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Abstract
In this thesis, a computational approach is used to study two-phase flow including phase

change by direct numerical simulation. This approach follows the interface with an adaptive

moving mesh. The incompressible Navier-Stokes equations are solved, in two-dimensional

and axisymmetric geometries, using the Finite Element Method (FEM). The computational

domain is discretized using an unstructured triangular mesh and the mini element is used to

satisfy the "inf-sup" compatibility condition. A combination of smoothing mesh velocities and

remeshing is used to preserve the mesh quality. Adaptive mesh refinement is used to keep the

mesh sufficiently refined where needed. Mesh adaptation strategies, allowing to control the

refinement of the computational mesh, are discussed in the context of specific applications.

The accurate representation of the interface between the phases is a key issue to model surface

tension dominated flows. Here, the interface is represented explicitly by nodes and segments

that are a subset of the computational mesh and a sharp transition of the fluid properties

can be achieved. The surface tension force is included as a singular volume force, like in the

continuum model (CSF). The present discretization is shown to allow for exact equilibrium

(up to rounding errors) between the pressure and surface tension terms. This is important in

order to suppress spurious currents, which are a common issue in computational two-phase

flow. However, an exact computation of the interface curvature is necessary for the spurious

currents to be numerically zero. The curvature of the interface, is efficiently and accurately

computed by using the Frenet-Serret formulas. A phase change model is implemented via a

source term in the continuity equation, which is computed from the jump in conductive heat

flux at the interface. The presented approach is shown to provide an accurate description of

different two-phase flow phenomena, including phase change, and to handle cases with large

material property ratios. Accuracy and robustness of the present method are demonstrated

on several benchmark cases, where the results are compared to analytical or semi-analytical

solutions and experimental data.

Key words: Two-Phase Flow, Finite Element Method (FEM), Moving Mesh, Arbitrary La-

grangian Eulerian (ALE), Surface Tension, Phase Change.
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Résumé
Dans cette thèse, une approche computationnelle est utilisée pour étudier le flux diphasique,

y compris le changement de phase, par simulation numérique directe. Cette approche suit

l’interface avec un maillage mobile adaptatif. Les équations de Navier-Stokes incompressibles

sont résolues, en géométries bidimensionnelles et axisymétriques, en utilisant la méthode

des éléments finis. Le domaine de calcul est discrétisé en utilisant un maillage triangulaire

non structuré et l’élément mini est utilisé pour satisfaire la condition de compatibilité "inf-

sup". Une combinaison de vitesses de maillage et de remaillage est utilisée pour préserver

la qualité du maillage. Un raffinement de maillage adaptatif est utilisé pour maintenir le

maillage suffisamment affiné. Les stratégies d’adaptation de maillage, permettant de contrôler

le raffinement du maillage de calcul, sont discutées dans le contexte d’applications spécifiques.

La représentation précise de l’interface entre les phases est un problème clé pour modéliser les

écoulements dominés par la tension superficielle. Ici, l’interface est représentée explicitement

par des points et des segments fesant partie du maillage et une transition nette des propriétés

du fluide peut être obtenue. La force de tension de surface est incluse en tant que force

de volume singulière à la mannière du modèle CSF. Il est démontré qu’un équilibre exact

(jusqu’aux erreurs d’arrondissement) est possible entre le gradient de pression et la tension de

surface. Ceci est important afin de supprimer les courants parasites, qui sont un problème

commun dans le cadre du calcul de flux diphasique. Cependant, un calcul exact de la courbure

de l’interface est nécessaire pour que les courants parasites soient éliminés. La courbure de

l’interface est calculée de manière efficace et précise en utilisant les formules de Frenet-Serret.

Un modèle de changement de phase est implémenté via un terme source, qui est similaire

au modèle de tension de surface et est calculé à partir du saut de flux de chaleur local à

l’interface. Il est démontré que l’approche présentée peut fournir une description précise des

forces interfaciales, du transfert de chaleur et de masse entre les phases et peut traiter les

cas avec des rapports élevés de propriétés entre les deux phases. L’exactitude et la fiabilité de

l’approche présentée sont démontrées pour plusieurs cas, où les résultats sont comparés à

des solutions analytiques ou semi-analytiques et à des données expérimentales.

Mots clefs : écoulement biphasique, méthode des élements finis, adaptation de maillage,

Arbitrary Lagrangian Eulerian (ALE), tension de surface, changement de phase.
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1 Introduction

Flows with multiple phases are ubiquitous in nature and industrial applications. Multiphase

flow is encountered every day in drinking, cooking, swimming and rain. Many geophys-

ical phenomena and biological systems feature two or more phases, some examples are:

sedimentation, water waves, cloud formation, land and snow slides, blood flow and tem-

perature control by perspiration. There is a wide variety of engineering systems based on

multiphase flow, such as: power plants, fuel injection in combustion engines [42], inkjet

printing, lab-on-a-chip devices, distillation units, fluidized beds, chemical reactors, oil re-

covery and transportation [102], heat exchangers, evaporators, condensers, air conditioning,

refrigeration and electronics cooling systems [91]. A sound understanding of multiphase flow

is crucial for safe and efficient operation of these systems but the dynamics of multiphase

flow can give rise to many complex phenomena. All the systems, listed above are governed

by essentially the same physical laws describing mass, momentum and energy transport [71].

However, advances in engineering technology have required solutions to problems for which

a purely theoretical approach is not practical. This is often achieved by using correlations

and statistical or empirical approaches that have a limited range of validity. In the mean time,

the rapid advent of computing power and the increased efficiency of numerical algorithms

have allowed to simulate systems of increasing size and complexity. Numerical simulations

offer detailed information of the flow field and provide a huge cost saving potential relative to

experiments. This thesis is dedicated to a computational method for numerical simulation of

two-phase flow.

Fluid flow can be the origin of, or produced by, different types of forces. Some examples of

forces are gravity, viscosity, inertia and capillarity. The different forces have different scaling

behaviours. For example, gravitational and other volume forces increase with the volume or

the third power of the spatial size. Surface tension on the other hand, which is the origin of

capillarity, is a surface phenomenon. As a result, when decreasing the spatial size the surface to

volume ratio will increase and capillary forces will start to dominate over volume forces, which

explains for instance the nearly spherical shape of small droplets and bubbles. Depending on

the Reynolds number Re, which measures the ratio of inertia to viscous forces, the flow might

1



Chapter 1. Introduction

be turbulent or laminar. In this work we concentrate on flow in small geometries where the

Reynolds number remains sufficiently small such that the flow is laminar. However, even at

vanishing Reynolds number multiphase flow may exhibit non-linear effects because of the

coupling between the position of the free boundaries or interfaces with the flow field. This

non-linear nature of multiphase flows manifests itself by the large variety of flow patterns that

can be observed in multiphase flow. Some two-phase flow patterns found in channels are

illustrated in Fig. 1.1.

Figure 1.1: Two-phase flow patterns in a channel [111].

1.1 Capillary and Wetting Phenomena

Molecules at a liquid-gas or liquid-liquid interface have less interacting neighbors than

molecules in the liquid bulk. This is the origin of the phenomenon called surface tension, due

to which energy must be supplied to create interfaces and liquids adjust themselves to expose

the smallest possible surface area [33]. Surface tension makes soap bubbles spherical and

allows insects to walk on water. Moreover, it dictates the dynamics of two-phase flow through

small geometries. Intermolecular interactions are described by Lennard-Jones-type potentials,

which preconize that the (short range) repelling forces diminish faster with distance than the

(long range) attracting forces [24]. Due to the density variation across a liquid-gas interface

this leads to a reduced mean intermolecular distance normal to the interface compared to

2



1.1. Capillary and Wetting Phenomena

the mean distance along the interface, since otherwise there would be a net force towards

the liquid. Molecules on the interface therefore feel an increased attracting force from their

neighbors on the interface. This results in a net tension force, felt by any molecule in the

interface region, acting equally in all directions parallel to the interface.

Despite its molecular origin surface tension also has a precise macroscopic interpretation.

It is a mechanical line force distribution, i.e. a force per unit length, pulling on any surface

element of the interface from every side. Using some results from differential geometry, the

surface tension force per unit interfacial area can be shown to be described by the following

expression [18, 104]

f =−σn (∇S ·n)+∇Sσ, (1.1)

where σ is the surface tension coefficient, a property determined by the nature of the inter-

molecular forces of the two materials meeting at the interface, which is measured in N /m. In

Eq. (1.1), use has been made of the interface gradient ∇S defined as

∇S =∇ −n (n ·∇ ) = (I−nn)∇ , (1.2)

where n is the interface unit normal vector I is the identity matrix and nn is a dyadic product.

That is, ∇S represents the component of the gradient tangential to the interface and it acts

on the interface in a similar way as ∇ acts on the whole space. The first term in Eq. (1.1) is

the normal component of the surface tension force, while the second term is the tangential

component. When the surface tension coefficient σ is constant, the tangential component

vanishes and the surface tension force acts normal to the interface. The tangential component

of surface tension is necessary to describe phenomena like Marangoni convection and thermo-

capillary migration of drops. These phenomena are outside the scope of this work where σ is

assumed to be a constant parameter.

The expression −∇S ·n in (1.1) can be shown to be twice the mean curvature H of the interface.

The mean curvature of a surface is the arithmetic average of the two principal curvatures κi

(i = 1,2):

H = 1

2
(κ1 +κ2) = 1

2

(
1

R1
+ 1

R2

)
.

Each principal curvature is the curvature of a curve, i.e. the inverse of the radius of the

osculating circle, defined by a plane normal to the surface. For every normal plane a different

curvature can be obtained, the principal curvatures are the maximum and minimum of

those values. There exists an intricate relationship between minimization of surface area and

curvature as illustrated by soap films attached to a wire frame, whose equilibrium shape is

described minimal surfaces, which are surfaces of zero mean curvature. It is common in fluid

mechanics to define the curvature κ as κ= 2 H . A theorem of differential geometry states that
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Chapter 1. Introduction

the curvature of a surface Γ embedded in R3 can be computed as [39, 58]

κn = (∇S ·∇S)i dΓ =∇2
Si dΓ, (1.3)

where i dΓ is the identity mapping on Γ. In two dimensional Cartesian coordinates (x, y) we

have

∇Si dΓ = t t∇i dΓ = t∂s i dΓ = t t ,

where t = (t1, t2)T is a unit tangent vector and ∂s = t1∂x + t2∂y .

1.1.1 Contact Lines

If the interface bounding two fluids is not a closed surface but intersects with another interface

or a solid surface, the region where the two surfaces intersect is called a contact line. The

contact line will in general be a one-dimensional curve. This case is not only topologically

very different from the case where the interface is a closed shape, but also physically as it

gives rise to many new interesting and complicated phenomena, see [33] for a review. As fluid

molecules on an interface experience different neighboring forces as those in the bulk giving

rise to surface tension, molecules close to a contact line will experience even more different

forces since they are now close to molecules of the three different materials.

The macroscopic system formed by a drop of liquid resting on a solid surface and surrounded

by a gas or by vacuum usually forms a characteristic angle at the contact line. In this case, the

angle measured through the liquid between the interface and the solid surface is called the

contact angle θ, see Fig. 1.2. The contact angle quantifies the wettability of the solid surface

by the liquid, where θ >π/2 characterizes a hydrophobic surface and θ <π/2 a hydrophilic

surface. Wettability is an influential parameter in boiling heat transfer [13]. For a static

θ

Figure 1.2: Contact angle θ formed by a drop of liquid on a plane surface.

drop, the contact angle is determined by the properties of the three materials meeting at the

contact line. The equilibrium of forces at the contact line for a fluid/liquid/solid system, where
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1.2. Finite Element Method

σg s ,σl s ,σl g are the gas-solid, liquid-solid and liquid-gas interfacial energies respectively, leads

to Young’s celebrated equation:

σg s = σl s + σl g cos(θ). (1.4)

If the the contact line is in motion relative to the solid, the contact angle is called a dynamic

contact angle and will in general deviate from the static contact angle. The dynamic contact

angle shows a highly non-trivial behavior and is in general dependent on the properties of the

fluids, the solid and also on the flow field in the vicinity of the contact line [123]. Hysteresis of

the dynamic contact angle is in general observed, i.e. its value will vary between the advancing

and the receding contact angle values depending on whether the contact line was previously in

motion. Despite being a frequently observed phenomenon that is important to many practical

applications (e.g. coating processes), the physics of moving contact lines are still very poorly

understood [124].

In fact, classical hydrodynamics fails to describe moving contact lines. Scriven [66] has

demonstrated that it results in a non-integrable stress singularity requiring an infinite force

to move the solid relative to the fluid. The problem is due to the fact that the solution of

the Navier-Stokes equations has to satisfy both the kinematical condition and the no-slip

condition at the contact line. While the flow kinematics include contact line motion, the no-

slip condition does not allow it to move, implying that the contact line should remain pinned

on the surface at all times. The later contradicts everyday experience as we have all seen rain

drops sliding on a window. The non-integrable singularity can be circumvented by relaxing

the no-slip condition [41]. An alternative boundary condition is the Navier slip boundary

condition [93], which allows for a non-zero velocity at the contact line being proportional to

the local shear-stress. Experimental visualizations have shown that the fluid motion near the

contact line is described by a sort of rolling motion, i.e. fluid particles at the interface move

towards the contact point and then away from it on the solid surface [123].

1.2 Finite Element Method

Two-phase flow problems are described by partial differential equations (PDE). Many numeri-

cal methods exist for the discretization of PDE. Three classical mesh based methods are finite

difference methods, finite volume methods and finite element methods. Finite differences

(FD) benefit from their intuitive derivation from a Taylor series expansion and their straight-

forward implementation for simple problem geometries but they are difficult to extend to

more complex geometries. The finite volume method (FVM) applies conservation principles

for mass, momentum and energy to discrete control volumina allowing the exact integral

conservation principles to be verified around every mesh cell. In the FVM, unstructured

meshes can be used, which makes it flexible for handling complicated geometries and its

relative ease of implementation makes it very popular for fluid dynamics computations in

engineering.
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Chapter 1. Introduction

An important property of discretization methods is their order of convergence, which measures

how fast the discretization error decreases when the mesh resolution is increased. First and

second order accurate FDM and FVM are common but their extension to higher orders is

cumbersome to implement. For these methods a higher order approximation usually requires

larger interpolation stencils. This not only increases the band-size of the matrix but also makes

it difficult to handle boundary conditions. In the FEM on the other hand, higher order can

be achieved locally inside a compact element. Another advantage of FEM is the existence of

a strong theoretical background including rigorous error estimates. Moreover, FEM is well

suited for unstructured meshes, which is an important requirement to discretize complex

geometries. This makes the FEM a flexible and powerful tool for solving PDE in many area

of physics and in particular in fluid dynamics. Unstructured meshes and the FEM are thus

chosen in this work to handle the complicated interface motion arising in two-phase flow.

1.3 Motivation and Structure of the Thesis

Recent developments in the electronics industry have led to increases in heat dissipation rate.

Applications such as computer data centers, electric vehicle power electronics, avionics, radars,

and lasers produce amounts of heat that challenge traditional air cooling techniques [91].

Moreover, the sustained trend of miniaturization of microprocessors as described by Moore’s

law1 cannot continue for ever. By the 2020s, further downscaling of current silicon based

technology will lead to circuit features that are only a few nanometre across and quantum

mechanical effects will make transistors unreliable [141]. One way to continue increasing

computational power per unit volume is to stack many circuits on another. The success of this

technology will depend on whether the heat generated by such a 3D stack can be removed

efficiently. This leads to an urgent need for innovative cooling techniques to maintain chip

temperatures below limits set by both materials and device reliability.

This trend is responsible for a recent transition to two-phase cooling, which exploits the latent

heat of vaporization rather than sensible heat alone. Two-phase flow cooling allows to achieve

high heat transfer coefficients and high heat fluxes at almost constant temperature. The latter

is important to limit the thermo-mechanical stresses and can improve the durability of the

equipment. Flow boiling enables very high heat transfer rates at small liquid flow rates [76],

thus allowing very small liquid pumps to be used, resulting in very compact cooling systems.

Three promising two-phase cooling configurations have appeared [91] as best contenders for

the most demanding applications: jet impingement, spray cooling and mini/microchannels.

Jet impingement and spray cooling have the potential to produce very high heat transfer coef-

ficients in a concentrated region. Microchannel heat sinks are ideally suited for applications

demanding the dissipation of large amounts of heat in very limited space [91].

The design and performance assessment of cooling systems are highly dependent on empirical

predictive tools and, to a far lesser extent, mechanistic models [91]. Empirical correlations

1Moore’s law predicts that the number of transistors on a chip will double approximatively every two years.
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are usually derived from large databases for different coolants, geometrical parameters, and

operating conditions. The term microchannel is used to refer to channels where two-phase

flow correlations change significantly due to microscale effects. The differentiation between

macro and microchannels can be based on the volume to surface area ratio and channels

with hydraulic diameter smaller than a few mm are usually considered as micro. The macro

to micro scale transition has also been defined in terms of non-dimensional numbers where

the Eotvos number and the confinement number have been used [76]. Many two-phase

flow and heat transfer design methods exist for macrochannels but due to the small sizes

(microchannels can be 100μm in diameter), which make it difficult to perform non-intrusive

measurements, prediction methods for microchannels are fewer [111]. While for large chan-

nel sizes turbulence and droplet entrainment are important, in microchannels the flow is

typically laminar and governed by viscosity, surface tension and boiling effects. The effects of

viscous dissipation, which are commonly neglected in large channels, are found to increase

with decreasing channel sizes [80, 90]. Viscous dissipation has the effect of increasing the

temperature of the flowing fluid along the channel axis.

The most important flow patterns for thermal microchannel applications are slug flow, which

is composed of long gas bubbles flowing through the denser phase and annular flow, in which

the liquid is flowing in a layer on the wall forming an annulus around the gas region. When

boiling occurs in a microchannel, a nucleated bubble typically grows very fast and fills the

entire tube cross section [137], thus leading to an elongated slug as shown in Fig. 1.3a. When

(a)

(b)

Figure 1.3: Typical flow patterns in microchannels: (a) slug flow, (b) annular flow [94].

several slugs merge, the flow transitions to the annular flow pattern displayed in Fig. 1.3b. In

annular flow the interface is typically traversed by waves. These waves increase the risk of the

annular liquid film drying out with very bad consequences for the heat transfer characteristics

and even possible failure of the device.

Numerical simulations are an attractive tool to investigate the flow dynamics with heat and

mass transfer in microchannels as they provide detailed spatial and temporal resolution, being

able to describe the complete distribution of the physical quantities of interest. According to
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Knudsen’s criterion, the characteristic length scales of microchannels are usually sufficiently

large, compared to molecular length scales, allowing a continuum description. Moreover,

flow speeds are usually sufficiently low for compressibility effects to be negligible and the

flow to be laminar. Two-phase flow in microchannels can thus be modeled based on the

incompressible Navier-Stokes equations. In the continuum mechanics picture, the interface

is infinitesimally thin and fluid properties as well as some flow quantities (like the pressure)

change discontinuously over the interface. The modeling of interface dynamics and the

accurate representation of the surface tension force have proven to be key issues in the

numerical simulation of two-phase flow.

Based on the aforementioned background, the aim of this thesis was to develop a numerical

framework for the direct numerical simulation (DNS) of two-phase flow with phase change

in the capillary flow regime. Therefore, an existing moving mesh flow solver was further

developed and applied to the simulation of various benchmark two-phase flow problems. The

computational solver is written in the C++ programming language and solves the unsteady

Navier-Stokes equations for two incompressible phases with the Finite Element Method (FEM).

The contributions of the present work are

• the solver was extended to the simulation of axisymmetric flows based on the governing

equations in cylindrical coordinates.

• a static contact angle and a phase change model have been included into the code

allowing to simulate wetting and boiling.

• the enhanced solver was extensively validated with benchmark cases important for

two-phase flow simulations.

The thesis is organized as follows, chapter 2 introduces the background on numerical mod-

elling of two-phase flow and reviews the state of the art. Chapter 3 presents the governing

equations, which are the basis for the numerical discretization presented in the following

chapter. In chapter 4 the numerical procedure underlying the current solver approach is pre-

sented in a detailed way. Chapter 5 is devoted to numerical applications of the solver, where

numerical results for a variety of test case are presented and compared to analytical solutions

or experimental data. Conclusions and further recommendations are given in chapter 6.

8



2 Numerical Modelling of Two-Phase
Flows: An Overview

Over the last decades, the use of numerical methods to approximate the solution of physical

problems, in particular in the context of fluid flow simulation, has grown into a major research

domain. Numerical methods have been applied to simulate complex physical phenomena like

drop splashing, atomization processes and ocean waves [47]. This research field is expected

to play a key role in the future due to the large cost saving potential relative to experiments.

However, many problems of highest interest still require too much demand on computational

resources, even for today’s computers. This is the case for problems involving a wide range of

spatial and time scales, like turbulent flows. Moreover, numerical methods always bear the

danger of producing non-physical results. Therefore, careful comparison with experimental

or analytical data is always necessary to validate any new numerical simulation tool.

For most problems in engineering and nature, the macroscopic view based on the integral bal-

ances of mass, momentum and energy has been very successful. However, there are situations

where molecular effects become important, thus requiring a microscopic or molecular view.

Strictly speaking, the continuum approach is valid only if the mean distance a molecule travels

between two interactions with other particles is very small compared to any characteristic

length of the flow problem. Computational methods can be distinguished based on how much

of the microscopic (molecular or atomistic) world is modeled. On the one extreme are molec-

ular dynamics (MD) simulations, which follow the molecules individually. MD simulations

require way too many degrees of freedom for typical engineering problems but they are very

useful in material science. In this chapter we review some of the computational methods that

are commonly applied for engineering simulations. We start with methods that include some

microscopic effects (meso-scopic view) and proceed with the continuum mechanics models,

which are used in this work.

