
only vertex without outgoing arcs and (iv), for each v ∈V (T ) \ {r }, there exists a single directed
path from v to r that only traverses vertices in V (T ). If V (T ) =V , we say that T is a r -rooted
spanning arborescence of ~G . When it is clear from the context, we use the word “arborescence”
to refer to a d-rooted spanning arborescence, where d is the destination vertex. We say that
two arborescences T1 and T2 are arc-disjoint if (x, y) ∈ E(T1) =⇒ (x, y) ∉ E(T2). A set of l
arborescences {T1, . . . ,Tl } is arc-disjoint if the arborescences are pairwise arc-disjoint. We
say that two arc-disjoint arborescences T1 and T2 do not share an edge {x, y} ∈ E if (x, y) ∈
E(T1) =⇒ (y, x) ∉ E(T2).

For example, consider Figure 4.1, in which each pair of nodes is connected by an edge
(ignore the red crosses) and three arc-disjoint (d-rooted spanning) arborescences Red, Green,
and Blue are depicted by colored arrows.

4.3 Overview and Organization

Throughout this section, unless specified otherwise, we let T = {T1, . . . ,Tk } denote a set of k
d-rooted arc-disjoint spanning arborescences of ~G . All our routing techniques are based on a
decomposition of ~G into T . The existence of k arc-disjoint arborescences in any k-connected
graph was proven in [Edm72], while fast algorithms to compute such arborescences can be
found in [BHKP08]. We say that a packet is routed in canonical mode along an arborescence
T if a packet is routed through the unique directed path of T towards the destination. If the
packet hits a failed edge at vertex v along T , it is processed by v (e.g., duplication, header-
rewriting) according to the capabilities of a specific routing function and it is rerouted along
a different arborescence. We call such routing technique arborescence-based routing. One
crucial decision that must be taken is the next arborescence to be used after a packet hits a
failed edge. In our work, we propose two natural choices that represent the building blocks of
all our routing functions. When a packet is routed along Ti and it hits a failed arc (v,u), we
consider the following two possible actions:

• Reroute along some available arborescence, e.g., reroute along T ′, where T ′ is chosen
randomly from distribution that we define in the sequel. Observe that, if the outgoing
arc belonging to T ′ failed, we randomly pick another arborescence T ′′, and so on.

• Bounce on the reversed arborescence, i.e., we reroute along the arborescence Tnext
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that contains arc (u, v).

To grasp how bouncing enters in our picture for obtaining k −1 resiliency, consider the
following case. Assume that in the network there are k/2 failed links, such that every single out
of k arborescences contains one of the links. (As a reminder, arborescences that we construct
might share links, but not arcs.) So, this example might suggest that there are scenarios in
which already k/2 failed links make all the arborescences not very useful, and that no algorithm
can cope with that. But, there is a twist. Let k = 2, and Ti and T j be the two arborescences and
let them share the same failed edge a. Furthermore, let a be the only failed edge Ti and T j

contain. If a packet hits a while routed along Ti or T j , then after bouncing on a the packet
will reach d without any further interruption! So, we have just found a way to resolve a case in
which every arborescence contains one failed link, and that is not an isolated scenario, as we
discuss in the sequel.

From a different point of view, bouncing is a way of recycling arborescences that contain
one failed link. This observation is crucial to obtain an efficient and a simple randomized (k −
1)-resilient routing scheme, which we are now ready to present. The algorithm is parametrized
by q that we define later. In the following sections, we first study the connection between

Algorithm 8: RAND-BOUNCING-ALGO (T ,d)
A resilient-routing scheme for G

Input:
• A set of arborescences of G rooted at the same vertex T = {T1, . . . ,Tk }
• destination d

1 T ← an arborescence from T sampled uniformly at random.
2 while While d is not reached do
3 Route along T (canonical mode)
4 if a failed link is hit then
5 With probability q , replace T by an arborescence from T sampled uniformly at

random.
6 Otherwise, bounce the failed edge and update T correspondingly.

arborescences of T and failed links, and show how a part of their intricate interaction can be
represented in a simple and an elegant way via, so-called, meta-graph. Afterward, we show
the RAND-BOUNCING-ALGO is (k −1)-resilient and we analyze its efficiency.

Organization

The rest of this chapter is organized as follows. In Section 4.4, we focus on studying the
relation between arborescences our input graph decomposes into and failed links. Section 4.5
builds on Section 4.4 and is devoted to designing an algorithm that, for any k-connected
graph, computes randomized routing functions that are robust to k −1 edge failures and have
bounded expected delivery time.
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4.4 Meta-graph, Good Arcs, and Good Arborescences

The goal of this section is to provide an understanding of the structural relation between
the arborescences of T when the underlying k-connected network has at most k −1 failed
edges. The perspective that we are building here drives the construction of our randomized
algorithm.

We start by introducing the notion of a meta-graph. To that end, we fix an arbitrary set

of failed edges F . Throughout the section, we assume |F | < k, and define f
def= |F |. Then, we

define a meta-graph HF = (VF ,EF ) as follows:

• VF = {1, . . . ,k}, where vertex i is a representative of arborescence Ti .

• For each failed edge e ∈ E belonging to at least one arborescences of T we define the
corresponding edge eF in HF in the following way:

– eF = {i , j }, if e belongs to two different arborescences Ti and T j ;

– eF = {i , i }, i.e., eF is a self-loop, if e belongs to a single arborescence Ti only.

Note that in our construction HF might contain parallel edges. Intuitively, the meta-graph
represents a relation between arborescences of T for a fixed set of failed edges. We provide
the following lemma as the first step towards understanding the structure of HF .

Lemma 4.2. The set of connected components of HF contains at least k − f trees.

Proof. We give a proof by contradiction. To that end, assume that the set of connected
components of HF , denoted by C , contains at most k − f −1 trees. Now, if C ∈C is a tree, we
have |E(C )| = |V (C )|−1, and |E(C )| ≥ |V (C )| otherwise. We also have∑

C∈C

|E(C )| = ∑
C∈C is not a tree

|E(C )|+ ∑
C∈C is a tree

|E(C )|

≥ ∑
C∈C is not a tree

|V (C )|+ ∑
C∈C is a tree

(|V (C )|−1). (4.1)

Next, following our assumption that C contains at most k − f −1 trees, from (4.1) we obtain∑
C∈C

|E(C )| ≥ ∑
C∈C

|V (C )|− (k − f −1). (4.2)

Furthermore, as by the construction we have
∑

C∈C |V (C )| = |VF | = k, (4.2) implies∑
C∈C

|E(C )| ≥ |VF |− (k − f −1) = f +1. (4.3)

On the other hand, from the construction of HF we have∑
C∈C

|E(C )| = f ,

which leads to a contradiction with (4.3).
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Lemma 4.2 implies that the fewer failed edges there are, the larger fraction of connected
components of the meta-graph HF are trees. Note that an isolated vertex is a tree as well.

In the sequel, we show that each tree-component of HF contains at least one vertex
corresponding to an arborescence from which any bounce on a failed edge leads to the
destination d without hitting any new failed edge. To that end, we introduce the notion of
good arcs and good arborescences. We say that an arc (u, v) is a good arc of an arborescence T
if on the (unique) v-d path in T there is no failed edge. Let a = (i , j ), for i 6= j , be an arc of ~HF ,
{u, v} be the edge that corresponds to a, and w.l.o.g. assume (u, v) is an arc of T j . Then, we
say a is a well-bouncing arc if (u, v) is a good arc of T j . Intuitively, a well-bouncing arc (i , j ) of
~HF means that by bouncing from Ti to T j on the failed edge {v,u} the packet will reach d via

routing along T j without any further interruption. Finally, we say that an arborescence Ti is a
good arborescence if every outgoing arc of vertex i ∈VF is well-bouncing.

Lemma 4.3. Let T be a tree-component of HF s.t. |V (T )| > 1. Then, ~T contains at least |V (T )|
well-bouncing arcs.

Proof. Let Ti be an arborescence of T such that i ∈V (T ). Then, by the construction of HF we
have that Ti contains a failed link. Next, a failed link closest to the root of Ti is a good arc of Ti .
Therefore, for every i ∈V (T ), we have that Ti contains an arc which is both good and failed.
Furthermore, by the construction of HF and the definition of well-bouncing arcs, we have
that for every good, failed link of Ti there is the corresponding well-bouncing arc of ~T . Also,
observe that the construction of HF implies that a well-bouncing arc corresponds to exactly
one good-arc.

Now, putting all the observations together, we have that each Ti , for every i ∈V (T ), has a
good failed link which further corresponds to a well-bouncing arc of ~T . As all the arborescences
are arc-disjoint, and there are |V (T )| many of them represented by the vertices of T , we have
that ~T contains at least |V (T )| well-bouncing arcs.

Now, building on Lemma 4.3, we prove the following.

Lemma 4.4. Let T be a tree-component of HF . Then, there is an arborescence Ti such that
i ∈V (T ) and Ti is good.

Proof. Consider two cases: |V (T )| = 1, and |V (T )| > 1. In the case |V (T )| = 1, T is an isolated
vertex which implies that it has no outgoing arcs. Therefore, T represents a good arborescence.

If |V (T )| > 1, then from Lemma 4.3 we have that ~T contains at most 2(|V (T )|−1)−|V (T )| <
|V (T )| arcs which are not well-bouncing. This implies that there is at least one vertex in T
from which every outgoing arc is well-bouncing.

Let us understand what this implies. Consider an arborescence Ti , and a routing of a
packet along it. In addition, assume that the routing hits a failed edge e, such that e is shared
with some other arborescence T j . Now, if e corresponds to a well-bouncing arc of ~HF , then
by bouncing on e and routing solely along T j , the packet will reach d without any further
interruption. Lemma 4.4 claims that for each tree-component T of HF there always exists an
arborescence Ti , with i ∈ V (T ), which is good, i.e. every failed edge of Ti corresponds to a
well-bouncing arc of ~HF .

We can now state the main lemma of this section.
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Lemma 4.5. If G contains at most k −1 failed edges, then T contains at least one good arbores-
cence.

Proof. We prove that there exists an arborescence Ti such that if a packet bounces on any
failed edge of Ti it will reach d without any further interruption. Let F be the set of failed
edges, at most k −1 of them. Then, by Lemma 4.2 we have that HF contains at least k − f ≥ 1
tree-components. Let T be one such component.

By Lemma 4.4, we have that there exists at least an arborescence Ti such that every
outgoing arc from i is well-bouncing. Therefore, bouncing on any failed arc of Ti the packet
will reach d without any further interruption.

4.5 Randomized Routing via Good Arborescences

In this section, we show that a set of routing functions for G obtained by RAND-BOUNCING-
ALGO is (k −1)-resilient. Note that our routing function (RND) maps an incoming edge and
the set of active edges incident at v to a set of pairs (e, q), where e is an outgoing edge and q
is the probability of forwarding a packet through e. A packet is forwarded through a unique
outgoing edge.

The section is structured as follows. As a prelude, we show a simple, yet inefficient,
randomized routing algorithm, called RAND-ALGO, that although is (k −1)-resilient, fails to
achieve low expected number of hops in case of k −1 failed edges. We then apply our results
from Section 4.4 to show that RAND-BOUNCING-ALGO is both (k −1)-resilient and requires up
to an order fewer number of hops, compared to RAND-ALGO, to reach the destination.

4.5.1 A Simple (Inefficient) Randomized Routing

Consider the following randomized algorithm RAND-ALGO for routing along arborescences. A
packet is routed along the same arborescence until it either reaches its destination or hits a
failed edge. In the latter case, it is rerouted along another arborescences chosen uniformly at
random. We first show that there exists a k-connected graph and a set of failed edges such
that the expected number of tree switches that RAND-ALGO makes isΩ(k2). We then exhibit
an instance of k-connected graph and a set of failed edges for which RAND-ALGO makes
Ω(|V |k2) hops. This number of hops is at least k times larger than O(kH), that is guaranteed
by Theorem 4.1.

RAND-ALGO PerformsΩ(k2) Tree Switches

To prove the promised bound, we start by defining a 2k edge connected graph G = (V ,E) and
its set of 2k arc disjoint spanning trees T0, . . . ,T2k−1 as follows.

• Set V consists of a destination vertex d and 4k additional vertices arranged into two
equal-sized layers L1 = {v1

0 , . . . , v1
2k−1} and L2 = {v2

0 , . . . , v2
2k−1}.

• Set E is defined by the following four subgraphs: (1) L2 is a clique of size 2k; (2) (L1,L2)
is a complete bipartite graph; (3) for each k = 0, . . . ,k −1, there is an edge (v1

2i , v1
2i+1) and

(4) vertex d is connected to each vertex of L1. There is no other edge included in G .
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Figure 4.2 – Graph used in the proof of Theorem 4.8 for k = 2.

Next, we construct 2k arc-disjoint spanning trees T0, . . . ,T2k−1 (see Figure 4.2 for an example
with k = 2). We use [t ]0 to denote set {0,1,2, . . . , t −1}.

• For each i ∈ [k]0, add the following arcs:

– (v2
2i+1, v2

2i ), (v2
2i , v1

2i ), (v1
2i , v1

2i+1), and (v1
2i+1,d) into T2i+1;

– arcs (v2
2i , v2

2i+1), (v2
2i+1, v1

2i+1), (v1
2i+1, v1

2i ), and (v1
2i ,d) into T2i .

• For each i ∈ [k]0, and for each j ∈ [2k]0 \ {2i ,2i +1}, add the following arcs:

– (v2
j , v2

2i ), and (v1
j , v2

2i ) into T2i ;

– (v2
j , v2

2i+1), and (v1
j , v2

2i+1) into T2i+1.

Finally, consider a scenario in which edges (v2
0 , v2

1), (v2
2 , v2

3), . . . , (v2
2k−4, v2

2k−3) and (v1
0 , v1

1),
(v1

2 , v1
3), . . . , (v1

2k−4, v1
2k−3), (v1

2k−2, v1
2k−1) failed.

We say that a packet is routed downwards (upwards) if it is routed from a vertex in L2 (L1)
to a vertex in L1 (L2). Let Ed be the expected number, minimized over all the vertices, of tree
switches of a packet that is routed downwards, Eu be the expected number of tree switches of
a packet that is routed along Ti and is currently located at v2

i , for some i ∈ [2k −2]0, and E2 be
the expected number of tree switches of a packet that is originated by a vertex in L2. Then, we
can show.

Lemma 4.6. It holds Eu ≥ 3
2k−1 Ed + 2k−4

2k−1 Eu +1 .

Proof. Let p be routed along Th and located at v2
h , for some h ∈ [2k −2]0. W.l.o.g, let h = 0. By

the construction of T0, from v1
0 packet p should be forwarded to v2

1 but (v2
0 , v2

1) has failed. So,
from v2

0 , p is forwarded downwards along T1, T2k−2 or T2k−1 with probability 3
2k−1 and routed

along any other tree T j to a vertex v2
j in L2 with probability at least 2k−4

2k−1 . Hence, the lemma
follows.

Lemma 4.7. We have Ed ∈Ω(k2).

Proof. By the construction, a packet routed downwards traverses arc (v2
i , v1

i ) of Ti . W.l.o.g, let
p be routed along (v2

2i , v1
2i ) of T2i . As (v1

2i , v1
2i+1), which belongs to T2i , has failed, p is rerouted

along T j for some j ∈ [2k]0 \ {2i }. Among them, only T2i+1 has a path from v1
2i to d that does

66



4.5. Randomized Routing via Good Arborescences

not contain any failed link. T2i+1 is chosen with probability 1
2k−1 .

If any other tree T j is chosen except T2k−2 and T2k−1, which happens with probability 2k−4
2k−1 ,

then p is rerouted through T j from v1
2i to a vertex v2

j in L2, and hence

Ed ≥ 2k −4

2k −1
Eu +1. (4.4)

Putting together with (4.4) and Lemma 4.6 we obtain Ed ∈Ω(k2).

We finally observe that any packet originated at a vertex of L2 is routed downwards at least
once before reaching the destination vertex, i.e., E2 ≥ Ed =Ω(k2), which proves the following
theorem.

Theorem 4.8

For any k > 0, there exists a 2k edge-connected graph, a set of 2k arc-disjoint spanning
trees, and a set of 2k −1 failed edges, such that the expected number of tree switches with
RAND-ALGO isΩ(k2).

RAND-ALGO PerformsΩ(|V |k2) Hops

We now a more involved construction than the one in Theorem 4.8 that shows that there are
examples for which if we apply only bouncing, in addition to the number of tree switches, they
have big stretch.

v20 v21 v22 v23

v10 v11 v12 v13

d

T0

T1

T2

T3

w2

w1 w0

w4

w3

Figure 4.3 – Graph used in the proof of Theorem 4.9 for k = 2 and |V | = 5.

Theorem 4.9

For any k > 0, there exists a 2k edge-connected graph G = (V ,E), a set of 2k arc-disjoint
spanning trees, and a set of k −1 failed edges, such that the expected number of tree
switches with RAND-ALGO is Ω(k2). Furthermore, the routing makes Ω(k2|V |) hops in
expectation.
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Proof. To prove the promised bound, we start by defining a 2k edge connected graph G = (V ,E )
and its set of 2k arc disjoint spanning trees T0, . . . ,T2k−1 as follows.

• Set V consists of a destination vertex d and 4k +p additional vertices arranged into
three layers L1, L2, and W .

• Layers L1 = {v1
0 , . . . , v1

2k−1} and L2 = {v2
0 , . . . , v2

2k−1} are equal-sized.

• Layer W = {w0, w1, . . . , wp−1} is placed "in between" L1 and L2. Number p is a prime
such that max{|V |,2k +1} ≤ p ≤ 2max{|V |,2k +1}. Note that such p always exist.

• Set E is defined to be the edge support of the arborescences that we define in the sequel.
Other than that, G does not contain additional edges.

Next, we construct 2k arc-disjoint spanning trees T0, . . . ,T2k−1 (see Figure 4.3 for an example
with k = 2 and |V | = 5). We use [t ]0 to denote set {0,1,2, . . . , t −1}.

• For each i ∈ [k]0, add the following arcs:

– (v2
2i+1, v2

2i ), (v2
2i , v1

2i ), (v1
2i , v1

2i+1), and (v1
2i+1,d) into T2i+1;

– arcs (v2
2i , v2

2i+1), (v2
2i+1, v1

2i+1), (v1
2i+1, v1

2i ), and (v1
2i ,d) into T2i .

• For each i ∈ [k]0, and for each j ∈ [2k]0 \ {2i ,2i +1}, add the following arcs:

– (v2
j , v2

2i ), (v1
j , w(2i+1)(p−1) mod p ), and (w0, v2

2i ) into T2i ;

– (v2
j , v2

2i+1), (v1
j , w(2i+2)(p−1) mod p ), and (w0, v2

2i+1) into T2i+1.

• For each i ∈ [2k]0 and each a ∈ [
p −1

]
0 add arc (w(i+1)(a+1) mod p , w(i+1)a mod p ) to Ti .

Finally, consider a scenario in which edges (v2
0 , v2

1), (v2
2 , v2

3), . . . , (v2
2k−4, v2

2k−3) and (v1
0 , v1

1),
(v1

2 , v1
3), . . . , (v1

2k−4, v1
2k−3), (v1

2k−2, v1
2k−1) failed.

Since p is a prime, it is easy to show that the described arborescences are valid and
arc-disjoint.

For each a = 1, . . . ,2k the i -th vertex of the vertex-cloud in the middle layer arborescence
a walks over has index xa

i = a · (i −1) mod p. In order to show that this vertex ordering can
indeed be part of 2k arc-disjoint arborescences we will prove that: xa

i 6= xa
j whenever i 6= j ;

and, (xa
i , xa

i+1) is different than (xb
j , xb

j+1) for any a 6= b, and any valid i and j . These claims
follow from the fact that gcd(p, i ) = 1, but for completeness we provide short proofs.

Towards a contradiction, assume that xa
i = xa

j for some i 6= j . Furthermore, by the defi-
nition, that implies a · (i −1) ≡ a · ( j −1) mod p, and hence a(i − j ) ≡ 0 mod p. However, as
0 ≤ a, |i − j | < p and p is a prime, a(i − j ) is not divisible by p and hence a contradiction.

Again towards a contradiction, assume that (xa
i , xa

i+1) = (xb
j , xb

j+1) for some a 6= b, and

some valid i and j . Then, from xa
i = xb

j we have

ai ≡ b j mod p. (4.5)

On the other hand, xa
i+1 = xb

j+1 implies a(i +1) ≡ b( j +1) mod p, which can be written as

ai +a ≡ b j +b mod p. (4.6)
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Putting together (4.5) and (4.6) we obtain a ≡ b mod p, which contradicts the fact that a 6= b
and 1 ≤ a,b ≤ k.

Observe that whenever packet reaches vertex of W , it visits all the vertices of W before
leaving that layer. Then, the rest of the proof, i.e., computing the number of expected hops
and stretch, is analogous to the proof of Theorem 4.8.

This concludes the analysis.

4.5.2 Correctness of Randomized-Bouncing Routing

In this section we prove that RAND-BOUNCING-ALGO eventually delivers a packet to d , i.e. it
avoids loops, and in the next section we analyze its efficiency.
Assume that we, magically, know whether the arborescence we are routing along is a good one
or not. Then, on a failed edge we could bounce if the arborescence is good, or switch to the
next arborescence otherwise. And, we would not even need any randomness. However, we do
not really know whether an arborescence is good or not since we do not know which edges
will fail. To alleviate this lack of information we use a random guess. So, each time we hit a
failed edge we take a guess that the arborescence is good, where the parameter q estimates
this likelihood. Notice that RAND-BOUNCING-ALGO implements exactly this approach. As
an example, consider Fig. 4.1. If a packet originated at a is first routed through Red and the
corresponding outgoing edge {a,c} is failed, then the packet is forwarded with probability q to
Blue or Green chosen u.a.r., and with probability 1−q it is bounced to Green, which shares
the outgoing failed edge {a,c} with Red. By the following lemma we show that this approach
leads to (k −1)-resilient routing.

