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Abstract
In a time of rising concern about climate change and pollution, the water quality of large

lakes acts as an indicator of the health of the environment. To study the water quality at a

large scale - up to several hundreds of kilometres - hyperspectral remote sensing is emerging

as the main solution. Indeed, different quantities relevant to water quality, like turbidity

or concentratrion in chlorophyll-α, can be measured using the spectral reflectance of the

water column. Additionally, airborne and spaceborne sensors can cover large areas, thus

allowing to study the water at a much larger scale than when simply taking water samples at

specific points. Airborne hyperspectral imaging, in particular, offers an acceptable ground

resolution - around a metre - which allows to map relevant quantities precisely. However,

few existing projects deliver maps that have both a sufficient ground resolution and a large

coverage. Furthermore, most existing sensors do not offer a fine spectral resolution, which is

for instance crucial when studying the presence of chlorophyll-α, which can only be detected

in a narrow range of the electromagnetic spectrum. This thesis presents our work with a

hyperspectral sensor developed and used by the Geodetic Engineering Laboratory of EPFL

in the Léman-Baïkal project, a cooperative work which aimed at studying both Lake Geneva

(Switzerland) and Lake Baikal (Russia). The project included ultralight plane flights with

an onboard pushbroom scanner, which allowed to collect data over large areas with a fine

spectral resolution. Alongside the use of this sensor came problematics which are at the

centre of this thesis: the georeferencing of the scan lines, their radiometric calibration, their

analysis and the software management of this data. In the following, we present a new method

to georeference pushbroom scan lines that uses co-acquired frame images to perform co-

registration and to achieve a georeferencing, which RMSE is up to 20 times smaller than the

direct one. We propose an efficient radiometric self-calibration method to convert the sensor

output to water-leaving reflectance; this method makes use of the visible peaks of atmospheric

absorption to align the spectral bands with those of a reference acquisition, and uses the

near infrared properties of deep water and vegetation to perform absolute calibration. The

last part of the processing - the software management, including data compression - was

solved by developing a software called HYPerspectral Orthorectification Software (HypOS).

This software is the synthesis of our work, including the tools to perform geometric correction,

radiometric calibration and data compression of our hyperspectral data. Two examples of

applications are given: the first one deals with mapping chlorophyll-α in the Rhone Delta of

Lake Geneva; the second, at a larger scale, uses satellite data to monitor ice coverage over large

lakes like Onega or Ladoga (Russia).
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Résumé
En cette époque où le changement climatique et la pollution sont au coeur des préoccupations,

la qualité de l’eau des lacs est un des indicateurs de la santé de notre environnement. Pour

étudier la qualité de l’eau à grande échelle - jusqu’à plusieurs centaines de kilomètres - la

télédétection hyperspectrale émerge ces dernières années comme la solution de référence. En

effet, différents paramètres liés à la qualité de l’eau, tels que la turbidité ou la concentration

en chlorophylle-α, peuvent être estimés à partir des mesures de réflectance spectrale de l’eau.

De plus, les capteurs aéroportés et satellitaires couvrent de grandes zones, ce qui permet

d’étudier l’eau à des échelles bien plus importantes qu’en prélevant des échantillons d’eau en

des points isolés. En particulier, l’imagerie hyperspectrale aéroportée fournit une résolution

au sol acceptable - environ un mètre - ce qui permet de cartographier les paramètres d’intérêt

avec précision. Cependant, peu de projets existants produisent des images ayant à la fois

une grande couverture spatiale et une résolution satisfaisante. De plus, les capteurs utilisés

n’ont pas toujours une résolution spectrale élevée, élément pourtant crucial par exemple pour

l’étude de la concentration en chlorophylle-α, qui ne peut être détectée que dans des plages

très restreintes du spectre électromagnétique. Cette thèse présente notre travail avec une

caméra hyperspectrale développée par le Laboratoire de Topométrie de l’EPFL dans le cadre

du projet Léman-Baïkal, un projet coopératif visant à étudier à la fois le lac Léman (Suisse)

et le lac Baikal (Russie). Le projet consistait en des vols d’ultralégers motorisés (ULM) avec

un capteur dit "pushbroom" (capteur à balayage) embarqué, qui a permis de récolter des

données couvrant de larges zones avec une résolution spectral fine. L’utilisation de ce capteur

a posé des questions qui constituent l’essence de la présente thèse : le géoréférencement

des lignes acquises par le capteur, leur calibration radiométrique, leur analyse et la gestion

logicielle de ces données. Nous présentons dans les chapitres suivants une nouvelle méthode

pour géoréférencer les lignes scanner qui utilise les images RGB acquises parallèlement pour

réaliser un co-référencement et parvenir à un géoréférencement dont la racine de l’erreur

carrée moyenne (RMSE) est diminuée par un facteur allant jusqu’à 20, par rapport au géoré-

férencement direct. Nous proposons une méthode de calibration radiométrique autonome

pour convertir les données issues du capteur en réflectance de l’eau ; cette méthode utilise les

pics d’absorption atmosphérique pour aligner les bandes spectrales avec celles d’une acquisi-

tion de référence, et tire bénéfice des propriétés de l’eau et de la végétation dans le proche

infrarouge pour réaliser une calibration absolue. La dernière partie du traitement - la gestion

logicielle, comprenant la compression des données - a été résolue par le développement d’un

logiciel nommé HYPerspectral Orthorectification Software (HypOS). Ce logiciel est la synthèse
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de notre travail, incluant les outils de correction géométrique, de calibration radiométrique et

de compression des données hyperspectrales. Deux exemples d’applications sont donnés : le

premier traite de la cartographie de la chlorophylle-α dans le Delta du Rhône du lac Léman;

le second, à plus grande échelle, utilise des données satellitaires pour observer l’évolution de

la couverture de glace de grands lacs tels que Onega ou Ladoga (Russie).

Mots clefs : Hyperspectral, Télédétection, Lacs, Radiométrie, Géoréférencement, Traitement

d’Images, Logiciel
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1 Motivation

Monitoring large lakes is an essential task. The quality of their waters needs to be controlled

not only to ensure they are drinkable, but also because it is very relevant to the stability of the

local ecosystems. Indeed, the micro and macro developments of algae and the overabundance

of phytoplankton in lake waters is toxic for the local species, whether plants or animals [129].

The health of lakes has also been proven to be highly correlated with climate change [57, 106];

in particular, global warming increases the temperature of lakes, and alters their carbon cycle

and their nutrients productivity [105].

Studying the water quality of large lakes cannot rely only on the collection of water samples

and other field studies. For lakes like Baikal, 31 722 km2, field work allows in the best case to

evaluate local concentrations of phytoplankton or turbidity, but no conclusion at larger scales

can be extrapolated. The only reliable method to collect information on wide areas is remote

sensing. Whether it is with satellite data or airborne data, images from high altitude guarantee

a wide ground coverage. The reason why these methods are reliable is because properties

like concentration in chlorophyll-α (and therefore phytoplankton) and Coloured Dissolved

Organic Matter (CDOM) are strongly correlated with water colour [144]; thus, observing the

colour of the water tells us about its quality. However, the notion of colour here is to be

clarified. Standard RGB cameras, which collect information in three wide spectral bands,

are not sufficient: we need to observe the reflectance of water in very narrow bands of given

wavelengths [74, 127]. For this reason, multispectral (especially hyperspectral) remote sensing

has become the reference technology for water quality assessment applications.

The work described hereinafter was done in the in the context of the "Léman - Baïkal" pro-

ject, a cooperative project involving the geodetic engineering laboratory and the limnology

laboratory of EPFL, as well as Russian partners from the Moscow State University and the

Baikal Institute of Nature Management. The Russian and Swiss teams pointed out similarities

between Lake Geneva (Switzerland), also known as "lac Léman" in French, and Lake Baikal

(Republic of Buryatia, Russian Federation). The most important one is their eutrophication:

in the recent years, due to human activities (namely, the discharge of products containing

phosphate in the lake), the waters accumulated an excessive amount of nutrients, boosting the

developments of algae which consume the oxygen of the lakes. The idea behind the project
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was to use remote sensing techniques to evaluate these effects: from 2013 to 2015, about 120

ultralight flights, with a pushbroom hyperspectral camera, were performed above both lakes.

The objective was to map certain quantities - mainly chlorophyll-α and turbidity - at larges

scales to evaluate the health of the lakes.

This thesis focuses on the processing needed prior to the analysis of the hyperspectral data.

While allowing to collect data with a much better spectral resolution than frame cameras,

the pushbroom sensor requires finer processing both on the radiometric and the geometric

level. On top of usual radiometric calibration issues, pushbroom sensors suffer from the

so-called "smile" effect, shifting the spectrums collected along the wavelength axis. This

effect needs to be compensated for, so as to obtain comparable spectrums across the images

collected. Geometry-wise, the georeferencing of pushbroom data is challenging: filtered data

from navigation sensors allow to perform direct georeferencing, but the inaccuracy of the data

delivered (in particular yaw angles) prevent the creation of proper orthomosaics. To achieve

better georeferencing, the need of better image processing algorithms arose. Therefore, this

thesis shall solve the following problems:

• the georeferencing of the pushbroom hyperspectral data, that is, the accurate location

of the data collected by the camera onto the Earth.

• the radiometric calibration of our measurements, from the digital numbers output by

the camera, to the surface reflectance.

• the processing of this data to determine water properties (chlorophyll-α and turbidity).

In the rest of this Part, we introduce the scientific notions involved in these problems, together

with a review of the literature around these problems.
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2 Radiometry and Multispectral Came-
ras

2.1 Theory of Radiometry

Before entering the core of the subject, it is essential for the reader to understand the basic

physical concepts on which aerial imagery relies. We first introduce the notion of radiometry,

that is, the measure of light (or electromagnetic radiations) with cameras.

Definition 1. There exists a physical field, produced by electrically-charged materials, that is

called the electromagnetic field. Electromagnetic radiations are distortions of the electromagne-

tic field in the form of waves or flow of particles.

Each radiation - visible or not - is characterised by the length of its wave, called wavelength.

The light (common name for the visible part of the electromagnetic spectrum) is an elec-

tromagnetic radiation, as being both a wave of the electromagnetic field but also a flux of

photons; the fact that this light is said to be visible is because it is sensed by the human eye.

However, there exist, in our environment, many more radiations that humans cannot see.

Figure 2.1 shows the electromagnetic spectrum, as the main categories of electromagnetic

radiations as a function of their wavelengths.

Electromagnetic radiations interact with the objects of our environment in four different ways.

• Emission: an object acts like a source for the radiations. Typical examples are the sun,

and lamps.

• Reflection: an object reflects the incoming radiations. All the objects of our environment

reflect parts of the radiations they receive. Although the concept of "black body" (a body

that absorbs all incoming radiations) is used in the theory of radiations, it is more a

theoretical view, as no object known reflects exactly 0 % of the radiations.

• Transmission: the object lets radiations through. For example, the surface of water

• Absorption: the object receives radiations, but does not transmit or reflect them.
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400 nm 500 nm 600 nm 700 nm

10 fm 1 pm 10 nm 100 µm

Gamma rays X rays Ultraviolet Infrared Microwaves Radiowaves

1 m

Visible

Figure 2.1 The electromagnetic spectrum, with a zoom on the visible part.

In the context for airborne imagery, all the objects on the ground receive radiations from the

sun. The radiations they reflect can be characterised using different quantities.

Definition 2. The radiant energy (Q) is the energy transferred by electromagnetic radiations.

Definition 3. The power, or radiant flux (Φ) is the time derivative of the energy. Φ= dQ
d t .

Definition 4. The irradiance (E) is the radiant flux emitted or reflected per unit of surface dA:

E = dΦ
d A .

Definition 5. The radiance (L) is the radiant flux emitted or reflected per unit of surface dA

from a direction given by the solid angle dω : E = dΦ
d Adω .

These definitions are illustrated on Figure 2.2.

None of the quantities presented above is, however, relevant of the properties of the objects.

Indeed, the variations of the ambient light directly affect all these quantities. The only intrinsic

optical property that can be used in airborne imagery is called the reflectance.

Definition 6. The reflectance is the ratio between the radiance (or irradiance) received by an

object and the radiance (or irradiance) reflected by the object. It is a function of the wavelength

of the incoming radiation.

Definition 6 is purposely not bonded to either irradiance or radiance, because in reality

multiple definitions of the reflectance coexist [97, 101].

Definition 7. The spectral irradiance reflectance (ρ) is the ratio between the upwelling irradi-

ance leaving a surface and the downwelling irradiance received by the same surface.

ρ(λ) = Eu(λ)

Ed (λ)
(2.1)
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dA

d

dA

(a) (b) (c)

Figure 2.2 Illustration of the radiometric quantities. (a) illustrates the concept of power, where
all the photons hitting a surface over a period of time are counted. (b) isolates a surface of
area d A, putting in evidence the notion of irradiance. (c) focuses on the rays coming from a
given solid angle dω, illustrating the concept of radiance.

Definition 8. The remote sensing reflectance (ρr s) is the ratio between the upwelling radi-

ance leaving a surface in a given direction (characterised by two angles) and the downwelling

irradiance received by the same surface.

ρr s(θ,ϕ,λ) = Lu(θ,ϕ,λ)

Ed (λ)
(2.2)

Definition 9. The Bidirectionnal Reflectance Distribution Function (BRDF) is the ratio between

the upwelling radiance leaving a surface in a given direction (θr ,ϕr ) and the downwelling

irradiance received by the same surface from a given cone of directions (θi ,ϕi ).

BRDF (θr ,ϕr ,θi ,ϕi ,λ) = Lu(θr ,ϕr ,λ)

Ei (θi ,ϕi ,λ)
(2.3)

These definitions and their notations are illustrated on Figure 2.3.

For airborne sensors, we mostly use the remote sensing reflectance, that is, the ratio between

what is received by the sensor (the at-sensor radiance) and all the radiations hitting the object

(the input irradiance). The remote sensing reflectance is therefore expressed in sr−1. However,

the mosaics produced with airborne images usually show a clear dependence of the resulting

reflectances on the viewing angles, which is why the BRDF remains the most exhaustive

reflectance concept. In order to use the remote sensing reflectance, the effect of the viewing

direction, called BRDF effect must be corrected (see Section 5.1.4).
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r

Ed( )

Eu( )
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Lu( , , ) Lu( , r, r)

Ei( , i, i)

Figure 2.3 Illustration of the reflectance notions. (a) illustrates the concept of spectral irra-
diance reflectance, which considers all incoming and outgoing rays. (b) isolates a direction
(θr ,ϕr ), representing the concept of remote sensing reflectance. (c) focuses on the irradiance
received from a given solid angle dωi , illustrating the concept of BRDF.

2.2 Operating Principles of Cameras

2.2.1 Frame Cameras

By camera, we refer to any electronic device that transforms light into electronic signals, and

allows to store them in images geometrically conforming to the scene. Cameras consist in

three main parts: an optical collimation system (usually composed of lenses and mirrors) to

collimate incoming light rays into points; an imaging sensor (film, CMOS, CCD array...) that

generates electrons from the energy of incoming photons; and a processing system, that filters

the electronic signal and digitalises it.

Analog to 
Digital 
Converter

SceneCollimating System

Image Sensor

Figure 2.4 Simplified operating principle of a camera.

In the following, we focus on explaining the theory of the imaging systems. Using the photoe-

lectric effect, radiations can be transformed into electricity. Radiations are separated (or

gathered) by cameras using spectral filters, that is, surface that transmit or absorb radiations

according to their wavelength.

Definition 10. The transmittance T of a surface is the ratio between the irradiance transmitted

and the irradiance received by this surface. It is a function of the wavelength of the incoming
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(a) (b)

Figure 2.5 Example filters layouts for (a) an RGB camera and (b) a 25 band multispectral
camera.

radiation.

Most commercial cameras are Red - Green - Blue (RGB) cameras: these cameras acquire

information in three bands, each of which is characterised by the transmittance spectrum of

its filters. On the sensor, filters are placed following a given pattern such as the Bayer filter, to

collect red, green and blue information across the whole scene.

However, the information delivered by RGB cameras is far too coarse to allow the study of

water. Optical properties of water have to be determined in narrow bands of the spectrum,

which in addition are not only in the visible range, but also the infrared range. For this reason,

this thesis revolves around multispectral cameras.

Definition 11. Multispectral cameras are cameras that capture information in many (more

than 3) bands.

Definition 12. Hyperspectral cameras are multispectral cameras with three additional proper-

ties: their bands are disjoint (no wavelength is present in more than one band), thin (this notion

is subjective), and all together they describe a continuous range of the electromagnetic spectrum.

The advantage of multispectral cameras is not only the possibility to collect data in non-visible

bands, but also to collect these data is much narrower bands (i.e., with a better spectral

resolution). Reflectance in very specific wavelength ranges can be measured, which is crucial

in the study of phytoplankton for example. The extra-information delivered by multispectral

cameras come with a price: a bigger number of neighbour cells are needed to collect data in

all the bands of a given pixel, as illustrated in Figure 2.5.

9



Chapter 2. Radiometry and Multispectral Cameras

2.2.2 Pushbroom Cameras

While 4 cells are needed to collect information in 3 bands for an RGB camera, 25 cells are

required for a 25 bands multispectral camera, decreasing the geometrical resolution of the

output images in the same proportion. For this reason, the most commonly used type of

multispectral camera are pushbroom cameras. A pushbroom camera acquires lines (and

not frames) of geometrical pixels: light from each of these geometrical locations is split into

radiations of different wavelengths by a prism, and these radiations are all projected onto

different lines of the CCD array (see Figure 2.6).

CCD Array

Prism

Slit

Collimating Lens

Convex Lens

Figure 2.6 Principle of a pushbroom camera.

Pushbroom cameras basically sacrifice one geometrical dimension of their output to provide

spectral information with very high resolution. Hence, the pushbroom technology is ideal

to collect data with both high geometrical resolution and high spectral resolution. However,

reconstructing images, and georeferencing them, is much harder than with standard RGB

cameras, as we explain in Section 3.3.

The signal delivered by a hyperspectral camera is composed with digital numbers. There is the

need to calibrate the camera to convert these numbers into reflectance, and to apply filters to

the output to isolate the contribution of the object of interest.

2.3 Camera Calibration

2.3.1 Quantum Efficiency

Lights of different wavelengths are sensed differently by hyperspectral sensors. While a perfect

camera would transform all the energy transmitted by photons into electricity, in practice

some wavelengths give lower outputs. This phenomenon is due to the difference in quantum

efficiency.

Definition 13. The quantum efficiency is the ratio of the number of electrons emitted by a

photoelectric unit, divided by the number of photons received by this unit. It is a function of the

wavelength of the incoming radiations.
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2.3. Camera Calibration

To give energy to electrons in a CCD sensor, photons must be absorbed in the depletion area.

Their energy must be enough to pass the electrode gate of the CCD, but small enough not to go

through the depletion area without being absorbed. For many CCD sensors in the visible light,

blue wavelengths hardly pass the gate, while red wavelengths can pass through the depletion

area [134]. As an example, we have recorded the spectral response of our pushbroom sensor

(a Headwall Micro Hyperspec VNIR-A) over a Spectralon Panel, which is a unit-reflectance

surface. The result is plotted on Figure 2.7.
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Figure 2.7 Raw output from our sensor, highlighting the different quantum efficiencies, and
the dioxygen absorption peak of the atmosphere around 760 nm.

As can be seen on Figure 2.7, while the surface captured had a nearly flat reflectance, the

spectral response output by the camera differs greatly according to the wavelengths. In the

blue, red and infrared radiations, the system has a very low reponsitivity. Low responsivities

need to be compensated for to have uniform measurements across the spectral range of

interest.

Usually the gain and offset are determined in each band using a Lambertian (i.e., a surface

reflecting radiations similarly, whatever the angle of incidence) unit-reflectance surface and

a white lamp. The Lambertian surface, typically a Spectralon, is placed normally to the light

source, while the sensor views the surface with an angle of 45° [28, 142].

2.3.2 Spectral Calibration

The use of a hyperspectral camera implies to know the spectral response functions of each of

its bands. Using lamps emitting at different known wavelengths [41], it is possible to determine,

for each band, its centre and its Full Width at Half Maximum (FWHM). This process is called

spectral calibration.

Definition 14. The Full Width at Half Maximum of a spectral band of a sensor is the width

(usually in nm) of the range of wavelengths in which the transmittance is at least half the
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Chapter 2. Radiometry and Multispectral Cameras

maximum of the transmittance of this band.

The notions of centre and FWHM of a band are illustrated on Figure 2.8.

Tmax

Tmax/2

0

Wavelength
Center

FWHM

Transmittance of a spectral band as a function of the wavelength

Figure 2.8 Illustration of the concepts of centre of a band, and Full Width at Half Maximum.

It is well known from the literature [100] that small manufacturing defects in pushbroom

imaging spectrometers can have two unwanted consequences:

• Smile: spectral smile consists in a misprojection of the radiations on the CCD array,

resulting in a convex distortion that has the shape of a smile (see Figure 2.9). As a

consequence, the centre and FWHM for a given band vary from one pixel to the other.

• Keystone: keystone is also due to misprojection of the radiations, but results in a shift

in the geometrical dimension (unlike the smile which induces shifts in the spectral

dimension).

We can compensate for keystone by spatially filtering the hyperspectral images. However,

the smile effect is a whole different problem that needs to be treated separately. Together

with the mechanical movements of the diffraction grating of the sensor, they affect the signals

by shifting them along the spectral dimension. As a consequence, we need to do spectral

calibration, in the sense that all the signals shall be properly aligned with respect to the

wavelengths.

Although the primary way of dealing with spectral smile is ensuring a good technical design

of the sensor [80], [8], there is a strong need of algorithms able to "desmile" camera outputs
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2.3. Camera Calibration

Figure 2.9 Illustration of the spectral smile: due to the optical system, radiations (in colours)
are misprojected on the CCD array (transparent).

after acquisition. Many algorithms [32, 46] rely on the observation of artefacts in the images

to quantify and correct smile. For example, Dadon & al. [32] quantify the variation of the

spectrum around the dioxygen absorption peak in a processed image called the Minimal Noise

Fraction - 1 (MNF-1) image. This image is the result of a Minimal Noise Fraction processing

(see [51]) that gives the representation of the hypercube with the least possible noise. They

process the shifts of the spectrums for each column compared with the column with minimal

smile, and transform the MNF back to the radiance image. However, this process was found

to create distortions when transforming MNF back to radiance. Ceamanos & Douté [23]

proposed another method based on spectral sharpening; since the smile increases the FWHM

of the bands (see Figure 2.10), the spectrums are upsampled, assuming spectral regularity

for the extrapolated data. Their alignment procedure uses the CO2 absorption band. Finally,

another method is to evaluate spectral shifts inside the same procedure as the atmospheric

correction (see Section 2.4.3) parameters by optimisation and with the use of Look-Up Tables

(LUT [111]).

2.3.3 Noise Removal

Note: parts of this section were extracted from our article Airborne hyperspectral sensor radiometric

self-calibration using near infrared properties of deep water and vegetation [7], in the procee-

dings of the SPIE Remote Sensing Conference. They are copied according to the SPIE Transfer of
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Wavelength

0

Transmittance

Wavelength

0

Transmittance

Figure 2.10 At the top, a smile-free column and the representation of its transmittances in two
bands; at the bottom, a column affected by smile, with one cell of the CCD now receiving a
mix of the two bands, previously separated. The apparent transmittance of this cell has a new
centre and a larger FWHM.

Copyright agreement.

Every camera inherently has noise, and this noise itself is a mix of different noises.

• white noise is a zero-expectancy, random variable added to the output at each acquisi-

tion.

• quantization noise represents the loss when converting the "analogical" signal (the light)

to digital values.

• dark current noise (also called Fixed Pattern Noise, FPN) is the output of the system

when it is not exposed to any light. A flow of electrons is created through thermal

processes. This noise is a function of temperature and integration time.

• spatial noise (also called Photo-Response Non-Uniformity, PRNU) stands for the dif-

ference of values between pixels when they are exposed to homogeneous light. For
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2.3. Camera Calibration

pushbroom sensors, this results in a "stripes" effect that can be seen on Figure 2.11.

The white and quantization noises are random contributions to each image shot and are

therefore called shot noises. The dark current and spatial noises are deterministic and called

pattern noises [89]. Mathematically, the dark current is represented by a bias only depending

on the pixel and the band (but timewise constant).

Figure 2.11 Illustration of the striping effect for pushbroom sensors.