2.1 Meso-Scopic Models

Diffuse-interface models offer a way to account for the additional physics that become rel-

evant when the thickness of the interfacial layer becomes comparable to the length scale of
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the phenomena being examined, see [1] for a review. They are based on statistical mechanics,

kinetic theory and non-equilibrium thermodynamics. Diffuse-interface models replace the

sharp interface by a thin but finite transition region and quantities that are local in the contin-

uum formulation (like surface tension) become distributed throughout the interfacial region.

Such models have been used to simulate moving contact lines and phase change phenomena.

Examples of situations involving physical mechanisms acting at scales comparable to the

interface thickness are: near the critical point where the interface thickness diverges, the

motion of the contact line, breakup of fluid threads and merging of bubbles. A finite width

of the interfacial layer is inherent to diffuse-interface models. By considering the asymptotic

limit in which the ratio of interfacial width to macroscopic length scale vanishes (i.e. the

sharp-interface limit), the diffuse-interface models can be related to the continuum equations

of fluid dynamics [1].

An example of diffuse-interface models are phase Field methods, which are based on an order

parameter (or phase-field variable) and an equation for the free energy as a functional of

the phase-field variable [1]. The phase-field variable is related to the volume fraction of the

individual components and its evolution is governed by the Cahn-Hilliard equation, which

is a fourth order differential equation. The equilibrium interface profile can be found by

minimizing the free energy functional with respect to variations of the phase-field variable

[7]. The evolution of the phase-field variable is coupled to the Navier-Stokes equations for

the macroscopic variables (usually velocity, pressure and temperature). Phase field methods

usually require a very thin interfacial layer to model the physics of the problem, leading to

high computational requirements to resolve the sharp gradient in the transition region [7].

Moreover, due to the high order differential operators involved, phase-field computations

typically use high order discretization methods, such as: spectral methods [7] or isogeometric

analysis (IGA) [54, 85]. The phase-field method was used in [73] to simulate an evaporating

bubble in a microchannel, investigating the effects of the contact angle and the results were

compared to experimental data. In [85] the Navier-Stokes-Korteweg equations were solved

using IGA to simulate bubble coalescence in annular geometry and a liquid droplet spreading

on a surface.

The lattice Boltzmann method (LBM) is a computational method that solves the Boltzmann

equation of statistical mechanics. The underlying idea of LBM is to use simplified kinetic

models for the microscopic or meso-scopic processes such that the averaged properties obey

the desired macroscopic equations [25]. The LBM evolved from lattice gas automata (LGA),

which use a lattice discretizing both the position and velocity space. Every point of the lat-

tice is connected to its neighbors by a finite number of velocity-links. In LGA there can be

either zero or one particle at every lattice point occupying a particular velocity-link. An LGA

computation is composed of two steps, first the particles are propagated with their corre-

sponding velocity and then collision rules are applied. Suitable collision rules should conserve

the particle’s mass, momentum and energy. Momentum and energy are thus transferred in

discrete steps from fluid particle to fluid particle, rather than in a continuous way. Lattice

gas automata are able to approximate fluid motion if an ensemble average is taken but they
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suffer from statistical noise among other issues. To get rid of the statistical noise of LGA, the

LBM replaces the Boolean particle number by a probability distribution. The LBM uses a

lattice to discretize the phase space (position and velocity space) and it applies a sequence

of collision and streaming steps. The dependent variable of LBM is the probability density

function, which has to satisfy the Boltzmann equation with a simplified collision operator

describing a relaxation towards an equilibrium distribution. The macroscopic variables can be

obtained from the probability density function and used to compute the equilibrium Maxwell-

Boltzmann distribution, which in turn enters the collision term. It can be demonstrated,

via the Chapman-Enskog multiscale expansion, that the lattice Boltzmann equation reduces

to the macroscopic Navier-Stokes equations for vanishing lattice spacing. Models for the

interactions between different fluid phases can be included in the LBM [121] to simulate mul-

tiphase flow, with phase separation resulting from the particle dynamics without any special

treatment being needed for the interfaces. The LBM was used for the simulation of capillary

waves [59] showing good agreement with the dispersion relation from linear theory. Since

LBM can easily incorporate solid boundaries of complex geometry [59], Lattice Boltzmann

multiphase fluid models have been used to simulate multicomponent flow through porous

media. Phase change, wall wettability and roughness effects can also be included in LBM.

Blake et Al [16] simulated dynamic wetting with the LBM. In [55] an interparticle interaction

force scheme was proposed for LBM and used to simulate droplet motion and coalescence

on bottom surfaces with wettability gradients. The LBM was used in [37] to investigated the

bubble nucleation and departure within a microchannel.

2.2 Macroscopic Models

In this section we review numerical approaches based on the continuum equations of fluid

mechanics. Several computational methods have emerged to solve the Navier-Stokes equa-

tions with multiple phases and no particular method has proven superior in all situations.

Here, we focus on direct numerical simulation (DNS), where the flow field is computed by

solving the governing equations while directly resolving all the interesting temporal and spatial

scales. The beginning of multiphase flow simulation can be traced back to the second half

of the 20th century when Harlow et Al. [61] presented a finite difference discretization of

the Navier-Stokes equations, with a fixed computational mesh, advecting marker particles

to keep track of the free surface. In the continuum limit, two-phase flow is characterized by

the presence of an interface, which mathematically is a surface in three space dimensions

or a curve in two space dimensions. Numerical modelling of two-phase flow can be difficult

due to complex evolutions of interface and changes of its topology. Among the most recog-

nised numerical issues are: the robust representation of the evolving interfaces, the accurate

computation of the surface tension force and handling large density/viscosity ratios [47]. The

second point is of particular importance as some numerical methods give rise to non-physical

spurious currents [110], which sometimes may even prevent convergence of the solution.

Spurious currents, generated by finite elements discretizations, have been studied thoroughly
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for interface resolving [27] and non-resolving meshes [48].

Two approaches exist to include the surface tension force into the fluid mechanics equations:

the "two fluids" approach solves the equations for each phase separately and surface tension

modifies the boundary condition at the interface between the phases, while the "one fluid"

approach introduces surface tension as a local source term in the momentum equation.

For the latter the continuum surface force (CSF) method [18] has been widely used. Both

approaches have been compared for the simulation of a static drop in equilibrium in [148]. It

was concluded that the "two fluids" approach is algorithmically more demanding but more

accurate while the "one fluid" approach offers a greater flexibility but is particularly prone to

spurious currents. In the present work the "one fluid" approach is used but we will show that,

as discussed in [99, 27], spurious currents can be eliminated by an appropriate discretization

of pressure gradient and surface tension term, provided the curvature is computed exactly.

Numerical methods can be classified into mesh-based and mesh-less methods. Mesh-less

methods are usually based on particles, like the smoothed Particle Hydrodynamics (SPH)

method [17]. Particle methods are known to suffer from lack of accuracy to represent the

shape of the interface but they are very flexible in handling complex fluid phenomena such

as splashes, breaking waves and topological changes. Particle methods are widely used for

astrophysical simulations [89] and graphical animations due to their efficiency in quickly

simulating complex fluid-like behaviour. They even allow simulations to be carried out in real

time [147], which is a key requirement for certain applications such as computer games.

Mesh-based methods can be further classified into interface capturing and interface tracking.

Interface capturing methods make use of the Eulerian description and use a fixed mesh on

which they solve an equation for the advection of a "color" function describing the different

fluids and the interfaces. Mainly two types of color function are used: the volume fraction,

leading to the Volume Of Fluid method (VOF) [53, 63, 110, 99], or a signed distance function,

in the Level-Set method [130, 58]. In the VOF method the color function represents the volume

of one phase present in each computational cell. The VOF method is able to conserve the

respective mass of the phases exactly. However, its representation of the interface suffers from

low accuracy, which has bad repercussions on the computed curvature and the surface tension

force. The Level-Set method instead, is accurate to compute the curvature, but it does not

conserve mass very well. Moreover, a frequent reinitialisation is required to keep the Level-Set

a signed distance function [58]. To take advantage of the respective advantages of the VOF

and Level-Set methods, some researchers have proposed to use a combination of both [11].

2.2.1 Interface Tracking

Interface tracking methods describe the interface by a set of particles or interconnected

mesh points, which are either part of a secondary mesh advected relative to a fixed primary

mesh (background mesh) or are a subset of the primary mesh. In the former approach the

flow equations are solved on an Eulerian background mesh and the interface velocity is
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interpolated from the background mesh. Examples for this approach are the front-tracking

(FT) method [139, 75] and the immersed boundary method (IBM) [125], which track three-

dimensional interfaces using triangulated surfaces and interpolates the interface velocity from

the background mesh. In [125], an algorithm was presented for maintaining the interface

connectivity information when topology changes occur and used to simulate a rising bubble

and bubble/drop coalescence. Another example is the sharp-interface method (SIM) [148],

where each phase has its own governing equations connected via boundary conditions at a

discontinuous interface.

The Lagrangian approach consists in moving the mesh nodes with the local flow velocity.

However, fully Lagrangian approaches often result in severe mesh distortions that can result

in mesh tangling making them impracticable for most problems unless continuous remeshing

is used. A Lagrangian finite element method has been used in [77], with a mesh rezoning

technique, to compute the effects of varying water depth on the propagation of a solitary wave.

In [109] a similar problem was investigated where a water wave was shoaling over a constant

slope topography with eventual wave breaking. Arbitrary Lagrangian-Eulerian (ALE) methods

allow to avoid the shortcomings of purely Lagrangian approaches by moving the mesh in an

arbitrarily specified way [35, 36]. In general, the Lagrangian approach (mesh moving with

the flow velocity) is required to move the interface mesh. The ALE approach allows for a

movement of the interface mesh in the Lagrangian way while the remaining mesh nodes may

be adjusted in an arbitrary manner, with the goal of preserving well shaped mesh elements

during the simulation. Moving mesh methods are useful for problems displaying moving

boundaries/layers, scale invariance or self similarity [8]. The ALE method is well suited for

moving boundary problems in general and in particular for simulations of fluid-structure

interactions [146].

Interface capturing methods have the advantage of being flexible with regard to complicated

interface motion because topological changes are handled automatically, although not in

a physical way. However, in fixed mesh methods, interfaces are in general not resolved by

the mesh thereby reducing the accuracy of interfacial tension and the representation of the

discontinuous material properties. Interface tracking methods are able to resolve the interface

with edges/faces and nodes of the computational mesh, thus making the interface a true

discontinuity. Therefore, interface tracking allows for a more accurate representation of the

interface and the curvature calculation, but this comes at the price of a reduced flexibility to

handle complicated interface deformation. Since the interface is tracked explicitly, topological

changes such as breaking and merging of interfaces have to be "included manually" when

using interface tracking or front tracking methods. Moreover, guarantying mass conservation

can be an issue for front tracking methods where the interface is advected by a velocity, which

is interpolated from the surrounding mesh nodes and is, in general, not divergence free. This

mass conservation problem is absent from ALE methods where the velocity is defined at the

interface nodes, thus avoiding the need for interpolation. Table 2.1 summarizes the main

advantages and drawbacks of interface tracking and interface capturing approaches.
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Interface Tracking Interface Capturing

+accurate representation of the interface +topological changes happen automatically
-topological changes need to be "included -additional equation for color function
manually"

Table 2.1: Comparison of interface tracking and interface capturing approaches.

The finite element method (FEM) has shown to be well suited for moving mesh methods for

the same reasons which recommend it for fixed-mesh applications [86]: flexibility for irregular

geometry arising from nodes motion is easily accomodated and representation of variable

coefficients is possible. Moreover, the FEM allows for a particular kind of interface tracking.

Space-time methods [14, 88, 135] discretize both the space and time domain simultaneously

with the FEM. As a result, the free boundary or interface motion is automatically accounted

for by the shape of the space-time elements. Another interesting approach is the eXtended

Finite Element Method (XFEM), which uses a fixed mesh with a shape function space that

is locally enriched by functions that enable the exact approximation of discontinuities. By

adding discontinuous interpolation functions to the elements traversed by the interface, the

XFEM method is able to represent a discontinuous interface on a fixed mesh. In [116], different

enrichment schemes are investigated for the velocity and pressure spaces, in the context of

two-phase and free-surface flow simulations. However, a drawback of the XFEM approach is

that it suffers from ill conditioning of the resulting linear system, adding stress on the linear

equation solver [115].

In the classic ALE method the time derivative is expressed with respect to a deforming config-

uration and the mesh velocities enter the flow equations via the convective term [62, 36, 69].

Besides the dependent variables of the flow problem, deforming mesh methods introduce

many degrees of freedom associated with the trajectories of the mesh nodes. Mesh nodes

at the interface have to satisfy the kinematic conditions and hence their velocity is specified

while the mesh points on the boundaries of the domain can usually remain fixed. However,

the motion of mesh points which are "in between" (the volume mesh points) remains to be

specified, with the objective to preserve a good mesh quality. Many ALE schemes use mesh

velocities generated by mechanical analogies. A popular approach is to use a mesh which

deforms like a fictitious elastic body [26, 134, 74, 49, 86] subjected to displacement bound-

ary conditions at the interface and domain boundary. Several mathematically motivated

approaches also exist [8], which try to optimise geometric qualities of the mesh by minimizing

a functional or find the mesh velocities as a solution to an additional differential equation.

An important question, in the framework of moving mesh schemes, is the role of the Geo-

metric Conservation Law (GCL), which is discussed in [136]. The GCL originated from the

finite volume framework, where it provides a condition to maintain the inherent conservation

properties of the FVM. Starting from the integral GCL, Thomas and Lombard [136] derive a

differential version of the GCL, which has to be satisfied by a finite difference scheme based
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on a coordinate mapping from a physical moving boundary domain to a time independent

reference domain. The authors argue that the GCL condition has to be satisfied in order to

avoid additional errors in the flow variables. The GCL is usually derived from the requirement

[136] that starting from a uniform flow, the numerical scheme must be able to reproduce this

uniform flow exactly at all times on a moving mesh. Cao et Al [23] used the GCL to derive a

mesh movement algorithm. They impose the Jacobian of the moving domain transformation

based on a monitor function and derive a differential equation for the mesh velocity field,

which is then shown to be equivalent to the minimization of a functional. A similar method

was proposed by Baines et Al [10] based on a local conservation principle to find the mesh

velocities. In the so called conservation method, the nodes of the mesh are moved such that

the mass fraction associated with particular subregions is preserved. A detailed description of

the conservation method is given in [8], along with its application to diverse moving boundary

problems. The conservation method has been used to simulate glacier movement [95] and

tumour growth in [83], where it was shown to have higher order of convergence than trans-

forming the problem to a fixed domain. In [9] single and two-phase Stefan problems were

simulated using only the energy equation (without coupling to the Navier-Stokes equations)

and it was shown to converge towards the analytic solution with second order accuracy. In the

aforementioned papers, the conservation method was used without changing the number of

mesh nodes or their connectivity. Therefore, the mesh tangled when the domain occupied by

one phase became to short.

Severe mesh deformations can occur with interface tracking methods and in the worst case,

some mesh elements might even be deformed to a point that prevents the simulation to

proceed. Therefore, remeshing can help to handle cases where the motion of the interface

would otherwise lead to strong mesh distortions. Remeshing can mean changing only the

connectivity of the mesh and/or inserting/removing mesh points. After remeshing, an inter-

polation is required to project the solution from the old onto the new mesh. This interpolation

introduces additional errors, which are usually of diffusive nature, i.e. they tend to smear

out steep gradients. Some authors propose changing only the local connectivity, e.g. by

swapping edges and avoid global remeshing [31, 106]. However, at the implementation level,

these techniques lead to frequent insertion/deletion operations on vectors, which typically

require doubly or single linked lists to perform better and may become less efficient than

global remeshing. Moreover, remeshing offers the opportunity to adaptively refine the mesh,

increasing the mesh resolution where needed while keeping a coarse mesh elsewhere. In [92],

it was demonstrated with a simple example that remeshing at every time step can be more

accurate than using an ALE scheme without remeshing.

Free surface flow was simulated in [19] using the FEM and the ALE approach with a node

repositioning algorithm based on the minimization of a penalty function. There, surface

tension was modelled by minimizing the surface energy and it was argued that the ALE

approach could compete with fixed mesh approaches such as the VOF. An ALE method with

pseudo elastic mesh update and remeshing to handle large deformations is described in

[142] for three dimensional free surface flow problems including dynamic contact lines. The
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contact line speed is computed as a function of the contact angle, the capillary number and

the static contact angle to simulate gravity driven motion of a droplet along an inclined plane

and the formation of a meniscus on a tetrahedral mesh of isoparametric quadratic finite

elements. In [106] an interface tracking method with an adaptive unstructured mesh has been

proposed for three-dimensional two-phase flow including a scheme to simulate the breakup

of a fluid thread. The curvature was computed by a least squares parabola fitting and the

method was used to simulate several test cases: two-phase Couette flow, oscillating droplet,

a droplet in shear flow, a pinching ligament and modulated jet pinching. The method was

then extended [107] to interface merging/coalescence and used to simulate droplet collisions.

An ALE moving mesh method discretizing the axisymmetric flow equations by the FEM was

presented in [51, 49] to simulate free surface and two-phase flow problems including static

bubble, osciallting droplet, liquid droplet impinging on a solid surface and a rising bubble. The

curvature was approximated using the Laplace-Beltrami operator technique combined with

a boundary approximation using isoparametric finite elements. This method was shown to

produce almost no spurious currents [48] and to handle problems with large jumps in material

parameters without loss of accuracy. Moreover, the Laplace-Beltrami technique allows for a

weak enforcement of the equilibrium contact angle as shown in [50] where the spreading of a

pendant liquid droplet was simulated with a Navier-slip boundary condition at the contact

line.

The computational code proposed in [3], which is the starting point for the present work,

implements a combination of the numerical techniques described above. It uses the FEM to

discretize the two-phase domain with an interface resolved moving unstructured mesh within

the ALE framework like in [51, 49] and mesh maintenance algorithms that are largely inspired

by [106] including Laplacian smoothing as proposed in [31]. Compared to choosing mesh that

deforms like a fictitious elastic body, the mesh motion scheme of [3] has the advantage that no

additional elasticity problem needs to be solved. The method was extended to the cylindrical

axisymmetric flow equations in [56] and validated versus analytical and experimental results.

The interface motion is tracked by moving the mesh nodes and remeshing is used making it

able to handle cases with large mesh deformation but without topological changes. The time

required by the remeshing procedure and the successive interpolation was found to account

only for a small fraction in the time of the overall algorithm. The present method is accurate

in its representation of the curved interface and in order to avoid spurious currents the same

FEM basis functions are used for the pressure and the surface tension term [27], as will be

discussed in Section 5.4.

2.2.2 Phase Change

In this section we briefly review the state of the art in numerical methods for two-phase

flow including phase transition. The reader is referred to [78] for a more comprehensive

review. Phase change introduces further issues for numerical algorithms like the normal

velocity discontinuity, the accurate evaluation of the phase change mass flow rate and sharp
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boundary layers of the temperature field close to the interface. Early moving mesh finite

element methods have been applied to the Stefan problem, solving only for the temperature

and interface position. In [14] two-dimensional Stefan problems were solved with space-

time finite elements and in [86] freezing around a pipe was simulated. However, it appears

that the first numerical simulation of the Navier-Stokes coupled to the energy equation with

phase change was pioneered by the work of Welch [143]. Welch used a moving unstructured

mesh with double degrees of freedom at the interface to simulate evaporation in a closed

environment, thermocapillary motion, an oscillating bubble and nucleate boiling. In a second

paper [144] Welch, simulated the growth of a vapor bubble on a surface with a pinned contact

line. In all these early works, no remeshing was used thus limiting their range applicability to

cases without strong interface deformations.

As for the surface tension force, the phase change mass transfer can be included in the interface

jump condition or as a singular source term acting at the interface. The SIM method with cut

cells (SIMCC) is based on the former approach and it has been used in [132], with a quadratic

curve fitting algorithm for the curvature, to simulate the cryogenic flow of a bubble in a tube

with phase change. Most computational codes for phase change use the source term approach,

with many authors using the VOF method [60, 118, 145]. Son and Dhir [126] modifed the level-

set method to include liquid-vapor phase change and investigated film boiling. A coupled

level-set and VOF method has been used by Tomar et Al [138] to simulate film boiling and

investigate the frequency of bubble formation. The Front Tracking (FT) method has been

adapted to phase change problems and applied to simulate phase change by Tryggvason and

coworkers [75, 44, 140]. The FT method has been used to simulate the Stefan problem [43, 44],

3D film boiling of a liquid sheet [44], boiling around a cylinder [140], boiling around multiple

cylinders [45] and explosive boiling in microgravity [43].

Some methods may be less suitable to handle the discontinuous normal velocity at the inter-

face, which are caused by the phase change mass source term. In the FT method, interpolation

errors might make it difficult to conserve the mass of the respective phases. Among some

recent developments in numerical methods for phase change are the mass-conservative Carte-

sian grid method, developed by Sato et al [114], which was used to simulate an evaporating

rising bubble and nucleate boiling. The XFEM method was used in [87] for solidification

problems and the results were compared with ALE simulations using the commercial software

COMSOL multiphysics. COMSOL’s ALE moving mesh method was also used in [72] for the

simulation of evaporating bubbles in a microchannel but with very little previous validation.

A fundamental question in phase change computations is how to model the mass transfer

rate at the interface. Two main categories of models can be distinguished: those based on

thermodynamic equilibrium, where the mass transfer rate is computed from the energy

jump condition [44, 114, 126, 132, 143, 144, 145] and models accounting for a departure from

thermodynamic equilibrium [60, 72] where the mass transfer is computed by a formula dervied

from molecular gas kinetic considerations. Both models respect the energy jump condition,

which follows from the integral energy conservation principle. However, the first kind of
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models assume that the interface is at saturation conditions based on local equilibrium such

that the temperatures in both phases are equal at the interface. Models of the second kind

allow the temperature field to be discontinuous at the interface and compute the phase change

mass transfer, based on kinetic theory, following the work of Schrage [119] and Tanasawa

[133].

