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Abstract
Brain stroke is an age-related illness which has become a major issue in our ageing societies.

Early diagnostic and treatment are of high importance for the full recovery of the patient,

as reminded in Anglo-Saxon countries by the abbreviation FAST (Face, Arm, Speech, Time)

referring to both the four major visible signs, and the necessity to act fast. In this respect, Com-

puted Tomography (CT) and Nuclear Magnetic Resonance (NMR) imaging are key diagnostic

tools in clinical practice. Unfortunately, not only these modalities can neither be transported

nor rapidly usable, which would allow early treatment (especially in rural environments), but

also cannot be brought to the bedside of the patient to monitor the evolution of the disease.

Microwave Imaging (MWI) is a potential candidate to provide fast and accurate diagnostic

insights for brain stroke pathological states. The head of the patient is illuminated with

low-power microwave waveforms (non-ionizing radiations), whose backscattered signals are

used to generate either images of its internal structures, distributions, patterns and shapes

(qualitative imaging) or directly its physical parameters such as the dielectric contrast and the

permittivity values (quantitative imaging). The technology relies on the high sensitivity of mi-

crowaves on the water content of tissues to allow for the discrimination between pathological

and healthy regions.

This thesis focuses on both the forward modeling of the electromagnetic phenomena arising

in biological tissues and the inverse scattering problem for imaging in the differential MWI

(dMWI) scenario for brain stroke monitoring. It is intrinsically interdisciplinary as it requires

knowledge in Biology, Medicine, Physics, Chemistry, and Engineering.

In order to investigate the challenges arising in brain MWI, it is crucial to have accurate and

efficient solvers to model electromagnetic (EM) fields at UHF/SHF-bands. The head is a

distributed, heterogeneous, and lossy scatterer for which existing solvers are known to strug-

gle at higher frequencies. Volume Integral Equation (VIE) formulations and MultiGrid (MG)

approaches are investigated to find the actual solution of the field distributions for large scale

problems.

The EM modeling also permits to analyze the feasibility of brain MWI, which depends on

the power transmission from the antennas towards the human brain. In order to estimate

this transmission, simplified but still representative models, including intermediate layers -

skin, fat, bone, and CerebroSpinal Fluid (CSF) - of the head, are proposed in the framework of

simulations (analytical tools) and experimental validations (3D printed head phantom).

For the imaging task, the physics of the EM scattering, leads to complex non-linear inverse
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scattering problems (consisting in retrieving from a set of field measurements the physical

parameters which produced them) for which reliable assumptions and approximations must

be found. For brain MWI, estimating and quantifying the degree of non-linearity allows for

determining the scope of application of existing algorithms, for which different regularizers

are applied.

Modeling and inverse problem resolution for brain MWI investigated in the present work are

ultimately meant to contribute to the development of a technology dedicated to brain stroke

detection, differentiation, and monitoring.

Key words: Computational bio-electromagnetics, Volume Integral Equation (VIE), MultiGrid

(MG), Acute Cerebrovascular Diseases (CVDs), differential Microwave Imaging (dMWI), Brain

Stroke Monitoring, Degree of Non-Linearity (DNL), Spherical Wave Expansion (SWE), 3D

printed phantom.
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Résumé
L’Accident Vasculaire Cérébral (AVC) touche principalement les personnes âgées et est, pour

cette raison, un enjeu majeur dans nos sociétés vieillissantes. Le diagnostic et le traitement

rapide de cette pathologie sont indispensables pour le rétablissement complet du patient,

comme le rappelle l’acronyme anglais FAST qui fait référence tant aux quatre symptômes

visibles de la maladie (Face - visage, Arm - bras, Speech - parole, Time - temps) qu’à la né-

cessité d’une intervention rapide. A l’heure actuelle, ce sont principalement la scanographie

et l’Imagerie par Résonance Magnétique (IRM) qui sont utilisées pour établir un diagnostic.

Toutefois, ces dispositifs ne sont ni facilement transportables, ni rapidement utilisables (et ce

surtout en milieu rural) et ne peuvent donc pas être amenés au chevet du patient pour suivre

l’évolution de la maladie.

Une solution pour palier à ces inconvénients majeurs pourrait résider dans l’utilisation de

l’imagerie hyperfréquence. Cette méthode consiste à soumettre la tête du patient à des micro-

ondes de faible puissance (aux rayonnements non-ionisants), dont les signaux diffractés sont

utilisés pour générer les images des structures internes, leurs répartitions et leurs formes

(imagerie qualitative), voire directement des paramètres physiques tels que le contraste di-

électrique et les valeurs de permittivité (imagerie quantitative). Cette technologie se base sur

la sensibilité élevée des micro-ondes à la teneur en eau des tissus, laquelle est supposée varier

de façon notable entre régions pathogène et saine.

Le présent ouvrage sera essentiellement consacré à la modélisation des phénomènes élec-

tromagnétiques ainsi qu’à la résolution du problème inverse que suscite l’imagerie hyperfré-

quence différentielle pour le suivi des AVC. Ce domaine est intrinsèquement interdisciplinaire

puisqu’il demande à la fois des connaissances en biologie, en médecine, en chimie et en

ingénierie.

L’étude de l’imagerie hyperfréquence cérébrale requiert des solveurs précis et efficaces de

modélisation des champs électromagnétiques (EM) pour les bandes UHF / SHF. En effet, la

tête étant une répartition hétérogène de milieux à pertes, les solveurs de modélisation EM

peinent à converger. La formulation en Equations Integrales Volumiques (VIE) et un solveur

basé sur une approche Multi-Grille (MG) sont étudiés pour trouver la distribution du champs

pour des problèmes à grand nombre d’inconnues.

La modélisation EM permet également d’analyser la faisabilité de l’imagerie hyperfréquence

qui dépend de la transmission du signal dans le cerveau. Le présent ouvrage propose des

modèles simplifiés de têtes humaines, incluant les couches intermédiaires (peau, graisse, os,
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liquide céphalorachidien), qui permettent l’analyse et l’appréciation des ordres de grandeur

de la puissance transmise. Ces modèles peuvent être utilisés, soit dans le cadre de simulations

(outil analytique), soit pour des expériences pratiques (au moyen d’un fantôme de tête).

Pour la résolution du problème inverse (retrouver sur la base de mesures les paramètres qui

les ont induites) en vue d’obtenir une image, la physique de la diffusion EM conduit à des

problèmes complexes et non linéaires pour lesquels sont souvent utilisés des hypothèses et

des approximations. En matière d’imagerie hyperfréquences cérébrale, l’estimation et la quan-

tification du degré de non-linéarité permet de déterminer la plage de résolution du problème

inverse d’imagerie pour laquelle plusieurs approches d’inversion à l’aide de régulariseurs sont

appliquées.

La modélisation et la résolution du problème inverse, auxquelles contribue le présent ouvrage,

servent in fine à développer une technologie dédiée à la détection, la différentiation, et le suivi

des AVC.

Mots clefs : Bio-électromagnétisme computationnel, Equations Integrales Volumiques, Multi-

Grille (MG), Accident Vasculaire Cérébral (AVC), Imagerie hyperfréquence différentielle, Suivi

des AVC, Degré de Non-Linéarité (DNL), Décomposition en harmoniques sphériques, fantôme

basé sur l’impression 3D.
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1 Introduction

1.1 Overall View and Description of the Scientific Problem

Medical imaging technologies are an essential tool in clinical practice, both for providing

an accurate initial diagnosis and for monitoring the evolution of pathological states. For

some specific illnesses, such as Acute CerebroVascular Diseases (CVDs) (also referred to as

brain stroke), they still lack of fast and transportable diagnostic tools, which would allow

early treatment. MicroWave Technology (MWT) is investigated as a potential candidate for

detecting, discriminating, and monitoring brain strokes. For that purpose, fast and accurate

computational electromagnetic solvers need to be developed, especially for bio-medical

applications.

1.1.1 Brain Stroke: Main Facts and Numbers

The brain is a central organ in the human physiology, enabling thinking, speaking, moving the

body, memorizing, etc. Brain illnesses can therefore be devastating and have a huge impact on

the life condition of the patient. Brain stroke is a leading cause of mortality in aging societies

such as the United States [1] or Europe [2, 3]. It implies an abnormal blood flow inside the

head, which can cause irremediable changes or, at worst, lead to death. There are several kinds

of brain strokes, with different implications and treatments. Ischaemic strokes (68−80%)

are the most common ones and imply an obstruction in the brain’s blood flow (see Fig. 1.1a).

The highest mortality is due to spontaneous intercerebral haemorrhages (7−20%), which are

caused by a sudden blood vessel burst, as depicted in Fig. 1.1b. Subarachoid haemorrhages

(1−7%) and sinus venous thromboses (1−2%) are less common occurrences [4].

The prevention on the "big five" major risk factors (hypertension, smoking, sedentary life,

atrial fibrillation, and diabetes) leading to brain stroke [5, 6] is a way to decrease the stroke

occurrences. However, all strokes cannot be avoided. An early diagnostic is very beneficial

for the full recovery of the patient [7]. Today the diagnostic is mainly based on Computed To-

mography (CT) (see Fig. 1.1a) and Nuclear Magnetic Resonance (NMR) images (see Fig. 1.1b),

1



Chapter 1. Introduction

which are taken at the hospital [8]. However none of these imaging modalities can be brought

either to the patient’s bedside, or to an ambulance to ensure an early and crucial diagnostic.

The diagnostic is crucial as an early thrombolytic treatment which is normally administrated

to cure ischaemic strokes could have a disastrous outcome if performed on a patient with

haemorrhagic stroke [7].

(a) Ischaemic stroke (b) Haemorrhagic stroke

Figure 1.1 – Stroke representations [9]. CT scan of an ischaemic stroke (left) and NMR image of a
haemorrhagic stroke (right) ©2016, WebMD LLC All rights reserved.

Besides the evident human impact of this pathology, it implies a prevalent annual cost (in

Europe) of EUR 386 billion [3], with an average cost of EUR 22,000 per patient, without taking

into account the additional social impact [4] such as work inability. Today, in Europe, CVDs

are affecting 200 over 100,000 people [4] and the prediction for 2030 shows an increase of up to

40% of the stroke occurrence as the probability increases with age [10]. In our ageing society,

brain stroke is today a major issue on both individual and societal scale leading to numerous

research projects related to this topic [3].

1.1.2 Microwave Imaging: State-of-the-art and Challenges

Industrial, Scientific, and Medical applications in the radio frequency (RF) band (ranging

from around 20 kHz to 300 GHz), excluding telecommunication applications, are known

as ISM-applications. Three decades ago, the pioneering work of L.E. Larsen and J.H.Jacobi,

showed the capability of imaging a dog’s kidney in the S-band [11, 12]. Since then, Microwave

Imaging (MWI) is considered as a tomographic modality which is able to image (in grey or

color scale instead of single point measurements) the internal dielectric distribution of an

object (considered as a scatterer) without altering it [13]. Quantitative imaging gives values of

physical parameters such as the dielectric contrast, or the permittivity values, and qualitative

imaging yields distributions, patterns and shapes [14, 15].

Microwave tomography for industrial processes [16] ranges from imaging solid, liquid or

gas substances traveling in a pipeline [17], to imaging buried objects [18–20]. For biomedical
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1.1. Overall View and Description of the Scientific Problem

applications, MWI involves the illumination of the portion of the body under investigation with

low-power microwave waveforms (UHF/SHF-bands) and the use of the resulting backscat-

tered signals to generate images of the internal structures of the body [14, 21, 22]. MWI is

non-ionizing, low power, non-invasive and potentially low cost. These are important features

to contribute to the deployment of the technology, and to the wider acceptance in terms of

patient comfort. MWI is suitable for a broad range of applications including many in the

context of an ageing society:

(i) early detection and classification of breast cancer for which existing techniques fail

[23, 24];

(ii) contactless vital signs monitoring (heart and respiration) [25];

(iii) non-invasive diagnostic methods for intracranial imaging applications and stroke de-

tection [26, 27];

(iv) injuries of joint tissues, such as ligaments, meniscus and cartilage (of the knee) [28];

(v) contrast-enhanced MWI [29, 30].

MWI for brain stroke detection is getting increasingly attention as it could be a fast and portable

diagnostic tool [26, 27]. Indeed, the high sensitivity of microwaves to water content could help

distinguishing healthy from malignant tissues, such as tumors and brain strokes [31], to name

only few. MWI, as a potentially low-cost and less cumbersome alternative technology, could

be used in ambulances and at small/rural hospitals or private cabinets, and therefore provide

earlier diagnostics to permit early stage treatment [32]. The two main companies present in

Europe, which rely on Microwave Technology (MWT) for brain stroke related applications,

are the Swedish company Medfield Diagnostics AB (StrokefinderTM) [33, 34], and an Austrian

based company EMTensor GmbH (BRIMG1) [26, 35]. StrokefinderTM is used as a tool to detect

and differentiate brain strokes. A classification based on machine-learning algorithms and

trained on measured patient data is used to discriminate between ischaemic and haemor-

rhagic strokes [36]. Lately, the same device was used for investigations on Traumatic Brain

Injuries (TBI) [34,37]. As regards BRIMG1, it is a full MWI modality, in the sense that it might be

able to reconstruct both quantitative and qualitative images. The solver is based on the Finite

Element Method (FreeFem++ [38]), and relies on decomposing the imaging chamber domain

into subdomains. This method may allow stroke detection, classification, and monitoring on

a transportable device [39].

The challenges for brain stroke MWI are intrinsic to the physics of the scattering problem.

Firstly, the kernel (operator describing the relation between data and unknowns) of the prob-

lem leads to ill-posed situations, for which regularization strategies need to be investigated.

Secondly, the multiple scattering phenomena, which is not negligible for nonweak scatterers,

result in a degree of non-linearity [40] which varies for every scattering configuration. Esti-

mating and quantifying this parameter allows to discriminate between different potential
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Chapter 1. Introduction

strategies (Compressed-Sensing (CS) [41, 42], Born [43]) to perform the imaging task [44, 45].

Also, the operating frequency and the background medium have a major impact on the perfor-

mance of the overall method, and therefore investigating models to analyze the transmitted

power or any related quantity is crucial [46, 47].

1.1.3 Computational Electromagnetics for Bio-Medical Applications

Bio-electromagnetics examines the electromagnetic phenomena arising in biological tissues.

It is interdisciplinary and involves classical disciplines such as Biology, Medicine, Physics,

Chemistry and Engineering. Particularly, the modeling of interactions of external electromag-

netic fields with human organisms has gained increasing attention throughout the past. The

reason for this are twofold: on the one hand we have an increasing number of electromagnetic

and wireless devices (e. g. cellular phones or the emerging wireless power transmission) in

our quotidian surroundings which bear concern in the public opinion about possible adverse

health effects of electromagnetic fields. On the other hand, electromagnetic phenomena are

used daily in many medical applications such as in examinations (e. g. Magnetic Resonance

Imaging, Computed Tomography) or as therapeutic tools (e. g. Deep Brain Stimulation or

trans-cranial direct and alternative current stimulation) in the personalized medicine era.

A simple and popular numerical technique to simulate problems of bio-electromagnetic

effects, which requires to solve Maxwell’s equations, is the Finite Difference Time Domain

(FDTD) algorithm. However, FDTD solvers have considerable drawbacks, such as staircase

effects due to rectangular meshes, and difficulties modeling thin and long geometries, open

boundaries (e.g. radiation setups), or frequency-dependent materials. An alternative approach

to solve Maxwell’s equations in the frequency domain are integral equation methods which

are a versatile technique. In recent years, fast integral equation (IE) techniques have received

a substantial attention in the Computational Electromagnetics (CEM) community [48–50].

Their field of application is increasingly expanding with the advent of massive-parallel solvers

and High Performance Computing (HPC) facilities. They enable precise solutions for a wide

range of electromagnetic problems, giving an opportunity to solve scientific and technological

challenges.

Methods based on integral equations have several advantages over differential formulations

(such as FDTD or FEM). They show a high efficiency and stability in various situations and

provide potentially a more accurate solution for the fields. However, while differential for-

mulation produce sparse matrices, integral equation methods result, in general, in dense

matrices. This disadvantage has been overcome with the development of methods such as

the Multi-Level Fast Multipole Algorithm (MLFMA) [51, 52], the pre-corrected Fast Fourier

Transform (pFFT) [53, 54] or the Adaptive Integral Method (AIM) [55]. These methods allow

an efficient computation of matrix-vector products appearing in iterative solvers in which

the computational burden resides when solving a linear system of equations. With (ML)FMA,

pFFT or AIM as the acceleration engine, the Generalized Minimal Residual Method (GMRES)
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as the iterative solver and a sparse matrix as pre-conditioner, a fast integral equation solver can

be easily constructed to handle hundreds of millions of unknowns. This kind of fast integral

equation solver has already shown its great relevance in a large number of electromagnetic

problems such as the simulation of radar cross sections for aeroplanes [56], sea vessels or

small motor vehicles. For example, frequencies in the range of 77 to 81 GHz were successfully

used for simulating cars [57, 58] as 79 GHz was designated by the European Commission for

the future anti-collision Short Range Radars (SRR). Another impressive scattering example is

the NASA almond in the THz range [59].

From an electromagnetic point of view, the human body is a very challenging case study

since it consists of an extremely inhomogeneous, penetrable, dispersive and distributed

scatterer, with high-contrasts. The electromagnetic fields of such a three-dimensional (3D)

structure within a free space environment can be described by volume integral equations

involving the free space Green function. In such case, the FFT can be used to expedite the

matrix–vector multiplication in the iterative solver and reduce the computational complexity

and memory requirement [60–69]. As the involved matrix resulting from a Method of Mo-

ments is of (block) Tœplitz type, the matrix-vector product can be exactly computed by the

FFT requiring only O (N log N ) operations. The fact that this approach is limited to rectilinear

grids can be overcome with pre-corrected FFT methods [53, 55, 68, 70–72] or the AIM. The

latter works also for tetrahedral meshes therefore greatly broadening the application range of

volume integral equations. For volumetric scatterers, the computational and memory costs

associated with the AIM [55, 73–76] scale as O (N log N ) and O (N ), respectively.

For MWI applications, where the forward operator is located inside the optimization loop

of the inverse scattering problem (process implying the retrieval of the physical parameter

which have induced the measured scattered fields), a fast forward algorithm is mandatory.

The precision of the solution of the inverse problem naturally depends on the accuracy of the

forward method, which depends on both the detailed description of the model (e.g. mesh den-

sity of geometry, basis functions to represent physical unknowns) and the related numerical

techniques (e.g. evaluation of singular integrals in the case of integral equations as forward

operator).

1.2 Objectives and Scientific Work Plan

The research performed in the present thesis is closely related to the European Cooperation in

Science & Technology (COST) Action TD1301 Development of a European-based Collaborative

Network to Accelerate Technological, Clinical and Commercialisation Progress in the Area

of Medical Microwave Imaging (MiMed) [77]. The main objective is to achieve a detailed

understanding of the field distribution in the human tissues in order to establish reliable and

relevant guidelines and exposure limits for electromagnetic fields and to optimize medical

applications and imaging. Since measurements from the inside of living beings are almost
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impossible or at least very difficult to perform, other possibilities to obtain the field distribution

are necessary. Electromagnetic simulations can be of great benefit in this context, involving

electromagnetic radiation effects as well as macroscopic effects such as heating or Specific

Absorption Rate (SAR) distribution. The electromagnetic simulation of human tissue is very

challenging because the human body represents a heterogeneous and dispersive medium that

challenges any existing simulation algorithm. The objectives of the scientific work plan are

organized in four main tasks:

T1 Volume IE (VIE) Method of Moment (MoM) full-wave solver

This task is dedicated to the implementation of a basic VIE solver for bio-electromagnetic

problems by applying known analytical and numerical integration techniques for MoM

integrals and the solution of small- to medium-sized problems without the need of

specially tailored fast solvers. The implementation is focused on formulations for high

contrast and extremely heterogeneous media. This will become useful later, when spe-

cialized routines for the various problems will be developed and implemented. In this

regard, the currently available solver has been implemented in a modern fashion in MAT-

LAB which has been chosen for rapid prototyping and its plug-and-play characteristics,

allowing an easy exchange of routines.

T2 Large-scale problems

Inverse scattering techniques for imaging methods such as NMR or Microwave Imaging

require a fast and accurate forward operator. Moreover, the amount of information to

be treated is very large (dense mesh and/or large computational domain with respect

to wavelength). For instance, a human head is meshed with over 20 millions voxels

(cubic cells) of 1 mm side. Our VIE solver will serve as the forward operator. This task

is specially dedicated to the application of fast methods for large-sized problems with

methods such as FFT. The FFT algorithm has the advantage that implementations for

GPUs are already at hand leading to a fast solver for inverse scattering problems.

T3 MWI Fast Modeling Tools

For every medical application, compromises should be done while designing a new

imaging modality. The key point resides in extracting meaningful parameters and

propose simplified but representative models in order to derive guidelines. This task is

dedicated to investigating fast modeling tools to design MWI systems for brain imaging

and especially brain stroke detection, monitoring and characterization.

T4 differential MWI and Inverse Scattering

In the framework of brain MWI, the differential imaging strategy has a certain number of

advantages for the imaging procedure. To benefit from all the capabilities of the method

it is important to be able to quantify the gain of using the differential scenario over the

classical one. This task is dedicated to investigating inverse scattering schemes, for the

specific application of brain differential MWI. Regularization schemes and non-linearity

are qualitatively or quantitatively assessed both numerically and experimentally. Addi-
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tionally the power transmission of a radiating field inside the human head is analyzed

with various models.

1.3 Outline and Contributions

The outline of the thesis is presented with, for each chapter, a brief description and the contri-

butions. Chapter 2 is a review chapter to better understand the original contributions which

are presented in Chapter 3, Chapter 4, and Chapter 5. The Conclusions and Perspectives of

this work are presented in the end, followed by the Appendixes. This thesis firstly focuses on

challenges related to simulations of electromagnetic scattering of an ill-conditioned forward

problem for highly heterogeneous tissues (Chapter 3). In a second step, the challenges related

to the coupling of the microwave power into the tissue, tissue losses, and the choice of the

frequency are investigated and several body models with increasing complexity are used to

confront simulation based analysis with experimental validations (Chapter 4). In a third part,

the challenges due to the non-linearity and ill-posedness of inverse scattering problems are

discussed and illustrated with simulations and experimental measurements (Chapter 5).

Chapter 2: Electromagnetic Scattering in Biological Tissues

• Description: This chapter presents the state-of-the-art of MWI, namely the numerical

analysis of the human head dielectric properties, the background on the governing

equations, the general concepts and the main relevant facts behind electromagnetic

scattering in biological tissues. In addition, Chapter 2 serves as a discussion on various

electromagnetic phenomena present in biological tissues, which are relevant for MWI

of brain stroke related pathologies, to introduce the major challenges to overcome for

clinical applications.

Chapter 3: Volume Integral Operator of Electromagnetic Scattering

• Description: State-of-the-art introducing the different VIE formulations and related

singular integrals, before moving to the implementation of two solvers targeting large

number of unknowns, and for which the numerical solution of VIE is solved via the

Galerkin Method of Moments (MoM) technique. Understanding the capabilities and

the limitations of the modeling tools is crucial to faithfully model EM fields for MWI

applications.

• Contributions: The development of the VIE solver and the investigation of the VIE-

formulation for highly inhomogeneous and lossy scatterers in the microwave range. A

Multi-Grid (MG) solver is tested yielding promising results for frequencies up to 2 GHz.

Chapter 4: Design of MWI Systems for Brain Imaging
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• Description: Analysis of the power transmission of a radiating field inside the human

head in the range of frequencies [0.5−4] GHz in order to propose and validate tools

used to derive guidelines for the design of MWI systems for brain imaging. Firstly, two

models, their electromagnetic analysis, and the discussion of simulation results are

presented. Secondly, the experimental validation of a spherical layered model with the

characterization and realization of a 3D printed head phantom with tissue mimicking

liquids is performed.

• Contributions: Development of an analytical solver, a mode matching technique based

on spherical wave expansion (Mie series) to analyze the scattering by spherically strati-

fied media. Conception and realization of a multilayered head phantom based on the 3D

printing technology and head tissue mimicking material made of Triton-based mixtures.

The estimation and quantification of the normalized transmitted power and the experi-

mental analysis of the influence of the main head layers separating the measurement

setup from the imaging location, which is here the brain.

Chapter 5: Microwave Inverse Scattering Problem

• Description: Challenges due to the non-linearity and ill-posedness of inverse scatter-

ing problems and especially their implications for brain imaging applications in the

microwave range are considered. The differential MWI (dMWI) modality for brain imag-

ing applications is presented and the estimation and quantification of the Degree of

Non-Linearity (DNL) for dMWI is introduced. Different regularization schemes are in-

vestigated to tackle the ill-posedness of the inverse problem using simple and complex

head models and are later experimentally validated using the 3D printed multilayered

head phantom.