2.3.4 Conversion to Reflectance

The camera output needs to be converted to reflectance, which is (unlike radiance) an intrinsic

optical property of a surface. Two scenarios can happen: either the sensor output has been

calibrated to radiance, or it has not. In the first case, one needs to know the downwelling

irradiance on the scene captured, according to Definition 8, to convert the output to reflec-

tance. The downwelling irradiance Ed can be measured with an instrument called a cosine

collector [78]. In the second case, one can collect data over a Spectralon panel to directly

convert the digital numbers of the camera to reflectance. This second scenario is worse: the

calibration can be altered by the quality of the panel, which has theoretically a unit-reflectance.

But in practice, defects in the panel can modify its reflectance in certain bands. For airborne

applications, calibration with a Spectralon panel alone suffers from practical constraints: the

data can be collected only before or after the flight, so the variations of irradiance during the

flight are not taken into account.

The APEX project [59] of the European Space Agency designed a complex system with onboard

calibration to overcome this limitation [103]. Their system includes a shifting surface to bring

a mirror in the pathway of the sensor so that it receives the light from a Quartz-Tungsten

Halogen lamp, allowing to monitor the stability of the calibration during the flight. Such a
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system is much too complex and costly for our purpose. For the Léman-Baïkal project, some

equipment was purchased before any calibration procedure was designed. Hence, our work

in this thesis focuses on the creation of an approximate, totally image-based calibration (see

Chapter 5).

2.4 Sources of Radiance

Parallel to the calibration of the camera, another important problem must be solved: the goal

of the acquisitions is to measure the reflectance (or radiance) leaving the water. However, the

radiance received by an airborne sensor does not come exclusively from the water, but is also

influenced by the noise of the camera (as mentioned in Section 2.3.3), the reflection of the sun

and sky radiations on the surface of the water, and - most of all - the atmosphere.

Atmosphere scattering (Latm)

Sun and Sky Glint (Lsun,Lsky)

Water-leaving 
radiance (Lwater)

Airborne Sensor

Figure 2.12 The different sources of radiance affecting an airborne sensor over water.

The total at-sensor radiance is the sum of all the corresponding radiances, as specified in
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2.4. Sources of Radiance

(a) (b)

Figure 2.13 Illustration of the dependence of sun glint on the flight lines angle. In (a), the
aircraft flies parallel to the sun zenith angle. The resulting output is a uniform line. In (b), the
flight line is orthogonal to the sun zenith angle, thus inducing an angle-dependent glint.

Equation 2.4.

Lsensor = Lnoi se +Lsun +Lsk y +Latm +Lw ater (2.4)

In the following, we describe these sources of radiances, and how to deal with them, in details.

2.4.1 Sun glint

Depending on the solar zenith/azimuth angle, and the orientation of the camera, the sun light

can be directly reflected in the viewing direction of the sensor. There are two sorts of methods

to deal with sun glint [70]:

• the flight time and the flight path can be adapted to limit the influence of the sun on the

acquisition. For pushbroom sensors, the flight usually consists in scanning a zone with

several parallel, overlapping flight lines. The main criterion to choose the flight lines

angle is that it should allow to avoid the glint across the track, as illustrated on Figure

2.13.

To meet this requirement, it is preferable to avoid flying around noon (where the zenith

angle variation is the fastest) and fly parallel to the zenith angle.

• various post-acquisition algorithmic methods allow to reduce sun glint in images. Most

of them assume the water-leaving radiance in the near infrared should be negligible,

subtract the near infrared value of a deep water point in the image and correct other

bands by finding mathematical relations between the outputs of each band [47, 90, 56].
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2.4.2 Sky glint

The water surface also reflects sky radiance, and its contribution to the total at-sensor radiance

is called Lsk y . Estimating or removing Lsk y from images is a challenging task, since the sky

contribution, unlike the sun, comes from all possible directions of the upward hemisphere.

Most of the works on sky glint removal rely on concurrent in situ measurements and are there-

fore (semi-)supervised methods [34, 79]. Image-based, unsupervised methods (for example,

Kim & al. [73]) are less frequent in the literature. In our work, we neglect the sky glint, as its

influence usually represents less than 5 % of the total at-sensor radiance [70].

2.4.3 Atmospheric Path Radiance

The atmosphere interacts with the radiations transmitted to the sensor via two processes.

Absorption Due to the presence of certain gases, parts of the radiations are absorbed in

the atmosphere. This causes the presence of absorption peaks in the radiance captured by

the sensor. In the range of wavelengths captured by our sensor (400 nm to 850 nm), only the

dioxygen absorption peak, around 760 nm, is significant. Figure 2.7 shows a typical raw output

from our camera, where this absorption peak is clearly visible. The absorption can be dealt

with easily using smoothing techniques.

Scattering The atmospheric scattering consists in the deviation of radiations by the particles

in the atmosphere. Parts of the light coming from the sun are deviated directly towards the

sensor, thus inducing a change in the radiance that we call Latm . Light can be scattered either

by atmospheric particles themselves (ozone...), or by aerosols present in the air.

These effects need to be compensated for: this is the atmospheric correction problem. Traditi-

onally, this problem is expressed mathematically by the Radiative Transfer Equation 2.5, see

[15].

ρ(λ) = A(λ)+ B(λ)

1−S(λ)〈ρ(λ)〉ρ0(λ)+ C (λ)

1−S(λ)〈ρ(λ)〉 〈ρ(λ)〉) (2.5)

In Equation 2.5, ρ(λ) is the at-sensor spectral irradiance reflectance, as given by Definition

7; ρ0(λ) is the surface reflectance; 〈ρ(λ)〉 is the average reflectance in a neighbourhood of

the pixel of interest; A, B, C and S are all parameters relative to the atmospheric scattering

effects. Although ρ(λ) is not directly measured, it is related to the measured remote sensing
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2.4. Sources of Radiance

reflectance ρr s(λ) by Equation 2.6 (see [48]).

ρ(λ) =πρr s(λ) (2.6)

Solutions to Equation 2.5 in the current state of the art are split into two categories: physical

models, and image-based algorithms.

Physical Models

The reference for atmospheric correction is Modtran [14]. Modtran (MODerate resolution at-

mospheric TRANsmission) computes line-of-sight (LOS) atmospheric spectral transmittances

and radiances by solving the radiative transfer equation, assuming a horizontally homogene-

ous atmosphere. From input parameters (atmosphere type, concentration of certain gases,

aerosols, visibility, ground temperature and albedo), Modtran can reconstruct the atmospheric

path radiance (thus accounting for scattering) and transmittance (accounting for absorption)

of the local atmosphere.

To perform atmospheric correction on images using the atmospheric properties output by

Modtran, the most-utilised algorithm is the Fast Line-of-sight Atmospheric Analysis of Hy-

percubes (FLAASH [1]). This algorithm uses Modtran to solve the RTE for the A, B, C and S

parameters as functions of the water vapour column. The water vapour column itself is com-

puted for each pixel by using a spectral range of the hyperimage where the water vapour has

particular characteristics; then, a average spectral radiance image is computed by convolving

the image with a kernel depending on the altitude of the sensor and the properties of the

aerosols. Taking the standard deviation of the RTE then allows to retrieve 〈ρ(λ)〉, which in turn

allows to solve the equation for the surface radiance (or reflectance).

FLAASH, using the Modtran data, is the reference algorithm for accurate atmospheric cor-

rection. It is frequently updated and improved for speed and accuracy [108].

Image-Based Atmospheric Correction

The reference image-based algorithm for atmospheric corretion is the QUick Atmospheric

Correction (QUAC) [15]. As its name suggests, its main advantage over algorithms like FLAASH

is its processing speed, 5 to 10 times superior. The algorithm relies on various assumptions:

• in various scenarios mentioned in the article [15], the S term of Equation 2.5 can be

neglected.

• the spectrums are "different enough" across the image.

• the standard deviation of ρ0(λ) for this diverse spectrums is nearly independent on the

wavelength λ.
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• there are "dark pixels" (ρ0(λ) ≈ 0) in the image.

Using the dark pixels, the term A(λ)+C (λ)〈ρ(λ)〉 can be computed. Then, taking the standard

deviation of Equation 2.5 leads to σρ(λ) = B(λ)σρ0(λ), where σ stands for the standard deviation.

σρ0(λ) has been assumed to be wavelength independent, therefore B(λ) = g0σρ(λ) where g0

is a constant, that is either determined by calibration or by the knowledge of B(λ) in some

specific wavelengths [31].

The QUAC is not usable in our work for a simple reason: water pixels are usually the ones used

as "dark pixels" as water has a very low reflectance, especially for longer wavelengths. In our

work, where the main objective is to retrieve accurate low-reflectance spectrums from water,

this assumption cannot be made.
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Airborne images are valuable when the end user can identify its features, that is, match

them to a known representation of the scene. This matching can be achieved in two ways:

georeferencing and co-registration.

Definition 15. Georeferencing is the process matching pixel coordinates of an aerial image to

geographic coordinates.

Definition 16. Co-Registration is the process matching pixel coordinates of an aerial image to

pixel coordinates of a reference image.

One of the purposes of georeferencing is to allow images to be viewed in Geographic Infor-

mation Systems (GIS) that implement models of the Earth surface, by overlaying them on top

of existing maps. Georeferencing methods are split in three categories : direct, indirect and

integrated georeferencing.

• Direct georeferencing refers to the use of navigation sensors onboard of the aircraft to

measure the position and the attitude during the acquisition of the images.

• Indirect georeferencing is relative to the use of ancillary data like Ground Control Points

(GCP) to adjust the positioning of the data on the globe.

• Integrated Georeferencing is the mix of both direct and indirect techniques.

Let us first describe the coordinate systems with which we work.

3.1 Coordinate Systems

3.1.1 Geographic Coordinate Systems

The Earth is traditionally represented by an ellipsoid of revolution (or spheroid), that is charac-

terised by the lengths of its smaller axis and its larger axis. Along the years, different spheroids
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have been used in geodesy; our purpose is not to list them here. In the recent years, the World

Geodetic System 1984 (WGS84) is widely regarded as the reference geographic system, and we

will use it for all our geographic applications.

On such a surface, every point can be located by two angles describing in which direction it is

located, relatively to the centre of the Earth. The standard angles used are the latitude and the

longitude: the latitude is the angle formed by the location of interest, the centre of the Earth

and the Equator, and the longitude is the angle formed by the location of interest, the centre

of the Earth and the Greenwich Meridian (see Figure 3.1).

Lat

LonEquator

Greenwich Meridian

Figure 3.1 Latitude and longitude of a location.

3.1.2 Projected Coordinate Systems

The use of geographic coordinates suffers practical limitations, as positions, velocities and

accelerations are always expressed in a metric system in navigation problems. To overcome

these limitations, we use local metric systems called projected coordinate systems.

Definition 17. A projected coordinate system is a metric coordinate system resulting from the

local projection of an ellipsoid representing the Earth on a planar surface.

As we will see, the use of a metric coordinate system facilitates the use of accelerometers, and

the computations related to the Collinearity Equation (see 3.2.2). The projected system we use

for most of our work is the Universal Transverse Mercator (UTM), which separates the Earth

into 120 and projects locally these zones onto a cylinder (see Figure 3.2).

For more details about the UTM projection, the reader can refer to [50, 125].
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Earth

Projection on 
the cylinder

Unfolding the 
projection on a 
plane

Figure 3.2 Principle of the UTM projection.

3.1.3 Coordinate Frames

In the following, we mainly use two coordinate frames: the local-level frame, and the body

frame.

Definition 18. The local-level frame is a right-handed coordinate frame centred at an arbitrary

point on (or above) the surface of the Earth. Its axis can either point to the North, the East, and

Down (NED) or to the East, North and Up (ENU).

Definition 19. The body frame of a camera is a right-handed coordinate frame centred at the

optical centre of the camera, which third axis is the front of the camera.

While Definition 18 is standard in the literature, Definition 19 is specifically adapted to our

case, that is, a camera mounted on an aircraft. Let us call (Xl ,Yl , Zl ) the axis of the local-level

frame (also called l-frame) and (Xb ,Yb , Zb) the axis of the body frame (also called b-frame).

Their definitions are illustrated on Figure 3.3.

3.2 Standard Approach for Georeferencing Frame Images

3.2.1 Navigation Sensors

To georeference the airborne data, the trajectory of the vehicle (including its position and

its attitude) must be known. For this, the almost universal solution is the use of navigation

sensors, and more specifically a global navigation satellite system (GNSS) device, and an

Inertial Measurement Unit (IMU) comprising accelerometers and gyroscopes. GNSS devices

have their distances to various visible satellite measured and computed to give an estimation

of their position; IMUs measure their accelerations and angular velocities, and integrate them

to obtain the position and the attitude. These two devices have their advantages and disad-

vantages: in a specific context (baseline, constellation...) GNSS devices give the position with
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Figure 3.3 Representation of the local-level frame (in black) and the body frame of the camera
(in orange). The two first axis of the local-level frame are aligned with North and East, respecti-
vely. The camera frame has its axis aligned with the two dimensions of the CCD array and the
viewing direction.

a constant uncertainty (in our case, 2 cm with Real Time Kinematic, RTK), while IMUs provide

precise measurements, but with growing error when integrating the accelerations/velocities.

For this reason, they are almost always combined using Kalman filtering [67, 76].

The purpose of this section is not to provide a complete state of the art about navigations sen-

sors and inertial navigation, which constitute a scientific discipline by themselves; the reader

can refer to various works to find more information about these topics [120, 136]. However, we

can mention here that several factors can impact the quality of the estimation of the trajectory.

Besides the precision of the sensors themselves, both the lever-arm and the boresight between

the camera and the navigation sensors alter the measurements.

Definition 20. The boresight (usually referring to a couple camera/IMU) is the 3D rotation

characterising the difference between the body frames of two different devices.

Definition 21. The lever-arm (usually referring to a couple camera/GNSS Antenna) is the 3D

vector between the optical centre of the camera and the GNSS Antenna.

The angles measured by the IMU characterise the viewing direction of the camera, up to the

boresight correction; the position measured by the GNSS device corresponds to the position

of the camera up to a translation along the lever-arm, as illustrated on Figure 3.4.

Additionally, although the absolute position parameters as well as the roll and the pitch are

usually well estimated after filtering, the yaw is problematic. Indeed, the absolute positioning
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Camera
IMU

Boresight

Lever-arm

GNSS

Figure 3.4 Illustration of the concepts of boresight and lever-arm.

is well corrected by the GNSS input; the gravity force, sensed by the accelerometers, is very

strong compared with their biases, therefore its direction can be measured accurately and

allow for absolute alignment of roll and pitch. However, a yaw misalignment does not alter the

acceleration measurements, and thus cannot be detected without the help of another sensor

[99, 13]. For our acquisitions during the Léman-Baïkal project, we have used a SBG Systems

Ekinox2-N sensor (which includes a GPS, an IMU, a magnetometer and processes the Kalman

Filter in real time). The magnetometer senses the Earth’s magnetic field to provide an absolute

estimate of the heading (yaw). However, magnetometers are subjected to electromagnetic

interferences with other electronic devices on board, resulting in a poor estimation of the yaw.

3.2.2 The Collinearity Equation

We consider here the local-level frame centred at the optical centre of the camera, and the

body frame of the camera, as illustrated in Figure 3.3.

Consider the following notations.

• (XoC ,YoC , ZoC ) are the coordinates of the optical centre (0 in the local-level frame).

• (XG ,YG , ZG ) are the coordinates of the corresponding ground point in the same frame.

• (u, v) are the metric coordinates of a pixel of interest in the body frame of the pushbroom

camera. Its third coordinate is the focal length of the camera, f .

• (upp , vpp ) are the coordinates of the principal point of the camera in the same frame.
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• (r, p, y) are the roll, pitch and yaw angles representing the attitude of the vehicle.

Then, the rotation matrix from the body frame of the camera to the local-level frame is given

by equation 3.1.

Rl
b(r, p, y) =

⎡
⎢⎣ cos y cos p cos y sin p sinr − sin y cosr cos y sin p cosr + sin y sinr

sin y cos p sin y sin p sinr +cos y cosr sin y sin p cosr −cos y sinr

−sin p cos p sinr cos p cosr

⎤
⎥⎦ (3.1)

Using the collinearity equation (Equation 3.2), the coordinates of the ground point corre-

sponding to a given pixel can be retrieved. This is usually achieved using ray tracing from the

optical centre of the camera to the DEM.

μRl
b(r, p, y)

⎡
⎢⎣ u −upp

v − vpp

f

⎤
⎥⎦=

⎡
⎢⎣ XoC

YoC

ZoC

⎤
⎥⎦−

⎡
⎢⎣ XG

YG

ZG

⎤
⎥⎦ (3.2)

μ corresponds to the collinearity coefficient pixel vector and the ground point vector in

the local-level frame. Using the collinearity equation, one can compute the geographic

coordinates of every pixel of an image. A more rigorous model accounts for the distortion of

the image due to the lens of the camera; Brown’s distortion model [40, 33] represent the radial

distortion with parameters usually noted (K1,K2) and the tangent distortion with parameters

coined (P1,P2). Considering the radius r =
√

(u −upp )2 + (v − vpp )2 of a given pixel, the

collinearity equation accounting for lens distortion is given by Equation 3.3.

λRl
b(r, p, y)

⎡
⎢⎣ (u −upp )(K1r 2 +K2r 4)+ (P1(r 2 +2(u −upp ))+2P2(u −upp )(v − vpp ))

(v − vpp )(K1r 2 +K2r 4)+ (2P1(u −upp )(v − vpp )+P2(r 2 +2(u −upp )))

f

⎤
⎥⎦

=

⎡
⎢⎣ XoC

YoC

ZoC

⎤
⎥⎦−

⎡
⎢⎣ XG

YG

ZG

⎤
⎥⎦

(3.3)

3.2.3 The Bundle Adjustment Theory

To further improve the quality of the georeferencing, ancillary data can be used.

Definition 22. Ground Control Points (GCP) are points with known coordinates, contained in

one (or more) image(s) collected during the flight.
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3.3. The Challenges of Pushbroom Images Georeferencing

Definition 23. Tie Points are points that can be identified in multiple images.

Tie points allow to correct the relative orientation of some images to others when the points

are in an area where they overlap. GCPs rather refine the absolute orientation of some images.

To merge the information from the navigation data and the GCPs/Tie Points, the standard

method is the Bundle Adjustment [128]. The Bundle Adjustment refines the estimation of the

orientation parameters along the trajectory, while also allowing to create an orthomosaic and

a DEM of the area flown. It consists in an optimization algorithm: find orientation parameters

as close as possible to the ones output by the navigation sensors, under the constraints given

by the tie points and the GCPs.

Commercial softwares usually include feature-matching algorithms like SIFT [88] or SURF

[10] to generate tie points between images.

3.3 The Challenges of Pushbroom Images Georeferencing

The bundle adjustment theory is, however, of little help in the case of pushbroom imagery:

3 GCPs per scan line would be required to georeference them properly [83]; the automatic

tie points matching between scan lines is extremely difficult because, as said in Section 3.2.3,

it usually relies on feature-matching algorithms for frame images, and consequently the 2D

neighbourhoods of the points, which are not available in a 1D acquisition. To bypass these

constraints, extra assumptions can be made about the trajectory of the vehicle. More speci-

fically, assuming smoothness of the orientation parameters, the complexity of the problem

can be reduced down to the determination of Gauss-Markov processes for said parameters

[52, 82].

We start by giving an overview of the existing contributions in Section 3.3.1. In Section 3.3.2

and 3.3.3, two contributions are analysed in more details.

3.3.1 Pushbroom Georeferencing: a State of the Art

Georeferencing scan lines from a pushbroom sensor can be achieved with various setups and

assumptions on the motion of the scanner. The most common approach is Integrated Sensor

Orientation (InSO) involving the use of GCPs together with a model of the trajectory of the

airborne vehicle/satellite. Such contributions include [52], assuming constant biases of roll,

pitch and yaw angles across the scan lines, and estimating these biases using control points

and Aerotriangulation (AT); in [109], the EOP of either a satellite or an airborne vehicle are

modelled by piecewise polynomials, and optimised together with ephemeris or GPS/IMU

data and GCPs using a least squares method; some additional parameters like the lever-arm

between the GPS antenna and the pushbroom scanner, the boresight between the IMU and

the scanner, or the non-uniform geometry of the CCD array can also be optimised by a least

square method [140]. Using the co-registration to pre-existing reference orthoimages, relying

on point features or linear features, can replace the measurements of GCPs [53]. Simple
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methods, like the identification of a straight line, coupled with GCPs, even allow to obtain

a decent mosaic from the scan lines [64], though such method obviously does not provide

any information on the vehicle’s trajectory. However, if no assumption on the smoothness

of the trajectory is made, estimating the EOP for each scan line would imply to measure an

unrealistically high number of GCPs [83]. To alleviate reliance on GCPs, a significant amount

of contributions make use the co-acquisition of frame images, and develop methods to co-

register the frame images and the scan lines. The most sophisticated algorithm seems to be

given by [110]: the interior orientation of the pushbroom scanner is calibrated and the sensor

is aligned with the frame camera using a target not parallel to the plan of the CCD array, and

then the stitching of the frame images allow to build the hyperspectral mosaic. Additionally,

this method does not require any navigation data; however, it supposes either the calibration

with the triangle target prior to every flight, or the stability of the relative orientation of the

two sensors. The ultralight plane flights operated during the Léman-Baïkal project were

typically two to three hours long, therefore such stability cannot be assumed. Approaches

involving the co-acquisition of frame images, scan lines and navigation data perform well

[123]. The existence of frame images allows to get around the problem of weak geometry of

the scan lines; the bundle adjustment of frame images outputs better orientation for said

images, which in turn can be used as orientation for the pushbroom scanner, by estimating

the boresight between the two cameras and defining an interpolation scheme to compensate

for the difference of acquisition frequencies [6]. Among other contributions, [22] proposes a

co-registration to an existing referencing using a mutual information criterion, and explores

different scenarios of missing/inaccurate orientation data.

Considering the existing contributions, the originality of our work, presented in Chapter 6, is

that the problem of georeferencing pushbroom scan lines is solved using navigation data and

co-acquired frame images, without needing:

• GCPs

• a model for the vehicle’s trajectory

• a priori knowledge on the boresight between the IMU and the pushbroom scanner

(which is crucial, as there is no guarantee that the in-flight boresight did not change

compared with its value before take-off)

and leads to new estimates of EOP for every scan line independently.

3.3.2 Co-Registration onto a Reference Mosaic with Gradient Descent

Y. Rzhanov and S. Pe’eri [112] designed a practical procedure to compute the correlation

between the values in the scan lines and the values of a reference image. It relies on three

assumptions:
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• Geographically co-localised points from the pushbroom scan lines and the reference

have their values connected by a linear function. This assumption justifies the use of

the correlation later in the algorithm. It is valid as long as the sensors are calibrated for

noise and saturation, and the bands of the hyperspectral camera are combined properly

to match the transmittance of the bands of the camera with which the reference was

acquired.

• The Earth is locally flat, meaning, the elevation is modelled as a constant height across

the area of interest. Although acceptable, this assumption collides with the use of a

DEM, and hurts the third assumption.

• The ortho-rectified scan lines should be straight when co-registered onto the reference.

This is not true when the terrain is not flat.

The flowgram of their method is given in Figure 3.5.

Flight

RGB Images

Hyperspectral
Scan Lines

Bundle Adjustment
Reference Orthomosaic

Computation of the Correlation
on Known Spectral Features

Scan Lines in RGB Bands

Initial Placement of
the First Scan Line

Gradient Descent

Positioning of 
the Scan Line

"Guess" of the Position
of the next Line

Figure 3.5 Flowgram of the approach proposed by Rzhanov and Pe’eri.

Their flights, like ours in the Léman-Baïkal campaign, were performed with an RGB camera

and a pushbroom hyperspectral camera onboard. The RGB images are processed with a

Bundle Adjustment, allowing the generation of an orthomosaic of the area flown. For the RGB

and the hyperspectral information to be compared and correlated, hyperspectral data must

be processed to give values comparable to the visible ones. The most rigorous method would

be to multiply the values by the transmittance function of each channel of the RGB camera;

since the transmittance functions were not known, the correlations between the bands of the

hyperspectral cameras and the three bands of the RGB cameras were computed on spectral

features they identified in both sets of images. The three bands with highest correlation to the

red, green and blue bands were chosen to compute the RGB version of the hyperspectral data.

The three bands chosen all had between 83 % and 86 % correlations to their equivalent in the

other set.

The RGB reference, with much higher spatial resolution, was downsampled to the resolution

of the pushbroom data. Starting from an initial position given by the user, the first scan line is

iteratively repositioned by a gradient descent implemented using the Levenberg-Marquardt

algorithm, which criterion is the correlation of pixel values between the line and the co-

localised test line from the reference. When the line is matched, the following line is guessed

to be at a position given by the previous line, plus a translation depending on the velocity of

the vehicle. The optimization is then run again, and so on until all the scan lines are localised.