In this work, we assume the interface temperature is continuous and equal to the saturation

temperature. The latter is supposed uniform as we consider the mono-component case and

constant based on the isobaric approximation. This is a simplification over physical reality

where a small interface superheat and interface thermal resistance are usually observed. More

specifically, at a curved interface where the liquid and vapor pressures cannot be equal due

to the capillary pressure jump, there will be deviation from equilibrium. In [75] the choice of

the interface condition for the temperature is discussed for the simulation of film boiling and

compared to experimental data. While non-equilibrium thermodynamics models are aimed

at a better description of the actual physics of phase change, such models usually contain

phenomenological constants, like the accommodation coefficient, whose quoted values in

the literature vary wildly [24] because it is hard to measure experimentally [104]. As the exact

value of these constants is unknown even for common fluids like water they represent free

parameters, which are assigned an a priory arbitrary value in computational studies [78]. Since

it allows to model phase change in a self consistent way, remaining inside the framework

of continuum mechanics, the thermodynamic equilibrium approach has been chosen in

the present work. Therefore, we solve the energy equation by setting the temperature of the

interface equal to the saturation temperature and use the energy jump condition to ensure

that mass and energy transfer at the interface due to phase change are correctly accounted for.

18



3 Governing Equations

This chapter introduces the equations describing the motion of two in-miscible, incompress-

ible Newtonian fluids with phase change. The equations presented in this section have been

solved numerically with the methods described in the next chapter. In this chapter we will

first present the governing equations for mass, momentum and energy without phase change.

Phase change will then be introduced in the last section.

In continuum mechanics a two-phase flow is considered as a field, which is divided into

regions (the phases), and the interface separating the different phases is a moving boundary.

In general, the governing equations of single phase flow, expressing the balance of mass,

momentum and energy, hold for each region. Additionally, appropriate matching conditions

need to be prescribed at the interface. One can distinguish between interface jump conditions

and interface boundary conditions [71], where the first specify exchange of mass, momentum

and energy through the interface. The interface jump conditions can be derived from the

general form of the conservation equations of the bulk fluid phases applied to a control volume

that includes the interface. However, for viscous flow, they are insufficient to have a well posed

problem and they need to be supplemented by interface boundary conditions, which are of a

more phenomenological nature [104]. Examples of the latter are the conditions of continuity

of the tangential component of fluid velocity and the temperature at the interface.

3.1 Mass and Momentum Equations

In this thesis, we solve the Navier-Stokes equations in velocity-pressure formulation. Two

equivalent formulations of the non-dimensional Navier-Stokes equations are going to be

presented next. The dependent flow variables are the fluid velocity v (x , t ) and pressure p(x , t ),

which are functions of spatial coordinate x and time t . In the following, lengths have been

non-dimensionalized by a characteristic length L, velocities by a characteristic velocity V and

time by a characteristic time scale L/V . The non-dimensional quantities are related to the
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Chapter 3. Governing Equations

corresponding dimensional quantities (with subscript di m) by

v = v di m

V
, x = xdi m

L
, t = tdi mV

L
, (3.1)

p = pdi m

ρlU 2 , ρ = ρdi m

ρl
, μ= μdi m

μl
, (3.2)

where the subscript l denotes the quantities of the liquid phase. By virtue of this non-

dimensional approach two dimensionless numbers are introduced. They are the Reynolds

number defined as:

Re = ρl V L

μl
, (3.3)

which expresses the ratio of inertial effects to viscous effects and the Froude number:

F r = V√
g0 L

, (3.4)

which gives the ratio of inertial effects to gravitational effects.

3.1.1 Two Fluids Formulation

In the two fluids formulation the Navier-Stokes equations are satisfied for each phase individ-

ually with coupling conditions at the interface between the phases. In this case the governing

equations inside every fluid phase are identical to those for a single phase. The momentum

equation, expressing Newton’s second law of motion, reads:

ρ
Dv

Dt
=−∇p + 1

Re
∇· [μ(∇v +∇v T )]+ ρ

F r 2 g , for x ∈Ω, t ∈ (t0, te ) (3.5)

and the continuity equation accounting for conservation of mass and incompressibility is:

∇·v = 0, for x ∈Ω, t ∈ (t0, te ) (3.6)

where g is the gravitational acceleration vector (g = g di m/g0). The material derivative of the

fluid velocity:

Dv

Dt
= ∂v

∂t
+v ·∇v , (3.7)

includes a local time derivative (first term) and a non-linear convective part (second term).

The density ρ and viscosity μ are constant for each fluid. We consider two fluids occupying

two separate regions of space Ω1 and Ω2 where Ω1 ∩Ω2 = 0 and an instance of the equations

(3.5-3.6) has to hold in each fluid region Ωi with the local fluid properties ρi ,μi .

The bulk equations (3.5-3.6) are supplemented by interface conditions. Applying the integral
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3.1. Mass and Momentum Equations

principle of conservation of mass to a control volume around the interface yields an interface

jump condition, which reads as

[ρ(v −vΓ)]Γ ·n = 0 for x ∈ Γ, (3.8)

where n is a unit vector normal to the interface, vΓ is the interface velocity and [ f ]Γ = f1 − f2

represents the jump of a generic quantity f across the interface Γ. If there is no mass transfer

through the interface, Eq. (3.8) requires the normal component of the velocity to be continuous

at the interface and equal to the interface velocity:

v 1 ·n = v 2 ·n = vΓ ·n for x ∈ Γ. (3.9)

It is worth noting that, despite being needed to close the system, no condition for the tangential

velocities at the interface can be deduced from conservation laws [104]. Since molecular

interactions are expected to be as effective in equalizing the local velocities at an interface

as they are in equalizing the velocities at two neighboring points inside the bulk fluids [5]

no-slip between the phases is usually assumed for viscous fluids. As a result, the fluid velocity

is continuous at the interface:

[v ]Γ = 0 for x ∈ Γ. (3.10)

Applying an integral momentum balance across the interface leads to a jump condition, which

is called the dynamic interface condition. In the absence of mass transfer through the interface,

the dynamic condition reads as

[−I p + μ

Re
(∇v +∇v T )]Γn = κ

W e
n for x ∈ Γ, (3.11)

with the stress acting on both sides of the interface on the left hand side and the surface

tension force on the right hand side. In Eq. (3.11), κ is the double of the mean curvature of the

interface and is simply referred to as the curvature hereafter. We have introduced the Weber

number defined as

W e = ρl L V 2

σ
, (3.12)

which gives ratio of inertial effects to surface tension effects. The surface tension coefficient σ

is assumed to be constant in the present contex thus excluding Marangoni flows. A further

non-dimensional number that will be used in this thesis is the Eötvös number, which is

defined as

Eo = ρl g L2

σ
= W e

F r 2 , (3.13)

and expresses the ratio of gravitational effects to surface tension effects. The Eötvös number

is useful to describe cases where no characteristic velocity exists, like for sessile droplets or
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Chapter 3. Governing Equations

rising bubbles.

Normal and tangential stress conditions are obtained by multiplying Eq. (3.11) by the interface

normal and tangential vector respectively. The normal stress condition is

n[−I p + μ

Re
(∇v +∇v T )]Γn = κ

W e
(3.14)

and the tangential condition is

t [−I p + μ

Re
(∇v +∇v T )]Γn = 0 ⇒ t [μ(∇v +∇v T )]Γn = 0. (3.15)

where t is a unit vector tangential to the interface. The tangential stress condition implies

that the shear stress is continuous across the interface (3.15). If there is no surface tension

(W e →∞) and the pressure difference is zero Eq. (3.14) gives:

n[μ(∇v +∇v T )]Γn = 0,

which implies that the normal derivatives of the velocity are discontinuous at the interface

exactly when μ1 �= μ2. In a static fluid, there are no viscous stresses and the normal stress

condition (3.14) reduces to the celebrated Young-Laplace equation for the pressure jump

across a static interface:

−[p]Γ =−Δp = κ

W e
= 1

W e

(
1

R1
+ 1

R2

)
(3.16)

where R1,R2 are the principal radii of curvature and the sign in Eq. (3.16) is such that for

a bubble/drop, the inner region has a higher pressure. Therefore, in two-phase flow, the

derivatives of the velocity and the pressure can be discontinuous at the interface.

Equations (3.5) and (3.6), hold in each Ωi for the local fluid velocity v i (x , t ) and pressure

pi (x , t ), i = 1,2. Together with the interface conditions (3.10,3.11) and appropriate boundary

conditions at the flow boundaries they form a closed system. The system can be solved for

an initial condition v i (x , t0) and an initial interface position to obtain the flow field and the

position of the interface at later times: t > t0. The interface position is found by integrating

the interface velocity vΓ given by Eq. (3.9) in time.

3.1.2 One Fluid Formulation

As an alternative to the above approach, one can define a global velocity which is equal to the

local velocity in each phase: v = v i in Ωi , i = 1,2 and replace the coupled two-fluid system by a

single set of equations for both phases. Due to the interface condition (3.10) the global velocity

is continuous in Ω1 ∪Ω2 and the stress boundary condition (3.11) can be accounted for by

a singular source term fst . This approach is commonly termed the "one fluid" formulation,
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3.1. Mass and Momentum Equations

where the equations to be satisfied are:

ρ
Dv

Dt
=−∇p + 1

Re
∇· [μ(∇v +∇v T )]+ ρ

F r 2 g + 1

W e
fst , ∇·v = 0, (3.17)

for x ∈ (Ω1 ∪Ω2), t ∈ [t0, te ] and

ρ(x , t ) = ρi , μ(x , t ) =μi for x ∈Ωi (t ) i = 1,2. (3.18)

The additional body force in Eq. (3.17), is expressed as

fst =κδn, (3.19)

using the Dirac delta distribution δ to localize the interface.

The Dirac distribution can be represented as the derivative of a heaviside step function H ,

which is equal to zero in one phase and one in the other phase:

δn =∇H , δ= |∇H |. (3.20)

Moreover, δ has the property that it transforms a volume integral over a control volume V

containing the interface Γ into a surface integral over the interface:

∫
V

δdV =
∫
Γ

dS. (3.21)

The present numerical method is based on the "one fluid" approach. The position of the

interface and its curvature κ are coupled to the Navier-Stokes equation Eq. (3.17).

It can be shown that the "one fluid" formulation is consistent and equivalent to the two

Navier-Stokes formulation. In [57] the "one fluid" formulation is derived starting from the two

Navier-Stokes. Here we show the reverse namely how the two Navier-Stokes can be recovered

from the "one fluid" formulation. When integrating Eq. (3.17) over an arbitrary control volume

that is totally contained in either phase Ωi , i = 1,2 the surface tension term vanishes and

Eq. (3.5) is obtained. Since the control volume is arbitrary this implies that Eq. (3.5) has to be

satisfied everywhere in Ωi , i = 1,2. Integrating Eq. (3.17) over a control volume V that includes

the interface yields

∫
V

ρ
Dv

Dt
dV =

∫
V

∇
(
−I p + μ

Re
[∇v +∇v T ]

)
dV +

∫
V

ρ

F r 2 g dV +
∫
V

κδ

W e
ndV (3.22)

=
∫
∂V

(
−I p + μ

Re
[∇v +∇v T ]

)
ndS +

∫
V

ρ

F r 2 g dV +
∫
Γ

κ

W e
ndS,
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Chapter 3. Governing Equations

where Gauss’s divergence theorem has been used to transform the volume integral of the stress

tensor into a surface integral and the property (3.21) has been used for the surface tension

term. Letting the thickness of the volume V in a direction orthogonal to the interface shrink

to zero will make its boundary ∂V "adhere" to the interface from both sides. As a result the

volume integrals in Eq. (3.22) will vanish since the velocity field and gravity are continuous

functions and the following equation will result:

∫
Γ

[
I p − μ

Re
(∇v +∇v T )

]
Γ

ndS +
∫
Γ

κ

W e
ndS =

∫
Γ

([
I p − μ

Re
(∇v +∇v T )

]
Γ
+ κ

W e

)
ndS = 0.

(3.23)

This is a surface integral of the dynamic condition (3.11). However, since the width of the

control volume can be chosen arbitrarily, the integrand has to vanish everywhere on the

interface, which is equivalent to Eq. (3.11).

3.2 Coordinate Systems

It is possible to take advantage of the problem geometry by choosing the appropriate coordi-

nate system. In this thesis we will only consider two-dimensional Cartesian and axisymmetric

problems. Therefore, Cartesian and cylindrical coordinates are introduced in the present

section. For Cartesian coordinates (x, y), the nabla operator ∇ has the usual definition:

∇=
(
∂x

∂y

)
. (3.24)

The Cartesian form of the governing equations can simply be obtained by using Eq. (3.24) in

Eq. (3.17).

In cylindrical coordinates, restricting to axisymmetric flow without swirl, the Navier-Stokes

equations read as

ρ
Dv

Dt
=−

(
∂x p

∂r p

)
+ μ

Re

1

r

(
∂r (r (∂r u +∂x v))+2r∂xx u

2∂r (r∂r v)+ r∂x (∂r u +∂x v)−2v 1
r

)
+ρ

g

F r 2 + 1

W e
fst ,

(3.25)

∂x u +∂r v + v

r
= 0,

where the velocity vector v = (u, v)T is expressed in terms of its components in axial (x) and

radial (r ) coordinate directions, respectively. For the derivation of the cylindrical Navier-Stokes

equations the reader is referred to appendix A.

In the axisymmetric case, equations (3.25) are solved on a domain Ω, which is the meridian

plane of a 3D cylindrical domain, see Fig. 3.1. The geometry and the flow variables are assumed
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3.2. Coordinate Systems

to be independent of the rotation angle φ. Therefore, a symmetry boundary condition of

v = 0 and
∂u

∂r
= 0

is required on the symmetry axis, i.e. for (x,r = 0).

r

x
φ

Ω1

Ω2

Γ

Figure 3.1: Meridian plane Ω of the axisymmetric cylindrical domain.

3.2.1 Axisymmetric Curvature

The curvature of a general axisymmetric surface can be obtained using a surface defined as a

level surface of a function F (x, y, z). Then we have:

n = ∇F

|∇F |

for the normal vector. The surface is defined by F (x, y, z) = 0. Using F (x, y, z) = y2 + z2 − r 2(x),

which describes any surface axisymmetric around the x-axis, the curvature can be computed

by gives

κ=−∇·n =
d 2r
d x2(

1+ ( dr
d x )2

)3/2
− 1

r
(
1+ ( dr

d x )2
)1/2

. (3.26)

The first term in Eq. (3.26) is the curvature of the curve y = r (x) that is the intersection of the

surface with a plane including the x-axis. The second term in Eq. (3.26) can be rewritten as

[101]

− 1

r
(
1+ ( dr

d x )2
)1/2

= si n(ψ)

r
,
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Chapter 3. Governing Equations

where the angle ψ is defined in Fig. 3.2. It is the angle between the interface normal vector

and the symmetry axis. The curvature of an axsiymmetric surface can thus be written as

r

xψ

n

R

Figure 3.2: Definitions related to the axisymmetric curvature calculation.

κ= κ̄+ κ̃, (3.27)

where κ̄ is the curvature in the x-r plane and κ̃ is the axisymmetric component given by

κ̃= si n(ψ)

r
= 1

R
, (3.28)

where R is the signed distance from the interface point to the point where the normal intersects

the symmetry axis, with the sign being positive if the normal points away from the symmetry

axis and negative if the normal points toward the symmetry axis.

3.3 ALE Formulation

The governing equations of fluid mechanics can be formulated using either of the two classical

kinematical descriptions of motion being the Lagrangian and the Eulerian one. The Eulerian

description is based on a fixed reference frame and the Lagrangian description follows the

material particles. Since it is usually impracticable to follow the individual particles in a

flow, the Eulerian formulation is more frequently used in fluid mechanics. However, the

Eulerian formulation is less suited when the boundaries of the flow domain evolve with time.

Combining the Lagrangian and the Eulerian descriptions becomes interesting for such cases.

In this section the arbitrary Lagrangian-Eulerian (ALE) formulation, which underlies the

present moving mesh method is described. The ALE approach combines the advantages of

Lagrangian and Eulerian description, while minimizing their respective drawbacks. It allows

to handle moving boundaries and interfaces without requiring to follow the individual fluid

particles in Lagrangian manner.

In the Eulerian framework, the material time derivative (D/Dt ) is defined by Eq. (3.7), where

∂/∂t is the local time derivative at a point in the Eulerian coordinates frame and ∇ is the deriva-

tive with respect to the Eulerian coordinates system. The Eulerian frame and its coordinates

are assumed to be time-invariant. One can express the material derivative with respect to a
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3.4. Conservation of Energy

time dependent reference frame X , that is attached to a an evolving domain, as [36]

D•
Dt

= ∂•
∂t

∣∣∣∣
X

+c ·∇•,

(3.29)

c = v − v̂ .

The first difference between Eq. (3.7) and Eq. (3.29) is the local time derivative, where in

Eq. (3.29) it represents the derivative at a fixed location in a coordinates system of X , which is

now allowed to change in time. The second difference is the velocity present in the convective

term, where v is the fluid velocity and v̂ is the velocity of the points of the coordinates system

X . All velocities are expressed with respect to the Eulerian frame.

The Lagrangian or material derivative is recovered from the ALE derivative if X is chosen to

be the material frame. That is is every point of X corresponds to a material point and thus

moves with the fluid velocity v̂ = v hence we have

D•
Dt

= ∂•
∂t

∣∣∣∣
X

.

Another limiting case is when the reference configuration X is taken to be time independent,

which corresponds to the Eulerian description. Then v̂ = 0 and Eq. (3.29) reduces to Eq. (3.7).

Therefore, the Lagrangian and the Eulerian derivatives are both limiting cases of Eq. (3.29). In

a moving mesh algorithm, v̂ is the mesh velocity and X is the reference frame defined by the

mesh.

3.4 Conservation of Energy

Conservation of energy requires that the rate of change of energy in a parcel of fluid be

balanced by the work done by surface and body forces and the heat flowing from the boundary.

The total energy per unit mass is a sum of macroscopic kinetic energy v 2/2 = (v · v)/2 and

internal energy E . Neglecting any type of volumetric heat sources, heat radiation and assuming

incompressible flow, the conservation of energy, expressed in terms of dimensional quantities,

reads as:

ρ
D(E +v 2/2)

Dt
=∇· (λ∇T −v p +v · [μ(∇v +∇v T )]

)+ρv ·g , (3.30)

where the left hand side is the material derivative of the sum of kinetic and internal energy.

The first term on the right hand side represents the conductive transfer of heat, described by

Fourier’s law, with the thermal conductivity λ. The second and third term on the right hand

side of Eq. (3.30) represent the work done by surface forces and the last term is the work of

the gravitational volume force. Scalar multiplication of the momentum equation (3.5), in

27



Chapter 3. Governing Equations

dimensional form, with v gives

ρ
D(v 2/2)

Dt
= v · (−∇p +∇· [μ(∇v +∇v T )]+ρg

)
(3.31)

= ∇· (−v p +v · [μ(∇v +∇v T )]
)−∇v : [μ(∇v +∇v T )]+ρ(v ·g ), (3.32)

where in the last step use has been made of ∇·v = 0. Subtracting the last equation from (3.30)

gives

ρ
DE

Dt
=∇· (λ∇T )+∇v : [μ(∇v +∇v T )], (3.33)

where the last term on the RHS is the viscous dissipation. It is commonly assumed that the

internal energy E is a function of temperature only and for an incompressible fluid E = cp T ,

where cp is the specific heat capacity.

In contrast to the previous sections, the energy equation above has been expressed in di-

mensional form. The non-dimensional form of the energy equation is obtained when the

dimensional quantities (subscript di m) are made dimensionless as follows

T = Tdi m −Tsat

T0
, cp = (cp )di m

(cp )l
, λ= λdi m

λl
, (3.34)

where T0 is a reference temperature and Tsat is the saturation temperature. The non-dimensional

form the energy equation, is thus given as:

ρ cp
DT

Dt
= ∇· (λ∇T )

Re Pr
+ Ec

Re
∇v : [μ(∇v +∇v T )],

where Pr is the Prandtl number:

Pr = μl (cp )l

λl
,

and the Eckert number is defined as

Ec = V 2

(cp )l T0
.

Here we will assume that the characteristic velocity V is sufficiently small for Ec << Re to

hold and viscous dissipation will thus be neglected. With this further assumption the energy

equation reduces to:

ρ cp
DT

Dt
= ∇· (λ∇T )

Re Pr
. (3.35)
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Interface matching conditions are needed for the temperature field. The integral energy

conservation principle around the interface yields the energy jump condition:

n · [λ∇T ]Γ = 0, (3.36)

where we have neglected changes in surface energy, work done by viscous stresses and no

phase change has been assumed. Equation (3.36) requires that the normal conductive heat

flux be continuous at interface. A second interface condition can be deduced from a similar

argument to the one used for the tangential velocity component. Namely that molecular

interactions are expected to remove any discontinuity in the temperature field [5]. Therefore,

we assume that the temperature is continuous across the fluids phases: Tl = Tv .