Lemma 4.10. RAND-BOUNCING-ALGO produces a set of (k −1)-resilient routing functions.

Proof. By Lemma 4.5 we have that there exists at least one arborescence Ti of T such that
bouncing on any failed edge of Ti the packet will reach d without any further interruption.
Now, as on a failed edge algorithm RAND-BOUNCING-ALGO will switch to Ti with positive
probability, and on a failed edge of Ti the algorithm will bounce with positive probability, we
have that the algorithm will eventually reach d .

4.5.3 Number of Switches of RAND-BOUNCING-ALGO

In this subsection we analyze the expected number of times I the packet is rerouted from one
arborescence to another one in RAND-BOUNCING-ALGO. As we are interested in providing an
upper bound on I , we make the following assumptions. First, we assume that bouncing from
an arborescence which is not good the routing always bounces to an arborescence which is
not good as well. Second, we assume that only by bouncing from a good arborescence the
routing will reach d without switching to any other arborescence. Third, we assume that there
are exactly k − f good arborescences, which is the lower bound provided by Lemma 4.2 and
Lemma 4.4. Clearly, these assumptions can only lead to an increased number of iterations

compared to the real case. Finally, for the sake of brevity we define t
def= f

k .

Now, we are ready to start with the analysis. As the first step we define a random variable,
where in the definitions T is the arborescence variable from algorithm RAND-BOUNCING-
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ALGO,

X
def= number of times a failed edge is hit before reaching d if routing on T

Let Ti ni t be the first arborescence that we consider in RAND-BOUNCING-ALGO. Then, E [I ]
is upper-bounded by

E [I ] ≤ Pr
[
Ti ni t is not good

]
E
[

X |Ti ni t is not good
]+Pr

[
Ti ni t is good

]
E
[

X |Ti ni t is good
]

,(4.7)

where from our assumptions we have

Pr
[
Ti ni t is not good

]= t , and Pr
[
Ti ni t is good

]= 1− t .

To simplify calculations, let XP and YP be pessimistic upper bound on conditional expected
values. That is, let XP be the same as E

[
X |Ti ni t is not good

]
and YP as E

[
X |Ti ni t is good

]
under assumption that: the packet always hits a failed edge unless it bounces on a good
arborescence; and, whenever packet bounces on a non-good arborescence it switches to a
non-good one.

Now, let us express XP and YP as functions in XP , YP , q , and t , while following our
assumptions. If T is not a good arborescence, then a routing along T will hit a failed edge. If
it hits a failed edge, with probability 1−q the routing will bounce and switch to a non good
arborescence. With probability qt the routing scheme will set T to be a non good arborescence,
and with probability q(1− t ) it will set T to be a good arborescence. Formally, we have

XP = 1+qt XP +q(1− t )YP + (1−q)XP . (4.8)

Applying an analogous reasoning about YP , we obtain

YP = 1+qt XP +q(1− t )YP . (4.9)

Observe that the equations describing XP and YP differ only in the term (1−q)XP . This comes
from the fact that bouncing on a good arborescences the packet will reach d without hitting
any other failed edge.

By some simple calculations (see [CNP+14]), we obtain

E [I ] ≤U (q)
def= t

(1−q)q(1− t )
+ 1

1−q
. (4.10)

Now we can prove the following lemma.

Lemma 4.11. We have that

E [I ] ≤ 2+4
t

1− t
= 2+4

f

k − f
.

Proof. From (4.10) we have E [I ] ≤U (q). Setting q = 1/2 we obtain

U (1/2) ≤ 2+4
t

1− t
,

and by plugging t = f /k the lemma follows.
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Note that if we know f in advance, or have some guarantee in terms of an upper bound on
f , we can derive parameter q that improves the running time of RAND-BOUNCING-ALGO, as
provided by the following lemma.

Lemma 4.12. U (q) is minimized for q = q? = 1− (1+p
t )−1, and equal to

U (q?) = 1+p
t

1−p
t

. (4.11)

Proof. Consider U (q)′, which is

U (q)′ = t (1−q)2 −q2

(1−q)2q2(t −1)
.

In order to find the value of q that minimizes U (q), denote it by q?, we find the roots of
U (q)′ = 0 with respect to q . There is only one positive solution of equation U (q)′ = 0, which is
also the minimizer q?, and is equal to q? = 1− 1

1+pt
, as desired.

Finally, substituting q? into (4.10) and simplifying the expression we obtain (4.11).

Observe that

U (q?) ≤ 4

1− f
k

.

Therefore, if f =αk, i.e., only a fraction of the edges fail, we obtain U (q?) ≤ 4
1−α . This means

that the expected number of arborescence switches does not depend on the number of failed
edges but on the ratio between this number and the connectivity of the graph. Otherwise, if
f = k−1, we have that the expected number of arborescence switches is bounded by 4k, which
is linear w.r.t. to the connectivity of the graph. Combining these conclusions with Lemma 4.10
the proof of Theorem 4.1 follows.

4.5.4 Extension : Rerouting in a Non-uniform Manner

In this section we briefly study non-uniform choice of arborescence used for rerouting in
algorithm RAND-BOUNCING-ALGO. To motivate that discussion, consider a scenario in which
a packet hits a failed edge u, v while routed along arborescence T . Wlog, assume T = Tk .
Furthermore, assume that path v-d along every other arborescence does not contain any
failed link. Therefore, switching from Tk to any other arborescence the packet will reach d
without any further interruption. If the packet is rerouted at step 2.2.(a) of algorithm RAND-
BOUNCING-ALGO but not bounced, then the rerouting tree is chosen uniformly at random. It
further means that the expected number of edges the packet will traverse before reaching d
from v is

EU =
k−1∑
i=1

di stTi (v)

k −1
=

∑k−1
i=1 di stTi (v)

k −1
,

where di stTi (a) is the number of the edges on the unique path from a to d along arborescence
Ti .1 However, the distances from v to d along different arborescences might significantly

1As a remark, the best option in this scenario would be to reroute the packet along the arborescence Ti such
that i = argmini di stTi (v). Unfortunately, our model does not provide the information whether there is any failed
edge on path v-d along Ti or not.
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differ. This naturally suggests us to consider a non-uniform distribution of arborescences
chosen at step 2.2.(a) of RAND-BOUNCING-ALGO, as we do in the rest of this section.

For each vertex v 6= d and each arborescence Ti define probability p i
v as

p i
v

def=
1

di stTi (v)∑k−1
j=1

1
di stT j (v)

.

The expected number of the edges the packet will traverse if each arborescence is chosen with
respect to the distribution given by pv is

ENU =
k−1∑
i=1

p i
v di stTi (v) =

k−1∑
i=1

1∑k−1
j=1

1
di stT j (v)

= k −1∑k−1
i=1

1
di stTi (v)

.

Now we would like to show that indeed EU
?≥ ENU . But, it is the same as showing that

(k −1)2 ?≤
k−1∑
i=1

di stTi (v)
k−1∑
i=1

1

di stTi (v)
.

However, the latter follows from Cauchy–Schwarz inequality as

(k −1)2 =
(

k−1∑
i=1

√
di stTi (v)

√
1

di stTi (v)

)2

≤
k−1∑
i=1

di stTi (v)
k−1∑
i=1

1

di stTi (v)
.

Hence, EU ≥ ENU , as advertised.

72



5 Streaming Submodular Maximization
under Element Removals
This chapter is based on a joint work with Ilija Bogunovic, Ashkan Norouzi-Fard, Jakub Tar-
nawski, and Volkan Cevher. It has been accepted to the 31th Conference on Neural Information
Processing Systems (NIPS) 2017 [MBNF+17] under the title

Streaming Robust Submodular Maximization: A Partitioned Thresholding Approach.

5.1 Introduction

A central challenge in many large-scale machine learning tasks is data summarization – the
extraction of a small representative subset out of a large dataset. Applications include im-
age and document summarization [TIWB14, LB11], influence maximization [KKT03], facility
location [LWD16], exemplar-based clustering [KG10], recommender systems [EAG11], and
many more. Data summarization can often be formulated as the problem of maximizing a
submodular set function subject to a cardinality constraint.

On small datasets, this submodular maximization problem is solved by a greedy method [NWF78],
that produces solutions provably close to optimal. However, this algorithm requires repeated
access to all elements, which makes it infeasible for large-scale scenarios, where the entire
dataset does not fit in the main memory. In this setting, streaming algorithms prove to be
useful, as they make only a small number of passes over the data and use sublinear space.

In many settings, the extracted representative set is also required to be robust. That is, the
objective value should degrade as little as possible when some elements of the set are removed.
Such removals may arise in many applications. For instance, imagine a scenario in which
a user requests a personalized recommendation of books with the goal to buy a new book.
Ideally, such recommendation list should have the following two properties. First, naturally,
the recommended list should represent the user’s interest. Second, the list should be robust to
the books that the user have already read. Namely, even when the books that the user have
already read are removed from the list, the remaining books in the list should capture the
user’s interest.

A robustness requirement is especially challenging for large datasets, where it is pro-
hibitively expensive to reoptimize over the entire data collection in order to find replacements
for the removed elements. In some applications, where data is produced so rapidly that most
of it is not being stored, such a search for replacements may not be possible at all.
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5.1.1 Problem Setup

We consider a potentially large universe of elements V of size n equipped with a normalized
monotone submodular set function f : 2V →R≥0 defined on V . It is said that f is monotone if
for any two sets X ⊆ Y ⊆V we have f (X ) ≤ f (Y ). The set function f is submodular if for any
two sets X ⊆ Y ⊆V and any element e ∈V \ Y it holds that

f (X ∪ {e})− f (X ) ≥ f (Y ∪ {e})− f (Y ).

We use f (Y | X ) to denote the marginal gain in the function value due to adding the elements

of set Y to set X , i.e. f (Y | X )
def= f (X ∪Y )− f (X ). We say that f is normalized if f (;) = 0.

The problem of maximizing a monotone submodular function subject to a cardinality
constraint, i.e.,

max
Z⊆V ,|Z |≤k

f (Z ), (5.1)

has been studied extensively. It is well-known that a simple greedy algorithm (referred to as
GREEDY) [NWF78] provides a (1−e−1)-approximation. However, it requires repeated access to
all the elements of a dataset, which precludes it from use in large-scale tasks.

We say that a set S is robust for a parameter m if, for any set E ⊆V such that |E | ≤ m, there
is a subset Z ⊆ S \ E of size at most k such that

f (Z ) ≥ c f (OPT(k,V \ E)),

where c > 0 is an approximation ratio. We use OPT(k,V \ E) to denote the optimal subset of
size k of V \ E . Formally, OPT(k,V \ E) is defined as

OPT(k,V \ E) ∈ argmax
Z⊆V \E ,|Z |≤k

f (Z ).

In this work, we are interested in solving a robust version of Problem (5.1) in the streaming
setting.

5.1.2 Our Results

We propose a two-stage procedure for robust submodular maximization. For the first stage, we
design a streaming algorithm which makes one pass over the data and finds a summary that is
robust against removal of up to m elements, while containing at most O

(
(m logk +k) log2 k

)
elements.

In the second stage, given any set of size m that has been removed from the obtained
summary, we run the standard greedy algorithm on the remaining elements to obtain a set
of size at most k. We show that this set has large value as well. More precisely, we prove the
following.

Theorem 5.1

For any given constant ε> 0, there exists a single-pass streaming algorithm that under at
most m removals from the stream collects O

(
(k +m logk) log2 k

)
elements and outputs
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set Z of cardinality at most k such that

f (Z ) ≥ 0.149

1+ε
(
1− 1

dlogke
)

f (OPT(k,V \ E)).

5.1.3 Related Work

A robust, non-streaming version of Problem (5.1) was first introduced in [KMGG08]. In that
setting, the algorithm must output a set Z of size k which maximizes the smallest objective
value guaranteed to be obtained after a set of size m is removed, that is,

max
Z⊆V ,|Z |≤k

min
E⊆Z ,|E |≤m

f (Z \ E).

The work [OSU16] provides the first constant (0.387) factor approximation result to this
problem, valid for m = o(

p
k). Their solution consists of buckets of size O(m2 logk) that are

constructed greedily, one after another. Recently, in [BMSC17], a centralized algorithm has
been proposed that achieves the same approximation result and allows for a greater robustness
m = o(k). This algorithm constructs a set that is arranged into partitions consisting of buckets
whose sizes increase exponentially with the partition index. In this work, we use a similar
structure for the robust set but, instead of filling the buckets greedily one after another, we
place an element in the first bucket for which the gain of adding the element is above the
corresponding threshold. Moreover, we introduce a novel analysis that allows us to be robust
to any number of removals m as long as we are allowed to use O(m log2 k) memory.

Submodular streaming algorithms (e.g. [KG10], [KMVV15] and [NFBEH+16]) have become
a prominent option for scaling submodular optimization to large-scale machine learning
applications. A popular submodular streaming algorithm SIEVE-STREAMING [BMKK14] solves
Problem (5.1) by performing one pass over the data, and achieves a (0.5−ε)-approximation

while storing at most O
(

k logk
ε

)
elements.

Recent progress. Independently of our work, [MKK17] gave a streaming algorithm for robust
submodular maximization subject to the cardinality constraint. Their approach also provides
a constant-factor (i.e. 1/2 − ε) approximation guarantee. However, their algorithm uses
O(mk logk/ε) memory.

5.2 Organization

We begin by presenting our main algorithm in Section 5.3. In Section 5.4, we prove that our
algorithm provides a constant-factor approximation guarantee if the value of f (OPT(k,V \ E ))
is known. By extending standard techniques, in Section 5.5, we show how to remove this
assumption.

5.3 Main Algorithm

We design a streaming algorithm Streaming Robust submodular algorithm with Partitioned
Thresholding (Algorithm 9), that we also refer to by STAR-T. This algorithm is used to select
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the elements from the stream, while Algorithm 10, which we call STAR-T-GREEDY, is used to
output the set of elements after the stream is over. In the algorithm and throughout the proofs,
we use a multiplicative factor w that we define in Table 5.1.

The multiplicative factor for bucket size:

w
def=

⌈
4dlogkem

k

⌉
.

Table 5.1 – The parameter for scaling bucket sizes that is used in the algorithm and in the
proofs.

Algorithm 9: STAR-T (V ,k,τ)
Input:

• The ground set V provided in the streaming fashion
• Cardinality constraint k
• τ – the threshold value shared by all the buckets

Output: A robust summary S

1 Bi , j ←;, for all 0 ≤ i ≤ dlogke and 1 ≤ j ≤ wdk/2i e
2 for element e from the stream do

/* loop over partitions */

3 for i ← 0 to dlogke do
/* loop over buckets */

4 for j ← 1 to wdk/2i e do
5 if |Bi , j | < min{2i ,k} and f

(
e

∣∣ Bi , j
)≥ τ/min{2i ,k} then

6 Bi , j ← Bi , j ∪ {e}
7 proceed to the next element in the stream

8 return S ←⋃
i , j Bi , j

As the input, STAR-T requires the access to the ground set V , a cardinality constraint k, and
a threshold parameter τ. Think of the parameter τ is an α-approximation to f (OPT(k,V \ E)),
for some α ∈ (0,1] to be specified later. Hence, τ depends on f (OPT(k,V \ E)), that is not
known a priori. For the sake of clarity, we present the algorithm as if f (OPT(k,V \E )) is known,
and in Section 5.5 we show how remove this assumption. The algorithm makes one pass over
the data and outputs a set of elements S that is later used by STAR-T-GREEDY to output the
final set.

The set S is divided into dlogke + 1 partitions, where every partition i ∈ {0, . . . ,dlogke}
consists of wdk/2i e buckets Bi , j , j ∈ {1, . . . , wdk/2i e}. Every bucket Bi , j stores at most min{k,2i }
elements. If |Bi , j | = min{2i ,k}, then we say that Bi , j is full.

Every partition has a corresponding threshold that is exponentially decreasing with the
partition index i as τ/2i . For example, the buckets in the first partition will only store elements
that have marginal value at least τ. Every element e ∈V arriving on the stream is assigned to
the first non-full bucket Bi , j for which the marginal value f

(
e

∣∣ Bi , j
)

is at least τ/2i . If there is
no such bucket, the element will not be stored. Hence, the buckets are disjoint sets that in the
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end (after one pass over the data) can have a smaller number of elements than specified by
their corresponding cardinality constraints, and some of them might even be empty. The set S
returned by STAR-T is the union of all the buckets.

Algorithm 10: STAR-T- GREEDY

Input:
• A robust summary S
• Cardinality constraint k
• The set of removed elements E

Output: A subset of S \ E of cardinality k

1 return Z ← GREEDY(k,S \ E)

In the second stage, STAR-T-GREEDY receives as input the set S constructed in the stream-
ing stage, a set E ⊂ S that we think of as removed elements, and the cardinality constraint k.
The algorithm then returns a set Z , of size at most k, that is obtained by running the simple
greedy algorithm GREEDY on the set S \ E . Note that STAR-T-GREEDY can be invoked for
different sets E .

5.4 Approximation with the Access to the Optimum Value

In this section we present our results in detail. We initially assume that the value f (OPT(k,V \
E)) is known; later, in Section 5.5, we remove this assumption. We begin by stating the main
result.

Theorem 5.2

Let f be a normalized monotone submodular function defined over the ground set V .
Define α as

α
def= 1

2+ (1−e−1)
(1−e−1/3)

(
1− 4m

wk

) .

Then, given a cardinality constraint k and an upper-bound m on |E |, the algorithm
STAR-T performs a single pass over the dataset and constructs a set S of at most O((k +
m logk) logk) elements.

Furthermore, if τ = α f (OPT(k,V \ E)), then the set S is such that STAR-T-GREEDY

outputs a set Z ⊆ S \ E of size at most k such that

f (Z ) ≥ 0.149
(
1− 1

dlogke
)
· f (OPT(k,V \ E)).

5.4.1 Proof Overview

To prove the theorem, we consider three cases.

We first consider the case when there is a partition i? in S such that at least half of its
buckets are full. We show that then there is at least one full bucket Bi?, j such that f

(
Bi?, j \ E

)
is only a constant factor smaller than f (OPT(k,V \ E)), as long as the threshold τ is set close
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to f (OPT(k,V \ E)). We make this statement precise in the following lemma, whose proof is
deferred to Section 5.4.2.

Lemma 5.3. If there exists a partition in S such that at least half of its buckets are full, then for
the set Z produced by STAR-T-GREEDY we have

f (Z ) ≥ (
1−e−1)(1− 4m

wk

)
τ. (5.2)

Next, we consider the other case, i.e., when for every partition, more than half of its buckets
are not full after the execution of STAR-T. For every partition i , we let Bi denote a bucket that
is not fully populated and for which |Bi ∩E | is minimized over all the buckets of that partition.
Then, we look at such a bucket in the last partition, denoted by Bdlogke.

We provide two lemmas that depend on f (Bdlogke). If the threshold parameter τ is set to
be as in the statement of Theorem 5.2, then:

• Lemma 5.4 shows that if f (Bdlogke) is close to f (OPT(k,V \E )), then our solution is within
a constant factor of f (OPT(k,V \ E));

• Lemma 5.5 shows that if f (Bdlogke) is small compared to f (OPT(k,V \ E)), then our
solution is again within a constant factor of f (OPT(k,V \ E)).

Lemma 5.4. If there does not exist a partition of S such that at least half of its buckets are full,
then for the set Z produced by STAR-T-GREEDY we have

f (Z ) ≥ (
1−e−1/3)( f

(
Bdlogke

)− 4m

wk
τ

)
,

where Bdlogke is a not-fully-populated bucket in the last partition that minimizes
∣∣Bdlogke∩E

∣∣
and |E | ≤ m.

Lemma 5.5. If there does not exist a partition of S such that at least half of its buckets are full,
then for the set Z produced by STAR-T-GREEDY,

f (Z ) ≥ (1−e−1)
(

f (OPT (k,V \ E))− f (Bdlogke)−τ
)
,

where Bdlogke is any not-fully-populated bucket in the last partition.

The proofs of Lemma 5.4 and Lemma 5.5 are provided in Section 5.4.3 and Section 5.4.4,
respectively.

With these lemmas in hands, we are ready to prove Theorem 5.2.

Proof of Theorem 5.2

First, we prove the bound on the size of S:

|S| =
dlogke∑

i=0
wdk/2i emin{2i ,k} ≤

dlogke∑
i=0

w(k/2i +1)2i ≤ (logk +5)wk. (5.3)
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From the definition of w (see Table 5.1) we obtain S =O((k +m logk) logk).

Next, we show the approximation guarantee. We first define γ
def= 4m

wk , α1
def= (

1−e−1/3
)
, and

α2
def= (

1−e−1
)
. Assume for a moment that τ is fixed. Lemma 5.4 and Lemma 5.5 provide two

bounds on f (Z ), one increasing and one decreasing in f (Bdlogke). By balancing out the two
bounds, we derive

f (Z ) ≥
(
α1α2

α1 +α2

)
( f (OPT(k,V \ E))− (1+γ)τ), (5.4)

where the equality holds when f (Bdlogke) = α2 f (OPT(k,V \E))−(α2−γα1)τ
α2+α1

.

Observe that the bound (5.4) (that is obtained by combining Lemma 5.4 and Lemma 5.5)
and the bound provided by Lemma 5.3 correspond to two complementary cases. That is, for
any τ, exactly one of the two bounds holds. By setting

τ=α f (OPT(k,V \ E)),

where α is as provided in the statement of this theorem, we obtain that in either of the two
complementary cases we have

f (Z ) ≥ 1
2

α2(1−γ) + 1
α1

f (OPT(k,V \ E)). (5.5)

Following the definition of w (see Table 5.1), we have γ≤ 1/dlogke, and hence from (5.5)

f (Z ) ≥ 1
2

α2

(
1− 1

dlogke
) + 1

α1

f (OPT(k,V \ E)),

which after substituting α1 and α2 proves our main result

f (Z ) ≥
(
1−e−1/3

)(
1−e−1

)(
1− 1

dlogke
)

2
(
1−e−1/3

)+ (
1−e−1

) f (OPT(k,V \ E))

≥ 0.149

(
1− 1

dlogke
)

f (OPT(k,V \ E)).