29



Chapter 3. Georeferencing of Airborne Images

This simple approach suffers multiple problems. First of all, in spite of good visual results,

the algorithm had to be computed several times with different initial positions for the first

scan lines, as the gradient descent easily falls down into local minimums for the correlation.

Second, as already mentioned, this method is not suitable for use with a digital elevation

model, especially for large altitude variations inside the area. Third, the algorithms seems to

not be suitable for flights with important changes in the aircraft altitude. In particular, U-turns,

where the heading of the vehicle changes very rapidly, would probably prevent the algorithm

from converging to an acceptable location, as the scan lines are supposed to be close to aligned.

Finally, as the whole procedure is designed to work without the help of navigation data, no

information about the aircraft trajectory can be retrieved from the geometrical correction.

3.3.3 Co-Registration onto a Reference Mosaic with Mutual Information

C. Cariou and K. Chehdi [22] also designed a procedure to co-register scan lines onto a refe-

rence image. Unlike Rzhanov and Pe’eri, their method takes into consideration - and corrects -

the navigation parameters for the flight.

The mathematical model of the trajectory is similar to the one presented in Section 3.2,

with two exceptions. The first one is that there is a set of exterior orientation parameters

(X ,Y , Z ), (ω,φ,κ) (last three being respectively roll, pitch and yaw) for each scan line. The

second one is the assumed smoothness of the trajectory: all the scan lines have a similar

attitude (ω0,φ0,κ0) with little variations for each scan line called instantaneous relative angles

(ω j ,φ j ,κ j ), where j is the index of the scan line. The authors assume that only ω0, φ0, Z0

(the average altitude above ground) and all the κ are to be optimised. This is a reasonable

assumption, since the small variations of the angles between lines is usually well captured by

the inertial sensors; the κ angles are not measured by the system used in this paper. Regarding

Z0, while other coordinates are well measured by a GNSS system, the altitude above ground

can be biased by the error of the Geoid used compared with the true altitude.

The reference image is backward-projected onto the sensor: unlike the work of Rzhanov and

Pe’eri, the ground coordinates of the reference image pixels are known, and transformed into

sensor pixel coordinates using the collinearity equation (Equation 3.2). The geocorrection is

performed iteratively: the algorithm searches for the maximum of the mutual information

between the raw pushbroom image and the backward-projected reference image. Considering

the deformed image from the pushbroom sensor Id , the reference image Ir , the deformation

operator DΘ (Θ being the set of orientation parameters to optimise), fg the (1D or 2D) proba-

bility density function of function g, u1 the linear coordinate of a pixel of Id and u2 the linear

coordinate of a pixel of Ir , then the criterion to optimise is the mutual information between

Id and Ir ◦DΘ, as given by Equation 3.4.

M I (Id , Ir ◦DΘ) = ∑
u1,u2

fId ,Ir ◦DΘ
(u1,u2)× log

fId ,Ir ◦DΘ
(u1,u2)

fId (u1) fIr ◦DΘ
(u2)

(3.4)
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(a) (b)

Figure 3.6 (Copyright © 2008, IEEE) Sample result from Cariou and Chehdi’s work on the
geocorrection of CASI data. (a) shows the raw pushbroom image (in red) with the backward
projected reference orthoimage from the French Institut National Geographic (IGN) in cyan
on top, where the biases ω0, φ0, κ and Z0 were set to 0. (b) shows the same overlay after
optimization of the mutual information. Two roads were highlighted with colours (orange and
green) to illustrate the better coherence of the second overlay.

The advantage of the mutual information over the correlation is that is does not require any

assumption about the relation between the two sets of data [26, 71]. More precisely, mutual

information is more reliable than correlation when the images come from two sensors with a

priori distinct characteristics [132].

Cariou and Chehdi have tested and validated their algorithm over different data from the

Compact Airborne Spectrographic Imager (CASI) and the Airborne Imaging Spectroradiometer

for Applications (AISA). Their experiments include different scenarios: constant height area,

area with a DEM, presence or not of yaw data. A sample visual result can be seen on Figure

3.6b. The main output of their work is that, even in the absence of initial estimation of the yaw

angles, the quality of the georeferencing in terms of Root Mean Square Error (RMSE) on sets of

GCPs, in all their experiments, is comparable to the one obtain with direct georeferencing.

Although Cariou and Chehdi’s work is - to our knowledge - the best example of a pushbroom

geocorrection method, it does not contain the necessary tools to deal with highly irregular

trajectories, nor to estimate other orientation parameters (IOP included).
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4 Acquisition System for the Léman-
Baïkal Project

Before we enter in the technical details of the calibration methods proposed, we present in

this chapter the system used for the Léman-Baïkal campaigns. The system, called "Hyperbox",

was designed and assembled in the context of another PhD thesis by Dragos Constantin. All

the details can be found in his thesis [30]. For the self-readability of the present thesis, we

present the system briefly.

The hyperbox is composed with a navigation system, a pushbroom scanner, a frame camera

and a NUC processor for interfacing the different devices. The hyperbox is mounted together

with a Wi-Fi router and an Android tablet on board the ultralight plane; a user interface is

available on the tablet for the user to pilot and monitor the system during the flight. Figure 4.1

shows the system and the different coordinate frames involved.

Tables 4.1, 4.2 and 4.3 summarise the characteristics of the different sensors.

Name Ekinox2-N
Manufacturer SBG Systems

Type Integrated GPS+IMU system
Position Accuracy 2 cm with RTK

Roll and Pitch Accuracy 0.02°
Yaw Accuracy 0.05°

Maximum Frequency 200 Hz

Table 4.1 Characteristics of the navigation system on board the ultralight plane.
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XENU

YENU ZENU

N

Frame Camera
Pushbroom Camera
Inertial Measurement 
Unit
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ZIMU
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YPB

XPB

ZPB

(a) (b)

Figure 4.1 (a) illustrates the setting for our airborne acquisitions. (b) represents the different
frame coordinates for the three sensors: the frame camera, the pushbroom (PB) camera, and
the IMU.

Name Micro Hyperspec VNIR-A
Manufacturer Headwall Photonics

Type Pushbroom hyperspectral scanner
Sensor Technology Silicon CCD
FWHM Slit Image 5.8 nm

Spectral Bands 250
Spectral Coverage 400 to 900 nm
Number of Pixels 1000

Maximum Frequency 90 Hz

Table 4.2 Characteristics of the pushbroom scanner on board the ultralight plane.

Name Micro UI-2280SE-C-HQ
Manufacturer IDS Imaging

Type Frame camera
Sensor Technology CCD

Spectral Bands 3
Spectral Coverage RGB
Number of Pixels 2448×2048

Maximum Frequency 6.5 Hz

Table 4.3 Characteristics of the frame camera on board the ultralight plane.
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5 Radiometric Correction

Note: parts of this section were extracted from our article Airborne hyperspectral sensor radiometric

self-calibration using near-infrared properties of deep water and vegetation [7], in the procee-

dings of the SPIE Remote Sensing Conference. They are copied in accordance with the SPIE

Transfer of Copyright agreement.

This part describes the methods and algorithms we have developed to perform radiometric and

spectral correction of the pushbroom images acquired with our Headwall Micro Hyperspec

VNIR-A camera. It is important to understand that the calibration methods detailed in the

following were designed to be entirely image-based. The reason is that images of interest had

been collected prior to the beginning of our work at the Geodetic Engineering Laboratory of

EPFL, and no camera calibration had been performed prior to these acquisitions.

5.1 Radiometric Calibration Algorithm

Our algorithm is split into six steps: dark current noise removal, spectral calibration, stripes

effect correction, BRDF effect correction, residual glint removal and rescaling of reflectance.

Figure 5.1 summarises this process.

5.1.1 Dark Current Noise removal

Dark current can be represented by a constant bias. There is one bias per pixel and per band,

and its value is a digital number. To compute it, we acquire a large number of lines in the

dark. Then we consider the time series from a single pixel and a single band. The values of its

autocorrelation at non-zero lags should practically only be influenced by the bias as shown on

Figure 5.2.
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Autocorrelation-based 
bias removal

High frequencies 
extraction for spectral 
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Figure 5.1 Flowgram of our approach.
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Figure 5.2 Autocorrelation plot for the 125th band in the 500th pixel of our camera.

It thus leads us to retrieve all the biases using Equation 5.1:

bi as(i ,b) =
√

autocor r (d ar k(i ,b))

n −1
(5.1)

where "i" is the index of the pixel in the pushbroom line, "b" is the index of the band, "dark"

is the concatenation of the 1000 dark lines acquired, and n is the length of the time series

(n = 1000 here). In each band and each pixel, we subtract the bias from Lsensor . It should

be noted that this process is not error-free, since the dark current signal depends on the

integration time of the camera, and its temperature. The variations of the temperature during

the airborne acquisition might alter slightly the values of the biases.
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5.1.2 Spectral shifts removal

High Frequencies Extraction

To compensate for the spectral shifts, a method has been developed, relying on the apparent

dioxygen absorption peak, and the computation of the "high frequencies" of the signal. The

idea is to represent the fast variations within the spectrums, and to match these variations in

order to realign all the signals.

The first step consists in processing these high frequencies as follows: smooth the spectrum,

and divide the original spectrum by the smoothed version. The resulting signal (referred to as

"high frequencies signal" in the following) has values much superior to 1 when the original

signal has upward peaks, and values much inferior to 1 when the original signal has downward

peaks.

Our smoothing method is iterative: at each iteration, an upper and a lower envelope of the

signal are computed using Algorithm 1. Figure 5.3 illustrates the processing of one iteration.

Data: Original signal, as an array of size 1 by n
Result: Upper envelope of the signal
�� ������ 	
 ����
��	�� �� �����
��� �� �
����
� ��		����� ��

���
	���� ���� 
 ������ 	
 ���� �� ��

currentSignal = originalSignal;
for i from 1 to # iterations do

smoothedSignal = GaussianSmooth(currentSignal);
currentSignal = max(smoothedSignal,originalSignal);
�� ��� 
	� 
 �	��� �� ��	��� ��

end
output currentSignal;

Algorithm 1: computation of the upper envelope of a signal.
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Figure 5.3 Signals obtained at the different steps of the smoothing process.
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After a few iterations, we get a smooth version of the original signal. The high frequencies are

then computed. Figure 5.4 shows plots of high frequencies for two random spectrums of an

image.
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Figure 5.4 High frequencies of two different pixels. The signals are similar and relevant to
establish a band to band match from one signal to another.

It is clear that the two plots shown on Figure 5.4 are alike, but misaligned.

Matching with Dynamic Time Warping

When these high frequencies have been extracted, peaks can be matched using Dynamic Time

Warping (DTW), a process designed to match values of two similar signals one to one. We

determine the best elastic transformation (including shifts, or stretchings) with respect to the

timelines of both signals (see [118] for reference).

DTW tries to make two signal match: its output is a function (usually called path) p. The

criterion to choose p is the minimisation of

N∑
i=1

[s1(i )− s2(p(i ))]2 (5.2)

where s1 and s2 are the two signals to match, and i is the time index of the signal (in our case,

i is the band index). In other words, DTW finds the best path p which minimises the distance

between signal 1 and the elastic transformation of signal 2. We call i �→ s2(p(i )) the warped

version of signal 2.

DTW is applied on the high frequencies signals, and its output path p is then used to warp the

original signal 2. We can recreate the signal that we would have got without any mechanical

move inside the system or spectral smile. Figure 5.5 shows locally the obtained (warped)
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spectrum 2 from Figure 5.4 and compares it to the uncalibrated version.
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Figure 5.5 Spectrum 1, spectrum 2 and its warped version, around the wavelength correspon-
ding to dioxygen absorption. The warped signal peak is aligned with the corresponding one in
spectrum 1.

It has to be noted that, though all the signals can be aligned using this process, this is a

relative correction: no absolute positioning of the absorption peak is performed. Therefore,

we arbitrarily align all the spectrums so that the peak is centred at 760 nm.

Finally, when all the spectrums are aligned, they are smoothed in the spectral dimension to

further reduce potential noise, using the smoothing process described in 5.1.2.

5.1.3 Stripes Effect Correction and Conversion to reflectance

Before each flight, an acquisition over a Spectralon (Lambertian, unit-reflectance panel) is

made. After aligning the bands using the method described in Section 5.1.2, it is now safe

to divide the signals of each of the scan lines by the signals collected over the Spectralon, so

as to remove the stripes effect, but also perform a first conversion to reflectance. Figure 5.6

shows an example of such spatial noise correction and reflectance output over the mouth of

the Rhône river in Lake Geneva.

The output is a first approximation of the reflectance ρr s(θ,φ), still depending on the viewing

direction (θ,φ). However, such output cannot be considered yet as the final output. Not only

some effects (glints, BRDF effect) have not been corrected yet, but the data of interest and the

Spectralon data were collected at different times, meaning, with a different sun elevation angle.

The radiance received from the Spectralon cannot be considered to be a proper measure of

the downwelling irradiance Ed at the moment of the airborne acquisition. The rescaling of the

reflectance obtained at this stage is discussed in Section 5.1.6.
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(a) (b)

Figure 5.6 Illustration of the spatial noise correction in the band 125 (632.5 nm), over the
Rhône. Two columns where the stripes effect is particularly visible are indicated by red arrows.

5.1.4 BRDF Correction

At this stage, the reflectance is still impacted by various external factors: the sun elevation angle

(which acts as a scaling factor on the downwelling irradiance), the atmospheric scattering, and

the BRDF effect. The elevation of the sun is accounted for in the rescaling of the reflectance

(see Section 5.1.6). The data presented in this chapter were acquired at low to medium

altitudes, between 500 m and 800 m, where the scattering effects can be neglected. However,

the last factor, the BRDF effect, is significant and needs to be corrected.

Background: BRDF Correction Kernels

The remote sensing reflectance ρr s is a function of the viewing direction (θ,φ). Let us call

ρr s|N the remote sensing reflectance, corrected for the BRDF effect, that is, where the data

was normalised so as to appear as taken from nadir point of view. This normalisation can

be modelled as a function of the Earth-Sun distance, the upwelling radiance, the upwelling

irradiance and the downwelling irradiance just below the surface of the water observed, and

estimated by numerical methods, when ground measurements are available [98, 96]. Such

measurements are available in a very limited number of points in the context of the Léman-
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Baïkal project, which is why extra assumptions must be made so as to model the BRDF effect

and correct it based on airborne images only. The BRDF effect is usually modelled with so-

called kernels: the observed reflectance ρr s(θ,φ) is expressed as the sum of the normalised

reflectance, ρr s|N , and a linear combination of functions of the viewing direction of known

expressions, called kernels. The expressions of the kernels are either derived from physical

models [133] or expressed as a Taylor expansion of the different parameters, with no further

assumption [29].

BRDF Correction with a Quadratic Kernel

Our strategy, much like Collings et al. [29], considers all the reflectances obtained in the previ-

ous section as observations. Provided than the viewing direction presents enough variations

across the observations, they could allow to estimate the coefficients of a Taylor expansion

function representing the BRDF effect. Consider the angles θ and φ as represented on Figure

5.7.

Nadir
Viewing 
direction ( , )

Figure 5.7 Representation of the angles θ and φ for a 2D viewing direction.

Then the relation between the remote sensing reflectance and the viewing direction is given

by Equation 5.3.

ρr s(θ,φ) =α0 +α1θ+α2φ+α3θ
2 +α4θφ+α5φ

2 (5.3)

In order to compute the best parameters αi , i ∈ [0,5], a large area of water, acquired in a turn of
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the ultralight plane, is used to provide numerous observations of ρr s(θ,φ) for different angles.

The turning motion of the aircraft allows to span a variety of viewing directions, so that the

estimation of the parameters is accurate. The area of water covered shall be uniform enough

so that the main variations observed are a consequence of the different viewing directions.

Both flights of interest include acquisitions over homogeneous water areas in turns, that can

be used to estimate the parameters of the model.

Before processing the optimal parameters, the viewing direction of each observation must

be computed. It should be noted at this point that we made the deliberate choice to perform

radiometric calibration before sensor orientation. Although the correction of the orientation of

the pushbroom camera would have allowed to compute better estimates of the viewing angles,

the difference with using the estimates directly from the navigation sensors is negligible. On

the other hand, radiometric calibration is needed to compare and correlate data from the

hyperspectral sensor and the RGB sensor in our orientation method (Section 6.1.1).

Consequently, ignoring inherent camera calibration parameters, the rotation between the

local-level frame and the body frame of the pushbroom camera, Rl
b is given by Equation 3.1,

and the viewing direction of a pixel of metric, signed coordinate v in the scan line is given by

Equation 5.4.

ν= Rl
b

⎡
⎢⎣ 0

v

f

⎤
⎥⎦ (5.4)

In Equation 5.4, f stands for the focal length of the pushbroom camera. Considering ν =
(νx ,νy ,νz ), the angles θ and φ are given by Equations 5.5 and 5.6.

θ = arctan(
νx

νz
) (5.5)

φ= arctan(
νy

νz
) (5.6)

Using the observations from a homogeneous water image covered during a turn, the para-

meters αi , i ∈ [0,5] are retrieved from a least squares adjustment. The subsequent correction

is processed as follows: each reflectance, if acquired from a viewing direction of (θ,φ), is

multiplied by a factor of
α0

α0+α1θ+α2φ+α3θ2+α4θφ+α5φ2 .
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5.1. Radiometric Calibration Algorithm

5.1.5 Residual glint removal

In some images, direct reflection from the sun still appear and needs to be corrected. To do so,

we use Lyzenga & al.’s method [90]. The process is as follows: we compute the correlations

of the different bands with a chosen Near InfraRed (NIR) band in a deep water area that we

choose arbitrarily. Assuming negligible water-leaving radiance in the near infrared (in our

case, for the largest wavelength, 850 nm), we correct the spectrums using Equation 5.7.

ρb,cor r ected = ρb − rb,N I R (ρN I R −〈
ρN I R

〉
). (5.7)

In Equation 5.7, ρb stands for the reflectance in band b, rb,N I R for the correlation in the deep

water region between band b and the NIR band, and
〈
ρN I R

〉
for the mean reflectance value in

the NIR band in the same region. The logic behind this equation is that the NIR reflectance

of water should be negligible. We can then apply appropriate corrections in the other bands

by scaling the NIR correction according to the correlation between the NIR and the bands to

correct.

5.1.6 Rescaling of Reflectance using Expected NIR Reflectance of Vegetation

A first approximation for downwelling irradiance Ed would be given by the data collected over

the Spectralon, but this suffers two issues: first, acquiring data over the Spectralon obviously

cannot be done during the flight. Therefore, the changes of weather conditions, especially

the solar azimuth, are such that a single acquisition of the Spectralon before the flight can-

not reliably help to scale the signal to reflectance. Second, the reflectance of the Spectralon

may not be exactly 100% in the visible and the near infrared. To be able to scale our data to

reflectance without adopting a supervised approach (i.e., to be independent of the ground

data), we rely on the acquisition of vegetation data during the flight. For coastal areas like lake

shores, this is a reasonable assumption. The idea is to use the spectral properties of vegetation

in the near infrared. Typically, the reflectance spectrum of a plant is very stable between 800

nm and 850 nm, and its value - depending on its health and its species - can vary from 20

% to 90 %. We use this information by choosing (arbitrarily) a large vegetation area on the

shore, acquired close (timewise) to the point of interest. We compute the maximum and the

minimum spectrums in this area; we assume that the mean between the highest value and the

lowest value in the near infrared band (850 nm in our case) corresponds to a 50 % reflectance.

Using the Spectralon, we compute the ratios between the transmittance of each band and the

NIR transmittance. These transmittance ratios are then scaled knowing the value found in the

NIR should be scaled to 50 %. The result is a signal representing the theoretical output of the

sensor for 100 % reflectance, that we can use to scale our spectrums to reflectance.

Figure 5.8a shows, for the studied region near the Rhône, the vegetation area chosen, and Fi-

gure 5.8b represents the plots (in digital numbers) of the minimum and maximum reflectances
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Chapter 5. Radiometric Correction

found in this area.

(a) Chosen vegetation area, in red.
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(b) Minimum and maximum outputs of our camera in the region.

Figure 5.8 Vegetation area and maximum and minimum outputs in this region.

For instance here, all the signals would be scaled so that 578 (the mean of the NIR digital

number of minimum and maximum reflectances of Figure 5.8b) would correspond to 50 %

reflectance. Depending on the heterogeneity, the species and the health of the vegetation in

the chosen area, this scaling may be inaccurate. In this case, the proper scaling factor can

be learnt on one of the ground samples, and used for the others. The method then becomes

supervised, in the sense that it needs information from the in situ measurements.

5.2 Results

5.2.1 Sample data

The acquisition campaigns took place from March 2013 to August 2015. In order to cover large

areas, flights were often performed at an altitude of 1 km or higher. Nevertheless, several points

on both lakes, Geneva and Baikal, have been acquired at medium altitudes (less than 800 m).

They are summarised in Table 5.1 and shown on Figure 5.9. All the points were acquired in

good weather conditions, with negligible wind.

Designation Date Time (CEST) Latitude (°) Longitude (°) Altitude (m) Spectrometer
Av4 09.04.2015 10:50 46.45157 6.81665 410 WISP-3
Av7 21.04.2015 10:35 46.40443 6.86055 570 Ramses
Av8 21.04.2015 10:30 46.39745 6.85414 570 Ramses
Av9 21.04.2015 10:32 46.40860 6.84326 570 Ramses

Ba50 11.08.2014 05:14 52.31581 106.23075 280 WISP-3
Ba51 11.08.2014 05:10 52.31462 106.24342 760 WISP-3
Ba52 11.08.2014 05:10 52.31015 106.24089 710 WISP-3
Ba53 11.08.2014 05:11 52.30845 106.25411 530 WISP-3

Table 5.1 list of the points used to assess our results.
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5.2. Results

(a) Points near the Rhône (Geneva). (b) Points near the Selenga (Baikal).

Figure 5.9 Sample points visualised in Google Earth.

Our georeferencing method [6] is an integrated sensor orientation approach using tie points

in concurrent frame images to correct the hyperspectral lines orthorectification. This method

relies on salient points in the images and cannot be applied directly to water areas, which are

too homogeneous. But the correction of orientation on the ground before and after acquisition

over water allows, by interpolation and use of the navigation data, to get decent georefencing

of the water elements captured by the airborne hyperspectral sensor. Figure 5.10 shows the

orthorectification of lines above the mouth of the Rhône river, as seen in our software HypOS,

based on NASA SDK Worldwind.

Figure 5.10 Projection of 1000 hyperspectral lines in our software HypOS. The background
imagery is from Bing Maps. The orange line is the flight line.
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Chapter 5. Radiometric Correction

5.2.2 Comparison between Calibrated Airborne spectrums and Ground Measure-
ments

To assess the quality of our results, we compare the output spectrums to their equivalent

ground measurements from a TriOS Ramses and a water-insight WISP-3. They measure the

upwelling radiance Lu , the sky radiance Ls and the downwelling irradiance Ed . In absence of

wind, we can then compute the spectral remote sensing reflectance using Equation 5.8.

Rr s = Lu −0.028Ls

Ed
(in sr−1). (5.8)

The similarity of ground and airborne data is assessed using three indicators: the correlation

(Equation 5.9), the Spectral Angle Mapper (SAM, Equation 5.10) and the Root Mean Square

Error (RMSE, Equation 5.11). In all these equations, λ stands for the band index, N is the

total number of bands (250 in our case), and x and y are the airborne and ground spectrums,

respectively.

ρX ,Y =

N∑
λ=1

(xλ− x̄)(yλ− ȳ)√
N∑

λ=1
(xλ− x̄)2

N∑
λ=1

(yλ− ȳ)2

. (5.9)

S AMX ,Y = cos−1

⎛
⎜⎜⎜⎜⎜⎝

N∑
λ=1

xλyλ√
N∑

λ=1
x2
λ

N∑
λ=1

y2
λ

⎞
⎟⎟⎟⎟⎟⎠ . (5.10)

RMSEX ,Y =
√√√√ 1

N

N∑
λ=1

(xλ− yλ)2. (5.11)

Results are summarised in Table 5.2. Figure 5.11 shows plots of airborne and in situ measure-

ments near the mouth of the Rhône in Lake Geneva, and Figure 5.12 shows plots for points in

the Selenga Delta of Lake Baikal.

The main source of error is due to the sensitivity of our sensor at short wavelengths. As can be

seen on Figure 2.7, our camera has a very low quantum efficiency for wavelengths below 450

48



5.2. Results

0

0.001

0.002

0.003

0.004

0.005

0.006

400 450 500 550 600 650 700 750 800 850

R
efl

ec
ta

n
ce

[1
/s

r]

Wavelength [nm]

Av4

Airborne
In Situ

Av4.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

400 450 500 550 600 650 700 750 800 850

R
efl

ec
ta

n
ce

[1
/s

r]

Wavelength [nm]

Av7

Airborne
In Situ

Av7.