3.5 Phase Change

When phase change occurs there will be a mass transfer from the liquid to the vapor phase for

boiling or vice-versa for condensation. Here we assume that phase change can only happen

at the interface and no nucleation is allowed. A mass flow rate per unit interfacial area ṁ
′′

accounts for phase change in the general form of the interface jump conditions. Letting v l

and v v denote the fluid velocity in the liquid and gas phase respectively and vΓ the interface

velocity, the mass balance condition (3.8) reads as

ρl (vn
l − vn

Γ ) = ρv (vn
v − vn

Γ ) = ṁ
′′
, (3.37)

where vn := n ·v (x) denotes the normal velocity component and n is the interface unit normal

vector. When phase change occurs (ṁ
′′ �= 0), the interface mass balance condition (3.37) will

not reduce to Eq. (3.9) and the normal component of the velocity will differ if the densities

differ, hence leading to a discontinuous velocity field. Rearranging Eq. (3.37), the normal

velocity jump across the interface is obtained as

vn
l − vn

v =
(

1

ρl
− 1

ρv

)
ṁ

′′
. (3.38)

Two equations for the interface (normal) velocity can be obtained from Eq. (3.37):

vn
Γ = ρl vn

l +ρv vn
v −2ṁ

′′

ρl +ρv
,

and

vn
Γ = vn

l + vn
v

2
− ṁ

′′

2

(
1

ρl
+ 1

ρv

)
. (3.39)

In the presence of phase change, the momentum jump condition reads

ṁ
′′
[v ]Γ+n[I p − μ

Re
(∇v +∇v T )]Γ+ κ

W e
n = 0, (3.40)
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and assuming kinetic energies and viscous stresses are small, the energy jump condition is

given by

ṁ
′′
Δhl v −

n

Re Pr
· [λ∇T ]Γ = 0, (3.41)

where Δhl v is the latent heat of vaporization and the dimensional quantities (denoted by a

subscript di m) have been non-dimensionalized as follows

Δhl v = Δ(hl v )di m

(cp )l T0
, ṁ

′′ = ṁ
′′
di m

ρl U
. (3.42)

Equations (3.40) and (3.41) reduce to (3.11) and (3.36) respectively when no phase change

occurs.

Phase change has introduced an additional unknown, namely the evaporative mass flux

ṁ
′′
. An additional interface condition is thus needed. However, such a condition cannot be

derived from the macroscopic conservation principles and its choice warrants some discussion

[71, 104, 105]. In this study, the interface temperature is assumed to be always equal to the

saturation temperature. Combining this assumption with the continuity of temperature field,

the interface temperature equals the temperature of each phase at the interface:

Tl = Tv = Tsat . (3.43)

This condition can also be deduced from vanishing interface entropy production arguments

[71] but it does not account for physical effects like the variation of saturation temperatures due

to the pressure jump and the interface thermal resistance due to molecular effects. However,

Eq. (3.43) is a good approximation for many situations of practical interest [71, 104], with a few

exceptions like liquid metals. Here we assume that when the interface reaches the saturation

temperature Tsat , heat flowing to the interface is not used to change the local temperature but

to initiate a phase transition. The energy balance condition, expressed by Eq. (3.41), can be

used to compute the mass flux ṁ
′′

as:

ṁ
′′ = n · [λ∇T ]Γ

Re Pr Δhl v
. (3.44)

The interface jump conditions for mass (3.37), momentum (3.40) and energy (3.41), includ-

ing phase change, can equivalently be included as singular source terms in the ’one fluid’

framework. The latter approach has already been used for surface tension, which has been

included as a singular volume force in the momentum equation (3.17). Applying the ’one fluid’

formulation to the interface mass balance (3.37) gives a modified continuity equation:

∇·v =
(

1

ρl
− 1

ρv

)
ṁ

′′
δ, (3.45)
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where δ is the Dirac delta. The effects of phase change on the velocity field, i.e. the discontin-

uous velocity given by Eq. (3.38), are thus accounted for by the right hand side of Eq. (3.45)

without imposing (3.37) explicitly at the interface. Since the energy balance condition is

enforced explicitly by computing ṁ
′′

from Eq. (3.44), the ’one fluid’ framework is not used for

the energy equation and Eq. (3.35) thus remains unchanged.
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4 Numerical Method

4.1 Finite Element Method

The finite element method (FEM) is a valuable tool for solving partial differential equations

(PDE) in engineering ranging from linear elasticity to fluid dynamics and head transfer. A

good description of FEM can be found in classical numerical analysis textbooks [108, 30]

or in [35, 149] with an emphasis on fluid mechanics. In the FEM the domain is partitioned

into a mesh of discrete elements and a weighted residual formulation is used to obtain a

system of matrix equations yielding an approximate solution of the differential equation. The

weighted residual formulation or variational formulation of a PDE is obtained by multiplying

the governing equation with test functions and integrating over the domain. It is a weak form

of the PDE, whose solution is not required to hold in a ’pointwise sense’ i.e. everywhere in

the domain. The resulting integral, which is called the residuum, is required to vanish for

all test functions from a function space T . In the FEM context the solution is expanded in

a basis of the function space S called shape function space, where in general S and T can

be different. The functions spanning S are defined locally over elements of the mesh and

are commonly taken to be piecewise polynomial functions. In the present work the mesh is a

subdivision of a region of the plane into triangular elements, which meet only at shared edges

and vertices. A system of algebraic equations is obtained when both spaces S ,T are taken to

be finite dimensional vector spaces. For the Galerkin approach, used in the present context,

the test function space and the shape function space are the same.

The Galerkin method has been very successful in solving linear PDE in structural mechanics

and heat conduction because it can be shown that the solution possesses a ’best approxi-

mation’ property. That is the difference between the FEM solution and the exact solution

is minimized with respect to a certain norm. Unfortunately, two difficulties are associated

with the numerical solution of the incompressible Navier-Stokes equations by the Galerkin

approach. The first is related to the discretization of the non-linear convective term and mani-

fests itself via spurious velocity oscillations in heigh Reynolds number flow when boundary

layers are present. This issue can be cured by stabilized formulations, which add integral terms
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to the weak form, such as the streamline-upwind Petrov-Galerkin (SUPG) [22] or Galerkin

Least Squares (GLS) [68]. The second difficulty is related to the nature of the incompressible

flow equations, where the pressure acts as a Lagrange multiplier of the incompressibility

contraint [35], and requires an appropriate combination of interpolation functions for the

velocity and the pressure.

4.1.1 Variational Formulation of the Governing Equations

In this section the Galerkin method is applied to the Navier-Stokes equations (3.17). We first

consider the equations in Cartesian coordinates, for which the weak form is given in [35]

and subsequently give the modifications required for axisymmetric equations in cylindrical

coordinates. Using the FEM in space and time is possible, see [88, 135] but not poursued in

this work, where the FEM is only applied to the spatial problem. The weak formulation of

the Navier-Stokes equations is obtained by projecting the equations (3.17) onto a space of

weighting functions w for the velocity v (x , t ) and q for the pressure p(x , t ). This results in the

following weak form: for every t ∈ [t0, te ], find u(•, t) ∈UuD , v(•, t) ∈ VvD and p(•, t ) ∈Q such

that for all (w , q) ∈U0 ×V0 ×Q:

M

(
ρ

Dv

Dt
, w

)
+ 1

Re
K (v , w )+G

(
p, w

)= 1

F r 2 M
(
ρ g , w

)+ 1

W e
G(H ,κw ),

D
(
q, v

)= 0, (4.1)

with v (x , t = t0) = v 0(x).

Here, U ,V ,Q are the function spaces for the velocity components (u, v) and the pressure

respectively. The following bilinear forms have been introduced in Eq. (4.1):

M (v , w ) =
∫
Ω

w ·v d x ,

K (v , w ) = 2
∫
Ω

μD(w ) : D(v )d x ,

G
(
q, w

) =
∫
Ω

∇q ·w d x , (4.2)

D
(
q, w

) = G
(
q, w

)
,

where 2D(v ) =∇v +∇v T .

Integrating the viscous stress tensor τv = 2μD(v ) by parts allows for transfer of the derivatives

to the test function w . No boundary term appears because we consider only homogeneous

Neumann boundary conditions for the viscous stress tensor. Therefore, the boundary ∂Ω of Ω

is composed of two distinct regions ∂ΩD , ∂ΩN on which Dirichlet and Neumann boundary
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conditions hold respectively:

v = v D on ∂ΩD ,

τv n = 0 on ∂ΩN .

The function spaces UuD ,VvD and Q are defined as

UuD := { u ∈ H 1(Ω) | u = uD on ∂ΩD },

VvD := { v ∈ H 1(Ω) | v = vD on ∂ΩD },

Q := { q ∈ L2(Ω) |
∫
Ω

q d x = 0}.

Here H 1(Ω) is a Sobolev space consisting of functions which are square-integrable and have

square integrable first derivatives. The space of functions that are square integrable over the

domain Ω is defined as:

L2(Ω) := { f |
∫
Ω

f 2 d x < ∞}.

Taking the pressure function space with zero average
∫
Ω p d x = 0 is a way to get a unique

solution since only derivatives of the pressure appear in the equations making pressure defined

up to an arbitrary constant. What is done numerically instead of requiring the pressure to

have a zero average is to fix the pressure value at an arbitrary point of the domain.

The Galerkin method applied to the temperature equation (3.35) gives the weak form for the

temperature field: for every t ∈ [t0, te ], find T (•, t ) ∈UTD such that for all θ ∈U0:

M

(
ρ cp

DT

Dt
,θ

)
+ 1

Re Pr
L (θ,T ) = 0, (4.3)

where T (x , t = t0) = T0(x) and the following bilinear form has been used:

L (θ,T ) =
∫
Ω

λ∇θ ·∇T d x .

Axisymmetric Case

The axisymmetric case differs slightly from the Cartesian one and requires the introduction

of so called weighted function spaces [15, 12, 34]. Consider the space of weighted square
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integrable functions L2
α(Ω) for any α ∈Z to be composed of functions w for which

∫
Ω

w2 rα d x < ∞,

where d x = d x dr . The subspace Q of L2
1(Ω) is defined as

Q := { q ∈ L2
1(Ω) |

∫
Ω

q r d x = 0}.

Furthermore, consider the space H 1
1 (Ω) as being the space of functions in L2

1(Ω) such that

their first partial derivatives are also in L2
1(Ω). The spaces UuD ,VvD are defined as

UuD := { u ∈ H 1
1 (Ω) | u = uD on ΓD },

VvD := { v ∈ H 1
1 (Ω) | v ∈ L2

−1(Ω) and v = vD on ΓD }.

The axisymmetric bilinear forms are given by:

M (v , w ) =
∫
Ω

w ·v r d x ,

K (v , w ) = 2
∫
Ω

μD(w ) : D(v )r d x +2
∫
Ω

μ
w2v

r
d x ,

G
(
q, w

) =
∫
Ω

∇q ·w r d x , (4.4)

D
(
q, v

) =
∫
Ω

q ∇·v r d x +
∫
Ω

q v d x ,

L (θ,T ) =
∫
Ω

λ∇θ ·∇T r d x .

Here, ∇= (∂x ,∂r )T has been used, where x is the axial and r the radial coordinate.

4.1.2 Semi Discrete System

The next step in the FEM is to go from the continuous weak form to a discrete system. There-

fore, the solution is sought in finite dimensional subspaces of UuD ,VvD ,Q, which are denoted

U h
uD

,V h
vD

,Qh and are composed of continuous piecewise-polynomial functions. The spatial

domain Ω is subdivided into finite elements and the discrete solution v h , ph is expressed in
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terms of shape functions and associated nodal values:

v h(x) =
Nv∑

i
φ̂i (x)v i , ph(x) =

Np∑
i
ψ̂i (x)pi (4.5)

where Nv , Np are the number of velocity and pressure nodes respectively, φ̂i are velocity shape

functions and ψ̂i are the pressure shape functions. The interpolating functions φ̂i (x) and

ψ̂i (x) have a compact support and they span the function spaces U h
uD

,V h
vD

and Qh respectively.

Moreover, they satisfy the relationship:

φ̂i (x j ) = ψ̂i (x j ) = δi , j ,

where δi , j is the Kronecker-Delta. This means every shape function is zero at all but one

node of the mesh where its value is one. The integrals in (4.4) are computed by means of a

standard Gaussian quadrature rule, using 12 quadrature points, which is exact for polynomials

of degree 6 or less [29]. Since no quadrature points are located on the element boundary the

axisymmetric terms, containing 1/r , do not get singular. Accuracy issues could arise for very

small element sizes, since the quadrature points would get very close to r = 0, but this did not

pose any problem in this work. When this representation is used in the weighted residual of

the Navier-Stokes equations (4.1) a system of ordinary differential equations (ODE) in time is

obtained for the nodal values v i , pi .

4.1.3 LBB Compatibility Condition

A combination of velocity/pressure shape functions is usually denoted as PnPm, where n

stands for the degree of the polynomial for velocity interpolation and m stands for the degree

of the pressure polynomial. The numerical treatment of the saddle point problem arising from

the variational formulation of the incompressible Navier-Stokes equations poses restrictions

on the combination of interpolation spaces for velocity and pressure. To guarantee the stability

of a mixed FEM the interpolation spaces for pressure and velocity must satisfy a compatibility

condition called Ladyzhenskaya-Babuska-Brezzi (LBB) condition or inf-sup condition [35].

In particular, the LBB condition does not allow equal order interpolations for velocity and

pressure. This restriction is independent of the Reynolds number and even applies to the zero

Reynolds number limit i.e. the Stokes equations.

Several combinations of velocity/pressure shape functions have been demonstrated to fulfil

the LBB condition such as the P bubble
1 P1 element [4] and the triangular Taylor-Hood element

(P2P1) [64]. Figure 4.1 displays their interpolation nodes for the pressure and velocity shape

functions. Using velocity-pressure shape function pairs that do not satisfy the LBB condition

can result in spurious pressure oscillations. The LBB condition can be circumveted by elimi-

nating the pressure unknown like in penalty methods [35] or by using a different set of test

functions (Petrov-Galerkin method) that add stabilization terms [67]. In this work only LBB

compatible elements (displayed in Fig. 4.1) are used such that no stabilization is required.
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For the P bubble
1 P1 element, the pressure is interpolated by linear shape functions and the

velocity by linear shape functions supplemented by a cubic bubble function, with the control

point at the element centroid. The three linear shape functions are interpolatory at the edges

of the element and the cubic bubble function is interpolatory at the centroid. Since only four

degrees of freedom are used for a cubic polynomial, the shape functions of this element are

incomplete. That is, they do not span the space of third order polynomials. This results in

a reduced rate of convergence with respect to a fully cubic interpolation but gives an LBB

stable element without having to introduce too many degrees of freedom. The P bubble
1 P1 pair

has been called mini element because it fulfils the LBB condition with minimal degrees of

freedom per element [4]. Moreover, the bubble function of the mini element acts in a way like

the streamline diffusion of the streamline-upwind Petrov-Galerkin method and was shown to

help in stabilizing the advective operator [21] without recourse to any additional stabilization.

mini quadratic

velocity
pressure

Figure 4.1: Interpolation nodes for the mini (P bubble
1 P1) and quadratic (P2P1) element.

The quadratic element displayed in Fig. 4.1 interpolates the velocity with quadratic polynomi-

als and the pressure is interpolated linearly. There are vertices in the middle of the triangle

edges and as a result it has more degrees of freedom than the mini element. However, the

triangular Taylor-Hood element exhibits quadratic convergence, while the convergence of the

mini element is only linear. In the following, the shape functions for these two elements are

presented.

4.1.4 Element Shape Functions

The shape functions are most conveniently defined in terms of barycentric coordinates.

Barycentric coordinates are useful because they allow the shape functions to be defined

as polynomials independent of the shape of the particular element. For a triangle there are

three barycentric coordinates λ1−3, each associated with one node of the triangle. The Carte-

sian coordinates of a point x = (x, y)T located inside a triangle with nodes x1−3, are given by

x =
3∑

i=1
λi x i . (4.6)

Barycentric coordinates are often called area coordinates because the barycentric coordinate

corresponding to node i of the triangle is defined as the ratio of the area of the sub-triangle

defined by the two other nodes and the point (x, y) to the triangle area A. By construction,
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barycentric coordinates always satisfy:

3∑
i=1

λi = 1. (4.7)

Since the pressure interpolation is linear, the pressure shape functions ψi are simply the

barycentric coordinates:

ψi =λi , i = 1−3.

The velocity shape functions φi of the mini element are:

φi = λi −9
3∏

j=1
λ j , i = 1−3,

φi = 27
3∏

j=1
λ j , i = 4.

For the quadratic Taylor-Hood element, the six shape functions are:

φi = 2λi (λi −0.5), i = 1−3,

φi = 4
3∏

j=1, j �=î

λ j , i = 4−6,

where k̂ is one plus the remainder of the division of k by three:

k̂ = k mod3+1.

4.2 Surface Tension Force

An accurate representation of the surface tension is essential to simulate capillary two-phase

flow. In the FEM context, the surface tension term (3.19) can be computed by introducing the

Laplace-Beltrami operator [39]. After multiplying with the weighting functions, the following

term accounts for the effects of surface tension∫
Ω

w f ST d x =
∫
Ω

w κnδd x . (4.8)
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The definition of the Dirac distribution is such that∫
Ω

w κnδd x =
∫
Γ

w κn d s, (4.9)

which transforms an integral over a volume containing the interface into a surface integral

over the interface. Using the identity Eq. (1.3) to compute the curvature leads to the following

expression for the surface tension term in the weak form

∫
Ω

w κnδd x =
∫
Γ

w ∇2
Si dΓ d s, (4.10)

and then integration by parts can be used to get

∫
Γ

w ∇2
Si dΓ d s =−

∫
Γ

∇S w : ∇Si dΓ d s +
∫
∂Γ

w ∇Si dΓ n dγ. (4.11)

The second term in Eq. (4.11) represents an integral over the boundary of the interface and

has only to be considered when the interface is not a closed surface. The Laplace-Beltrami

technique was used in [49] with a discrete version of Dirac distribution.

Another way to discretize the surface tension is to compute the curvature κ, which appears

in the surface tension term, geometrically. This can be done by using polynomial curves to

represent the interface [106] or NURBS [128] and then compute the curvatures of these known

curves. If the interface is represented by straight element edges of a triangulation, then the

curvature might be calculated efficiently using the first Frenet-Serret formula:

κ̄n = d t

d s
, (4.12)

where t is the interface unit tangent vector and s denotes the arc-length. The curvature given

by Eq. (3.27) is a sum of the curvature κ̄ inside the x-r -plane and the axisymmetric component

κ̃. For the planar curvature, a finite difference version of the first Frenet-Serret formula is used:

κ̄n ≈ t 2 − t 1

Δs
. (4.13)

Figure 4.2 illustrates the geometric quantities used for the curvature computation. Here the

normal and tangent vectors n j , t j are defined on each interface segment and the curvature

κ̄i is defined at the interface vertices. The arc-length Δs in Eq. (4.13) is approximated as

the arithmetic average of the lengths of the surrounding segments, see Fig. 4.2. The Frenet

equation (4.13) gives the product of the curvature and interface unit normal vector (κ̄n) and

the magnitude of the curvature is the Euclidian norm of this product. The axisymmetric

40



4.2. Surface Tension Force

t 1

t 2

Δs

i
n1

n2

Figure 4.2: Discrete interface representation.

curvature component κ̃ is given by Eq. (3.28)

κ̃i = si n(ψ)

ri
= n̂i ·er

ri
, (4.14)

where ψ is the angle that the interface normal forms with the x-axis and er is the unit basis

vector in the radial direction. The unit normal vectors at the nodes (n̂i ) are computed by

normalizing the sum of the normal vectors of the two adjacent segments:

n̂i = n1 +n2

||n1 +n2||2
. (4.15)

Equation (4.14) can be used for all interface points outside the x-axis. On the x-axis, where

ri = 0, the rotational symmetry implies that the curvatures in the two normal directions are

the same and therefore κi = 2 κ̄i can be used.

Besides being very simple, equations (4.13) and (4.14) have some other advantageous prop-

erties. Equation (4.13) is a central difference approximation, which is second order accurate.

As a result, decreasing the edge length of the segments that discretize the interface makes

the curvature error decrease with the square of the edge length. Moreover, it can easily be

demonstrated that in the particular case where uniformly spaced points are sampled on a half

circle representing a spherical interface Eq. (4.13) and (4.14) give the exact curvatures of the

circle and the sphere.

Using Eq. (3.20) with a discrete version of the heaviside function H , the normal vector and

Dirac delta in Eq. (3.19) can be computed by taking the gradient of the discrete heaviside

function. The discrete heaviside function Hh is defined such that it is equal to 1 for points in

the inner phase, 0 for points in the other phase and 0.5 for interface points, see Fig. 4.3. The

gradient of Hh is computed using the FEM with the linear shape functions also used for the

pressure. Therefore, since the pressure and the heaviside function are both defined at the

vertices of the elements and their gradient is computed in the same way, the discretization is

consistent. That is, balance between the pressure gradient and the surface tension term in the

momentum equation can be fulfilled up to numerical precision, as is going to be discussed in

Section 5.4.
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x

Hh(x)

0

0.5

1

0

Figure 4.3: Discrete heaviside function.

4.3 Contact Angle

This section introduces a dynamic contact line model allowing to describe an interface moving

along a solid boundary with a constant contact angle θ. We consider a liquid drop on a rigid

surface with the configuration sketched in Fig. 4.4. Since the interface is defined by straight

r

x

θ

Figure 4.4: Schematic of the considered cofiguration: an axisymmetric liquid drop on a rigid
surface defined by the plane x = 0.

line segments, a simple approximation is obtained by imposing the angle formed by the last

interface segment with the plane x = 0. We obtain this by setting:

−t an(θs) = xN −xC

rN − rC
, (4.16)

where (x,r )C is the position of the contact point (the interface mesh vertex with x = 0) and

(x,r )N the position of the interface vertex connected to (x,r )C . In order to impose the desired

contact angle we can simply require the geometry at the next time level to fulfil the above

condition:

−t an(θs) =
(

xN −xC

rN − rC

)n+1

= xn
N −xn

C + (ûN − ûC )Δt

r n
N − r n

C + (v̂N − v̂C )Δt
,

where v̂ is the mesh velocity, which determines the position of the mesh points at the new

time level: (x,r )n+1 = (x,r )n + v̂Δt . Here, we have xC = ûC = 0 since the contact point remains

on the wall, which is assumed at x = 0. The contact angle θs can be imposed by choosing the
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radial mesh velocity at the contact point as follows

v̂C = v̂N −
(
r n

C − r n
N − xn

N + ûNΔt

t an(θs)

)
1

Δt
. (4.17)

To impose the contact angle by Eq. (4.17), the kinematic condition is overridden at a single

interface vertex. This is necessary otherwise the no slip condition would cause the contact

point to remain pinned and no droplet spreading could be simulated. Altough there is no

physical justification for this procedure its effects are that dynamic wetting, with constant

contact angle, can be simulated.