5.4.2 Case I – A Partition is Half-Full

In this section we prove Lemma 5.3.

Lemma 5.3. If there exists a partition in S such that at least half of its buckets are full, then for
the set Z produced by STAR-T-GREEDY we have

f (Z ) ≥ (
1−e−1)(1− 4m

wk

)
τ. (5.2)

Proof. Let i? be a partition such that half of its buckets are full. Let Bi?, j be a full bucket that
minimizes

∣∣Bi?, j ∩E
∣∣. We first show that f

(
Bi?, j \ E

)
is close to τ.

In STAR-T, every partition contains wdk/2i e buckets. Hence, the number of full buckets
in partition i? is at least wk/2i?+1. That further implies

∣∣Bi?, j ∩E
∣∣≤ 2i?+1m

wk
. (5.6)
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Taking into account that Bi?, j is a full bucket, we conclude

∣∣Bi?, j \ E
∣∣≥ ∣∣Bi?, j

∣∣− 2i?+1m

wk
. (5.7)

From the property of our Algorithm (line 5) every element added to Bi?, j increased the utility
of this bucket by at least τ/2i? . Combining this with the fact that Bi?, j is full, we conclude that
the gain of every element in this bucket is at least τ/

∣∣Bi?, j
∣∣. Therefore, from (5.7) it follows:

f
(
Bi?, j \ E

)≥ (∣∣Bi?, j
∣∣− 2i?+1m

wk

)
τ∣∣Bi?, j

∣∣ = τ
(

1− 2i?+1m∣∣Bi?, j
∣∣wk

)
. (5.8)

Taking into account that 2i?+1 ≤ 4
∣∣Bi?, j

∣∣ this further reduces to

f
(
Bi?, j \ E

)≥ τ(
1− 4m

wk

)
. (5.9)

Finally,

f (Z ) = f (GREEDY(k,S \ E)) ≥ (1−e−1) f (OPT(k,S \ E))

≥ (
1−e−1) f (OPT(k,Bi∗, j \ E)) (5.10)

= (
1−e−1) f

(
Bi?, j \ E

)
(5.11)

≥ (
1−e−1)(1− 4m

wk

)
τ, (5.12)

where (5.10) follows from (Bi?, j \ E) ⊆ (S \ E), (5.11) follows from the fact that |Bi?, j | ≤ k,
and (5.12) follows from (5.9).

5.4.3 Case II – No Partition is Half-Full; The Last Partition is Large

We start by studying some properties of E that we use in the proof of Lemma 5.4.

Lemma 5.6. Let Bi be a bucket in partition i > 0, and let Ei
def= Bi ∩E denote the elements

that are removed from this bucket. Given a bucket Bi−1 from the previous partition such that
|Bi−1| < 2i−1 (i.e. Bi−1 is not fully populated), the loss in the bucket Bi due to the removals is at
most

f (Ei | Bi−1) < τ

2i−1
|Ei |.

Proof. First, we can bound f (Ei | Bi−1) as follows

f (Ei | Bi−1) ≤
∑

e∈Ei

f (e | Bi−1) . (5.13)

Consider a single element e ∈ Ei . There are two possible cases: f (e) < τ
2i−1 , and f (e) ≥ τ

2i−1 .

In the first case, f (e | Bi−1) ≤ f (e) < τ
2i−1 . In the second one, as |Bi−1| < 2i−1 we conclude

f (e | Bi−1) < τ
2i−1 , as otherwise the streaming algorithm would place e in Bi−1. These observa-

tions together with (5.13) imply:

f (Ei | Bi−1) <
∑

e∈Ei

τ

2i−1
= τ

2i−1
|Ei |.
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Lemma 5.7. For every partition i , let Bi denote a bucket such that |Bi | < 2i (i.e. no partition is
fully populated), and let Ei = Bi ∩E denote the elements that are removed from Bi . The loss in
the bucket Bdlogke due to the removals, given all the remaining elements in the previous buckets,
is at most

f

(
Edlogke

∣∣∣∣∣ dlogke−1⋃
j=0

(
B j \ E j

))≤ dlogke∑
j=1

τ

2 j−1
|E j |.

Proof. We proceed by induction. More precisely, we show that for any i ≥ 1 the following holds

f

(
Ei

∣∣∣∣∣ i−1⋃
j=0

(
B j \ E j

))≤ i∑
j=1

τ

2 j−1
|E j |. (5.14)

Once we show that (5.14) holds, the lemma will follow immediately by setting i = dlogke.

Base case i = 1. Since B0 is not fully populated and the maximum number of elements in
the partition i = 0 is 1, it follows that both B0 and E0 are empty. Then the term on the left hand
side of (5.14) for i = 1 becomes f (E1). As |B0| < 1 we can apply Lemma 5.6 to obtain

f (E1) = f (E1 | B0) ≤ |E1| τ
20 .

Inductive step i > 1. Now we show that (5.14) holds for i > 1, assuming that it holds for i −1.
First, due to submodularity we have

f

(
Ei−1

∣∣∣∣∣ i−2⋃
j=0

(
B j \ E j

))≥ f

(
Ei−1

∣∣∣∣∣ i−1⋃
j=0

(
B j \ E j

))
,

and, hence, we can write

f

(
Ei

∣∣∣∣∣ i−1⋃
j=0

(
B j \ E j

))≤ f

(
Ei

∣∣∣∣∣ i−1⋃
j=0

(
B j \ E j

))+ f

(
Ei−1

∣∣∣∣∣ i−2⋃
j=0

(
B j \ E j

))− f

(
Ei−1

∣∣∣∣∣ i−1⋃
j=0

(
B j \ E j

))

= f

(
Ei ∪

i−1⋃
j=0

(
B j \ E j

))+ f

(
Ei−1

∣∣∣∣∣ i−2⋃
j=0

(
B j \ E j

))− f

(
Ei−1 ∪

i−1⋃
j=0

(
B j \ E j

))
.

(5.15)

Due to monotonicity, the first term can be further bounded by

f

(
Ei ∪

i−1⋃
j=0

(
B j \ E j

))≤ f

(
Ei ∪Bi−1 ∪

i−2⋃
j=0

(
B j \ E j

))
, (5.16)

and for the third term we have

f

(
Ei−1 ∪

i−1⋃
j=0

(
B j \ E j

))= f

(
Ei−1 ∪Bi−1 ∪

i−2⋃
j=0

(
B j \ E j

))≥ f

(
Bi−1 ∪

i−2⋃
j=0

(
B j \ E j

))
, (5.17)

where to obtain the identity we used that Ei−1 ∪ (Bi−1 \ Ei−1) = Ei−1 ∪Bi−1.
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By substituting the obtained bounds (5.16) and (5.17) in (5.15) we obtain:

f

(
Ei

∣∣∣∣∣ i−1⋃
j=0

(
B j \ E j

))≤ f

(
Ei

∣∣∣∣∣ Bi−1 ∪
i−2⋃
j=0

(
B j \ E j

))+ f

(
Ei−1

∣∣∣∣∣ i−2⋃
j=0

(
B j \ E j

))

≤ f (Ei | Bi−1)+ f

(
Ei−1

∣∣∣∣∣ i−2⋃
j=0

(
B j \ E j

))
, (5.18)

where the second inequality follows by submodularity.

Next, Lemma 5.6 can be used (as |Bi−1| < 2i−1) to bound the first term in (5.18):

f

(
Ei

∣∣∣∣∣ i−1⋃
j=0

(
B j \ E j

))≤ τ

2i−1
|Ei |+ f

(
Ei−1

∣∣∣∣∣ i−2⋃
j=0

(
B j \ E j

))
. (5.19)

To conclude the proof, we use the inductive hypothesis that (5.14) holds for i − 1, which
together with (5.19) implies

f

(
Ei

∣∣∣∣∣ i−1⋃
j=0

(
B j \ E j

))≤ τ

2i−1
|Ei |+

i−1∑
j=1

τ

2 j−1
|E j | =

i∑
j=1

τ

2 j−1
|E j |,

as desired.

Here, we outline a technical lemma that is used in the proof of Lemma 5.4

Lemma 5.8. For any submodular function f on a ground set V , and any sets A,B ,R ⊆V , we
have

f (A∪B)− f (A∪ (B \ R)) ≤ f (R | A) .

Proof. Define R2
def= A∩R, and R1

def= R \ A = R \ R2. We have

f (A∪B)− f (A∪ (B \ R)) = f (A∪B)− f ((A∪B) \ R1)

= f (R1 | (A∪B) \ R1)

≤ f (R1 | (A \ R1)) (5.20)

= f (R1 | A) (5.21)

= f (R1 ∪R2 | A) (5.22)

= f (R | A) ,

where (5.20) follows from the submodularity of f , (5.21) follows since A and R1 are disjoint,
and (5.22) follows since R2 ⊆ A.

Lemma 5.4. If there does not exist a partition of S such that at least half of its buckets are full,
then for the set Z produced by STAR-T-GREEDY we have

f (Z ) ≥ (
1−e−1/3)( f

(
Bdlogke

)− 4m

wk
τ

)
,

where Bdlogke is a not-fully-populated bucket in the last partition that minimizes
∣∣Bdlogke∩E

∣∣
and |E | ≤ m.
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Proof. Let Bi denote a bucket in partition i which is not fully populated (Bi ≤ min{2i ,k}),
and for which |Ei |, where Ei = Bi ∩E , is of minimum cardinality. Such bucket exists in every
partition i due to the assumption of the lemma that more than a half of the buckets are not
fully populated.

First,

f

(dlogke⋃
i=0

(Bi \ Ei )

)
≥ f

(
Bdlogke

)− f

(
Edlogke

∣∣∣dlogke−1⋃
i=0

(Bi \ Ei )

)
(5.23)

≥ f
(
Bdlogke

)− dlogke∑
i=1

τ

2i−1
|Ei |, (5.24)

where (5.23) follows from Lemma 5.8 by setting B = Bdlogke, R = Edlogke and A =⋃dlogke−1
i=0 (Bi \ Ei ).

As we consider buckets that are not fully populated, Lemma 5.7 is used to obtain (5.24). Next,
we bound each term τ

2i−1 |Ei | in (5.24) independently.

From Algorithm 9 we have that partition i consists of wdk/2i e buckets. By the assumption
of the lemma, more than half of those are not fully populated. Recall that Bi is defined to be
a bucket of partition i which is not fully populated and which minimizes |Ei |. Let Ẽi be the
subset of E that intersects buckets of partition i . Then, |Ei | can be bounded as follows:

|Ei | ≤ |Ẽi |
wdk/2i e

2

≤ 2i+1|Ẽi |
wk

.

Hence, the sum on the left hand side of (5.24) can be bounded as

dlogke∑
i=1

τ

2i−1
|Ei | ≤

dlogke∑
i=1

τ

2i−1

2i+1|Ẽi |
wk

= 4

wk
τ
dlogke∑

i=1
|Ẽi | ≤ 4|E |

wk
τ.

Putting the last inequality together with (5.24) we obtain

f

(dlogke⋃
i=0

(Bi \ Ei )

)
≥ f

(
Bdlogke

)− 4|E |
wk

τ.

Observe also that
dlogke⋃

i=0
|Bi \ Ei | ≤

dlogke⋃
i=0

|Bi | ≤ k +
blogkc⋃

i=0
2i ≤ 3k,

which implies

f (OPT(3k,S \ E)) ≥ f

(dlogke⋃
i=0

(Bi \ Ei )

)
≥ f

(
Bdlogke

)− 4|E |
wk

τ.

Finally,

f (Z ) = f (GREEDY(k,S \ E)) ≥ (
1−e−1/3) f (OPT(3k,S \ E))

≥ (
1−e−1/3)( f

(
Bdlogke

)− 4|E |
wk

τ

)
≥ (

1−e−1/3)( f
(
Bdlogke

)− 4m

wk
τ

)
, (5.25)

as desired.
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5.4.4 Case III – No Partition is Half-Full; The Last Partition is Small

In this section we prove Lemma 5.5.

Lemma 5.5. If there does not exist a partition of S such that at least half of its buckets are full,
then for the set Z produced by STAR-T-GREEDY,

f (Z ) ≥ (1−e−1)
(

f (OPT (k,V \ E))− f (Bdlogke)−τ
)
,

where Bdlogke is any not-fully-populated bucket in the last partition.

Proof. Let Bdlogke denote a bucket in the last partition which is not fully populated. Such
bucket exists due to the assumption of the lemma that more than a half of the buckets are not
fully populated.

Let X and Y be two sets such that Y contains all the elements from OPT(k,V \ E) that are
placed in the buckets that precede bucket Bdlogke in S, and let X

def= OPT(k,V \ E) \ Y . In that
case, for every e ∈ X we have

f
(
e

∣∣ Bdlogke
)< τ

k
(5.26)

due to the fact that Bdlogke is the bucket in the last partition and is not fully populated.

We proceed to bound f (Y ):

f (Y ) ≥ f (OPT(k,V \ E))− f (X ) (5.27)

≥ f (OPT(k,V \ E))− f
(
X

∣∣ Bdlogke
)− f

(
Bdlogke

)
(5.28)

≥ f (OPT(k,V \ E))− f
(
Bdlogke

)− ∑
e∈X

f
(
e

∣∣ Bdlogke
)

(5.29)

≥ f (OPT(k,V \ E))− f
(
Bdlogke

)− τ

k
|X | (5.30)

≥ f (OPT(k,V \ E))− f
(
Bdlogke

)−τ, (5.31)

where (5.27) follows from f (OPT(k,V \ E)) = f (X ∪ Y ) and submodularity, Eq (5.28) and
Eq (5.29) follow from monotonicity and submodularity, respectively. Equation (5.30) follows
from (5.26), and (5.31) follows from |X | ≤ k.

Finally, we have:

f (Z ) = f (GREEDY(k,S \ E)) ≥ (
1−e−1) f (OPT(k,S \ E))

≥ (
1−e−1) f (OPT(k,Y )) (5.32)

= (
1−e−1) f (Y ) (5.33)

≥ (
1−e−1)( f (OPT(k,V \ E))− f (Bdlogke)−τ

)
, (5.34)

where (5.32) follows from Y ⊆ (S \E ), (5.33) follows from |Y | ≤ k, and (5.34) follows from (5.31).

5.5 Algorithm Without the Access to the Optimum Value

In the statement of Theorem 5.2, algorithm STAR-T is invoked with the parameter τ that
is a function of an unknown value f (OPT(k,V \ E)). However, f (OPT(k,V \ E)) is unknown.
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To deal with this shortcoming, we show how to extend the idea of [BMKK14] of maintaining
multiple parallel instances of our algorithm in order to approximate f (OPT(k,V \ E)). For a
given constant ε> 0, compared to STAR-T, this approach increases the space requirement by
a factor of log1+εk and provides a (1+ε)-approximation compared to the value obtained in
Theorem 5.2. More precisely, the following statement holds.

Theorem 5.1

For any given constant ε> 0, there exists a single-pass streaming algorithm that under at
most m removals from the stream collects O

(
(k +m logk) log2 k

)
elements and outputs

set Z of cardinality at most k such that

f (Z ) ≥ 0.149

1+ε
(
1− 1

dlogke
)

f (OPT(k,V \ E)).

Proof. First, f (OPT(k,V \ E )) can be bounded in the following way: η≤ f (OPT(k,V \ E )) ≤ kη,
where η denotes the largest value of any of the elements of V \ E , i.e. η = maxe∈(V \E) f (e).
In case we are given η, we follow the same approach as in [BMKK14] by considering all the
O

(
log1+εk

)
possible values of f (OPT(k,V \ E)) from the set {(1+ ε)i | i ∈Z,η≤ (1+ ε)i ≤ kη}.

For each of the thresholds independently and in parallel we then run STAR-T, and hence
build O

(
log1+εk

)
different summaries (see Algorithm 11). After the stream ends, on each

of the summaries we run algorithm STAR-T-GREEDY and report the maximum output over
all the runs (see Algorithm 12). As this approach runs O(log1+εk) copies of our algorithm, it
requires O(log1+εk) more memory space than stated in Theorem 5.2. Furthermore, since we
are approximating f (OPT(k,V \ E )) as the geometric series with base (1+ε), our final result is
an (1+ε)-approximation of the value provided in the theorem.

Algorithm 11: STAR-T- PARALLEL

Running parallel of STAR-T
Input:

• The ground set V
• Cardinality constraint k
• η ∈R

1 Let α be as defined in the statement of Theorem 5.2.

2 O ← {
(1+ε)i | η≤ (1+ε)i ≤ kη

}
3 Create a set of instances I ← {

STAR-T(V ,k,αη) | η ∈O
}
, and run all the instances in parallel

over the stream.
4 Let S ← {

the output of instance I | I ∈I
}
.

5 return S

Unfortunately, the value η might also not be known a priori. However, η is some value
among the m +1 largest elements of the stream. This motivates the following idea. At every
moment, we keep m +1 largest elements of the stream. Let L denote that set (note that L
changes during the course of the stream). Then, for different values of η belonging to the
set { f (e) | e ∈ L} we approximate f (OPT(k,V \ E)) as described above. Here we make a minor
difference, as also described in [BMKK14]. Namely, instead of instantiating all the copies
of the algorithm corresponding to η≤ (1+ ε)i ≤ km, we instantiate copies of the algorithm
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Algorithm 12: STAR-T- GREEDY- PARALLEL

The final algorithm for running parallel instances
Input:

• Family of sets S

• The set E of removed elements
• Cardinality constraint k

1 return Z ← argmaxS∈S GREEDY(k,S \ E)

corresponding to the values of f (OPT(k,V \ E)) from the set {(1+ε)i | i ∈Z,η≤ (1+ε)i ≤ 2kη}.
We do so as an element e can belong to an instance of our algorithm even if f (OPT(k,V \ E )) =
2k f (e).

Next, let e be a new element that arrives on the stream. If e is not among the m +1 largest
elements of the stream seen so far, we do not instantiate any new copy of our algorithm. On
the other hand, if e should replace another element e ′ ∈ L because e ′ does not belong to the
m+1 largest elements of the stream anymore, we redefine L to be (L \{e ′})∪{e}, and update the
instances. The instances are updated as follows: we instantiate copies (those that do not exist
already) of our algorithm for η= f (e) as described above; and, any instance of our algorithm
corresponding to η= f (e ′), but not to any other element of L, we discard.

To bound the space complexity, we start with the following observation – given an element
e, we do not need to add e to any instance of our algorithm corresponding to f (OPT(k,V \E )) <
f (e). This reasoning is justified by the following: if e ∈ E , then it does not matter whether
we keep e in our summary or not; if e ∉ E , then f (OPT(k,V \ E)) ≥ f (e). Therefore, those
thresholds that are less than f (e) are not a good estimate of the optimum solution with respect
to e. To keep the memory space low, we pass an element e to the instances of our algorithm
corresponding to the of f (OPT(k,V \ E)) being in set {(1+ε)i | i ∈Z, f (e) ≤ (1+ε)i ≤ 2k f (e)}.
Notice that, by the structure of our algorithm, e will not be added to any instance of our
algorithm with threshold more than 2k f (e).

Combining all the observations, we derive the following conclusion. At any point during
the execution, every element of L belongs to at most O(log1+εk) instances of our algorithm.

Define emin
def= argmine∈L f (e). Then by the definition, every element a ∉ L kept in the par-

allel instances of our algorithms is such that f (a) ≤ f (emin). This further implies that a
also belongs to at most O(log1+εk) instances corresponding to the following set of values
{(1+ ε)i | i ∈ Z, f (emin) ≤ (1+ ε)i ≤ 2k f (emin)}. Therefore, the total memory usage of the
elements of L is O

(
m log1+εk

)
. On the other hand, since all the elements not in L belong

to at most O(log1+εk) different instances of STAR-T, the total memory those elements oc-
cupy is O((k +m logk) logk log1+εk). Therefore, the memory complexity of this approach is
O

(
(k +m logk) logk log1+εk

)
.
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6 Fast Recovery for Separated Sparsity
Signals
This chapter is based on a joint work with Aleksander Mądry, and Ludwig Schmidt. It has
been accepted to the 21st International Conference on Artificial Intelligence and Statistics
(AISTATS) 2018 [MMS18] under the title

A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians.

6.1 Introduction

Over the past two decades, sparsity has become a widely used tool in several fields including
signal processing, statistics, and machine learning. In many cases, sparsity is the key concept
that enables us to capture important structure present in real-world data while making the
resulting problem computationally tractable and suitable for mathematical analysis. Among
the many applications of sparsity are sparse linear regression, compressed sensing, sparse
PCA, and dictionary learning.

The first wave of sparsity-based techniques focused on the standard notion of sparsity
that only constrains the number of non-zeros. Over time, it became apparent that extending
the notion of sparsity to encompass more complex structures present in real-world data can
offer significant benefits. Specifically, utilizing such additional structure often improves the
statistical efficiency in estimation problems and the interpretability of the final result. There
is now a large body of work on structured sparsity that has introduced popular models such
as group sparsity and hierarchical sparsity [YL06, EM09, BCDH10, MJOB11, HZM11, RRN12,
NRWY12, BBC14, HIS15c]. These statistical improvements, however, come at a computational
cost: the resulting optimization problems are often much harder to solve. The key reason is
that the combinatorial sparsity structures give rise to non-convex constraints. Consequently,
many of the resulting algorithms have significantly worse running time than their “standard
sparsity” counterparts. This trade-off raises an important question: can we design algorithms
for structured sparsity that match the time complexity of commonly used algorithms for
standard sparsity?