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

0.005

400 450 500 550 600 650 700 750 800 850

R
efl

ec
ta

n
ce

[1
/s

r]

Wavelength [nm]

Av8

Airborne
In Situ

Av8.

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

400 450 500 550 600 650 700 750 800 850

R
efl

ec
ta

n
ce

[1
/s

r]

Wavelength [nm]

Av9

Airborne
In Situ

Av9.

Figure 5.11 Plots of Airborne versus in situ data for the points near the Rhône.

Point Correlation SAM (°) RMSE
Av4 0.988 5.97 3.35×10−4

Av7 0.995 8.50 5.05×10−4

Av8 0.996 8.09 3.50×10−4

Av9 0.992 9.03 4.22×10−4

Ba50 0.979 7.54 1.86×10−4

Ba51 0.969 10.94 3.71×10−4

Ba52 0.968 8.04 3.33×10−4

Ba53 0.937 11.38 3.97×10−4

Table 5.2 Quantitative results of comparison between airborne spectrums and ground spectra.

nm. The signal-to-noise ratio in this area of the spectrum is therefore lower than in the rest of

the spectrum, which leads to discrepancies. The second main issue is the altitude. It is clear

that, for the point measured at the highest altitude (Ba51, see Figure 5.12b), the similarity of
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Figure 5.12 Plots of Airborne versus in situ data for the points near Selenga Delta (Lake Baikal).

the two spectrums is lower. This is most probably due to additional atmospheric scattering at

this altitude. Though the scattering should remain weak, it is stronger than for other points

and diminishes the performance of our algorithm. Apart from these two issues, the rest of

the error sources (remaining noise, glint) are dealt with efficiently and the spectrums from

airborne data and in situ data correspond very well. However, overall, reflectance spectrums

are very similar to the ones concurrently acquired using ground spectrometers like the WISP-3

and the TriOS Ramses, for points acquired at low altitudes. The reflectance data can be used

to retrieve information about water quality.
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6 Pushbroom Images Georeferencing

Note: parts of this section were extracted from our articles Correction of Airborne Pushbroom

Images Using Bundle Adjustment of Frame Images [6], in the International Archives of the Pho-

togrammetry, Remote Sensing & Spatial Information Sciences, and Pushbroom Hyperspectral

Data Orientation by Combining Feature-Based and Area-Based Co-Registration Techniques

[4], in Preprints, and accepted for publication in Remote Sensing. They are copied under the

Creative Commons Attribution 3.0 License.

In this chapter, we explain the methods we developed to georeference pushbroom scan lines.

We wish to:

• compute a georeferenced orthomosaic composed with the scan lines collected by the

hyperspectral pushbroom sensor.

• retrieve the corrected orientation parameters. They include Interior Orientation Parame-

ters (IOP: principal distance, principal point of the pushbroom camera, and potentially

the distortion parameters of the lens) and Exterior Orientation Parameters (EOP: roll,

pitch, yaw, and 3 position parameters) for all the scan lines.

• estimate the boresight between the IMU and the pushbroom sensor.

The system used for the acquisition consisted in an SBG Ekinox2-N Integrated GPS+IMU

system, a Headwall Micro Hyperspec VNIR-A hyperspectral camera, an IDS-Imaging USB 2

uEye SE UI-2280 SE RGB camera, and an Intel NUC to handle the communication between

devices. The latitude, longitude and altitude, relatively to the WGS84 Geoid, and attitude as

roll, pitch and yaw output by the GPS+IMU system are considered as initial estimates, which

our geocorrection algorithm should refine. Additionally, we want the algorithm to not depend

on the measure of GCPs: measuring GCPs is a time consuming task, and using the information

they provide for pushbroom scan lines would imply to make assumptions on the trajectory of

the aircraft to reduce the complexity of the problem.
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Chapter 6. Pushbroom Images Georeferencing

6.1 Proposed Methodology

The geocorrection method proposed consists in five steps. First, we process a bundle adjust-

ment of the frame images to retrieve corrected EOP for the frame camera and the navigation

sensors; the adjustment allows the creation, in parallel, of a DEM of the area. Second, using

these EOP for the pushbroom camera, a first mosaic is created by projecting the scan lines on

the DEM. Third, points are matched between the orthophoto from the frame images and the

pushbroom mosaic; these matches allow to estimate the systematic error in the pushbroom

georeferencing, in the form of the boresight between the IMU and the pushbroom scanner,

and the IOP of the scanner. The projection of the scan lines is updated using the estimated

boresight parameters. Fourth, the residual errors are compensated for by computing the

local normalised cross correlations between the reference orthophoto and the mosaic. The

mosaic is elastically deformed into a new mosaic which fits the orthophoto better. Fifth, these

deformations allow to estimate better EOP for each scan line and compute a final mosaic that

is well co-registered onto the reference orthophoto. The flowchart of this method is given in

Figure 6.1.

6.1.1 Pre-processing Step: Radiometric Matching

Knowing the later steps of our algorithm (Sections 6.1.4 and 6.1.5) rely on matching features or

areas of the RGB images to the pushbroom hyperspectral images, the radiometric properties

of both sources need to match accordingly. The hyperspectral camera is calibrated (spectrally

and radiometrically) using a Spectralon panel, which is Lambertian and has a nearly unit-

reflectance across the spectral range of our camera (400-850 nm). The band-wise quantum

efficiency for each band of the RGB camera is provided by the manufacturer; to produce

comparable RGB data from our hyperspectral camera, we integrate the quantum efficiency of

one band of the frame camera, times the spectral signal delivered by the hyperspectral camera.

Concretely, let λ be the wavelength variable, and QEb(λ) the quantum efficiency of the frame

camera in the band b (red, green or blue). Let λn be the central wavelength of the nth band of

the hyperspectral camera. Then, hb , the data in band b synthesised from the hyperspectral

image h, is given by Equation 6.1.

hb =
∑
n

QE(λn)h(λn)∑
n

QE(λn)
(6.1)

A 3-bands image is then created by applying Equation 6.1 to the three bands of the frame

camera. Images of both cameras are then converted to greyscale for the following steps of the

algorithm.
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Figure 6.1 Flowchart of the proposed geocorrection method.

6.1.2 Bundle Adjustment of Frame Images

In the first stage of the geocorrection, the information available in frame imagery is used to

refine the estimates of the EOP given by the navigation sensors. Using the commercial software

Agisoft Photoscan, we perform a bundle adjustment of frame images (Figure 6.2). Each image

is associated with a set of EOP, initialised with the values output by the GPS+IMU system.

Photoscan handles the stitching of the RGB images by finding tie points; EOP are optimised in
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the process and can be exported from the software. However, these parameters correspond to

the frame camera. To retrieve corrected parameters for the IMU, two additional steps must be

completed: the interpolation of the corrected parameters, since the acquisition frequency of

the frame camera is much lower than the one of the navigation system; the computation of the

boresight between the frame camera and the IMU. Our solutions to both of these problems

are described in [6].

The orientation parameters output by the previous step are for the frame camera. The correct

parameters for navigation sensors are not the same, since there is a lever-arm as well as a

boresight between them and the camera. Since our hyperspectral camera has a frequency

50 times higher than the one of our RGB camera, only one pushbroom line out of 50 can

be directly corrected; we need to use the data acquired by navigation sensors to interpolate

between the corrections.

Position Correction

The position of the IMU will not be computed. Indeed, in our system, the norm of the lever-

arm between the pushbroom camera and the frame camera is less than 10 cm. Therefore, we

use the position parameters retrieved from the bundle adjustment step for the pushbroom

camera. As a consequence, navigation sensors data can be used as such to interpolate between

the corrections of the camera position.

Consider a position parameter q among latitude, longitude and altitude. Let qr and qc be

respectively the raw value of this parameter (output of the Kalman Filter) and the corrected

value. Let t0 be the timestamp of a line corrected thanks to the bundle adjustment. So is the

line which timestamp is t0 +50Δt , where Δt is the sampling time of the hyperspectral camera.

Since the IMU is a drifting sensor (accurate for short periods of time, but getting less and

less accurate as time goes by), the variations it gives around t0 are highly reliable close to t0,

and less when getting closer to t0 +50Δt . Same goes for the variations around t0 +50Δt . We

therefore interpolate qc , for t ∈ [t0, t0 +50Δt ], using Equation 6.2.

qc (t ) =α(t )
(
qc (t0)+ (qr (t )−qr (t0))

)
+
(
1−α(t )

)(
qc (t0 +50Δt )+ (qr (t )−qr (t0 +50Δt ))

) (6.2)

α(t ) is the weight given to the navigation data close to t0. Its value is given by Equation 6.3.

α(t ) = t0 +50Δt − t

50Δt
(6.3)
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Attitude Correction

The attitude of the navigation sensors has to be computed. Indeed, to interpolate the attitude

data, it is not possible to use the data from the navigation sensors as such, since it refers to its

own frame, while the attitude given by the bundle adjustment refers to the RGB camera frame.

At a given location, let RC amer a
ned be the rotation matrix from the North-East-Down local-level

frame to the camera frame, R I MU
N ED the one from the local-level frame to the IMU and RC amer a

I MU

the rotation representing the boresight from the IMU to the camera. The relation between

these matrices is given by Equation 6.4.

RC amer a
I MU R I MU

ned = RC amer a
ned (6.4)

Each of these rotation operators can be characterised by its roll, its pitch and its yaw, applied

in this order: roll rotation around the x-axis, pitch rotation around the y-axis, and yaw rotation

around the z-axis. Let r, p, y be these 3 parameters; the corresponding rotation operator is

given by Equation 6.5.

R(r, p, y) =⎡
⎢⎣ cos y cos p cos y sin p sinr −sin y cosr cos y sin p cosr +sin y sinr

sin y cos p sin y sin p sinr +cos y cosr sin y sin p cosr −cos y sinr

−sin p cos p sinr cos p cosr

⎤
⎥⎦ (6.5)

This boresight is constant during the flight as the sensors are rigidly attached to the vehicle.

We call (rb , pb , yb) its roll, pitch and yaw. Similarly, at time t, let (rn(t), pn(t), yn(t)) be the

orientation parameters output by the navigation sensors, and (rc (t ), pc (t ), yc (t )) the one for

the RGB camera (given by the bundle adjustment). Let k be the number of RGB images

available, and (ti ), i ∈ [1,k] the times of acquisition of each image. The drifts (errors) in the

orientation parameters added to the current drifts at time ti are called (dri ,d pi ,d yi ). For

each time ti , i ∈ [1,k], we can rewrite Equation 6.4 using the orientation parameters of each
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rotation matrix. The set of equations obtained is given by 6.6.

h(dr1,d p1,d y1,dr2, ...,drk ,d pk ,d yk ,rb , pb , yb)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

R(rb , pb , yb)R
(
rn(t1)+dr1, pn(t1)+d p1, yn(t1)+d y1

)
−R

(
rc (t1), pc (t1), yc (t1)

)
R(rb , pb , yb)R

(
rn(t2)+dr1 +dr2, pn(t2)+d p1 +d p2, yn(t2)+d y1 +d y2

)
−R

(
rc (t2), pc (t2), yc (t2)

)
...

R(rb , pb , yb)R
(
rn(tk )+∑k

j=1 dr j , pn(tk )+∑k
j=1 d p j , yn(tk )+∑k

j=1 d y j

)
−R

(
rc (tk ), pc (tk ), yc (tk )

)

⎤
⎥⎥⎥⎥⎥⎥⎦

=0

(6.6)

At time ti , (dri ,d pi ,d yi ) are small, unlike the total drifts (
∑i

j=1 dr j ,
∑i

j=1 d p j ,
∑i

j=1 d y j ), where

all the drifting errors and the subsequent noise from gyrometers have been added. Therefore,

this model allows to keep the time-dependency of the drifts while having parameters that shall

be small. Boresight parameters shall also have low values, as the sensors are rigidly attached,

pointing in the same direction, in our system. By retrieving the orientation parameters from

the left-hand side and the right-hand side of each equation in 6.6, we get a set of 3k equations

with 3k +3 unknown parameters (all the drifts plus the 3 parameters of the boresight). This

can be seen as an optimisation problem: consider the vector of all the parameters to be

determined, as given by Equation 6.7.

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dr1

d p1

d y1

dr2
...

drk

d pk

d yk

rb

pb

yb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.7)

Our goal is to minimise vT v under the constraints given by the set of equations 6.6. With all

parameters equal to 0, the equations are not verified, and for each equation there is a gap

between the left-hand side and the right-hand side. If we call w = h(0, ...,0) and B the Jacobian

matrix of h relatively to all the parameters, then it is known, using Lagrange multipliers theory,
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that v can be approximated by Equation 6.8.

v = B T (BB T )−1w (6.8)

As a result, we get all corrected parameters for the navigation sensors for the times of RGB

acquisitions, as well as a side-product (the boresight). The rest of the corrected navigation

sensors data is interpolated using the exact same interpolation method as described in 6.1.2.

Alongside the optimisation, the bundle adjustment allows to build and export an orthophoto

and a DEM (Figure 6.2).

(a)

(b)

Figure 6.2 Processing of the frame images using Agisoft Photoscan: (a) alignment of frames
and computation of the orthophoto; (b) computation of the DEM of the area (Selenga Delta
Village).
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6.1.3 Initial Ortho-Projection of the Scan Lines

With the set of optimised orientation parameters for the navigation system derived in Section

6.1.2, we create an orthomosaic composed with the scan lines collected by the pushbroom

sensor. From the bundle adjustment, we already have a georeferenced orthophoto and the

corresponding DEM; the orthomosaic is obtained by projecting the scan lines on the DEM

using the collinearity equation. Let us call Renu
ned the rotation matrix from the North-East-Down

(NED) local-level frame (l-frame) to the East-North-Up (ENU) l-frame, both centred at the

optical centre of the pushbroom camera. Let Rned
I MU be the rotation matrix from the IMU frame

to the NED l-frame, and R I MU
pb the rotation matrix corresponding to the boresight from the

pushbroom camera to the IMU. At this stage, Rned
I MU is given by the estimates of the roll, pitch

and yaw obtained in Section 6.1.2, and noted R̊ned
I MU . Initially, the boresight is unknown and

supposed to be negligible, hence R̊ I MU
pb is the identity matrix. The total rotation from the

pushbroom camera to the ENU l-frame is given by Equation 6.9.

R̊enu
pb = Renu

ned × R̊ned
I MU × R̊ I MU

pb (6.9)

We can georeference the pushbroom data according to the collinearity equation (Equation

6.10).

μRenu
pb

⎡
⎢⎣ 0−upp +δu

v − vpp +δv

f

⎤
⎥⎦=

⎡
⎢⎣ XG

YG

ZG

⎤
⎥⎦−

⎡
⎢⎣ XoC

YoC

ZoC

⎤
⎥⎦ (6.10)

In Equation 6.10, μ corresponds to the collinearity coefficient, v is the metric coordinate of the

pixel of interest in the body frame of the pushbroom camera. (upp , vpp ) are the coordinates

of the principal point of the camera in the same frame, f is the focal length of the camera,

(XG ,YG , ZG ) are the coordinates of the corresponding ground point in the ENU l-frame and

(XoC ,YoC , ZoC ) are the coordinates of the optical centre in the same frame. Considering the

radial distortion parameters K1,K2,K3..., the decentring coefficients P1 and P2, u′ = 0−upp

and v ′ = v − vpp , Brown’s model for lens distortion [36] gives the expressions of δu and δv

(Equations 6.11 and 6.12).

δu = u′(K1r 2 +K2r 4 +K3r 6 + ...)+P1(r 2 +2u′2)+2P2u′v ′ (6.11)
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δv = v ′(K1r 2 +K2r 4 +K3r 6 + ...)+P2(r 2 +2v ′2)+2P1u′v ′ (6.12)

Equation 6.10 gives the most generic form of the collinearity equation for our problem. Howe-

ver, at this stage, Renu
pb = R̊enu

pb , the position of the optical centre is the one output by the bundle

adjustment, the optical centre’s coordinates and the distortion parameters are unknown and

the focal length is known with limited precision. Therefore, XoC = X̊oC , YoC = Y̊oC , ZoC = Z̊oC ,

ůpp = v̊pp = 0, the distortion parameters are all set to zero, f = f̊ ( f̊ = 0.012 m in our case) and

the collinearity equation turns into Equation 6.13.

μR̊enu
pb

⎡
⎢⎣ 0

v

f̊

⎤
⎥⎦=

⎡
⎢⎣ XG

YG

ZG

⎤
⎥⎦−

⎡
⎢⎣ X̊oC

Y̊oC

Z̊oC

⎤
⎥⎦ (6.13)

We use ray casting to find the ground coordinates (XG ,YG , ZG ). The intersection of the rays

with the DEM is computed using the following algorithm [16]: from the optical centre of

coordinates (X̊oC , Y̊oC , Z̊oC ), trace the ray driven by the vector R̊tot al ×(0, v, f̊ )T . The candidate

2D pixels are the pixels that are crossed by the ray, and where the ray is between the lowest

and the highest altitude of the DEM. The projection pixel is the first pixel below which the ray

passes.

This process is applied to all the pixels of all the scan lines collected, and the resulting ground

pixels form an image that is superimposed on the reference mosaic. Since the resolution of our

reference mosaic is much higher than the one of our pushbroom camera, the image produced

is sparse, with important gaps between the projected points. Around each of these pixels, we

leave a marker of size n×n (where n is the number of pixels; we choose n = 5 here) to compute

a dilated footprint of the pushbroom projection. Inside this footprint, the isolated pixel values

projected using the collinearity equation are interpolated with a 2D bilinear interpolation to

produce the final projected image. An example of such image can be seen on Figure 6.3.

6.1.4 Systematic Error Correction

As can be seen on Figure 6.3b, the georeferencing is far from perfect, as the co-registration bet-

ween the reference orthophoto and the scan lines exhibit significant discrepancies. However,

the error made seems quite coherent across the image, suggesting that it mainly comes from

systematic errors:

• bad intrinsic camera calibration (inaccurate focal length, principal point coordinates,

or lens distortion parameters).
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300 m

N

(a)

300 m
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(b)

Figure 6.3 Orthoprojection of the scan lines (cyan) on top of the reference orthomosaic
(red) above a village near the Selenga Delta of Lake Baikal. (a) is the orthoprojection of
the pushbroom pixels (without interpolation) and (b) is the image as seen after bilinear
interpolation of the projected values.
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• non-negligible boresight between the IMU and the pushbroom camera.

To compensate for these errors, we proceed in two steps: we first identify tie points between

the reference and the pushbroom mosaic, and then use these tie points as observations to

adjust the IOP and the boresight parameters using a least squares method.

Matching Points with SURF

We use the Speeded Up Robust Features (SURF) [9] to find corresponding points between the

RGB reference and the pushbroom mosaic. SURF is a powerful tool for point matching that

determines points of interest from multiple Gaussian-filtered version of the image, and match

them according to local-orientation descriptors computed with Haar wavelets. Provided that

our images are radiometrically similar (which was discussed in Section 6.1.1), SURF is very

suitable to find matching points between our reference orthophoto and the scan lines mosaic.

The only obstacle is the use of bilinear interpolation when creating the mosaic: SURF relies

on properties of the neighbourhoods of the points of interest, which are synthetic data in the

case of an interpolation. However, as discussed further in the results section (Section 6.2), this

was a problem only when the aircraft’s motion was significant, in which case the interpolation

had to fill important gaps between scan lines.

The SURF algorithm is applied to our reference orthophoto and the current pushbroom

mosaic. The pairs of points chosen are filtered in two ways: first, the points too close to the

border of the footprint of the mosaic are removed. Indeed, no-data (dark) points outside

of the footprint might influence their neighbourhoods. Second, absurd matches found by

SURF must be discarded. Although methods could be considered at this stage to discard these

outliers, they will be dealt with at the least squares adjustment step.

The matches for the same flight are shown on Figure 6.7b.

Interior Orientation and Boresight Estimation

The matched points act as measures that can be used to perform a least squares adjustment

and estimate the IOP and the boresight. Since the mosaic of scan lines derives from an

interpolation, not every point matched corresponds to an actual pixel from the pushbroom

scanner; for each point matched, we simply compute the closest point which did not derive

from the interpolation, and get the index of its scan line l as well as the index k of its pixel in

the scan line. We wish to find the best parameters so that Equation 6.10 is verified. Ideally, the
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functions gk,l ,1, gk,l ,2 and gk,l ,3 given by Equation 6.14 should equal zero for all matches.

⎡
⎢⎣ gk,l ,1(rb , pb , yb , f ,K1,K2,P1,P2)

gk,l ,2(rb , pb , yb , f ,K1,K2,P1,P2)

gk,l ,3(rb , pb , yb , f ,K1,K2,P1,P2)

⎤
⎥⎦

=μk,l Renu
pbk,l

(rb , pb , yb)

⎡
⎢⎣ 0+δuk,l (K1,K2,P1,P2)

vk +δvk,l (K1,K2,P1,P2)

f

⎤
⎥⎦

−

⎡
⎢⎣ XGk,l

YGk,l

ZGk,l

⎤
⎥⎦+

⎡
⎢⎣ XoCl

YoCl

ZoCl

⎤
⎥⎦

=0

(6.14)

The boresight roll, pitch and yaw are noted respectively rb , pb and yb in Equation 6.14. The

planar coordinates of each corrected ground point, (XGk,l ,YGk,l ) are the ones output by the

SURF; ZGk,l is the value of the DEM at coordinates (XGk,l ,YGk,l ). From the third line of Equation

6.14, μk,l can be computed, leaving the first two lines as two constraints that ideal parameters

should satisfy. The input system of our least squares optimisation is given by Equation 6.15.

g (rb , pb , yb , f ,K1,K2,P1,P2)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gk1,l1,1(rb , pb , yb , f ,K1,K2,P1,P2)

gk1,l1,2(rb , pb , yb , f ,K1,K2,P1,P2)

gk2,l2,1(rb , pb , yb , f ,K1,K2,P1,P2)

gk2,l2,2(rb , pb , yb , f ,K1,K2,P1,P2)
...

gkNM ,lNM ,1(rb , pb , yb , f ,K1,K2,P1,P2)

gkNM ,lNM ,2(rb , pb , yb , f ,K1,K2,P1,P2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.15)

In Equation 6.15, NM is the number of matches kept by the RANSAC; the indexes k are not

necessarily distinct, neither are the indexes j , as matches can occur in the same scan line, or

for the same pixel in different scan lines. Consider A to be the Jacobian matrix of g relatively

to the eight parameters to optimise, and v̊ =−g̊ where g̊ = g (r̊b , p̊b , ẙb , f̊ , K̊1, K̊2, P̊1, P̊2) is the
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vector obtained with set initial parameters (Equation 6.16).

r̊b = 0

p̊b = 0

ẙb = 0

f̊ = 12 mm

K̊1 = 0

K̊2 = 0

P̊1 = 0

P̊2 = 0

(6.16)

Then the increment of the parameters is given by (AT A)−1 AT v̊ , according to the theory of

least squares optimisation. It should be noted that we do not estimate the coordinates of the

optical centre. Ideally, using as parameters all the IOP (focal length, principal point, distortion

parameters) and the three boresight parameters, computing the least squares adjustment

would bring corrected values for all these parameters. However, this is not possible, as the

position of the optical centre and the couple (boresight roll, boresight pitch) are strongly

correlated and prevent the algorithm from converging. Indeed, in a linearised model, a

discrepancy in roll results in a shift of the ground points orthogonally to the direction of the

vehicle, and so does an error on the vpp . A similar correlation exists between the boresight

pitch and the second coordinate of the optical centre. Consequently, we have studied all the

existing correlations between compensated parameters, for the images and tie points given in

Figure 6.7b, in three different optimisation scenarios. Significant correlations were reported in

Table 6.1.

Parameters Maximum Correlated
Correlation Parameters

Boresight, upp , vpp , 1; Roll and vpp ;
f , K1, K2, P1, P2 -1 Pitch and upp

Boresight, f , K1, K2, 0.71; Roll and P2;
P1, P2 0.69 Pitch and P1

Boresight, f , K1, K2 0.68 K1 and K2

Table 6.1 Maximum correlations of compensated parameters observed in different scenarios
at first iteration of the least squares optimisation.

From the correlations given in Table 6.1, we have decided to optimise the boresight, f , K1, K2,

P1 and P2. It is to be noted that, due to the one-dimensional nature of pushbroom sensors

(u = 0), P1 and P2 are significantly correlated with respectively the boresight pitch and the

boresight roll. We have not observed convergence problem when optimising P1, P2 and the

rest of the parameters; however, such problems might occur when the tie points found all have
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Chapter 6. Pushbroom Images Georeferencing

similar v coordinates.