4.4 Phase Change

The numerical phase change model is based on the equations presented in section 3.5. As

mentioned there, we assume a continuous temperature field with the vapor and liquid temper-

ature being equal to the saturation temperature at the interface: Tl = Tv = Tsat . Therefore, we

apply a uniform Dirichlet condition on the temperature by imposing T = Tsat at all interface

nodes. Now since the interface is a level curve of the temperature field, the interface normal

vector and the gradient ∇T at the interface are parallel. The mass exchange between the

phases is computed from Eq. (3.44). Based on Eq. (3.44), the evaporative mass flux (ṁ
′′
) is

proportional to the interfacial jump of the conductive heat flux q =λ∇T :

ṁ
′′
Δhl v = 1

Re Pr
[n ·q]Γ. (4.18)

The quantity ṁ
′′

enters the continuity equation (3.45) as a source term and defines the mesh

displacement by Eq. (3.39). It is thus computed at every interface mesh node. However, since

the temperature field is interpolated by piecewise linear shape functions, the temperature

gradient is constant inside every mesh element but discontinuous at inter-element edges.

In order to evaluate Eq. (4.18) at an interface node i , the one sided temperature gradient is

computed using the area weighted average of the elements, containing node i , on either side

of the interface. The value of the heat flux in every element e containing interface node i

is used to computed the area average of the heat flux q̄ on the liquid and vapor side of the

interface:

q̄ l =
∑

e∈Ωl
q e Ae∑

e∈Ωl
Ae

, q̄ v =
∑

e∈Ωv
q e Ae∑

e∈Ωv
Ae

,

where q e is the heat flux computed using the temperature gradient in element e with area Ae

and Ω j represents the set of neighboring elements in phase j (vapor or liquid). Note that the

procedure has been described for planar meshes. However, this approach is easily extended to

three dimensional unstructured meshes using a volume average instead of the area average.
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The interfacial jump of the heat flux at node i is then obtained by [q]i = q̄ l − q̄ v . To obtain the

normal derivative required in Eq. (4.18), the vector [q]i must be multiplied by the interface

normal vector n at node i . An interface normal computed from the interface geometry could

be used. However, to be consistent with the employed continuum surface tension method,

the gradient of the heaviside function (δn =∇H) is used here.

When phase change occurs, the weak form (4.1) has to be modified to include the velocity

source term in the continuity equation. The following variational formulation is used for

phase change problems: find v = (u, v) ∈UuD ×VvD , p ∈Q,T ∈UTD such that

M

(
ρ

Dv

Dt
,φ

)
+ 1

Re
K

(
v ,φ

)+G
(
p,φ

)= 1

F r 2 M
(
ρ g ,φ

)+ 1

W e
G(H ,κφ),

D
(
ψ, v

)= (
1

ρl
− 1

ρv

)
G

(
H , [q]ψ

)
Re Pr Δhl v

, (4.19)

M

(
ρ cp

DT

Dt
,θ

)
+ 1

Re Pr
L (θ,T ) = 0,

for all φ ∈ U0 × V0,ψ ∈ Q,θ ∈ U0. Here the function spaces and bilinear forms retain their

previous definitions.

4.5 Semi-Lagrangian Time Discretization

In this work, a semi-Lagrangian method is used to discretize the time derivative. The semi-

Lagrangian method was introduced in the middle of the last century and has been used

extensively in the context of numerical weather prediction [127]. Its main advantage is that it

is stable for larger time steps than Eulerian based advection schemes. This is because the semi-

Lagrangian method discretizes the material time derivative and thereby avoids the stability

issues stemming from the convective term. The idea behind the semi-Lagrangian method

is to combine the best from both the Eulerian (fixed reference frame) and the Lagrangian

(reference frame following a fluid particle) descriptions. This is achieved by using a fixed mesh

and considering a special set of particles. The set of particles being chosen a each time step

consists of particles that arrive precisely at the mesh points at the end of the time step.

The material time derivative is discretized by a finite difference approximation:

Dψ(x , t )

Dt
≈ ψ(x , t +Δt )−ψ(xd , t )

Δt
, (4.20)

where ψ stands for a generic scalar or vector valued function. Here, ψ(x , t +Δt) is the value

of ψ at the mesh point with position x evaluated at the instant t +Δt . The semi-Lagrangian

method is implemented by finding the departure point xd , i.e. the position at time t of the

fluid particle located at x at time t +Δt . Equation (4.20) is used to advance the unknown ψ

in time, at every time level t = t n , and ψ(xd , t n) =ψn(xd ) is obtained through interpolation

44



4.5. Semi-Lagrangian Time Discretization

of the known distribution ψn . The departure position is found by integrating the velocity

backwards in time using an explicit Euler scheme:

xd = x −Δt c n(x), (4.21)

where c n(x) is the speed of point x at time t n . The relative position of a mesh point x i and its

departure point xd is sketched in Fig. 4.5. In order to approximate the ALE derivative (3.29),

the mesh motion needs to be included in the ALE velocity c n = v n − v̂ n , where v̂ n is the mesh

velocity. If the mesh is fixed then c n = v n .

Figure 4.5: Departure point position.

The explicit Euler scheme used for the position of departure Eq. (4.21), where the velocity is

taken as the velocity at the previous time level, is a first order approximation. A discussion of

higher order approximations, for example a midpoint rule, can be found in [127]. Here, the

accuracy obtained with Eq. (4.21) was found to be sufficient and it was thus prefered over more

expensive higher order approximations. The semi-Lagrangian method is unconditionally

stable with respect to the time step size [98]. This means that the time step size is not limited

by the local advection speed, thus allowing to circumvent the Courant-Friedrichs-Lewy (CFL)

condition [127]. In this work, the semi-Lagrangian approach was found to be stable for

larger Δt in convection dominated problems but other effects like gravity or surface tension

sometimes limited the time step size. Another advantage of the semi-Lagrangian method is

that the resulting system of equations is linear 1, thus avoiding the need to resort to iterations

or Newton-Raphson algoritms. The algorithmic difficulty of the semi-Lagrangian approach

resides in the interpolation required to evaluate the value of ψ at the departure point ψ(xd , t ).

Moreover, the first order finite differences approximations used in Eq. (4.20) is numerically

dissipative compared to higher order schemes like Crank-Nicolson or Runge-Kutta methods.

1This is due to the absence of the convective term, which is the only non-linear term in the Navier-Stokes
equations.
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4.6 Fully Discrete Equations

After discretizing both spatial and time coordinates, we obtain the following fully discrete

variational form of the Navier-Stokes equations: find (v n+1
h , pn+1

h ) ∈U h
uD

×V h
vD

×Qh such that

M
(
ρ v n+1

h , w h
)

Δt
+ K

(
v n+1

h , w h
)

Re
+G

(
pn+1

h , w h
) = M

(
ρ v n

h (xd ), w h
)

Δt
+

M
(
ρ g h , w h

)
F r 2 + G(Hh ,κw h)

W e
, (4.22)

D
(
qh , v n+1

h

) = 0,

for all (w h , qh) ∈U h
0 ×V h

0 ×Qh .

The integrals in (4.2) are evaluated element-wise, with the material properties ρ,μ taken to be

constant in each element. In Eq. (4.22), the viscous term, the pressure gradient, the spatial

operators and the interface dependent quantities (Hh ,κ) are treated implicitly, i.e. they are

evaluated for the mesh at the new time level (n +1). However, the position of the mesh points

at time level n +1 is obtained by displacing the points with the known velocity of time level n.

Thus, resulting in a weak coupling of the flow field and interface geometry. An fully implicit

treatment of the interface position could help relaxing the time step requirement for numerical

stability imposed by the surface tension term. This could be achieved by displacing the mesh

with the new velocity at time level n +1. However, such an approach is computationally more

expensive, probably requiring an iterative procedure and it was not found to be necessary for

the computations presented in this thesis.

Equation (4.22) leads to an algebraic system that can be written as:

(
B G

D 0

) (
U n+1

P n+1

)
=

(
b1

b2

)
, (4.23)

where the unknown velocity components at all velocity nodes and the pressure unknowns at

all pressure nodes are contained in the vectors U n+1 ∈R2Nv and P n+1 ∈RNp respectively. The

vectors b1,b2 contain the source terms, the known values at the previous time-level and the

boundary conditions. This system is linear and can be solved with a direct or an iterative solver.

Solving the system for velocity and pressure simultaneously can become computationally

expensive for a large number of degrees of freedom. Therefore, it is often expedient to decouple

the velocity and the pressure in order to reduce the system size. Different methods exist for

this purpose. Here the so called algebraic splitting methods are going to be described.
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4.6.1 Algebraic Splitting

Applying a block LU factorization to the system (4.23) yields

(
B G

D 0

)
=

(
B 0

D −D B−1 G

) (
I B−1 G

0 I

)
, (4.24)

By first computing an intermediate velocity U∗, system (4.23) can be solve in two steps:

Step 1: BU∗ = b1,(
D B−1 G

)
P n+1 = DU∗ −b2,

Step 2: U n+1 = U∗ −B−1 GP n+1.

These steps can even be simplified by eliminating the intermediate velocity:

(
D B−1 G

)
P n+1 = D B−1b1 −b2,

BU n+1 = b1 −GP n+1.

However, this approach is impracticable for large problems, since it requires one to compute

the inverse matrix B−1. An approximation of B−1 is required for an efficient method. The idea

is to replace the exact LU decomposition (4.24) by an approximate one [35]

(
B G

D 0

)
≈

(
B 0

D −D H1 G

) (
I H2 G

0 I

)
, (4.25)

Three families of methods can be distinguished. First, if H1 �= H2 �= B−1 both the momentum

and mass conservation are perturbed. Second, using H2 = B−1 and H1 �= H2 momentum is

preserved but the continuity equation is modified. Third, if H1 = H2 = H but H �= B−1 mass

conservation is granted but the momentum equation is modified. The last approach is the only

one preserving mass. A common approach is to use a so called lumped matrix approximation,

where the matrix H is the inverse of the diagonal matrix obtained by summing all the entries

of each row of B into its diagonal component.

4.7 Boundary Conditions

The boundary ∂Ω of the computational domain Ω has distinct sub-regions where different

boundary conditions (BC) hold. Dirichlet BC are assumed to hold on the ∂ΩD part of the

boundary, while on ∂ΩN Neumann boundary conditions hold. Here, we only consider homo-
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geneous Neumann boundary conditions for the viscous stress tensor τv such that

v = v D on ∂ΩD , τv n = 0 on ∂ΩN .

Homogeneous Neumann boundary conditions are imposed naturally with the FEM by simply

omitting the terms resulting from integration by parts. As a result the boundary term stemming

from integration by parts vanishes and is excluded from the variational form (4.2). Dirichlet

boundary conditions are imposed directly in the system matrix of (4.23) by setting the diagonal

element to one and the right hand side to the desired value.

A third kind of boundary condition are periodic BCs, which are implemented in the following

way. Periodicity is assumed in the x-direction on a domain with straight and vertical left and

right boundaries. Identical boundary meshes are created initially on the boundaries, where

the nodes of each periodic boundary are overlapping with the nodes of the other periodic

boundary and offset by the length of the domain in x-direction. Therefore, each node of the

right boundary (R) has a corresponding node on the left boundary (L). To enforce periodicity

of the flow the dependent variables of the nodes on the right and left boundaries are connected

as if the domain was folded onto itself. The first requirement is that the unknowns have the

same value on the L nodes as on the corresponding R nodes. This condition is enforced by

imposing a Dirichlet BC for the nodes on the left boundary. Then all the contributions of the

left boundary nodes i L are added to the equation of the corresponding right boundary nodes

i R. In this way periodicity is fully accounted for, as if there was an exact copy of the domain

patched on each side.

When solving the Navier-Stokes equations on periodic domains, the velocity field is periodic

but the pressure field is usually not periodic, e.g. due to a pressure gradient. One can still use

periodic BCs and incorporate the pressure gradient. Periodic boundary conditions for the

velocity with a constant pressure gradient px are imposed in the linear system (4.23) by letting:

Ui L = Ui R

Pi L = Pi R +px L

Bi R, j = Bi R, j +Bi L, j

Gi R, j = Gi R, j +Gi L, j

Di R, j = Di R, j +Di L, j

b1
i R = b1

i R +b1
i L ,

where L is the domain length and i L, i R are the indices of a corresponding pair of nodes on

the left and right boundaries.
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4.7.1 Interface Boundary Conditions

When the interface is a closed shape no boundary conditions are needed. However, when

the interface ends on a boundary, as it is the case for a contact line or a symmetry boundary,

geometrical boundary conditions need to be specified at the point where the interface ends.

These numerical boundary conditions are required for the curvature calculation via Eq. (4.13),

which is a central difference approximation and thus requires bilateral information. For

most types of boundaries allowed to intersect the interface, finding an appropriate interface

boundary condition is straightforward. For a symmetric boundary a reflection of the interface

points positions on the symetry line is applied and the curvature is calculated using the

reflected points at the boundary. Similarly for a periodic boundary, the interface points of

the opposite periodic boundary are translated such as to serve as neighboring points for

the curvature calculation. However, finding a general geometric boundary condition for the

contact angle boundary described in section 4.3 is not straightforward. This is because only the

slope of the interface is prescribed at the boundary and not the curvature (the derivative of the

slope). In the particular case where the contact angle is π/2 a symmetry boundary condition

is used. For an arbitrary contact angle, the interface can be approximated locally by a circle,

i.e. assuming a constant curvature athe interface boundary. The later gives accurate results

when surface tension effects are dominant and the interface shape is close to a spherical cap.

4.8 Extension of Interface Quantities

The curvature κ in the surface tension term and the quantity [q]i described in the previous

section are quantities that are defined only at the interface. However, since a weighted volume

integral formulation is used, these quantities have to be integrated over a volume element.

This requires attributing a value of these quantities to mesh points outside the interface.

Since interface quantities can vary only along the interface, they have to be constant along

lines leaving in a direction normal to the interface. It can be shown that the line joining an

arbitrary point and its closest point on the interface is normal to the interface. Therefore, an

orthogonal extension is used, where for every mesh node the interface quantitiy is taken as the

value of its closest interface node. The extension Fe of an interface quantity F , is computed as:

Fe (x) = F (xc ), (4.26)

where xc ∈ Γ is the point on interface, which is closest to x :

x = xc +d(x)n(xc ). (4.27)

This procedure requires finding the closest interface point xc for every mesh point, which is

done by finding the point with the minimal distance d(x) = ||x −xc || to x .
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4.9 Computational Mesh

This section deals with all procedures related to the computational mesh. We focus first on

the way the position of the mesh points is updated and than on the remeshing procedure.

In this thesis an unstructured triangular mesh is used. A disadvantage of an unstructured

mesh compared to structured grids is that point coordinates and connectivity need to be

stored. However, an unstructured mesh allows a much greater flexibility in fitting complicated

geometries, which is a key requirement for two-phase moving mesh computations. A FEM

mesh requires mesh elements of appropriate size, with shapes that are not too elongated

(bounds on angles) and element size should not change too abruptly. If triangular elements

are used the best shape is the equilateral triangle.

The software Triangle [122] is used to triangulate the mesh elements for all computations.

Triangle is a mesh generator, which can generate Delaunay and constrained Delaunay triangu-

lations. The Delaunay triangulation of a discrete set of points in the plane is the dual graph of

their Voronoi diagram 2. Some properties of the Delaunay triangulation are that no point is

found inside the circumcircle of any triangle and the minimum angle of all triangles is maxi-

mized. The latter property of the Delaunay triangulation is desirable for FEM meshes where

acute angles increase the discretization error. A file describing the initial problem geometry

in the ".msh" format [52] is supplied as an input to the simulation program. The ".msh" file

contains the meshed domain boundaries. This one-dimensional mesh is used by the Triangle

software to generate the two-dimensional domain mesh. While the mesh moving scheme

is designed to preserve mesh quality, it cannot in general prevent serious mesh degradation

and tangled mesh elements can occur causing the simulation to crash. Tangling refers to the

situation where (due to mesh deformation) mesh elements loose their required topological

qualities, e.g. vertex crossing the opposite face of the triangle. Therefore, remeshing is used to

prevent tangling and to make sure that the mesh is adequately refined in every region. Every

time remeshing is applied, the Triangle software is used to generate a triangulation of the new

set of points.

4.9.1 Mesh Displacement

Let us first consider how to update the location of the mesh nodes representing the interface.

When there is no phase-change, the interface condition (3.9) requires the normal component

of the interface velocity to equal the normal fluid velocity:

vΓ ·n = v ·n.

The tangential interface velocity can be shown to be irrelevant for the evolution of the interface

position, see Lemma 5.2.1 in [51]. Therefore, in the continuous problem, only the normal

velocity component v n := (v ·n)n needs to be taken into accounts for the displacement of the

2The Voronoi diagramm of a set of points is a partition of the plane into regions of closest distance to any point
in the specified set
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interface. However, numerical results are found to depend strongly on whether the normal

velocity or the full fluid velocity v (including its tangential component) are used to displace

the interface points. There are cases where numerical accuracy is enhanced by keeping the

tangential component and cases where it is better to remove it completely. The former holds

for pure translational motion and the latter for pure rotational motion. Here a parameter γ is

used to control how much of the tangential component is used for the mesh motion. In the

absence of phase-change, the mesh velocity v̂ i of interface nodes x i is specified as follows:

v̂ i = v (x i )−γv t (x i ), for x i ∈ Γ. (4.28)

where v t = v −v n is the tangential component of the fluid velocity and the parameter γ can

vary in [0,1]. For simulations including phase-change, Eq. (3.39) is used for the interface mesh

velocity:

v̂ i = v (x i )− ṁ
′′
i

2

(
1

ρl
+ 1

ρv

)
ni , for x i ∈ Γ, (4.29)

where in the source term approach v (x i ) is the average of the velocities in both phases.

While the interface mesh motion is determined by the physics, mesh motion in the bulk fluid

regions can be chosen arbitrarily. We choose the bulk mesh motion with the aim to limit mesh

distortion. In our scheme, the mesh nodes that are not on the interface are thus moved with

the following velocity:

v̂ i =β1v (x i )+β2v̂ a
i , for x i ∉ Γ, (4.30)

where v is the fluid velocity and v̂ a
i is an average of the mesh velocities of the surrounding

nodes. The user defined parameters β1,2 can be tuned to preserve a good mesh quality in any

particular situation. An exception are mesh nodes on the boundaries of the domain, which

are not moved.

While the mesh moving scheme (4.30) can usually avoid mesh tangling, the mesh quality is

in general reduced. To increase the quality of the mesh, Laplacian smoothing is successively

applied to the volume mesh. Laplacian smoothing consists in moving each mesh point towards

the barycenter of the surrounding mesh points [31]. Therefore, new nodes positions x̃ i are

calculated as follows

x̃ i = 1

N

N∑
j

x j ,

where N represents the number of neighbour points at point i . Since the mesh is unstructured

N may vary strongly over the mesh. After mesh motion and smoothing, mesh points are

added and removed in order to keep the desired resolution in any region of the flow. Moreover,

remeshing can also prevent the overlapping of elements since for the new mesh, a new

triangulation of the set of nodes is generated.
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4.9.2 Mesh Refinement and Remeshing

Remeshing can be applied at every time iteration or after a specified number of time iterations.

The insertion and deletion of mesh points is based on a comparison between the local actual

edge length l and a desired edge length expressed by a length density function h. In order to

keep a smooth distribution of h, its distribution is obtained by solving a Helmholtz equation

of the form

k ∇2h = h − h̃. (4.31)

where k is a user defined parameter which specifies the diffusivity level. The auxiliary density

function h̃, which needs not be smooth, is specified directly by expressing the desired edge

length in each region based on threshold functions. For low values of k, h is close to h̃, while

for high values of k, Eq. (4.31) tends toward the Laplace equation, which will smooth away

any peaks or discontinuities. Equation (4.31) is solved using linear finite elements on the

same mesh used to solve the flow equations. Moreover, since the system matrix resulting from

Eq. (4.31) is symmetric and positive-definite the Conjugate Gradient method is used to solve

the linear system. The prescription of an adequate h̃ is problem dependent and rely heavily

on one’s intuition on the form of the solution. For example, thin gaps or films are resolved by

considering the distance from the interface and from the wall and prescribing a denser mesh

in those regions. A criterion which is used near the interface is to prescribe a shorter edge size

where the curvature is high. This can be achieved by considering the local curvature radius

Rc =κ−1
2d and requiring a circle with radius Rc to be resolved by a minimum number of points.

After Eq. (4.31) has been solved, a loop is performed over all edges of the mesh and if the edge

is too long (l > t1 h) a mesh point is inserted in the middle of the edge, while if l < t2 h then

one of the points is removed. The parameters t1 and t2 are tolerances, which can be used

to vary the frequency of the insertion and deletion operations. Typical values are t1 = 2 and

t2 = 0.5. That is, a point is inserted/deleted when the edge is longer than twice/lower than half

the target edge length. For interface edges, inserting a point in the middle of the edge leads to

a curvature error at the inserted point. Therefore, the position of inserted interface points are

corrected by moving the point on a circle with the average curvature of the surrounding points.

Additionally, elements which are too small in area are tracked and removed from the mesh.