In our work, we address this question in the context of the separated sparsity model, a
popular sparsity model for data with a known minimum distance between large coefficients
[HDC09, DDJB10, HB11, DSRB13, FMN15]. In the one-dimensional case, such as time series
data, neuronal spike trains are a natural example. Here, a minimum refractory period ensures
separation between consecutive spikes. In two dimensions, separation constraints arise in the

87



Chapter 6. Fast Recovery for Separated Sparsity Signals

context of astronomical images or super-resolution applications [HB11, HK15].

We introduce new algorithms for separated sparsity that run in nearly-linear time. This
significantly improves over prior work that required at least quadratic time, which is quickly
prohibitive for large data sets. An important consequence of our fast running time is that it
enables methods that utilize separated sparsity yet are essentially as fast as their counterparts
based on standard sparsity only. For instance, when we instantiate our algorithm in compres-
sive sensing, the running time of our method matches that of common methods such as IHT
or CoSaMP.

Our algorithms stem from a primal-dual linear programming (LP) perspective on the
problem. Our theoretical findings reveal a rich structure behind the separated sparsity model,
which we utilize to obtain efficient methods. Interestingly, our final algorithm has a very
simple form that can be interpreted as a Lagrangian relaxation of the sparsity constraint.
In spite of the non-convexity of the constraint, our algorithm is still guaranteed to find the
globally optimal solution.

We also show that these algorithmic and theoretical contributions directly translate into
empirical efficiency. Specifically, we demonstrate that, compared to the state of the art
procedures, our methods yield an order of magnitude speed-up already on moderate-size
inputs. We run experiments on synthetic data and real world neuronal spike train signals.

6.1.1 Problem Setup

In this section, we formally define separated sparsity and the corresponding algorithmic
problems. As a concrete application of our algorithms, we instantiate them in a sparse recovery
context that is representative for many statistical problems such as compressed sensing and
sparse linear regression.

First, we briefly introduce our notation. As usual, [d ] denotes the set {1, . . . ,d}. We say that
a vector θ ∈Rd is k-sparse if θ contains at most k non-zero coefficients. We define the support
of θ as the set of indices corresponding to non-zero coefficients, i.e., supp(θ) = {i ∈ [d ] |θi 6= 0}.
We let ‖θ‖ denote the `2-norm of a vector θ ∈Rd .

Separated sparsity. Sparsity models are a natural way to formalize structure beyond “stan-
dard” sparsity [BCDH10]. In this work we focus on the the separated sparsity model, defined
as follows [HDC09]. For a support Ω ⊆ [d ], let sep(Ω) = mini 6= j∈Ω|i − j | be the minimum
separation of two indices in the support. We define the following two sets of supports: set
M∆ = {Ω⊆ [d ] |sep(Ω) ≥∆}, and ∆-separated sparsity supportsMk,∆ = {Ω ∈M∆ | |Ω| = k}. That
is,Mk,∆ is the set of support patterns containing k non-zeros with at least ∆−1 zero entries
between consecutive non-zeros.

In order to employ separated sparsity in statistical problems, we often want to add con-
straints based on the support setMk,∆ to optimization problems such as empirical risk mini-
mization. A standard way of incorporating constraints into gradient-based algorithms is via
a projection operator. In the context of separated sparsity, this corresponds to the following
problem.

Problem 1. For a given input vector x ∈ Rd , our goal is to project x onto the set Mk,∆, i.e., to
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find a vector x̂ such that

x̂ ∈ argmin
x ′∈Rd : supp(x ′)∈Mk,∆

‖x −x ′‖ . (6.1)

Problem 1 is the main algorithmic problem we address in this chapter.

Sparse recovery. Structured sparsity has been employed in a variety of machine learning
tasks. In order to keep the discussion coherent, we present our results in the context of the
well-known sparse linear model:

y = Xθ∗+e (6.2)

where y ∈ Rn are the observations/measurements, X ∈ Rn×d is the design or measurement
matrix, and e ∈ Rn is a noise vector. The goal is to find a good estimate θ̂ of the unknown
parameters θ∗ up to the noise level.

The authors of [BCDH10] give an elegant framework for incorporating structured sparsity
into the estimation problem outlined above. They design a general recovery algorithm that
relies on a model-specific projection oracle. In the case of separated sparsity, this oracle is
required to solve precisely the Problem 1 stated above.

6.1.2 Our Results

Our main contribution is a new algorithm for Problem 1 that we call Lagrangian Approach to
the Separated Sparsity Problem (LASSP). The pseudo code is given in Algorithm 13.

Theorem 6.1

Let c ∈Rd , and let γ ∈N+ be the maximal number of bits needed to store any ci . There is
an implementation of LASSP that for every c computes a solution ĉ to Problem 1. With
probability 1−1/d , the algorithm runs in time O(d(γ+ logd)).

Combined with the framework of [BCDH10], we get the following.

Corollary 6.2. Let y, X , θ∗, and e be as in the sparse linear model in Equation (6.2). We assume
that supp(θ∗) ∈Mk,∆ and that X satisfies the model-RIP for Mk,∆. There is an algorithm that
for every y and e returns an estimate θ̂ such that

‖θ̂−θ∗‖2 ≤ C‖e‖2 .

Moreover, the algorithm runs in time Õ(TX +d), where TX is the time of multiplying the matrices
X and X T by a vector.

The corollary shows that, up to logarithmic factors, the running time is dominated by TX +
d . This matches the time complexity of standard sparse recovery and shows that we can utilize
separated sparsity without a significant increase in time complexity. Many measurement
matrices in compressive sensing enable fast multiplication with X (e.g., a subsampled Fourier
matrix), in which case the total running time becomes Õ(d). We validate these theoretical
findings in Section 6.6 by showing that LASSP runs significantly faster than the state of the
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art algorithm used for sparse recovery with separation constraints, while retaining the same
accuracy of the recovered signal.

Our algorithm LASSP is randomized. However, we also design a deterministic nearly-
linear time algorithm and prove the following theorem.

Theorem 6.3

Let c ∈ Rd be the input vector and let γ be as in Theorem 6.1. Then there is an algo-
rithm that computes a solution ĉ satisfying Equation (6.1) and runs in time O(d(γ+
logk) logd log∆).

Further, in Section 6.5 we present a dynamic programming approach that for a specific,
but also natural, family of instances solves the separated sparsity problem in even linear time.

We also consider a natural extension to the 2D-variant of the separated sparsity projection
problem and show that it is NP-hard in Section 6.8. Moreover, in Section 6.9, we extend our
model to allow for blocks of separated variables and show that our algorithms forMk,∆ also
applies to the more general variant. Finally, separated sparsity can be used to model signals in
which a longer pattern is repeated multiple times so that any two patterns are at least ∆ apart.
This model is called disjoint pulse streams [HB11]. Again, the algorithmic core remains the
same and algorithms forMk,∆ can also be used for this generalization.

6.1.3 Related Work

The papers [HDC09, FMN15] are closely related to our work. The paper [HDC09] proposed the
separated sparsity model, provided a sample complexity upper bound, and gave an LP-based
model-projection algorithm. However, they resorted to a black-box approach for solving the
LP, that lead to a fairly prohibitive O(d 3.5) time complexity. Recently, [FMN15] provided a
faster dynamic program for this problem with a time complexity of O(d 2) and also showed a
sample complexity lower bound. The algorithmic aspect of these papers is the main difference
from our work: we exploit structure in both the primal and dual formulations of the LP and
give an algorithm that provably runs in nearly-linear time.

Beside the papers addressing the core algorithmic question of projecting onto separated
sparse vectors, there is much of work utilizing the sparsity model for applications in neural
signal processing [DDJB10, HB11, DSRB13] and recovery with coherent dictionaries [DB13,
Nee15]. In the latter application, the separated sparsity constraint enforces that the signal
representation only consists of incoherent dictionary atoms. We expect that our algorithmic
techniques will also lead to improvements in the context of these applications.

In addition to separated sparsity, a large body of work on structured sparsity has emerged
over the past few years. We refer the reader to the surveys [DE11, BJMO12, Wai14, HIS15b] for
an overview. The line of work most relevant to this chapter is the model-based compressive sens-
ing framework introduced in [BCDH10], which is also the starting point for [HDC09, FMN15].
While the framework provides a general recovery scheme based on a model-projection oracle
satisfying Equation (6.1), it does not provide any guidance on how to design such oracles for
a specific sparsity model. We address precisely this problem for separated sparsity with our
nearly-linear time algorithm.
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Recently, two papers have proposed a fairly general framework for deriving model-projection
oracles via graph sparsity, i.e., sparsity structures that can be defined through connected com-
ponents in a graph on the signal coefficients [HZM11, HIS15c]. This framework generalizes
several previously studied sparsity models such as block sparsity, tree sparsity, and cluster
sparsity. Moreover, the paper [HIS15c] gives projections that run in nearly-linear time. In-
terestingly, these tools do not apply to the separated sparsity model we study in our work.
Intuitively, graph sparsity captures structures in which the non-zero coefficients are clustered
together, while the separated sparsity model achieves a reduction in sample complexity for the
opposite reason: the non-zero coefficients are far apart. Moreover, the algorithms in [HIS15c]
are approximate and project into a sparsity model with a relaxed sparsity constraint. As we
explain in Section 6.3, the separated sparsity model requires more careful control over the out-
put sparsity in order to achieve a meaningful sample complexity improvement over “standard”
sparsity. We circumvent this issue by providing an exact projection onto the separated sparsity
model.

Recent progress. The separated sparsity projection can be reduced to the problem of finding
a minimum-weight path of length k on an edge-weighted directed graph. Recently it was
shown that this graph can be designed so that the edge-weights satisfy the concave Monge
property [AT18]. This further implies that the separated sparsity problem can be solved in
nearly-linear time [AST94, BLP92].

6.2 Organization

We start by showing, in Section 6.3, that a rather obvious approximation algorithm for the
separated sparsity projection is not sufficient to recover separated sparsity signals. Then, in
Section 6.4 we describe our randomized approach to the exact separated sparsity projection.
Section 6.5 provides our refined dynamic programming result. In Section 6.6 we present
the results of evaluation of our randomized algorithm. Section 6.7 is devoted to describing
our nearly-linear deterministic algorithm. in Section 6.8 we provide our study of the two-
dimensional variant of the separated sparsity model. We conclude this chapter by Section 6.9
in which we define a generalization of the separated sparsity model, and also show how to
reduce the recovery problem of this new model to our nearly-linear time algorithms.

6.3 An Approximate-Projection Counterexample

Before we delve into details of our algorithms, we show that an obvious (and perhaps at the
first sight natural) approximate-approach does not solve the separated sparsity recovery.

Multiple recent algorithms for structured sparse projections build on the approximation-
tolerant framework of [HIS15a]. In this framework, it suffices to design approximate projec-
tions instead of solving the model projection problem exactly. For some sparsity structures,
this approach has led to significantly faster algorithms [HIS14, HIS15c]. Hence it is interesting
to see whether the approximation route is also helpful for separated sparsity. In fact, it is easy
to design the following 2-approximation algorithm that runs in nearly-linear time.

Partition the vector c into blocks of length ∆. Then, number those blocks 1 through dd/∆e
in the order they appear in c. In each block, choose an index corresponding to the largest
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coordinate of c within that block. Split those indices into two groups G and H based on the
parity of the corresponding block. Formally, define G and H as follows

G
def=

{
arg max

j=(i−1)∆+1...min{i∆,d}
c j | 1 ≤ i ≤ dd/∆e and i is odd

}
,

and similarly

H
def=

{
arg max

j=(i−1)∆+1...min{i∆,d}
c j | 1 ≤ i ≤ dd/∆e and i is even

}
.

Let g1, . . . , g |G| be an ordering of the elements of G so that cgi ≥ cg j whenever i ≤ j . Similarly,
let h1, . . . ,h|H | be an ordering of the elements of H such that cgi ≥ cg j whenever i ≤ j .

Next, define G ′ def= {gi | 1 ≤ i ≤ min{k, |G|}} and H ′ def= {hi | 1 ≤ i ≤ min{k, |H |}}. Now, it is not
hard to see that the set attaining larger value among G ′ and H ′ has a solution value that is at
least OPT /2, where OPT is the maximum sum attainable with a ∆-separated and k-sparse
vector (in the language of [HIS15a], this is an approximate head projection).

While the above algorithm runs in nearly-linear time and achieves a constant-factor
approximation, there is a catch. In particular, the returned support pattern might contain
fewer than k indices (as a simple example, consider the case k = 2, ∆= 2, and c = (1,100,1)).
This raises the question of the sample complexity for this relaxed sparsity model. Let k ′ denote
the number of output indices of the 2-approximation algorithm. As we have described in the
preliminaries, the sample complexity of the separated sparsity model is O(k log(n/k −∆)). For
concreteness, we now consider the case k ′ = k/2 and d/k−∆ ∈O(1) (the latter is the important
regime where the separated sparsity model achieves a sample complexity of m =O(k)). Then
we have d/k ′−∆ ∈O(1)+∆. Therefore, if we would like to apply the 2-approximation algorithm
in the case k ′ = k/2, the sample complexity would be

O(k log(2d/k −∆)) = O(k log∆) = O(k logd/k)

where we used the assumption that d/k −∆ ∈ O(1). It is important to note that this sam-
ple complexity is worse than O(k) and falls back to the O(k logd/k) sample complexity of
“standard” k-sparse recovery. So by using an approximate projection we have lost the sam-
ple complexity advantage of the separated sparsity model. Since we already know how to
recover k-sparse vectors in nearly-linear time without resorting to structured sparsity, the
approximation algorithm does not provide a novel trade-off.

6.4 Randomized Approach

In this section we describe our randomized algorithm and provide the underlying proofs.

6.4.1 Overview

Given an arbitrary vector x ∈Rd , Problem 1 requires us to find a vector x̂ such that x̂ ∈Mk,∆

and ‖x − x̂‖ is minimized. We now slightly reformulate the problem. Let c ∈ Rd be a vector
such that ci = x2

i for all i . Then it is not hard to see that this problem is equivalent to finding a
set of k entries in the vector c such that each of these entries is separated by at least ∆ and the
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sum of these entries is maximized. Hence our main algorithmic problem is to find a set of k
entries in an non-negative input vector c so that the entries are ∆-separated and their sum is
maximized. More formally, our goal is to find a support Ŝ such that

Ŝ ∈ argmax
S∈Mk,∆

∑
i∈S

ci . (6.3)

In the following, we also consider a relaxed version of (6.3) called PROJLAGR, which is parametrized
by a trade-off parameter λ and a vector c̃:

PROJLAGR(λ, c̃)
def= argmax

S∈M∆

∑
i∈S

c̃i +λ (k −|S|) .

Intuitively, PROJLAGR represents a Lagrangian relaxation of the sparsity constraint in Equa-
tion (6.3).

Our algorithm LASSP is a Las Vegas algorithm: it always returns a correct answer, but
the running time of the algorithm is randomized. Concretely, LASSP repeats a main loop
until a stopping criterion is reached. Every iteration of LASSP first adds a small perturbation
to the coefficients c (see Line 3). This perturbation has only a small effect on the solution
but improves the “conditioning” of the corresponding non-convex Lagrangian relaxation
PROJLAGR so that it returns a globally optimal solution that almost satisfies the constraint.
As we show in Section 6.4.4, we can solve this relaxation (Line 4) in nearly-linear time. After
the algorithm has solved the Lagrangian relaxation, it obtains the final support Ŝ in line 5 by
solving PROJLAGR on a slightly shifted λ̂ to ensure that the constraint is satisfied with good
probability.

Remark: We assume that the bit precision γ required to represent the coefficients c is
finite, and we provide our results as a function of γ. For practical purposes, γ is usually a
constant. Since the solution to Equation (6.3) is invariant under scaling by a positive integer
and γ is finite, without loss of generality we assume that c ∈Zd .

Algorithm 13: LASSP(c,k)
Input:

• Cost vector c ∈Zd

• Sparsity k ∈N+
Output: A solution Ŝ to (6.3)

1 repeat
2 Let X ∈Zd be a vector such that Xi is chosen uniformly at random from {0, . . . ,d 3 −1}, ∀i
3 Define vector c̃ ← d 4c +X

4 Let λ̂← argminλ∈Z PROJLAGR(λ, c̃). In case of ties, maximize λ̂.

5 Choose Ŝ ∈ PROJLAGR
(
λ̂− 1

d+1 , c̃
)

6 until
∣∣Ŝ∣∣= k

7 return Ŝ

6.4.2 Roadmap

We first provide a simple proof (Lemma 6.6 in Section 6.4.3) that LASSP outputs the right
answer if it terminates. But does LASSP terminate on every input? Answering this question
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is the most intricate part in the analysis of our randomized approach. We split the proof in
two main pieces. The first part is Section 6.4.4, where we provide an alternative view on the
separated sparsity problem based on linear programming duality. The duality view paves the
way towards proving our main results. In particular, we show that the subroutines in LASSP
can be implemented quickly.

Lemma 6.4. Single iteration of LASSP can be implemented to run in time O(d(γ+ logd)).

The second part is Section 6.4.5, where we further study the duality view on separated
sparsity. We show that after perturbing the input instance in Line 3 of LASSP, the support
obtained with a shifted λ̂ in Line 5 has cardinality k with high probability.

Lemma 6.5. Algorithm LASSP runs only a single iteration with probability at least 1−1/d.

Together with Lemma 6.6, these results yield Theorem 6.1.

6.4.3 Proof of Correctness

We begin our analysis by proving that LASSP returns a correct result if the algorithm terminates.
As we will see later, establishing termination is the crucial part of the analysis. Nevertheless,
the following lemma is a useful warm-up for understanding how the different pieces of our
algorithm fit together.

Lemma 6.6. When LASSP terminates, it outputs a support Ŝ such that x restricted to Ŝ is a
solution to Problem 1.

Proof. As we have argued above, the problems in Equations (6.1) and (6.3) are equivalent. So,
we show that LASSP outputs a solution to the problem in Equation (6.3).

Let Ŝ be the set returned by LASSP. By the condition of the loop in Line 6, we have |Ŝ| = k.
So, as Ŝ ∈M∆ (see the definition of PROJLAGR), we have Ŝ ∈Mk,∆.

Now, towards a contradiction, assume that support Ŝ is not a solution to the problem in
Equation (6.3), while support S? is. This implies that

∑
i∈S? ci >∑

i∈Ŝ ci . Now since, without
loss of generality, we assumed that c ∈Zd , the last inequality implies

∑
i∈S? ci ≥ 1+∑

i∈Ŝ ci , and
hence ∑

i∈S?
d 4ci ≥ d 4 +∑

i∈Ŝ

d 4ci . (6.4)

Observe that for any support S ∈Mk,∆, the term λ (k −|S|) equals zero, and recall that Ŝ,S? ∈
Mk,∆. Furthermore, by the definition of the random vector X in line 2 and from (6.4)∑

i∈S?

(
d 4ci +Xi

) ≥ ∑
i∈S?

d 4ci ≥ d 4 +∑
i∈Ŝ

d 4ci

> ∑
i∈Ŝ

(
d 4ci +Xi

)
.

Since S? ∈M∆, this chain of inequalities contradicts Line 5 of LASSP which chooses Ŝ as an
optimal solution to PROJLAGR

(
λ̂−1/(d +1),d 4c +X

)
. This further implies that Ŝ is a solution

to Problem 1.
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6.4.4 Part I – To Duality and Further

We now analyze the running time of a single iteration of LASSP. We provide a series of
equivalences, as illustrated in Figure 6.1, in order to exploit structure in the separated sparsity
problem. More precisely, we start with a linear programming (LP) view on separated sparsity.
It has already been shown that this viewpoint yields a totally unimodular LP [HDC09], which
implies that the LP has an integral solution. Hence solving the LP solves the separated sparsity
projection in Problem 1. However, prior work did not utilize this connection to reason about
the power of the Lagrangian relaxation approach to the problem.

We begin our detailed analysis of the LP with the dual program D. By strong duality, the
value of D equals the value of the primal LP. Then we cast D as minimization of LP Dλ over λ.
This reduction will play the central role in our analysis and connect Dλ to Line 4 of LASSP.

The LP perspective

We start with a linear programming view on problem (6.3) by considering its LP relaxation
denoted by P :

maximize cT u

subject to
d∑

i=1
ui = k

min{i+∆−1,d}∑
j=i

u j ≤ 1 ∀i = 1. . .d

ui ≥ 0 ∀i = 1. . .d

Given an LP A we use VALA to denote its optimal objective value. (Note that we can restrict
our attention to the case of c being integral since P is invariant under shifting and scaling
the vector c by a positive integer.) (A variant of) P was first formulated in [HDC09] and it was
already observed there that P has a very important property: it is totally unimodular and
thus there always exists an optimal solution to it that is integral [NW88]. The proof of total
unimodularity provided in [HDC09] applied to slightly different variant of this LP, thus for
completeness we provide a proof of total unimodularity of our LP P .

Lemma 6.7. The constraint matrix of problem P is totally unimodular (TUM).

Proof. We first rewrite the constraints of P to be in the form Bu ≤ b,u ≥ 0, where Bu ≤ b is
defined as

d∑
i=1

ui ≤ k

d∑
i=1

−ui ≤−k

min{i+∆−1,d}∑
j=i

u j ≤ 1 ∀i = 1. . .d

Let D be a square submatrix of B . If we show that detD ∈ {−1,0,1}, then by the definition of
TUM the lemma follows.
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Now, D is either a binary interval matrix, or it has one row where all the non-zero entries
are consecutive and equal −1 and the other rows constitute a binary interval matrix. Let D ′

be a matrix defined as D ′
i , j

def= ∣∣Di , j
∣∣. Then, we have |detD| = ∣∣detD ′∣∣. Also, we have that D ′

is a binary interval matrix. However, it is well known that binary interval matrices are TUM,
see [NW88]. Hence, detD ∈ {−1,0,1}

Remark: This implies that a solution to P can be used to obtain a solution to the separated
sparsity model projection: if u? is an optimal solution to P , we can derive the optimal support
of (6.3) from the non-zero entries among the LP variables u?1 , . . . ,u?d . It is unclear, however, if
there is a way to directly solve this LP fast, e.g. it is not known how to solve P directly in time
matching the running time of our algorithm LASSP.