In order to discard outliers output by SURF, we compute the standard deviation σ(ǧ ) of the

residuals after compensation, ǧ = g (řb , p̌b , y̌b , f̌ , Ǩ1, Ǩ2, P̌1, P̌2). We discard any matched pixel

k, l for which ǧk,l > 3σ(ǧ ), and compute the least squares adjustment with the remaining

matches. Figure 6.4 shows an example of outliers removal for the flight of Selenga village.
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Figure 6.4 Scatter of the difference vectors for the pairs of points matched by the SURF, for a
flight over a village of the Selenga Delta. All the matches are represented by red crosses. Tilted
blue crosses correspond to the pairs kept after removing outliers.

The uncertainty on the estimated values of the boresight and IOP need to be known for a

second least squares adjustment used later in our algorithm (Section 6.1.6). They are given as

the square root of the diagonal elements of (AT A)−1. In Table 6.2, we have reported the values

and standard deviations obtained for our Selenga village flight.

Parameters Value σ

Roll 1.1 ° 9.3×10−3 °
Pitch −0.54 ° 8.8×10−3 °
Yaw −0.17 ° 5.2×10−2 °

Focal length 11.4 mm 1.5×10−2 mm
K1 294.2 m−2 44.8 m−2

K2 −1.6×108 m−4 350.7 m−4

P1 0.54 m−1 0.57 m−1

P2 0.74 m−1 0.22 m−1

Table 6.2 Values and standard deviations of boresight parameters and IOP estimated by the
least squares adjustment.

The optimised boresight and IOP are used in the projection process described in Section 6.1.3,

resulting in a new mosaic that fits the reference orthophoto better (see Figure 6.7c).

64



6.1. Proposed Methodology

6.1.5 Geocorrection Using Particle Image Velocimetry

In this section, we introduce the concept of Particle Image Velocimetry (PIV) and explain how

we use it to perform geocorrection and retrieve better estimates of the orientation parameters.

PIV Theory

Particle Image Velocimetry is a technique primarily designed to quantify the movements of

fluids [2]. During the Ph.D we had the opportunity to work on the processing of images for

biomedical purposes, in which PIV plays an important role [115]. It is an image processing

algorithm that computes local instantaneous velocities between two images. The algorithm

proceeds in two steps:

• split the two images into a grid of cells, which sizes are given by the user.

• find the new location of each cell of the first image into the second image, by finding

the maximum of the cross-correlation of the cell (normalised in mean and standard

deviation) and its neighbourhood in the second image (also normalised).

Two sizes have to be input: the size of the cells in the first image, and the size of the interro-

gation areas in the second image. Interrogation areas are subimages of bigger size than the

cells of the first image, in which the algorithm will try to match the cell. Considering a cell

as a 2D function c(x, y) from one image, and the corresponding interrogation area i (x, y) in

the second image, the estimated position of c in i is the 2D vector (a,b) that maximises the

cross-correlation between c and the subimage found following the vector (a,b) from the origin

of i (see Equation 6.17).

(a,b) =

max
j ,k

{
1

n

∑
x,y

1

σcσi j k

(
c(x, y)− c̄

)(
i (x − j , y −k)− ¯i j k

)} (6.17)

In Equation 6.17, n refers to the number of pixels in the cell c, c̄ and σc are respectively the

mean and the standard deviation of the intensity inside c, ¯i j k and σi j k are the mean and the

standard image of the subset of the interrogation area shifted by ( j ,k). In practice, Equation

6.17 is computed in the Fourier domain (where the calculation is more efficient). The 2D

Fourier transform of the cells/interrogation areas is perfomed with Fast Fourier Transform

(FFT) [121].

The result is a grid of 2D displacements vectors corresponding to the estimated movements

for each cell. For all the PIV processing tasks described in the following sections, we use an

open-source Matlab application, called PIVlab, by Thielicke & Stamhuis [126]. This application
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includes the possibility of filtering the results by deleting the vectors which norms are higher

by a threshold proportional to their standard deviation. Vectors can also be manually deleted,

or estimated by interpolation of neighbouring vectors when the algorithm failed to find one,

or when the vector was filtered.

Application: Elastic Deformation

We use PIV to compute local distortions from the current mosaic to the reference orthophoto.

PIV only estimates local translations, and does not deal with rotations of rescaling transforma-

tions; however, at this stage, the mosaic and the orthophoto should match well enough so that

the differences between the two images can be approximated be a set of local shifts.

At this stage, we have noticed that residual radiometric discrepancies between the two sen-

sors impact the co-registration significantly. To mitigate these effects, we have studied the

possibility of using gradient images. Let us call Grx and Gry the gradients of an image of

interest along its x and y axis: we use the gradient magnitude, Gr =
√

Gr 2
x +Gr 2

y ; we have let an

algorithm select 50 random patterns of fixed size (30×30 pixels) from the mosaic computed in

the previous steps and shown on Figure 6.7c. The 2D unbiased, normalised cross-correlation

(which is the criterion maximised by the PIV algorithm) of each pattern with a 90×90 pixels

pattern from the reference orthophoto was computed both for the original patterns, and for

their gradients. We have plotted on Figure 6.5 the average cross-correlations along the vertical

axis (the results along the horizontal axis were similar) for the images and the gradients.

−0.2

0

0.2

0.4

0.6

0.8

1

−100−80−60−40−20 0 20 40 60 80 100

P
ro

p
o

rt
io

n
o

fM
ax

im
u

m
C

o
rr

el
at

io
n

[S
ca

la
r]

Shift [Pixels]

Average Cross-Correlation For 50 Random Patterns

Images
Gradients

Figure 6.5 Averages of the cross-correlations of corresponding patterns between a reference
orthophoto and a co-registered mosaic, for the patterns and their gradients.

Some examples of comparison between images co-registration and gradients co-registration

are shown on Figure 6.6.

As can be seen on Figure 6.5, the use of PIV on original images suggests that they are well

co-registered with no further shift, while PIV applied to gradients images indicates that the

best match is for an average shift of 8 pixels up. Consequently, we proceed with gradient
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Figure 6.6 Examples of co-registered patterns using PIV on original images ((a),(c),(e)) and on
gradient images ((b),(d),(f ))
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images; PIV is computed with the following parameters: the cell size is 128×128 pixels, the

interrogation area size is 256×256 pixels, and the output vector field is filtered to contain only

vectors which norms are within the range [μ−0.5σ,μ+0.5σ] where μ and σ are respectively

the mean and the standard deviation of the norm of vectors output by the PIV algorithm.

The resulting vector field is sparse compared with the resolution of the mosaic, hence we

interpolate the vector field so that a shift is assigned to every pixel of the mosaic. By translating

every pixel following its assigned shift, a new mosaic is created (see Figure 6.7e).

6.1.6 Estimation of the Orientation Parameters

PIV results are considered as tie points: for each pixel projected on a ground point, corre-

sponds a corrected projection indicated by PIV. Using this information, we can perform a

bundle adjustment to retrieve the corrected exterior orientation parameters for each scan line.

Considering NL and NP to be respectively the number of scan lines and the number of pixels

per line, (XoCi ,YoCi , ZoCi ) and (ri , pi , yi ) the EOP for line i , (XGi , j ,YGi , j , ZGi , j ) the real ground

point for pixel j of line i and μi , j the collinearity coefficient for pixel j of line i , we wish to

minimise the squares of the set of Equations 6.18.

μi , j R(ri , pi , yi )

⎡
⎢⎣ 0−upp +δu

v−vpp +δv

f

⎤
⎥⎦−

⎡
⎢⎣ XoCi −XGi , j

YoCi −YGi , j

ZoCi −ZGi , j

⎤
⎥⎦= 0

XoCi − ˚XoCi = 0

YoCi − ˚YoCi = 0

ZoCi − ˚ZoCi = 0

ri −r̊i = 0

pi −p̊i = 0

ri −r̊i = 0

upp − ˚upp = 0

vpp − ˚vpp = 0

f − f̊SU RF = 0

K1−K̊1SU RF = 0

K2−K̊2SU RF = 0

P1−P̊1SU RF = 0

P2−P̊2SU RF = 0

(6.18)

The first line in the set of Equations 6.18 corresponds to the collinearity equation (Equation

6.10), and provides 2 constraints (3, one of which is used to determine μi , j ) per pixel. Therefore,

collinearity equations provide 2×NL ×NP constraints. The rest of the constraints ensure that

the final estimated parameters stay close to their initial estimates (noted with a circle) obtained

either in Section 6.1.2 or Section 6.1.4 (some IOP were estimated using SURF matching and
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were noted with a "SURF" subscript). There are 6 EOP per line and 7 IOP; in total, the least-

square algorithm estimates 6×NL +7 parameters from 2×NL ×NP +6×NL +7 constraints.

Calling APIV the Jacobian matrix of the system of Equations 6.18 and v̊PIV the opposite of its

residuals, the least squares adjustment theory increments the parameters at each iteration

by (AT
PIV W APIV )−1 AT

PIV v̊PIV . Unlike the adjustment performed using SURF points, a weight

matrix W must be used in this second adjustment, as there are different types of observations.

W is a diagonal matrix; its first 2×NL ×NP elements are related to the expected error of the

matching operated by PIV. We consider the ground points output by the PIV to have a standard

deviation of 0.5m, resulting in a weight 4m−2 for the first 2×NL ×NP constraints (Equation

6.19).

W1,1 = . . . =W2NL NP ,2NL NP = 4m−2 (6.19)

The uncertainties of the position and attitude parameters for each line are given by the

manufacturer of the GPS+IMU system: 2 cm for position measurements, 0.02° for roll and

pitch angles, and 0.05° for yaw angles (Equation 6.20).

∀l ∈ [0, NL −1],

W2NL NP+6l+1,2NL NP+6l+1 = 2500 m−2

W2NL NP+6l+2,2NL NP+6l+2 = 2500 m−2

W2NL NP+6l+3,2NL NP+6l+3 = 2500 m−2

W2NL NP+6l+4,2NL NP+6l+4 = 8.2×106 rad−2

W2NL NP+6l+5,2NL NP+6l+5 = 8.2×106 rad−2

W2NL NP+6l+6,2NL NP+6l+6 = 1.3×106 rad−2

(6.20)

The standard deviations for the remaining parameters (IOP) are output by the least squares

adjustment following the SURF (Table 6.2), except for the principal point coordinates. From

our experience with digital cameras, we have set the initial standard deviation on the principal

point coordinates to be 20 pixels of the camera, which corresponds to 1.5×10−4 m.

From the output orientation parameters, we produce a new orthorectified image of the scan

lines by using the same projection technique as described in Section 6.1.3. The result is shown

on Figure 6.7f.

6.2 Results

Five test sites were chosen to illustrate the performance of our method. The five acquisitions

differed by the stability of the attitude, the homogeneity of the surfaces imaged, the altitude of
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Figure 6.7 Illustrations of the various steps of our algorithm for a test flight over a village of
the Selenga Delta (Russia, 17 August 2014). All images show the superimposed scan lines (in
cyan) on top of the reference orthophoto (in red). (a) Initial projection with uncalibrated IOP;
(b) Feature matching using SURF; (c) Projection with calibrated IOP and boresight; (d) PIV
performed on the gradient images; (e) Deformation of the scan lines, following the PIV; (f )
Projection after correction of the EOP.
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Selenga Village 1 Selenga Village 2 Selenga Rivers Gremyachinsk Lake Geneva Shore
Flight

Altitude 1000 1000 1000 1000 500
(m)

Flight Stable U-turn Stable Stable Wavy
Attitude

Surface Heterogeneous Heterogeneous Heterogeneous Homogeneous Heterogeneous
Homogeneity

Content Fields, built structures Fields, built structures Rivers, swamps Water, sand Built Structures

Frame
Camera 0.28 0.28 0.28 0.31 0.14
GSD (m)

Pushbroom
Across-Track 0.6 0.6 0.6 0.6 0.3

GSD (m)
Pushbroom
Along-Track 0.6 0.6 0.6 0.6 0.5

GSD (m)

Table 6.3 Characteristics of the five test acquisitions.

the aircraft during acquisition and the resulting Ground Sampling Distances (GSD) for the two

cameras. The GSD of the frame camera is unambiguously defined as the distance between the

centres of two adjacent pixels of the orthophoto. For the pushbroom scanner, two GSDs are

given: the across-track GSD, which mainly depends on the geometry of the sensor, the flight

altitude and attitude, and the along-track GSD, which depends on the speed of the aircraft, the

acquisition frequency and the attitude. Due to the varying altitude and attitude of the aircraft,

the GSDs are not constant during the flights; indicative GSDs without roll and pitch, and for

the mean altitude and speed of each flight, are provided with one significant figure. These

characteristics are summarised in Table 6.3.

Selenga areas and the area on the shore of Lake Geneva all contain many salient points that

can be recognised and used by the SURF/PIV algorithms. These four acquisitions differ by the

global attitude of the ultralight plane during the acquisition: the aircraft operated a U-turn over

the Selenga village 2 and had a wavy motion above the shore of Lake Geneva; this last flight was

also performed at a lower altitude (500 m), compared with the other flights. The Gremyachinsk

area did not contain many salient points: the image essentially consists in water, sand and

forest, making the use of feature-based and area-based matching techniques unreliable. We

have decided to include this area among our tests to give an idea of the behaviour of our

algorithm in difficult conditions. For each of the 5 test areas, the original mosaic produced

with the scan lines (before geocorrection) and the corrected mosaic (after geocorrection) were

superimposed on the reference orthophoto. For Selenga village 1, the results are already visible

on Figures 6.7a and 6.7f; for the other areas, the results are shown on Figures 6.8 and 6.9.

To provide quantitative results, we have determined the planar Root Mean Square Error

(RMSE) on samples of 50 points for every test area. To provide the most objective statistics
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N

(a)

350 m

N

(b)

350 m

N

(c)

350 m

N

(d)

400 m

N

(e)

400 m

N

(f)

Figure 6.8 Superposition of the reference orthophotos and the mosaic produced with the scan
lines: (a), (c), (e) before geocorrection and (b), (d), (f ) after geocorrection. (a), (b): Selenga
Village 2; (c), (d): Selenga Rivers; (e), (f ): Gremyachinsk.
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Figure 6.9 Superposition of the reference orthophoto and the mosaic produced with the scan
lines (a) before geocorrection and (b) after geocorrection, for our test region on the shore of
Lake Geneva.
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Planar RMSE Selenga Village 1 Selenga Village 2 Selenga Rivers Gremyachinsk Lake Geneva Shore

Initial Projection 24.5 m / 40.8 px 24.6 m / 41 px 24.5 m / 40.8 px 45.5 m / 75.8 px 10.8 m / 27 px

After IOP and
Boresight 2.4 m / 4 px 13.6 m / 22.7 px 1.3 m / 2.2 px 8.2 m / 13.7 px 3.7 m / 9.2 px

Correction (-90%) (-45%) (-95%) (-82%) (-66%)
After
PIV 0.9 m / 1.5 px 1.6 m / 2.7 px 0.6 m / 1 px 6.1 m / 10.2 px 1.8 m / 4.5 px

Deformation (-67%) (-88%) (-54%) (-26%) (-51%)
With Corrected

Orientation 1.1 m / 1.8 px 1.8 m / 3 px 0.8 m / 1.3 px 6.5 m / 10.8 px 1.6 m / 4 px
Parameters (+22%) (+13%) (+33%) (+6%) (-11%)

Table 6.4 Planar RMSE for each test area, and percentage evolution from previous step, at
each step of the geocorrection.

possible, these points were selected as follows: a series of random patterns of given size,

extracted for the image of interest, was generated; inside each pattern, a point was chosen

in the orthophoto and the four images corresponding to each step of our algorithm (first

projection, after boresight/IOP calibration, after PIV and after estimation of the EOP). The

results are given in Table 6.4.

For the first three areas, the RMSE decreased from about 25 metres (before correction) to about

one metre (after correction). While many tie points were found by SURF for Selenga Village

1 and Selenga Rivers, few were found for Selenga Village 2. The reason is the U-turn motion

of the aircraft implied important gaps between the scan lines; to create the mosaic, data

was interpolated between these scan lines, and no salient point recognisable by SURF can be

detected in this synthetic data. However, in spite of the lesser decrease of the RMSE at the SURF

stage (13.6 metres, against 2.4 metres and 1.3 metres for Village 1 and Rivers, respectively), PIV

performs very well and the final RMSE is approximately the same for the three areas. This result

suggests that local normalised cross-correlation can deal with significant rotations like the

ones that affected the Village 2 image. The final RMSE in the Gremyachinsk area (6.5 metres),

although seemingly worse than the others, is encouraging as the initial RMSE was significantly

higher (45.5 metres) and the image does not exhibit a significant heterogeneity; only 11 points

were matched by SURF, all gathered on the few built structures at the bottom centre of the

image. The application of PIV then allowed to decrease the RMSE by an additional 26 %.

On the shore of Lake Geneva, significant discrepancies were observed in the first projection,

where adjacent scan lines appeared to be taken with different attitudes; as a consequence,

the correction operated by PIV, although satisfying, did not respect the inherent geometrical

properties of the pushbroom scanner: the shifts estimated by PIV showed very different values

and directions within each single scan line. As a consequence, and for this test area only, the

mosaic produced after correction of the EOP was better (RMSE = 1.6 m) than the one produced

by PIV (RMSE = 1.8 m). It should be noted that the opposite is expected, and observed for

the four other test areas, as the final mosaic is produced by an orthorectification algorithm,

while PIV produces a mosaic regardless of the geometrical nature of the problem. Overall,
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the geocorrection algorithm performs well on areas with enough salient points, whether the

motion of the aircraft is smooth (Selenga Village 1, Selenga Rivers) or irregular (Selenga Village

2, Lake Geneva Shore).
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7 Orthorectification and Viewing of
Hyperspectral Data

The Léman-Baïkal project involved the development of a hardware system, including naviga-

tion sensors, a frame and a pushbroom camera, a processor, and the architecture allowing the

communication between all these devices. This was the work of a former Ph.D student of the

Geodetic Engineering Laboratory, Dragos Constantin. The data produced by this system were

the hypercubes (as .bil files) and the navigation and time data, in the shape of formatted text

(.hdr files). However, at this stage, no open source scientific solution was available to handle

this data practically, that is, orthorectify it on a given DEM, allow to view it on a digital world

map and reprocess or export this data as mosaics. Consequently, a large part of our work was

the design of a software solution to these problems.

7.1 Software Architecture

We have designed a software called HYPerspectral Orthorectification Software (HypOS) to

assume the specific tasks related to the processing of airborne hyperspectral image and their

corresponding navigation data. HypOS includes an orthorectification tool and allows to view

and export hyperspectral mosaics as .bil files. The software is built using a Java Software

Development Kit (SDK) called WorldWind, developed by NASA. This SDK contains a digital

model of the Earth, and various tools to represent georeferenced features (points, lines, areas,

images), work with geographic or projected coordinate systems, and export files in .kml, .kmz

or geotiff.

Figure 7.1 shows the opening screen of HypOS, and highlights the 3D world view (included in

the SDK) and the panels on the side, which contain the tools we developed.

The software reads a series of .bil files (together with their corresponding .hdr). In the .hdr, the

navigation data is written; the software orthorectifies the hyperspectral data using the process

described in the following section. The object-oriented programming allows to build HypOS

in modules: the processing is linear and, in case of development of new processing algorithms,

this processing can be added to the processing chain of HypOS in a new tab on the right of the
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Utilities: start new project, select images, edit camera spectral parameters.

Search for specific places.

Display layers 
included with the 
SDK (background 
maps, browsing 
tools...).

Display layers related 
to hyperspectral 
mosaics; path of the 
flight, mosaics...

Tab panel containing all the processing tools (for 
radiometry and geometry) for hyperspectral data.

Figure 7.1 Opening screen of HypOS. The green features were included with the SDK. The red
features are hyperspectral-specific features that we developed and incorporated in the user
interface.

screen. Currently, the processing chain included in HypOS is the following:

• loading of the data, with viewing of the path of the aircraft.

• orthorectification of the data, at a given resolution.

• possible radiometric calibration from dark and Spectralon measurements (if available).

• correction of the variations of illumination during the flight.

• geometric correction: new estimations of interior orientation parameters from tie points

manually input by the user.

• export of an area of interest to ENVI .bil + .hdr files.

7.2 Orthorectification Process

The projection algorithm is similar to the one described in Section 6.1.3. Only two aspects

differ. First, the DEM is either the default one (provided by the WorldWind SDK) or a DEM

imported from an external file, given by the user. Second, a ray casting algorithm is included

with the WorldWind SDK. Although it is similar to the one described in Section 6.1.3, its
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essential difference is the recursive process it uses: from the optical centre

⎡
⎢⎣ XoC

YoC

ZoC

⎤
⎥⎦, terrain is

searched in the direction of the ray Renu
pb

⎡
⎢⎣ 0−upp +δu

v − vpp +δv

f

⎤
⎥⎦. The ray is initially multiplied by a

large factor (30) to find the intersection with the terrain quickly. A precision on the intersection

point (for instance, 1 m) is input by the user. When the current point is below the terrain, the

search goes back from the previous point, and the factor is divided by 10, so that once the

intersection is reached again, it is known with better precision. The recursion ends when the

precision is smaller than the precision required by the user. Figure 7.2a and 7.2b show an

example of DEM seen in HypOS for a flight passing above EPFL, before and after projection of

the hyperspectral data.

If a higher resolution than the one inherent to the acquisition is required, HypOS includes the

possibility to interpolate the data with a bilinear method.

7.3 Correction for the Variation of Sky Downwelling Irradiance

In chapter 5, we presented our radiometric calibration algorithm, with some parts (glint

correction, BRDF correction) specifically dedicated to calibrating water spectra. These tools

are not included as such in HypOS. However, HypOS gives the possibility to correct data

radiometrically when Spectralon measurements, collected just before/just after the flight

are available. The Spectralon data gives an estimate of the downwelling irradiance Ed ; if

measurements are available before and after the flight, they can be interpolated to produce

a time-dependent estimate of Ed . The problem is that some data from the 2014 campaign

in Baikal were collected without proper Spectralon acquisitions, prior to the start of our

contribution to the project. The resulting mosaics, when they were first projected in HypOS,

showed visible brightness differences between overlapping data from adjacent flight lines (see

Figure 7.3).

In order to deliver more uniform mosaics, we have programed an algorithm that estimates

the brightness difference due to the variation of the sun elevation angle, so as to adjust

the brightness of each scan line. We model the phenomena by assigning each scan line of

index i an illumination coefficient, ηi . ηi is not observed directly; the only observations are

the difference of illumination between overlapping points from different scan lines. Pair of

overlapping points are filtered: if the SAM (see Equation 5.10) between the two spectrums

involved is higher than a given threshold, then the pair is discarded. For the remaining pairs,

only the ratio between the illumination coefficients is observed, as ηi

η j
= ρ̄i

ρ̄ j
, where ρ̄i is the

the reflectance, averaged along the spectral dimension. The model for the illumination is
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(a)

(b)

Figure 7.2 DEM of a part of EPFL, (a) without and (b) with corresponding hyperspectral data
superimposed, visualised in HypOS.
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(a)

(b)

Figure 7.3 Visualisation of a flight from August 2014 over the Selenga Delta. (a): projection,
with the flight lines seen as coloured lines; (b): selected points for computation of the diffe-
rence of illumination.
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quadratic (see Equation 7.1).

ηi =αi 2 +βi +1 (7.1)

In Equation 7.1, the index i of the scan line is assimilated as the time. An arbitrary scan line

is designated as scan line of index 0 and assigned a reference unitary illumination. For each

observation li , j = ηi

η j
, we can write Equation 7.2.

li , j = αi 2 +βi +1

α j 2 +β j +1

⇔α (i 2 − li , j j 2)︸ ︷︷ ︸
Ui , j

+β (i − li , j j )︸ ︷︷ ︸
Vi , j

= l i , j −1︸ ︷︷ ︸
Wi , j

(7.2)

At this point, a least squares optimisation can output the best values for the parameters α

and β. However, numerical derivation of the equations also allows to express α and β directly

(Equation 7.3).

[
α

β

]
= 1∑

U 2
i , j

∑
V 2

i , j − (
∑

Ui , j Vi , j )2

[ ∑
V 2

i , j −∑
Ui , j Vi , j

−∑
Ui , j Vi , j

∑
U 2

i , j

][ ∑
Ui , j Wi , j∑
Vi , j Wi , j

]
(7.3)

Once α and β are retrieved, the values in each scan line i are divided by their corresponding ηi .