In the present code, the lower dimensional mesh representing the interface and the boundaries

of the domain is saved separately from the interior mesh. While points can be inserted/deleted

also on the boundary mesh, only the interior mesh is entirely regenerated. The remeshing of

the interior of the domain is performed using the Triangle software [122]. The interior mesh

points are passed to the Triangle software and Triangle generates the new element connectivity

arrays subject to the boundary conditions that the edges of the boundary elements match the

boundary mesh.
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4.10 Interpolation

The semi-Lagrangian method described in section 4.5 requires an interpolation to evaluate

the departure points values ψ(xd ). When remeshing is used an interpolation is also required

to obtain the values at target mesh nodes. A consistent Lagrangian interpolation is used in

both cases. The value of a function ψ at an arbitrary interpolation point x̂ can be computed

from the local element values provided the mesh element containing that point is known. The

difficulty is thus finding the "basis element" of an arbitrary point x̂ . Here a searching algorithm,

based on area coordinates, is used to find the basis element. The algorithm is described [2], it

proceeds by computing the barycentric coordinates of x̂ relative to the current element. If the

point is not inside the element, then the direction in which to search is determined from the

barycentric coordinates. The adjacent element in the given direction is thus searched next

until the element containing the interpolation point is found. The searching procedure will

typically start with a guessed element and traverse a band of elements as illustrated in Fig. 4.6.

Once the basis element, the element shape functions presented in section 4.1.4 are used to

compute ψ(x̂) by standard FEM interpolation.

Figure 4.6: Element searching procedure.

4.11 Solution Algorithm

In the present section, the complete numerical algorithm is summarized. For all simulations

performed in this thesis the following comments hold:
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• a conventional two-time-levels finite differences procedure is used to integrate the

equations through time.

• the discretized system (4.23) is solved in a coupled (monolithic) fashion for velocity and

pressure.

• when not else specified the mini element (P bubble
1 P1) was used.

• the energy equation is coupled one way to the Navier-Stokes equation in order to avoid

the need to resort to an iterative procedure.

• the temperature is interpolated by linear shape functions with the same mesh nodes as

the pressure.

Two different global solution approaches were used: (a) the governing equations are solved

using the classic ALE approach, where the mesh velocity v̂ enters the convective term via

Eq. (3.29), (b) continuous remeshing and interpolation are used to automatically account

for the interface motion, without resorting to the ALE method. Most test cases presented

hereafter have been simulated using both approaches and no significant difference could

be observed hence serving as a cross validation of both methods. However, approach (b)

appeared to be more robust because it applies remeshing at every time iteration immediately

before the equations are solved thereby reducing the risk of mesh tangling. In the following

the two approaches are going to be described.

Consider the vectors U n
h , T n

h and P n
h containing all the nodal values at time level n of the ve-

locity, temperature and pressure respectively. The subscript h refers to a specific triangulation

of the domain, which is defined by the vector X n
h containing all the mesh point’s coordinates

and the connectivity relating the mesh points to each mesh element. In the approach (a),

the governing equations are solved at each time step just after the mesh has been moved,

with the previous time step’s solution appearing on the right hand side. Because of the ALE

formulation, the previous time step’s solution does not require interpolation. This is due to

the fact that the local time derivative in (3.29) is defined for a fixed point in the moving mesh

frame.

For the ALE approach (a), the following steps are performed at every time level n for a given

solution
(
U n

h ,T n
h ,P n

h

)
on the mesh h with points X n

h :

1. Compute the difference in heat flux on both sides of the interface and the corresponding

ṁ
′′

based on T n
h

2. Compute mesh velocities U mesh
h as a function of

(
U n

h , X n
h

)
and ṁ

′′

3. Calculate the time step Δt

4. Move every mesh point to its new position: X n+1
h = X n

h +Δt U mesh
h
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5. Calculate the curvature, assemble matrices and vectors

6. Advance the temperature in time by solving the energy equation for T n+1
h

7. Advance the flow quantities in time by solving the Navier-Stokes equations for U n+1
h ,P n+1

h

8. Remesh (if needed), i.e. insert/delete mesh points and triangulate the new set of points,

defining the mesh h̃

9. If remeshing was used: interpolate the solution on the new mesh:
(
U n+1

h ,T n+1
h ,P n+1

h

)→(
U n+1

h̃
,T n+1

h̃
,P n+1

h̃

)

In the second approach (b), the solution of the flow equations is uncoupled from the mesh

motion. This is possible since an interpolation is always applied after the mesh points have

been moved. Therefore, the equations can be solved in their Eulerian form, i.e. with v̂ = 0 in

Eq. (3.29).

Approach (b) proceeds in a similar way and is thus only described for adiabatic simulations,

where the following solution procedure is used:

Starting from a given solution
(
U n

h ,P n
h

)
at time level n on the mesh h with points X n

h

1. Compute mesh velocities U mesh
h as a function of

(
U n

h , X n
h

)
2. Calculate time step Δt

3. Move the mesh points to their new positions, according to: X n+1
h = X n

h +Δt U mesh
h

4. Perform mesh operations (point insertion/deletion)

5. Remesh i.e. define connectivity of the new points: X n+1
h̃

6. Interpolate old velocity on new mesh U n
h →U n

h̃

7. Calculate curvature and assemble system arrays using X n+1
h̃

8. Solve the Navier-Stokes equations on h̃ to obtain the flow variables at the new time level

(U n+1
h̃

,P n+1
h̃

)

In approach (b) remeshing is applied at every time level and the solution is interpolated before

the Eulerian equations are solved to advance the solution in time. Since regenerating the

mesh takes time and the required interpolation introduces errors, approach (b) can only be

beneficial in cases with highly irregular motion, where frequent remeshing would be required

anyway. However, due to the generation of new connectivity arrays after mesh motion, tangling

can almost always be avoided. Moreover, the additional time required by both the remeshing

procedure and the successive interpolation was found to make up only a minor fraction of the

total computational time, which is dominated by the solution of the linear system.
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This section presents many simulation results obtained with the method described above.

Additional benchmarks, which are not displayed here, have been used to verify the spatial

and temporal rates of convergence. The start-up of a Poiseuille flow showed that the results

converged (with the expected rate) towards the analytical solution. Parts of this chapter have

already been published in the article [56]. Before moving to two-phase flow, two single-phase

problems are simulated to show the versatility and increase the confidence in the present

approach.

5.1 Flow around a Sphere

In this section, the flow around a sphere, which moves at a constant velocity relative to

an unbounded fluid, is studied. This is a classical problem in fluid dynamics for which an

analytical solution is available in the Stokes flow limit, as well a large amount of reference

simulations. The limit of vanishing Re, which possesses an analytical solution, is considered

first.

5.1.1 Stokes Flow around a Sphere

Stokes flow describes the case where viscous forces, which have a characteristic size μU /L,

are much larger than inertial forces of characteristic size ρU 2. Formally, this is obtained by

letting Re → 0 in the Navier-Stokes equations Eq. (3.5)-(3.6), without body and surface tension

forces. An analytical solution for the Stokes flow around a sphere was found by G. G. Stokes

himself and published in his 1851 paper [129]. The analytical solution is given in spherical

coordinates. The radial (ur ) and the tangential velocity (uθ) components are given by

uθ =−U si n(θ)

(
1− a3

4r 3 − 3a

4r

)
, ur =U cos(θ)

(
1− 3a

2r
+ a3

2r 3

)
, (5.1)
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where a is the sphere radius. The drag coefficient is defined as

CD = FD

πa2ρU 2/2
, (5.2)

where FD is the total drag force exerted on the sphere and using the solution (5.1) yields

CD = 24/Re.

The problem was simulated by numerically solving the axsiymmetric Navier-Stokes equations

with a small value of the Reynolds number: Re = 2·10−5. Figure 5.1 displays the computational

domain and boundary condition. In order to avoid the influence of the artificial boundaries

r

x

300a

600a

a

solid wall

u = 1

v = 0

p = 0

p = 0

Figure 5.1: Computational domain and boundary conditions for the Stokes flow around a
sphere.

on the flow close to the sphere, a large computational domain was used. The dimensions are

600a×300a in the axial and radial directions, respectively. The following boundary conditions

were used: no-slip on the surface of the sphere, a constant axial velocity on the left boundary,

symmetry on the bottom and top boundaries, and a constant pressure at the outlet. A view of

the finite element mesh, which is gradually refined around the sphere, is displayed in Fig. 5.2.

Figure 5.3 compares the computed steady state solution to the analytical expressions (5.1).

The computed drag coefficient was CD = 1.164 ·106, which is close to the theoretical value

obtained from Eq. (5.2) of CD = 1.2 ·106.

5.1.2 Flow around Sphere for Re = 200

The flow around a sphere was also simulated for a higher Reynolds number. Here, the non-

linear convective term is not negligible and no analytical solution is known. However, ex-

perimental and numerical reference data is available. Tabata and Itakura [131] used a finite

element method to compute drag coefficients in the range 10 < Re < 200. Experimental mea-

surements are available from Roos and Willmarth [112] as well as in some classic textbooks

like Schlichting [117]. Depending on the Reynolds number different flow patterns can be

observed. Below Re = 20 the flow is laminar and no separation occurs. For 20 < Re < 200
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Figure 5.2: Finite element mesh for the Stokes flow around a sphere.
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Figure 5.3: Stokes flow around a sphere: analytical and numerical solutions.

the flow separates and a region of closed streamlines appears behind the sphere but the flow

remains steady and axisymmetric. Above Re = 200 the flow stops being axisymmetric [131]

and for Re > 270 it stops being steady. Finally, for Re > 1000 the wake becomes turbulent.

Here we simulate the flow around the sphere for Re = 200, in the steady axisymmetric regime.

Figure 5.4 shows the simulated flow field at steady state. The shapes of the streamlines in

Fig. 5.4 is in qualitative agreement with those found in [5]. The drag coefficient was com-
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Figure 5.4: Streamlines for a flow around a sphere at Re = 200.

puted to be CD = 0.778, which is close to the value obtained by [131] of CD ≈ 0.77 and the

experimental value of [112, 117] of CD ≈ 0.8.

5.2 Natural Convection in a Heated Cavity

In order to verify the coupling between the Navier-Stokes and energy equations, a single-phase

natural convection problem is simulated. The left and right walls of a two-dimensional cavity

have a fixed temperature of Tl = −0.5 and Tr = 0.5 respectively. The top and bottom walls

are assumed to be adiabatic i.e. q̇ ′′ = −λ∂nT = 0. Figure 5.5 shows a sketch of the problem.

Zero flow and zero temperature are used as initial condition. At t = 0 the fluid begins to rise

y

xT =−0.5 T = 0.5

q̇ ′′ = 0

q̇ ′′ = 0

Figure 5.5: Schematic of the cavity benchmark problem.

on the right because it is heated and to fall on the left where it is cooled, thus a circulation is

started. The temperature dependence of density is included in the momentum equation with
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the Boussinesq approximation:

ρg = ρ0(1−βT ), (5.3)

where ρ0 is the reference density and β is a constant.

The Prandtl and Rayleigh numbers are:

Pr = μcp

λ
= 0.71, Ra = ρgβL3

μα
ΔT = 10000. (5.4)

Figure 5.6 shows the streamlines and the temperature distribution when steady state is reached.

The horizontal velocity on a vertical line is plotted in Fig 5.7, where it is compared to the

simulation results of Corzo [28] displaying a very accurate match.

(a) (b)

Figure 5.6: (a) Streamlines and (b) temperature distribution - inside the heated cavity.

5.3 Annular Poiseuille Flow

The Poiseuille flow is a classical benchmark case for single-phase numerical codes. Therefore,

we simulate its two-phase counterpart that is a layered Poiseuille flow in a cylindrical pipe.

The setup is described in Fig. 5.8 and the following assumptions hold:

• steady, fully developed conditions (∂t = ∂x = 0).

• no gravity, constant pressure gradient: ∂x p =−F .

• the two layers are concentric leading to axial symmetry around r = 0.

• piecewise constant material properties in the core 0 < r < Ri (region 1) and the film

Ri < r < R (region 2), where R is the radius of the pipe and r is the radial coordinate.
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Figure 5.8: Schematic of the annular Poiseuille flow.

An analytical solution is easily derived from the axisymmetric momentum equation, leading

to the (non-dimensional) velocity profile:

u(r ) = u0

(
1− m(r /Ri )2

a2 +m −1

)
for 0 < r < Ri ,

(5.5)

u(r ) = u0
a2 − (r /Ri )2

a2 +m −1
for Ri < r < R,

where m =μ2/μ1 is the viscosity ratio and a = R/Ri . Moreover, from the balance of forces in

the axial direction, the (non-dimensional) pressure gradient follows as:

F = 4u0

Re(a2 +m −1)R2
i

. (5.6)
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The axisymmetric Poiseuille flow was simulated by applying a constant pressure gradient of

F = 32
Re over the channel length. This was realized by imposing the pressure as a boundary

condition in the inlet and outlet sections. The geometry is non-dimensionalized based on

the diameter of the channel such that R = 0.5 and the location of the interface is chosen as

Ri = 0.35. The Reynolds number for the simulations was set to 20 and the viscosity ratio

is m = 100. The numerical results are compared to the steady analytical solution after the

transient have decayed.

The analytical solution (5.5) is a piecewise quadratic parabola, which should be interpolated

exactly by the quadratic element shape functions. This was verified by simulating the problem

with the quadratic finite element described in section 4.1.4. Figure 5.9 compares the velocity

profiles obtained from simulations using the mini element and the quadratic element to the

analytical solution (5.5). Despite both simulations were performed with the same mesh, the

velocity profile obtained with the mini element is accurate but less accurate than the profile

obtained with the quadratic element. The error with the quadratic element is indeed on the

order of the machine precision.
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Figure 5.9: Axial velocity profile of the annular Poiseuille flow: analytical solution Vs two finite
element discretizations (mini element and quadratic element).
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5.4 Static Drop without Spurious Currents

The static drop benchmark is a standard benchmark in numerical two-phase flow. In fact

most methods used to capture or track the interface fail to provide a net balance between

pressure and surface tension forces even when the velocity field is zero. This results in a local

non-zero acceleration of the flow at the interface and thus, in the creation of spurious currents.

These currents, which are sometimes referred to as parasitic currents, can generate unphysical

movement of the interface. It is therefore the aim of any numerical method to minimize

spurious currents.

The static drop is immersed in a constant background velocity in order to verify the interplay

between interface advection and surface tension calculation as suggested in [99]. There are

no external forces and no pressure gradient and thus the flow is purely driven by inertia. In

the absence of gravity and velocity gradients, the only non-vanishing terms in the momentum

equation are the pressure and surface tension. The Navier-Stokes equations thus reduce to

the Young-Laplace equation, which for a spherical drop reads:

Δp = κ

W e
= 4

W e D
. (5.7)

The Young-Laplace equation (5.7) is given in non-dimensional form, where D is the non-

dimensional diameter of the drop and Δp is the non-dimensional pressure difference across

the interface. The accuracy of the surface tension calculation is assessed by evaluating the

interfacial pressure jump and the magnitude of the spurious currents.

The computational domain is chosen with a size of 10×1 in the axial and radial directions

respectively, with the diameter of the drop D = 1. Symmetry boundary conditions are used on

the symmetry axis (r = 0) and on the upper boundary, while on the left and right boundaries

Dirichlet boundary conditions are used setting the velocity to v = (1,0)T . Additionally, in order

to get a unique solution, the pressure value is fixed at the upper right corner of the domain.

The drop is initialized as a sphere with center located one diameter from the left boundary

and the simulation is run until the front of the drop reaches the right boundary of the domain.

The axisymmetric Navier-Stokes equations are solved for two phases with large density and

viscosity ratios of 0.001 and 0.01, respectively, as these values are similar to those for a water

drop in air. The non-dimensional numbers Re,W e are set to one.

Figure 5.10 displays the translating drop at different instants of time on a mesh discretizing

the interface with 16 uniform line segments. The pressure distribution for the middle frame,

i.e. t = 3.55, is visualized in Fig. 5.11. The full flow velocity was used to move the interface with

γ= 0 in Eq. (4.28). We consider the velocity ev and pressure eΔp errors defined as follows

ev = max
T

(
max
Ω

(||v h −v∞||)
)

, eΔp = max
T

( |Δp̄h − 4
W e D |

4
W e D

)
, (5.8)

where the pressure jump Δp̄h = p̄i
h − p̄o

h is computed as the difference between the average
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5.4. Static Drop without Spurious Currents

pressures inside and outside the bubble. The maxima in (5.8) are taken over the nodes of

the computational domain Ω and over the collection of computed time steps T . Table 5.1

displays the errors for different mesh resolutions, where the half circle representing the drop

is discretized with line segments of uniform length and n denotes the number of segments.

The spurious currents and the errors in the pressure jump displayed in Table 5.1 are only on

the order of the computer’s arithmetic precision independently of the mesh resolution. The

vanishing of the error measures ev and eΔp is possible due to a consistent discretization of the

pressure and surface tension term. This is enabled by using the same FEM basis functions for

the pressure and the heaviside function [27]. The pressure gradient can thus be computed

in the same way as the surface tension term, which is proportional to the gradient of the

heaviside function Hh , and ∇ph = κ∇Hh can be satisfied numerically. Provided the exact

curvature κ is available the value of the pressure jump can then be computed exactly. The

(a) t = 0.05

(b) t = 3.55

(c) t = 8.1

Figure 5.10: Translating drop and mesh at different instants.

initial drop shape is represented by a half circle with uniformly spaced mesh points on its

circumference, which is a particular case where the curvature formulas Eq. (4.13) and (4.14)

are exact. It has been verified numerically that the curvature deviated from the exact curvature

of the circle, which is 2/D , only by the order of the machine accuracy. Moreover, the motion of

the interface and the remeshing do not introduce any error in the computed interface position.

The former is due to the fact that the full fluid velocity is used to move the interface mesh and

the latter is because when points are inserted on the interface mesh they are inserted on a

circular arc tacking the local curvature into account. Therefore, the computed curvature is

always exact and the drop can reach the right end of the domain while essentially recovering

the analytical solution at every time step. Removing the tangential velocity fully or partly, i.e.

γ �= 0 in Eq. (4.28), was found to be introduce an error in the translated interface location. This

error led to the calculation of an inexact interface curvature and therefore to an error in the
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Figure 5.11: Pressure distribution at time t = 3.55.

pressure solution.

n : 2 4 8 16

ev : 10−14 10−12 10−13 10−13

eΔp : 10−15 10−13 10−14 10−14

Table 5.1: Order of magnitude of the spurious currents and pressure errors.

5.5 Oscillating Droplet

In this section, we simulate the motion of a liquid droplet, which oscillates freely around its

spherical equilibrium shape in the absence of gravity. When the drop is released from rest with

an initial perturbation capillary forces lead to oscillations on its surface. Lamb [81] derived

the frequency of small amplitude oscillations of a liquid globe by assuming perturbations

of the form: Y m
n (θ,φ)cos(ωt ), where Y m

n (θ,φ) are spherical harmonics. Here we restrict our

attention to axisymmetric perturbations, wherefore m = 0. The inviscid dispersion relation for

a droplet immersed in an outer fluid is given in §275 [81] and reads as:

ω2 = 1

W eR3

n(n +1)(n −1)(n +2)

(n +1)ρi n +nρout
,

where R is the non-dimensional equilibrium radius of the drop. The viscous case was also

investigated by Lamb in §355 [81] but without outer fluid and he found that free surface

oscillations of a liquid drop are damped exponentially with a damping time of

τ= ReR2

(n −1)(2n +1)
. (5.9)
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The least damped mode (n = 2) is considered here, for which

ω2 = 24

W eR3(3ρi n +2ρout )
, τ= ReR2

5
. (5.10)

At the beginning of the computation the drop is a spheroid with half-axis a = R + â0 and

b = R − b̂0, which are chosen such that the volume is equal to that of a sphere with radius

R. The density and viscosity of the inner fluid are chosen 1000 larger than those of the outer

fluid, such that the outer phase is negligible, which is required for Eq. (5.9) to hold. Small

initial perturbations â0, b̂0 are applied in order to compare the simulations with the results

from linear analysis. Varying the size of the initial perturbations showed that â0 ≈ 0.0034R

and b̂0 ≈ 0.0066R was sufficiently small. The simulation results are compared to a damped

oscillation modes of the form:

a(t ) = R + â0 cos(ωt )e−
t
τ , b(t ) = R − b̂0 cos(ωt )e−

t
τ , (5.11)

where a(t ),b(t ) are the time dependent lengths of the two half-axis of the drop. The equilib-

rium radius is computed from volume conservation as R = ( 3V0
4π )1/3, where V0 = (4/3)πa2

0b0 is

the initial volume. Note that the drop cannot remain spheroidal, as the volume of a spheroid

with half-axis given by Eq. (5.11) would deviate from the initial volume V0. However, we are

interested in the frequency ω and damping factor τ of the oscillation and not in the shape of

the droplet. The Weber number is set to one and the Reynolds number is 100 corresponding

to the regime where the drop is not damped aperiodically. A mesh with edge length 0.025R

on the interface is used, as this was found to be fine enough to obtain converged results. The

computed oscillations around the equilibrium position are compared to the ansatz (5.11) in

Fig. 5.12, where the monitored interface positions are the half axis of the drop. We observe

close agreement for the frequency but the simulation results seem to be less damped than

predicted by Eq. (5.9). This is rather surprising given that numerical dissipation should be

introduced by the numerical discretization. However, the discrepancy in the damping rate is

rather small and could be due to initial effects. In fact, for ease of setting up the computations,

the drop was initialized as an ellipsoid in a quiescent velocity field which differs from the

assumptions made in [81]. Moreover, free oscillations of a liquid drop have time dependent

values of the frequency ω(t ) and damping parameter τ(t ) [103], which reach the values derived

by normal-mode analysis only for large times.