Problem (6.3)

maxS2Mk;∆

P
i2S

ci
LP P,

TUM

dual LP D
, strong duality

minλ2Z Dλ

,

convexity

minλ2Z Pno�k (λ)

, strong duality

line 4 of LASSP
minλ2Z ProjLagr(λ; c) ,

TUM

+ TUMour algorithm

Figure 6.1 – The values of the problems in the diagram are equal. Every equivalence relation
carries structural information that we utilize in our analysis.

A key step in our approach is understanding the separated sparsity structure from the dual
point of view. The dual LP to P , denoted by D, is given as follows

minimize w0k +
d∑

i=1
wi

subject to w0 +
∑

j : j≥1 and
j≤i≤ j+∆−1

w j ≥ ci ∀i = 1. . .d

wi ≥ 0 ∀i = 1. . .d

w0 ∈R

Then, as P is integral, so is D.

Corollary 6.8. For an integer k and a vector of integers c, there exists ŵ such that ŵ is an
optimum of D and ŵ0 ∈Z.

Proof. By Lemma 6.7, problem P is totally unimodular. By [Sch02] we have that D is totally
unimodular as well. This implies that D has an integral optimal solution.

96



6.4. Randomized Approach

We define Dv as the LP D in which the variable w0 is set to v . Also, in what follows, we will
be interested in cost vectors and sparsity parameters other than c and k, respectively. Hence,
whenever this is the case, we will write P (c ′,k ′) to refer to the program P for cost vector c ′

and sparsity k ′. Similarly, whenever we consider some different cost vector c ′ and sparsity
parameter k ′, we will denote the corresponding dual LP by D(c ′,k ′). Now, it is not hard to
show the following lemma.

Lemma 6.9. Dv (c ′,k ′) is convex with respect to v.

Proof. Let w̃ and ŵ be w-solution to Dv̂ (c ′,k ′) and Dṽ (c ′,k ′), respectively. Note that ŵ0 = v̂
and w̃0 = ṽ . Now if we show that

D v̂+ṽ
2

(
c ′,k ′)≤ Dv̂ (c ′,k ′)+Dṽ (c ′,k ′)

2
,

the convexity will follow. We start by showing that ŵ+w̃
2 is a feasible w-vector for the dual,

assuming that both ŵ and w̃ are feasible. We consider the feasibility of each of the constraints.

(1) From

ŵ0 +
∑

j : j≤i≤ j+∆−1 and j≥1
ŵ j ≥ c ′i

and

w̃0 +
∑

j : j≤i≤ j+∆−1 and j≥1
w̃ j ≥ c ′i

we have

(ŵ0 + w̃0)+ ∑
j : j≤i≤ j+∆−1 and j≥1

(ŵ j + w̃ j ) ≥ 2c ′i ,

which implies
ŵ0 + w̃0

2
+ ∑

j : j≤i≤ j+∆−1 and j≥1

ŵ j + w̃ j

2
≥ c ′i .

(2) Also, from ŵ j ≥ 0 and w̃ j ≥ 0 we have
ŵ j+w̃ j

2 ≥ 0.

(3) Trivially, ŵ0+w̃0
2 ∈R.

So, indeed ŵ+w̃
2 is feasible. Hence, we have

D v̂+ṽ
2

≤ ŵ0 + w̃0

2
k ′+

d ′∑
i=1

ŵ j + w̃ j

2

=
(
ŵ0k ′+∑d ′

i=1 ŵ j

)
+

(
w̃0k ′+∑d ′

i=1 w̃ j

)
2

= Dv̂ (c ′,k ′)+Dṽ (c ′,k ′)
2

.

This completes the proof.
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From the definition of D, the following equality holds VALD = minλ∈RVALDλ. Further-
more, Corollary 6.8 implies that it is sufficient to consider λ in Z only, i.e.

VALD = min
λ∈Z

VALDλ. (6.5)

Now, Lemma 6.9 implies that we can obtain VALD by applying ternary search over λ on
function VALDλ.

Implementing one iteration of LASSP efficiently

We now derive the final connection between D and LASSP which will enable us to obtain λ̂ at
line 4 in nearly-linear time. To that end, consider Pno-k (λ) defined as

maximize cT u +λ(k − 1T u)

subject to
min{i+∆−1,d}∑

j=i
u j ≤ 1 ∀i = 1. . .d

ui ≥ 0 ∀i = 1. . .d

Observe that compared to P , Pno-k (λ) does not contain the sparsity constraint. Furthermore,
the LP Pno-k (λ) is a relaxed version of PROJLAGR (λ,c). Also, as P is, then Pno-k (λ) is totally
unimodular. Now this sequence of conclusions results in the following.

Corollary 6.10. Problems Pno-k (λ) and PROJLAGR (λ,c) are equivalent.

To obtain the final connection, we consider LP given by

LP
def= min

λ∈R
Pno-k (λ).

Next, note that the dual of Pno-k (λ) is Dλ. Hence, the strong duality implies VALDλ =
VALPno-k (λ). That together with VALD = minλ∈RVALDλ yields that D and LP coincide as
functions in λ. Furthermore, since we can solve D by applying ternary search over integral
values of λ and Dλ, we can solve LP by applying ternary search over integral values of λ and
function Pno-k (λ). But since Pno-k (λ) and PROJLAGR (λ,c) are equivalent, we can also obtain
λ̂ at line 4 of LASSP by applying ternary search over λ.

Now, it is very easy to see that for an optimal solution w? of D we have w?
0 ≤ maxi |ci |.

It is also not hard to show that there is an optimal solution such that w?
0 ≥−(k−1)maxi |ci | (see

Lemma 6.21). Therefore, in order to find optimal λ̂ it suffices to execute O
(
logmaxi |ci |+ logk

)=
O(γ+ logd) iterations of ternary search.

Every iteration of the ternary search invokes PROJLAGR, which can be implemented to run
in linear time.

Lemma 6.11. Given λ and ĉ ∈Rd , there is an algorithm that finds support Ŝ ∈ PROJLAGR (λ, ĉ)
in time O(d).

Proof. Observe that for a fixed λ, solving PROJLAGR (λ, ĉ) is equivalent to finding support
S′ ∈M∆ that maximize

∑
i∈S′ (ĉi −λ). Hence, we can reinterpret PROJLAGR (λ, ĉ) as follows:

given a vector c̃ = ĉ −λ1, select a subset of [d ] of indices (not necessarily k of them) so that (i)
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every two indices are at least ∆ apart, and (ii) the sum of the values of c̃ at the selected indices
is maximized.

This task can be solved by standard dynamic programming in the following way. For every
i , we define si to be the maximum value of the described task restricted to the first i indices of
c̃. Then, it is easy to see that si+1 = max{si , si+1−∆+ c̃i+1}. Namely, we can either decide not
to select index i +1, in which case the best is already contained in si ; or, we can decide to
select index i +1 which has value c̃i+1 and for the rest we consider si+1−∆. Therefore, sd can
be obtained in time O(d). Now it is easy to reconstruct the corresponding support in linear
time.

Putting all together proves Lemma 6.4.

6.4.5 Part II – Active Constraints

Note that the chain of equivalences present in Figure 6.1 shows that minλ PROJLAGR(λ,c)
outputs the sum of coordinates of an optimal solution of problem 6.1. Prior to our work, it
was not even known how to obtain this value in time faster than O(dk), while our result shows
we can compute it in nearly-linear time. So, it is natural to ask whether the same relaxation
also outputs a support of size k? The answer is, unfortunately, no. To see that, consider the
example: c = (4,7,5,0,0,5,8,5), ∆= 2, and k = 3. For λ> 2 every solution u?

λ
to PROJLAGR(λ,c)

is such that u?
λ

has less than k non-zeros. On the other hand, for every λ ≤ 2 the exists a
solution u?

λ
such that u?

λ
contains more than k non-zeros. Therefore, there is no λ, neither

λ−1/(d +1), for which PROJLAGR(λ,c) provably outputs a support of cardinality k. This also
suggests that the perturbation we apply in lines 2-3 is essential!

Instead of studying lines 2-5 of LASSP directly, we shift our focus to Dλ. In particular, we
exhibit very close connection between its structure and the sparsity of the primal solution,
which we present via the notion of "active constraints". Then we use these findings in our
analysis to show that slight perturbation of the input instance, while not affecting the value
of the solution, makes it possible to obtain a solution to problem 6.3 by applying Lagrangian
relaxation.

Solving Dλ

The crucial property of the LP D is the following: for a fixed value of the variable w0, we can
solve D in linear time. Observe that once we fixed the value of w0, all remaining constraints
in Dλ are “local” since they only affect a known interval of length ∆. They are also ordered
in a natural way. As a result, we can solve Dλ by making a single pass over these variables.
Starting with w1 and all variables set to 0, we consider each constraint from left to right and
increase the variables to satisfy these constraints in a lazy manner. That is, if in our pass we
reach a constraint with index i that is still not satisfied, we increase the value of wi until that
constraint becomes satisfied and then move to the next constraint. Given c and λ, algorithm
Dual-Greedy, i.e. Algorithm 14, formalizes this approach.

Lemma 6.12. For any c ′, and k ′, the algorithm Dual-Greedy(c ′, v) computes an optimal solu-
tion Dv (c ′,k ′) in linear time.
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Algorithm 14: Dual-Greedy(c,λ)
Input:

• c ∈Zd

• λ ∈R
Output: an optimal solution w to D such that w0 =λ

1 w ← ; w0 ←λ // initialize the output

2 sum∆← 0 // store the sum of the most recent ∆ variables of w
3 for i ← 1. . .d do
4 if i −∆≥ 1 then
5 sum∆← sum∆−wi−∆
6 diff ← ci − (w0 + sum∆) // compute "how far" constraint i is from being

tight

7 if diff > 0 then
8 wi ← diff // if constraint i is not satisfied, make it tight

9 sum∆← sum∆+wi // update the sum of the ∆ most recent variables of w

10 return w // solution to D s.t. w0 =λ

Proof. Let c ′ ∈Nd ′
+ . We show that the algorithm Dual-Greedy(c ′, v) outputs vector w̃ in O(d ′)

time such that Dv (c ′,k ′) is minimized and w̃0 = v . To show the running time, observe that
every iteration in the for loop takes O(1) time, so the total algorithm runs in O(d ′) time.

Next, it is easy to see that w̃ is a feasible solution to Dv (c ′,k ′). We show that it is a minimal
as well.
Towards a contradiction, assume there is a vector w ′ such that w ′

0 = w̃0 = v , w ′ is a feasible
solution to D(c ′,k ′), and ‖w ′‖1 < ‖w̃‖1. Then, there exists an index j such that w ′

j 6= w̃ j and

w ′
i = w̃i for all i < j . In case there are multiple vectors w ′, let w ′ be one that maximizes the

location of mismatch j . Consider the two possible cases: w ′
j < w̃ j , and w ′

j > w̃ j .

Case w ′
j < w̃ j . Observe that w̃ j is chosen as a function of w̃0, . . . , w̃ j−1 as a minimal value so

that w̃ is feasible. Therefore, if w ′
j < w̃ j and w ′

i = w̃i for all i < j , then w ′ could not be feasible.

Case w ′
j > w̃ j . First, note that j < d ′, as otherwise ‖w ′‖1 > ‖w̃‖1. Now, we construct w ′′

as follows. We set w ′′
i = w ′

i for all i different than j and j + 1. Set w ′′
j = w̃ j and w ′′

j+1 =
w ′

j+1+ w̃ j −w ′
j . Clearly, w ′′ is also a feasible solution to D(c ′,k ′). Furthermore, ‖w ′′‖1 = ‖w ′‖1

and w̃ and w ′′ agrees on first j coordinates, contradicting our choice of w ′.
This concludes the proof.

Now, to obtain an algorithm that is also able to solve the original dual LP D (instead of only
Dv ) it suffices to provide a procedure for choosing the optimal value of v . A priori, there can be
many possible choices of v and thus an exhaustive search would be prohibitive. Fortunately,
as shown by Lemma 6.9, Dv is actually convex in v . Then, as discussed, we can use a ternary
search over v to find such an optimal value.

Putting these pieces together yields the main theorem of this section. As a reminder, we
assume that c is an integral vector with non-negative entries.
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Theorem 6.13

There exists an algorithm Opt-Value-of-D(c ′,k ′) that, for any c ′ and k ′, outputs an optimal
solution w? to D(c ′,k ′) in time O

(
d ′(logc ′max + logk ′)

)
.

Proof. Bounding w?
0 . Following Lemma 6.9, we can use ternary search to find w?

0 . However,
to be able to do that, we have to know the interval [a,b] we are searching over for w?

0 . By the
following lemma we give an upper bound on b. However, in order to provide a lower bound
on a, we need to develop some more machinery. So, we defer its proof to later sections, and in
Lemma 6.21 we show that a can be lower bounded by −(k −1)cmax .

Lemma 6.14. Let w? be a vector that minimizes D. Then, w?
0 ≤ cmax .

Proof. Towards a contradiction, let w? be an optimal vector such that w?
0 > cmax . Now, as

wi ≥ 0 for all i ≥ 1, we have that the corresponding objective is at least kw?
0 > kcmax . On the

other hand, consider vector ŵ such that ŵ0 = cmax and ŵi = 0 for all i ≥ 1. Clearly, ŵ is a
feasible solution to D. However, the objective function corresponding to ŵ is kcmax < kw?

0 ,
which contradicts our assumption that w? is a minimizer of D.

A nearly-linear time algorithm. Now we provide an algorithm that computes the optimal
value of D(c ′,k ′) in nearly-linear time (see Algorithm 15). It employs ternary search over the
interval provided by Lemma 6.21 and Lemma 6.14 in order to find w0 that optimizes D(c ′,k ′).
At every step of the search, it uses the result from Lemma 6.12 to find an optimal solution to
Dv (c ′,k ′), for v chosen at the current search step.

Algorithm 15: Opt-Value-of-D
Input:

• c ′ ∈Nd ′
+

• Sparsity k ′
• Lower bound lb (if not specified, the default value is −(k ′−1)c ′max )
• Upper bound ub (if not specified, the default value is c ′max )

Output: A minimizer wbest to D(c ′,k ′) constrained to wbest
0 ∈ [lb,ub]; if lb and ub are not

specified, wbest is an optimal solution to D(c ′,k ′)

1 s ← l b, e ← ub
2 while s ≤ e do
3 l ← s +⌊ e−s

3

⌋
, r ← e −⌊ e−s

3

⌋
4 (acti ve l , w l ) ← Dual-Greedy(c, l )
5 (acti ver , w r ) ← Dual-Greedy(c,r )

6 if kw l
0 +

∑d ′
i=1 w l

i ≤ kw r
0 +

∑d ′
i=1 w r

i then
7 e ← r −1, wbest ← w l

8 else
9 s ← l +1, wbest ← w r

10 return wbest

From Lemma 6.12, Lemma 6.9, Corollary 6.8 and bounds on a and b, the rest of the proof
follows directly.
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w0 = 2

c1 = 4 c2 = 6 c3 = 4 c4 = 3 c5 = 3 c8 = 2 c9 = 2

w5 = 1

c6 = 5 c7 = 6 c10 = 2

w1 = 2

w2 = 2
w6 = 2

w7 = 1

c1 = 4 c2 = 6 c3 = 4 c4 = 3 c5 = 3 c6 = 5 c7 = 6 c8 = 2 c9 = 2

w5 = 1 + ε w10 = ε

w0 = 2− ε

w1 = 2 + ε

c10 = 2

w2 = 2
w6 = 2

w7 = 1

Figure 6.2 – A sketch of an instance of D: c = (4,6,4,3,3,5,6,2,2,2) and ∆ = 3. The left and
right figure depicts w obtained by Dual-Greedy(c,2) and Dual-Greedy(c,2−ε) for 0 < ε< 1,
respectively. Constraints 1, 5, and 10 are active, i.e., if w0 on the left is decreased by ε then only
w1, w5, and w10 increase by ε, as shown on the right. Every wi , for i ≥ 1, covers ∆ c-poles to
its right. Colored c-poles correspond to tight constraints.

Tracking the change of Dλ

Next we introduce the key concept that we need for relating the solution of dual to the sparsity
of Lagrangian relaxation of the primal: the notion of active constraints. Let w be a vector
obtained by Dual-Greedy(c,λ) and let w ′ be a vector obtained by Dual-Greedy(c,λ−ε), for
some fixed λ ∈ Z and small ε ∈ (0,1). Then, the set of coordinates that are for ε larger in w ′

than in w are called active constraints. Figure 6.2 provides an illustration of this concept.
Intuitively, the active constraints correspond to those variables of D that increase when w0

decreases by some small value. Hence, one can interpret active constraints as gradients of Dλ

with respect to the variable λ. This concept appears to be very useful in characterizing the
optimal solution of D in an alternative way. In particular, the following lemma holds.

Lemma 6.15. Let c ∈ Zd , λ ∈ Z, and w ← Dual-Greedy(c,λ). Then, if w has exactly k active
constraints the vector w is an optimal solution to D.

In the interest of keeping the focus on the main ideas behind our approach, in this section
we provide only a proof sketch of Lemma 6.15. A full proof of a statement stronger than
Lemma 6.15 along with its proof appears in Lemma 6.17, Section 6.4.6, while in this section
we provide a proof sketch. Let w(ε) = Dual-Greedy(c,λ−ε), for some small ε ∈ (0,1). By the
definition of active constraints and the fact that w has k many, there are exactly k coordinates
that are larger by ε in w(ε) than in w . In addition, w(ε)0 = λ−ε and w0 = λ. It is not hard
to show that all the other coordinates of w(ε) and w are the same, which we can express as∑d

i=1 w(ε)i = kε+∑d
i=1 wi . Now, recall that the objective function of dual D with respect to

vector w equals w0k +∑d
i=1 wi . Then we have

w0k +
d∑

i=1
wi = (w0 −ε)k +kε+

d∑
i=1

wi = w(ε)0k +
d∑

i=1
w(ε)i .

Hence, the objective values of dual D for vectors w(ε) and w are equal, for all the values
ε ∈ (0,1). As D is convex in the value of variable w0 and Dual-Greedy(c,λ) provides an optimal
solution to D such that w0 =λ, then w is an optimal solution to D.
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Wrapping up – perturbation and optimal sparsity

Now we use Lemma 6.15 to prove the following, which essentially justifies line 5 of LASSP.

Lemma 6.16. Let c ∈ Zd , λ ∈ Z, and w̃ ← Dual-Greedy(c,λ). Assume that w̃ has exactly k
active constraints. Then, any optimal support S? of PROJLAGR(λ−ε,c), for 0 < ε < 1/d, has
cardinality exactly k.

Proof. Recall that by our assumption there are exactly k active constraints defined by w̃ .
Then from Lemma 6.15 it follows that w̃ is a minimizer of D, i.e. VALDλ = VALD. By the
integrality of D we have that VALD ∈ Z. Let λ′ = λ−ε, for some 0 < ε < 1/d . Then, it holds
VALDλ′ = VALD as only the k variables correponding to active constraints increased by εwhile
w0 =λ′ decreased by ε. From the strong duality we also have VALPno-k (λ′) = VALDλ′ = VALD.

Let ũ be an integral optimal solution of Pno-k (λ′). Following the definition we have

VALPno-k (λ′) = (cT −λ1T )ũ +λk +ε(1T ũ −k).

Now we have the following properties: ũ is integral; 0 < ε|1T ũ −k| < 1 whenever 1 ≤ |1T ũ −
k| ≤ d ; c ∈ Zd ; v ∈ Z; and VALPno-k (λ′) ∈ Z. Therefore, we have 1T ũ − k = 0, and hence
1T ũ = k. Since we showed the equivalence between Pno-k (λ′) and PROJLAGR(λ′,c) the lemma
follows.

So, if we produce λ as in Lemma 6.16, we will solve problem (6.3). These steps are imple-
mented by lines 4-6 of LASSP. However, as illustrated in the beginning of the section, λ as in
Lemma 6.16 might not exist. Intuitively, this situation happens when the number of active
constraints jumps from a value smaller than k to a value larger than k for a very small change
of λ. In such a case, we are unable to obtain λ as in Lemma 6.16. A key component of our
analysis is showing that there is an efficient way of randomly altering c, and obtaining c̃, so
that with high probability c̃ is such that: λ̂ is obtained as at line 4; and, w̃ ← Dual-Greedy(c̃, λ̂)
has the same property as in Lemma 6.16. Lines 2 and 3 of LASSP implement this random
perturbation. Intuitively, the perturbation achieved by X variables adds noise to our input
instance so that the number of active constraints changes by at most one as λ slides over the
integer domain. Following this intuition we obtain a proof of Lemma 6.5. As the proof depends
on some properties of active constraints that we prove in Section 6.4.6, we provide the proof
of Lemma 6.5 at the end of Section 6.4.6.

6.4.6 Active Constraints – Cont’d

In Section 10 we introduced the notion of active constraints and provided the intuition behind
them. In this section we continue our study of this structure, state them algorithmically, and
give a full proof of Lemma 6.15. We begin by introducing some notation. In what follows,
we will be interested in cost vectors and sparsity parameters other than c and k, respectively.
Hence, whenever this is the case, we will denote the corresponding dual LP by D(c ′,k ′).

Next, by Algorithm 16, we define active constraints algorithmically.

Active constraints provide insight into the structure of D(c ′,k ′) that we can leverage to
optimally distribute our sparsity budget over the recursive subproblems. The optimality
condition of the dual program can be described in the language of active constraints as follows.
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Algorithm 16: Active-Constraints(c ′, w)
Input:

• c ′ ∈Nd ′
+

• w ∈Rd ′+1 a feasible vector of D(c ′,k ′)
Output: Active constraints of D(c ′,k ′) for w

1 active ←;; sum∆← 0; last_active ←−∞
2 for i ← 1. . .d ′ do
3 if i −∆≥ 1 then
4 sum∆← sum∆−wi−∆
5 sum∆← sum∆+wi

6 if last_active ≤ i −∆ and c ′i − (w0 + sum∆) = 0 then
7 active ← active∪ {i }
8 last_active ← i

9 return acti ve

Lemma 6.17. Let v be an integer. Define w1 ← Dual-Greedy(c ′, v) and w2 ← Dual-Greedy(c ′, v+
1). Next, define acti ve1 ← Active-Constraints(c ′, w1) and acti ve2 ← Active-Constraints(c ′, w2).
Then, w1 is an optimal solution of D(c ′,k ′) iff |acti ve1| ≥ k ′ ≥ |acti ve2|.