• Contributions: The estimation and quantification of the DNL for dMWI. The investiga-

tion of regularization techniques which are promoting sparsity in the reconstruction,

with corresponding experimental validations with the 3D printed multilayered head

phantom.

Chapter 6: Conclusions and Perspectives

• Description: The summary and assessment of the achieved work in this thesis is followed

by a discussion of potential future research directions.

APPENDICES

• Description: Two appendices both related to Chapter 4 are provided. The first one de-

scribes the key points to understand the spherical wave expansion in the corresponding

scattering framework and its mathematical derivation. The second one is retracing
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the important steps of the conception and realization of the 3D printed multilayered

head phantom, from the precise description of the geometries, to the waterproofing

and gluing tests performed on prototypes.
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2 Electromagnetic Scattering in Biologi-
cal Tissues

Since this thesis focuses on Microwave Imaging (MWI) of the head, the MWI state-of-the-art for

biomedical applications and the numerical analysis of the human head dielectric properties

are first presented. This chapter serves as a common base for investigations presented later on

and aims at providing the basic knowledge about the governing equations, general concepts

and main relevant facts behind electromagnetic scattering in biological tissues for this thesis

purpose. In particular, the following concepts and important notions are presented:

1. a brief summary on the motivation why MWI could be a profitable technology in the

framework of brain stroke related pathologies;

2. the major challenges to overcome for clinical applications and the comparison to exist-

ing more mature applications of MWI such as breast cancer early stage detection;

3. the mathematical background of electromagnetic modeling of biological tissues;

4. the forward and inverse scattering definitions and their mathematical considerations.

The chapter is meant as an introduction and a motivation for the later chapters that will

investigate in more depth some of those aspects.

2.1 Brain Stroke Monitoring

There are two main kinds of stroke: ischaemic strokes (up to 80% of the strokes) that are

caused by an abrupt blockage of blood circulation in the brain (i-stroke), or haemorrhagic

strokes (h-stroke) caused by bleeding into the brain tissues when a blood vessel bursts. The

effects of a stroke to the patient are - depending on which part of the brain is injured - sudden

weakness, loss of sensation, or difficulties with speaking, seeing, or walking. Microwave

Imaging (MWI) [14] is investigated as a candidate technology to monitor brain stroke related

diseases [78], [46].
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2.1.1 Technologies for Brain Imaging

Current clinical imaging methods, such as Magnetic Resonance Imaging (MRI) or Computed

Tomography (CT) offer useful information on tissue properties and therefore are good tools

for assessing diseases such as brain strokes. However, none of these facilities can be widely

available at bedside in emergency departments or in paramedic services such as ambulances.

MWI is a non-ionizing, non-invasive, cost-effective technology which may usefully comple-

ment current technologies for determining and monitoring cerebral vascular diseases. For

brain stroke imaging, the six main requirements are:

1. Continuous Monitoring

Brain stroke is a fast evolving pathology and the continuous monitoring during the

first hours after the administration of treatment is primordial. For i-strokes the main

approved treatment is intravenous thrombolysis with alteplase which can have severe

complications in the days following the stroke [8] and needs to be monitored.

2. Resolution

The resolution should be high enough (millimeters up to few centimeters) to detect small

regions affected by the stroke, so that the nature of the anomalies can be assessed [7]

and their location determined.

3. Costs

The success of the treatment is directly linked to the time between the first symptoms

and the treatment. Therefore, the regionalization of stroke care is crucial for good

treatment of the illness. Cost effective devices are easier to implement in regional health

centers.

4. Safety

The non-ionizing radiation is defined as the lowest k-shell binding energy of the Hydro-

gen atom (1H). When the radiation energy is beyond this limit, the atomic structure can

be altered. The human body is mainly composed of water and therefore of hydrogen,

changing the atomic structure of the latter can cause health complications such as

cancer.

5. Tissue Functional Contrast

The nature of tissue in the human body gives insight on the pathological or healthy state

of the patient. For brain stroke detection, differentiation and monitoring, it is crucial

to know the exact functional state of matter to determine which treatment to use [78],

the first step being to distinguish between i- and h-strokes. Applying medication for

i-stroke in the case of h-stroke is counter-productive and can even be fatal [7].

6. Portability

In line with the need of regionalization of stroke care, portable devices can be brought to

ambulances or rural areas so that decisions can be taken faster and earlier diminishing

delayed admissions [8].
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Continuous MonitoringResolution

Costs

Safety Tissue Functional Contrast
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MRI

CT

PET
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Figure 2.1 – Current technologies and main characteristics for imaging brain stroke pathologies. MRI:
Magnetic Resonance Imaging; CT: Computed Tomography; PET: Positron Emission Tomography; US:
Ultra-Sound Imaging; MWI: Microwave Imaging.

Fig. 2.1 visually describes the complementary advantages that MWI could provide with respect

to well-established clinical technologies. The scores for each requirement go from 1 to 5, with 5

representing the complete fulfillment. The red area represents scores for which the technology

is not providing satisfactory options for brain stroke detection, differentiation and monitoring.

Ultra-Sound (US) imaging has several advantages, however, the penetration into the head is

very bad (theoretically less than 1%, as it is almost completely attenuated by the cortical bone)

and to the author’s best knowledge, only imaging of fetus heads is feasible with US imaging.

Positron Emission Tomography (PET) is ionizing as γ- emitters (radioactive positrons) are

directly injected into the body and there is no wide utilization for stroke applications [79].

There is therefore a gap in existing technologies to fulfill all the above mentioned requirements

and MWI (black dotted line) is a possible answer to bridge this gap.

2.1.2 Brain Imaging Challenges

Microwave imaging as a clinical application is striving to make an entrance into the highly

competitive world of medical imaging [23]. Nonetheless, during the last decade, MWI for

breast cancer early detection was getting more mature [24]. The challenges arising in MWI for
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the brain are similar to the one arising in breast MWI and benefit from the experience in that

field. The main challenges and their evolution are reviewed hereafter.

• Tissue Heterogeneity

Biomedical MWI strongly depends on tissue composition, and therefore every applica-

tion encounters different intrinsic challenges. For breast cancer detection, breast tissues

are usually modeled as different proportions of glandular and fatty tissues [80–82] sur-

rounded by the skin. The nature of head tissues is more heterogeneous than breast

tissues, therefore, the electromagnetic modeling of wave propagation is more complex.

The whole head from neck to scalp is composed of approximately 24 distinctive parts

with different dielectric properties in the microwave range. This number can be reduced

by a factor of two if we take into account only the different tissues around the brain area

closer to the top of the head. In Fig. 2.2 different views of a human realistic model [83]

at 1GHz are shown. The relative permittivity εr and conductivity σ [S/m] are values

defining the dielectric properties of the tissues.

[S/m]

Figure 2.2 – Sagital (left), coronal (center) and axial/transverse (right) views of the conductivity (top)
and relative permittivity (bottom) of a human realistic model [83] at 1 GHz.

• Coupling Microwave Power into the Tissues

The biological tissues have a strong dependency on frequency, called dispersion, there-

fore the transmitted power also depends on frequency. In Fig. 2.3 some statistics about

dispersion of the overall head tissues are given. The central mark is the median, the
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edges of the box are the 25th and 75th percentiles, the wiskers extend to the most extreme

data points not considered as outliers, which are plotted individually in red.
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Figure 2.3 – Statistics about dispersion of the overall head tissues; median (blue circled dot), 25th and
75th percentiles (blue boxes), extreme data points (wiskers) and outliers (red crosses).

The antennas, also called sensors, are placed outside the body. The emitted power needs

to be transmitted into the investigation domain. There is a strong contrast (mismatch)

between air and the average head dielectric properties. Therefore the power radiated by

an antenna in the air does not penetrate easily in the head as it will be strongly reflected.

To inject the maximum quantity of power into the brain, either the antennas and the

top head region must be immersed in a matching medium [84] or the sensors must be

in direct contact with the skin [23].

• Tissue Losses

The penetration depth depends on the losses induced by the tissues conductivities. In

Fig. 2.3 it appears clearly that the overall losses in the head increase with frequency.

The power coupled into the tissues and the penetration depth will define the sensitivity

needed to be able to detect scattered fields due to an anomaly [47].

• Resolution Limits

The resolution depends on the wavelength λ of the medium in which the transmitters

are located. The wavelength inversely depends on the frequency and the dielectric

permittivity of the medium where the wave propagates. Devaney [85] first suggested

that this limit of resolution was about λ/
�

2, then Bolomey and Pichot [21] estimated it

to λ/2. Chen and Chew [86] experimentally observed a resolution up to λ/4, for high

contrast, but non-dispersive and lossy objects, which is a so-called super-resolution

behavior, exploiting the near field and applying non-linear reconstruction algorithms.

Meaney et al. [87] have suggested that image reconstruction "is fundamentally unlimited

by wavelength" and "is restricted by signal-to-noise" ratio. The latter papers have

been discussed by Semenov [88] and experiments have been conducted to test for the

detection of myocardial ischemia and infarction. They concluded that the resolution
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lies between a quarter and a half of a wavelength in the background medium.

• Choice of the Frequency

The choice of the frequency is a trade-off between penetration depth (upper bound) and

resolution (lower bound). The resolution decreases with the frequency which means

that small anomalies (few millimeters) cannot be detected at low frequencies (below

600 MHz). This challenge will be discussed in detail in Chapter 4.

• Forward Model Simulations

Computing the electromagnetic fields inside the human body may require huge com-

putational resources. There is plenty of software available to model propagation in

biological matter at low microwaves, however, high accuracy methods are still needed

for reliable simulations especially at higher frequencies. This challenge will be discussed

in detail in Chapter 3.

• Tissue Motion

As for every tomographic setup, unwanted motion results in a diminished sharpness and

increased blurriness in the images. Rapid scanning, optical detection of boundaries [89]

and body constriction [23] are physical solutions, and conformal imaging algorithms

can be used to reduce the negative impact of motion on the reconstruction.

• Contrast between Abnormal and Healthy Tissues

There is a need for rapid stroke differentiation between different pathological states

as the treatment should be taken as soon as possible to decrease the probability of

having permanent cognitive damages [7, 8]. Treatments for i-strokes and h-strokes

are very different and wrong administration can be fatal. The difference of contrast

in the dielectric properties of healthy tissues and of pathological tissues is the key for

diagnostics with MWI [82]. Thus, it is very important that this difference exists and can

be detected. One possibility is to model the intercerebral stroke as a homogeneous

region of dielectric properties, εr = 36, σ= 0.72 [S/m] for the i-stroke [47] and εr = 61,

σ= 1.58 [S/m] for the h-stroke [90] at 1 GHz. The second option is to model the stroke as

a −10 % change of the baseline (healthy parameters of head region affected by the stroke)

for the i-stroke and the mean value between the baseline and dielectric properties of

blood for the h-stroke [78]. The subarachnoid h-stroke (happens in the region between

the skull and the brain) is not yet investigated in the MWI community and no models

are therefore available in the literature.

2.2 Governing Equations

The electromagnetic field is governed by a set of equations known as Maxwell’s equations

which relate the fields to their sources. The combination of these equations leads to the wave

equation which describes the electromagnetic radiation and propagation. This section focuses

on propagation in biological matter.
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2.2.1 Maxwell’s Equations and Constitutive Equations

Maxwell’s equations relate the field vectors to their sources. For time-harmonic fields with the

time factor e jωt , the local form of Maxwell’s equations is:

∇×E(�r ) =− jωB(�r ) (2.1a)

∇×H(�r ) = jωD(�r )+ J(�r ) (2.1b)

∇·D(�r ) = ρ(�r ) (2.1c)

∇·B(�r ) = 0 (2.1d)

Here�r denotes the position vector [m], E is the electric field [V/m], B is the magnetic flux

density [Wb/m2], H is the magnetic field [A/m], D is the electric flux density [C/m2], ρ is the

volume charge density [C/m3], and J is the electric current density [A/m2]. The equations (2.1)

are supplemented by the constitutive equations that contain the information about the media

in which the electromagnetic phenomena occur. The human body biological matters, treated

as linear, isotropic, non-magnetic and lossy media in the microwave range [0.3−300] GHz [14],

have the following general constitutive relations:

D(�r ) = ε0εr (�r )E(�r ) (2.2a)

B(�r ) =μ0μr (�r )H(�r ) (2.2b)

Here ε0 is the vacuum permittivity [F/m] and μ0 the vacuum permeability [H/m]. The values

εr (�r ) and μr (�r ) are their relative counterparts (dimensionless). It is important to note that

permittivity is not constant for a material at a given temperature and pressure, and changes

with frequency, εr (ω,�r ), however, for clarity reasons these dependencies will be omitted in the

notation. The human body does not have any particular magnetic macroscopic properties and

we assume μr = 1. Biological tissues are conductive and therefore lossy, the induced current

Ji (�r ), induced by the field in conducting media, is described by Ohm’s law:

Ji (�r ) =σ(�r )E(�r ) with J(�r ) = Ji (�r )+ J0(�r ) (2.3)

Here J0(�r ) is the electric source density if an external source (other than the media) is present,
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and σ [F/m] is the conductivity. The Maxwell-Ampère Law (2.1b) can be rewritten as:

∇×H(�r ) = ( jωε0εr (�r )+σ(�r )
)

E(�r )+ J0(�r ) = jωε(�r )E(�r )+ J0(�r ) (2.4)

Here ε(�r ) is the complex permittivity and is defined as :

ε(�r ) = ε0

(
εr (�r )− jσ(�r )

ε0ω

)
(2.5)

2.2.2 Contrast-Source Formulation

In this section, for clarity reasons only, the E-field is of interest, and the H-field can be retrieved

from it if needed. By substituting (2.4) in (2.1), one can get the wave equation:

∇×∇×E(�r )−ω2μ0ε(�r )E(�r ) =− jωμ0J0(�r ) (2.6)

The solution of this system of 3 differential equations can be intuitively separated into a

solution when there is no scatterer present, called the incident field Ei (�r ) that is a known

quantity, created by a known source, and a solution when there is a scatterer present, called

the scattered field Es(�r ), which is unknown. In the domain of investigation Γ, the electric field

without the anomaly is called the background field Eb(�r ) and is equal to the incident field Ei (�r )

if the background medium is defined as infinite. The interaction between the background field

and the object under investigation is: E = Eb +Es in Γ. The wave equation in the background

(ε(�r ) = εb), by analogy with (2.6) is defined as:

∇×∇×Eb(�r )−ω2μ0εbEb(�r ) =− jωμ0J0(�r ) (2.7)

By substituting (2.7) in (2.6):

∇×∇×Es(�r )−ω2μ0εbEs(�r ) =ω2μ0 (ε(�r )−εb)E(�r ) =ω2μ0εbχ(�r )E(�r ) (2.8)

Equation (2.8) is called contrast-source formulation and its physical interpretation is shown

in Fig. 2.4. It relates the scattered field Es(�r ) to the currents induced in the scattering object
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Ω
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Figure 2.4 – Representation of a scatterer (red) with its domain denoted by Ω with constitutive
parameters ε(�r ), μ(�r ) and σ(�r ), immersed in an infinite background medium of dielectric properties
εb , μb and σb . The dark blue lines represent the incident field and the black (full and dashed lines)
represent the scattered field (produced by currents Jp (�r )).

present in a domain Ω. The name contrast-source comes from the fact that the right-hand side

represents the virtual source of the scattered field Es(�r ), which is proportional to the contrast,

χ(�r ), between scatterer and background. The contrast χ(�r ) is a complex scalar and is defined

as the normalized difference between the complex permittivities of the scatterer ε(�r ) and of

the background medium εb :

χ(�r ) = ε(�r )

εb
−1 (2.9)

Note that as ε(�r ) �= εb for �r ∈ Ω, the contrast χ(�r ) differs from zero only in the domain of

the scatterer, that is for�r ∈Ω. Having a formulation which describes the scattering object

only by its contrast χ(�r ) has the advantage of having constitutive parameters which scale

accordingly to the background medium. For the contrast-source formulation, the unknown

field is the scattered field Es(�r ) excited by a source defined as the polarization current Jp (�r ) =
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jωεbχ(�r )E(�r ).

2.2.3 Integral Equation Approach

Biological matter can be discretized in piece-wise homogeneous parts with its electromagnetic

characteristics being completely described by its complex permittivity ε(�r ). One possibility to

describe the scattering of monochromatic electromagnetic radiation is the Volume Electric

Field Integral Equation formulation [91] based on a purely dielectric formulation and the

contrast-source formulation,

E (�r ) = Eb (�r )+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)E

(
�r ′)dΩ′ (2.10)

where the dyadic Green function ¯̄Ge is:

¯̄Ge (�r ,�r ′) = k2
b

4π

[
¯̄I + 1

k2
b

∇∇
]

e− j kb |�r−�r ′|

|�r −�r ′| (2.11)

where kb =ω
�
μbεb is the propagation wavenumber in the background medium, and ¯̄I is the

unit dyadic. The considerations to compute the integral will be examined in Chapter 3.

2.3 Introduction to the Forward and Inverse Problem

Forward

Inverse

Figure 2.5 – Framework of Forward and Inverse scattering problems.

The forward problem (see Fig. 2.5) yields the fields produced from a known scatterer (de-

scribed by its constitutive parameters) in a given volume (in the scatterer and/or around it

for example). For this purpose several techniques exist, the most popular ones are the Finite
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2.3. Introduction to the Forward and Inverse Problem

Differences Time Domain (FDTD) method, Finite Elements Method (FEM), and Integral Equa-

tion (IE) methods. In the framework of this thesis, we opted for a Volume Integral Equation

(VIE) formulation to compute the forward problem.

The inverse problem (see Fig. 2.5) consists of finding the scatterer’s composition, or, more

precisely, its constitutive parameters in a given volume, from a set of field measurements. In

bio-medical applications, the field measurements are usually performed outside the scatterer,

at various known positions, for example in the case of brain MWI, at probes surrounding the

head.

In electromagnetic modeling and inverse scattering, some important mathematical consider-

ations need to be understood and dealt with carefully.

• Non-linearity

The scattered field Es(�r ) depends on the total electric field E(�r ) (2.8). The total field in

Ω

Ei(r)

Es(r)

Figure 2.6 – Representation of the field incident on and scattered by the head model. The solid line
represents a direct or first order interaction (5.11), while the dashed line is an example of a second
order interaction.

(2.10) can be rewritten recursively as:

E (�r ) = Eb (�r )+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)⎡⎣Eb

(
�r ′)+∫

Ω

¯̄Ge
(
�r ′,�r ′′)χ(�r ′′)E

(
�r ′′)dΩ′′

⎤
⎦dΩ′

= Eb (�r )+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)Eb

(
�r ′)dΩ′

︸ ︷︷ ︸
first order interaction

+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)⎡⎣∫

Ω

¯̄Ge
(
�r ′,�r ′′)χ(�r ′′)Eb

(
�r ′′)dΩ′′

⎤
⎦dΩ′

︸ ︷︷ ︸
second order interaction

+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)⎡⎣∫

Ω

¯̄Ge
(
�r ′,�r ′′)χ(�r ′′)⎡⎣∫

Ω

¯̄Ge
(
�r ′′,�r ′′′)χ(�r ′′′)E

(
�r ′′′)dΩ′′′

⎤
⎦dΩ′′

⎤
⎦dΩ′

︸ ︷︷ ︸
higher order interactions

(2.12)
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Chapter 2. Electromagnetic Scattering in Biological Tissues

The system is non-linear as the output of the system is not directly proportional to the

input. The non-linearity comes from the multiple scattering phenomena as represented

in Fig. 2.6 and is expressed by second and higher order interactions in (2.12).

• Ill-conditioning

If a small change in the input data Δx , results in a large change in the output or solution

ΔΦ(x), the problem is called ill-conditioned (see Fig. 2.7) [92]. The condition number

quantifies the ill-conditioning and is defined as the value of the asymptotic largest

relative change in output for a relative change in input. For the forward problem the

consequence of an ill-conditioned problem is a difficulty of convergence when applying

an iterative technique and appropriate pre-conditioning is required. For the inverse

scattering problem, it implies that a small change in measurement data could lead to a

large change in the reconstruction and regularization approaches are then necessary.

Φ (x)

xΔx

ΔΦ (x)

(a) small Condition Number

Φ (x)

xΔx

ΔΦ (x)

(b) large Condition Number

Figure 2.7 – Well-conditioned and ill-conditioned 1D representations.

• Ill-posedness

The majority of inverse scattering problems are ill-posed. Well-posed problems are

well-defined (existence and uniqueness of the solution) and the solution has to have a

continuous dependency on data [93]. If any of these three conditions are not satisfied

the problem is called ill-posed. For inverse scattering problems non-existence can arise

if there is more data M , than unknowns N , with M linearly independent equations,

and only a solution in the least square sense exists. On the other hand if there is

lack of information, i.e. less measurement data than unknown to retrieve or linear

dependencies between equations, the solution can be non-unique.
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2.4. Summary

2.4 Summary

The most important information about brain stroke related pathologies were presented,

and current imaging technologies such as CT or MRI discussed for brain stroke detection,

differentiation and monitoring. MWI seems to be a good alternative to the existing imaging

technologies as a dedicated device to brain stroke related pathologies.

The challenges inherent to brain MWI have been reviewed and compared to breast MWI

imaging whose readiness level is much higher. The global vision of brain MWI challenges is a

motivation and justification for the need of deeper understanding in several aspects which

will be discussed in the following three chapters.

Then, the mathematical background of electromagnetic modeling of biological tissues was

presented, and the contrast source formulation was explained. The latter prepared for the

introduction to forward and inverse scattering concepts which are the core and framework of

this thesis. Similar to the presentation of the MWI challenges, explaining from the beginning

the mathematical considerations intrinsic to the electromagnetic scattering problem, is a

motivation and justification for further investigation.
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3 Volume Integral Operator of Electro-
magnetic Scattering

Interaction of the human body with electromagnetic (EM) fields is widely used in the develop-

ment and design of medical devices and technologies as well as for diagnostic and therapeutic

purposes. Over the last decades, there has been a continuous trend to replace X-ray based

devices in favour of EM-based ones like Magnetic Resonance Imaging (MRI) or Microwave

Imaging [94] to name only but a few. Additionally, wireless communication of implanted

devices is gaining importance. The main challenge during the development of these technolo-

gies and devices is the detailed understanding of the field distribution inside the body since

measurements inside living beings are almost impossible. Here EM simulations can be of great

benefit. Fast and accurate numerical methods can be enabled in many ways. For example,

patient-specific data like MRI screens could be used for the development of patient-adapted

devices.

In the framework of bio-electromagnetic applications, the numerical technique of choice is

often the Finite Difference Time-Domain (FDTD) method. However, with the development

of the Multi-Level Fast Multipole Algorithm (MLFMA) [51] or FFT-accelerated matrix-vector

products [95], frequency domain integral equation (IE) solvers are becoming an attractive

alternative for modeling scattering from strongly inhomogeneous objects [48–50,96,97]. Since

the human brain/body represents a distributed scatterer, we focus, in this thesis, on FFT-

based matrix-vector products and volume integral equations which are a versatile technique

to model inhomogeneous scattering objects. Numerical tests show excellent convergence

properties of the technique for strongly inhomogeneous media with high dielectric contrast.

This chapter is organized in three parts:

1. a brief state-of-the-art introducing the different VIE formulations and related singular

integrals;

2. the numerical solutions of VIE via Galerkin Method of Moments (MoM) technique with

a discussion on the spectrum of the volume integral operator;

3. the numerical experiments of two solvers targeting large number of unknowns.
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Chapter 3. Volume Integral Operator of Electromagnetic Scattering

The chapter aims at giving in detail the IE solver description and performance. The IE solver is

the first step to investigate scattering in biological tissues in the targeted microwave range.

Knowing the capabilities and the limitations of the modeling tools is crucial for any further

investigation of MWI.

3.1 State-of-the-art and Background

The numerical solution of Maxwell’s equations is often found via the FDTD algorithm. How-

ever, while simulating problems of bio-electromagnetic effects, the FDTD encounters several

issues which are listed here:

• FDTD requires the complete computational domain to be meshed and the grid size to

be sufficiently fine to resolve both the smallest electromagnetic wavelength and the

smallest geometrical feature in the model. Especially, models with long, thin features

– like wires or leads – are difficult to model in FDTD because they result in excessively

large computational domains.

• In the FDTD method, space and time steps must satisfy the Courant–Friedrichs–Lewy

condition (CFL condition) otherwise time integration is likely to be unstable. The CFL

condition is very strong and the required time step can therefore become very short

leading to extreme simulation times, especially if thin geometries are present. This is

acceptable where broadband responses are required, but, for applications with narrow

band excitation like safety issues of wireless power transmission or NMR systems which

work with dedicated frequencies, the simulation time can become prohibitive.