Figure 7.4 shows an example of correction, performed on the same mosaic as shown in Figure

7.3. Figure 7.5 zooms on the border between the two flight lines to illustrate the performance

of the correction.

7.4 Boresight Correction from Manual Tie Points

HypOS can be used with either the corrected orientation parameters (obtained using our

geocorrection method, described in Chapter 6) or with the navigation data output by the

GPS+IMU system. In the second case, the mosaic produced is not coherent with the back-

ground image from Bing Maps. However, the user still has the possibility to give tie points

manually so that the software can estimate better IOP and boresight and produce a mo-

saic fitting the background better. From a click on a point of the mosaic, the index of the

corresponding scan line l and the corresponding pixel in this line k, as well as the current

orientation parameters for this line (XoCl ,YoCl , ZoCl ) and (rb , pb , yb), are retrieved. A second

click allows to point at the corrected location where the pixel in question should have been

84



7.4. Boresight Correction from Manual Tie Points

Figure 7.4 Visualisation of a flight from August 2014 over the Selenga Delta, after illumination
correction.

projected: (XGk,l ,YGk,l ) are the UTM coordinates of this point, and ZGk,l is the value of the DEM

at coordinates (XGk,l ,YGk,l ). Then, using the process described in Section 6.1.4, the boresight

parameters, the focal length of the camera and the distortion parameters K1,K2,P1 and P2 can

be re-estimated.

To show the performance of this tool, we orthorectified three flights from the Léman-Baïkal

campaign. The first flight was performed on the shore of Lake Geneva in April 2015, at an

altitude of 500 m. The second and third flights were performed above the Selenga Delta of

Lake Baikal on August 2014, at two other altitudes (1000 m and 1500 m). Figures 7.6 and 7.7

show these flights as seen in HypOS, and the effect of the correction on a part of the mosaics.

For the three flights of interest, the RMSE before correction and after correction has been

computed, so as to illustrate the quantitative performance of the correction (Table 7.1).

Mean RMSE RMSE
Elevation Before After

[m] Correction Correction
Flight 1 500 13.8 m / 27.6 px 3.1 m / 6.2 px
Flight 2 1000 49.2 m / 50.2 px 4.0 m / 4.1 px
Flight 3 1500 46.3 m / 32.4 px 5.2 m / 3.6 px

Table 7.1 Comparison of mean residual before and after correction for three flights of different
altitudes.
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(a) (b)

Figure 7.5 Comparison of the mosaics, before and after illumination correction. Brightness
was adjusted in both cases to make the differences clear.

It is no surprise that the results are comparable to the ones obtained after SURF (but before

PIV) in our prototype geocorrection algorithm (Table 6.4), since the method employed is the

same, the only difference being that the tie points are chosen by the user and not by SURF.

The purpose of the presence of this tool in HypOS is not only to be able to work with the data

directly output by the navigation sensors, but also to allow for systematic error correction if

the data has been aligned with another RGB reference, and needs to be modified to be aligned

with the Bings Maps reference.

7.5 Mosaic Export

Hyperspectral mosaics produced by HypOS can be exported as georeferenced .bil hypercubes.

The geometric resolution, as well as the bands to export can be changed by the user. Figure

7.8 shows an example of such export.

The data is exported as a .bil file with a .hdr file according to the ENVI header standards; inside

the ENVI header, the UTM coordinates and the UTM zone of the rectangle zone exported

are mentioned, so that the mosaic’s georeference is read directly by state-of-the-art remote

sensing softwares such as ENVI or ERDAS Imagine.

7.6 HypOS Scientific Value and Use in Research

During the Léman-Baïkal project, HypOS was the key to produce orthorectified hyperspectral

mosaics of areas of interest. The possibility of processing data directly output by the hyper-

spectral system mounted on the ULM allowed to process data quickly for use for further

analysis. A list of applications of images output by HypOS can be found in Chapter 8. Outside

the Léman-Baïkal project, HypOS has been used by a team of scientists from the Université de

Bretagne Occidentale to perform direct georeferencing of airborne pushbroom hyperspectral

data acquired from a drone [60].

With further development (mainly, file formats compatibility, for inputs and outputs), HypOS
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Figure 7.6 Extracts from flights 1 and 2, corrected using manually input tie points: (a) overview
of the flight from an isometric view in HypOS; (b) extract before correction; (c) extract after
correction. To put in evidence the effect of the correction, features have been highlighted
using red, green and blue colours.
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Figure 7.7 Extract from flight 3, corrected using manually input tie points: (a) overview of
the flight from an isometric view in HypOS; (b) extract before correction; (c) extract after
correction. To put in evidence the effect of the correction, a feature has been highlighted with
a red outline.

could grow into an open source software, one of the only open source softwares available to

perform orthorectification, calibration and export of pushbroom hyperspectral data.
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(a)

(b)

Figure 7.8 Example of (a) export of a mosaic from HypOS and (b) subsequent visualisation in
ERDAS Imagine.
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8 Applications of the Calibrated Léman-
Baïkal Data

8.1 Estimation of the Concentration in Chlorophyll-α

8.1.1 Spectral Properties of Chlorophyll-α

The primary uses of hyperspectral data in water quality assessment are the estimations of

the levels of chlorophyll-α and turbidity of the water. Chlorophyll-α is known to absorb

significantly radiations in the range 660 nm - 690 nm [19]. This property is one of the corner

stones of the use of airborne hyperspectral remote sensing to study large lakes. As can be

seen in our radiometric calibration results (Section 5.2), in the range 660 nm - 690 nm, some

points show a plateau while others exhibit smaller values than in neighbour bands. This

phenomenon is closely correlated with the concentration of chlorophyll-α. To take advantage

of this property, various formulas related to this concentration have been proposed. Matthews

[92] has published a review of all the formulas existing in the literature: most of them consist

of a band ratio with a band in the red region of interest and another red further in the near

infrared. For instance, Mittenzwey et al. [95] state that the ratio ρr s (705nm)
ρr s (670nm) is strongly correlated

(r > 0.98) to the ground measurements of concentration, and propose a regression model

to estimate the concentration as a function of this ratio. Gons et al. [45] have found an

empirical correlation between the chlorophyll concentration and the fluorescence line height

in oligotrophic lakes. Other formulas all follow the same principle of using a band around 670

nm and another one around 710 nm.

8.1.2 Chlorophyll-α Concentration in the Rhône Delta

Remote sensing was already used to study chlorophyll and phytoplankton at larger scales with

spaceborne sensors [17, 72]. The purpose of the use of airborne measurements is to map these

quantities with a much better resolution (1 m per pixel).

In Section 5.2, our calibrated water reflectance measurements in the Rhône Delta in April

2015 have been given. The data has been orthorectified using HypOS. The resulting calibrated

mosaic is given in Figure 8.1.
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Figure 8.1 Hyperspectral mosaic produced in the Rhône Delta of Lake Geneva, 21 April 2015.

To produce a chlorophyll-α map, we use the formula given by Equation 8.1 (see [44] for

reference).

chlα ∝ ρr s(750nm)

(
1

ρr s(670nm)
− 1

ρr s(710nm)

)
(8.1)

The proportionality coefficient, called β, can be estimated using the ground measurements

provided by our colleagues of the Limnology Laboratory of EPFL. In the points Av7, Av8 and

Av9 (shown on Figure 8.1), the concentration in chlorophyll-α was measured from water

samples. Together with the corresponding image values in the mosaic, they are reported in

Table 8.1.

Calling chlα,i , i ∈ [1,3] the three concentrations measured and i mvali , i ∈ [1,3] the correspon-

ding image values, the best proportionality coefficient β minimises
3∑

ı=1
(chlα,i −βi mvali )2,

hence β=
3∑

ı=1
chlα,i i mvali

3∑
ı=1

i mval 2
i


 4.13μg /l . The map produced is shown on Figure 8.2.
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Concentration [μg /l ] Image Value [Scalar]
Av7 3.1 0.74
Av8 2.6 0.67
Av9 3.2 0.75

Table 8.1 Concentration in chlorophyll-α and image values in the mosaic, for the three points
of interest during our experiments in the Rhône Delta of Lake Geneva, 21 April 2015.
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Figure 8.2 Chlorophyll-α concentration map in the Rhône Delta of Lake Geneva, 21 April 2015.
Grey areas are land, excluded from the processing.

The map created shows clear patterns of distribution of chlorophyll-α close to the coast. In

particular, the concentration is high until 50 m away from the shore, and then decreases in the

East part of the delta, while there is a significant increase when going towards the inner part of

the lake at the West. Interpretation of this map is beyond the scope of this thesis, and is the

responsibility of the Limnology Laboratory of EPFL.

8.2 Study of Baikal Data

The work presented in this Section is only partially ours. The aim is to show which use of the

calibrated and orthorectified data was made by our partners in the Léman-Baïkal project.

8.2.1 Filtering of Total Suspended Matter in the Delta

The Selenga Delta of Lake Baikal is of high interest in the scientific study of the health of

the lake. This is where the Selenga river falls in the lake. Large quantities of sediments are
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transported by the river towards the lake; the morphology of wetlands and channels in this area

determines how the waters are filtered (from metals, in particular) before arriving in Baikal

Lake. For this reason, our airborne acquisitions in Russia have been primarily focused on the

delta, with nearly the whole delta (approximately 1000 km2) covered by ultralight plane flights

during the two campaigns, in summer 2014 and summer 2015. This data has been calibrated

and orthorectified using HypOS. The resulting mosaics were used by Mikhail Tarasov, from

Moscow State University, to map small yellow pond lily, reed and pondweeds with watermilfoil

[124]. Chalov et al. [24], our colleagues in the project as well, derived the Total Suspended

Matter (TSM) from our hyperspectral images (Figure 8.3).

Figure 8.3 (Copyright © Springer 2017) Total suspended matter maps in four areas of the
Selenga Delta. The maps were processed from our calibrated hyperspectral data.

The main conclusions of these studies are that the rise of the waters in the delta (0.7 m) is

due to the retention of matter by the wetlands and the streams; the changes in morphology of

wetlands and streams greatly affect the effectiveness of the retention, which is crucial since a

large part of heavy metals (Al, Cd, Cu, Pb, and Zn) flowing down the Selenga are filtered by the

delta before reaching the lake.

8.2.2 Other Related Works

Using airborne and ground data acquired in Baikal, colleagues of the Geodetic Engineering

Laboratory developed a new atmospheric correction algorithm entirely image-based [31],
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like QUAC. This algorithm used a simplified version of the radiative transfer equation, and

estimates the atmospheric effects considering they are essentially high frequency effects in

the spectra. This algorithm is proved more reliable than QUAC for two points of interest which

spectrums were acquired on the ground in the region of Baikal.

As already mentioned in Chapter 7, a similar hyperspectral system as ours has been used

on a drone designed by colleagues from the University of Brest [60]. They have used HypOS

extensively to orthorectify data acquired over coastal areas or fields in the surroundings of

Brest, France.
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9 Large Scale Ice Coverage Monitoring
with Satellite Imagery

Note: parts of this section were extracted from our article Icy Lakes Extraction and Water-Ice

Classification using Landsat 8 OLI Multispectral Data [5], in the International Journal of Re-

mote Sensing. They are copied in accordance with the Creative Commons Attribution-Non-

Commercial License.

The ice coverage of large lakes is a very impactful phenomenon for their local ecosystems.

The formation and the melt of the ice strongly influence the organic life of the lakes, like the

carbon cycle [11] or the phytoplankton dynamics [39, 117], but also act as indicators of climate

change [57, 81]. Consequently, it is of interest to study the evolution of the ice coverage of large

lakes, in terms of spatial distribution, ice characteristics (structure, temperature, radiative

properties, optical properties) and temporal evolution.

The ice coverage of large lakes is usually monitored using remote sensing, and in particular

satellite images, since they cover very large areas. Satellite data is essentially divided in two

categories: visible and/or infrared (near, shortwave or thermal) spectral data, and Radar data.

In the lake ice remote sensing literature, the latter is heavily favoured: indeed, microwave

Synthetic Aperture Radar (SAR) can penetrate clouds [42], whereas visible and near infrared

data are affected by clouds. SAR imagery can even be used not only to discriminate ice from

open water, but also to classify ice according to its structure [102, 87]. However, in order to

monitor the ice coverage over short periods of time, one cannot rely on only one satellite

data source. The satellites equipped with a SAR sensor most commonly used in the literature

have an important repeat cycle: 12 days for Sentinel-1, 24 days for RADARSAT-2, and 35 days

for ENVISAT. Overlapping images sensed from different orbits can enhance the temporal

resolution of the images. Another way to increase temporal resolution is to merge data from

different sources, not only from SAR sensors but also multispectral sensors. In particular,

Landsat multispectral data can complement the SAR data nicely for studies related to water

and ice [104, 42, 58]. In this regard, we are interested in designing a water-ice discrimination

procedure for Landsat 8 Operational Land Imager (OLI) images, with the further perspective

of merging the resulting classifications with similar classifications using SAR data to obtain a

high temporal resolution monitoring of the ice coverage of glacial lakes.
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We present here a procedure to extract the bodies of icy lakes and perform water-ice classifica-

tion in these bodies, using new radiometric indexes and supervised classification methods on

images sensed by the Landsat 8 OLI. This chapter is structured as follows: after detailing the

pre-processing of the data in Section 9.1, we explain our methodology to extract the borders of

the lakes in the Landsat images, relying on a new index called Icy lakes Index (ILI) to segment

the lake area (whether it is fully or partly frozen, or solely open water) in Section 9.3. The

performance of the ILI is tested and compared with state-of-the-art indexes, in terms of Kappa

coefficient, commission and omission errors. In Section 9.4, we present our water-ice clas-

sification algorithm, using a decision tree relying on radiometric and texture features of the

Landsat 8 OLI multispectral images. In Section 9.5, the results of this classification algorithm

are finally assessed by comparing the output classifications to manually digitised reference

data, but also to concurrent data from Sentinel-1 SAR images.

9.1 Landsat 8 Pre-Processing

The Landsat 8 images are provided with band-wise gains and offsets, as well as the scene sun

elevation angle, to perform calibration to Top-Of-Atmosphere (TOA) reflectance. In our study,

we will work with the TOA reflectance; the reason we wish to design a classification algorithm

independent of any atmospheric correction is that we work on a large variety of lakes, located

at very different places of the globe, and at different altitudes. The need to know the water

vapour and aerosols properties, or the necessity of using a third-party software to perform

atmospheric correction, can be an important constraint for the end user of the algorithm.

Furthermore, this paper proves the classification procedure to be efficient even in the absence

of atmospheric correction.

9.2 State of the Art

Our problem is the discrimination between ice and open water using satellite images. In

the following, we list existing contributions in the domain of water-ice classification using

satellite Radar and multispectral remote sensing. Most known contributions in the domain

of water-ice classification use SAR images, so the first part of the state of the art is dedicated

to the SAR processing. In the second part, we refer to various studies of water and ice bodies

extraction, as well as classification, using multispectral data, with a special emphasis on the

radiometric indexes and the machine learning methods used.

9.2.1 Ice-Water Discrimination using SAR

Satellite SAR images allow to study the ice dynamics and the ice structure of large lakes very

efficiently. Applications include the monitoring of ice formation and decay [104, 85], the

characterisation of the ice structure [102, 87, 86], but also water-ice discrimination. Many

of these classification methods use local texture properties: [68] first segment SAR images,
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and then classify them according to a local autocorrelation criterion. [27] have developed an

interface for the MAGIC algorithm, which itself is based on the work of [141]: the images are

first oversegmented using a watershed algorithm; the segmented regions, represented by a

region adjacency graph, are iteratively merged/discriminated according to various criteria

such as average region value, texture and shape. This process, known as Iterative Region

Growing by Semantics (IRGS), is reused by [84], together with a Support Vector Machine

(SVM) algorithm based on the texture features of the HH SAR images. [143] also use texture

properties, namely the grey-level co-occurrence matrix and its derived properties [55] and

classify the RADARSAT-2 images using these features and training the classification with a

SVM algorithm.

Other works, where the classification procedure does not use texture properties, include [113,

114], who discriminate classes using a Bayesian minimum distance classifier with features

based on the backscatter of HH, HV and VV bands, but also properties from their coherency

matrix. [43] determined a decision tree based on the value of the co-polarised ratio of the VV

and HH backscatter coefficients of the ENVISAT ASAR.

9.2.2 Ice and Water Studies using Multispectral Images

The literature largely discusses the problem of extracting open water bodies from Landsat

imaging. Some of the first attempts relied on thresholding single band values [12, 91], relying

on the low reflectance of water for the longer wavelengths (> 600nm). These methods were

rapidly proved to be image and application-dependent [38, 131], as others common materials,

but also shadowed areas, exhibit very low spectral responses in these wavelengths. Therefore,

multi-band processing must be performed to solve segment water bodies efficiently. The most

common solution is the use of indexes, based on algebraic operations (like band ratios) on

the bands of the Landsat images. The Normalised Difference Water Index (NDWI) was the

first index designed to enhance the differences between water and other materials [93]. It was

later refined into the Modified Normalised Difference Water Index (MNDWI) by [138] which

better achieved the initial purpose of NDWI. To tackle the problem of ice/snow being retrieved

by the MNDWI, [119] proposed a method combining machine learning with the Water Ratio

Index (WRI). Finally, to further mitigate the effects of clouds and shadows, [37] proposed a

new index called Automated Water Extraction Index (AWEI), that uses the low reflectance of

water in both the near infrared (NIR) and the shortwave infrared (SWIR) to achieve a better

classification. [75] train decision trees using the OLI TOA reflectances, the NDWI and the

MNDWI as features, to extract lake and river bodies from Landsat 8 images.

Retrieval of mixed water/ice bodies is also discussed in the literature. The MNDWI itself,

combined with non local active contour (NLAC) techniques, was used by [25] to extract the

contours of glacial lakes in Tibet Plateau in Landsat 8 OLI images. A similar study by [77]

also used the MNDWI as well as the AWEI. Other modified versions of the NDWI were tested

for either the extraction of water bodies in Antarctica [61] or lake bodies in the same context

[63]. [62] reference all the methodologies known to extract cryospheric lake bodies. They

separate them into three categories: feature extraction using pixel-based and object-based
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classification, and spectral index ratios, some of which are tested in Section 9.3.1. [107] map

water and ice in supraglacial lakes of the Everest using a decision tree involving multiple

radiometric indexes for ASTER images. [139] delineate water streams in WorldView 2 images

by multithresholding images processed with another modified version of NDWI, coined

N DW Ii ce . Landsat data is also used for icy lakes extraction [21, 66] in Greenland, just like

MODIS [122, 116]. However, to the best of our knowledge, no classification technique for

Landsat images was proved to work for a variety of large icy lakes.

9.3 Extraction of the Lake Body

For each lake image on which we wish to perform water-ice classification, we first need to

demarcate the lake area. We refer to the binary image where the lake pixels are white, and the

rest black, as the "mask" of the lake for the given image. Landsat 8 OLI images are typically

8000× 8000 pixels large, outright excluding the possibility of drawing the mask manually.

Hence, we need to design an automated algorithm extracting mixed ice/water bodies from

Landsat 8 images.

9.3.1 Performance of Existing Indexes

To show the necessity of designing a new radiometric index for discriminating lands from

(partially) frozen lakes on Landsat 8 images, we have tested the performance of three of the

available indexes in the literature: the MNDWI, the WRI and another version of NDWI from

[54] that we call N DW IH . Their formulas are given in Equations 9.1 to 9.3.

M N DW I = (Green)-(SWIR1)

(Green)+(SWIR1)
(9.1)

W RI = (Green)+(Red)

(NIR)+(SWIR1)
(9.2)

N DW IH = (NIR)-(Blue)

(NIR)+(Blue)
(9.3)

All designations are clarified in table 9.1.

It is to be noted that, while the N DW IH was designed for applications related to cryospheric

lakes, this is not the case for the MNDWI and the WRI, which were originally created to

highlight water areas, and not mixed ice/water areas. However, [25], for instance, used the
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Band Number Name Designation Wavelengths (μm)
1 Ultra Blue Ultra_Blue 0.43 - 0.45
2 Blue Blue 0.45 - 0.51
3 Green Green 0.53 - 0.59
4 Red Red 0.64 - 0.67
5 Near Infrared NIR 0.85 - 0.88
6 Shortwave Infrared 1 SWIR1 1.57 - 1.65
7 Shortwave Infrared 2 SWIR2 2.11 - 2.29

Table 9.1 Landsat 8 bands specification.
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Figure 9.1 Sample points from Lake Onega: (a) April 10th, 2014; (b) March 12th, 2015. Blue
points are open water/ice cover, green points are snow, red points are land, and the two
magenta points at the top of (a) are ice with crusted snow/with snow cover.

MNDWI with great success to extract glacial lakes, thus making the comparison pertinent; the

WRI is proved in the following to also be suitable for this task, to some extent.

The purpose of the formulas given in Equations 9.1 to 9.3 is to benefit from the high reflectance

of water in the blue and the green and its low reflectance in the near and shortwave infrared,

while the vast majority of ground materials (vegetation, soil and built structures) have higher

reflectance in the near and shortwave infrared. Such logic does not apply similarly to ice,

which can have a significant NIR reflectance. We highlight this problem by computing the

performance of the three indexes on two Landsat images of Lake Onega (Republic of Karelia,

Russia) on April 10th, 2014 and March 12th, 2015. For each image, 60 sample points, including

open water, very clear ice, opaque ice, ice with crusted snow, snow and land materials, had

their scores computed for each index. These points were chosen arbitrarily, to represent a

wide variety of materials and geographical locations. They are represented on Figure 9.1.

The scores have been plotted horizontally against their classes (land, snow, or lake). The snow
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Figure 9.2 Scores of the three tested indexes for the 120 sample points.

class includes all snow pixels on the ground; the lake class includes open water features, ice

cover features, and mixed snow/ice features. We are looking for the best possible index to

separate ice/water features (blue) from land features, including snow (land in red, snow in

green). The plots are shown on Figure 9.2. We can make a few remarks about the indexes

performances.

• With a threshold of approximately 0.75, the MNDWI would segment ice and water pixels

from land pixels rather efficiently. However, the gap between the highest land score and

lowest lake score is very small. The reliability of the MNDWI outside our sample points

is uncertain.

• The WRI is the index closest to fit our requirements: it separates properly water and ice

features from land, with a very clear gap between their scores.

• The N DW IH relies heavily on the NIR. For this reason, very opaque ice/ice with crus-

ted snow tend to have similar values has land pixels, thus mitigating its efficiency for

retrieving frozen lakes bodies.
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9.3.2 Icy Lakes Index

Snow having the same spectral response whether it covers land or a frozen lake, it is difficult

to classify the scene properly when the snow cover is significant. The case of lakes covered

with snow is discussed in Section 9.3.4. In the present section, we explain our methodology to

extract lakes when the snow cover is negligible (which was the case for all the images studied

in this chapter, except one).

Taking inspiration from the Water Ratio Index (WRI), we have designed another index that

relies on the high reflectance of most land features in the near and shortwave infrared. The

purpose of the WRI is to take advantage of the high response of water in the green, and its low

response in the infrared (both near and shortwave). In our problem, where ice also has to be

retrieved, all classes can present similar reflectances in the visible bands (especially the blue

and green bands), while infrared bands discriminate land and water/ice much better. Hence,

we use the following index, called Icy Lakes Index (ILI), to segment icy lakes from the rest of

the scene in Landsat 8 images (Equation 9.4).

I LI = (Red)+(SWIR2)

(NIR)+(SWIR1)
(9.4)

The rationale of the ILI is the following: common ground materials have a decreasing reflec-

tance from NIR to SWIR1 and from SWIR1 to SWIR2. It is the case of vegetation [130, 49],

but also materials used for built-in structure like concrete and asphalt [3]. In addition, this

decrease is also observed for optically thick clouds [35]. For all these materials, the ILI is quite

low. On the other hand, both ice and water have stable reflectance from SWIR1 to SWIR2, and

higher visible (red) reflectance than NIR, SWIR and SWIR2 reflectances [3, 135], making their

ILI scores high. The performance of this index has been tested on the same 120 sample points

presented in Section 9.3.1. The scores are plotted on Figure 9.3.

Land

Snow

Lake

0 0.5 1 1.5 2 2.5

Score [Scalar]

ILI Scores

Figure 9.3 I LI scores for the 120 sample points.

The ILI clearly separates water/ice features from land features. While the distribution of its

scores looks similar to the one of the WRI (Figure 9.2b), the relative gap between the land class

and the lake class is higher: the maximum land score is 0.79 for the ILI (1.41 for the WRI) and
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the minimum lake score is 0.97 (1.66 for the WRI), which represents a 18 % relative difference

(15 % for the WRI). Therefore, on our sample, a range of threshold (from 0.79 to 0.97) would

allow to classify properly lake and non-lake features in a snow-free image. In the next section,

we further prove the usefulness of the ILI against state-of-the-art indexes.