Proof. We first prove two properties of actives constraints. First, observe that from the way
algorithm Active-Constraints(c ′, w) outputs acti ve, it corresponds to tight constraints of
D(c ′,k ′) for a given w . More precisely, every such tight constraint either is in acti ve, or there
is another tight constraint in acti ve which is at most ∆ "far to the left". Furthermore, as c ′ is
integral, it is easy to see that tight constraints for w0 = v , for some integer v , and for w0 = v −δ,
for δ ∈ [0,1), are the same. Hence, active constraints for w0 = v and w0 = v −δ are also the
same. Putting these observations together, we get the following claim.

Lemma 6.18. Let v be an integer and δ ∈ [0,1). Also, let ŵ ← Dual-Greedy(c ′, v) and ŵ ′ ←
Dual-Greedy(c ′, v −δ). Then,

Active-Constraints(c ′, ŵ) = Active-Constraints(c ′, ŵ ′).

We point out that one can show even stronger statement about tight constraints, not neces-
sarily active tough. Namely, it holds that if a constraint i is tight for ŵ being Dual-Greedy(c ′, v),
then it is tight for any Dual-Greedy(c ′, v ′) such that v ′ ≤ v . It follows from the property that for
any value v ′ there is at most one active constraint j in Active-Constraints(c ′,Dual-Greedy(c ′, v ′))
such that 0 ≤ i − j ≤∆. Therefore, if w0 = v ′ gets decreased by "a very small" δ, then the vari-
able, e.g. w j , corresponding to active constraint will decrease by δ as well. Which in turn
results i still being a tight constraint. Hence, the following lemma holds, which we utilize in
the sequel.

Lemma 6.19. Let ŵ ← Dual-Greedy(c ′, v) and w̃ ← Dual-Greedy(c ′, v ′), for v ′ ≤ v. Then, if a
constraint i is tight with respect to ŵ, it is tight with respect to w̃ as well.

Using Lemma 6.18 we can show how Dual-Greedy(c ′, v ′) changes for v ′ ∈ (v −1, v].
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Lemma 6.20. Let v be an integer and δ ∈ [0,1). By ŵ denote the output of Dual-Greedy(c ′, v),
and by ŵδ the output of Dual-Greedy(c ′, v−δ). Let acti ve be returned by Active-Constraints(c ′, ŵ).
Then

k ′ŵδ
0 + ∑

i≥1
ŵδ

i = k ′ŵ0 +
∑
i≥1

ŵi +δ(|acti ve|−k ′).

Proof. From Lemma 6.18 we have that Active-Constraints(c ′,Dual-Greedy(c ′, v−δ)) = acti ve
for all δ ∈ [0,1). Now, by the construction of acti ve, it holds

k ′ŵδ
0 + ∑

i≥1
ŵδ

i = k ′(ŵ0 −δ)+ ∑
i∈acti ve

(ŵi +δ)+ ∑
i≥1 and i∉acti ve

ŵi

= k ′ŵ0 +
∑
i≥1

ŵi +δ(|acti ve|−k ′),

as desired.

We are now ready to finalize the proof of the lemma. Let us break the equivalence stated in
the lemma into two implications, and show they are true.

( ⇐= ) Let |acti ve1| ≥ k ′ ≥ |acti ve2| be true. By Lemma 6.20 and the choice of v , we have
that Dz (c ′,k ′) is non-decreasing for z ∈ [

v, v + 1
2

]
and non-increasing for z ∈ [v − 1

2 , v]. As
Dz (c ′,k ′) is convex, we have Dz (c ′,k ′) is minimized for z = v .1

( =⇒ ) Let w1 is an optimal solution of D(c ′,k ′). Recall that Dz (c ′,k ′) is a convex function in
z. Then, as w1 is an optimum of D(c ′,k ′), Dx (c ′,k ′) is non-increasing in z on interval (−∞, v]
and non-decreasing on [v,∞). But then from Lemma 6.20 we conclude that it can only happen
if |acti ve1| ≥ k ′ ≥ |acti ve2|.

Proving a claim from Theorem 6.13

Recall that in Theorem 6.13, by Lemma 6.14, we provided an upper bound on any w?
0 such

that w? is an optimum of D. In the case of lower bound, we stated a claim without any proof.
In this section we will prove that claim. First, observe that there is actually no lower bound
on w?

0 . To see that, consider a very simple example c = (1), ∆= k = 1. Nevertheless, we can
provide a lower bound in the following form.

Lemma 6.21. There exists an optimal solution w? to D(c ′,k ′) such that w?
0 ≥−(k ′−1)c ′max .

Proof. To prove the lemma, we utilize the optimality condition described by Lemma 6.17 and
the following claim.

Lemma 6.22. Let acti ve1 be the output of Active-Constraints(c ′,Dual-Greedy(c ′, v)) and acti ve2

be the output of Active-Constraints(c ′,Dual-Greedy(c ′, v − t)), for any integer v and a positive
integer t . Then, it holds

|acti ve1| ≤ |acti ve2|.
1We use the fact that from the convexity of Dz (c ′,k ′) we have that Dz (c ′,k ′) is continuous.
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Proof. Let S and S′ be tight constraints for Dual-Greedy(c ′, v) and Dual-Greedy(c ′, v − t), re-
spectively. Then, as we have discussed, S ⊆ S′. So, all we have to show is that there are at least
as many active constraints formed from S′ as there are formed from S. We do that by induction
on the size of S under the assumption that S ⊆ S′.

Base of induction: |S| = 0. As the number of active constraints is non-negative, and if |S| = 0
there is no active constraint, the claim follows.

Inductive step: |S| > d ′ and S ⊆ S′, for d ′ ≥ 0. Let imi n and i ′mi n be the smallest index of
S and S′, respectively. Constraint imi n is active for Dual-Greedy(c ′, v), and i ′mi n is active for
Dual-Greedy(c ′, v − t ). Define T = S \{imi n , . . . , imi n +∆−1} and T ′ = S′ \{i ′mi n , . . . , i ′mi n +∆−1}.
Since i ′mi n ≤ imi n it holds T ⊆ T ′. Now, as for every active constraint j there is no other active
one in the neighborhood of∆−1 around j and except that neighborhood the other constraints
are not affected by j , we have that

acti ve1 = {imi n}∪ {active constraints for T }, and

acti ve2 = {imi n′}∪ {active constraints for T ′}.

Now, as T ⊆ T ′ and |T | < |S|, by inductive hypothesis we have

|{active constraints for T }| ≤ |{active constraints for T ′}|,
and hence the lemma follows.

Let ŵ ← Dual-Greedy(c ′,−(k −1)cmax ) and acti ve ← Active-Constraints(c ′, ŵ). We show
that |acti ve| ≥ k ′. Furthermore, we show that l∆+1 ∈ acti ve, for all l = 0, . . . ,k ′−1. Once it
is shown, the claim follows by Lemma 6.22 and Lemma 6.17. Precisely, Lemma 6.22 shows
that the number of active constraints for solutions corresponding to Dual-Greedy(c ′,−(k ′−
1)c ′max−t ), for t ≥ 0, is at least k ′. But then, from Lemma 6.17 we have that Dual-Greedy(c ′,−(k ′−
1)c ′max ) or Dual-Greedy(c ′,−(k ′−1)c ′max + t ), for some t > 0, outputs an optimal solution.

So, it only remain to show |acti ve| ≥ k. We prove that by induction, showing the following
property. Let i = l∆+ 1 be an index for some integer l such that 0 ≤ l ≤ k ′ − 1. If ŵ0 =
−(k ′−1)c ′max ,

∑i−1
j=max{1,i−∆+1} ŵ j ≤ lc ′max and no constraint in {(l −1)∆+2, . . . , l∆} is active,

then constraints l∆+1,(l +1)∆+1, . . . , (k ′−1)∆+1 are active. The induction is applied in a
downward fashion on l , i.e. the base case is l = k ′−1, and our goal is to show it holds for l = 0.

Base of induction: l = k ′−1. Let i = (k ′−1)∆+1. As
∑i−1

j=max{1,i−∆+1} ŵ j ≤ (k ′−1)c ′max and

c ′i ≥ 0, we have
∑i−1

j=max{1,i−∆+1} ŵ j ≤ ŵ0 +c ′i , and hence constraint i is tight. Furthermore, as
no constraint in {i −∆+1, . . . , i −1} is active, constraint i is an active one.

Inductive step: 0 ≤ l < k ′−1. Let i = l∆+1. First, if
∑i−1

j=max{1,i−∆+1} ŵ j ≤ l c ′max we have that

constraint i is tight, and as before active as well, and also we have ŵi ≥−ŵ0 − l c ′max .

Next, we want to show that
∑i+∆

j=i+1 ŵ j ≤ (l +1)c ′max (note that i +∆≤ d ′), so that we can

use the inductive hypothesis for l +1. First, we show that for every index i ′ it holds

i ′∑
j=max{1,i ′−∆+1}

≤ c ′max − ŵ0. (6.6)

106



6.4. Randomized Approach

Recall that ŵ0 is negative. Towards a contradiction, assume that there exists index q such that∑q
j=max{1,q−∆+1} > c ′max − ŵ0. In case of tie, let q be the smallest such index, which implies

ŵq > 0. But then, it contradicts the greedy choice of Dual-Greedy algorithm, as by the greedy
choice we have ŵq = 0 or

∑q
j=max{1,q−∆+1} = c ′q − ŵ0 ≤ c ′max − ŵ0.

Now we combine (6.6), for i ′ = i +∆−1 and ŵi ≥−ŵ0 − lc ′max to obtain

i+∆∑
j=i+1

ŵ j ≤ c ′max − ŵ0 − ŵi ≤ (l +1)c ′max ,

as desired. In addition, as constraint i is active, we have that no constraints in {i+1, . . . , i+∆−1}
is active, and hence we can use the inductive hypothesis.

This concludes the proof.

A proof of Lemma 6.5

In this section we finalize the proof of the correctness of our randomized algorithm. Before
we delve into details, we introduce some notation. In what follows, we will be interested in
cost vectors and sparsity parameters other than c and k, respectively. Hence, whenever this
is the case, we will write P (c ′,k ′) to refer to the program P for cost vector c ′ and sparsity k ′.
Similarly, whenever we consider some different cost vector c ′ and sparsity parameter k ′, we
will denote the corresponding dual LP by D(c ′,k ′).
Also, as pointed out in other sections, our running-time results are given with respect to γ,
where γ is the maximal number of bits needed to store any ci . As P and D are invariant under
shifting and multiplication of c, for the sake of clarity of our exposition and without loss of
generality we assume c is an integral vector with non-negative entries.

Lemma 6.5. Algorithm LASSP runs only a single iteration with probability at least 1−1/d.

Proof. As pointed out already, without loss of generality in this proof we assume that c is
an integral non-negative vector. We also recall that we showed equivalence between prob-
lem (6.1) and P , and also between Pno-k and PROJLAGR, so in this proof we work with the LP
formulations.

The choice of λ is optimal. Consider w̃ as in Lemma 6.16. First we want to show that if
such w̃ exists, then λ obtained at line 4 of Algorithm 13 is such that it also defines k active
constraints. This in turn would imply, by Lemma 6.16, that support Ŝ obtained at line 5 has
cardinality k, and hence is an optimal solution to P (c̃).

If w̃0 = λ, then we are done. Otherwise, assume that w̃0 6= λ. By Lemma 6.17, w̃ is an
optimal solution of D(c̃). On the other hand, as we discussed in Section 6.4.4, λ is such that
VALDλ(c̃) = VALD(c̃), and w̃0 <λ by the choice of λ. Therefore, by Lemma 6.17 it holds that
Dual-Greedy(c̃,λ) defines at least k active constraints. Furthermore, as D(c̃) is convex w.r.t.
to the variable w0, then for every λ′ ∈ [w̃0,λ] we have VALDλ′(c̃) = VALD(c̃). In other words,
VALDλ′(c̃) remains constant over the given interval. Hence, from Lemma 6.20 we conclude
that Dual-Greedy(c̃,λ) defines exactly k active constraints.

However, for c̃ given on the input there might not exists any λ such that Dual-Greedy(c̃,λ)
defines exactly k active constraints. Our goal is to show that the randomization we apply as-
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sures that for the obtained c̃ it is always the case that there is some λ so that Dual-Greedy(c̃,λ)
has exactly k active constraints.

The evolution of active constraints. Now we want to show that the randomization we apply
will result in an existence of w̃ as described in Lemma 6.16. We start by studying the evolution
of active constraints defined by the output of Dual-Greedy(c̃, w0) as w0 decreases.

First, recall that by Lemma 6.19 we have that if a constraint becomes tight with respect
to some ŵ ← Dual-Greedy(c̃,λ), it remains tight with respect to ŵ ′ ← Dual-Greedy(c̃,λ′) for
every λ′ ≤λ. Let T denote the set of tight constraints with respect to ŵ , and T ′ with respect to
ŵ ′. By our discussion T ⊆ T ′.
Let A and A′ be the set of active constraints with respect to Dual-Greedy(c̃,λ) and Dual-Greedy(c̃,λ′),
respectively. Clearly A ⊆ T and A′ ⊆ T ′. We claim that |T ∩ A′| ≤ |A|. Observe that A is a mini-
mum set of constraints so that every tight constraint is covered (covered in the natural way).
However, A is also a maximum set of constraints of T that can be chosen so that no two of
them overlap, i.e. so that every two of them are at least ∆ apart. That means if one would
choose a subset of T larger than |A| then some two constraints would overlap. Hence, such a
subset can not consist of only active constraints, and therefore |T ∩ A′| ≤ |A|.

This implies that if the number of active constraints increases by a > 0 at certain point,
then there are at least some a constraints that became active, but also tight, for the first time.
Now we want to study what is the probability that two or more non-tight constraints become
tight with respect to Dual-Greedy(c̃,λ), for any λ.

Let us focus on a single constraint j . Fix randomness of all the Xi for i 6= j , i.e. fix c̃i for all
i 6= j . For X j = 0, there are at most d −1 different values of w0 when any of those constraints
becomes tight for the first time. Let W denote the set of these w0 values. So |W | < d . Now,
construct set W j as follows. For each λ ∈W :

• If constraint j is already tight with respect to Dual-Greedy(c̃,λ) for X j = 0, do nothing.

• Define ĉi = c̃i for i 6= j , and ĉ j = c̃ j + xλ, where xλ is defined as the least value so that
constraint j becomes tight for the first time with respect to Dual-Greedy(ĉ,λ). Observe
that xλ ≥ 0 and xλ is integral. If xλ < d 3, add xλ to W j .

We have |W j | ≤ |W | < d . Each of the value of W j correspond to some value of X j . Also, observe
that for given λ, a constraints can become tight for the first time for at most one value of X j . In
addition, as long as constraint j is not tight it does not affect when the other constraints will
become tight, as w j = 0 so w j has no affect on other constraints. This all implies that there
are at most d −1 distinct values of X j , out of d 3 of them, when constraint j and some other
constraint become tight. Therefore,

Pr
[
constraint j and any other constraint become tight for the same value of w0 =λ

]< d

d 3 = 1

d 2 .

Now we can apply union bound to conclude

Pr
[
two constraints become tight for the same value of w0 =λ

]< d
1

d 2 = 1

d
.

Therefore, after applying randomness, for every value of w0 = λ at most one constraint be-
comes tight with probability at least 1−1/d . Following our discussion above, this in turn
implies that the number of active constraints increases by at most 1 after decreasing the value
of w0 by 1. Therefore, there is w̃ as in Lemma 6.16 with probability 1−1/d at least.
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Required randomness. Every ci we perturb by one out of d 3 different values, for which
O(logd) random bits suffices. Therefore, in total we need O(d logd) random bits.

This concludes the proof.

6.5 Dynamic Programming

Before we introduce our dynamic programming (DP) algorithm for the separated sparsity
problem, we briefly review a variant of the DP given in [FMN15]. We remark that the variant
below has a time complexity of O(dk), which is already an improvement over the O(d 2) of
[FMN15] when k = o(d). However, the authors are not aware of a work the describes the O(dk)
DP approach, and hence refer to it as folklore. We improve the analysis of this DP further
and give a faster variant that runs in time O(k(d − (k −1)∆)). In the regime where where the
slack d/k −∆ is constant, the running time simplifies to O(d +k2). So for the very sparse case
k ∈ Õ(

p
d), our improved DP already achieves a nearly-linear running time.

6.5.1 The Basic Dynamic Programming

The folklore dynamic programming fills the following table DP [i ][ j ]. Value DP [i ][ j ] can be
interpreted as follows: Maximal value of choosing j coordinates of c with positions in 1. . . i ,
such that any two chosen coordinates are at distance ∆ at least.

DP [i ][0] = 0

DP [i ][ j ] =−∞, if i < 1

DP [i ][ j ] = max
{
DP [i −1][ j ],ci +DP [i −∆][ j −1]

}
, otherwise

The following claim follows easily:

Theorem 6.23: Folklore

DP [n][k] is an optimal value to the ∆-separated problem and can be computed in time
O(dk). The elements that constitute the optimal value can be output from DP in time
O(d +k).

6.5.2 An Improved Dynamic Programming

The dynamic programming outlined above already achieves an improvement over the algo-
rithms in [HDC09, FMN15]. However, the dynamic programming is still wasteful with the
state space it considers. Consider case in which there is only one possible configuration,
i.e. d = (k −1)∆+1 for some k,∆ ≥ 1. Regardless of the cost vector c, an input with such
parameters has only one valid solution. Nevertheless, the natural implementation of the
dynamic program above runs in Θ(dk) time. Note that the definition of DP does not take into
account the mandatory distance required by the separated sparsity model. By mandatory we
refer to ∆ distance between any two chosen coordinates of c. This observation gives raise
to new dynamic programming definition, that we denote by DP , which directly implements
mandatory distances. Let

s
def= d − ((k −1)∆+1),
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which can be seen as the slack distance that is not mandatory. For instance, if we choose two
coordinates of c with indices i and i +∆+5, and no other coordinate between them, then we
say that ∆ distance between them is mandatory, and the remaining distance of 5 is slack. Now,
DP is defined as

DP [i ][0] = 0

DP [i ][ j ] =−∞, if i < 0

DP [i ][ j ] = max
{

DP [i −1][ j ],cpos(i , j ) +DP [i ][ j −1]
}

, otherwise

where pos(i , j ) = d − (s − i )− (k − j )∆. Value pos(i , j ) gives us the smallest index of c that we
can chose if to the left of that index there are j other chosen indices, and slack distance of i is
used. With the definition of DP in hands one can easily show the following theorem.

Theorem 6.24

Value DP [s][k] is an optimal value to the ∆-separated problem and can be computed in
time O(ks). The elements that constitute the optimal value can be output from DP in
time O(d +k).

Comparing Theorem 6.23 and Theorem 6.24, we see that for certain input parameters, e.g.
when s ∈O(d), we did not make much progress by devising DP . However, as we have already
mentioned, the setting we care the most is when d/k −∆ is a constant, as with such a choice
of parameters the sample complexity is O(k). But in that case we do achieve a significant
improvement over Theorem 6.23.

Corollary 6.25. If d/k−∆ ∈O(1), then there is an algorithm that solves the∆-separated problem
in O(k2 +d) time.

6.6 Experiments

We empirically validate the claims outlined in the previous sections. To that end, we compare
LASSP with the O(dk)-time dynamic program (DP) described in Section 6.5 as a baseline. Note
that this DP already has a better time complexity than the best previously published algorithm
from [FMN15]. Both algorithms are implemented in the Julia programming language (version
0.5.0), which typically achieves performance close to C/C++ for combinatorial algorithms.

6.6.1 Synthetic Data

We perform experiments with synthetic data in order to investigate how the algorithms scale as
a function of the input size. We study two different setups: (i) the running time of the projection
algorithms on their own, and (ii) the overall running time of a sparse recovery algorithm using
the projection algorithms as a subroutine. For the latter, we use the structure-aware variant of
the popular CoSaMP algorithm [NT09, BCDH10].

Figures 6.3(a)-(b). Given a problem size d , we set the sparsity to k = d/50 and generate
a random separated sparse vector with parameter ∆ = (d − 5(k + 1))/k − 1. The non-zero
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Figure 6.3 – Separated sparsity experiments on synthetic data. We plot running times of our
algorithm LASSP relative to the previous work. Plots (a) and (c) are obtained by projecting
signals on the separated sparsity model. Plot (b) compares the running times of CoSaMP with
three different projection operators. The variant "no-model" makes no structural assumptions
and uses hard thresholding as projection operator.
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Figure 6.4 – Separated sparsity experiments for a recovery of real signals. In (b) we plot the
recovery of the signal (a) obtained by the algorithm "no model", i.e. by the algorithm that
makes no structural assumptions and uses hard thresholding as projection operator. Plot (c)
shows the recovery of LASSP. The both procedures use the same number of measurements.

coefficients are i.i.d. ±1. For the projection-only benchmark, we add Gaussian noise with
σ= 1/10 to all coordinates in order to make the problem non-trivial. For each problem size,
we run 10 independent trials and report their mean.

Figure 6.3(a) shows the speed-up obtained by our nearly-linear time projection relative
to the DP baseline. We observe that LASSP is up to 150× faster. This confirms our expecta-
tion that LASSP scales gracefully with the problem size, while the DP essentially becomes a
quadratic-time algorithm.