• The FDTD’s solution is limited to the computational domain, that is, the electric and

magnetic fields are found on the mesh. In the event that the electromagnetic field must

be determined outside the computational domain, either this domain must be extended

– leading to larger memory requirements and longer simulation times – or far-field

extensions have to be applied to the FDTD.

• The finite computational domain also requires that open boundary problems (e.g. radi-

ation problems) be solved with special techniques like absorbing boundary conditions

(ABCs) or perfectly matched layers (PMLs) in order to approximate the radiation condi-

tion.

• In FDTD the solution is normally obtained by propagating the field forward in time;

thus the electromagnetic time response of the medium must be modeled explicitly. For

dispersive media, this implies a computationally expensive time convolution in order to

account for the medium’s frequency behaviour.

To avoid these drawbacks, we pursue a different approach in the frequency domain. As previ-

ously outlined, time-harmonic scattering by inhomogeneous 3D structures and located within
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3.1. State-of-the-art and Background

a free space environment can be described by volume integral equations (VIEs) involving

the free space Green function. Electromagnetic VIEs have been solved numerically by many

researchers over the years.

In 1984, Schaubert et al. [98] formulated for the first time the Galerkin solution of the Electric

Field VIE (EF-VIE) for dielectric scatterers in terms of the electric flux density with conform-

ing (Raviart–Thomas) vector basis functions. This approach and its counterpart based on

collocation (together referred to as moment methods [99, 100]) have found wide ranging appli-

cations ever since, e.g.: particle scattering [101, 102], optical near field calculation [103, 104],

polarizability analysis [105], indoor radio-wave propagation modeling [106], etc. Various

features were added to this formulation, such as fast solvers enabling large-scale analysis [107],

coupling with surface integral equations (SIEs) [108], low-order solenoidal basis functions

to model flux densities more realistically [109, 110], and a special version for low-frequency

analysis [111] – but the basic projection formulation has essentially remained unchanged.

The idea of solving the Magnetic Field VIE (MF-VIE) for dielectric scatterers instead (analogous

to solving either the EF- or MF surface IE in the case of conducting scatterers [99]) has not

received much attention, though it has been proposed in [112, 113]. Moreover, VIE-based

analysis of structures with inhomogeneity in both ε and μ has almost not been considered at

all. Recently, Botha [48] presented a comprehensive overview of Galerkin Method of Moments

(MoM) formulations for the numerical solution of VIEs together with comparative numerical

results. Newly proposed formulations involve solving the curl-conforming fields, which can

be discretized with fewer unknowns than div-conforming ones, implying lower computational

costs [48].

The authors of [49] and [96, 114] applied VIEs to penetrable objects of high-contrast and

extremely anisotropic materials (e. g. metamaterials), respectively. In the former, the electric

and magnetic VIE are compared and their properties investigated. Numerical experiments

show that if Galerkin’s method with the lowest mixed-order basis functions is used to discretize

the equations the accuracy of the MF-VIE can be significantly poorer than the accuracy of the

EF-VIE, in particular, for high-contrast objects at high frequencies. The accuracy of the MF-

VIE can be essentially improved with full first order (linear) basis functions. The linear basis

functions are found to be useful also when a single volume integral equation is used to model

a general scatterer where both permittivity and permeability differ from the background [49].

In [96] is shown that VIEs based on equivalent currents expanded with piece-wise constant

basis functions and the Galerkin scheme for testing is more stable than the behaviours of

more conventional formulations based on fluxes or fields when the scatterer is extremely

anisotropic.

Given the above discussion, it is clear that the numerical solution of electromagnetic VIEs

continues to be a relevant topic, and that such methods are widely used, and formulations for

generally inhomogeneous scatterers deserve attention.
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Chapter 3. Volume Integral Operator of Electromagnetic Scattering

3.1.1 Volume Integral Equation (VIE) Formulations

There are several possibilities to settle a VIE for inhomogeneous objects, depending on which

quantity will be the unknown (X,Y). For the special case of non-magnetic objects, such as the

human body in the microwave range, the generic formulation of IEs for the magnetic fields

can be retrieved from the electric field which is reduced to:

Eb(�r ) =αX(�r )− (∇∇·+k2
b)Π(βX) (3.1)

where:

Π(X) =
∫
Ω

g (�r −�r ′)XdΩ′ , g (�r −�r ′) = e− j kb |�r−�r ′|

4π|�r −�r ′| (3.2)

with g (�r −�r ′) the Green function,�r the position vector, and kb the propagation wavenumber

in the background medium. Among many possibilities for (X,Y), there are essentially three

sets:

1. electric and magnetic fields (E,H),

2. electric and magnetic fluxes (D,B),

3. electric and magnetic polarization currents (Jp ,Mq ).

for which the parameters α and β read:

(α,β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1,χ
)

for (X,Y) = (E,H)

(
1

ε
,εχ

)
for (X,Y) = (D,B)

(
1

χ
,

1

jωεb

)
for (X,Y) = (Jp ,Mq

)
(3.3)

These three formulations are equivalent with respect to the existence and uniqueness of the

solution if both the permittivity and permeability functions are coercive and bounded, and

are invertible [115].

From the numerical point of view, the main difference in these formulations is the choice

of the basis and testing functions. Basis functions are used for representing the unknowns;

hence, they should satisfy the continuity conditions of the unknowns. Especially, it is crucial
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3.1. State-of-the-art and Background

not to enforce any extra continuities. In other words, basis functions should span a proper

vector space. Normal components of the flux densities must be continuous across the material

interfaces, and therefore, the (D,B)-formulation is usually discretized with the divergence-

conforming basis functions, known as the SWG functions or 3D RWG functions [98]. In

[116] the anisotropic (E,H)-formulation was discretized with curl-conforming functions [117]

which keep the tangential continuity. The (E,H)-formulation has also been discretized with

piecewise constant and linear functions in order to obtain a non-conformal method [118,

119]. In this case, the continuity of the fields is not directly enforced, but the solution will

approximately satisfy these conditions. Polarization currents have no continuity across the

material interfaces, therefore in the (Jp ,Mq )-formulation it is essential that basis functions do

not enforce any continuity across material boundaries. The equivalent currents are usually

expanded with piecewise constant functions, and point-matching/Nyström techniques are

applied to test the equations [120, 121]. The choice of the testing functions is also important

in order to obtain an efficient numerical method. Therefore, we need to look at the mapping

properties of the equations

1. (E,H)-formulation: H(rot) → H(div)

2. (D,B)-formulation: H(div) → H(rot)

3. (Jp ,Mq )-formulation: L2 → L2

where L2 is a function space with square integrable functions, and

H(div) = {f | f ∈ L2 and ∇· f ∈ L2} (3.4a)

H(rot) = {f | f ∈ L2 and ∇× f ∈ L2} (3.4b)

The testing should be done in the dual space and the above considerations are the basis for a

proper application of the MoM.

3.1.2 Towards Green Functions with Vector and Scalar Potentials

The procedure to obtain the VIE formulation for the scattering operator from Maxwell’s equa-

tions is explained in the following section. Maxwell’s equations are a set of coupled 1st order

partial differential equations (2.1) relating electric and magnetic fields. They imply three di-

mensional unknown vector fields E(�r ) = (Ex (�r ),Ey (�r ),Ez (�r )
)

and H(�r ) = (Hx (�r ), Hy (�r ), Hz (�r )
)
.

To solve them, we use a mathematical procedure, called Gauge fixing. It aims to diminish the

degrees of freedom and obtain a smaller number of unknowns of a system of equations, by

introducing new defined quantities. Based on the vanishing divergence of the magnetic flux
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Chapter 3. Volume Integral Operator of Electromagnetic Scattering

(2.1d), the vector potential A(�r ) is defined as:

μbHA(�r ) =∇×A(�r ) (3.5)

where, the subscript A stands for fields excited by the potential A(�r ). By substituting the latter

into Faraday’s Law (2.1a), ∇× (EA(�r )+ jωA(�r )
)= 0, the scalar potential is defined as:

EA(�r )+ jωA(�r ) =−∇V (�r ) (3.6)

The potentials A(�r ) and V (�r ) are not unique, applying the Lorenz Gauge defines the specific

relation:

∇·A(�r ) =− j k2
b

ω
V (�r ) (3.7)

By inserting (3.6) in Gauss’s equation (2.1c) and (3.5) in Faraday’s equation (2.1a), with the

mathematical identity ∇×∇×•= (−∇2 +∇∇·)•, and the relation between the two potentials,

the resulting system of equations is called inhomogeneous Helmholtz system of equations,

that hold independently for each of the three components of A:

[∇2 +k2
b(�r )

]
A(�r ) =−μbJ(�r ) (3.8)[∇2 +k2

b(�r )
]

V (�r ) =−ρ(�r )

εb
(3.9)

thus obtaining four scalar Helmholtz equations [122, (6-17)]. For the recall, ρ is the volume

charge density [C/m3]. The scalar Green function g (�r ,�r ′) is the solution of the Helmholtz

operator for a single source point positioned in�r ′, defined as a Dirac distribution δ(�r −�r ′):

[∇2 +k2
b(�r )

]
g (�r ,�r ′) = δ(�r −�r ′) (3.10)

For a homogeneous three-dimensional space, the only physical solution of this equation
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3.1. State-of-the-art and Background

is [122]:

g
(
�r ,�r ′)= e± j kb (�r )|�r−�r ′|

4π|�r −�r ′| (3.11)

the plus sign denotes the solution for a wave traveling towards the source, and the minus sign

is for a spherical wave that propagates towards infinity, away from the source. We will only

retain the outward propagation.

Once the Green function g (�r ,�r ′) is determined, the fields for any source can be determined

through the vector potential:

A (�r ) =−μb

∫
Ω

g
(
�r ,�r ′)Jp (�r ′)dΩ′ (3.12)

The solution to (3.10) is a scalar quantity. To relate it to the vectorial behavior of the electric

and magnetic fields, which is that of a source current in one direction leads to fields with

x, y, z-components, the Green function should be adapted to a Green Tensor, called the Dyadic

Green function. Starting from (3.6), the relation between the electric field EA(�r ) and the vector

potential A(�r ) is found to be

EA(�r ) =− jω

[
¯̄I + 1

kb(�r )2 ∇∇·
]

A(�r ) (3.13)

The Green dyadic is therefore defined as in (2.11) and the general solution for the electric

fields expressed in (2.10).

3.1.3 Singular Integrals

The accuracy of the solution of the IE critically depends on its correct treatment. For this,

a plethora of methods has been developed, mostly in the framework of SIEs since these

have been in the focus of research in the last 30 years. Essentially, their evaluation can be

achieved by applying either singularity extraction [123–125] or singularity cancellation [126–

128] techniques, where the latter uses a coordinate transformation to remove the singularity.

For the emerging VIE, these techniques need to be adapted, modified and extended where

possible and new methods developed where necessary. Recently, the authors of [129, 130]

have proposed two new singularity cancellation techniques with promising results for SIEs.

Their possible application to VIE needs to be studied. For example, in the direct evaluation
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technique [129] the idea is to have a maximum of analytical integrations and reduce the

numerical quadratures to a minimum. Another possibility to apply concepts from SIEs to VIEs

is to reduce the volume integrals by means of Gauß’ and Stokes’ theorems to boundary surface

integrals. The numerical evaluation of these integrals remains a challenging scientific issue.

For the following discussion on singular integrals, equation (2.10) will be formulated as:

Ei (�r ) = E(�r )− jωμb

[
S j (�r )+ 1

kb(�r )2 ∇∇·S j (�r )

]
(3.14)

with

S j (�r ) =
∫
Ω

g
(
�r ,�r ′)Jp (�r ′)dΩ′ (3.15)

Equation (3.14) is an integral equation for E(�r ) over the volume Ω of the scatterer and is

therefore called a Volume Integral Equation (VIE). The unknown E(�r ) appears inside and

outside the integral, and the integral is definite (over Ω), which is the definition of a 2nd kind

Fredholm-type integral equation. However, the scalar Green function becomes unbounded

inside the scatterer when�r and�r ′ coincide. These integrals are called singular integrals and

can be separated into two categories: weakly and strongly singular integrals. The evaluation of

these integrals are different.

• Weakly singular integrals

The first important information is to know whether the fields excited by these sources

are bounded for the contrast source formulation, especially when�r =�r ′. In (3.14) there

are two integrals to evaluate. The norm of both integrals is of the form:

∣∣S j (�r )
∣∣=C

∣∣∣∣∣∣
∫
Ω

1

|�r −�r ′|α dΩ′
∣∣∣∣∣∣ (3.16)

The dimension of the manifold (the integration domain) being three, it is possible to

integrate on a sphere around�r ′:

∣∣S j (�r )
∣∣=C

∣∣∣∣∣∣
R∫

0

2π∫
0

π∫
0

1

rα
r 2 sinθdθdφdr

∣∣∣∣∣∣= 4πC

∣∣∣∣∣∣
R∫

0

r 2−αdr

∣∣∣∣∣∣= 4πC
R3−α

3−α
(3.17)

with r = |�r −�r ′|. The factor α is called the degree of singularity: for negative or null values

of α, the integral is called regular and for strictly positive values of α, it is called singular.

If α is smaller than the dimension of the manifold, the integral is called weakly singular
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3.1. State-of-the-art and Background

otherwise it is called strongly singular. For weakly singular integrals, the Jacobian cancels

the singularity, and the integral can be directly evaluated. However, for strongly singular

integrals, this is not the case and more care should be taken when evaluating the integral.

In (3.15), one of the two integrals to evaluate is directly S j (�r ) which is weakly singular

and bounded with α= 1.

• Strongly singular integrals

The second kind of integral to be considered is ∇∇·S j (�r ). The two spatial differentiations

(∇ and ∇·) would increase the degree of singularity to α= 3 and if they are simply taken

under the integral, the integral is strongly singular. This integral can still be bounded,

however, more care should be brought to evaluate it. Let’s first start with analyzing

g
(
�r ,�r ′). To evaluate the integral, the first manoeuvre consists of decomposing g

(
�r ,�r ′)

into two functions: g0
(
�r ,�r ′) and g1

(
�r ,�r ′):

g
(
�r ,�r ′)= g0

(
�r ,�r ′)+ g1

(
�r ,�r ′) with

⎧⎪⎪⎨
⎪⎪⎩

g0
(
�r ,�r ′)= 1

|�r−�r ′|

g1
(
�r ,�r ′)= e− j kb (�r )|�r−�r ′ |−1

|�r−�r ′|

(3.18)

The reason to make this procedure is that g1
(
�r ,�r ′) is non-singular for�r =�r ′ as:

lim
r→0

e− j kb (�r )|�r−�r ′| −1

|�r −�r ′| = − j kb |�r −�r ′|
4π

(3.19)

Therefore, after two spatial differentiations, α= 2 and therefore the integral is weakly

singular and does not need any special attention. On the other hand g0
(
�r ,�r ′), which

represents the static Green function (ω = 0, kb = 0) is singular and therefore α = 3.

However, the added value of this separation is that the strongly singular part carried

by g0
(
�r ,�r ′) is now symmetric and other manoeuvres can be applied to solve it. The

procedure consists of four distinct steps:

1. Introduce a (small) volume of arbitrary shape Vδ around�r , thus dividing again the

integral into a regular and a strongly singular part.

The integral S0(�r ) reads:

S0(�r ) =∇∇·
∫
Ω

g0
(
�r ,�r ′)Jp (�r ′)dΩ′ (3.20)

We define Vδ around�r such that Vδ → 0 when δ→ 0, and split S0(�r ) into a sum of
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two limits:

S0(�r ) = lim
δ→0

S1(�r )+ lim
δ→0

S2(�r ) with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S1(�r ) =∇∇· ∫
Ω�Vδ

g0
(
�r ,�r ′)Jp (�r ′)dΩ′

S2(�r ) =∇∇· ∫
Vδ

g0
(
�r ,�r ′)Jp (�r ′)dΩ′

(3.21)

limδ→0 S1(�r ) is regular as it excludes all�r leading to a singularity, and, after two

spatial differentiations, is simply expressed as:

lim
δ→0

S1(�r ) = lim
δ→0

∫
Ω

3n̂n̂	− ¯̄I

|�r −�r ′|3 Jp (�r ′)dΩ′ (3.22)

with the unit vector n̂ = �r −�r ′

|�r −�r ′| in radial direction in spherical coordinates. How-

ever, S2(�r ) is strongly singular and we should go to step 2 to solve it.

2. Find a way to only keep the Green function below the singular integral.

The main idea here is to keep only the symmetric g0
(
�r ,�r ′) under the integral and

the two spatial differentiations. If we add and subtract Jp (�r ) on both sides we get:

lim
δ→0

S2(�r ) = lim
δ→0

S3(�r )− lim
δ→0

S4(�r ) with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S3(�r ) = ∫
Vδ

∇(∇g0
(
�r ,�r ′))dΩ′Jp (�r )

S4(�r ) = ∫
Vδ

∇(∇g0
(
�r ,�r ′))[Jp (�r )− Jp (�r ′)

]
dΩ′

(3.23)

Without going into detail if |Jp (�r )−Jp (�r ′)| ≤Cr |�r −�r ′|ρ , with Cr <∞ and ρ > 0, then

S4 exists as a Hölder continuous function and limδ→0 S4(�r ) = 0. The remaining

singular part lim
δ→0

S3(�r ) goes to step 3.

3. Apply the Gauss theorem after understanding that by symmetry ∇=−∇′
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S3(�r ) =
∫

Vδ

∇(∇g0
(
�r ,�r ′))dΩ′Jp (�r )

=
∫

Vδ

∇′ (∇′g0
(
�r ,�r ′))dΩ′Jp (�r )

=
∫
Sδ

(∇′g0
(
�r ,�r ′)) n̂	dS ′Jp (�r )

=
∫
Sδ

−n̂n̂	

|�r −�r ′|2 dS ′Jp (�r )

(3.24)

4. Solve (3.24) in terms of its Principal Value.

S3(�r ) =− ¯̄LJp (�r ) with ¯̄L =
∫
Sδ

n̂n̂	

|�r −�r ′|2 dS ′ (3.25)

¯̄L is called the source dyadic and solutions for several shapes of the principal

volume Vδ are listed in [131]. In the case of a sphere of radius δ such that |�r −�r ′| ≤ δ:

¯̄L© =
¯̄I

3
(3.26)

Later, as we will use voxels (cubic cells) for the discretization needed to solve

numerically the problem, it is useful to already mention that the effective volume

of a cube is the same as the volume of a sphere [132] and therefore its source dyadic

is also equal to:

¯̄L� =
¯̄I

3
(3.27)

With all this information it is possible to numerically evaluate (3.14). Fig. 3.1 schemati-

cally depicts the manoeuvres explained above to evaluate equation (3.14).
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Chapter 3. Volume Integral Operator of Electromagnetic Scattering

Eb(�r) = E(�r)− jωμb

[
Sj(�r) +

1

kb(�r)2
∇∇ · Sj(�r)

]

weakly singular∫
Ω

g (�r, �r′)Jp(�r
′)dΩ′ strongly singular∫

Ω

∇ (∇g (�r, �r′))Jp(�r
′)dΩ′

∫
Ω

∇ (∇ [g0 (�r, �r
′) + g1 (�r, �r

′)])Jp(�r
′)dΩ′

weakly singular∫
Ω

¯̄G1 (�r, �r
′)Jp(�r

′)dΩ′

strongly singular

strongly singular

regular

lim
δ→0

∫
Vδ

∇ (∇g0 (�r, �r
′)) dΩ′Jp(�r)

lim
δ→0

∫
Vδ

∇′ (∇′g0 (�r, �r′)) dΩ′Jp(�r)

lim
δ→0

∫
Sδ

(∇g0 (�r, �r
′)) n̂�dS′Jp(�r)

− ¯̄LJp(�r)

lim
δ→0

∫
Vδ

∇ (∇g0 (�r, �r
′)) [Jp(�r

′)− Jp(�r)] dΩ
′

︸ ︷︷ ︸
=0 (Hölder condition)

lim
δ→0

∫
Ω\Vδ

¯̄G0 (�r, �r
′)Jp(�r

′)dΩ′

Figure 3.1 – Schematic summary of the singularity management in VIE for the contrast-source formu-
lation.

After rearranging equations schematically depicted in Fig. 3.1, the final result is:

jωεbχ(�r )Ei (�r ) =
(

¯̄I +χ(�r ) ¯̄L
)

Jp (�r )

−χ(�r )

⎧⎨
⎩
∫
Ω

[
k2

b(�r )g
(
�r ,�r ′)+ ¯̄G1

(
�r ,�r ′)]Jp (�r ′)dΩ′ +P.V.

∫
Ω

¯̄G0
(
�r ,�r ′)Jp (�r ′)dΩ′

⎫⎬
⎭

(3.28)
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with:

¯̄G0
(
�r ,�r ′)=∇∇g0

(
�r ,�r ′)= 3n̂n̂	− ¯̄I

|�r −�r ′|3 (3.29)

and:

¯̄G1
(
�r ,�r ′)=∇∇g1

(
�r ,�r ′)

= g1
(
�r ,�r ′) 3n̂n̂	− ¯̄I

|�r −�r ′|2 + j kb(ω)g
(
�r ,�r ′) 3n̂n̂	− ¯̄I

|�r −�r ′| −kb(ω)g
(
�r ,�r ′) n̂n̂	

(3.30)

3.2 Numerical Solution of VIE with Method of Moments (MoM)

IE

MeshBa

si
s Functions

Mo
M/C

urbature
Ma
tri

x assembly
Li
nea

r System Solver

Pos
t-processing

Figure 3.2 – Integral Equation solver layout. From core to surface: Integral Equation (IE) formulation,
mesh, basis functions, MoM/curbature, matrix assembly, linear system solver, post-processing.

The solution of the integral equation (3.28), apart for very special cases called canonical cases

that have simple geometries, cannot be evaluated analytically and is solved numerically. The

typical layout of an integral equation solver is depicted as an onion structure in Fig. 3.2. When

the IE formulation is set, the domain of the scatterer Ω is approximated by a mesh, that will

provide a finite number of calculation points. Then the unknown quantity, here the polariza-

tion currents Jp (�r ), is approximated by an appropriate expansion (known basis functions).

The Method of Moments is a procedure that translates the problem into an algebraic problem

of linear equations. After a proper assembly in matrix form, the system of equations will be

solved by a linear system solver, which is either a direct method (inversion of the whole matrix)

for small size problems, or an iterative method otherwise. Post-processing steps are usually
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Chapter 3. Volume Integral Operator of Electromagnetic Scattering

visualizations of the solution representing the unknown quantity for a specific application.

The IE-formulation was explained in the previous section. The six remaining steps are briefly

explained here.

Let us first distinguish two different kinds of approaches while solving integral or differential

problems numerically: either the mathematical operator is approximated, or the solution is

approximated. For the first approach an example would be the FDTD method or Nyström’s

method. For the second approach the problem consists of finding the unknown coefficients of

known functions, as typically does the method of Finite Elements. The advantage of the latter

is that if the correct basis functions are found, the solution is proven to converge to the exact

solution by increasing mesh density.

3.2.1 Discretization: Mesh and Basis Functions

The grid is approximated by N cells, which are cubes/voxels of side length h. The grid points

are defined by their centers�rn :

�rn =

⎛
⎜⎝nx h

ny h

nz h

⎞
⎟⎠ with

⎧⎪⎨
⎪⎩

nx = 0,1, · · · , Nx −1

ny = 0,1, · · · , Ny −1

nz = 0,1, · · · , Nz −1

(3.31)

Nx , Ny and Nz being the number of voxels in the x,y ,and z-direction respectively, such that

N = Nx Ny Nz .

The unknown quantity Jp (�r ) = Jx (�r ) x̂ + Jy (�r ) ŷ + Jz (�r ) ẑ is expanded in terms of suitable

vector basis functions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Jx (�r ) =
N∑

l=1
j (l )

x ·ψ(l )
x (�r )

Jy (�r ) =
N∑

l=1
j (l )

y ·ψ(l )
y (�r )

Jz (�r ) =
N∑

l=1
j (l )

z ·ψ(l )
z (�r )

(3.32)

The functions ψ(l ) (�r ) are known and are called basis functions. They are orthogonal with
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3.2. Numerical Solution of VIE with Method of Moments (MoM)

respect to a scalar product. The simplest possibility is to choose piece-wise constant functions:

ψ(l )
x (�r ) =ψ(l )

y (�r ) =ψ(l )
z (�r ) = δ(l ) (�r ) =

{
1 �r ∈Ω(l )

0 �r \Ω(l ) (3.33)

Piecewise constant basis functions means that the polarization current Jp is constant in each

cell and equals j(l ) =
(

j (l )
x , j (l )

y , j (l )
z

)
.

It is now possible to define the equation (3.28) in terms of matrices. They represent a system

of N equations, where the discretization needed to numerically solve the problem converts

integration over a certain domain, into summations of discrete values for each cell.