5.6 Rising Bubble

The 2D rising bubble benchmark of Hysing et Al [70] has become a standard benchmark in the

numerical two-phase flow community. In the original paper, different simulation codes (from

3 different groups) were compared for rising bubble simulations. Here we reproduce case 1 of

Table 1 in [70]. A bubble of fluid that is less dense than the surrounding liquid starts to rise due

to buoyancy. The initial bubble is spherical and at rest in the computational domain shown

in Fig. 5.13, whose dimensions are L = 4, R = 1 and the bubble has a unit diameter. Since the
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Figure 5.12: Lengths of the oscillating drop’s half-axis (a and b) as a function of time.

geometry is symmetric and the flow was found to remain symmetric, we simulate the upper

half of the problem. The boundary conditions are: no-slip on the top and bottom boundaries

and slip on the side boundary and symmetry axis. The non-dimensional parameters for this

case are: Re = 35,W e = 10 and the density and viscosity ratio are both 10. Four different

computational meshes are used to study the convergence behaviour.

r

x

R

L

u = 0

v = 0

u = 0

v = 0

v = 0

Figure 5.13: Schematic of the initial rising bubble geometry and boundary conditions.

As validation quantities, the rising velocity shape of the bubble are considered. Since we

use unstructured meshes with remeshing, the number of mesh degrees of freedom can vary
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5.7. 2D Rayleigh-Taylor Instability

strongly from one time step to another. Therefore, similarly to Group 3 in [70] we use the

number of mesh points resolving the interface at the beginning N DOFi nt of the simulation as a

measure for the mesh refinement level. Four meshes are used with N DOFi nt = 54,79,158,316

mesh edges on the initial interface, which because of our domain is only half the circle. In all

cases a fixed time step size of Δt = 0.0005 was used. The rising bubble’s centroid velocity is

plotted in Fig. 5.14 and compared to the reference results of the simulation code MooNMD in

[70]. All the groups in [70] obtained very similar results for the present test case. The same level

of agreement is also observed with the present results. Note that our coarsest mesh, which

has only 54 degrees of freedom on the interface, already gives very accurate results. Moreover,

the results are observed to approach the reference shape as the mesh is refined. Figure 5.15

displays the shape of the bubble at time t = 3 with the different meshes. The present shape

agrees well with that of MooNMD in [70] and the agreement gets better on finer meshes.

In this test case remeshing was used at every time iteration and the subsequent interpolation

can introduce errors that lead to a significant volume conservation error if nothing is done

to artificially correct it. This problem was absent in the previous test-cases, where the shape

of the bubble was either an exact circle or no remeshing was needed. Table 5.2 displays the

maximum relative deviation of the bubble volume V (t ), over the simulation time t ∈ [0,3], for

the different meshes. Although the results presented in this section were obtained without

any volume correction, the volume varied only very little from the beginning to the end of the

simulation. The data in Tab. 5.2 shows that the relative variation of the bubble volume over

the simulation time was below 0.8% with the coarsest mesh and below 0.3% with the finest

mesh.

N DOFi nt : 54 79 158 316

maxt∈[0,3]

(
V (t )−V0

V0

)
: 7.810−3 4.810−3 3.310−3 2.410−3

Table 5.2: Volume errors with different levels of mesh refinement.

5.7 2D Rayleigh-Taylor Instability

In this section we investigate the unstable equilibrium of a heavy fluid is placed above a

light fluid in a gravitational field. This situation is linearly unstable and leads to the famous

Rayleig-Taylor instability. The slightest perturbation from a perfectly flat interface will be

amplified with an initial exponential growth. As the perturbation grows it will deviate from the

exponential growth due to non-linear effects and the interface will form mushroom shaped

fingers of the denser phase. The resulting complicated interface deformation is a good test

case for the present moving mesh method.

We consider the two-dimensional case with no surface tension acting on the interface as in the

conditions simulated by [84] using an interface capturing method and by [100] using a front
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Figure 5.14: (a) Evolution of the rising bubble centroid velocity, for different mesh resolutions,
(b) close-up view.
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Figure 5.15: Bubble shape at t = 3, for different mesh resolutions.

tracking algorithm. The density ratio of the fluids is 0.1383, their viscosities are equal and the

non-dimensional numbers are Re = 391.37,F r = 0.31928. A rectangular domain of dimensions

1×4 was used, where the interface was initialized with a sinusoidal perturbation of amplitude

0.05 and symmetry boundary conditions were used on all domain boundaries. The computed

shape of the interface is displayed in Fig. 5.16 at different instants. The typical mushroom

shape is observed at intermediate times and at later times, thin filaments are generated which

are still resolved by the mesh. Qualitative agreement is found when comparing Fig. 5.16 with

the figures 9 and 10 in [100]. In Fig. 5.17 the present shapes are compared to those found in

figure 14 from reference [84]. The observed agreement demonstrates that the present method

works also for cases with strong interface deformation.

5.8 Axisymmetric Rayleigh-Taylor Instability

In this test case the Rayleigh-Taylor instability is considered in an axisymmetric configuration

where both fluids are contained in a cylindrical tube whose symmetry axis is oriented along

the direction of gravity. Due to an initial perturbation the light fluid forms fingers, which are

rising in the middle of the tube while the heavier fluid forms spikes falling along the tube wall.

The exponential growth rate from linear stability analysis is observed at early times and at

later times balance is established between buoyancy and form drag forces such that the rising
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t = 0.2 t = 0.6 t = 0.7 t = 0.8 t = 0.9

Figure 5.16: Interface shape at different instants for the Rayleigh-Taylor instability.

fingers reach a constant terminal velocity.

The bubble terminal velocity has been investigated by Davies and Taylor [32] who performed

an experimental and theoretical investigation for a single axisymmetric air bubble rising in a

cylindrical tube filled with water. As the tube was closed at the top and open at the bottom the

bubble had no rear. Using inviscid irrotational flow Davis and Taylor derived an expression for

the velocity of the interface vertex on the symmetry axis:

Vb =C
√

g0R, (5.12)

where R is the tube radius and g0 is the gravitational constant. Davies and Taylor [32] calcu-

lated a value of C = 0.464 and found good agreement with their experiments on emptying

tubes, which yielded values of C ranging from 0.4 to 0.49. Another value of C = 0.511 was

derived by Layzer [82] assuming incompressible irrotational flow. The two derived values differ

because Davies and Taylor used Bernoulli’s equation at an interface point with distance R/2

from the axis while Layzer required that Bernoulli’s equation to hold in a first order neighbour-

hood of the bubble nose vertex. Both theoretical studies assumed a free boundary problem

with a single inviscid incompressible fluid.

Here, we compare the initial growth rate of the perturbation and the final velocity of an

interface vertex on the symmetry axis to the theoretical predictions. To simulate the problem,

we use a domain of size x ∈ [0,4],r ∈ [0,0.5] with rotational symmetry around the x-axis and

gravity pointing towards positive x. An initial perturbation of the interface is prescribed as:

x(t = 0,r ) = 2.4+ A0 J0(β1r /R), (5.13)
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Figure 5.17: Shape comparison for the Rayleigh-Taylor instability, circles are the results from
[84] and crosses are the present results.

where Jm(r ) is the Bessel function of first kind of order m and β1 ≈ 3.8317 is the smallest

positive root of J1(r ) = 0. We set the density of the heavy phase to 1 and the light phase has

zero density. Gravity is given by F r = 1 and surface tension is turned off for this calculation.

In order to have nearly inviscid flow we set Re = 1000. The time step is chosen as Δt = 0.01

and the mesh has a characteristic size of 0.005 on the interface. Fig. 5.18 displays the time

evolution of the interface and the mesh. The position of the interface vertex on the symmetry

axis x(t ,r = 0), for A0 = 0.0005, is compared to Eq. (5.12) in Fig. 5.19. The exponential growth

obtained from inviscid linear stability analysis: x(t ,r = 0) = exp(t
√
β1g /R) is also plotted in

Fig. 5.19.

After an initial phase of accelerated growth the front reaches a regime, where the streamlines

pattern is time independent and the rising velocity is constant. At early times, when the

perturbations are still small and non-linear effects negligible, the numerical results are ex-

pected to follow the exponential growth from linear stability analysis. The agreement of initial

growth rate with linear stability analysis was found to improve significantly by using an intial

condition including the velocity perturabtion described by the corresponding eingenfunctions

of the linear stability problem. As can be seen in the inset of Fig. 5.19, the initial growth rate is

slightly lower than the one from linear stability analysis probably due to viscous effects. Vis-

cous effects will be less significant if the Reynolds number is increased. However, simulations

with higher Reynolds number could not be carried out due to numerical instability reasons.

The simulated terminal velocity in Fig. 5.19 follows Eq. (5.12) with a value of C right in between

the values given by Taylor and Layzer.
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Figure 5.18: Evolution of the cylindrical Rayleigh-Taylor instability.

5.9 Travelling Waves in Liquid Film Falling on the Surface of a Fiber

In this section we consider a liquid film falling under the influence of gravity over the surface

of a vertical cylindrical fiber. This is an unstable flow, which exhibits interesting dynamical

features including travelling waves and solitary waves. The setup shown in Fig. 5.20 was

studied in [38], where experimental results were compared to a weighted residual, long-wave-

asymptotic model developed by the authors. They investigated the spatial response of this

convectively unstable flow (noise amplifier) at moderate Reynolds number, with periodic inlet

forcing and naturally excited films were also considered. Depending on the ratio of the forcing

frequency f f or to the frequency of maximum linear growth rate fM , two regimes were found.

For f f or ≈ fM the primary instability led directly to the formation of a saturated wave-train

with frequency f f or , whereas for f f or < fM a sequence of coalescence events preceded the

final wave regime.

The weighted residual model, used in [38], contains two equations corresponding to axial

momentum balance and mass conservation and two independent variables, namely the film

thickness and the flow rate. It is based on an weighted integration of the momentum equation,
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Figure 5.19: Position of the bubble nose as a function of time, the inset has a logarithmically
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where the velocity profile is expanded on a set of polynomials, which are at the same time used

as weight functions like in the Galerkin method. The time ∂t and axial space ∂x derivatives

are assumed small by introducing a film parameter ε. The long wave approximation and the

weighted residual integration result in a system of two coupled PDE for the film thickness h

and the flow rate q , which is consistent up to ε2 and includes inertia, wall friction, gravity,

surface tension and viscous dispersion effects [38]. By assuming the solution to be invariant

along constant velocity trajectories, the PDE system reduces to a system of ODE. Travelling

wave solutions can then be computed as limit cycles (finite wavelength) and solitary waves as

homoclinic orbits (infinite wavelength) of the corresponding dynamical system.

In this section we simulate the conditions of Fig 22 (a) in the paper [38]. For these conditions

periodic travelling waves have been observed. Two approaches are possible for simulating

falling liquid films: imposing oscillating inlet flow conditions on a long computational domain

resolving the spatial evolution of the waves or using spatially periodic boundary conditions to

simulate one wavelength of the flow. Here, the second approach is chosen for ease of simula-

tion thus imposing the wavelength rather than the frequency. Therefore, the computational

domain length is equal to the wavelength and periodic boundaries are used in axial direction.
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Figure 5.20: (a) Experimental setup used in [38], (b) photograph of the wavy film [38].

Air properties are used for the outer fluid and liquid properties are those of silicon oil v100. All

lengths are non-dimensionalized by the fiber radius R = 0.2mm and the velocity by (10g R2/ν),

where g = 9.81m/s2. The interface is initialized with a sinusoidal perturbation of finite ampli-

tude. Chosing different values of the initial amplitude was found to have little influence on the

saturated shape. The amplitude first grows then saturates, due to non-linear effects, leading

to a travelling wave of constant shape and celerity. The saturated wave shape is displayed

in Fig. 5.21 where it is compared to the travelling wave shape computed from the weighted

residual model of [38]. The simulation results in Fig. 5.21 are mesh converged. Besides a small

vertical shift Fig. 5.21 displays close agreement between the weighted residual model of [38]

and the direct numerical simulation thus suggesting that a two equation model can accurately

capture the dynamics of waves on falling liquid films. The periodic boundary conditions used

in the present simulation result in a constant volume of liquid inside the domain, which is

prescribed at the beginning of the simulation. In the experiment on the other hand and in

the weighted residual model solutions, the average liquid flow rate
∫

T q(x, t )d t (where T is the

period) has been imposed. This could explain the slightly different liquid volume between

weighted residual model and the numerical simulation in Fig. 5.21.
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Figure 5.21: Travelling wave shape: film thickness h versus axial distance x. The present
simulation is compared to the weighted residual model of [38].

5.10 Microchannel Simulations

In this section, simulations for an air bubble flowing in a microchannel are presented. The

results are then compared to those found in [79], where bubble shapes and mass flow rates

were obtained experimentally. Figure 5.22 shows the experimental facility used in [79]. A

pressure pump was used to generate a flow of liquid, where air bubbles were injected through

a T-junction located far enough upstream to ensure fully developed flow conditions in the

measuring section. A micro-flow meter and a digital balance (placed at the channel outlet)

were used to estimate the bulk flow rate of the liquid phase. Local flow measurements were

performed using a micro-particle-shadow-velocimetry (μPSV) technique, which consists in

seeding the flow with particles of diameter 1.5μm and recording the particle shadows while

they are illumination from the opposite side. The contrast due to the significant difference of

refractive indices of the phases was then used to detect the phase interface on the shadowgra-

phy images.

Four cases from [79] are reproduced here spanning the range of parameters investigated in that

paper. A schematic of the bubble’s initial shape and the boundary conditions is displayed in

Fig. 5.23. In a good approximation to the experimental conditions, a fully developed parabolic

velocity profile is imposed at the inlet and at the outlet. The non-dimensional paremeters Re

and W e are defined based on the channel diameter and the mean inflow velocity from the

experiments. The pressure is set in the upper right corner in order to get a unique solution.
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The geometry is chosen according to [79], by fixing R and calculating b such that the volume of

Figure 5.22: Experimental setup used in [79].

the bubble matches the experimental volume. In [79] two regimes were observed depending

on the equivalent bubble diameter deq , which is the diameter of a spherical bubble witht the

same volume. For low deq the bubble remains close to spherical and the channel wall has little

influence on the bubble shape, while for high deq elongated bubbles are observed.

r

x

b

R R

wall

u u
v = 0 v = 0

Figure 5.23: Schematic of the initial bubble geometry and boundary conditions.

We first consider the experiments with a glycerol solution as continuous phase. For an air

bubble in glycerol the density and viscosity ratios are 9.610−4 and 3.310−5 respectively. The

experimental pipe has a tube diameter of 494μm. Figure 5.24a displays the terminal bubble

shape for an equivalent diameter of deq = 0.677, Re = 0.004 and W e = 1.310−4. Only the

upper half of the bubble is displayed and the axes are scaled according to the dimensions

in the experiment. The channel wall is also plotted as a thick continuous black line. Due

to the low Weber number the surface tension allows only small deviations from a spherical

shape. The terminal bubble shape for a larger equivalent diameter of deq = 1.047, Re = 0.005

and W e = 1.810−4 are shown in Fig. 5.24b. Here the bubble takes an elongated shape due to

confinement.
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Figure 5.24: Terminal bubble shapes for an air bubble flowing in a microchannel filled with a
glycerol solution. The equivalent diameter is deq = 0.677 (a) and deq = 1.047 (b).

We now consider another case with deq > 1 but now simulate the problem with a reference

frame moving with the final bubble velocity in order to shorten the computational domain

length. The distance between the bubble and the inlet/outlet boundaries is about 3 channel

diameters and the bubble remains more or less in the middle of the domain. Choosing larger

distances to the open boundaries was verified to have no influence on the results. The non-

dimensional numbers are given by Re = 0.01286 and W e = 0.001278. In Fig. 5.25a, the terminal
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bubble shapes from the present simulations are compared to the experimental data and to

the simulation results presented in [79] using the commerical software ANSYS Fluent. The

simulations in [79] were carried out using an improved version of ANSYS Fluent based on

the VOF method for interface advection and a height function curvature calculation. The

steady state streamlines are also displayed in Fig. 5.25b. Good agreement is observed in

Fig. 5.25a between the present simulations and those of [79] as well as between simulations

and experiment. The simulations predict a steady state bubble velocity of 0.0179ms−1 against

a value of 0.01888ms−1 in the experiment. This gives a relative error of about 5%, which is

similar to the uncertainty range of the experimental measurement technique.

We now consider experiments with water for the liquid phase. The channel diameter is 514μm

and the non-dimensional numbers are given by Re = 140.93 and W e = 0.41225. In this case the

final bubble shape has a very thin liquid film with a thickness which is rougly 1% of the channel

diameter. This makes the simulation more challenging as the thin film between the bubble

and the wall has to be resolved by the mesh. In the present simulations a minimum of 5 mesh

points were used to resolve the velocity profile in the gap between the bubble and the wall. The

results for the air bubble in water case are displayed in Fig. 5.26a. In this case, the simulated

terminal velocity was 0.254ms−1 against 0.261ms−1 in the experiment, yielding a relative

error which is smaller than 3%. In Fig. 5.26a, the present results display better agreement with

the experimental bubble shape than those of the competing simulations performed with the

VOF method of ANSYS Fluent. Figure 5.26b displays profiles of the computed streamwise

velocity taken at two different axial locations, where ’bub’ is the velocity midway between the

nose and tail of the bubble and ’chan’ is the velocity in the channel sufficiently far from the

bubble. Away from the bubble, the fully developed channel profile is recovered while at the

bubble the velocity displays a parabolic profile in the gas region and a constant zero velocity is

found in the thin liquid film. This is in accordance with Bretherton’s small capillary number

theoretical solution [20], which assumes a stagnant liquid film. For the results in Fig. 5.26, the

capillary number is C a ≈ 0.003 and the leading order of the film thickness δ is given by [20]:

δ

R
= 0.643(3C a)

2
3 ≈ 0.03,

which is very close to the film thickness observed in Fig. 5.26a.

5.11 Sessile Drop with static Contact Angle

In this section, we simulate the axisymmetric shape of a water droplet resting on a solid surface.

We impose a static contact angle θ = θs in the manner described in section 4.3. As mentioned

earlier, the wetting phenomenon is challenging problem in fluid mechanics. Here we check if

the code is able to reproduce the steady solution and we choose θs = 90◦. At a fixed contact

angle, the steady shape of the droplet is determined by the Eötvös number (Eo = W e/F r 2)

expressing the relative importance of gravity and surface tension forces. For small values of

Eo the dominating surface tension force will try to maintain a constant curvature, while for
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Figure 5.25: Final bubble shapes (a) and streamlines (b) for an elongated air bubble flowing in
a microchannel filled with a glycerol solution.

large values of Eo gravity will flatten the drop like a pancake.

For our simulation we chose a square computational domain of length 3R where we initialize a

spherical drop with unit radius R . At the beginning the contact angle is imposed from Eq. (4.17)

and we wait until the droplet shape does not change with time. The gravitational force acts in

negative axial direction. The material properties are those of a water droplet surrounded by its

vapor:

ρl

ρv
= 958.3

0.597
,

μl

μv
= 28

1.26
, Re = 1, W e = 30, F r =

√
W e

Eo

The final droplet shape for Eo = 1 and Eo = 50 are shown in Fig. 5.27. The figures confirm the

effect of the Eötvös number: for Eo = 1 the strong surface tension leads to a droplet shape very

close to a spherical cap, while for Eo = 50 the drop is flattened by gravity.

The shape of a static droplet resting forming a given contact angle θs with the substrate can

be computed by integrating the Young Laplace equation. The Young Laplace equation yields,

81



Chapter 5. Computational Studies

0.00

0.20

0.40

0 0.2 0.4 0.6 0.8 1

r[
m
m
]

x[mm]

experimental
ANSYS Fluent

present

(a)

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5

u
(r
)

r

bub
chan

(b)

Figure 5.26: Final bubble shapes (a) and non-dimensional velocity profiles (b) for an elongated
air bubble flowing in a microchannel filled with water.

which equals the capillary pressure difference to the hydrostatic pressure, reds as:

ρl (x0 −x)

F r 2 = κ

W e
,
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(a)

(b)

Figure 5.27: Steady droplet shapes for θs = 90◦ and (a) Eo = 1, (b) Eo = 50. The axis of symmetry
is vertical.

where κ is two times the mean curvature and the pressure in the ambient vapor is assumed to

vanish. Inserting the expression for the axisymmetric curvature gives:

2

R
− zEo + z"

(1+ z ′2)3/2
+ z ′

r

1�
1+ z ′2 = 0, (5.14)

where z = x −h, z ′ = d z/dr , h is the final height and R is the curvature radius at the apex of

the drop. Equation (5.14) is formulated in terms of the angle φ= t an−1(z ′):

dr

dφ
= r cosφ

r (Eoz −2/R)− si nφ
,

d z

dφ
= r si nφ

r (Eoz −2/R)− si nφ
.
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It can then be integrated from the apex where φ= 0 to the surface where φ=−θs . In order to

compare with the numerical solution we vary R in Eq. (5.14) until the volume of the droplet

matches the volume in the numerical simulation. The droplet shapes obtained with this

theoretical approach are compared to the numerical simulations in Fig. 5.28 for three different

values (1,10,50) of Eo and good agreement is observed.
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Figure 5.28: Theoretical and numerical droplet shapes for Eo = 1,10,50 (top to bottom).