9.3.3 Results

The ILI performance at extracting lake bodies has been tested against the MNDWI, the WRI

and the N DW IH , on five images, each one representing a different lake. These images are

marked as "used for mask extraction" in Table 9.2.

Mean Used for Water/Ice Water-Ice
Lake Central Point Country Elevation Date Mask Extraction Discrimination

(m) Extraction Sampling Sampling

Great Bear Lake 66.08°N, -120.83°E Canada 160 2013-06-27 X X

Great Slave Lake 61.58°N, -114.23°E Canada 160 2015-05-22 X

Lake Amadjuak 64.88°N, -71.15°E Canada 110 2016-08-08
2016-08-24 X

Lake Ladoga 60.81°N, 31.51°E Russia 5 2015-04-11

Lake Onega 61.62°N, 35.56°E Russia 30 2014-04-10 X X X
2015-03-12 X X

Lake Uvs 50.30°N, 92.72°E Mongolia 760 2015-05-16 X
2014-12-23

Table 9.2 List of Landsat 8 images used in our study.

For each image, the binary classification of each index has been computed. The thresholds

were chosen according to Figures 9.2a, 9.2b, 9.2c and 9.3: pixels were classified as water/ice

or neither according to the criteria > 0.75 for MNDWI, > 1.5 for WRI, <−0.1 for N DW IH and

> 0.95 for ILI. Only the biggest blob of each binary image is retrieved. The overall extraction

for all five lakes, as well as the zones used for the quantitative results, are shown in Figure 9.4.

It is very difficult and time-consuming to manually label the pixels of Landsat 8 images due to

their sizes. Hence, we have focused on quantifying the results in specific areas of the lakes for

which we have manually labelled the pixels as either "water/ice" or "other". We have selected

eight zones, represented in Figure 9.4, to compute quantitative results. These zones were

chosen according to two criteria: they represent various surfaces (water, ice, vegetation, built
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Figure 9.4 Comparison of the performances of the indexes for lake extraction on the 5 lakes.
(a) is the original NIR image with enhanced brightness; (b) is the MNDWI binary classification,
(c) is the WRI, (d) is the N DW IH and (e) is the ILI. The red features are pixels retrieved by the
corresponding index and not by the ILI; the green features are negative for the corresponding
index and positive for the ILI. The zones used for quantitative results are tagged in the original
images.
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structures, clouds) all of which have different spectral signatures; these zones also appeared

to discriminate the indexes the most in the overall classifications (Figure 9.4). Results were

characterised by the resulting Kappa coefficients and errors, and by the stability of the optimal

threshold for each index.

Accuracies and Errors

The Kappa coefficient, the commission and the omission errors have been computed for

the four indexes, binarised with three different fixed thresholds each. As pointed out by [65]

and [37], high variability of the optimal threshold for a given index makes its use harder in

classifications tasks, so we start by computing the results in fixed, narrow ranges of thresholds

suggested by Figures 9.2a, 9.2b, 9.2c and 9.3; for optimal thresholds (given later on Figure

9.8) potentially outside of these ranges, Kappa, commission and omission errors were also

computed, and are obtainable by contacting the corresponding author of the present article.

Results are given in Tables 9.3, 9.4 and 9.5. The corresponding images for all indexes (using

the best of the three thresholds in terms of Kappa coefficient achieved) are shown in Figures

9.5, 9.6 and 9.7.

The zones O1, O2 and B2 contain a significant proportion of clouds. The WRI and the N DW IH

classifications are heavily impacted by the clouds, whereas the ILI and the MNDWI perform

much better in cloudy conditions. The MNDWI, however, does not perform well on ice-covered

parts, as shown by the results in zones B1 and U. The only zone where the ILI was significantly

outperformed was zone S2: this is a marshy area for which we did not label the swamps as

positive in our reference image. Swamps contain vegetation and water; the high reflectance

of the vegetation in the infrared bands (NIR, SWIR and SWIR2) makes the MDWNI and the

WRI classify swamps as not water/ice, and pushes the N DW IH to classify the corresponding

pixels as water/ice. The ILI is balanced between these two directions and achieves a Kappa

of 0.939, while the WRI reaches a Kappa of 0.994 (Table 9.5). In zones O1, B2 and S1, the ILI

performs better than the three other indexes tested, with Kappa coefficients of 0.889 in O1

(second best is the MNDWI with 0.685), 0.991 in B2 (second best is the WRI with 0.983) and

0.989 in S1 (second best is the WRI with 0.976). The ILI is marginally better in zone U, with

a Kappa coefficient of 1 (at the three significant digits precision) against 0.998 for the WRI,

and marginally outperformed by the MNDWI (κ= 0.731, against 0.712 for ILI) in zone O2, and

by the N DW IH in zones A and B1 (κ= 0.989 and 0.991 respectively, against 0.978 and 0.989

for ILI). Across the 8 zones studied, the ILI is the only of the four indexes that performs good

classifications consistently, whereas other indexes show their limitations for clouds (WRI,

N DW IH ), ice (M N DW I ) and shores (MNDWI, N DW IH ).

Threshold Variability

The optimal threshold for each index and each zone has been computed, as the threshold that

maximises the Kappa coefficient between the classification and the reference data. Results are
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Figure 9.5 Comparison of the performances of the indexes in zones O1, O2 and A. The red
features are false positives; the green features are false negatives.

109



Chapter 9. Large Scale Ice Coverage Monitoring with Satellite Imagery

4 km

N

Reference MNDWI > 0.7 WRI > 1.4 N DW IH <−0.1

�
�
�
�
�
�

ILI > 0.9

4 km

N

Reference MNDWI > 0.7 WRI > 1.6 N DW IH <−0.2

�
�
�
�
�
�

ILI > 1

Figure 9.6 Comparison of the performances of the indexes in zones B1 and B2. The red features
are false positives; the green features are false negatives.

reported on Figure 9.8.

The standard deviation of the optimal threshold was 0.33 for the MNDWI, 0.57 for the WRI,

0.10 for the N DW IH and 0.11 for the ILI. Unlike the MNDWI and the WRI, the ILI performs

very consistently across all the test zones with a fixed threshold of 1 (see Tables 9.3, 9.4 and 9.5);

its optimal threshold oscillates between 0.8 and 1.1, that is, with a much lower amplitude than

the MNDWI and the WRI. Only the N DW IH shows a similar stability. However, the N DW IH

also showed poor classification results in several zones (see Section 9.3.3). As a synthesis of

this section, the ILI outperforms other indexes in four test zones, and showed its limitation

only in Zone S2 (containing marshy areas); the ILI is also very stable threshold-wise, unlike

two of the three other indexes tested, making it very appropriate for use with classification

trees [65].

9.3.4 Extraction of Lakes Covered by Snow

Continuous snow cover at the borders of the lakes makes the identification of these borders

very difficult: it is the case for Lake Uvs in the Landsat 8 OLI image sensed on December 23rd,

2014 (Figure 9.9a). To overcome this issue, the mask of the lake can be extracted from an OLI

image of another date, and translated in the reference frame of the image of interest using

UTM coordinates. The result is shown on Figure 9.9b.

While the mask transferred using UTM coordinates is a good starting point, it cannot be

considered as a perfect reference because:
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Figure 9.7 Comparison of the performances of the indexes in zones S1, S2 and U. The red
features are false positives; the green features are false negatives.
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MNDWI WRI N DW IH ILI
Threshold 0.70 0.75 0.80 1.4 1.5 1.6 0 -0.10 -0.20 0.9 1 1.1

Zone
O1

κ 0.431 0.539 0.685 0.331 0.413 0.509 0.468 0.481 0.474 0.53 0.83 0.889

Water/Ice
Comm. 68.43 58.08 39.39 76.56 70.60 62.59 66.27 62.75 60.31 61.16 25.17 5.62

Error (%)
Water/Ice

Omi. 9.54 12.80 16.81 1.46 2.12 3.30 1.11 18.25 31.37 0.24 4.75 15.07
Error (%)

Other
Comm. 0.48 0.61 0.78 0.08 0.11 0.16 0.06 0.88 1.48 0.01 0.22 0.69

Error (%)
Other
Omi. 8.96 5.52 2.47 14.71 10.74 7.39 8.88 6.29 4.76 7.18 1.46 0.23

Error (%)
Zone

O2

κ 0.358 0.517 0.731 0.214 0.291 0.407 0.194 0.222 0.235 0.409 0.712 0.699

Water/Ice
Comm. 77.22 63.96 37.62 87.05 82.08 73.54 87.48 85.08 83.18 73.39 30.61 11.91

Error (%)
Water/Ice

Omi. 1.71 3.27 10.78 0.30 0.71 1.60 36.57 44.63 53.40 0.97 26.27 41.73
Error (%)

Other
Comm. 0.02 0.04 0.12 0.00 0.01 0.02 0.42 0.51 0.60 0.01 0.29 0.46

Error (%)
Other
Omi. 3.68 1.90 0.59 7.41 5.02 3.02 4.90 3.49 2.55 3.02 0.36 0.09

Error (%)
Zone

A

κ 0.932 0.924 0.909 0.972 0.969 0.966 0.989 0.984 0.975 0.978 0.969 0.963

Water/Ice
Comm. 0.10 0.08 0.07 0.29 0.28 0.26 0.95 0.41 0.26 0.35 0.29 0.23

Error (%)
Water/Ice

Omi. 8.62 9.69 11.64 3.39 3.77 4.13 0.55 1.65 3.02 2.56 3.70 4.57
Error (%)

Other
Comm. 4.29 4.80 5.71 1.74 1.93 2.11 0.29 0.85 1.55 1.32 1.89 2.33

Error (%)
Other
Omi. 0.05 0.04 0.03 0.15 0.14 0.13 0.50 0.21 0.13 0.18 0.14 0.12

Error (%)

Table 9.3 Errors and κ for the four indexes, in Zones O1, O2 and A.

• the georegistration of Landsat 8 OLI images is not perfect; significant shifts can appear

when co-registering one image onto another.

• lake borders are dynamic, they are subject to changes over long periods of time.
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MNDWI WRI N DW IH ILI
Threshold 0.70 0.75 0.80 1.4 1.5 1.6 0 -0.10 -0.20 0.9 1 1.1

Zone
B1

κ 0.552 0.409 0.295 0.984 0.981 0.971 0.99 0.991 0.593 0.989 0.955 0.6

Water/Ice
Comm. 0.00 0.00 0.00 0.08 0.06 0.05 0.75 0.11 0.07 0.13 0.07 0.07

Error (%)
Water/Ice

Omi. 40.91 55.21 67.03 1.30 1.57 2.44 0.08 0.66 36.81 0.78 3.79 36.21
Error (%)

Other
Comm. 35.55 42.67 47.47 1.72 2.07 3.19 0.10 0.88 33.18 1.04 4.86 32.82

Error (%)
Other
Omi. 0.00 0.00 0.00 0.11 0.08 0.06 1.02 0.15 0.06 0.17 0.09 0.06

Error (%)
Zone

B2

κ 0.954 0.931 0.656 0.96 0.976 0.983 0.814 0.878 0.919 0.95 0.991 0.98

Water/Ice
Comm. 0.20 0.16 0.10 4.03 2.24 1.35 16.87 11.71 8.04 5.12 0.96 0.35

Error (%)
Water/Ice

Omi. 4.74 7.24 36.00 0.13 0.27 0.44 0.00 0.00 0.02 0.00 0.01 1.79
Error (%)

Other
Comm. 3.92 5.88 23.67 0.11 0.24 0.38 0.00 0.00 0.02 0.00 0.01 1.52

Error (%)
Other
Omi. 0.16 0.13 0.05 3.61 1.96 1.18 17.47 11.42 7.53 4.64 0.83 0.29

Error (%)

Table 9.4 Errors and κ for the four indexes, in Zones B1 and B2.

For the image of Lake Uvs (December 23rd, 2014), which was the only image where snow

prevented the ILI from working properly, the quality of the mask translated from the image

of May 16th, 2015 was tested by comparing the manually drawn reference border to the

computed border in Zone U. The result is shown on Figure 9.9c. Comparison between the

resulting classification lake/non-lake gave a Kappa coefficient of 0.987; the local divergence

between the two borders ranged from 0 to 4 pixels (120 m). An active contour algorithm [69]

was tested on the Normalised Difference Snow and Ice Index [137] to refine the delineation, but

achieved no significant improvement: the snow cover blurs the borders of the lake, making it

difficult to delineate them properly, even manually. The mask translated via UTM coordinates

is acceptable for this image of Lake Uvs (December 23rd, 2014) for large-scale ice cover

monitoring, but the residual error can become significant for applications at smaller scales (a

few kilometres).
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9.4 Water-Ice Classification

9.4.1 Problem Formulation

In our study, we use the ILI to demarcate the lakes’ borders. In the segmented areas, we

now wish to discriminate water and ice pixels. The aim is to design an automated water-ice

MNDWI WRI N DW IH ILI
Threshold 0.70 0.75 0.80 1.4 1.5 1.6 0 -0.10 -0.20 0.9 1 1.1

Zone
S1

κ 0.856 0.833 0.795 0.976 0.976 0.97 0.816 0.873 0.297 0.947 0.989 0.86

Water/Ice
Comm. 0.07 0.05 0.03 1.20 0.70 0.44 11.55 8.27 10.55 3.61 0.45 0.23

Error (%)
Water/Ice

Omi. 11.07 12.93 16.04 0.61 1.11 1.82 0.02 0.12 56.38 0.17 0.35 10.61
Error (%)

Other
Comm. 15.78 17.94 21.32 1.04 1.86 3.00 0.05 0.23 51.06 0.30 0.60 15.24

Error (%)
Other
Omi. 0.10 0.07 0.04 2.04 1.18 0.73 22.07 15.22 8.69 6.32 0.76 0.34

Error (%)
Zone

S2

κ 0.974 0.97 0.964 0.994 0.994 0.993 0.343 0.57 0.46 0.629 0.805 0.939

Water/Ice
Comm. 0.03 0.01 0.00 0.31 0.16 0.09 52.58 39.72 30.58 35.86 21.63 2.84

Error (%)
Water/Ice

Omi. 3.38 3.91 4.69 0.44 0.62 0.89 0.02 0.60 43.39 0.03 0.07 5.25
Error (%)

Other
Comm. 1.69 1.95 2.33 0.22 0.32 0.45 0.02 0.46 20.17 0.02 0.04 2.64

Error (%)
Other
Omi. 0.01 0.00 0.00 0.16 0.08 0.04 56.37 33.31 12.68 28.42 14.02 1.41

Error (%)
Zone

U

κ 0.833 0.657 0.456 0.998 0.998 0.998 0.992 0.997 0.997 0.762 1 0.997

Water/Ice
Comm. 0.00 0.00 0.00 0.07 0.02 0.00 0.51 0.13 0.00 13.86 0.00 0.00

Error (%)
Water/Ice

Omi. 12.64 27.29 46.26 0.10 0.13 0.16 0.03 0.09 0.24 0.01 0.01 0.20
Error (%)

Other
Comm. 18.33 32.65 45.10 0.17 0.22 0.27 0.05 0.15 0.42 0.01 0.01 0.35

Error (%)
Other
Omi. 0.00 0.00 0.00 0.12 0.04 0.01 0.92 0.24 0.00 28.57 0.00 0.00

Error (%)

Table 9.5 Errors and κ for the four indexes, in Zones S1, S2 and U.
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Figure 9.8 Optimal threshold for each zone and each index; straight lines indicate the average
optimal threshold for each index.

classifier based on radiometric properties of the images. The classification procedure shall

work on the TOA reflectance Landsat 8 images, for the reasons explained in Section 9.1.

In a lake area, various materials can be found; according to their spectral features, we have

split them in four categories (Figure 9.10):

• open (deep) water. The reflectance of deep water is usually the lowest of the four

elements.

• shallow water. At locations where the lake of interest is not deep enough, the reflectance

is impacted by the material lying below the surface of the water. The main difference

with deep water reflectance is it is visibly brighter (higher reflectance in blue, green

and/or red). Although the "shallow water" category gathers a lot of different pixels

(depending on the material below the water), they share the common property of stable

ultra blue values and very low shortwave infrared values.

• (opaque) ice. Ice often has a much higher reflectance in the visible bands and the near

infrared.

• clear ice. The ice cover can be very transparent and thus exhibit a reflectance that is

very similar to the water below it. Although red and near infrared values of clear ice

are sometimes enough to distinguish them from open water, in other cases only the

contextual information (the geometrical structures and the texture of the surrounding

pixels) allows the human interpretation to correctly classify clear ice.
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Figure 9.9 Illustration of the difficulty to delineate lake borders in case of important snow
cover. (a) is the original Landsat 8 image of Lake Uvs (December 23rd, 2014). It is completely
snow-covered and the lake is barely recognisable. (b) is an overlay of the UTM-transferred
mask extracted from the image of May 16th, 2015, on top of the red background being the
original image. (c) is the comparison of the extracted shoreline in Zone U (blue) with the
reference shoreline, drawn manually (green).

(a) (b) (c) (d)

Figure 9.10 The four categories of materials found in lakes: (a) deep water, (b) shallow water/-
mixed water - land pixels, (c) opaque ice, (d) clear ice.

These four categories are not clearly separable: there is a continuity between clear ice and ice

properties, just like there is one between shallow water and deep water. However, we still use

this split in our study as it helps to understand the reasoning that led to our final algorithm.

We aim at discriminating the water and shallow water pixels from the ice and clear ice pixels

in our images. This classification is difficult because no clear pixel-wise radiometric feature

allows to discriminate these categories efficiently. We illustrate the similarities of spectral

properties in Figure 9.11: we have gathered the spectral signatures of 119 sample points from

Lake Onega and the Great Bear Lake, and displayed their box plots in each category. These

sample points have been chosen to represent a wide variety of pixel types: deep water, coastal

water (sometimes mixed with land), uniform ice, very transparent ice and very heterogeneous

ice.

As can be seen on Figure 9.11, water and opaque ice could be easily separable, but clear ice and

shallow waters exhibit very similar values in most of the bands. Shallow water areas usually
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Figure 9.11 Box plots of the Landsat 8 TOA reflectances for its first six bands, for the 119 sample
points. The horizontal segments represent the 5th, 25th, 50th, 75th, and 95th percentiles; the
circles are sample values lying out of the 90% represented by the extreme segments.
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have lower values in the blue and ultra blue bands, but not always, thus not allowing to reliably

discriminate shallow water from clear ice. Pixel-by-pixel processing indeed ignores the texture

of materials, which is an essential aspect for the human eye to identify ice: unlike water and

shallow water which are usually very smooth (when seen as 2D signals), ice shows a high local

variability of its pixels values. We take advantage of this property in our algorithm.

9.4.2 Local Texture and Water-Ice Classification Index

To achieve a better discrimination, we wish to use information about the local texture of the

material, like similar algorithms for SAR data [141, 84]. We bring in this study the information

of texture in two forms. The first one is the local average gradient of the pixel values in each

band. The local average gradient of a pixel is defined as the mean of the gradient image in the

n ×n neighbourhood of the pixel, where n is an odd positive integer. The gradient represents

the variation of the pixel value; the local average gradient is high when neighbouring pixels

have very different values and low if they have similar values. The second information about

texture is the local standard deviation of the pixel value in each band. The local standard

deviation of a pixel is defined as the standard deviation in its n ×n neighbourhood. The local

standard deviation differs from the local average gradient, as it characterises changes in the

pixel values of the neighbourhood even when they are smooth; the local average gradient is

high only if the difference between values is high for adjacent pixels. For instance, the ice

represented on Figure 9.10c would have high local average gradients and standard deviations,

but the shallow water represented on Figure 9.10b would have high local standard deviations

(different values in the image) but low local average gradients, as the changes in intensity are

very smooth.

The choice of n is a balance between two properties: a large neighbourhood represents the

texture better, but creates artefacts at the border between ice and water regions, because

neighbour ice and water pixels mutually affect their local standard deviation; a small neig-

hbourhood introduces less artefacts, but is more sensitive to the local noise of the data. In our

study, we have chosen to work with 5×5 neighbourhoods. We define as ḡB and N ame the local

average gradient in the band named "Band Name" in the Landsat 8 data, and as σB and N ame

the local standard deviation in the band named "Band Name".

In our first tests, we have determined a decision tree based on two features: the NIR TOA

reflectance, and the local average gradient of the ultra blue TOA reflectance, ḡUl tr a_Bl ue . The

NIR reflectance was chosen because water usually absorbs most of the near infrared radiati-

ons, while ice partially reflects them (Figure 9.11e); the NIR alone does not allow for a good

classification as shallow water pixels can have significant NIR reflectance coming from the

bottom of the lakes. The second feature, ḡUl tr a_Bl ue , was chosen because it is the band in

which ice and clear ice show the highest variability in our sample (Figure 9.11a). We have

extended our sample to 1000 geographic points (still from Lake Onega and the Great Bear

Lake) and plotted them as 2D points which coordinates are the NIR and ḡUl tr a_Bl ue . The plot

is shown in Figure 9.12a. From the nature of the separation, it is clear that a decision tree

was suitable for classification. We have learnt this tree on this sample, using the standard
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Figure 9.12 (a) 2D plot of the 1000 training samples for training the water-ice discrimination
algorithm. The x coordinate is the NIR reflectance, the y coordinate is the average gradient
in a 5×5 pixels neighbourhood of the sample point in the ultra blue reflectance. Red points
correspond to ice or clear ice, blue points correspond to water or shallow water. The decision
tree learnt on this sample is illustrated by the black line (N I R = 0.021) and the green line
(Average Gradient = 0.008), and shown in (b).

implementation of the decision tree learning in Matlab, which uses the Classification And

Regression Trees (CART) algorithm [18] to build the tree. The resulting tree is shown in Figure

9.12b and displayed as two separating lines in Figure 9.12a.

After a few tests, it appeared that this classification was good in most cases, but still failed to

discriminate some shallow water pixels from ice. For this reason, we have decided to use a

third feature in the classification. We have designed an index, called Water-Ice Classification

Index (WICI), which aims at removing the shallow water pixels: it relies on the uniformity

of the reflectance of water in the near and shortwave infrared, while ice exhibits significant

differences between near infrared and shortwave infrared. Its formula is given in Equation 9.5.

W IC I = σSW I R +σSW I R2

2σN I R
(9.5)

The scores of the WICI are plotted on Figure 9.13.

As can be seen on Figure 9.13, the WICI separates shallow water but also deep water pixels from

ice and clear ice very well. The ability to separate shallow water, in particular, makes the WICI
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Figure 9.13 WICI scores for the sample points.
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Figure 9.14 Decision tree used for our water-ice classification algorithm.

very complementary to our first two features. Our final decision tree, used for classification, is

learnt again using the CART algorithm. It is displayed on Figure 9.14.

Although the decision tree we use (Figure 9.14) was determined algorithmically, we can

comment on its physical interpretation: the top node means that homogeneous surfaces are

water; if the surface is not homogeneous, its NIR reflectance is tested. If it is low, there is still

a possibility that the pixel is ice, in which case the local heterogeneity has to be very high. If

the NIR reflectance is high, there is still a possibility that the pixel is shallow water, and this

is assessed by the WICI. The results of this classification algorithm are given in the following

section.

9.5 Results

This section is split in two parts. In the first part, we give the quantitative results of the classifi-

cation for five specific zones from five different lakes (Lake Onega, Lake Amadjuak, Great Bear

Lake, Great Slave Lake and Lake Uvs). In the second part, we compare our classification on
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Lake Ladoga to a concurrent classification using the Sentinel-1 SAR data.

9.5.1 Comparison to Reference Data

We have run our classification algorithm on six images Landsat 8 images: Lake Onega, April

10th, 2014; Lake Amadjuak, August 8th, 2016; Great Bear Lake, June 27th, 2013; Great Slave

Lake, May 22th, 2015; Lake Uvs, May 16th, 2015; Lake Onega, March 12th, 2015. The results

are shown on Figures 9.15 and 9.16.

To compute quantitative results, we have manually labelled the pixels as ice or not ice in five

zones marked on Figures 9.15 and 9.16. These zones were chosen to illustrate the performance

of the algorithm on a variety of edge cases: zones C_O14 (Figure 9.15a) and C_A (Figure 9.15b)

present a mix of water and ice and allow to see the behaviour of the algorithm at the borders

between the two; zones C_B (Figure 9.15c) and C_U (Figure 9.16b) contain ice with varying

transparency and heterogeneity; zone C_S (Figure 9.16a) includes a large shallow water part

where the reflectance is much higher than the one of deep water. The comparison between the

manually digitised reference and the output of our algorithm is quantified in terms of Kappa

coefficient, and commission and omission errors for the ice and the water. Pixels that are

neither ice nor water do not alter the results, which are only computed in the area delineated

by the ILI. The original images, reference classifications and computed classifications are

shown on Figures 9.17 and 9.18. The quantitative results are given in Table 9.6.