Inserting (3.33) in (3.28):

jωεbχ(�r )Ei (�r ) =
N∑

l=1

{(
¯̄I +χ(�r ) ¯̄L

)
δl (�r )−χ(�r )L l (�r )

}
j(l ) (3.34)

where L l (�r ) is an operator defined as:

L l (�r ) =
∫

Ω(l )

[
k2

b(�r )g
(
�r ,�r ′)+ ¯̄G1

(
�r ,�r ′)]dΩ′ +P.V.

∫
Ω(l )

¯̄G0
(
�r ,�r ′)dΩ (3.35)

The system of equation (3.34) has 3N scalar unknowns (N grid points and 3 polarizations).

However the system has an infinite number of conditions as these equations are valid for any

�r ∈Ω. The next subsection will explain how with the Method of Moments it is possible to

select only 3N possibilities to numerically solve the problem.

3.2.2 Galerkin Method of Moments: Discrete Form of the Green Dyadic

MoM is a technique in which a specific scalar product is applied to a system of equations

in order to turn, in our case, our integral equation into a set of algebraic equations. This

procedure also called testing or weighting has a wide set of possibilities. In our case we will

use the Galerkin MoM where the test functions φ(k)(�r ) are the same functions as the basis

functions. This is justified by our choice of VIE formulation. In 3.1.1 we saw that the (Jp ,Mq )-

formulation maps L2 on L2. Thus, we can choose as testing/weighting function the basis

function, this technique is used for self-interactions terms. If the testing functions are Dirac

distributions φ(k)(�r ) = δ(�r −�rn) = δn , the method is known as collocation method or point

testing, and it is here used for the mutual interaction elements. The standard collocation
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Chapter 3. Volume Integral Operator of Electromagnetic Scattering

method [133], gives an order h2 accuracy, where h is the size of an elementary cubic cell. The

testing is freely chosen to be performed on the center of the voxels�rn . The scalar product

reads:

⎧⎪⎨
⎪⎩

< δn x̂, jωεbχ(�r )Ei ,x (�r ) >= jωεbχ(�r )Ei ,x (�rn)

< δn ŷ , jωεbχ(�r )Ei ,y (�r ) >= jωεbχ(�r )Ei ,y (�rn)

< δn ẑ, jωεbχ(�r )Ei ,z (�r ) >= jωεbχ(�r )Ei ,z (�rn)

(3.36)

with: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

jωεbχ(�r )Ei ,x (�rn) =
N∑

l=1

{(
¯̄I +χ(�rn) ¯̄L

)
δl (�rn)−χ(�rn)L l (�rn)

}
j (l )

x , �rn ∈Ωn

jωεbχ(�r )Ei ,y (�rn) =
N∑

l=1

{(
¯̄I +χ(�rn) ¯̄L

)
δl (�rn)−χ(�rn)L l (�rn)

}
j (l )

y , �rn ∈Ωn

jωεbχ(�r )Ei ,z (�rn) =
N∑

l=1

{(
¯̄I +χ(�rn) ¯̄L

)
δl (�rn)−χ(�rn)L l (�rn)

}
j (l )

z , �rn ∈Ωn

(3.37)

Note that δl (�rn) is non-zero and L l (�rn) is singular only for n = l . The later should be translated

in matrix notations with the incident field vector E i :

E i =

⎛
⎜⎝E i

x

E i
y

E i
z

⎞
⎟⎠ ∈C3N with E i

x =

⎛
⎜⎜⎝

Ei ,x (�r1)
...

Ei ,x (�rN )

⎞
⎟⎟⎠ , E i

y =

⎛
⎜⎜⎝

Ei ,y (�r1)
...

Ei ,y (�rN )

⎞
⎟⎟⎠ , E i

z =

⎛
⎜⎜⎝

Ei ,z (�r1)
...

Ei ,z (�rN )

⎞
⎟⎟⎠ (3.38)

the total field E :

E =

⎛
⎜⎝Ex

Ey

Ez

⎞
⎟⎠ ∈C3N with Ex =

⎛
⎜⎜⎝

Ex (�r1)
...

Ex (�rN )

⎞
⎟⎟⎠ , Ey =

⎛
⎜⎜⎝

Ey (�r1)
...

Ey (�rN )

⎞
⎟⎟⎠ , Ez =

⎛
⎜⎜⎝

Ez (�r1)
...

Ez (�rN )

⎞
⎟⎟⎠ (3.39)

and the polarization currents vector J p :

J p =

⎛
⎜⎝ j p

x

j p
y

j p
z

⎞
⎟⎠ ∈C3N with j p

x =

⎛
⎜⎜⎝

j (1)
x
...

j (N )
x

⎞
⎟⎟⎠ , j p

y =

⎛
⎜⎜⎝

j (1)
y
...

j (N )
y

⎞
⎟⎟⎠ , j p

z =

⎛
⎜⎜⎝

j (1)
z
...

j (N )
z

⎞
⎟⎟⎠ (3.40)
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The Green Dyadic G is defined as:

[Gmn]i j = î ·
{
χ(�rn) ¯̄Lδm(�rn)−χ(�rn)L m(�rn)

}
· ĵ with i , j = {x, y, z}, and m,n = 1, · · · , N

(3.41)

In most of the CEM methods the numerical integration in one or more dimensions is found

in the core of the algebraic computations. If it is taken into account that these integrals have

to be computed O (N 2) times, N being the number of unknowns of the problem, then any

non-optimality in accuracy and computational efficiency seriously deteriorates the behaviour

of the whole algorithm. After a rather classical numerical integration the matrix elements are

completely defined by:

[Gmn]i j = h3 e− j kb (ω)|�rm−�rn |

|�rm −�rn |
(
−k2

b(ω)+ 3 j kb(ω)

|�rm −�rn |
+ 3

|�rm −�rn |2
)
Θi (�rm −�rn)Θ	

j (�rm −�rn)

+h3 e− j kb (ω)|�rm−�rn |

|�rm −�rn |
(

k2
b(ω)+ − j kb(ω)

|�rm −�rn |
− 1

|�rm −�rn |2
)
δi j

(3.42)

Θi (�rm −�rn) = îm−în
|�rm−�rn | and m,n = 1,2, ....N with m �= n. These elements represent the off-

diagonal elements of the submatrices Gi j . For the diagonal elements of the main diagonal

(m = n and i = j ) the terms are always the same and are:

2

3

(
1+ j kb a

)
e− j kb a −1 with a = h

(
3

4π

)1/3

(3.43)

These terms represent the self interactions, all other entries of [Gmn]i j represent mutual

interactions. The auxiliary diagonals (m = n and i �= j ) have zeros in their diagonals.

Finally, the Green dyadic results in a 3N ×3N matrix, completely filled with complex numbers:

G =

⎛
⎜⎝Gxx Gx y Gxz

Gy x Gy y Gy z

Gzx Gz y Gzz

⎞
⎟⎠ (3.44)

From the contrast source formulation (see section 2.2.2), Jp (�r ) is here replaced by jωεbχE(�r ),

yielding the matrix equation E i = AE , which reads:

⎛
⎜⎝E i

x

E i
y

E i
z

⎞
⎟⎠=

⎛
⎜⎝Axx Ax y Axz

Ay x Ay y Ay z

Azx Az y Azz

⎞
⎟⎠
⎛
⎜⎝Ex

Ey

Ez

⎞
⎟⎠ (3.45)

41



Chapter 3. Volume Integral Operator of Electromagnetic Scattering

where A = I −G X with I being the identity matrix and:

X =

⎛
⎜⎝diag(χ) O O

O diag(χ) O

O O diag(χ)

⎞
⎟⎠ (3.46)

is a diagonal matrix of the contrast function and the contrast diagonal [N ×N ] matrix :

diag(χ) =

⎛
⎜⎜⎜⎜⎜⎝
χ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 χN

⎞
⎟⎟⎟⎟⎟⎠ (3.47)

3.2.3 Iterative Solvers

As soon as the IE-MoM matrix is fully populated, this Green dyadic is a dense matrix and

iterative solvers used for the solution of the linear system are not very efficient. Their compu-

tational complexity is O (NiterN 2), N being the number of unknowns of the problem and Niter

the number of iterations needed for the solver to converge, whereas direct solvers normally

need O (N 3) operations. The system matrix (3.45) can be written in a compact way:

E i = (I −G X )E (3.48)

As the MoM-matrix A = (I −G X ) cannot be stored due to memory requirements, an iter-

ative solver diminishes the computational effort from O (N 2) even to O (N log N ) if special

techniques are used. These techniques are called Fast Solvers and there are three different

approaches: the FFT-based method, the adaptive integral method (AIM) and the fast multipole

method (FMM).

The first two take advantage of the convolution property that can be found in all the integrals

that need to be computed, if the free space Green Function is used, whereas the last one is the

most widespread in the CEM community and is based on the idea described below.

The FMM core idea is to firstly divide the current elements into groups by their physical

locations in space. It is mainly used in Surface Integral Equation (SIE) formulations, for more

or less distant scatterers. A group is a collection of current elements in close proximity to each

other. The addition theorem is then used to translate the radiated fields of different elements

to the common center of the group. Similarly, to calculate the received fields by each current

element within a group, the fields radiated by all the other group centers are first received by

the group center and then they are redistributed to the current elements within the group.

Since the human brain/body represents a distributed scatterer, we focus in this work on

FFT-based matrix-vector products. G has a block-Toeplitz Toeplitz-block (BTTB) structure
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and can therefore be extended to a block matrix with circulant blocks allowing the application

of FFT-based matrix-vector products for computing A. For the iterative solver, we observe

that A is a complex-symmetric matrix permitting thus the application of a minimum residual

(MINRES) solver [134, 135].

3.2.4 Spectrum of the Volume Integral Operator of Electromagnetic Scattering

The spectrum of the Volume Integral operator in the contrast source formulation has been

analyzed in [133]. In the framework of Microwave Imaging, the knowledge of the spectrum

of this operator can give useful information about the complexity of both the forward and

inverse problems. It connects explicitly the spectrum of the eigenvalues with parameters such

as the background medium and the frequency.

The volume integral operator of 3D electromagnetic scattering has both a continuous essential

spectrum, which dominates at lower frequencies, and discrete eigenvalues, which spread out

at higher ones. The eigenvalues of the discretized operator accumulate on the continuous

spectrum.

The matrix A ∈CN×N has the (real or complex) eigenvalues σ(A) =λ1, ...,λN and its spectrum

is noted as σ(A). The spectral radius ρ(A), defined as ρ(A) = max{|λ1|, · · · , |λn |}, is the radius

of the smallest circle that contains the whole spectrum σ(A). Note that here λn represents

eigenvalues and not wavelengths. In order to study the spectrum of the volume integral

operator, a spherical geometry is here considered. Three test cases that can occur in a typical

simulation in the framework of MWI are summarized in Table 3.1.

Table 3.1 – Case Study Parameters for the Sphere. Values of the wavenumber kb [1/m], the
contrast χ, and the grid size [m] for three different scattering scenarios with variable contrast,
for quasi-static (left) and dynamic (right) illuminations.

Quasi-static (frequency = 1 kHz) Dynamic (frequency = 1 GHz)

|kb | [1/m] χ grid [m] |kb | [1/m] χ grid [m]

Case 1 0.05 2+3 ·10−6 j
λb

6 ·106 70 3.2+0.7 j
λb

6

Case 2 0.05 2−2 ·10−5 j
λb

3 ·106 148 −0.06−0.2 j
λb

3

Case 3 0.09 −0.1+9 ·10−7 j
λb

2.4 ·106 178 −0.3−0.06 j
λb

2.4

Each of the three test cases has been chosen to illustrate the future discussions on frequency

and matching medium for MWI of pathologies present in the brain region. The complex

permittivity of the sphere is always chosen to be the average value of the complex permittivity

of all tissues of the head at 1 GHz for the homogeneous sphere which are εr = 46, σ= 0.9 [S/m]

(Fig. 3.3) or randomly distributed values around it for the inhomogeneous cases (Fig. 3.4),
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Figure 3.3 – Effect of frequency on the spectrum. Left: quasi-static, right: dynamic (cf. Table 3.1). From
top to bottom background permittivity εb = 10,50,70, and σ= 0.3,0.3,1 [S/m]. Sphere permittivity is
εr = 46, σ= 0.9 [S/m]. Grey circles represent the geometrical bounds of the location of each discrete
eigenvalue in the complex plane; blue crosses are the discrete eigenvalues; and red dots are the ratios

χ+1 =
(
ε(�r )
εb

)
.

with a variance equal to one third of the median values for both εr and σ. The grid size is

shown with respect to the background wavelength λb = 2π

|kb |
. The test cases are constructed

by changing the value of the background medium:
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Figure 3.4 – Effect of frequency on the spectrum. Left: quasi-static, right: dynamic (cf. Table 3.1). From
top to bottom background permittivity εb = 10,50,70, and σ = 0.3,0.3,1 [S/m]. Sphere permittivity
is a random distribution around εr = 46, σ= 0.9 [S/m], with variance equal to a third of the median
values for both εr and σ. Grey circles represent the geometrical bounds of the location of each discrete
eigenvalue in the complex plane; blue crosses are the discrete eigenvalues; and red dots are the ratios

χ+1 =
(
ε(�r )
εb

)
.

1. test case 1: relatively big contrast for both quasi-static and dynamic cases, with smaller

relative permittivity and conductivity in the background medium.
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2. test case 2: relatively big contrast for the quasi-static case and relatively small contrast

for the dynamic case, with larger relative permittivity and smaller conductivity in the

background medium.

3. test case 3: relatively small contrast for both quasi-static and dynamic cases, with larger

relative permittivity and conductivity in the background medium.

As expected |kb | is small for the quasi-static configurations, and large (> 70) for dynamic cases.

In Fig. 3.3 and Fig. 3.4 are plotted the eigenvalues of the discretized volume integral op-

erator for a homogeneous sphere inside a homogeneous background medium. Both have

losses, represented by the imaginary part of the complex valued contrast (see Table 3.1). For

these cases an approximation of the distribution of the eigenvalues λn , can be derived [133].

The geometrical bounds are given by:

[Re(λn)−Cr ]2 + [Im(λn)−Ci ]2 < R2
λn

(3.49)

with:

Cr = 1

2

(
σr

σb
+1

)
, Ci = ω (ε0εb −ε0εr )

2σb
and Rλn =

√
1

4

((
σr

σb
−1

)2

+ω2

(
ε0εr −ε0εb

σb

)2)
(3.50)

In Fig. 3.3 and Fig. 3.4 the grey circles represent the geometrical bounds of the location of

each discrete eigenvalue in the complex plain. The blue crosses are the discrete eigenvalues,

the red dots are the ratios χ+1 =
(
ε(�r )
εb

)
. At low frequencies, the eigenvalues are expected to

spread out between 1 and this ratio. Table 3.1 gives two additional important parameters, the

absolute value of the wavenumber |kb | and the contrast function of the homogeneous sphere

χ, for both quasi-static and dynamic configurations.

For both homogeneous and inhomegeneous spheres, the spectrum is explicitly bounded by

this estimate which is important when choosing an iterative method. At low frequencies, the

spectrum is a straight line, however at higher frequencies the eigenvalues spread out. This

effect is even more important for the inhomogeneous sphere, with high initial contrast. For

that case, the circle extends toward the zero of the complex plane and even if no eigenvalue is

strictly equal to zero some of the eigenvalues may get close to it and the scattering problem

to solve becomes unstable. In addition, these eigenvalues close to zero are responsible for

the slow convergence of the iterative solution of the corresponding discretized problem. At

higher frequencies, the kernel of the compact operator gets more "weight" and the norm of
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the operator increases. The choice of the background medium influences the spectrum and

the norm of the operator, therefore it should be chosen carefully.
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Figure 3.5 – Real part (a) and imaginary part (b) of the contrast function χ for a slice of the Duke
model (3 mm side voxel length) with a haemorraghic stroke at 1 GHz.(c) Discrete eigenvalues of the VIE
operator. The background medium corresponds to the cases of Table 3.1: case 1 (blue), case 2 (violet),
and case 3 (green).

Fig. 3.5 depicts the practical case of the discrete spectrum of the VIE operator for a slice of

a realistic anthropomorphic head model, called the Duke model, of 3 mm voxel side length

with a haemorraghic stroke at 1 GHz. The background medium is one of the cases of Table 3.1:

case 1 (blue), case 2 (violet) or case 3 (green). We see that the discrete spectrum is behaving as

for the inhomogeneous sphere configurations, with a median value of the overall tissues of

the head.
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The condition number κ(A) is a value determining the ill-conditioning of a mathematical

operator A. The �2-norm condition number is:

κ(A) = ‖A‖2 · ‖A−1‖2 (3.51)

The equation is also valid in the limit, that is for a singular matrix, for which κ(A) =∞. In

the practical case depicted in Fig. 3.5 the condition number for the test case 1, 2 and 3 is,

respectively, 3.6, 1.6 and 1.5. As expected, case 1 is the most affected to ill-conditioning. The

estimate of the convergence of MINRES is proportional to the condition number [136]:

‖rn‖
‖r0‖

= 2

(
κ(A)−1

κ(A)+1

)�k/2�
with rn = b − Axn (3.52)

So, for each iteration, the residual decreases by approximately

√
κ(A)−1

κ(A)+1
. The latter demon-

strates that a large condition number may lead to slow convergence.
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3.3 Numerical Experiments: Solvers for Large Number of Unknowns

When the number of unknowns is too large, iterative solvers need to be applied. The biggest

obstacle to overcome is the slow convergence of the iterative solver. For iterative solvers, a

large condition number results usually in slow convergence. The goal of a preconditioner is

to accelerate the convergence by modifying the spectrum of the matrix in the linear system

Ax = b. A preconditioner is basically an invertible square matrix M ∈Rn×n such that its inverse

M−1 is easily computable (easier than applying A itself) and M−1 A, should be well-behaved

in terms of convergence. If matrices A and M are symmetric the new condition number is

unchanged whether M is applied as left, right, or split preconditioner.

In this section, firstly, a Minimal Residual (MINRES) solver with a diagonal precondition-

ing is presented, and secondly, a Multi-Grid (MG) solver, which shows better performance at

higher frequencies, is investigated.

3.3.1 Minimal Residual (MINRES) solver
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Figure 3.6 – Static case. Convergence of the relative error of Jp in % for different grid size h (red), and
the total simulation time for different number of unknowns (total number of unknowns) in black.

Firstly, we can test the overall accuracy of the method, by considering the case of a homo-

geneous dielectric sphere embedded in a homogeneous static electric field for which an

analytical solution is at hand. There are staircase effects due to the approximated spherical

surface, therefore we compare the analytic solution to the VIE solution only in the center voxel

to measure the convergence of the method, which is the best error that could be achieved.
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Fig. 3.6 shows in red the convergence of the relative error of Jp in % for different grid sizes

h, and in black the iteration time for different numbers of unknowns. The error in accuracy

is decreasing linearly with decreasing grid size, and for a grid size of h = 5 mm, the relative

error of Jp in the center voxel is only 0.35%. The iteration time on a simple Intel(R) Core(TM)

i7-4770 CPU 3.40GHz is of � 43 seconds for � 90k unknowns (grid size of 31×31×31).
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Figure 3.7 – Dynamic case. Residual error in dB vs. number of iterations of the iterative solver at
1,100,1000 MHz (blue, green, black). Convergence without preconditioner is plotted using dotted lines
and with diagonal preconditioning using solid lines.

To test the robustness of the iterative solver we chose a grid of 11×11×11 cells with a side

length of 14.5 mm. In order to anticipate head imaging applications, we considered a ho-

mogeneous sphere of ε = 46, σ = 0.9 [S/m] (median of the overall head tissues at 1 GHz as

depicted in Fig. 2.3) embedded in a matching medium of ε = 10, σ = 0.3 [S/m]. This test

case was simulated for frequencies of 1,100,1000 MHz, representing |kb | of 2,16,70. Fig. 3.7

summarizes the results (dotted lines): for 1 GHz the solver struggles to converge to a residual

error of 10−1, for 1 MHz the solver converge easily to a residual error of 10−2 . Another way of

looking at the convergence of the solver, especially when the ultimate goal is imaging, is to

calculate the average error per voxel which are respectively 2.7%, 5%, 22.5% for |kb | of 2,16,70.

The reason why the results are worse than the ones in statics (when kb = 0) is the spectrum of

the volume integral operator (see Section 3.2.4) and preconditioning should be used.

For symmetric operators such as ours, a simple preconditioner to apply to (3.48) is the di-

agonal preconditioner in order to preserve the symmetry of the system. We introduce the

intermediate variable �y yielding

�b = (I −K )�y ; �b = ME i ; �y = M−1E (3.53a)

K = MG X M ; M = diag
�
χe (3.53b)
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From a computational point of view, we actually never compute K but rather perform the

subsequent operations :

�u = M�y (3.54a)

�v =G X�u (3.54b)

�w = M�v (3.54c)

where �u and �w are cheap matrix-vector products since M is diagonal. This type of precondi-

tioning is expected to behave well for diagonal-dominant matrices K .

Table 3.2 – Condition Number and Convergence Estimate for increasing wavenumber / fre-
quency without (left) and with (right) diagonal preconditioning.

kb / frequency [GHz] Without preconditioning Diagonal preconditioning

κ(A) convergence estimate κ(A) convergence estimate

2 / 0.001 1.9 0.56 1.4 0.41 (better)

16 / 0.1 1.9 0.56 1.5 0.45 (better)

70 / 1 2.7 0.68 3 0.71 (worse)

In Fig. 3.7 the diagonal preconditioner is applied (solid lines) to the homogeneous sphere for

which the convergence was depicted in dotted lines for the original system without precondi-

tioner (case 1 of Table 3.1). For small kb = 2 (frequency of 1 MHz) the convergence is better

by a factor of ten, and on the contrary not significant for higher frequencies such as 1 GHz

(kb = 70). The convergence is still rather fast but stagnation occurs later (at least at 1 MHz).

The stagnation, which occurs for residues of 10−3, 10−2 or 10−1 for higher frequency, could be

explained as the matrix is not diagonal-dominant anymore. The condition number and the

estimation of the convergence without preconditioning and when diagonal preconditioning is

applied are listed in Table 3.2.

3.3.2 Multi-Grid (MG) solver

Multi-grid methods (MG) can be used either as a preconditionning scheme or as a solver itself.

When it is used as a solver, the basic idea is to go back and forth between different grid levels

and to solve a residual equation (Smoothing operations) instead of Ax = b itself. This equation

is solved directly on the coarsest level. For the geometric multi-grid method, the concepts are

depicted in Fig. 3.8. The details of MG can be found in [137].

The residual problem of the finer grid, which cannot be solved by a direct solver, is restricted

to a coarser mesh. For the smoothing method, MINRES is used. The same three test cases are

investigated for homogeneous and inhomogeneous spheres. Here, as the solutions will not be

compared to the analytical solution, half spheres (geometrically closer to the actual cranial

cavity) will be tested. The convergence is plotted for the V-cycle in Fig. 3.9 (homogeneous
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V-cycle

Ln
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N = 3× 2n+1 Iterative Solver

N = 3× 2n Iterative Solver

N = 3× 2n−1 Direct Solver

Figure 3.8 – Schematic of Full-MG (FMG) procedure, with the V-cycle procedure highlighted in yellow.
Green, red and black arrows represent, respectively, Restriction, Smoothing and Prediction operations.
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Figure 3.9 – Error in dB vs. number of iterations of the MG solver at 1, 100, 1000 MHz (blue, green, red)
for the homogeneous half sphere of cases 1, 2, 3 (see Table 3.1) with voxels of 8 mm side length. The
residue is plotted in solid lines and the absolute error with respect to the solution with the direct solver
is plotted with cross markers.

case) and Fig. 3.10 (inhomogeneous case).

The V-cycle is performed between the L2 (coarse grid: N = 8× 8× 4 cells of 16 mm side
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Figure 3.10 – Error in dB vs. number of iterations of the MG solver at 1 MHz, 1 GHz, and 2 GHz (blue,
green, red) for the inhomogeneous half sphere of case 2 (see Table 3.1) with voxels of 8 mm side length.
The residue is plotted in solid lines and the absolute error with respect to the solution with the direct
solver is plotted with cross markers.

length) and L1 (fine grid: N = 16×16×8 cells of 8 mm side length). A good convergence of

the residual does not always mean that the solution found is the exact solution, therefore to

double check the convergence towards the exact solution, the Root Mean Square (RMS) of the

difference between the solution obtained with the direct solver and the one obtained with the

MG-solver is also plotted in Fig. 3.9 with cross markers.

For the homogeneous case shown in Fig. 3.9 the results are good, with an overall fast conver-

gence rate with low errors in general, except for one case. For the homogeneous half spheres,

the case with high contrast already diverges for 1 GHz. With respect to the MINRES solver, the

stagnation occurs on a much lower level, that is at 10−6-10−7.