Figure 6.3(b) compares the running times of CoSaMP with three different projection
operators. The first variant makes no structural assumptions and uses hard thresholding
as projection operator. The other two variants use a projection for the separated sparsity
model, relying on the DP baseline and LASSP, respectively. The results show that the version
of CoSaMP using LASSP instead of the DP is significantly faster. Moreover, CoSaMP with a
simple sparse projection has similar running time to CoSaMP with our structured projection.
We note that CoSaMP with separated sparsity requires 1.5× fewer measurements to achieve
the same recovery quality as CoSaMP with standard sparsity.
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Figure 6.5 – The plots compare the running times of our algorithm LASSP and the DP baseline.
Plots (a) and (c) are obtained by projecting signals directly on the separated sparsity model.
Plot (b) shows the speed-up of CoSaMP recovery obtained by using LASSP as a projection
operator relative to using the DP for projection. Plots (a) and (b) are run on real signals,
obtained by the concatenation of the signal given in Figure 6.4(a).

Figure 6.3(c). We fix the sparsity k = 100 and vary the length d of the signal. The signal
is obtained in the same way as for plots Figure 6.3(a)-(b). We observe that our algorithm
runs 10x faster than the baseline. Furthermore, the plot shows that the running times of
both the baseline DP and LASSP scale linearly with the signal length d . This behavior is
expected for the DP. On the other hand, our theoretical findings predict that the running time
of LASSP scales as d logd . This suggests that the empirical performance of our algorithm is
even (slightly) better than what our proofs state.

For the plot Figure 6.5(c) we make the setup similar to the one for Figures 6.3(a)-(b).
Namely, given a problem size d , sparsity to k, we generate a random separated sparse vector
with parameter ∆ = (d − 5(k + 1))/k − 1. The non-zero coefficients are i.i.d. ±1. We add
Gaussian noise with σ= 0.5 to all coordinates in order to make the problem non-trivial. For
each problem size, we run 10 independent trials and report their mean. In Figure 6.5(c) we
compare the running times of projections of the baseline DP and our algorithm LASSP on
synthetic data for d = 5 ·104 and varying the sparsity k. This plot confirms our theoretical
findings that the running time of LASSP scales more gracefully with the growth of the sparsity
than the running time of DP does.

6.6.2 Neuronal Signals

We also test our algorithm on neuron spike train data from [HB11]. See Figure 6.4(a) for this
input data. First, we run CoSaMP with a “standard sparsity” projection. The recovered signal
is depicted in Figure 6.4(b). Next, we run the convolutional sparsity CoSaMP of [HB11] and
use our fast projection algorithm. The recovered signal is given in Figure 6.4(c). For the both
experiments we use n = 250 measurements.

We also run the convolutional sparsity CoSaMP on neuron spike train data of length 105,
comparing the running time of LASSP and DP as projection operators. CoSaMP with our
algorithm runs 2× faster in this context. We do not compare the running time relative to
CoSaMP with a standard sparsity projection as it requires 10× more measurements to achieve
accurate recovery.
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In plots Figure 6.5(a)-(b) we run experiments on real signals. The signals are obtained from
signal in Figure 6.4(a) by concatenating its copies. Figure 6.5(a) is obtained by projecting the
signal directly to the separated sparsity model. Then we plot the ratio of the running times of
the baseline DP and our algorithm LASSP. Figure 6.5(b) represents the same type of speed-up
ratio but this time for the CoSaMP recovery of signal measurements.

6.7 Deterministic Approach

In this section we describe our deterministic nearly-linear time algorithm. For the sake of
clarity, we repeat some of the notation presented in earlier sections.

6.7.1 Overview

Our algorithm stems from a linear programming view on the separated sparsity recovery. It
has already been shown that this LP is totally unimodular [HDC09], which implies that solving
the LP provides an integral solution and hence solves separated sparsity recovery. However,
the previous work resorts to a black-box approach for solving this LP leading to a prohibitive
O(d 3.5) time complexity. We make a step forward, and study the dual LP, obtaining a method
that takes nearly-linear time to find its optimal solution. By the strong duality, the value of the
dual is the value of the primal LP as well. However, unfortunately, it is not hard to see that a
generic relation between primal and dual LP solutions known as "complementary slackness"
does not lead to recovery of the primal optimal solution itself.

To cope with that shortcoming, we further analyze the properties of dual solution. We
exhibit very close connection between its structure and the sparsity of the primal solution,
which we present via the notion of "active constraints". Intuitively, this structure allows us
to characterize the cases in which the complementary slackness in fact provides the primal
from a dual optimal solution. Then we use these findings in our algorithm to slightly perturb
the input instance, while not affecting the value of the solution, so that it is possible to obtain
a primal from a dual solution in the general case, and hence solve the separated sparsity
recovery.

In Section 6.4.4 we defined LP P , which corresponds to the problem (6.3), as follows:

maximize cT u

subject to
d∑

i=1
ui = k

min{i+∆−1,n}∑
j=i

u j ≤ 1 ∀i = 1. . .d

ui ≥ 0 ∀i = 1. . .d
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We also defined the dual LP to P , denoted by D, as

minimize w0k +
d∑

i=1
wi

subject to w0 +
∑

j : j≥1 and
j≤i≤ j+∆−1

w j ≥ ci ∀i = 1. . .d

wi ≥ 0 ∀i = 1. . .d

w0 ∈R

As Theorem 6.13, which proofs appears in Section 6.4.5, this dual LP has a combinatorial
structure that enables us to solve it in nearly-linear time.

Before delving into details, we introduce some notation. In what follows, we will be
interested in cost vectors and sparsity parameters other than c and k, respectively. Hence,
whenever this is the case, we will write P (c ′,k ′) to refer to the program P for cost vector c ′

and sparsity k ′. Similarly, whenever we consider some different cost vector c ′ and sparsity
parameter k ′, we will denote the corresponding dual LP by D(c ′,k ′).
As already mentioned, our running-time results are given with respect to γ, where γ is the
maximal number of bits needed to store any ci . As P and D are invariant under shifting and
multiplication of c, for the sake of clarity of our exposition and without loss of generality we
assume c is an integral vector with non-negative entries.

At a high-level, we develop our algorithm in three main steps. In Section 6.4.4 we con-
sidered the dual of the LP P and show that its combinatorial structure can be exploited to
compute an optimal solution to it in nearly-linear time. By strong duality, this optimal dual
solution gives us then the value of the optimal primal solution. But, unfortunately, it does not
give us the optimal primal solution itself.

To alleviate this issue, we develop a divide-and-conquer procedure for extracting that
optimal primal solution. First, in Section 6.7.2, we demonstrate that by analyzing answers
of the dual oracle on perturbed versions of the original problem we can quickly recover a
single non-zero entry of the optimal primal solution. That entry can be used to partition our
instance into two smaller subproblems. Then, in Section 6.7.3, we show how to make these
two subproblems fully independent by devising an optimal split of the sparsity constraint that
they share. This optimal split is extracted from the structure of the dual solutions.

With these components in place, we assemble our final algorithm in Section 6.7.4.

6.7.2 Recovering a Segment of an Optimal Solution

At this point, we developed a way of computing the optimal value OPT of P . However, this is
not sufficient for our purposes as the separated sparsity problem also requires us to provide
the corresponding solution, i.e., a binary vector u? corresponding to OPT .

One might hope that this primal solution u? can be inferred from the dual solution ŵ
that our algorithm Opt-Value-of-D(c ′,k ′) (see Algorithm 14) provides. It is not hard to see,
however, that the generic relationship between the optimal primal and optimal dual solutions
that the so-called “complementary slackness” provides is not sufficient here.

Therefore, we instead design a problem-specific algorithm for finding the desired primal
solution vector u?. As a first step, we focus on the task of recovering a single segment of u?.
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Specifically, given some target segment S of at most ∆ consecutive entries, we want to either
find a single index i ∈ S such that u?i = 1, for some optimal primal solution u?; or to conclude
that u?i = 0 for all i ∈ S.

To recover such a segment, we define in an adaptive manner a family of cost vectors
c1, . . . ,c t , for some t ∈O(log∆) and invoke our dual LP solver Opt-Value-of-D(c ′,k ′) on these
cost vectors. As we show, the solutions to these perturbed instances allow us to infer u?j for all
j ∈ S.

To provide more details, let us fix some ∆-length segment S = [ js , je ], i.e., je = min{ js +∆−
1,n}. We now want to decide whether there is an optimal solution û to P such that ûi = 1 for
some i ∈ [ js , je ]. Observe that there might be another optimal solution ũ to P . Furthermore,
it might be the case that ũ j = 0 for every index j ∈ [ js , je ], while there is an index i ∈ [ js , je ]
such that ûi = 1. So while designing the algorithm, we distinguish two cases. First, we analyse
the case in which there exists an optimal solution û to P so that ûi = 0 for every i ∈ [ js , je ].
Next, we consider the complementary case in which for every optimal solution û, we have
that ûi = 1 for some i ∈ [ js , je ]. In the latter case, we recover an index j such that there is a
solution û for which û j = 1 holds.

The first case is captured by the following claim.

Lemma 6.26. Let S ⊆ [d ′] be a set of indices, let c ′ ∈Nd ′
+ be a coefficient vector, and let k ′ be the

sparsity. Define a vector c ′′ ∈Nd ′
+ as follows:

c ′′i =
{

1 if i ∈ S

1+ c ′i otherwise
.

Then, Opt-Value-of-D(c ′′,k ′) equals Opt-Value-of-D(c ′,k ′)+k ′ iff there exists an optimal solu-
tion u? to P (c ′,k ′) such that u?i = 0 whenever i ∈ S.

Proof. Let us show the two direction of equivalence separately.

( =⇒ ) Assume that Opt-Value-of-D(c ′′,k ′) equals Opt-Value-of-D(c ′,k ′)+k ′. Let û be an
optimal solution to P (c ′,k ′) for the cost vector given by c ′′. Now we want to show that ûi = 0
for every i ∈ S. Towards a contradiction, assume it is not the case, i.e. there exists j ∈ S
such that û j = 1. But then,

∑
i : ûi=1(ci + 1) > ∑

i : ûi=1 c ′′i as c ′i + 1 > c ′′i for i ∈ S, and hence
Opt-Value-of-D(c ′′,k ′) < Opt-Value-of-D(c ′,k ′)+k ′, contradicting our assumption.

( ⇐= ) First, observe that Opt-Value-of-D(c ′′,k ′) ≤ Opt-Value-of-D(c ′,k ′)+k ′ as c ′′ ≤ c ′+1.
On the other hand, if there exists an optimal solution u? to P (c ′,k ′) such that u?i = 0 whenever
i ∈ S, then u? achieves value Opt-Value-of-D(c ′,k ′)+k ′ in P (c ′,k ′) for the costs given by c ′′.
In other words, restricted to the set of indices outside of S, c ′ is a shifted by 1 variant of c ′′.
Therefore, we also have Opt-Value-of-D(c ′′,k ′) ≥ Opt-Value-of-D(c ′,k ′)+k ′. Now this implies
Opt-Value-of-D(c ′′,k ′) = Opt-Value-of-D(c ′,k ′)+k ′, as desired.

We are now ready to prove the following result.
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Algorithm 17: ∆-recovery(c ′,k ′, js)
Input:

• c ′ ∈Nd ′
+

• Sparsity k ′
• Index js

Output: index r as described in Theorem 6.27

1 je ← min{ js +∆−1,d ′}
2 s ← js ; e = je ; OPT ← Opt-Value-of-D(c ′,k ′)

3 c ′′i ←
{

1 if i ∈ [ js , je ]

1+ c ′i otherwise

4 if Opt-Value-of-D(c ′′,k ′) =OPT +k ′ then
5 return -1

6 while s < e do
7 mi d ← ⌊ s+e

2

⌋
8 c ′′i ←

{
1 if i ∈ [ js , je ] \ [s,mi d ]

1+ c ′i otherwise

9 if Opt-Value-of-D(c ′′,k ′) =OPT +k ′ then
10 e ← mi d

11 else
12 s ← mi d +1

13 return s

Theorem 6.27

There exists an algorithm that given c ′ ∈Nd ′
+ , sparsity k ′, and an index js ∈ [1,d ′], outputs

an integer r having the following properties:

• If for every optimal solution û to P (c ′,k ′) there is an index i such that ûi = 1 and
i ∈ [ js ,min{ js +∆−1,d ′}], then r is set to be an index in [ js ,min{ js +∆−1,d ′}] such
that there is an optimal solution u? for which we have u?r = 1.

• Otherwise, r is set to -1.

Furthermore, if the algorithm runs in time O
(
(log∆)d ′(log(c ′max +1)+ logk ′)

)
.

Proof. Algorithm ∆-recovery (see Algorithm 17) is used in the proof of this theorem.

On line 4, ∆-recovery first checks whether we can simply ignore all the entries indexed by
{i , . . . ,min{i +∆−1,d ′}}. And if yes, it returns -1. (This step is formalized in the statement of
Theorem 6.27.) However, entries from those interval can only be disregarded if there exists an
optimal solution u? to P (c ′,k ′) such that for every j ∈ {i , . . . ,min{i +∆−1,d ′}} we have u?j = 0.

So, if there is no such u?, i.e. the entries corresponding to that interval have to be considered,
the lines following line 4 of ∆-recovery serve to pinpoint an entry j ∈ {i , . . . ,min{i +∆−1,d ′}}
so that there exists an optimal solution û to P (c ′,k ′) for which holds û j = 1. The way it is done
is by applying a binary search over the interval that can not be ignored, tracked via variables s
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and e of the algorithm.

Correctness. Algorithm ∆-recovery outputs −1 correctly by Lemma 6.26 for S = { js , . . . , je }.

Next, we show that when the binary search loop starting at line 6 ends we have s = e, i.e.
[s,e] corresponds to a single index. As long as∆≥ 1 and js ≤ d ′, at line 1 and line 2 values s and
e are initialized so that s ≤ e, so initially [s,e] is indeed a non-empty interval. Furthermore, as
we have s < e in each iteration, it holds mi d < e. But it also holds mi d ≥ s (in fact mi d equals
s only when s +1 equals e). So, updating e to mi d at line 9, or s to mi d +1 at line 12, [s,e]
remains a non-empty interval in any iteration. Notice that the update rules also guarantee
that we either increase s or decrease e at each iteration, and therefore [s,e] shrinks its size by 1
at least at each iteration. Putting this together, and taking into account the loop-termination
condition at line 6, we conclude that after the loop ends it holds s = e.

We say that interval [s,e] has property Rs,e if there is an optimal solution û to P (c ′,k ′) such
that ûi = 1 for some i ∈ [s,e]. Now, if we show that after line 4 at every step of the algorithm
interval [s,e] has property Rs,e , then the proof will follow immediately. That is exactly how we
proceed. Namely, we show that if [s,e] has property Rs,e , then after updating s or e at line 9 or
line 12 obtaining s′ and e ′, respectively, then interval [s′,e ′] will have property Rs′,e ′ .

Observe that at the beginning of the very first iteration of the loop property Rs,e , equivalent
to R js , je , holds as by Lemma 6.26 every optimal solution û is such that ûi = 1 for some i ∈ [ js , je ].
Next, let [s,e] be updated to [s′,e ′]. We want to show that property Rs′,e ′ holds as well.

First, assume that line 9 gets executed, i.e. s′ = s and e ′ = mi d . Then, by Lemma 6.26,
we have that there exists an optimal solution û to P (c ′,k ′) such that ûi = 0 for every i ∈
[ js , je ] \ [s,mi d ]. But we also have that there is i ∈ [ js , je ] such that ûi = 1. So, putting it
together, we conclude that property Rs′,e ′ holds.

Next, assume that the if condition at line 9 does not hold. So, line 12 is executed, i.e.
s′ = mi d +1 and e ′ = e. Then again by Lemma 6.26, and as a consequence of both line 4 and
line 9, we have that for every optimal solution û we have ûi = 1 for some∈ [ js , je ]\[s,mi d ]. Also,
as je − js +1 ≥∆, we also have û j = 0 for every j ∈ [s,mi d ]. But then, as by our assumption
there is an optimal solution ũ and an index i such that ũi = 1 and i ∈ [s,e], we have that
i ∈ [mi d +1,e]. Hence property Rmi d+1,e , which is equivalent to Rs′,e ′ , holds.

Running time. If ∆-recovery outputs −1 at line 4, it invokes Opt-Value-of-D for the cost
vector c ′ and c ′′. Note that c ′max ≤ c ′max +1. Then, by Theorem 6.13, this case takes running
time O

(
d ′(log(c ′max +1)+ logk ′)

)
.

If the method does not output -1, then it enters the while loop. The loop applies a standard
binary search over js and je which are set so that it holds je − js +1 ≤∆. So, the loop iterates
for O(log∆) times. Every iteration invokes Opt-Value-of-D for vector c ′′ as defined at line 8,
resulting in the total running time of O((log∆)d ′(log(c ′max +1)+ logk ′)).

6.7.3 Distributing Sparsity

The algorithm we presented in the previous section enables us to quickly recover a target
length-∆ segment of some optimal primal solution u?. We now would like to build on this
procedure to develop a divide-and-conquer approach to recovering the primal solution u? in
full.
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Our intention is to use the procedure from Section 6.7.2 to split our input problem into two
(smaller and approximately equally sized) subproblems by recovering a “middle” segment of
the solution u? and then to proceed recursively on each of these subproblems. The difficulty
here, however, is that these two resulting subproblems are not really independent, even though
they correspond to separate cost vectors. The subproblems still share the sparsity constraint.
That is, to make these subproblems truly independent, we must also specify the split of our
sparsity “budget” k ′ between them.

In this section, we analyze properties of the dual LP and exhibit very close ties between its
structure, as captured by active constraints, and the optimal sparsity distribution for our two
subproblems. Specifically, we establish the following theorem.

Theorem 6.28

Let c ′ ∈Nd ′
+ , let k ′′ be a sparsity parameter, and let indices s and e be such that e−s+1 ≥∆

or e equals d ′. Define a vector c ′′ ∈Nd ′
+ as follows:

c ′′i =
{
−∞ if i ∈ [s,e]

c ′i otherwise

Assume that there is a ∆-separated choice of coordinates of c ′′ such that k ′′ coordinates
are chosen, and none of them has an index in [s,e], i.e., the instance is feasible when
restricted to coordinates outside of [s,e]. Then, there is an algorithm that outputs k ′

L and
k ′

R with the property that there exists an optimal ∆-separated solution for cost vector c ′′

and sparsity k ′′ such that it chooses k ′
L coordinates of c ′′ with indices less than s, and k ′

R
coordinates of c ′′ with indices greater than e.

The algorithm runs in time O
(
d ′(logc ′max + logk ′′)

)
.

Observe that Theorem 6.28 essentially gives an algorithm that distributes sparsity in an
optimal way and thus enables us to implement the desired divide-and-conquer approach.

We now illustrate how to use the algorithms∆-recovery (Algorithm 17) and Active-Constraints
(Algorithm 16) to recover an optimal solution for the example c = (3,2,1,4,1,1,2,1), k = 4 and
∆= 2. Let u? be an optimal solution to P . As described above, we proceed by splitting c into
two subvectors and solve the separated sparsity problem on each of them independently. The
first step is to find the exact splitting point in c. To achieve this, we invoke ∆-recovery(c,4,k).
As c4 = 4 is part of any optimal solution, the method returns index 4 and hence we have
u?4 = 1. So at this moment we have learned one index of the optimal solution. In fact, it also
implies that u?3 = u?5 = 0. Hence it remains to learn the remaining k −1 indices that define u?.
However, we have to distribute the remaining sparsity k −1 over the two subproblems. To that
end, we define a new vector c ′ as follows

c ′ =
{
−∞ if i ∈ {3,4,5}

ci otherwise.

The definition of c ′ enforces that no optimal solution to the separated sparsity problem for
sparsity k −1 will choose c3, c4, or c5 (setting c ′i to the dummy value −∞ is for illustration
purposes only). Next, we invoke Active-Constraints(c ′,Opt-Value-of-D(c ′,k −1)) and denote
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its output by acti ve ′. Observe that, as long as Opt-Value-of-D(c,k) has finite value, an optimal
solution to Opt-Value-of-D(c ′,k −1) is finite as well. We have that acti ve ′ = {1,6,8}. Now we
count the number of elements in acti ve ′ that are “to the left” and “to the right” of u?4 , denoting
these quantities by k̂ and k̃ respectively, i.e.,

k̂ = |{i ∈ acti ve ′ | i < 4}|, and k̃ = |{i ∈ acti ve ′ | i > 4}| .

In a similar way, we split the vector c ′ into ĉ and c̃ as follows:

ĉ = (c1,c2), and c̃ = (c6,c7,c8) .

Finally, we solve two ∆-separated instances independently, one for ĉ and k̂, and the second
one for c̃ and k̃.

Proof of Theorem 6.28. In this proof we analyze algorithm Distribute-Sparsity (see Algorithm 18).
This algorithm is used to distribute the sparsity.