5.12 1D Phase Change Problem

This section verifies the phase change implementation by simulating a classical 1D Stefan

problem. The problem geometry is depicted in Fig. 5.29. A similar setup has been used by

several authors [43, 60, 114, 132]. The vapor is in contact with a hot wall and the liquid is at

saturation temperature. Therefore, the boundary conditions are T (x = 0, t ) = Tw all ,T (x ≥
X , t ) = Tsat , where X (t ) is the advancing interface position. The dimensionless temperature

T (x, t ) is defined as the deviation from saturation conditions such that Tsat = 0 and a constant

superheated temperature Tw all = 1 is used at the wall. Evaporation occurs due to the heat

transferred from the wall through the vapor phase. The velocity vanishes everywhere in the

vapor phase since the latter is confined by the wall. This gives the following relation between
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x

outletv l

Figure 5.29: Schematic of the 1D Stefan problem.

the interface velocity Ẋ and the heat flux in the vapor:

ρv Ẋ = ṁ
′′ = λv

Δhl v RePr

∂T

∂x

∣∣∣∣
X

. (5.15)

An analytical solution can be derived by introducing a similarity variable s = x
2
�
αv t

, where

αv = λ
ρcp RePr is the dimensionless thermal diffusivity of the vapor. Since there is no flow inside

the vapor, the energy equation reads

DT

Dt
= ∂T

∂t
=αv

∂2T

∂x2 . (5.16)

The interface position evolves as the square root of time:

X (t ) = 2β
√

αv t , (5.17)

where β is a root of the following transcendental equation:

βeβ
2
er f (β) = cp (Tw all −Tsat )

Δhl v
�
π

. (5.18)

The liquid is at saturation temperature and the temperature in the vapor (x < X ) reads:

T (x, t ) = Tw all − (Tw all −Tsat )
er f ( βx

X (t ) )

er f (β)
. (5.19)

A triangular mesh initially consisting of two horizontal layers of triangles was used for the sim-

ulations, with symmetry boundary conditions on the horizontal boundaries. The initial edge

size of the mesh was 0.005 and the initial interface position was X (0) = 0.1. The mesh motion

parameters in Eq. (4.30) were chosen as β1 = 0,β2 = 0.8. Fluid properties corresponding to

refrigerant R134a were used for the simulation: ρl = 1187kg m−3, λl = 0.079W m−1K −1, cpl =
4.2610−4 Jkg−1K −1 and ρv = 37.54kg m−3, λv = 0.0173W m−1K −1, cpv = 4.2610−4 Jkg−1K −1.

The non-dimensional numbers were all set to unity Re =W e = Pr =Δhl v = 1 and (5.18) gives

β= 0.620063. The computed interface position is compared to the theoretical solution given

by Eq. (5.17) in Fig 5.30a and the temperature profiles are compared to Eq. (5.19) in Fig 5.30b.

Good agreement is found between numerical and theoretical results.
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5.13 Evaporating Bubble in Superheated Liquid

In this section we investigate a spherical bubble expanding in a uniformly superheated,

unbounded pool of liquid. The liquid is superheated with T (r =∞, t) = T∞ > Tsat and the

vapor bubble is at saturation temperature T (r ≤ R, t ) = Tsat , where r is the polar radius

and R(t) is the time dependent bubble radius. This idealized problem is relevant to the

study of nucleate boiling, where two stages of bubble growth can be distiguished [24]: the

inertia-controlled growth and the heat-transfer-controlled growth. The inertia-controlled

growth exists during the early stages of a nucleated vapor bubble. Here we consiter the heat-

transfer-controlled growth, which is found in the later stages when growth is limited by the

transport of heat to the interface. Scriven derived a theoretical solution [120], which is useful

for verification purposes. Scriven’s solution is briefly introduced here. Similarly to the previous

case, the vapor phase is confined and the velocity inside the bubble has to vanish. To fulfil

mass conservation, the liquid velocity has to decay as the inverse of the square of the radius:

v(r ) =VR
R2

r 2 , (5.20)

where r is the spherical radius and VR = v(r = R). The latter can be eliminated by using the

interface mass balance condition:

ṁ
′′ = ρv Ṙ = ρl (Ṙ −VR ) ⇒ VR = Ṙ

(
1− ρv

ρl

)
. (5.21)

Using all the assumptions listed in [120], the energy equation in the liquid surrounding the

bubble reads as:

∂T

∂t
+εṘ

R2

r 2

∂T

∂r
=αl

(
2

r

∂T

∂r
+ ∂2T

∂r 2

)
, (5.22)

where ε=
(
1− ρv

ρl

)
. The bubble radius grows proportional to the square root of time:

R(t ) = 2β
√

αl t , (5.23)

and with the substitution s = r
2
�
αl t

, Eq. (5.22) becomes

d 2T

d s2 +2

(
s + 1

s
− εβ3

s2

)
dT

d s
= 0. (5.24)

Integrating Eq. (5.24) twice, taking into account the boundary condition T (s =∞) = T∞, gives

T (s) = T∞− A

∞∫
s

exp(−x2 −2εβ3x−1)

x2 d x (5.25)
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Using the remaining boundary conditions, the constants A and β are calculated as follows:

ṁ
′′ = ρv Ṙ = ρvβ

√
αl

t
= λl

Δhl v RePr

∂T

∂r

∣∣∣∣
R

,

⇒ A = 2Δhl v cp
ρv

ρl
β3exp((1+2ε)β2)) (5.26)

and

T (r = R, t ) = Tsat = T∞− A

∞∫
β

exp(−s2 −2εβ3s−1)

s2 d s. (5.27)

Equations (5.25) and (5.27) require the evaluation of an improper integral. These improper

integrals were computed by splitting the limits

∞∫
a

f (x)d x =
1∫

a

f (x)d x +
∞∫

1

f (x)d x (5.28)

and transforming the second integral with the substitution u = 1/x:

∞∫
1

exp(−x2 −2εβ3x−1)

x2 d x =
1∫

0

exp(−u−2 −2εβ3u)du. (5.29)

The resulting integrals are of standard type and can be computed by Gaussian quadrature.

Scriven’s solution gives the time dependent bubble radius (5.23), the velocity distribution

(5.20) and the temperature distribution (5.25).

An axisymmetric domain was used in the simulations taking advantage of the spherical

symmetry of the problem. The non-dimensional parameters and fluid properties assumed

the following values:

Re = 1, W e = 30, Pr = 1, R(t = 0) = 0.5, T∞ = 1, Tsat = 0, Δhl v = 60000,

ρl = 958.3kg m−3, μl = 2.810−4 kg m−1s−1, λl = 0.679W m−1K −1, cpl = 2425 Jkg−1K −1,

ρv = 0.597kg m−3, μv = 1.2610−5 kg m−1s−1, λv = 0.025W m−1K −1, cpv = 2425 Jkg−1K −1.

The parameter β is calculated to be 0.128257. Figure 5.31 displays the computational domain

and the mesh. The horizontal boundary of the domain is a symmetry line and an outflow

boundary condition, with a fixed value of the pressure and temperature: p = 0,T = T∞ = 1, is

imposed on the circular part of the boundary. The temperature inside the bubble is constant

and equal to the saturation temperature, which is given by T = 0. In the liquid outside the

bubble, the temperature is initialized with the values given by the theoretical solution (5.25).

The mesh motion parameters were set to β1 = 0,β2 = 0.8 and simulations were performed
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with different mesh and time step sizes to obtain converged results.

The computed bubble radius is compared to the theoretical solution in Fig 5.32. The bubble

growth, proportional to the square root of time, predicted by Eq. (5.23) is closely matched.

Figure 5.33 compares the radial velocity and the temperature to the exact solution. A steep

temperature boundary layer is observed close to the bubble as evidenced in Fig. 5.33b. The

mesh displayed in Fig. 5.31 is strongly refined close to the bubble allowing it to resolve the

boundary layer. Overall good agreement is found between the numerical and the theoretical

solution.

5.14 Rayleigh-Taylor Instability with Phase Change

This last test-case demonstrates the effects of phase change on the Rayleigh-Taylor insta-

bility. It has been found [65] that phase change can reduce the growth rate of infinitesimal

perturbations around a base flow with a constant temperature gradient. A planar geometry is

considered where the liquid occupies 0 < y < 1 and the vapor −1 < y < 0. The quiescent base

flow has a linear temperature profile:

T =Gl y for 0 < y < 1,

T =Gv y for −1 < y < 0,

where the gradients are such that there is no phase change in the base flow: λl Gl =λvGv . The

flow parameters correspond to those used in [44]:

Re = 2500, W e = 8.333, F r = 0.289,

Pr = 0.00947, Tsat = 0, Δhl v = 0.065,

ρl = 2.5kg m−3, μl = 0.001kg m−1s−1, λl = 0.1056W m−1K −1,

ρv = 0.25kg m−3, μv = 0.0001kg m−1s−1, λv = 0.0211W m−1K −1.

A sinusoidal perturbation with a unit wave length is applied to the interface: y = A0cos(2πx)

with A0 = 0.0005. The width of the domain is a single wavelength. The problem is first

simulated without phase change, where the classical dispersion relation:

ω2 = (σk3 −Δρkg )/(ρl +ρv ) (5.30)

should hold. In a second step, phase change is included and a reduced growth rate is observed

in accordance with theory. The instantaneous amplitude of the perturbation A(t ) is plotted

in Fig. 5.34, with a logarithmically scaled ordinate such that exponential growth appears as a

constant slope. The exponential growth from linear stability analysis is represented by solid

lines in Fig. 5.34. After an initial adjustment period, the numerical growth rates are close to

those from linear stability analysis. The results in Fig. 5.34 are very similar to the computations

of [44].
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Figure 5.30: (a) Interface position as a function of time, (b) temperature distribution at several
instants t = 0.00079,0.0055,0.022 (from left to right).
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Figure 5.31: Meshed computational domain (a), zoom on the bubble (b).
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Figure 5.32: Bubble radius as a function of time.
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Figure 5.33: Radial distribution of (a) initial radial velocity and (b) temperature at several
instants t = 11.5,89,110.5 (from left to right).
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Figure 5.34: Evolution of the perturbation amplitude with (diabatic) and without (adiabatic)
phase change.
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6 Conclusions and Outlook

Our aim was to gain more understanding of the issues involved in numerical simulation of

two-phase flows. The focus was on surface tension dominated problems and phase change.

For this task a FEM discretization of the Navier-Stokes equations was used, with unstructured

triangular meshes. The governing equations were solved on interface resolving meshes using

the Arbitrary Lagrangian-Eulerian (ALE) description. Phase change was implemented via a

source term in the continuity equation, with the rate of mass transfer computed from the

interfacial jump in conductive heat flux.

In FEM computations, the regularity of the element shape affects the computational pre-

cision and the conditioning of the system matrix. Therefore, when working with moving

and deforming meshes, it is important to monitor element size and shape at all times. If

the element deformations become too large, remeshing has to be applied. In this thesis, the

remeshing strategy is to insert and remove points based on the local element size recreate the

mesh connectivity and smooth the element shape with the moving mesh velocities. Adaptive

mesh refinement is thus possible with the present method by choosing the velocity used to

update the location of the mesh nodes and by changing the number of mesh nodes. Mesh

points are deleted, added or displaced and the solution is interpolated on the new mesh.

The criterion to insert/remove mesh points is based on the ratio of actual edge length to a

target edge length distribution, which is found by solving a Helmholtz equation. This adaptive

approach allows to handle complicated mesh motion and accurately resolve fine scales of the

flow. However, remeshing should be used with care since it is expensive and causes additional

errors. Choosing appropriate mesh velocities helps to keep the remeshing frequency low.

The versatility of the approach has been demonstrated by several testcases from the two-phase

flow literature. Cases with large density and viscosity ratios could be simulated accurately.

Using a discrete version of the Frenet-Serret formula for the curvature calculation proved

to be a good choice, as high accuracy could be achieved at very low computational cost.

The accurate curvature estimation combined with a consistent discretization of the pressure

gradient and surface tension term resulted in very low parasitic currents and accurate capillary

pressure jumps. In the particular case of a spherical drop in a constant velocity field the errors
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were on the order of the machine accuracy. The method was shown to correctly describe

the frequency of capillary waves on a spherical droplet and to handle large deformations as

they occur in the non-linear stages of a Rayleigh-Taylor instability. The shape of travelling

waves in falling film flow around a fibre and growth rates from linear stability analysis were

well captured. Phase change validations were performed for flat, spherical and sinusoidally

perturbed interfaces. Simulation results were successfully compared to experimental data for

the flow of an air bubble in a microchannel. Moreover, all computations in this thesis were run

in serial on a desktop computer. It can thus be concluded that the ALE moving mesh method

is accurate and efficient for the simulation of two-phase flows with heat and mass transfer.

However, the present method has some limitations related to the lack of flexibility in dealing

with complex interface deformation. Finding the proper choice of mesh parameters can be a

difficult task, which needs to be performed on a case by case basis.

6.1 Perspectives

In the future the code could be used to study diverse two-phase physical phenomena. The

present approach is especially suitable for problems where the interface has simple topology

but a high degree of fidelity is required for its representation. Some examples of possible ap-

plications are: rising bubbles, droplet impact, evaporating droplets on substrates, evaporating

channel flow, break up of liquid threads and bubble coalescence. For a droplet evaporating on

a surface, under diffusional control, two extreme modes of evaporation have been identified

[97]: the constant contact angle (CA) mode and the constant contact radius (CR) mode. In

the theory of [97] the drop is assumed to be a spherical cap, in the first mode the contact

radius shrinks while the contact angle is constant and in the second mode the contact angle

reduces while the contact radius is pinned. While the CA and CR modes can be simulated

with the present code real drops tend to spread with a dynamic contact angle that depends on

the contact line motion. In [96], a dynamic contact angle model, with a contact line velocity

dependent contact angle, was shown to capture the dynamics of a droplet impacting on a

surface. An interesting application, which does not involve contact lines, is the Leidenfrost

effect. A droplet impinging on a hot plate will enter the Leidenfrost regime when the wall

temperature exceeds a certain limit. In this case the droplet levitates on a thin layer of sat-

urated vapor between the droplet and the plate. Leidenfrost boiling was simulated in [113]

using the level-set method to represent the interface, while applying the jump conditions at

the interface using a Ghost Fluid approach based on a divergence-free extrapolation of the

velocity field. Numerical computations presented in [113] resolved the boiling dynamics in

the vapor layer with a very dense (static) mesh. The present adaptive refinement method

could be used to resolve the thin vapor layer more efficiently.

Break up of a fluid treads and merging of spherical bubbles could be simulated with the present

approach. However, as the interface is explicitly marked by connected mesh points, topological

changes cannot happen by default. Such problems could be simulated up to the singularity

or breakup/merging could be implemented via mesh separation/combination criteria, like
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those proposed in [106, 107] where mesh separation and combination methods were used

to simulate jet pinching and the off-center collision of droplets including the formation of

satelite droplets. However, as was noted in [107] the time when mesh separation/combination

are applied is ad-hoc and executed when radius of the neck is smaller than a length defined

as a fraction of the initial drop diameter. Moreover, these schemes were implemented by

converting several cells of one fluid in another thus leading to a mass conservation error. When

a jet breaks up due to surface tension it forms a very thin and almost perfectly axisymmetric

thread, whose dynamics near breakup are found to exhibit universal scaling laws [40]. Here

the adaptive mesh refinement capability could be particularly useful to allow the dynamics of

breakup to be simulated across the spatial range in the inertia and viscous regime.

6.1.1 Improvements to the Numerical Method

The Lagrangian interpolation described in section 4.10 is expected to represent a large source

of error in the present approach. This type of interpolation does not conserve mass and energy

and is unsuited for discontinuous discretizations [46]. An alternative Galerkin projection inter-

polation would improve on these deficiencies. Galerkin projection minimizes the integral over

the target mesh of the squared interpolation error in the L2-norm. For a Galerkin projection

interpolation it is suitable to perform integration over a "supermesh" i.e. a mesh containing

all the nodes of both the original and the new mesh.

The implemented contact angle model, that was described in section 4.3, does not allow to

use a velocity dependent contact angle. Moreover, if a contact angle different than π/2 is used

it is unclear what boundary conditions to use for the curvature on the interface boundary.

In order to remove these issues it would be advisable to include the curvature in the weak

form. This would require a departure from the currently used "one fluid" approach where

the surface tension is included as a body force via Eq. (3.19). However, since an interface

adapted mesh is used, it is possible to use a "two fluids" formulation and impose the dynamic

interface condition (3.11) at the interface. The curvature boundary condition and the dynamic

contact angle model could then be introduced naturally into the boundary terms resulting

from integration by parts of the stress tensor. The Frenet-Serret formula for the curvature (4.12)

can also be integrated by parts transferring the derivative to the test function and resulting in

a boundary term similar to equation (2.25) of [6]. An arbitrary contact angle value could then

be prescribed by specifying the direction of the unit tangent vectors at the endpoints of the

interface.

Parallelizing the code is advisable if larger systems are going to be simulated. A shared data

parallelization (based on OpenMP) could be a first step, which was already started during

this thesis but only for the FEM matrix assembly. Most of the computational effort goes into

solving the linear system wherefore a great speedup could be achieved by parallelizing it.

A distributed data MPI parallelization is expected to be necessary for higher performance

but remeshing will require repeated domain decompositions or complicated load balancing
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procedures making this a non-trivial task.
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A Coordinate Transformations of the
Navier-Stokes Equations

Since the governing equations for axisymmetric flow play a central role in this thesis, the

derivation of the cylindrical Navier-Stokes equations is carried out in this appendix. We start

by giving general expressions for the transformation of the individual terms in the Navier-

Stokes equations from Cartesian into arbitrary curvilinear coordinate systems. These formulas

are then applied to the cylindrical case but they are equally useful to obtain other forms of the

equations, for example the spherical case.

A.1 From Cartesian to Curvilinear Coordinates

Starting point are the incompressible Navier-Stokes equations in Cartesian coordinates (xi ).

In order to avoid the transformation of tensors, which is more involved, we start from the

non-conservative velocity pressure formulation:

ρ

(
∂v

∂t
+ v ·∇v

)
= −∇p + μΔv + ρ g , (A.1)

∇·v = 0,

where

v = ∑
i

e i vi , (A.2)

∇ = ∑
i

e i
∂

∂xi
, (A.3)

Δ = ∑
i

∂2

∂x2
i

. (A.4)

The vectors e i form an orthonormal basis in the Cartesian coordinate system.
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Next some general formulas are going to be given, which allow to express the Navier-Stokes

equations (A.1) in another coordinate system with coordinates (x̃i ).

In the new coordinate system, the unit basis vectors are defined as

ẽ i = ∂r

∂x̃i
, (A.5)

and the velocity vector is expressed as

v =∑
i

ẽ i ṽi . (A.6)

It follows from that last equation together with the chain rule:

∂

∂xi
= ∑

j

∂x̃ j

∂xi

∂

∂x̃ j
, (A.7)

that

vi =
∑

j
ṽ j

∂xi

∂x̃ j
. (A.8)

Therefore, divergence of the velocity is

∇·v = ∑
i

∂vi

∂xi
= ∑

i

∑
j

∑
k

∂x̃i

∂xk

∂

∂x̃i

(
ṽ j

∂xk

∂x̃ j

)
. (A.9)

after transformation.

The convective term in the momentum equation, transforms as

v ·∇v =
∑

i

∑
j

∑
k

ṽ j
∂xk

∂x̃ j

∂x̃i

∂xk

∂

∂x̃i

(∑
l

ẽ l ṽl

)
= ∑

i
ṽi

∂

∂x̃i

(∑
l

ẽ l ṽl

)
. (A.10)

From (A.3) it follows that the gradient operator can be expressed as

∇ = ∑
i

ẽ i
∑

j
Si j

∂

∂x̃ j
, (A.11)

with

Si j = ∑
k

∂x̃i

∂xk

∂x̃ j

∂xk
.
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For the Laplacian of the velocity, we have

Δv = ∑
j

e j
∑

i

∂2v j

∂x2
i

= ∑
i

ẽ i
∑

j

∑
k

∂x̃i

∂x j
Δ̃

(
ṽk

∂x j

∂x̃k

)
, (A.12)

where

Δ̃ = ∑
j

∂

∂x j

(∑
i

∂x̃i

∂x j

∂

∂x̃i

)
= ∑

i

(∑
j

∂2x̃i

∂x2
j

∂

∂x̃i
+ ∑

k
Si k

∂2

∂x̃k∂x̃i

)
.

A.2 Cylindrical Coordinates

In this section the general formulas of the previous section are going to be applied to the

case where the new coordinates are cylidrical coordinates (r,θ, z): d x̃1 = dr , d x̃2 = r dθ and

d x̃3 = d z. The transformation from Cartesian to cylindrical coordinates is decribed by

Ai , j := ∂x̃i

∂x j
A=

⎛
⎜⎝

cosθ si nθ 0

−si nθ cosθ 0

0 0 1

⎞
⎟⎠ , (A.13)

Bi , j := ∂xi

∂x̃ j
B=

⎛
⎜⎝

cosθ −si nθ 0

si nθ cosθ 0

0 0 1

⎞
⎟⎠ (A.14)

and

∂2x̃i

∂x2
j

=

⎛
⎜⎝

si n2θ
r

cos2θ
r 0

si nθ cosθ
r − si nθ cosθ

r 0

0 0 0

⎞
⎟⎠ . (A.15)

Note that

∑
j

∂x̃i

∂x j

∂x̃k

∂x j
=AAT = I.

The unit vectors er ,eθ,ez are such that

∂er

∂θ
= eθ,

∂eθ

∂θ
=−er . (A.16)

Using Eq. (A.9) the continuity equation in cylindrical coordinates reads

∂vr

∂r
+ vr

r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0
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and using Eq. (A.11) the pressure gradient reads

∇p = ∂p

∂r
er + 1

r

∂p

∂θ
eθ+

∂p

∂z
ez .

Equation (A.10) yields that the convective term in cylindrical coordinates reads

v ·∇v =
∑

i
ẽ i

∑
j

ṽ j
∂ṽi

∂x̃ j
+ vr vθ

r
eθ−

v2
θ

r
er .

Finally for the Laplacian of the velocity, Eq. (A.12) yields

Δv =
(
Δc vr − vr

r 2 − 2

r 2

∂vθ

∂θ

)
er +

(
Δc vθ−

vθ

r 2 + 2

r 2

∂vr

∂θ

)
eθ+Δc vz ez ,

where

Δc = 1

r

∂

∂r
+ ∂2

∂r 2 + 1

r 2

∂2

∂θ2 + ∂2

∂z2 .
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