In Fig. 3.10 the robustness of MG schemes for the inhomogeneous case 2 (see Table 3.1) is

shown for 1 MHz, 1 GHz and 2 GHz. The material distribution is equal to the third of the

median values for both εr and σ. On the left side (see Fig. 3.10a), the V-cycle is performed

between the L2 (coarse grid: N = 8× 8× 4 cells of 16 mm side length) and L1 (fine grid:

N = 16×16×8 cells of 8 mm side length). To test whether the results are comparable for more

than one level difference between the fine and the coarse grid, on the right side of Fig. 3.10b,

the V-cycle is performed between the L3 (coarse grid: N = 4×4×2 cells of 32 mm side length)

and L1 (fine grid: N = 16×16×8 cells of 8 mm side length). For both cases, the results are

very promising as they show good convergence rates with an error of 10−6 for less than 45

iterations.

The encouraging results for the homogeneous and inhomogeneous cases at frequencies up

to 2 GHz for the case 2 (see Table 3.1) were double checked with the direct solver each time

(cross markers). Therefore the solver seems to converge to the exact solution and not to a local
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Figure 3.11 – Absolute value of the contrast function of the Duke Model [83] at 1 GHz on a 128×128×16
grid with voxels of 2 mm side length. The background medium properties are ε= 50, σ= 0.3 [S/m].

Figure 3.12 – Absolute value of the electric field produced by an impinging z-polarized plane wave on
the Duke Model [83] (see Fig. 3.11) at 1 GHz on a 128×128×16 grid with voxels of 2 mm side length.
The background medium properties are ε= 50, σ= 0.3 [S/m].

minima and anthropomorphic tissue distribution such as the Duke model [83] can be tested.

Fig. 3.12 shows the absolute value of the electric field produced by an impinging z-polarized

plane wave on the Duke Model [83] (see Fig. 3.11) at 1 GHz on a 128×128×16 grid with voxels

of 2 mm side length. The residual problem is solved with the direct solver on a 32×32×4 grid

with voxels of 8 mm side length. The background medium properties are ε= 50, σ= 0.3 [S/m].

For 1 GHz the convergence rate is very good (see Fig. 3.13) with a residual error of 1.2×10−5

reached with only 30 iterations.
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Figure 3.13 – Residual error in dB vs. number of iterations of the MG solver for the solution for the
electric field produced by an impinging z-polarized plane wave on the Duke Model [83] (see Fig. 3.11)
at 1 GHz on a 128×128×16 grid with voxels of 2 mm side length. The background medium properties
are ε= 50, σ= 0.3 [S/m].

3.4 Conclusion

In this chapter, VIE formulations were presented and the procedure to treat the arising sin-

gularities in the Method of Moments were explained for the polarization currents (Jp ) based

formulation. Direct methods to solve the discretized VIE cannot be used due to the large com-

putational size of the problem. For example for a 1 mm resolution discretization of the head,

there are ∼ 20,000,000 unknowns. Therefore, iterative methods are used, such as MINRES,

which suffer from no or slow-convergence rates as frequency and contrast increase. For these

cases, which do arise when it comes to modeling EM fields for MWI applications, MG solvers

have been explored. The results show very good convergence for homogeneous problems

even at frequencies up to 2 GHz, if the contrast is kept low. For inhomogeneous cases the

MG-scheme keeps a very good performance with increasing frequencies. This promising

approach was tested on the Duke model and gave encouraging results with a residual of 10−5

obtained after only 30 iterations.
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4 Design of MWI Systems for Brain
Imaging

This chapter presents tools to address the design of MWI systems for brain imaging. More

specifically, we analyze the power transmission of a radiating field inside the human head for

Microwave Imaging applications. We aim at finding the range of frequencies that will optimize

the received power of the scattering of the brain, which is the region of interest for imaging.

For this purpose, planar and spherical layered models composed of representative dispersive

biological tissues are investigated in the range of [0.5−4] GHz. The models, excited by plane

waves, provide reasonable insights while remaining very convenient due to their analytical

formulation. This chapter is organized in two parts:

1. the presentation of the two models, their electromagnetic analysis, and the discussion

of simulation results;

2. the experimental validation of the spherical layered model with the characterization

and realization of a 3D printed head phantom with tissue mimicking liquids.

This part aims at proposing and validating tools to derive guidelines for the design of MWI

systems for brain imaging. From the major challenges listed in Chapter 2, the coupling of

microwave power into the tissue, the body tissue losses and the choice of the frequency are

addressed here.

4.1 Models and Electromagnetic Analysis

Microwave Imaging (MWI) [14] for bio-medical applications aims at localizing and recon-

structing a pathological tissue region using scattered microwaves. In the framework of head

MWI this non-invasive, non-ionizing technique could be suitable to monitor brain anomalies

such as brain stroke [45, 138, 139], internal bleeding [34], etc. An important issue with MWI

is to increase the signal to noise ratio in order to get better images. To do so, one possible

solution is to maximize the scattering response of the brain anomaly, which is measured at the

EM probes. To maximize the scattered power, several aspects influencing the imaging quality
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must be analyzed before building a MWI setup. The choice of frequency for MWI is essential.

The losses in dispersive biological tissues increase with the frequency. Meanwhile, the higher

the permittivity of the matching medium (i.e the background medium where the transmit-

ting/receiving probes are located), the higher is the spatial resolution for imaging the anomaly

inside the brain [21]. Therefore, the choice of the frequency is a trade-off between a high

resolution and small losses. In [47], guidelines to design an optimal MWI setup and to properly

set the working frequency and the matching medium, needed to facilitate the penetration of

the probing wave into the head, are determined using a plane wave Transmission Line (TL)

model. We propose a multilayered spherical model as a head approximation representing a

more accurate model than the plane-wave TL model, while allowing an analytical solution to

the electromagnetic scattering problem [140].

This part of the chapter focuses on stratified planar and spherical models which are used to

model and to estimate the normalized transmitted power into the human head. Also, the

power transmission through the four main layers between the brain and the background

medium, namely the Cerebrospinal Fluid (CSF), the cortical bone (always simply referred to

as bone), the fat, and the skin are investigated.

4.1.1 Planar Layered Model

Zin

P1 P2

Zmm Zs Zf Zb Zcsf Zbr

Zbr

∞
4mm 4mm 7mm 3mm 43mm

Figure 4.1 – Planar multilayered model to analyze the power transmitted into the human head.

The anomaly to detect and the wavelength of the excitation probe are smaller (ideally much

smaller) than the head, therefore the head can be modeled by a sequence of planar layers. A

first study was completed in [47] exploiting the transmission line (TL) formalism. The model

consists of an equivalent TL in which each section corresponds to a tissue layer, as depicted

in Fig. 4.1. The characteristic impedances Zmm , Zs , Z f , Zb , Zcs f , Zbr , and lengths of each TL

represent, respectively, the matching medium, the skin (4mm), the fat (4mm), the bone (7mm),

the CSF (3mm), and the half brain (43mm) where Z =
√

μ0

ε0ε
with ε0, μ0 and ε are, respectively,

the vacuum permittivity, the vacuum permeability and the complex relative permittivity of

each material or tissue. The dielectric characteristics of the brain are set with a grey over
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white matter ratio (GM/WM ratio) [141] of 1.5. Here we chose to use the dielectric properties

provided in [142] and for which the properties are plotted in Fig. 4.2.
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Figure 4.2 – Theoretical dielectric properties [143] of brain (black), CSF (blue), bone (green), fat (light
blue) and skin (magenta): (a) relative permittivity εr ; (b) conductivity σ [S/m].

In Figures 4.3a and 4.3b, the transmittance is plotted as a function of frequency and the

coupling medium’s permittivity and conductivity. The transmittance represents the effective

transmitted power through a sample.

The transmittance at the interface between the matching medium and the skin (see Fig. 4.1) is:

T = 1−Γ2(ω) with Γ(ω) = |Zi n(ω)−Zmm(ω)|
|Zi n(ω)+Zmm(ω)| (4.1)
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Figure 4.3 – Amplitude of the transmission coefficient as a function of frequency and medium per-
mittivity [47]. (a) variable relative permittivity εr = [1−80], lossless medium σ= 0 [S/m]; (b) variable
conductivity σ= [0−1] [S/m], relative permittivity εr = 40.

where Zmm is the characteristic impedance of the matching medium, Zi n is the input impedance

seen at the interface between matching medium and skin, and ω the angular frequency. The

microwave band of interest is [0.5−4] GHz and the coupling medium range from air to water

(εmm ∈ [1−80]). The same graph has been shown in [47] and we can note in Fig. 4.3a a “forbid-

den band” around 2 GHz where the transmittance is the smallest, almost independently of

the coupling medium. The conductivity of the matching medium does not really affect the

amount of transmitted power in the frequency range of interest as we can see from Fig. 4.3b.

Below 600 MHz, the achieved resolution is higher than 3 cm which is not appropriate to

observe the desired phenomenon. The frequencies above 4 GHz are not convenient due to

low penetration into the tissues. Indeed, the approximation of the power attenuation through
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the layers (the multi-reflections between the layers are omitted) is defined as:

A2(ω) = e2
∑

t αt (ω)dt (4.2)

with t representing the different tissues between the transmitter and the receiver, αt (ω) the

linear attenuation coefficient, and dt their respective thicknesses.
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Figure 4.4 – Approximation of power attenuation through the head tissues in the exterior limit of the
brain: close to the CSF (blue) and middle of the brain (at 43 mm from the CSF) in red.

Fig. 4.4 plots the approximated power attenuation for two different cases. For the worst case

scenario (center of the head) at 4 GHz, the attenuation is such that less than 1 % of the power

arrives to the anomaly if its location is at the center of the head, and only 6 % arrives in the

best case scenario (when the anomaly is close to the CSF). This analysis is performed without

counting for the reflections at the transitions between the different tissue layers. Therefore,

this following study focuses on frequencies below 4 GHz. Also, it is important to note that

the “forbidden band” is defined for the power entering the head. However this information

is not sufficient for knowing the amount of power transmitted to a potential anomaly inside

the brain region. In [46], a detailed analysis of the generalized transmission and reflection

coefficients [144], which refers to the multilayered configuration, is made to consider the

losses through the tissues and the transmittance through all the layers. Another way to assess

the range of frequencies and matching media for microwave imaging systems for brain stroke

detection is to directly analyze the power transmission, which is described in the following

paragraph.

The normalized transmitted power PNt(ω) is defined as the ratio between the transmitted

power into the load Zbr (from the middle of the head which is represented as an infinite half

space) and the available power in the lossless background (A2 = 1, |Γ(ω)|2 = 0) for the same
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incident field. The normalized transmitted power is a physical measurable quantity linking

the coupling into the tissue and the tissue losses to frequency. The goal is to assess up to

which frequency the scattered fields induced by an anomaly can be detected. This frequency

is crucial as it defines the maximal resolution based on which the imaging algorithm can

reconstruct a stroke. In other words, the frequency defines the minimal detectable anomaly

size.

4.1.2 Spherical Layered Model

Skin

Fat

Bone

CSF

Brain

y

z

x

r5
r4
r3 r2 r1

θ

φ

Figure 4.5 – Spherical multilayered model to analyze the power transmitted into the human head.

The spherically stratified head model, represented in Fig. 4.5, is a more realistic model of

the human head than the planar model discussed in the previous section. Nevertheless,

it still allows an analytic solution for the electric field distribution. The core of the sphere

is the brain with a radius of r1 = 43mm, the j th layer (the core is the 1st layer) is given by

r ∈ [r j−1,r j ], j = 2,3,4, ...L and represents the same dimensions as the planar model (see

Fig. 4.1).

In [145], for 7T MRI the Larmor frequency is around 50 MHz and the brain region is modeled

as a combination of CSF, grey matter, and white matter. Since we deal with higher frequencies

and, thus, shorter wavelengths, we model the CSF separately and the dielectric characteristics

of the brain are set with a grey over white matter ratio (GM/WM ratio) of 1.5 as explained

in [141]. A similar ratio was used in [146], as the dielectric properties of the latter two are

similar in the frequency range of interest.

Due to the spherical geometry of the boundary conditions, the electric field can be expanded

as an infinite sum of vector spherical harmonics and be expressed analytically. Reference [147]

provides a review on the governing equations of the spherical wave expansion used to solve

this problem, and gives a detailed analysis and validations of the implementation. All the
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important steps from the solution of the scalar to the vectorial Helmholtz equation are shown

in Appendix A. These results are valid for a plane wave impinging on the head phantom.

This information needs to be taken into account when comparing theoretical and experi-

mental results. However, because we are only interested in the transmission inside the head,

this is not a real restriction and the results using a plane wave should be also valid for an

antenna directly placed on the head. Indeed, the propagation of an electromagnetic wave

depends only on the properties of the medium and not on the characteristics of the wave,

that is plane wave, spherical wave, etc. Finally, we define the normalized transmitted power,

PN t (�r ,ω) =
∫

V |E(�r ,ω)|2dV∫
V |Eb(�r ,ω)|2dV

, as the ratio between the transmitted power into a bounded do-

main in the center of the brain and the power available in the lossless background in the same

bounded domain.

4.1.3 Simulation Results and Discussion

The normalized transmitted power represents the incoming power that can excite any dam-

aged area in the center of the head (worst case scenario) and therefore produce a scattered

field. Fig. 4.6 represents maps of the normalized transmitted power plotted in dB for planar

(Fig. 4.6a) and spherical (Fig. 4.6b) models. The permittivity of the matching medium is varying

in the range εmm = [1-80] (from air to water) and frequencies [0.5-4] GHz. The color change

corresponds to a drop in the normalized transmitted power in steps of 3 dB and up to −36 dB

(all values below −36 dB are depicted as the same dark blue color). Cuts for εmm = 14,56,80 of

the PNt computed with the planar (full lines) and spherical (dotted lines) models are shown in

Fig. 4.6c.

The power drop front is quasi constant, with respect to the matching medium and moves right

in a constant way with increasing frequency. This is an indication that the power transmission

is mainly affected by the tissue attenuation which is increasing with frequency. At 1 GHz for

example, the optimum is at εmm � 10, however the normalized transmitted power drops only

by 1 dB if εmm = 80 (approximately water at 1 GHz), which would result in an imaging reso-

lution increase of almost three times. A very similar behavior of the normalized transmitted

power can be observed for the spherical model. There is even a stronger reflection of the inci-

dent wave for εmm < 5 but only for frequencies above 1.5 GHz. If the working frequency is set

to 1 GHz, the optimum is at εmm � 1, resulting in an unacceptable imaging resolution of 30 cm.

According to [40], to achieve a resolution of 10 mm, the matching medium should be εmm > 56

at 1 GHz for a normalized power transmission of approximately −10 dB for both planar and

spherical models, or εmm > 14 at 2 GHz for a normalized power transmission of −20 dB and

−15 dB according to the planar and spherical models, respectively. The resolution in water

(εmm = 80) for 1 GHz is 8.4 mm, for a PN t of -10 dB for both the planar and the spherical

model. The same normalized transmitted power is obtained considering the field scattered by

the anomaly and received by the probe. Therefore, the power level the imaging system should
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(a) (b)

(c) Normalised transmitted power

Figure 4.6 – Normalised transmitted power according to the frequency [0.5-4]GHz applying (a) the
planar model, (b) the spherical model, for a matching medium of εmm = [1-80]. Cuts for εmm = 14,56
and 80 of the PNt computed with the planar (full lines) and spherical (dotted lines) models are shown
in (c).

be able to detect is at least twice the depicted normalized transmitted power in dB.

According to these observations of simulation results, the general guidelines for designing a

MWI setup are to chose the highest matching medium as the latter does not influence a lot

the transmission but enhance the resolution. At frequencies around 1 GHz, the attenuation of

the head tissues is still reasonable.
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4.2 Experimental Validation

Several groups have developed complex imaging setups and algorithms for imaging brain

anomalies [27, 148–150]. Experimental phantoms for the head have been designed, the most

complex one using molded semi-rigid parts assembled inside an outer solid cavity [151]. The

complex molding procedure and the high number of used ingredients makes this approach

precise, however not easily repeatable. Moreover, the skin is not represented realistically

as it is included in the fat/bone layer printed in a plastic material with dielectric constant

of 6 at 2 GHz [143]. These models are very useful to realistically simulate the dielectric

properties inside the brain itself and are used for imaging [148]. To validate numerical models,

interesting works have been done in the microwave imaging community with 3D printed

breast phantoms [80,152] using Triton X-100 based mixtures to mimic biological tissues. In the

7T MRI community, 3D printed liquid phantoms [145] are also used as they are easy to handle

and transport. A similar approach is followed here, to the best of our knowledge, for the first

time in the framework of MWI of the brain, and a first attempt of using this simple, repeatable

and over time stable procedure was published recently in [146]. For this, a spherically stratified

head phantom has been built to experimentally estimate the power transmitted into the brain

and to analyze the influence of the main layers of the head on the propagation of the EM wave.

4.2.1 Liquid Body Phantoms: Realization and Characterization

3D printed Multilayered Sphere Phantom

We developed a 3D printed model (see Fig. 4.7) as a multilayered sphere in order to confront

measurements data to simulation data [153]. The prototype should be as close as possible to

the representation of the brain depicted in Fig. 4.5. The model geometries, the waterproofing

and gluing tests are shown in Appendix B.

The filling system consists of 5 entries, allowing to use a different liquid for each shell. The

filling system and the holding system are designed in one piece to minimize its influence

regarding the ideal multilayered concentric spherical model (see Fig. 4.5) that we want to

subject to measurements. Each of the entries has a blockage cap, 3D printed in a flexible

material. We used the Fused Deposition Modeling technology and white ABS (Acrylonitrile

butadiene styrene) for the plastic. The materials and thicknesses were designed to ensure

waterproofness. The dielectric properties of the ABS plastic structure of the 3D printed

prototype were measured in the range of [0.5−4] GHz using the Agilent 85070E dielectric

probe kit (see Fig. 4.8). The relative permittivity is 2.6 and constant while the conductivity is

negligible in the frequency range of interest (see Fig. 4.9). The plastic shells are 2 mm thick.
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(a) glued prototype (b) before gluing prototype

Figure 4.7 – Prototype Multilayered Sphere: (a) glued prototype; (b) before gluing prototype, with
blocking caps and syringe.

Measurements of TritonX100 / Salted Water Mixtures to Mimic the Human Head

Several recipes are available to make liquids mimick the main human head tissues. Following

the guidelines adopted in [77], Triton X-100-water mixtures with NaCl (salt) (see Table 4.1)

are used to emulate the targeted tissues. The results for permittivity and conductivity mea-

surements are depicted in Fig. 4.10, where the dispersive characteristics of their theoretical

(targeted) values can be observed for the above frequency range.

Table 4.1 – Triton X-100 and NaCl concentrations for different biological tissues, and thickness
of according layers for the multilayered spherical model.

Tissue
Volume concentration

of Triton X-100 [%]
Concentration
of NaCl [g/L]

Thickness
of layer [mm]

Brain 35 4.3 43
CSF 7 14 3

Bone 85 0 7
Fat 100 0 4

Skin 30 4.3 4

For all the tissues the relative permittivity is very well matched over the total frequency band

[0.5− 4] GHz. For the conductivity all tissues match fairly well in the band [0.5− 3] GHz,

however, from 3 GHz to 4 GHz, the conductivity is overestimated especially for the mixtures

mimicking the skin and the brain tissues.
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Figure 4.8 – Agilent measuring system: 85070E Dielectric Probe Kit

(a) Conductivity σ [S/m] (b) Relative Permittivity εr (c) ABS sample

Figure 4.9 – Dielectric properties of ABS sample: (a) conductivity σ [S/m]; (b) Relative Permittivity εr ;
(c) picture of ABS sample.

4.2.2 Measurement Results

Measurement Setup

The transmission parameter |S12| between a monopole antenna (port 2) vertically placed in

the center of the head phantom and a vertically polarized horn antenna (port 1) placed at 1 m

distance is measured between 0.5 and 4 GHz, as depicted in Fig. 4.11. The plastic shells are

2 mm thick. The radius of the brain is 43 mm. When the shells are empty, the attenuation A2

and the power reflection coefficient Γ2 are negligible. Additionally S f
11 � Se

11 as the emitting
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Figure 4.10 – Theoretical (solid line) [143] and measured (dashed line) dielectric properties of the
measurements of brain (black), CSF (blue), bone (green), fat (light blue) and skin (magenta). Solid
lines are theoretical values and dashed lines are measurements: (a) relative permittivity εr and (b)
conductivity σ [S/m].

horn antenna is for both configurations in air. As discussed in Section 4.1.3, the matching

medium is essentially useful to increase the imaging resolution, therefore measuring with a

horn antenna in air is acceptable since the purpose of this simple setup is to experimentally

validate only the power transmission inside the head computed by the analytical modeling

tool.

The measurements in the case of empty and filled spheres are denoted by Se
i j and S f

i j pa-
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Figure 4.11 – Schematic and pictures of the measurement setup.

rameters, respectively. The ratio between these two measurements determines the amount

of power injected into the brain from the horn antenna and is defined as the normalized

transmitted power

PNt = F (ω)
|S f

12|2
|Se

12|2
, with F (ω) = (1−|Se

22|2)

(1−|S f
22|2)

(4.3)

The coefficient F (ω) accounts for the occurring mismatch of the receiving monopole inside

the brain when immersed into the brain-mimicking mixture. The expression for the coefficient

F (ω) comes from calculating the relative power transfer from a horn antenna to a monopole

antenna placed inside of a head phantom. The reflected and transmitted powers are developed

at each discontinuity with a local planar approximation. The Friis formula yields inside a

lossy medium assuming a planar wavefront (the obvious frequency dependence is omitted for

clarity reasons) with the time-harmonic convention e+ jωt :

|S12|2 = Pr

Pt
= (1−|S11|2)(1−|S22|2)Gr Gt e−2αR

λ2
b

R2 (4.4)

with λb the wavelength in the background medium, kb the (complex) wavenumber of the

(lossy) medium, andα [Np/m] the linear attenuation defined asR( j kb). The power attenuation

is therefore 2α.
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Γ,e−2αd

r
r = 0 r = R1 r2 = R1 + d r = R1 + d+R2

P1 P2Tx Rx

Pt(r = 0) = P1(1− |S11|2)

Pr(r = 0)

Pt(r = R1 + d)

= Pt(r = R1)(1− |Γ|)e−2αd

Pr(r = R1)

P2 =
Pt(r = R1 + d+R2)(1− |S22|2)

Pr(r = R1 + d+R2)

Figure 4.12 – Shematic of the transmission between the horn antenna (Tx) and the monopole antenna
(Rx). The lossy material emulating the head phantom is represented as a planar layer with two interfaces
in blue.

Equation (4.4) must be modified because the transmission media is composed of a lossless

(air layer) and a lossy material (emulating the head). Therefore the mismatch between these

two layers must be taken into account, and a similar procedure as in [154] is here followed. In

the schematic depicted in Fig. 4.12 the distance R2 = 0 was added only for schematic clarity.

P2 = Pt (r = R1 +d +R2)(1−|S22|2)

= Pt (r = R1)(1−|Γ|)e−2αd (1−|S22|2)

= Pt (r = 0)
1

R2
1

(1−|Γ|)e−2αd (1−|S22|2)

= P1(1−|S11|2)
1

R2
1

(1−|Γ|)e−2αd (1−|S22|2)

(4.5)

Therefore,

|S12|2 = P2

P1

= (1−|S11|2)(1−|S22|2)(1−|Γ|)e−2αd 1

R2
1

(4.6)
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When the spheres are empty, Γ= Γe � 0 and α=αe � 0 and:

|Se
12|2 = (1−|Se

11|2)(1−|Se
22|2)

1

R2
1

(4.7)

When the spheres are full:

|S f
12|2 = (1−|S f

11|2)(1−|S f
22|2)(1−|Γ f |)e−2α f d 1

R2
1

(4.8)

Therefore, the relative transmitted power is:

|S f
12|2

|Se
12|2

=
(1−|S f

11|2)(1−|S f
22|2)(1−|Γ f |)e−2α f d 1

R2
1

(1−|Se
11|2)(1−|Se

22|2)
1

R2
1

= (1−|S f
11|2)(1−|S f

22|2)(1−|Γ f |)e−2α f d

(1−|Se
11|2)(1−|Se

22|2)

= F (1−|Γ f |)e−2α f d

(4.9)

with F = (1−|S f
11|2)(1−|S f

22|2)

(1−|Se
11|2)(1−|Se

22|2)
� (1−|S f

22|2)

(1−|Se
22|2)

. Because the emitting antenna, the horn, radiates

in air in both configuration S f
11 � Se

11. Also
|S f

12|2
|Se

12|2
= P f

2 /P f
1

P e
2 /P e

1

� P f
2

P e
2

as the power delivered by the

VNA is the same: P f
1 = P e

1 .

The monopole, similar to the one used in [155] for breast imaging purposes with the only

difference of a longer pin (4 cm) to adapt to the brain mimicking environment is well-matched

over the entire measured frequency band (see Fig. 4.13).