Zone Zone Zone Zone Zone
C_O14 C_A C_B C_S C_U

κ 0.935 0.953 0.966 0.844 0.973

Ice
Comm. 4.37 3.13 0.28 9.30 2.56

Error (%)
Ice

Omi. 0.04 0.01 3.96 0.07 0.81
Error (%)

Water
Comm. 0.04 0.02 7.84 0.16 0.50

Error (%)
Water
Omi. 4.70 3.46 0.58 19.31 1.58

Error (%)

Table 9.6 Kappa coefficients, commission and omission errors of our water-ice classification
in the zones of interest.

Our classification algorithm performs very well across the five test zones. The main source of

error, particularly visible in zone C_S, comes from the classification of the pixels at the borders

between water and ice. Pixels representing surfaces of 30m ×30m, they can be composed of

both ice and water, which makes their classification difficult, even during the manual labelling

phase. This reason alone explains the residual ice commission error for zones C_O14 and C_A,

but not for zone C_S: the water in this zone is not very deep and has a non-negligible NIR
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Figure 9.15 Water-ice classification results, part 1: (a) Lake Onega, April 10th, 2014; (b) Lake
Amadjuak, August 8th, 2016; (c) Great Bear Lake, June 27th, 2013. Images on the left are the
unprocessed Landsat 8 OLI images (NIR band with enhanced brightness), and images on the
right are the classifications, with ice in yellow on top on the original image in blue. Zones used
to quantify the results are indicated in red.
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Figure 9.16 Water-ice classification results, part 2: (a) Great Slave Lake, May 22th, 2015; (b)
Lake Uvs, May 16th, 2015; (c) Lake Onega, March 12th, 2015. Images on the left are the
unprocessed Landsat 8 OLI images (NIR band with enhanced brightness), and images on the
right are the classifications, with ice in yellow on top on the original image in blue. Zones used
to quantify the results are indicated in red.
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Figure 9.17 Classification results for zones C_O14, C_A and C_B. (a) is the original Landsat 8
NIR image with enhanced brightness; (b) is the manually digitised reference data; (c) is our
classification, with false positives coloured in red, and false negatives coloured in green.
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Figure 9.18 Classification results for zones C_S and C_U. (a) is the original Landsat 8 NIR image
with enhanced brightness; (b) is the manually digitised reference data; (c) is our classification,
with false positives coloured in red, and false negatives coloured in green.
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reflectance. The two other features used in our supervised classification being neighbourhood

properties, they are altered at the borders between water and ice, resulting and this significant

ice commission error. The ice omission error is low for all our images; there is a noticeable ice

omission error only in zone C_B, where some locally very homogeneous and low reflectance

ice was misclassified. Otherwise, the global quantitative results are satisfying, with Kappa

coefficients ranging from 0.93 to 0.97, except zone C_S (Kappa = 0.84).

9.5.2 Comparison to Sentinel-1 SAR Data

In addition to the results presented in Section 9.5.1, we wish to compare our classification

results to similar classifications performed using different sensors, so as to assess the per-

formance of our algorithm at a much larger scale. Due to the recognised efficiency of the

SAR data for water-ice discrimination (see Section 9.2.1), we have chosen to process such

classification on Sentinel-1 SAR data and compare it to our classification using the Landsat

8 OLI data. To provide meaningful quantitative assessment to the reader, the choice of the

images is constrained by two factors: the images must have a significant proportion of ice and

water, and both Sentinel-1 SAR data and Landsat 8 OLI data must be available at the same

date. Therefore, quantitative assessment has been done for the image of Lake Ladoga on April

11th, 2015, which respects both requirements.

Processing of the SAR Data

Pre-Processing For the initial processing of the SAR image, we have used the Sentinel-1

Toolbox (S1TBX). The S1TBX is an open source toolbox consisting of a collection of processing

tools for data from European Space Agency (ESA) SAR missions like the Sentinel-1 mission.

The pre-processing is divided into several steps: calibration to backscatter, speckle noise

removal, and terrain correction. The calibration to backscatter transforms the pixel values

from the band of interest (HH, HV, VH or VV) to backscatter values (σ0); the speckle noise

removal reduces the noise in the image using averaging filters; terrain correction geocodes

the image by correcting SAR geometric distortions using a Digital Elevation Model (DEM)

and producing a map projected product to correct for inherent SAR geometry effects such as

foreshortening, layover and shadow. All these tasks were performed using the toolbox. Figure

9.19 shows an example of such pre-processed SAR image.

Co-Registration to Reference Landsat Data The SAR data is translated onto the correspon-

ding Landsat image using UTM coordinates. We compute the UTM coordinates of every pixel

in the appropriate zone (36N for Lake Ladoga), and convert them to pixel coordinates in the

reference Landsat image. The resolution of the Sentinel-1 SAR data (50m ×50m) is inferior to

the resolution of the Landsat data (30m×30m), resulting in a sparse image. To solve this issue,

we perform a bilinear interpolation, to fill the gaps between the translated pixels. The quality

of the co-registration is controlled by computing the position error of 30 tie points (manually

126



9.5. Results

62°N

30°E28°E 32°E 34°E

60°N

58°N
70 km

N

Figure 9.19 SAR HH image of Lake Ladoga (April 11th, 2015), pre-processed with the Sentinel-1
Toolbox.

identified in both images) and the resulting Root Mean Square Error (RMSE). The composite

image, as well as the tie points and their errors, are shown on Figure 9.20.

The RMSE over the 30 tie points is 3.3 pixels (100 m). This result is the consequence of a syste-

matic deformation illustrated in Figure 9.20b. The deformation observed can be caused by the

inaccurate georeferencing of either image but also the difference of spatial resolution between

the two sensors. We have considered correcting the SAR image geometrically, by computing

the best parameters for a Helmert transformation turning the tie points’ coordinates in the

Sentinel-1 image into their equivalent coordinates in the Landsat image. This optimisation

was achieved through a least square method, and led to a new RMSE of 1.99 pixels. However,

the correction was beneficial mostly to the inland pixels, while the pixels on the shores of

the lake actually showed an increased error in the co-registration. Therefore, we decided to

proceed with the co-registered image obtained before the Helmert transformation, as none of

the pixels around the lake had a co-registration error of more than 3 pixels.

Binary Classification To process water-ice classification on SAR data, the algorithms des-

cribed in the literature use different polarization modes. A pragmatic approach consisting in

thresholding the co-polarised ratio [43] was first considered; however, the VV and HH acquisi-

tions over Lake Ladoga on April 11th, 2015 occurred at very different times of the day (04:16

UTC for the VV, 15:31 UTC for the HH). As we show later in Section 9.5.2, there were significant

drifts of the ice in the meantime, making the effective use of the co-polarised ratio impossible.

Therefore, we have adopted another approach consisting in a supervised classification based

on the grey level co-occurrence matrix (GLCM) texture features. The GLCM features [55] are

specific features designed to characterise the textures in greyscale images. They are computed

as follows: the original image intensity values are binned into K quantization levels; pairs of
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Figure 9.20 (a) is the composite of the Landsat blue band image (cyan) and the co-registered
Sentinel-1 HH image (red). 30 tie points used for assessing the quality of the co-registration
are displayed in yellow to red colours, according to the distance between their locations in the
Sentinel-1 image and the Landsat image. An area, highlighted by a rectangular black border, is
zoomed on and shown in (b).

pixels are created according to a distance d and a direction θ = 0°, 45°, 90°or 135°(for instance,

if d = 2 and θ = 45°, pixel (k,l) is paired with pixel (k-2,l+2), considering the top-left corner

as the origin of the image); in each window of size s (defined by the user) of the image, the

co-occurrence of value i and j inside pixel pairs is counted, and placed in the co-occurrence

matrix at coordinates (i,j). From this matrix, multiple texture properties can be derived.

GLCM features have been used successfully in water-ice classification of SAR data [143, 84].

We proceed similarly as [143] by extracting GLCM features in an image split in 16 intensity bins,

in subwindows of size s = 16, with a distance d = 2, averaged in the four possible directions. We

have found the contrast, the energy and the homogeneity features (see [55] for their formulas)

to be very good at discriminating water and ice in our image (see Figure 9.21). Alongside with

the HH backscatter, these are four features we use for our supervised classification.

The classification process was learnt on a sample of 400 points (200 water points, 200 ice

points) using a Support Vector Machine (SVM) algorithm with a linear kernel. All the image

pixels in the region of the lake mask determined by the ILI were then classified.

Comparison from Landsat to Sentinel-1

The Sentinel-1 SAR data has been processed as described in Section 9.5.2. Figure 9.22 shows

the Landsat classification, processed with the WICI, and the concurrent classification from

the SAR. In the lake part of the image shown on Figure 9.22, the agreement between the two

classifications is 98 %, and the Kappa coefficient is 0.85. To analyse the results in more details,

we have zoomed on four particular areas, shown in Figure 9.23.
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Figure 9.21 Features used for the SVM classification of the Sentinel-1 SAR image of Lake Ladoga
(April 11th, 2015). (a): Contrast; (b): Energy; (c): Homogeneity.
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Figure 9.22 Composite image showing the Landsat 8 OLI and the Sentinel-1 SAR binary
classification in the northern part of Lake Ladoga, April 11th, 2015. The yellow pixels are the
locations classified as ice by both methods; the green pixels are positive for the SAR and not
for the OLI; red pixels are positive for the OLI and not for the SAR.

We have observed shifts in Figure 9.23a and Figure 9.23c due to the displacements of the

icebergs during the day. Indeed, the Landsat image was acquired at 09:03 (UTC) and the

Sentinel-1 image was recorded at 15:31 (UTC). On these two Figures, we can observe drifts of

the ice of about 1 km. These differences, due to the difference in time of acquisition, contribute

to lowering the Kappa coefficient between the two classifications. In the zone represented

by Figure 9.23b, no significant shift is observed, and the Kappa coefficient is 0.92. In the last

zone (Figure 9.23d), both classifications show their limitations: while the Landsat retrieves a

significant coastal ice zone that the Sentinel-1 failed to detect, it also show a few false positives

in the form of "grains" of water, where the local standard deviations were affected by local

noise. Our algorithm, however, mostly classifies properly the river pixels that are all water
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Figure 9.23 Zoom on four parts of Figure 9.22, from West (a) to East (d).
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(unlike our processing of the SAR). Overall, considering that there are significant shifts of the

icebergs from the Landsat acquisition to the Sentinel-1 acquisition, the two classifications are

quite coherent.
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Conclusion

The work presented here represents a full algorithmic and software solution for producing

hyperspectral reflectance maps in coastal areas, from the acquisition of raw data to the delivery

of a radiometrically calibrated, orthorectified product, or even a thematic product such as a

chlorophyll-α concentration map.

In the context of the Léman-Baïkal project, the work presented in this thesis dealt with every

aspect of the processing of the hyperspectral data collected with a pushbroom sensor. Firstly,

the data was radiometrically calibrated: in particular, we proposed a novel approach to

perform spectral calibration, which uses Dynamic Time Warping to match high frequency

features from the spectrums acquired to a reference acquisition, relying on the presence of

atmospheric absorption peaks in our data. After removal of noise, glints and BRDF effect,

the calibrated data was proved to correspond well to the ground measurements obtained

with spectrometers. Then, we develop a new method to georeference data from pushbroom

sensors, which uses SURF and Particle Image Velocimetry to match the pushbroom scan

lines to an RGB reference computed in parallel from frame images. This process allows to

correct the orientation parameters for each scan line individually and estimate the interior

orientation parameters of the pushbroom camera as well. When comparing the mosaics

with the references, the RMSE do not exceed four times the GSD of the acquisition. To

offer practical usability of the data to our partners in the project, a software called HypOS

was developed, including orthorectification and calibration tools. Together with new data

compression techniques for both the images and their calibration, this software solution was

an efficient tool for processing the data from the pushbroom sensor and navigation sensors,

either from the ULM or drone acquisitions. The resulting orthorectified and calibrated data

was used for various studies: the chlorophyll-α concentration map in the Rhône Delta of Lake

Geneva, the total suspended matter and its retention in the Selenga Delta of Lake Baikal, but

also for other applications, like mapping fields and ponds in Brittany, France. At larger scales,

we also developed tools to monitor the ice coverage of great glacial lakes using both Landsat 8

multispectral data and Sentinel-1 SAR data. By fusing the two sources of data, we managed to

monitor ice coverage in the North of Lake Ladoga on a single day, in an interval of a few hours.

To the best of our knowledge, no such high-frequency monitoring exists in the literature.

The primary possible extension for this work is researching an image-based atmospheric

correction algorithm for water, for high altitude flights. At the time when this thesis is written,

the QUAC and the STEAC (developed by colleagues of the Geodetic Engineering Laboratory)
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do not perform well on water since they rely on the assumption that water has a very low

reflectance for correction. Finding an atmospheric correction solution for high altitude flights

would allow the coverage of larger areas. At the time being, only low altitude flights deliver

proper data since the atmospheric scattering is negligible. Other perspectives include the

mapping of water quality properties in the other parts of Lake Geneva and Lake Baikal. In

particular, it would be crucial to study geochemical properties like the retention of suspended

matter observed in Baikal.

134



A Data Compression

A.1 Radiometric Calibration Storage: UXM Files

The radiometric calibration process described in Section 5.1 implies the use of Dynamic Time

Warping (DTW) to match the high frequencies from the reference signal (from the Spectralon)

and the signal we wish to calibrate. Once the data is calibrated, the storage of the result can be

operated in two ways: either the calibrated signal is stored as such, or the DTW matching is

coded and stored into memory. The typical files produced during acquisition contain 1000

scan lines of 1000 pixels in 250 bands; each value being coded on 16 bits (2 bytes), such file

weights roughly 488 Megabytes (Mb). In this section, we propose a coding scheme to store the

DTW results with a much lower need of memory.

A.1.1 Coding Scheme

To begin with, it is important to understand the matching operated by DTW. To each times-

tamp of a signal (called signal 1) is associated a timestamp of another signal (called signal 2)

according to a distance criterion. The first timestamp is always matched with itself, so is the

last; in between, if a timestamp t1 in signal 1 has been associated with timestamps t2 in signal

2, the next match can be either t1 +Δt with t2, t1 with t2 +Δt or t1 +Δt with t2 +Δt . The first

one corresponds to a right move in the DTW matrix, the second corresponds to a down move,

and the third corresponds to a diagonal move (Figure A.1).

In order to save this matching, we have designed a file format called Universal Cross Mapping

(UXM). This format encodes the path taken through the DTW matrix as a series of bits. A single

assumption is made: if a right move follows a down move (or the opposite), one match is

useless and the two moves can be simplified to a diagonal move. Then, our encoding process

is summarised by the finite state machine represented on Figure A.2.

Algorithm 2 summarises this encoding process. It takes as input the series of moves found

using Dynamic Time Warping. The output is a series of bits, put together as bytes in Java.
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Data: The DTW paths for all pixels, as arrays paths[p][m] ([pixel][index of the move].)
Result: Series of pixels, following UXM format.
currentState = diagonal;
for p from 1 to # pixels do

for m from 1 to # moves do
if currentState == diagonal then

if path[p][m] == diagonal then
write 1;

else
if path[p][m] == horizontal then

write 00;
currentState = horizontal;

else
write 01;
currentState = vertical;

end
end

else
if path[p][m] == diagonal then

write 1;
currentState = diagonal;

else
if path[p][m] == currentState then

write 0;
else

�� ���� ��� 	
��
 ��� �
���������� �
���
�� �

� �

�
������ ����� ��;
delete bits written at previous steps;
write 1;
currentState = diagonal;

end
end

end
end

end
Algorithm 2: Encoding algorithm for calibration through DTW.
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Figure A.1 Example illustrating (a) the matching operated by DTW, and (b) the corresponding
path in the DTW matrix.
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Figure A.2 Finite state machine representing the coding of the DTW path.

A.1.2 UXM Memory Consumption

The size of the resulting code is bounded according to Property 1.

Property 1. The UXM code representing the DTW matching between two signals of size N is at
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most 2(N-1) bits ( N−1
4 bytes).

We demonstrate Property 1 with the following reasoning: for two signals of size N, the DTW

path must operate N-1 right moves, and N-1 down moves, that is, 2(N-1) moves in total. Accor-

ding to the finite state machine (Figure A.2), any 2D-move operated after a 2D-move of the

same nature costs at most one bit per move (less if it is a diagonal move). Only going right or

down after a diagonal moves costs two bits: in this case the total number of moves operated

is 3 (2 by the diagonal, 1 by the next move) and the total cost in bits is 3 (a diagonal move

is two one-dimensional move, plus the next move operated), which also results in a cost of

one bit per move. As a result, the code requires at most one bit per 1D-move, that is, 2(N-1) bits.

As already mentioned, recording the calibrated hyperspectral image of size 1000 by 1000

with 250 bands would require 488 Mb. Comparatively, the UXM file requires at most 1000×
1000× (250−1)

4 = 62 250 000 bytes 
 59.4 Mb. Conversely, we can prove that the minimal memory

required is approximately 29.7 Mb (obtained when all the moves are diagonal). Coding the

calibration with the UXM scheme effectively results in a division of a factor between 8.2 and

16.4 of the memory weight.

In the decoding phase, the algorithm counts how many horizontal and vertical moves have

been made so far; when both counts reach the number of bands, we know that one whole

signal (corresponding to a pixel) has been decoded. We can therefore concatenate all the

codes for all pixels within one single file and still have it decoded properly.

A.2 Hyperspectral Files Lossless Compression

To further optimise the memory consumption of hyperspectral files, we have implemented a

lossless compression scheme inspired of those found in the literature. Because of their very

fine spectral resolution, the adjacent bands of hyperspectral cubes are very strongly correlated.

This property is the foundation of all compression techniques used today for hyperspectral

data compression: data in band n-1 serves to predict the data found in band n; instead of

coding the full values contained in band n, we can restrict the coding to the residual between

the predicted value and the actual value. The standard system design for compression of

hyperspectral cubes is given by [20] and summarised on Figure A.3.

Band n-1

Band n

Predictor

+
-

2D Compression Entropy Coding Bitstream

Figure A.3 Standard system design for compression of hyperspectral images.

The purpose of the compression we implemented was not to compete with state-of-the-art

algorithms, but rather provide the users of HypOS with a low-complexity algorithm allowing

to save significant memory.
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A.2.1 Prediction Phase

Two possibilities were explored for the prediction:

• a simple prediction: in band n, the predicted value x̂i , j ,n of the pixel at coordinates (i , j )

is simply the value in the previous band, xi , j ,n−1.

• a more complex prediction, where the pixels are first clustered by a K-means algorithm.

The predicted value for each pixel is the value of the mean spectrum of the cluster in

which this pixel has been put.

The second method was inspired from Mielikainen et al. [94]. This method has been tried

on hyperspectral cubes of size 200×200×10 but did not show significant compression rates

(60 % on average, against almost 70 % for the other method tested - see following section).

Additionally, no implementation of the K-means algorithm allowed to obtain a reasonable

computation time (less than a day) for our standard hyperspectral images, which size is

1000×1000×250. Computation time being an essential criterion for choosing a compression

method, we have opted for the first prediction method. The rest of the compression algorithm

is described in the following section.

A.2.2 Entropy Coding

From the prediction phase, we produce a hypercube called residuals hypercube, which is the

hypercube to compress, minus its prediction hypercube. Given the nature of the prediction,

the residuals hypercube is composed with very small values (except in band 1). More impor-

tantly, these values are gathered in fewer bins. For example, the histograms of one of our

hyperspectral images of Lake Geneva, coded on 12 bits (which means the values are integers

between 0 and 4095), for both the original hypercube and the residuals hypercube, are shown

on Figure A.4.

The data being gathered in limited number of values, its entropy is now very low and can be

coded using an entropy coder. For the entropy coder, we use Huffman coding. Huffman coding

is a universally used entropy coder. The purpose of this section is not to explain the principle

of Huffman coding, which is very standard in the domain of information theory. However, we

wish to explain in this section why our implementation is computationally efficient.

For decoding purposes, both the Huffman tree and the dictionary must be saved: then, at

the decoding stage, bits can be read linearly. At each bit read, we either go down the tree

according to the value read, or go back up to the top if a leaf (node with no node of interior

level) has been reached, in which case the code is searched in the dictionary and converted

to its corresponding character. To allow for the creation of the dictionary and the tree in the

same loop, we use an extra array called "leaves", which tracks, at each iteration, what are

the leafs reachable by going down from the current node. This allows to keep track of which

characters should have their codes updated when creating a new node in the Huffman tree.
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Figure A.4 Histogram of values for (a) the original hypercube and (b) the residuals hypercubes.

Instead of proposing the pseudo-code of this algorithm, we illustrate it on a simple example

where char s = [a,b,c,d ] and pr = [0.4,0.3,0.2,0.1] (Figures A.5 and A.6).

Initially (Figure A.5a), each node leads to its associated character and the leaves of this node

are simply the nodes themselves. Huffman entropy coding theory gathers the two characters

with the lowest probabilities, that is, "c" and "d". Hence we know the last bit of the code of

"c" (respectively "d") is 0 (respectively 1). The new node created, indexed 5, has two children,

3 and 4, and the leaves of this node are also 3 and 4 (Figure A.5b). At the following iteration

(Figure A.6a), both nodes 2 and 5 have the lowest probability (0.3) so they are branched by

the Huffman tree. Node 6 is created, and has 2 and 5 as children. Algorithmically, its leaves

are determined as the concatenation of all the leaves of its two children, which effectively

gives 2, 3 and 4. The advantage of updating the leaves array, is that now the update of the

codes in the dictionary is straightforward: the dictionary should add a 0 at the beginning of

the codes of the leaves of node 2, and add a 1 at the beginning of the codes of the leaves of

node 5. The principle is the same for all the subsequent iteration, which is one single iteration

in our example (Figure A.6b).

The encoding stage turns the hypercube is a one dimensional array, and converts a each

character into its code in the dictionary. Since the dictionary keys are the residuals of the

hypercube, they do not follow any specific indexing order. This means that, at each read of

a character, we would have to browse through the dictionary to find this specific character.

However, in our case, the characters are the residuals; the hypercubes of the Léman-Baïkal

project are integers between 0 and 4095, which means the characters to code are integers in

the range [-4095,4095]. To index the elements of the dictionary, we create a lookup table (LUT)

of size 8191; for each element of the dictionary, the associated binary code is placed at index

4095 + r es, where r es is the value of the residual to code. Doing so, whenever a character r es

is read, its corresponding binary code is directly read at index 4095 + r es of the LUT, saving a

lot of computational time.
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Figure A.5 First two iterations of our Huffman tree and dictionary function.
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Figure A.6 Last two iterations of our Huffman tree and dictionary function.
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A.2.3 Computational Time and Compression Rate

We compressed 10 hypercubes using the process described in the previous sections. The

computation was performed on a computer equipped with an Intel Core i7-4800 MQ 2.7 Ghz

QuadCore. The average computational time was 615.58 seconds, and the average compression

ratio (ratio of the compressed size, divided by the original size) was 0.328, with a standard

deviation of 0.006. Comparatively, zip compression is performed in 32.8 seconds on average,

but achieves an average of 0.561 (standard deviation 0.090). These results were obtained for

images of different surfaces (water, vegetation, built structures). In spite of a rapid increase of

reflectance in the near infrared, vegetation pixels, for instance, did not alter the performance

of the band-to-band prediction. This compression scheme is reliable and achieves a compres-

sion rate that is comparable to more complex, state-of-the-art techniques, but takes time to

compress large folders of data.
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SCIENTIFIC SKILLS

Hyperspectral data geometric and radiometric calibration (see publications).
Image processing: image filtering, enhancement, mathematical morphology.
Machine Learning: SVM, decision trees, neural networks.
Data compression: entropy coding, linear prediction.

COMPUTER SKILLS

Experienced (+5 years) Java developer.
Experienced (+4 years) MATLAB developer. 
Able to work with Python (6 months experience).
Experienced with ERDAS Imagine, AGISOFT Photoscan, ENVI.
Experienced with Word, Powerpoint, Excel, LateX.

LANGUAGES

French: native speaker.
English: bilingual (TOEFL iBT score: 105; TOEIC score: 985).
Spanish: intermediate.

EXTRACURRICULAR ACTIVITIES

Volunteering to help young children (between 7 and 14 years old) with their homework, from 
2014 to 2017.
Responsible for the fitness training room of Mines Paristech (2012).
Administrator in the junior firm of Mines Paristech (2012).
Free time activities: singing, playing strategy games.
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