Algorithm 18: Distribute-Sparsity(c ′,k ′′, s,e)
Input:

• c ′ ∈Nd ′
+

• Sparsity k ′′ to be distributed
• Indices s and e as described in Theorem 6.28

Output: sparsity k ′
L for the left side, sparsity k ′

R for the right side

1 shi f t ← 1+ (k ′′c ′max +1)

2 c ′′i ←
{

1 if i ∈ [s,e]

c ′i + shi f t otherwise

3 w1 ← Opt-Value-of-D(c ′′,k ′′,−(k ′′−1)c ′max + shi f t ,c ′max + shi f t )
4 acti ve1 ← Active-Constraints(c ′′, w1)
5 acti ve2 ← Active-Constraints(c ′′,Dual-Greedy(c ′′, w1

0 +1))
6 k1

L ←|{i ∈ acti ve1 | i < s}|
7 k2

L ←|{i ∈ acti ve2 | i < s}|
8 k2

R ←|{i ∈ acti ve2 | i > e}|
9 k ′

L ← k2
L +min{k1

L −k2
L ,k ′′−k2

L −k2
R }

10 k ′
R ← k ′′−k ′

L
11 return (k ′

L ,k ′
R )

Optimality for D(c ′′,k ′′). We argue that w1 defined on line 3 is an optimal solution to
D(c ′′,k ′′) although w1

0 is restricted to belong to interval [−(k ′′−1)c ′max+shi f t ,c ′max+shi f t ] =
[c ′max +2,c ′max + shi f t ]. First, observe that for w1

0 ≥ c ′max +2 no constraint with index in [s,e]
is tight, and hence no such constraint can be active. Furthermore, as no constraints in [s,e]
is tight, we have w1

i = 0 for all i ∈ [e, s]. Now, consider cL = (c ′1, . . . ,c ′s−1) and cR = (c ′e+1, . . . ,c ′d ′)
as defined in the algorithm. Then, by following the proof of Lemma 6.21, and as e − s +1 ≥∆,
we conclude that Dual-Greedy(c ′′,c ′max +2) has at least min

{
k ′,

⌈ s−1
∆

⌉}+min
{
k ′,

⌈n−e
∆

⌉}
active

constraints which, by the construction and the assumption that the input instance is feasible,
is k ′′ at least. So, by the monotonicity of the size of active constraints given by Lemma 6.22
and the optimality condition provided via Lemma 6.17 we have that w1 is an optimal solution
to D(c ′′,k ′′).
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Correctness of distributed sparsity. Let acti ve1 denote Active-Constraints(c ′′, w1) and acti ve2

denote Active-Constraints(c ′′, w2), where w2 ← Dual-Greedy(c ′′, w1
0 +1). Next, split w1 and

w2 as follows. Let w1
L be a zero-indexed s-dimensional and w1

R be a zero-indexed (d ′−e +1)-
dimensional vector defined as

w1
L ← (w1

0 , w1
1 , . . . , w1

s−1), and w1
R ← (w1

0 , w1
e+1, . . . , w1

d ′).

Intuitively, letter ’L’ stands for left to s and letter ’R’ stands for right to e. Similarly to w1
L and

w1
R , define w2

L and w2
R as

w2
L ← (w2

0 , w2
1 , . . . , w2

s−1), and w2
R ← (w2

0 , w2
e+1, . . . , w2

d ′).

Also, split acti ve1 and acti ve2 with respect to s and e in the obvious way

acti ve1
L ← {i ∈ acti ve1 | i < s}, and acti ve1

R ← {i ∈ acti ve1 | i > e},

and
acti ve2

L ← {i ∈ acti ve2 | i < s}, and acti ve2
R ← {i ∈ acti ve2 | i > e}.

As a reminder, there is no i ∈ [s,e] such that i ∈ acti ve1. Furthermore, as there is no tight
constraint in [s,e] for w1, we have w1

i = 0 for every i ∈ [s,e]. Observe that the same holds for
acti ve2 and w2. In addition, we have e − s +1 ≥ ∆. From this, we can derive the following
list of equalities, which essentially allows us to split the input problem into two independent
subproblems. So, we have: Dual-Greedy(cL , w1

0) equals w1
L ; Dual-Greedy(cL , w1

0 +1) equals
w2

L ; Dual-Greedy(cR , w1
0) equals w1

R ; and, Dual-Greedy(cR , w1
0 +1) equals w2

R . But also, we
have: Active-Constraints(cL , w1

L) equals acti ve1
L ; Active-Constraints(cL , w2

L) equals acti ve2
L ;

Active-Constraints(cR , w1
R ) equals acti ve1

R ; and, Active-Constraints(cR , w2
R ) equals acti ve2

R .

Now, by Lemma 6.22 we conclude that |acti ve1
L | ≥ |acti ve2

L | and |acti ve1
R | ≥ |acti ve2

R |.
This in turn implies that k ′

L and k ′
R in Distribute-Sparsity are derived correctly. (Note that

k ′
L +k ′

R = k ′′.) But then, by Lemma 6.17 we have that w1
L is an optimal solution to D(cL ,k ′

L)
and w1

R is an optimal solution to D(cR ,k ′
R ), so we can independently solve Recover(cL ,k ′

L)
and Recover(cR ,k ′

R ) knowing that the optimal solution, i.e. its value, remains the same.
We point out that w ′

L ← Opt-Value-of-D(cL ,kL) might differ from w1
L , and similarly w ′

R ←
Opt-Value-of-D(cR ,kR ) might differ from w1

R . In fact, w ′
L and w ′

R might be such that w ′
L0 6=

w ′
R 0, although we have that w1

L0 is equal to w1
R 0.

Running time. Every line, except maybe line 3, take O(d ′) time. On the other hand, line 3
takes time O

(
d ′ log{c ′max + shi f t − (−(k ′′−1)c ′max + shi f t )}

)
that equals O

(
d ′(logc ′max + logk ′′)

)
.

6.7.4 Separated Sparsity in Nearly-Linear Time

We now have all components in place to state our final algorithm Recover(c ′,k ′) that produces
an optimal integral solution for P (c ′,k ′) (see Algorithm 19). We prove the following result for
our algorithm.
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Algorithm 19: Recover(c ′,k ′)
Input:

• c ′ ∈Nd ′
+

• Sparsity k ′
Output: a primal solution d ′-dimensional vector u?

1 if k ′ = 0 then
2 return

3 r ←∆-recovery(c ′,
⌊

d ′+1
2

⌋
,k ′)

4 if r =−1 then

5 s ←
⌊

d ′+1
2

⌋
, e ← min{s +∆−1,d ′}

6 k ′′ ← k ′

7 else
8 s ← max{r −∆+1,1}, e ← min{r +∆−1,d ′}
9 k ′′ ← k ′−1

10 (k ′
L ,k ′

R ) ← Distribute-Sparsity(c ′,k ′′, s,e)
11 cL ← (c ′1, . . . ,c ′s−1), cR ← (c ′e+1, . . . ,c ′d ′ )

12 uL ← Recover(cL ,k ′
L), uR ← Recover(cR ,k ′

R )

13 u?i =


uL

i if i < s

1 if i ∈ [s,e] and r = i

uR
i−e if i > e

0 otherwise

14 return u?

Theorem 6.29

The algorithm Recover(c ′,k ′) solves the model projection problem for separated sparsity
in time O

(
d(log(cmax +1)+ logk) logd log∆

)
.

Proof. The algorithm Recover(c ′,k ′) utilizes ∆-recovery and Distribute-Sparsity to split the
input problem into two subproblems and then recurses on them. Let us now analyze the
correctness and the running time of this algorithm.

Base case. If the input sparsity is 0, the algorithm outputs a zero-vector at line 1.

∆-middle entries. Next, the algorithm invokes ∆-recovery over the ∆ middle entries. De-
pending on r , it sets s and e to correspond to the interval of c ′ that should be removed from
consideration in the recursive calls. In the same time, that intervals serves to break the input
problem into two independent subproblems. It also sets k ′′ that represents the sparsity dis-
tributed outside interval [s,e]. Correctness of this call is guaranteed by Theorem 6.27. Value
shi f t , and in turn vector c ′′, is set so that we have a guarantee that no element from the inter-
val [s,e] is chosen as part of an optimal solution. To see that, consider vector c(3) ← c ′′−shi f t ·1.
Then, c(3)

i = c ′i for i ∉ [s,e] and c(3)
i =−(k ′c ′max +1). In other words, as long as k ′′ ≤ k ′ entries

can be chosen outside of the interval [s,e], no optimal solution should choose any entry within

121



Chapter 6. Fast Recovery for Separated Sparsity Signals

the interval [s,e].

Distributing the sparsity. The correctness of line 10 follows by Theorem 6.28.

Running time. Line 3 of algorithm Recover runs in time O
(
(log∆)d ′(log(c ′max +1)+ logk ′)

)
which is a subset of O

(
(log∆)d ′(log(cmax +1)+ logk)

)
. Vector c ′ is split into cL and cR at line 11

in O(d ′) time. Afterwards, the method recurses on the two subproblems, and combines their
outputs into u?. Obtaining u? at line 13 also takes O(d ′). So, it only to remain to discuss the
recursion.

From Theorem 6.28 we have that line 10 take O
(
d ′(logc ′max + logk ′′)

)
. Furthermore, as

k ′′ ≤ k and c ′max ≤ cmax , we have O
(
d ′(logc ′max + logk ′)

)=O
(
d ′(logcmax + logk)

)
.

Every recursive step shrinks the corresponding c ′ vector by half at least. Hence, the
recursion has depth of O(logd). At every level of the recursion are considered vectors c ′ of
total length O(d) – this follows from the recursive call at line 12 and the fact the cL and cR

represent disjoint pieces of c ′. This implies that the total running time of the algorithm is

O
(
logd(d

(
logcmax + logk

)+ (log∆)d(log(cmax +1)+ logk))
)

,

which compactly can be written as O
(
d(log(cmax +1)+ logk) logd log∆

)
.

6.8 Two-Dimensional∆-Separated Problem is NP-Hard

In this section we consider a natural extension of the ∆-separated problem in which vector c
is two dimensional, i.e. c ∈Rd×m . Formally, given c, sparsity parameter k, and integer ∆, the
goal is to output k pairs of integers (i t , j t ) such that:

• 1 ≤ i t ≤ d , and 1 ≤ j t ≤ m, for all t = 1. . .k;

• for every t 6= s we have min
{∣∣i t − i s

∣∣ ,
∣∣ j t − j s

∣∣}≥∆; and

•
∑k

t=1 ci t , j t is maximized.

We refer by 2D∆-separated(c,k,∆) to that problem, and show it is NP-hard by reducing it to
problem Box-Pack studied in [FPT81]. Let us start by recalling the definition of Box-Pack.

Let k be a number of identical 3×3 squares.2 Our goal is to pack the k squares into a region
of plane defined by set R. Set R consists of pairs of integers, where every pair represents the
point at which a square can be placed, e.g. the upper-left corner of a square. Every square
can only be placed so that its sides are parallel to the axis. By Box-Pack(k,R) we refer to
the problem of answering whether for given k and R one can place all the k squares in the
described way, such that no two squares overlap. In [FPT81] is proved the following result.

2We choose sides to be of length 3 as already that setting is sufficient to prove NP-hardness of Box-Pack, see the
proof of Theorem 2 in [FPT81].
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6.8. Two-Dimensional∆-Separated Problem is NP-Hard

Theorem 6.30: Theorem 2 in [FPT81]

Box-Pack is N P-complete.

Now we utilize Theorem 6.30 to show that 2D∆-separated(c,k,∆) is NP-hard as well.

Theorem 6.31

Problem 2D∆-separated(c,k,∆) is NP-hard.

Proof. We provide a polynomial time reduction of Box-Pack(k,R) to a sequence of 2D∆-separated
instances.

Let RE , denoting "extended R", be the set of all integers points that can be occupied by a
square, not necessarily its corners. Observe that

∣∣RE
∣∣≤ 9|R|. We say that two points in RE are

adjacent if they share the same x- or the same y-coordinate. Consider a connected component
F of RE .

Assume that Box-Pack(i ,F ) can be reduced to an 2D∆-separated instance. Then, let us
show that Box-Pack(k,R) can be reduced to polynomially many 2D∆-separated instances.

Let F be the set of all connected components of RE . Then, for every C ∈F define valF as
follows

valF
def= arg max

i∈{0,...,min{|F |,k}}
Box-Pack(i ,F ) equals true.

Now, clearly, if
∑

F∈F valF ≥ k, then Box-Pack(k,R) equals true. Observe that in order to
compute all valF , we need to compute only polynomially many instances of Box-Pack, where
all the input parameters are bounded by k and R . So, it remains to reduce Box-Pack(i ,F ) to an
instance of 2D∆-separated.

To that end, consider F ∈F . Let h and w be the smallest values such that F is enclosed by
an axis-parallel sides rectangle T of height h and width w . With loss of generality, assume that
T and F are translated so that the bottom-left corner of T at (1,1). Define vector c ∈ {0,1}h×w

to be an indicator vector of points of C at which can be placed square, i.e.

cF
i , j =

{
1 if 3×3 square with upper-left corner at (i , j ) is in F

0 otherwise

Note that hw ≤ |F |2. Next, define optF as follows

optF
def= max

i∈{1,...,min{|F |,k}}
2D∆-separated(cF , i ,3).

Then, we claim optF equals valF . Now, it is easy to see that the claim is true. Value valF

represents the maximal number of squares that can be packed within F . Each such square
corresponds to an entry of cF which has value 1. So, we have 2D∆-separated(cF , valF ,3) =
valF , and hence optF ≥ valF . On the other hand, by the construction of cF , optF represents
a number of squares (not necessarily maximum, though) that can be packed in F . So, we have
valF ≥ optF , and therefore optF = valF as claimed.

This concludes our proof.
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Chapter 6. Fast Recovery for Separated Sparsity Signals

6.9 Uniform Size Neuronal Spike Trains

We propose a generalization of the∆-separated model. In this model, we assume that neuronal
spike trains correspond to blocks of uniform size. We use b to denote the size of blocks.
Formally, we define model Mk,∆,b to be the set of all vector in Rd such that non-zero entries
are grouped in blocks of size b, there are exactly k blocks, and every two blocks are separated
by at least ∆.

In order to apply the existing framework for recovering measured vectors that belong
to Mk,∆,b , we develop a method that solves the following projection problem. Given vector
c ∈Rd , the goal is to output k indices p1, . . . , pk such that

• 1 ≤ pi ≤ d −b +1, for every i = 1. . .k;

•
∣∣pi −p j

∣∣≥∆+b −1, for all i 6= j ; and,

• the sum
k∑

i=1

b−1∑
j=0

cpi+ j

is maximized.

We refer to that problem by (∆,b)-separated. Now, it is easy to show the following claim.

Theorem 6.32

Given vector c ∈Nd+, sparsity k, and block size b, define vector cb ∈Nd−b+1+ as

cb
i

def=
i+b−1∑

j=i
c j .

Let S be a set of indices corresponding to an optimal solution for (∆+b−1)-separated prob-
lem for cost vector cb and sparsity k. Then, S is an optimal solution to (∆,b)-separated
problem for cost vector c and sparsity k.

Proof. Clearly, S is feasible choice of indices for (∆,b)-separated problem. Towards a con-
tradiction, assume that there exists another set of indices S′ that achieves larger value than
S.

But then, S′ is a feasible choice of indices for (∆+b −1)-separated problem. Next, notice
that S, and also S′, achieve the same value for both (∆,b)- and (∆+b −1)-separated problem.
However, as S′ achieves higher value than S, this contradicts our assumption that S is an
optimal choice of indices for (∆+b −1)-separated problem.

Now we can solve (∆,b)-separated problem in nearly-linear time.

Corollary 6.33. A solution to (∆,b)-separated problem can be computed in nearly-linear time.

Proof. We use the reduction from Theorem 6.32 to reduce (∆,b)-separated problem to (∆+
b −1)-separated one. The reduction can be applied in linear time. Then, the claim follows by
Theorem 6.29.
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6.9. Uniform Size Neuronal Spike Trains

6.9.1 Sample Complexity

Next we analyze the sample complexity of Mk,∆,b model. To that end, we count the number of
support in that model. Now, all the supports are captured by (α0,α1, . . . ,αk ), where αi ≥ 0 and∑k

i=0αi = d −kb − (k −1)∆. The idea is that k blocks split the vector in k +1 regions. All but
the first and last region correspond to coordinates between two neighboring blocks. Value α0

and αk correspond to coordinates before the first block and after the last block, respectively.
Value αi , for 1 ≤ i < k correspond to the slack distance between block i and i +1.

LetMk,∆,b be the family of support patterns of Mk,∆,b . Then, we have:

∣∣Mk,∆,b
∣∣= (

d −kb − (k −1)∆+k

k

)
.

Now, from the result that there are RIP matrices with O
(
k + log

∣∣Mk,∆,b
∣∣) rows, [BCDH10], the

following claim follows.

Theorem 6.34

The sample complexity of Mk,∆,b is O(k log(d/k − (b +∆)+ (∆−1)/k)). In particular, if
(∆−1)/k ∈O(1), then the sample complexity is O(k log(d/k − (b +∆)).
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7 Conclusion

In this thesis, we proposed a general strategy for designing efficient algorithms for large-
scale tasks. Furthermore, we demonstrated that this strategy is effective on a number of
fundamental problems. The techniques we developed drew upon tools from graph theory,
combinatorics, discrete probability, and convex optimization. Randomization played a special
role in the design of our methods that enable us to also develop simple algorithms.

Our approaches proved to be useful in tackling some of the central problems in computer
science. Nevertheless, there are still numerous open questions in the context of large-scale
computation. We believe that our work will open new directions to pursue for the future work
in this area. In Section 7.1, we discuss some of these natural directions.

Here, we summarize the contributions presented in the previous chapters.

• In Chapter 2, we studied matchings in the context of massively parallel computation.
Our work has introduced two techniques that, for any constant ε> 0, enabled us to de-
sign an algorithm for constructing (1+ε)-approximate maximum matchings. When the
memory per machine is Θ(n), our algorithm provides almost exponential improvement
in the round complexity, compared to the prior work.

• Our second result on graph algorithms in models of parallel computation concerns
maximal independent sets. When the memory per machines is Θ(n), we showed in
Chapter 3 that there is an algorithm that solves this problem in O(loglogn) rounds of
computation. This constitutes an exponential improvement in the round complexity,
compared to the algorithms known previously.

• In the context of network routing, in Chapter 4, we designed a stateless randomized
routing scheme that in k-connected graphs delivers messages even if k −1 links have
failed. Furthermore, each router uses only local information to perform routing deci-
sions. Notably, our scheme employs randomness only when the routing encounters
a failed link. This is the first such stateless scheme that can tolerate up to k −1 link
failures.

• In Chapter 5, we studied the problem of maximizing submodular functions subject to
cardinality constraint k in the streaming setting. We considered a regime in which up to
m elements can be removed from the stream. In this context, we designed an algorithm
that stores only Õ(k +m) elements from the stream and provides a constant-factor
approximation to this problem.
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Chapter 7. Conclusion

• In Chapter 6, we designed both randomized and deterministic nearly-linear time algo-
rithms for projecting onto the set of separated sparse vectors. The core technique in our
randomized algorithm is Lagrangian relaxation. There are separated sparsity instances
for which the Lagrangian relaxation alone does not provide an optimal solution. One
of our key insights here was that it is still possible to obtain an optimal solution if the
original input instance is only slightly perturbed. We also proposed a generalization of
the separated sparsity model.

7.1 Future Directions

In the rest of this chapter, we briefly discuss some directions for future research that we find
interesting.

7.1.1 Parallel Computation of Approximately Maximum Matchings

Our work on computing approximate maximum matchings in the MPC model described in
Chapter 2 was inspired by the question: can we design graph algorithms that require rounds
of computation in the MPC fewer than in the PRAM model when the memory per machine
is Θ(n)? Our result provided an affirmative answer to this question in the context of one
of the most well-studied problems in this domain: the (approximate) maximum matching
problem. It would be very interesting to further explore the power of the MPC model and,
in this context, study the round complexity of computing maximum matchings when the
memory per machine is truly sublinear, i.e., S ∈ Θ(n1−δ), for some constant δ ∈ (0,1). In
this regime, our algorithm requires O(logn) round complexity, matching those of the prior
work [Lub86, ABI86, IS86, II86, LMSV11, AG15].

While investing this direction, it is worth keeping in mind that our approach is highly
efficient in reducing the maximum degree of a graph, as long as that degree is at least
(n/S)polylogn. For instance, when S = n, in only O(1) MPC-rounds our algorithm reduces
the maximum degree from n to

p
n. Whereas, to reduce the maximum degree from logn to

O(1) the method requires O(loglogn) MPC-rounds. Hence, it might be constructive to first
design a more efficient algorithm for the case when the maximum degree isΘ(polylogn).

Our approach does not compute a maximal matching, despite that for any constant ε> 0
it provides a (1+ ε)-approximate maximum matching. It is still an open question whether
it is possible to compute maximal matching in o(logn) MPC-rounds when the memory per
machine is Θ(n). We believe that obtaining a round complexity similar to our result, e.g.,
O(polyloglogn), for computing maximal matchings would lead to new techniques applicable
in the context of parallel computation.

7.1.2 Network Routing under Link Failures

In the context of k-connected graphs, we designed a stateless routing scheme that with respect
to k has the optimal robustness against link failures. To achieve this, the scheme performs
routing along arborescences and, when a failure occurs, carefully switches between them.

This approach does not necessarily route a message along a shortest path from its source
to its destination, even when there are no failed links in the network. It would be interesting to

128



7.1. Future Directions

extend our routing scheme to make it obtain short routing paths in the case when there are
only a few failed links, while at the same time retaining high robustness against failures.

7.1.3 Fast Recovery for Separated Sparsity Signals

Our work illustrated how to apply Lagrangian relaxation to solve the separated sparsity pro-
jection. In our proofs, we rely on the fact that the separated sparsity projection has an LP
formulation, i.e., it can be cast as an Integer LP with the constraint-matrix being totally
unimodular (TUM).

It would be very exciting to extend this connection and describe a class of problems
that exhibits similar property, i.e., for which Lagrangian relaxation of one or more equality
constraints leads to the optimal solution. For instance, consider any problem that has a
sparsity constraint and can be cast as LP with TUM constraint-matrix. Is it the case that, after
perturbing the input instance slightly, the Lagrangian relaxation of the sparsity constraint
solves the original problem?
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laevskiy, Michael Shapira, and Scott Shenker. On the resiliency of randomized
routing against multiple edge failures. In LIPIcs-Leibniz International Pro-
ceedings in Informatics, volume 55. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

[CHKK+15] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami
Paz, and Jukka Suomela. Algebraic methods in the congested clique. In the Proc.
of the Int’l Symp. on Princ. of Dist. Comp. (PODC), pages 143–152. ACM, 2015.

[CHPS17] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing
local distributed algorithms under bandwidth restrictions. In 31 International
Symposium on Distributed Computing, 2017.
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