Transmitted Power Measurements

The 3D printed head phantom (see Fig. 4.7) and the simulated multilayered spherical model

(see Fig. 4.5) are not exactly the same. Nonetheless, their differences are relatively small and

therefore one can estimate the accuracy of the measurements with an analytical modeling tool

instead of a full-wave solver. Indeed, the thinnest shells are 2 mm thick which would result in

a very dense meshing which can be time consuming.
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Figure 4.13 – Monopole antenna specifications: measurements (blue) and simulations (red).

43 mm
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71 mm
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Case 3

Figure 4.14 – Correspondance between the 3D printed head phantom and the multilayered spherical
model. Plastic shells representation of the phantom in grey and spherical head model in red. Top: three
possible configurations with 61 mm (left), 66 mm (middle), and 71 mm (right), outer diameters of the
spherical head model.

The Fig. 4.14 shows three natural possibilities to make a correspondence between the 3D

printed head phantom and the simulated multilayered spherical head model. For the simu-
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lations results either the simulated head model is "small", with the brain sphere coinciding

with the brain cavity in the 3D printed phantom which results in an outer radius of 61 mm for

the simulated model, either the head model is "medium" with an outer radius of 66 mm, or

finally, the head model is "large" with an outer radius of 71 mm coinciding with the outer shell

of the 3D printed phantom. Of course any combinations of these choices are also valid. The

normalized transmitted power is plotted for all three configurations in Fig. 4.15. The blue, red,

and green lines correspond, respectively, to "small", "medium", and "large", simulated head

model sizes. The results for the normalized transmission coefficient follow the same trend.

There is a frequency shift in the power transmission, which grows with increasing frequency,

at 1 GHz the difference is around 2 dB.
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Figure 4.15 – Normalized transmitted power as a function of the frequency: with 61 mm (blue), 66 mm
(red), and 71 mm (green), outer diameters of the spherical head model.

As a general remark, larger heads (and therefore larger distances from the outside of the

head towards the center of the brain) suffer from overall bigger power attenuation which is

worsened with higher frequencies.

In Fig. 4.16 the measured normalized transmitted power is plotted in green and compared

to simulations obtained using a planar model (in blue, when εmm = 1 in Fig. 4.6a) and with

the spherical model (in red, when εmm = 1 in Fig. 4.6b). The comparison of spherical models

is made with a head of outer radius 61 mm, as the results matches the most. One can easily

observe that in the range [1.5-3] GHz, the normalized transmitted power PNt drops very rapidly

by −15 dB due to the strong attenuation in the tissues, which was predicted by both the planar

and the spherical model.

The Fig. 4.16 shows reasonable agreements between the measured and the simulated data

of the same configurations assuming a plane wave excitation. At 1.6 GHz the normalized

transmitted power is −17 dB for both simulated and measured PN t . This figure experimentally

confirms the analysis made with spherical and planar models. It reinforces the choice to

perform measurements around 1 GHz as the power attenuation is less than 10 dB.
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Figure 4.16 – Normalized transmitted power as a function of the frequency: measured (green) and
simulated with planar (blue) and spherical (red) models.

The reasons for the differences between the measurements and the model are twofold. Firstly,

the plastic layers take a certain physical space which were not included in our simulations.

This choice is justified as the goal is to determine if the phantom can reproduce the model,

which does not have plastic layers. Secondly, for the same reason which is to compare the

measurements with the simulations obtained with the ideal model, the dielectric properties

of the tissues are the theoretical ones (permittivity values depicted in solid lines in Fig. 4.10).

Measurement Setup Characterization

The phantom is also a useful tool to assess the microwave imaging system, in terms of sen-

sibility, precision and calibration. For this purpose, the goal is to define the model as close

as possible to the measured phantom. Basically, it implies using the measured permittivities

of the Triton-based mixtures (dashed lines in Fig. 4.10) instead of the theoretical dielectric

properties (solid lines in Fig. 4.10), and inserting the plastic layers in the simulations. This

analysis is presented in Fig. 4.17. The measurements are compared with the physical model

with plastic shells and measured dielectric properties of the Triton-based liquids. The green

lines represent measurements with (solid line) and without (dotted line) correction for the

mismatch of the monopole antenna immersed in the phantom. The red line represents the

simulations with the spherical head model of outer radius 61 mm. The black lines represent

simulations with the modified spherical head model which accounts for the plastic layers. The

latter is simulated with theoretical values for the head tissue in solid line (permittivity values

depicted in solid lines in Fig. 4.10) or with the measured values of the tissue mimicking Triton

based mixtures in dotted lines (permittivity values depicted in dashed lines in Fig. 4.10).

For frequencies below 2 GHz, the realistic model with the plastic shells is very similar to the
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Figure 4.17 – Normalized transmitted power as a function of the frequency: measured with the
mismatch correction (green solid line) and without the mismatch correction (green dotted line), with
the simulated spherical models in the original case (red), in the case with plastic shells and theoretical
values for the mixtures (black solid line) or measured values for the mixtures (black dotted line).

simulation results using the theoretical model. Firstly, the plastic shells are not influencing

too much the wave propagation. Secondly, the Triton-based mixtures are close enough to

the theoretical values and reflect the required transmission problem. On the other hand, for

frequencies above 2 GHz, the plastic structure and the badly-matched measured permittivities

of tissue mimicking liquids are starting to have an influence. Nevertheless, the simulations

with the realistic model (with the plastic shells and the measured values of the permittivities)

should be closer to the measured values, which is not the case in the latter measurements. Two

hypotheses are plausible, either the dielectric measurements are not accurate above 2 GHz

and the losses are overestimated, or more likely the calibration of the VNA was altered by cable

movements. Indeed the 2-port calibration required some cable movements, which, even if

kept as small as possible, introduce errors, which are amplified at higher frequencies. Cable

movement could also explain the modulation in the measurements which are not visible in

simulations. The latter hypothesis is also more plausible because the measurement seems to

be shifted gradually with increasing frequency. Nevertheless, canonical phantoms, are a way

to check whether the calibration is valid for the whole frequency range of interest.

Layers influences

As the filling process allowed to fill each layer on-site without moving the prototype (see 4.11),

it is possible to estimate the influence of each layer on the power transmission. Each of these

four layers have a very specific influence on the propagation of the wave from and into the

brain, according to the frequency.

In Fig. 4.18 (upper part) are plotted ratios in dB of the nth layer over the (n−1)th one, after the
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Figure 4.18 – CSF, bone, fat and skin influences on the propagation. Top: individual layer influences;
bottom: superposition of the individual layer influence with the total influence depicted in blue solid
line.

nth layer is filled (from the brain to the skin layer). This power ratio Rn(ω) is expressed as:

Rn(ω) = |S(n)
21 (ω)|2

|S(n−1)
21 (ω)|2

(4.10)

It represents the propagation of the wave between the monopole in the center of the brain

region and the surrounding environment in the case when only the core layer, representing the

brain, is filled. In this representation 0 dB means that there is no impact on the propagation of

the wave when an additional layer is added. If this ratio is positive (green surface), it means

that the added layer is beneficial to the propagation. A bad influence on the propagation

is indicated by a red region. It appears clearly that the forbidden frequency band observed

in [47] around 2 GHz is mainly dictated by the layers of CSF and skin. The bone strongly cuts

the propagation around 3 GHz, however, as the attenuation is high at those frequencies, this

additional forbidden band is somehow hidden by the low levels of transmitted powers. The fat

layer is beneficial to the propagation in the investigated frequency band. In the lower part of

Fig. 4.18, the product of all these influences gives the total influence R(ω), of all the layers on

the wave propagation. Fig. 4.18 clearly shows that up to around 1.2 GHz the barrier formed

by the CSF, bone, fat and skin, is beneficial to the power transmission and act as a matching

medium. Beyond this limit the layers in between have a negative impact by decreasing the

propagation of the wave.
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4.3 Conclusion

In this chapter, the analysis of the normalized transmitted power of an impinging electromag-

netic field onto the human head for MWI applications was presented using both planar and

spherical multilayered TL models. To design an optimal MWI setup, the trade-off between

penetration of the wave and imaging resolution should be taken into account. Indeed, a wave

at low frequency is less attenuated through the tissue layers but would result in a bad imaging

resolution. The strong attenuation of at least 15 dB between 1.5 GHz and 3 GHz in the measure-

ments matches the predictions made with simple transmission line models. It experimentally

confirms the trend to perform head MWI around 1 GHz as the power attenuation is less than

10 dB, for all considered matching media.

The experimental results have been compared to our modeling tool based on spherical wave

expansion and showed reasonable agreement, and are in accordance to the predictions based

on planar models. Additionally, a methodology to perform measurements outside and inside

liquid phantoms using the 3D printing technology was presented. This convenient and acces-

sible way of building prototypes can be used to develop complex and reliable phantoms for

bio-medical applications. The phantom is transportable and robust, the glue did not seem

to have changed after two sets of experiments separated by nine months. The possibility

to exchange or build new quasi-identical phantoms allows comparing existing algorithms

among researchers from different institutions. Today, anthropomorphic models based on 3D

printed head phantoms for MRI lack of complexity for microwave applications, for which the

wavelength is shorter.

This chapter presented a methodology to find optimal frequencies and matching mediums

in accordance with acceptable power levels which are defined by the sensitivity of the data

acquisition system of the imaging system, using simplified and fast analytical models. These

parameters can be later fine-tuned using more complex EM solvers and anthropomorphic

models of the head.
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5 Microwave Inverse Scattering Prob-
lem

This chapter focuses on inverse scattering for brain imaging applications in the microwave

range. Microwave Imaging suffers from two major challenges which are non-linearity and

ill-posedness which are intrinsic to the physical reality governed by Maxwell equations. De-

pending on the application, different strategies can be adopted to tackle - partially or entirely -

these issues. Every strategy comes with trade-offs, which must be carefully analyzed for each

application. Microwave Imaging for bio-medical applications have the general requirement

to be able to provide accurate tissue contrast information with the highest resolution possi-

ble, and most importantly have stable and trustworthy images with low false negative (non

detection of existing tissue contrast), and low false positive (detection of non-existing tissue

contrast) rates. This chapter addresses the following four tasks:

1. the presentation of the differential MWI (dMWI) for brain imaging applications;

2. the estimation and quantification of the Degree of Non-Linearity (DNL) for dMWI;

3. the analysis of different regularization schemes to solve the ill-posed inverse problems,

by using simple and complex head models;

4. the experimental validation of brain dMWI using the multilayered head phantom pre-

sented in the previous chapter.

This part aims at presenting the strategies adopted to tackle first the non-linearity of the

scattering problem for a dMWI scheme, in order to provide a continuous monitoring of the

brain region. In a second step, the ill-posedness is discussed in simulations, which allows a

complete analysis based on different models, stroke position and size. The last part presents

the experimental validation of dMWI using a simple imaging setup and head phantom, which

are representative to derive conclusions and confirm the possibility of using dMWI as a

modality to detect, classify and monitor brain stokes.
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5.1 Differential Microwave Imaging Setup

5.1.1 Setup

The multi-illumination, multi-view or tomographic configuration (see Fig. 5.1) consists of

an investigation domain Γ surrounded by emitting and receiving probes. The target under

investigation (domain Ω) is sequentially illuminated by P incident fields incoming from

different directions. The scattered field is then measured by the M probes located in Γ and

surrounding the target as depicted in Fig.5.1. The same probes can be switched from emitting

to receiving mode depending on the multi-ilumination strategy and setup.

Ω

ε μ σ

Γ

εb μb σb

Γ

εbbεεb μbbεbbbbbbεεεε bεεε b

Ω

b σbbbbbb

ε μμμμ σμμμμμ

b

Figure 5.1 – Imaging configuration. Investigation domain Γ, with the dielectric properties of back-
ground medium εb , μb , and σb . The scatterer under investiagation lays in Ω and has the constitutive
parameters ε, μ, and σ.

In Fig. 5.1 the blue arrows represent what we define as the direction of propagation. The green

and red circles represent, respectively, the Transverse Magnetic (TM) and Transverse Electric

(TE) modes. These modes define whether the polarization is locally tangential to the surface

of the object (TM-mode) or not (TE-mode).

Before starting the analysis on the non-linearity and ill-posedness of brain MWI, it is im-

portant to define some notions regarding the 2D and 3D related imaging configurations.

Firstly, 2D-imaging refers to reconstructions obtained using 2D Green functions, which are set

by making the assumption that the third direction (here always referred to as the z-direction)

has translational symmetry. For example, a circle in 2D is solved as a infinitely thin slice in the

xO y-plane of an infinite cylinder (in the z-direction). On the other hand, 3D-imaging refers to
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5.1. Differential Microwave Imaging Setup

any reconstruction obtained with the 3D Green function, which does not take into account

any assumption on the space other than the space discretization (the grid) and the assigned

basis functions. Since we use the VIE formulation, which is defined on 3D-grid elements

(voxels), any reconstruction will be intrinsically a 3D reconstruction.

5.1.2 Microwave Imaging: Contrast-Source Formulation

As a recall (see Section 2.2.2), the target under investigation (see Fig. 2.4) is characterized by

its constitutive parameters: the dielectric permittivity ¯̄ε, the magnetic permeability ¯̄μ, and

the electric conductivity ¯̄σ. For linear, isotropic and conducting materials these tensorial

quantities become scalars (ε, μ and σ). These quantities are dispersive as they depend on the

operating angular frequency ω. The contrast is defined as:

χ(�r ,ω) = ε(�r ,ω)

εb(ω)
−1 (5.1)

with ω = 2π f the angular frequency (rad Hz) and f the frequency (Hz). The scattering of

monochromatic electromagnetic radiation is expressed by the VIE-formulation for purely

dielectric targets (see Section 2.2.2):

E (�r ) = Eb (�r )+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)E

(
�r ′)dΩ′ (5.2)

with E the total field, Eb the background field, and ¯̄Ge the dyadic Green function. To find the

numerical solution of the total electric field in (5.2), the scatterer is discretized on a N -point

homogeneous grid (N = Nx ×Ny ×Nz ). Using matrix notations, after applying a Galerkin-type

MoM, the scattering problem is converted into a system of linear equations, using piecewise

constant testing and basis functions (see Section 3.2). The total field E is the superposition of

the incident field E i and the scattered field E s , where the scattered field E s =G X E . Therefore

the total field E , is derived as:

E = (I −G X )−1E i (5.3)

where I is the identity matrix of dimension 3N ×3N . The resulting dense matrix A = I −G X is

composed of complex numbers and is of dimension 3N ×3N .

5.1.3 Differential Microwave Imaging Scenario

dMWI consists of measuring the scattered fields at two different times, take their difference,

and then reconstruct an image which reflects the contrast change. For brain stroke applica-

tions, with the assumption that only the region damaged by the stroke undergoes a permittivity
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change, this procedure has the potential to monitor the modifications of the stroke area and

therefore provide useful information about the nature of the stroke. The three main purposes

are:

• determining the nature, position, and changing size of the anomaly (short monitoring,

first few minutes/hours);

• monitoring the evolution of the stroke after the administration of treatment to assess

its efficiency; healing or not of the damaged area, rate of recovery, etc. (short and long

term monitoring, few hours and up to a day);

• monitoring patients in coma: indeed if a bleeding inside the brain happens during the

coma, very few tools are then available to detect the stroke as the patient does not have

any visible changes (potentially long term monitoring).

ΩΔ

At time t1 At time t2

Figure 5.2 – dMWI scenario: contrast functions at times t1 and t2, and their contrast difference, only
non-zero on ΩΔ.

In Fig. 5.2, Δχ = X2 − X1 where Xi = Xti . The contrast difference Δχ, (center) represents the

change of the contrast function between time t1 (left) and time t2 (right). This contrast is only

non-zero on a reduced region ΩΔ. The total field at times t1 and t2 is expressed as:

E1 = E i +G X1E1 (5.4)

E2 = E i +G X2E2 (5.5)

with:
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E1 = (I −G X1)−1 E i (5.6)

E2 = (I −G X2)−1 E i (5.7)

The differential scattered field, or equivalently the differential total field is obtained by sub-

tracting (5.4) to (5.5):

ΔE = E2 −E1 (5.8)

If the �2-norm ‖G X ‖ < 1, the inverse operators in (5.3) can be expanded in Neumann series

around the point X = 0, i.e.,

(I −G X )−1 = I +
n=∞∑
n=1

(G X )n (5.9)

For the differential scenario, if ‖G X1‖ < 1 and ‖G X2‖ < 1, expressions (5.6) and (5.7) can be

expanded in Neumann series. They are inserted in equation (5.8) which becomes:

ΔE = (G X2 −G X1)E i + [(G X2)2 − (G X1)2]E i +·· ·+ [(G X2)n − (G X1)n]E i +·· ·

=
n=∞∑
n=1

[
(G X2)n − (G X1)n]E i

(5.10)

Note that the differences [(G X2)n − (G X1)n] are only defined in domain ΩΔ - where the contrast

function changes between times t1 and t2.
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5.2 Non-Linearity of the Scattering Problem

5.2.1 Degree of Non-Linearity

As a recall of the recursive expansion introduced in Section 2.3, the total field in (2.10) can be

rewritten as:

E (�r ) = Eb (�r )+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)⎡⎣Eb

(
�r ′)+∫

Ω

¯̄Ge
(
�r ′,�r ′′)χ(�r ′′)E

(
�r ′′)dΩ′′

⎤
⎦dΩ′

= Eb (�r )+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)Eb

(
�r ′)dΩ′

︸ ︷︷ ︸
first order interaction

+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)⎡⎣∫

Ω

¯̄Ge
(
�r ′,�r ′′)χ(�r ′′)Eb

(
�r ′′)dΩ′′

⎤
⎦dΩ′

︸ ︷︷ ︸
second order interaction

+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)⎡⎣∫

Ω

¯̄Ge
(
�r ′,�r ′′)χ(�r ′′)⎡⎣∫

Ω

¯̄Ge
(
�r ′′,�r ′′′)χ(�r ′′′)E

(
�r ′′′)dΩ′′′

⎤
⎦dΩ′′

⎤
⎦dΩ′

︸ ︷︷ ︸
higher order interactions

(5.11)

This system is clearly non linear as the output (the electric field E (�r )) of the system is not

directly proportional to the input (the contrast function χ (�r )). The non-linearity is modeled

by the second and higher order interactions in (5.11).

A commonly used approximation consists in keeping only the first order interaction:

E (�r ) � Eb (�r )+
∫
Ω

¯̄Ge
(
�r ,�r ′)χ(�r ′)Eb

(
�r ′)dΩ′ (5.12)

This linear approximation is known as the first order Born approximation [156] and can be

used for both direct and inverse scattering problems. It amounts to neglect the multiple

scattering effects and is therefore valid for weak scatterers. To quantify the "weakness" of a

scatterer and determine whether or not the first order Born approximation can be applied, it

is necessary to introduce the Degree of Non-Linearity (DNL). The computation of the DNL

has been derived for scalar two-dimensional inverse scattering problems in [44] and the main

steps are now outlined. For the numerical solutions, the first order Born approximation is the

linear approximation of the series (5.9), which consists of keeping only the first term of the

summation and injecting it in (5.3):

E � (I +G X )E i whenever ‖G X ‖� 1 (5.13)
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Ω

ΩΔ

Ei

Es

Figure 5.3 – Illustration of the non linear scattering problem in the domain Ω. In dMWI the contrast is
only changing in the domain ΩΔ. The incident field Ei , and the resulting scattered field Es are depicted,
respectively, with blue (zigzag) and black (straight) arrows. The first and second order interactions are
depicted in, respectively, solid and dashed black lines.

The quantification of the DNL consists of giving values (stroke size, position, background

medium permittivity, etc.) for which the �2-norm ‖G X ‖ is considered small enough for ei-

ther the EM modeling or the reconstruction, applying the first order Born approximation, to

be reliable. In Fig. 5.3 the multiple scattering phenomena which lead to the non-linearity

are illustrated. The solid line is an example of the component of the electric field which is

caused by first order interactions, the dashed line is caused by the second order interactions.

Higher interactions are not depicted. Linearizing the scattering problem by the first order

Born approximation, consists of only considering the scattered fields produced by first order

interactions and discarding all the others.

With the Cauchy-Schwarz inequality it is possible to separate the contribution to ‖G X ‖ be-

tween operator G (electric size of the domain) and constitutive parameters X (contrast):

‖G X ‖ ≤ ‖G‖ ·‖X ‖ (5.14)
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A high DNL can be due either to a high value of the contrast function ‖X ‖ or a large value of

‖G‖ (large electric size of the domain). This development is the same for a 2D or a 3D scenario.

5.2.2 Quantification of the Degree of Non Linearity for dMWI

The main difference between the MWI and the dMWI scenario is the integration domain

which is smaller in the differential scenario ΩΔ ⊂Ω. It means that the range of applicability

of the first order Born approximation in the dMWI is in general broader. The first order Born

approximation considers only the first term of (5.10),

ΔE �G (X2 −X1)E i whenever ‖G X1‖ΩΔ
� 1 and ‖G X2‖ΩΔ

� 1 (5.15)
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Figure 5.4 – Sagital (left), coronal (center) and axial/transverse (right) views of the conductivity (top)
and relative permittivity (bottom) of a realistic human model [83] of the brain region where the stroke
can occur. Frequency was 1 GHz.

In (5.10) ‖G X ‖ is not evaluated on Ω but only on ΩΔ to determine the validity of the lineariza-

tion for dMWI. This approximation is valid when both ‖G X1‖ΩΔ
� 1 and ‖G X2‖ΩΔ

� 1. These

two norms give a measure of the DNL of the dMWI. It provides a good image of the difficulty

of resolution of the forward and inverse dMWI problems.

It is reasonable to say that the stroke can only happen in the white/grey matter, CSF, and
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Cerebellum regions as shown in Fig. 5.4. The median dielectric parameters of the domain,

which could be subject to a stroke, are εr = 52, σ= 1 [S/m] at 1 GHz. The worst case scenario

would be if all the latter domain is subject to a stroke. The dielectric properties of blood at

1 GHz are εr = 61.1, σ= 1.58 [S/m] (see Fig. 5.5).
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Figure 5.5 – Sagital (left), coronal (center) and axial/transverse (right) views of the conductivity (top)
and relative permittivity (bottom) of a realistic human model [83] of the brain region of Fig. 5.4 filled
with blood. Frequency was 1 GHz.

The �2-norm of ‖G X1‖ΩΔ
and ‖G X2‖ΩΔ

can be computed for the worst case scenario. In the

latter case, ‖G X1‖ΩΔ
is the initial state depicted in Fig. 5.4, and ‖G X2‖ΩΔ

is the final state de-

picted in Fig. 5.5. For a fixed grid size, the latter two norms depend on the operating frequency

and the dielectric complex permittivity of the background medium.

The influence of the background medium on the DNL are displayed in Fig. 5.6. Background

media leading to a low DNL and therefore an easier to solve imaging problem are in the blue

region. The operating frequency is 1 GHz, for a voxel size of 20×20×20 mm3. The relative

permittivity of the background medium εb , varies in the range [1−80] (approximately from

air to water at 1 GHz), and the conductivity varies in the range [0−3] S/m. These ranges are

covering all the dielectric properties of a human head model. In Fig. 5.6, it appears clearly that

for low values of the relative permittivity εr for the background medium (< 10), both of the

norms are above unity, and therefore the brain cannot be considered as a weak scatterer.

To better observe which values of the background medium minimize the DNL for both cases

(no stroke present and the stroke at maximum size, which are depicted, respectively in Fig. 5.6a
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Figure 5.6 – DNL for dMWI as function of medium relative permittivity (εb = [1−80]) and conductivity
(σb = [0−3][S/m]). The �2-norm of ‖G X1‖ΩΔ for the case depicted in Fig. 5.4 (left) and the �2-norm of
‖G X2‖ΩΔ for the case depicted in Fig. 5.5 (right).
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Figure 5.7 – DNL for MWI (left) and dMWI (right) as function of medium relative permittivity (εb =
[1−80]) and conductivity (σb = [0−3][S/m]). The �2-norm of max(‖G X1‖ΩΔ , ‖G X2‖ΩΔ ) which are
separately depicted in Fig. 5.6.
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and Fig. 5.6b), one can compute the maximum between the two norms. The results are

depicted in Fig. 5.7b. This value is compared to the analogue calculation for MWI and shown

in Fig. 5.7a. As expected, we observe that the range of applicability of the first order Born

approximation is wider for dMWI than for MWI for brain applications. The value which

minimizes max
(‖G X1‖ΩΔ

,‖G X2‖ΩΔ

)
is (εr = 52, σ= 1.3 [S/m]). In that case ‖G X1‖ΩΔ

= 0.32

and ‖G X2‖ΩΔ
= 0.19 and the first order Born approximation can be applied to linearize the

problem.

5.3 Inverse Problem Resolution

A regularization technique is necessary to solve the ill-posed inverse scattering problem. The

Truncated Singular Value Decomposition (TSVD) scheme [45] is a classical approach where

only the main singular values of the scattering operator are kept. The differential MWI prob-

lem can be regularized by minimizing the �1-norm which suggests that the difference of the

contrast function through time is sparse [42]. The Total Variation norm regularizer [157],

which promotes the sparsity of the gradient of the contrast function, has proven to also work

well when the sparsity of the unknown is not pixel-wise.

Assuming the DNL is small (see Section 5.2.2), it is possible to approximate the physical

microwave imaging problem as a linear problem:

ΔE = LΔχ (5.16)

with L = GE i and Δχ = (X2 − X1) for an isotropic medium. The linear operator L is of di-

mension M ×N . In our case, we have M � N since the number M of measurement points

(M = 3×Na ×Na , with Na the number of sensors) is much smaller than the number N of

unknowns (pixels/voxels). Typically, for brain stroke imaging with Na = 32 (M ≤ 3072) and

for a voxel size of 4×4×4 mm3, we have N = 4056 for only one slice of the Duke model in

the xO y-plane. As a very recent example published in [39], for the prototype developed by

EMTensor GmbH, Vienna, Austria [158], the imaging chamber is composed of 5 rings of 32

antennas, for a cylindrical imaging domain of radius 285 mm and 280 mm height. Depending

on grid resolution, their algorithm is tested for an N which can raise to several dozen of

millions with an M of a few thousands [39].

Our goal is to determine the contrast variation Δχ ∈ CN from the measurements ΔE ∈ CM .

This inversion problem is generally ill-posed because it admits many solutions due to limited

insufficient information (M � N ).

Several strategies are proposed to invert the problem (5.16). They involve a regularization

scheme to restore the stability of the solution. The first approach, known as Truncated Singular
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Value Decomposition (TSVD), does not make any assumption about the problem at hand,

whereas the following ones take advantage of some a priori information about the solution.

5.3.1 Truncated Singular Value Decomposition

Let us expand the linear operator L ∈CM×N by its SVD [159]

L =U SV H with U ∈CM×M , S ∈RM×N and V ∈CN×N (5.17)

=
r∑

k=1
σk uk vH

k (5.18)

The matrix V H is the Hermitian transpose (also known as conjugate transpose) of V . The

number r is the rank of the matrix L. The diagonal entries Skk of S are the singular values σk of

L. These singular values are real and non negative. The columns of U and V are, respectively,

the left and right singular vectors uk and vk of L.
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Figure 5.8 – Example of singular value distribution.

If we assume that the singular values are sorted in descending order, then σ1/σr gives the

condition number of the matrix. Thus, a well-conditioned matrix has a condition number

close to one and is ‘easy’ to invert. The solution of (5.16) is given by:
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Δχ = 1

σ1

(
r∑

k=1

σ1

σk
vk uH

k

)
ΔE (5.19)

In the presence of noise n ∈CM , i.e. when:

ΔE = LΔχ+n (5.20)

the solution becomes:

Δχ = 1

σ1

(
r∑

k=1

σ1

σk
vk uH

k

)
ΔE + 1

σ1

(
r∑

k=1

σ1

σk
vk uH

k

)
n (5.21)

The second term of (5.21) shows that the noise is exalted by the ratio σ1/σk . This ratio can

be very high in case of ill-conditioned matrices, the solution Δχ is then unreliable even in

presence of a small noise.

One way to stabilize the solution is to truncate the summation in (5.19) and (5.21) to the

first r ′ < r elements. Thus, the ill-conditioning decreases from σ1/σr to σ1/σr ′ . The number

of relevant singular values r ′ can be deduced by plotting the singular value distribution,

identifying the knee of the curve and discarding all singular values after this knee, as depicted

in Fig. 5.8.

5.3.2 Regularization via Norm Minimization

A standard approach for matrix inversion regularization is to introduce, when available, a

priori information about the unknown to determine. An effective method to achieve this

regularization is to minimize an appropriately chosen norm p of the solution vector Δχ. The

optimization problem to solve is then of the form:

91



Chapter 5. Microwave Inverse Scattering Problem

min
Δχ

‖Δχ‖p subject to ‖ΔE −LΔχ‖2 ≤ ε (5.22)

where ‖.‖p stands for the �p norm, and the parameter ε depends on the noise and uncertain-

ties affecting the data.

It is important to point out that there are many readily available routines to solve efficiently

this type of convex optimization problems, e.g. [160–162].

�1-norm

In a dMWI setup, it is reasonable to suppose that the solution Δχ is sparse since the contrast

differences between t1 and t2 are localized. Consequently, the search space can be drastically

reduced by introducing this a priori information. The real measure of sparsity is the quasi-

norm �0 that counts the number of non-zero occurrences of a vector. Unfortunately, its

resolution is intractable even for small scale problems. The �1-norm (‖δχ‖1 =∑k |Δχk |) is

the best convex surrogate of the real measure of the sparsity. It has been successfully used

to promote sparse solutions in a wide range of applications [163, 164]. The so-regularized

inversion problem is:

min
Δχ

‖Δχ‖1 subject to ‖ΔE −LΔχ‖2 ≤ ε. (5.23)

Let us point out that minimizing the �1-norm enforces the sparsity of the solution point-wise,

i.e. for each pixel/voxel of Δχ.

Total Variation Norm

We know a priori that our solution Δχ has a few discontinuities that are due to the localized

tissue properties modifications between t1 and t2. Apart from these spots, the contrast differ-

ence Δχ is expected to be flat (and very close to zero). Thus, the use of the Total Variation norm

(TV-norm) is a good candidate to regularize Δχ. The TV-norm is indeed a smoothing function

introduced in [165]. By minimizing the TV-norm of a matrix, we minimize its gradient, hence

the smoothing effect. For a 2D dMWI setup, the complex data Δχ takes the form of a matrix of

dimension Nx ×Ny with M = Nx ×Ny . The TV-norm then reads:

‖Δχ‖TV = ∑
m,n

|Δχm+1,n −Δχm,n |+ |Δχm,n+1 −Δχm,n | (5.24)

= ‖vec(∇∇∇xΔχ)‖1 +‖vec(Δχ∇∇∇y )‖1
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where vec(Δχ) produces a vector of length Nx ·Ny that contains the columns of Δχ, stacked

below each other. The discrete gradient matrices ∇∇∇x and ∇∇∇y are of size Nx ×Nx and Ny ×Ny

respectively, and equal to:

∇∇∇x =

⎛
⎜⎜⎝
−1 1 0

. . .
. . .

0 −1 1

⎞
⎟⎟⎠ and ∇∇∇y =

⎛
⎜⎜⎜⎜⎜⎝
−1 0

1
. . .
. . . −1

0 1

⎞
⎟⎟⎟⎟⎟⎠ (5.25)

The optimization problem (5.22) becomes:

min
Δχ

‖Δχ‖TV subject to ‖ΔE −LΔχ‖2 ≤ ε. (5.26)

5.4 Differential Microwave Imaging Simulations

The quantification of the DNL and the comparison for different regularization schemes on

the full Duke model [83] of 1 mm resolution is computationally heavy and interesting conclu-

sions can already be found using smaller size problems. Direct solvers can then be used and

therefore the convergence is ensured and the global accuracy known (equal to an order h2

accuracy, where h is the grid resolution).

We will consider a reduced model which dramatically reduces the computational effort while

keeping the key points which are to be tested in this section. The model is based on a single

layer Nz = 1 in the z-direction and of dimensions Nx Ny in the (xO y) plane (see Fig. 5.9).

In this case, the Green dyadic is simplified to:

G =

⎛
⎜⎝Gxx Gx y O

Gy x Gy y O

O O Gzz

⎞
⎟⎠ (5.27)

as Gxz =Gy z =Gzx =Gz y =O, with O the zero matrix, because Θz = 0 in (3.42) (the antenna

and the scatterer are on the same z-coordinate). The operator L can be reduced depending on

the orientation of the incident field. Indeed, G is a block diagonal matrix so its inverse is the
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Figure 5.9 – Single layer imaging configuration. The scatterer (pink cylinder) described by its con-
stitutive parameters (ε(�r ), μ(�r ),σ(�r ) in the domain Ω) is surrounded by 32 antennas (red, green, and
blue arrows) which lay in the background medium (εb(�r ), μb(�r ),σb(�r ) in the domain Γ). The emmiting
antenna is depicted in red and the receiving probe is illustrated in green.

inverse of its diagonal blocks:

⎛
⎜⎝Gxx Gx y O

Gy x Gy y O

O O Gzz

⎞
⎟⎠
−1

=

⎛
⎜⎝
(

Gxx Gx y

Gy x Gy y

)−1

O

O G−1
zz

⎞
⎟⎠ (5.28)

Also, the inverse of an invertible matrix product, is the the product of the inverse matrices,

therefore three cases can be distinguished:

1. the scalar case (one polarization excited).

The impinging field is a z-polarized plane wave (E i
x = E i

y = O):

L =

⎛
⎜⎝Gxx Gx y O

Gy x Gy y O

O O Gzz

⎞
⎟⎠
⎛
⎜⎝O

O

E i
z

⎞
⎟⎠ (5.29)

In the differential scenario the equation to solve results in:

ΔEz = LzΔχ with Lz =Gzz E i
z (5.30)

The L operator shrinks from a size of 3×M ×N to a size of M ×N .
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2. the small vectorial case (two polarizations excited).

The impinging field is a (xO y)-polarized plane wave (E i
z =O):

L =

⎛
⎜⎝Gxx Gx y O

Gy x Gy y O

O O Gzz

⎞
⎟⎠
⎛
⎜⎝E i

x

E i
y

O

⎞
⎟⎠ (5.31)

In the differential scenario the differential scattered field reduces to:

ΔEx y = Lx yΔχ with Lx y =
(

Gxx E i
x +Gx y E i

y

Gy x E i
x +Gy y E i

y

)
(5.32)

The problem to solve shrinks from a size of 3M ×N to a size of 2M ×N .

3. the full vectorial case (three polarizations excited).

The impinging field has a polarization oriented in any x,y , or z-directions, therefore L is

of size 3M ×N and is dense.

The three configurations permit to quantify the DNL using the same model, and to test

different regularization schemes.

5.4.1 Numerical Experiments for DNL of dMWI

The single layer investigation domain Γ (see Fig. 5.9) is illuminated by 32 successive incident

plane waves from equally spanned incident angles over 360◦. The frequency is set to 1 GHz.

The measurements are performed at the same angles on a circle of radius r . The reconstructed

images are analyzed on both quantitative and qualitative aspects. Quantitative imaging,

implicates that the exact value of the imaged parameter, here the complex contrast functionΔχ,

can be determined. Qualitative imaging, refers rather on the visual aspect of the reconstruction,

in our case, whether a contrast change at the location of Δχ is visible or not.

Simplified Canonical Cases

A growing ischaemic stroke (εs = 36, σs = 0.7 S/m) is inserted into a simplified homogeneous

head (εr = 48, σr = 0.4 S/m), called M model. The frequency of the incident plane wave is

1 GHz. The stroke is centered at Cx = 1 cm, Cy = 2 cm, Cz = 0 cm, and its radius grows from

R1 = 2 cm to R2 = 4 cm on a domain of size N = 40×40×1 and resolution h = 5 mm. This

growing stroke is represented in Fig. 5.10, where the light grey, the grey and the black domains

represent, respectively, the background medium, the homogeneous head and the stroke.
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(a) χ1 (b) χ2 (c) δχ

Figure 5.10 – Contrast of different scenarios. From left to right; contrast function at time t1, contrast
function at time t2, and the resulting contrast difference.

The two �2-norms max(‖G X1‖Ω,‖G X2‖Ω) and max(‖G X1‖ΩΔ
,‖G X2‖ΩΔ

), are computed for

different dielectric parameters of the background medium and the maximum between the

two is shown in Fig. 5.11, in the same fashion as Fig. 5.6.
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Figure 5.11 – DNL for MWI and dMWI of the example of Fig. 5.10 as function of medium relative
permittivity (εb = [1−80]) and conductivity (σb = [0−3] S/m). The �2-norm of max(‖G X1‖Ω, ‖G X2‖Ω)
is depicted on the left, and the �2-norm max(‖G X1‖ΩΔ , ‖G X2‖ΩΔ ) on the right.

For further investigations, four interesting cases will be considered. Their description is

summarized in Table 5.1.

We first assess the influence of the first order Born approximation on the forward problem

96



5.4. Differential Microwave Imaging Simulations

Table 5.1 – Influence of the DNL on the forward MWI problem

Model εb σb

[S/m]
‖G X2‖ΩΔ

‖G X1‖ΩΔ
‖G X2‖Ω ‖G X1‖Ω MSE

[dB]

M1 40 0.3 0.2 0.2 0.2 0.2 -46
M2 30 0.3 0.3 0.5 0.6 0.6 -37
M3 22 0.3 0.9 0.6 1.2 1.2 -33
M4 1 0.3 7.3 5.6 7.3 7.2 -30

(a) MSE for different SNR
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(b) Threshold of the SVD for different SNR

Figure 5.12 – Inverse problem results at 1 GHz for non-approximated (dashed line) and linear-
approximated simulated measurements (solid line) of the model M1 (see Table 5.1): (a) MSE as a
function of the considered singular values for various SNR (100 (red), 50 (green), 20 (blue) [dB]); (b)
considered singular value decomposition of the L operator (light grey triangles are below the numerical
limit of the double precision floating numbers).
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results. For that purpose, we consider various background materials in order to emulate

different norms (we here compute the �2-norm) and therefore DNL. As reference, we use the

fields computed with the first order Born approximation in the forward problem. We then

compute the Mean Square Error (MSE) in dB between the scattered field of reference and the

one computed at each probe using the full VIE solver [166]. The results are reported in Table

5.1. As expected, the smaller the norms, the lower the MSE. In other words, a small DNL leads

to a more accurate field computation.

The "measurements" used in the inverse problem are actually the simulated forward re-

sponses. To ensure that the problem is not an "inverse crime" case [167], Gaussian white noise

is injected in the simulated measurements, and is indicated as Signal-to-Noise Ratios (SNR).

Moreover, the grids used for the forward problem and for the inverse problem do not match.

The MSE of the reconstructed Δχ, are plotted in Fig. 5.12a for the model M1 (see Table 5.1).

For the inverse scattering problem, the threshold used for the optimal number of singular

values is set according to the noise Fig. 5.12b, in order to keep only the significant terms and

therefore act on the noise reduction of our signal. The smaller the SNR, the less singular values

are kept for the inverse scattering purpose.

Figure 5.13 – Inverse problem results at 1 GHz for non-approximated (dashed line) and linear-
approximated simulated measurements (solid line): Mean Square Error as a function of the considered
singular values for various models (M1 (red), M2 (blue), M3 (green) and M4 (black), see Table 5.1) for a
high SNR of 100 dB.

In the case of a high DNL (see Fig. 5.13), the inversion does not work for non-approximated

simulated measurements (black dotted line) and is unstable with respect to noise when

considering the first order Born approximation (black solid line). For a DNL smaller than

unity the qualitative reconstruction is possible provided that a good threshold is used for

the TSVD (green and blue lines). When the DNL is much smaller than unity (red line), for

a reconstruction using between 250 and 380 singular values (when the dotted line and the

solid line almost overlap), the reconstruction is even quantitative, as the complex value of
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the contrast difference can be assessed. Moreover, the dMWI setting increases the range of

validity of the first order Born approximation, as the DNL depends on the contrast and the

considered volume.

Realistic Case

Next, a more realistic model has been considered (see Fig. 5.14) to highlight the potentialities

of the proposed approach. It consists of a slice of the head (εr = [1;69], σr = [0;2.5] S/m)

obtained from [83], with a background medium of εb = 40, σb = 0.3 S/m. The center of the

stroke is positioned at (12,24) mm and its radius is (18,36) mm at times t1 and t2. The grid

resolution is 4×4×4 mm3 for the reconstruction.

(a) χ1 (b) χ2 (c) Δχ

Figure 5.14 – Duke head model [83] at 1GHz. From left to right: domains of different values of the
contrast function at times t1 and t2, and the difference between the two times.

|χ|

(a) SNR of 20dB

|χ|

(b) reference

Figure 5.15 – Duke head model stroke detection. (a) Reconstruction using non-approximated simu-
lated measurements (left) and approximated simulated measurements (right). (b) Normalized absolute
value of the contrast difference reference.

The reconstruction shown in Fig. 5.15 has a high DNL for MWI ( ‖G X1‖ = 1.1 and ‖G X2‖ = 1.1)

but a DNL lower than unity in the case of dMWI (‖G X1‖ΩΔ
= 0.6 and ‖G X2‖ΩΔ

= 0.2). For
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a SNR of 20 dB we used for the reconstruction 400 singular values. In some parts of the

brain the contrast according to the background medium can be significantly different. The

reconstructions using Born-approximated data in the forward problem is less affected by the

noise than when using the full VIE forward solver in the simulation. However, the absolute

value of the contrast difference reconstruction is closer to the value of the actual difference,

and this can be explained by the more realistic simulation of the measurements.

Summary

Test cases have been shown for simplified and realistic scenarios for dMWI for brain stroke

monitoring. The expression for the DNL has been given for the differential scenario for

several simplified and realistic models. The reconstruction of the stroke shown in Fig. 5.15

using the first order Born approximation is an example of a scenario where the classical MWI

inverse scattering problem cannot be linearized whereas it can be in the dMWI case. The

quality of the reconstructions of the differential contrast function has been quantified by

computing the MSE. The DNL of the dMWI, and therefore the validity range of the first order

Born approximation for brain stroke monitoring with dMWI, depends on three main factors

for a given frequency: the contrast (χ) and the area (ΩΔ) covered by the stroke between the

two different times, and its position.

5.4.2 Numerical Experiments for Regularization of dMWI

First tests have been performed on a simplified 3D scenario on a grid of 100×100×1 voxels of

2 mm side length (Fig. 5.10): a circular reference head of radius 7 cm, of εr = 48, σ= 0.4 S/m, a

small circular stroke of εr = 36, σ= 0.72 S/m at t1 of radius 2 cm, a bigger circular stroke at t2

of radius 3 cm both with an offset of 1 cm and 2 cm in respectively the x and y directions, and

with a matching medium surrounding the head of εr = 40, σ= 0.4 S/m, in order to decrease

the reflection of the incident field at the head interface. For this setup 32 antennas have

been placed around the head, the incident field was set to 1 GHz and the SNR to 70 dB. The

reconstruction has been performed on a grid of 50×50×1 voxels of 4 mm side length using the

TSVD regularization (5.21), the sparse optimization approach (5.23) and the TV regularization

(5.26).

The value of the tolerance ε for both (5.23) and (5.26) is to be set with care above the noise

level ‖n‖2, as for the choice of the threshold in (5.21). To solve problems (5.23) and (5.26), we

use CVX, a package for specifying and solving convex programs [161], [162].

The results of these three methods are compared in Fig. 5.16. In a first approximation, the

scattered fields have been computed using the first order Born approximation in the forward

problem (left column in Fig. 5.16). The right column presents the results when the exact

forward problem has been solved using a full-wave VIE solver [166] in order to emulate more

faithfully a realistic scenario.
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(a) TSVD (b) TSVD full-wave

(c) l1 (d) l1full-wave

(e) TV (f) TV full-wave

Figure 5.16 – Reconstructions using linearized forward problem (left) and using a full-wave VIE
solver [166] (right).

The results of these first tests show that the TV regularization seems to work very well in both

cases, better than the TSVD. The TV-norm provides a much better reconstruction than the

�1-norm in the case of the full problem. It means that the TV-norm is more robust to a model

difference. There is indeed a difference between the model to invert the problem (linear)

and the model to generate the measured field (exact). The TV-norm is probably more robust

because it works with a group of voxels (to compute the gradient) that are all affected by the

same model error instead of considering the voxels individually.
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Conclusion

Different regularization techniques have been compared in the framework of 3D differential

microwave imaging. The study was very limited, however TV-norm regularization seems to

give the best qualitative images in all cases. As for TSVD-regularization, it works reasonably

well in both situations. On the contrary, l1 regularization works very well if the forward

problem is solved using the first order Born approximation while it seems to fail in the case

of the full problem. Further investigation on this topic will be exposed in Section 5.5.3, in

which reconstructions using experimental measurements will be compared to the ones using

simulated measurements.

5.5 Differential Microwave Imaging Experiments

We have developed a 3D printed phantom [145] with liquid Triton X-100 based mixtures to

mimic biological tissues [80, 146]. These phantoms are stable through time and transportable,

and therefore can be reproduced and provided within several research groups using different

imaging setups, in order to produce comparable results. This is not the case of more complex

head phantoms [151] for which the realization involves more ingredients, which makes it more

difficult to reproduce and more sensitive to time and temperature conditions.

We realized a 3D printed multilayered spherical structure to validate our numerical mod-

els. Such a multilayered spherical model can be solved analytically [147] and is representative.

It can take into account all four layers potentially influencing the wave propagation into the

head namely the Cerebrospinal Fluid (CSF), the cortical bone, fat and skin.

This part focuses on the influence of TSVD, �1 and T V norm regularization techniques for

dMWI based on both simulated and measured data.

5.5.1 Setup Configuration

The multi-illumination configuration of the measurement setup consists of a cylindrical

investigation domain Ω surrounded by emitting and measuring probes (see Fig. 5.17) placed

on a circle c of radius 8 cm. The frequency of operation is 1 GHz. The target under investigation,

here the head model or phantom (domain Ω), is sequentially illuminated by P = 16 incoming

angles Θp = 22.5◦ ×p, with p = 0,1, · · · ,15 . The scattered field is then measured by M = 16

probes located on the same circle c, but with shifted angles Θp = 11.25◦ + 22.5◦ × p (see

Fig. 5.18).

5.5.2 Stroke Modeling and Tissue Characterization

The head model is the multilayered sphere described in Section 4.2.1. The core of the sphere

is the brain with a radius of r1 = 43 mm, the CSF, the cortical bone, the fat and the skin layers
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Ω

r

(a) Setup schematic (b) Picture of the measurement setup
(side view)

Figure 5.17 – Measurement setup. Left; setup schematic, right; picture of the measurement setup.
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Figure 5.18 – Measurement setup probe positioning. The antenna positions for emission are numbered
in red and the positions for the receiving probes are numbered in green.

103



Chapter 5. Microwave Inverse Scattering Problem

are, respectively, 3 mm, 7 mm, 4 mm and 4 mm thick (see Table 4.1). The radius of the total

sphere is 7.1 cm, so the antennas are close to the sphere’s surface. The matching medium is

tap water. The stroke anomaly is inserted with a balloon catheter shown in Fig. 5.19. When the

catheter is filled with 50 ml of liquid its cross section in the imaging plane has a diameter of

4 cm. The h-stroke (blood) mimicking Triton/water mixture is composed of 18 % Triton and

10 g/L of NaCl. The theoretical and measured dielectric properties of the tissue mimicking

mixtures at 1 GHz are reported in Table 5.2.

Table 5.2 – Theoretical and measured dielectric properties at 1 GHz for the tissue mimicking
mixtures.

Tissue εr (theory) σ [S/m] (theory) εr σ [S/m]

Brain 48 0.88 47 0.70

CSF 68 2.46 67 2.37

Bone 12 0.15 13 0.27

Fat 5 0.05 6 0.07

Skin 46 0.88 45 0.68

Blood 61 1.58 62 1.56

The imaging consists of retrieving the differential contrast function Δχ. For that purpose, the

simulation model is reduced to a slice that is located at the antenna’s pin level. This imaging

domain is discretized in a 41×41×1 voxels grid resulting in a voxel side length of 4 mm in each

direction (Fig. 5.20). The initial state (time t1) is the head model, and the final state (time t2) is

when the balloon catheter simulating a haemorrhagic stroke is inserted for the measurements

and placed as a 2 cm radius sphere in the middle of the model for the simulations. The

background (water) permittivity was measured (εr = 69, σ= 0.28 S/m) therefore the expected

resolution lies between 9 mm (λ/4) and 18 mm (λ/2). Thus, the resolution of the voxel grid

is sufficient to represent any details detectable by the measurement setup. Moreover, this

background medium ensures that the DNL for the dMWI scenario is much smaller than 1

(here DNL < 0.37) for the used mixtures and therefore the first order Born approximation can

be applied.

5.5.3 Regularization Techniques: Experimental Validation

In this section the conclusions derived in Section 5.4.2 are further investigated for a specific

scenario which is experimentally validated. The microwave inverse problem of (5.20) is

composed of an operator L, differential scattered fields ΔE , and a noise n. For both simulation

and measurement results, the operator L is formed using simulated measurements for the

incident field, which are based on the simulated setup. The scattered fields ΔE and noise n are

clearly different for the simulated and the measured results. Firstly, the simulation results are
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Figure 5.19 – Measurement setup; layer filling and stroke phantom.

discussed, then the measurements results are discussed and compared, which are compared

to the predictions.
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Figure 5.20 – Contrast function absolute value, with its real part (top) and imaginary part (bottom) at
time t1(left), time t2 (center), and their differential contrast Δχ (right).

Simulation Results

For the simulation results, both the scattered fields ΔE and noise n are simulated. The differ-

ential scattered fields are therefore the simulated measurements, and the noise is modeled as

a Gaussian noise resulting in an SNR of 20 dB. The results using the investigated three different

regularization schemes, are presented in Fig. 5.21.

The red circles represent the inner and outer shells of the head phantom, the white circle

represents the circle c on which the antennas are placed and the black circle is the position of

the inserted stroke at time t2. The images represent the absolute value of the reconstructed

differential contrast function Δχ; the theoretical results plotted in Fig. 5.20 are 0.3 inside the

black circle and 0 elsewhere. For TSVD, following the L-curve method (the change of slope of

the singular value spectrum) we kept the singular values σi greater than
σmax

210
(see Fig. 5.22

singular values up to opaque red limit). The value of the parameter ε in (5.23) resp. (5.26)

should be chosen above the noise level ‖n‖2 and the error induced by the linearization of the

scattering operator. We use, as a starting point, for ε the error reached by the reconstruction

done with TSVD, that is ε = α‖LΔχ−ΔE‖2. For the performed simulations, the best results
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Figure 5.21 – Absolute value of the reconstructed Δχ based on TSVD (left), �1-norm (center), and
TV-norm (right) regularization schemes using simulated scattered fields as measurments.
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Figure 5.22 – Singular value distribution for the inverse scattering operator: considered singular values
in opaque colors.

were obtained with α= 1.2.

The results given by the TSVD are not too sensitive with respect to the singular value threshold,

similar results are obtained for a threshold ranging from
σmax

180
to

σmax

645
(see Fig. 5.22 singular

values range depicted in opaque and light red). The �1-norm provides a sparse (pixel-wise) so-

lution. The best recovery is obtained when applying the TV-norm as the region of permittivity

change is well reconstructed.
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Measurement Results

For the measurement results, the scattered fields are measured, and their difference is expres-

sion by ΔE . Clearly, these measurements are corrupted by noise. To estimate the nature of

these unwanted perturbations, the measured scattered fields are compared to the simulated

scattered fields. The results are depicted in Fig. 5.23, where the total scattered fields is depicted

at 16 receiving antennas while the emitting antenna is placed between antennas #1 and #16.

The total field at time t1 (no stroke) is in solid lines, and at time t2 (with stroke) in dashed lines.

The simulations and measurements are depicted, respectively with red and blue lines.

Figure 5.23 – Total scattered fields at 16 receiving antennas while the emitting antenna is placed
between antennas #1 and #16. The total field at time t1 (no stroke) is depicted in solid lines, and at time
t2 (with stroke) in dashed lines. The simulations and measurements are, respectively in red and blue.

From Fig. 5.23, we observe reasonable agreement between simulated and measured scattered

fields, with the same symmetric shape. The overall shape is more stretched in the measure-

ments. By stretched we mean here that the low values for simulations at the probes between

#6 and #11 are observed in measurement for antennas between #4 and #13.

As we are here interested in the differential scattered field rather than the separate values of

each measured fields, we also plot the comparison between the simulated and the measured

differential scattered field (see Fig. 5.24), which is the difference between the solid line and

dashed lines of Fig. 5.23.

In Fig. 5.24, the simulated differential scattered field (solid line) has a maximum absolute

value at the antennas opposite to the emitting antenna, which means that the transmission is

the key-point for the reconstruction. Indeed, the simulated S21 is more than 10 dB higher in

transmission, compared to the ones in reflection. In both Fig. 5.23 and Fig. 5.24 the dark or

light grey region represents, respectively, the antenna 6 to 12 opposite to the emitting probe.

The simulations showed a significant change in the total field in the dark grey region. The
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5.5. Differential Microwave Imaging Experiments

Figure 5.24 – Differential scattered fields at 16 receiving antennas while the emitting antenna is placed
between antennas #1 and #16. The differential scattered field for simulations and measurements are
depicted, respectively with solid and dashed lines.

measurements do not follow this trend and the differential scattered field is the highest at

probes which are neighboring the emitting antenna. Our supposition is that the coupling

between the emitting antenna and its direct neighbors is strong, and therefore any noise is

amplified and results in a strong differential field, which does not reflect the contrast change

we intend to image.

To minimize this unwanted noise, the strategy adopted here consists in considering only

the opposite antennas. By doing so, we reduce the effects of the inevitable measurement

uncertainties, like cable and antenna displacements. These artefacts are mainly visible in the

reflected signal and captured by the antennas close to the emitting probe.

For both measurements and simulations, 10 out of 16 antennas are used for imaging. The

results for simulations presented in Fig. 5.21 were already for 10 out of 16 antennas. Unlike

for the reconstruction based on measured scattered fields, the reconstructions based on

simulated scattered fields almost do not change, when considering up to only 6 opposite

antennas. The reconstructions based on the measured differential fields and obtained using

the investigated three different regularization schemes are presented in Fig. 5.25.

The reconstructions based on measurements show good agreement with the simulations (see

Fig. 5.25). For TSVD we kept the singular values σi greater than
σmax

210
(see Fig. 5.22 singular

values up to the opaque red limit). Unlike in the simulations, the choice of this threshold

seems to be more sensitive. The tolerance used for both TV and �1-norm regularizations is set

around 10 percent above the error of the reconstruction done with a TSVD regularization.

The best qualitative and quantitative reconstruction is obtained for the TV-norm regularization
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Chapter 5. Microwave Inverse Scattering Problem

Figure 5.25 – Absolute value of the reconstructed Δχ based on TSVD (left), �1-norm (center), and
TV-norm (right) regularization schemes using measured scttered fields.

scheme, where again the signal in the background is close to zero and only the signal inside

the targeted region has an amplitude change. The linear scattering operator is set with

the a-priori information that the head geometry is known from simulations. This a-priori

information does not dramatically change the shape of the reconstructions in both simulations

and measurements qualitatively the same. However, the quantitative value is closer to the

targeted one by using the simulated head model as a-priori information for the computed

incident field. This could have an importance for differentiating haemorrhagic from ischaemic

strokes. The reason why the detected stroke region is slightly smaller in measurements than in

simulations could be explained by the fact that the maximal cross-section of the filled balloon

catheter was 4 cm. However the effective diameter captured by the measuring monopoles is

smaller than the center diameter of 4 cm.

5.6 Conclusion

The present work studied the performance of three different regularization schemes for dMWI

of the head. The quantitative and qualitative results were compared for reconstruction using

either simulated or measured scattered electric fields. The results showed similar behaviors

for both simulations and measurements.

The multilayered 3D printed head phantom proved to be a good tool to assess by measure-

ments the validity of dMWI for brain imaging applications and to compare inversion algo-

rithms. Also, it experimentally confirms that electromagnetic waves around 1GHz can produce

detectable signals created by an anomaly in the head.
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6 Conclusions and Perspectives

For several decades, academic researchers have been interested in providing proofs towards

the possibility of imaging biological tissues using the scattering of the electric field in the

microwave range. The ever increasing computational power offers the possibility to solve

larger EM problems. Possible applications have arisen in medical branches which suffer

from a lack of practical solutions with existing imaging modalities. Detecting and imaging

the evolution of the pathological state of a brain stroke with microwaves (MWI) could be a

complementary approach to the existing imaging technologies (CT, MRI). The challenges and

hopes for brain MWI were introduced in Chapter 2, and several industrial projects are getting

more mature, leading towards clinical applications. However, several issues still need to be

addressed to convince the medical community of the new capabilities and relevance of MWI.

The actual gap between simulations and measurements needs to be bridged by improving

both the direct and inverse solvers involved in MWI.

6.1 Thesis Summary

This thesis encompasses contributions for brain MWI on both the numerical and the experi-

mental side.

Computational Contributions:

• Direct Solver: The higher the frequency, the wider the spectrum of the VIE operator is

spread. For brain applications, the head tissue is highly heterogeneous and lossy. These

two features justify the complexity of modeling the electromagnetic fields for brain MWI

applications. In this thesis, a VIE formulation was investigated for brain MWI and large

scale problems (published in [166]). The problem was approached from the point of

view of different grid sizes (Multi-Grid Solver), by going back and forth between finer

and coarser grids to solve the residual problem with the direct solver and then projecting

its solution on finer grids. The latter strategy provided promising results which were

presented in Section 3.3.2.
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Chapter 6. Conclusions and Perspectives

• Transmitted Power and Layer Influence: For imaging, a maximum of the incident power

must be transmitted into the brain tissue so that the anomaly (a brain stroke) can scatter

back an electromagnetic field that is detectable by the receiving probes. The first step is

to choose accordingly the matching medium so that the coupling at the head interface is

optimal, which means that the reflection towards the emitting antenna is minimized. In

a second step it is important to quantify the influence of the layers in order to predict the

attenuation in the head tissues. For that purpose, a multilayered spherical model was

proposed in Section 4.1. This simple though representative model enables to include

most significant phenomenon and provides meaningful interpretations (published

in [153, 168]).

• Microwave Inverse Scattering: The non-linearity and the ill-posedness are the two main

issues when performing MWI. Both issues are intrinsically linked to the volume of the

body to be imaged. In this thesis, the DNL was derived and quantified for dMWI of

brain stroke detection and monitoring in order to assess when the first order Born app-

proximation can be applied. dMWI provides spatially sparse images as it reconstructs

the contrast change in between two measurements, which is supposed to be small. It

was demonstrated that the DNL is, under certain conditions, "small enough" to apply

the first order Born approximation (presented in Section 5.2 and in Section 5.4.1). To

tackle the ill-posedness of the inverse imaging problems, three regularization tech-

niques (presented in Section 5.4.1 and Section 5.4.2) were compared. The advantages

and drawbacks of each regularization technique were analyzed for specific problems in

the framework of dMWI (published in [169–172]).

Experimental Contributions:

• 3D Printed Head Phantom: A head phantom was designed and realized using the 3D

printing technology and presented in Section 4.2.1. It is based on a multilayered spher-

ical model, which allows the analytical solution of the scattering problem. The 3D

printed structure is filled with tissue mimicking Triton-based liquids. This methodology

permits the conception of reproducible and relatively low cost phantoms which can be

shared among institutions to permit the comparison of both measurement setups and

inverse scattering algorithms (published in [153, 168, 172]). The analytical treatment of

the scattering phenomenon allows making exact comparisons without depending on

the convergence of iterative solvers which are still not fully available and verified for all

possible matching media and frequencies.

• Stroke modeling and dMWI : The experimental validation of inverse scattering algorithms

was performed with a stroke phantom made with a balloon catheter and a Triton-

based blood mimicking mixture (presented in Section 5.5). The experimental validation

confirms the conclusions found for different regularization schemes and the possibility

to detect brain strokes (published in [172]).
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6.2 Perspectives

The computational and experimental tools proposed in this thesis are meant to facilitate

further advancements towards the clinical applications of brain MWI. Nonetheless, these

results call for further development and there are open issues which were not addressed in

this thesis.

More Efficient Direct Solvers: This is a never ending perspective as there is always a need

to solve larger problems with high accuracy. Especially for microwave biomedical applica-

tions, computing 3D volumes is mandatory as it gives an accurate field distribution. The IE

formulations are attractive as they do not introduce physically non-existing boundaries. For

MWI applications, the ultimate goal would be to use the VIE formulation for the human body

and combine it with the SIE formulation for modeling the setup. Indeed, solving the Maxwell

equations for the imaging setup can be based on SIE formulations which are a mature and

very efficient technique, and solving the human body on voxels offers a flexible discretization

for very inhomogeneous parts of the body, such as the head. With fast and accurate methods

the development of personalized medicine by optimizing the devices to patients is achievable.

Nonetheless, the efficiency and accuracy of such solvers are still to be assessed for very inho-

mogeneous and lossy media. Multigrid-based solvers seem to adapt well to this challenging

task as seen in Chapter 2. However, this study is a first step that should be implemented in a

more efficient and optimized manner, such that it could be useful to the community.

Accurate Dielectric Properties of Tissues in the Microwave Range: An important open issue in

the MWI community is the access to accurate body tissue dielectric parameters. The values

of the complex permittivity of human tissues are mainly taken from studies made by Gabriel

et al. [143]. Even though these studies were made two decades ago, they are very useful and

represent a convenient database. However, today, new dielectric measurements do exist [173].

Also, the community relies on a few ways to easily access the outcome of this analysis. The

mostly used one is probably an open access website [142] which allows the download in

convenient formats of a large number of biological tissues. A concrete example of this issue

is the stroke modeling in this thesis. H-stroke (haemorrhagic) was modeled using the blood

dielectric permittivities. It is clear that this is an approximation. Indeed, the part of the brain

subject to an h-stroke does not disappear, but a rather more complex process takes place,

resulting in an increased proportion of the blood quantity in this part of the brain. The same

observations can be derived for the i-stroke (ischaemic) modeling. In [78] a trade-off was

found by choosing the mean value between the blood and the baseline (tissue in the region

of the stroke). Also, no available modeling for the subarachnoid h-stroke (when the region

between the skull and the brain is affected) could be found in the literature. Thus, the accurate

stroke modeling is still today an actual research issue. These approximations could induce

minor differences in the modeling and the imaging outcome, however, an accurate standard

would be useful for comparing results among researchers and industrial partners.
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Complex and Inhomogeneous Testing Structures Specialized for MWI Setups: For compar-

ing simulation results to measurements, often, homogeneous shapes are used. Most of the

time these comparisons give very similar results. However, as seen in Chapter 2, good conver-

gence of the iterative solvers for homogeneous and low contrast cases does not guarantee that

the solution provided by iterative solvers for complex and highly inhomogeneous structures

will be accurate. The residual error of the solution of the iterative solver might give a solution

that does not reflect the physical reality. To ensure that the measurements are well simulated

by the EM solvers, one solution would be to construct a test phantom with multiple cavities of

different sizes and shapes, filled with liquids whose dielectric permittivities are in the range

of dielectric permittivities of the tissues present in the portion of the body which is imaged.

This phantom does not have to be anatomically precise, as the goal is to test the correlation

between the measurements and the simulated data on a known phantom, as it is usually done

using homogeneous spheres and cylinders.

Stable and Low Cost Head Phantoms Specialized for MWI Applications: The 3D printed multi-

layered spherical phantom is a first step towards reproducible solutions (3D printed flexible

cavities) which can be used to compare the performance of stroke detection and imaging

algorithms, for different sizes and types of stroke. The first improvement would be to build the

stroke cavity in a flexible material which can be fixed to the phantom in a precise location,

which is not centered. As a later step, anthropomorphic phantoms can be developed using

the same methodology, namely 3D printing and Triton-based mixtures. The MRI commu-

nity [145, 174] provides the CAD for 3D printed anthropomorphic head phantoms. However,

these models need to be adapted for MWI applications, for which the operating frequency is

higher and therefore the wavelength is shorter. The integration of additional layers such as the

ones used for the multilayered spherical head model of this thesis is necessary. These models

could have flexible cavities for anatomically more faithful stroke insertions, and, of course

could be used for both brain MWI and brain dMWI scenarios. Further work on this topic would

be to test the same inversion schemes on several measurement setups and therefore being

able to compare their influence on the image quality. Furthermore, more complex inversion

schemes have to be tested with a higher number of non-centered anomalies.
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A Spherical Wave Expansion: Scatter-
ing Framework and Mathematical
Derivation
The four vectorial Maxwell equations for a source free, linear and isotropic medium, in har-

monic regime (with a temporal evolution defined as e+ jωt , and ω the pulsation) are:

∇×
{

E

H

}
=∓ j k

{
η
1
η

}{
H

E

}
with: η=

√
μ

ε
(A.1a)

∇·
{

E

H

}
= 0 (A.1b)

η is the intrinsic impedance of the medium. Taking the curl of the equation (A.1a) and

substituting ∇×
{

H

E

}
by the right part of (A.1a), the system of equations become:

∇×
(
∇×

{
E

H

})
= k2

{
E

H

}
(A.2)

With the vector identity ∇× (∇×•) =∇ (∇·•)−Δ• and as the divergence of the fields is null

(see (A.1b)) the wave equation transforms into the vector Helmholtz equation (Δ=∇2 being

the Laplacian):

Δ

{
E

H

}
+k2

{
E

H

}
= 0 (A.3)
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Appendix A. Spherical Wave Expansion: Scattering Framework and Mathematical
Derivation

Solution of the Wave Equation

The wave equation is a linear partial differential equation (PDE) called the vectorial Helmholtz

equation. One classical approach of solving PDEs is to reduce them to a system of ordinary

differential equations (ODEs) by means of the separation of variables. This technique, instead

of searching for the global solution, assumes that the solution can be written as a product

of terms each depending on a single parameter which solves the equation and satisfies the

boundary conditions. Here we propose to solve the scalar Helmholtz equation first and use its

solution for solving the vectorial Helmoltz equation.

The scalar Helmholtz equation is:

Δψ+k2ψ= 0 (A.4)

with ψ being a scalar wave function. The spherical coordinate system of Fig. A.1 is used, and

therefore also the expression of the Laplacian in spherical coordinates. As a result, the scalar

wave equation is expressed as:

1

r 2

∂

∂r

(
r 2 ∂

∂r
ψ

)
+ 1

r 2 sinθ

∂

∂θ

(
sinθ

∂

∂θ
ψ

)
+ 1

r 2 sin2θ

∂2

∂φ2 ψ+k2ψ= 0 (A.5)

y
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φ

r̂

θ̂

φ̂

Figure A.1 – Definition of the spherical coordinate system

With the ansatz ψ
(
r,θ,φ

)= R(r )Θ(θ)Ψ(ψ), r ≥ 0, θ ∈ [0,π], ψ ∈ [0,2π], and multiplying (A.5)
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by r 2

RΘΦ we obtain:

1

R

∂

∂r

(
r 2 ∂

∂r
R

)
k2r 2

︸ ︷︷ ︸
radial part

+ 1

Θsinθ

∂

∂θ

(
sinθ

∂

∂θ
Θ

)
+ 1

Φsin2θ

∂2

∂φ2 Φ︸ ︷︷ ︸
angular part

= 0 (A.6)

The radial and the angular part being distinct they can be treated seperately for simplicity

as one appears as a constant in the solution of the other. First, we solve the equation for the

angular part. We multiply (A.6) by Φsin2θ introducing a constant m:

d2Φ

dφ2 +m2Φ= 0 (A.7)

The solutions are circular functions of the form:

f σ
m(φ) =

⎧⎨
⎩sin(mφ), if σ= e

cos(mφ), if σ= o
(A.8)

with m defined as a non-negative integer (m = 0,1,2, ...) as the solutions must be the same for

φ and φ+2π. Moving to the θ− dependent solution, we replace in the radial part of equation

(A.6):

1

Θsinθ

d

dθ

(
1

sinθ

dΘ

dθ

)
− m2

sinθ2 =−l (l +1) (A.9)

The constant l is defined like this for reasons that will become clear later. With the change of

variable z = cosθ and defining Θz (cosθ) =Θ(θ) the equation (A.9) multiplied by Θ becomes:

(
1− z2) d2Θz

dz2 −2z
dΘz

dz
+Θz

(
n(n +1)− m

1− z2

)
= 0 with C1 = n(n+1) , C2 = m2

(A.10)

The solution of equation (A.10) are the Legendre polynomial of the first kind P m
n with n and m
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natural integers:

P m
n = (1− z2)

m
2

dm

dzm Pn(z) and Pn(z) = 1

2nn!

d2

dzn

(
z2 −1

)n
(A.11)

Two important pieces of information are that these functions have regular singularities at

z =±1,±∞ and that P m>n
n = 0.

Moving to the solution of the radial part, subtituting (A.9) into (A.6) and multiplying by R we

obtain:

r 2 d2R

dr 2 +2r
dR

dr
+R

(
k2r 2 − l (l +1)

)= 0 (A.12)

The solution are the spherical Bessel functions of order n positive (there are solutions for n

being a negative integer, however we do not need them here). There exists several notations,

here we will use these Bessel functions and combinations of it, as they can also be solutions of

the aforementioned differential equation (A.12):

• jn(z) : Spherical Bessel functions of the 1st kind and order n.

• yn(z) : Spherical Bessel functions of the 2nd kind and order n.

• h(1)
n (z) = jn(z)+ j yn(z) : Spherical Hankel functions of the 1st kind and order n or

alternatively Spherical Bessel functions of the 3th kind and order n.

• h(2)
n (z) = jn(z)− j yn(z) : Spherical Hankel functions of the 2nd kind and order n or

alternatively Spherical Bessel functions of the 4th kind and order n.

As the energy of the wave has to be finite at the origin and has a spherical propagation structure

towards infinity, only the jn(z) fulfill the first requirement and h(2)
n (z) the second.

This is explained in [175] by introducing the concept of Wilcox spheres (see Fig. A.2).

For compactness we define Z 1
n(z) = jn(z) and Z 4

n(z) = h(2)
n (z) (based on the Bessel naming).

The solution Ψ of the scalar Helmholtz equation (A.4) in spherical coordinates is therefore a
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Figure A.2 – Wilcox spheres

superposition of those solutions of r -, θ- an φ- dependent differential equations:

Ψ(r,θ,φ) =
+∞∑
n=1

n∑
m=0

∑
s={1,4}

∑
σ={e,o}

ασs
mnΨ

σs
mn(r,θ,φ) (A.13)

with Ψσs
mn(r,θ,φ) = Z s

n(kr )P m
n (cosθ) f σ

m(φ).

From (A.13), the vectorial solution to the Helmholtz equation can be found. First, vector

spherical harmonics are defined as:

Mσs
mn =∇× (Ψσs

mn(r,θ,φ)�r
)

(A.14)

Nσs
mn = 1

k
∇×∇× (Ψσs

mn(r,θ,φ)�r
)

(A.15)

Lσs
mn = 1

k
∇Ψσs

mn(r,θ,φ) (A.16)

with n = 1,2, · · · ,+∞, m = 0,1,2, · · · ,n, σ ∈ e,o and s ∈ 1,4. If no source is present inside the

spheres, only Mσs
mn and Nσs

mn are relevant and the fields are derived as:

{
E

H

}
=
⎧⎨
⎩

1
j

η

⎫⎬
⎭
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n=1
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∑
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∑
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mn
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mn

Nσs
mn

}
+
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n∑
m=0

∑
s={1,4}

∑
σ={e,o}

βσs
mn

{
Nσs

mn

Mσs
mn

})
(A.17)
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The coefficients ασs
mn and βσs

mn contain all the information about the wave scattering. Finding

the fields E and H means finding the coefficients ασs
mn and βσs

mn which fulfill the boundary

conditions for all the shells [147].
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B 3D Printed Phantom: Geometries,
Waterproofing and Gluing Tests

Before printing the final head phantom, we performed tests on a smaller prototype to test the

critical aspects, namely waterproofing and gluing. The first prototype was manufactured with

a 3D printer using Selective laser sintering (SLS) technique in PA2200. With the SLS technique

it was impossible to print the whole spheres at once, but we had to split each sphere into two

hemispheres, that will later be glued. Both the waterproofing and the filling mechanism (test

if the liquid can transit smoothly) are tested on the small prototype depicted in Fig. B.1.

(a) CAD of the small prototype (b) printed small prototype

Figure B.1 – Small multilayered sphere prototype: (a) CAD details; (b) mounting pictures.

As TritonX100 is a detergent, an important test is to see if the glue (for example "Rapid Gel",

GEISLICH which can easily be found in Switzerland) is compatible. This brand caught our

attention as it explicitly sells compatibility to chemicals, cleaning products, humidity, salts

and acids. It is also resistant to a wide set of temperatures, ranging from −60°C to +80°C,

which can be useful for building prototypes for applications such as hypothermia [176].
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Figure B.2 – Glue tests steps

Test steps:

1. Weight PA2200 before gluing = 0.83g

2. Gluing the two part of PA2200 and waiting 2h

3. Weight PA2200 after gluing : 0.86g

4. immerse glued PA2200 in TritonX100 for 15 hours

5. Weight glued PA2200 after removing it from TritonX100 solution and cleaning: 0.86g

Conclusions: The glue is intact after the immersion (the two parts are still well glued together).

However when we have put the TritonX100 inside of the spheres, the level has diminished.

Probably absorbed by the porous material. To avoid the absorption of the material we decided

to change to the Fused Deposition Modeling technology with white ABS (Acrylonitrile butadi-

ene styrene) for the plastic, which can be made completely waterproof. The waterproofing

process implies a "smoothing station" and the product used is SSF01P from MICROCARE. The

product is heated inside the "smoothing station" where the 3D printed prototype is placed.

The hot gas attacks the surface of the ABS, and after a few seconds (8-10 sec) the prototype is

removed. The geometry of the final prototype is shown in B.3.
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Figure B.3 – CAD of the multilayered sphere prototype
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