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Abstract

T
asks routinely executed by humans involve sequences of actions performed

with high dexterity and coordination. Fully specifying these actions such

that a robot could replicate the task is often difficult. Furthermore the un-

certainties introduced by the use of different tools or changing configurations

demand the specification to be generic, while enhancing the important task as-

pects, i.e. the constraints. Therefore the first challenge of this thesis is inferring

these constraints from repeated demonstrations. In addition humans explaining

a task to another person rely on the persons ability to apprehend missing or im-

plicit information. Therefore observations contain user-specific cues, alongside

knowledge on performing the task. Thus our second challenge is correlating the

task constraints with the user behavior for improving the robots performance.

We address these challenges using a Programming by Demonstration framework.

In the first part of the thesis we describe an approach for decomposing

demonstrations into actions and extracting task-space constraints as continuous

features that apply throughout each action. The constraints consist of: (1) the

reference frame for performing manipulation, (2) the variables of interest relative

to this frame, allowing a decomposition in force and position control, and (3)

a stiffness gain modulating the contribution of force and position. We then

extend this approach to asymmetrical bimanual tasks by extracting features that

enable arm coordination: the master–slave role that enables precedence, and

the motion–motion or force–motion coordination that facilitates the physical

interaction through an object. The set of constraints and the time–independent

encodings of each action form a task prototype, used to execute the task.

In the second part of the thesis we focus on discovering additional features

implicit in the demonstrations with respect to two aspects of the teaching in-

teractions: (1) characterizing the user performance and (2) improving the user

behavior. For the first goal we assess the skill of the user and implicitly the

quality of the demonstrations by using objective task–specific metrics, related

directly to the constraints. We further analyze ways of making the user aware

of the robot’s state during teaching by providing task–related feedback. The

feedback has a direct influence on both the teaching efficiency and the user’s

perception of the interaction. We evaluated our approaches on robotic experi-

ments that encompass daily activities using two 7 degrees of freedom Kuka LWR

robotic arms, and a 53 degrees of freedom iCub humanoid robot.

Keywords: programming by demonstration, constraints extraction, bimanual

tasks, coordination constraints, learning and adaptive systems, robot facial dis-

plays, interaction dynamics, interaction metrics, human factors
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Résumé

L
a dextérité et la coordination sont critiques à l’exécution de tâches quotidiennes

chez l’humain, cependant cette exécution est aussi sujette à une certaine incer-

titude résultante de la varieté des outils utilisés ou des configurations possibles. Il

est donc difficile de spécifier univoquement les actions qu’un robot doit répliquer afin

d’accomplir une tâche sans limiter le pouvoir de généralisation de la solution produite.

Le premier objectif de cette thèse est donc l’extraction de contraintes propres à une

tâche depuis un ensemble de démonstrations. Au cours des démonstrations, les com-

portements humains sont indicatifs des dimensions importantes du mouvement. Il est

donc important, comme deuxième objectif, de corréler les contraintes identifiées en

premier lieu aux comportements observés lors des démonstrations. Cette corrélation

permet à la fois d’évaluer l’intention de l’utilisateur et d’améliorer la performance du

robot. Afin de répondre à nos objectifs, nous optons pour l’approche de programma-

tion par démonstration.

La première partie de cette thése consiste en la décomposition des démonstrations

en actions et l’extraction de contraintes en tant que sets de variables de contrôle con-

tinues, applicables sur l’entièreté de l’exécution de la tâche observée. Les contraintes

sont définies comme étant: (1) le cadre de référence, (2) les variables de contrôle qui

permettent la décomposition en composante de force et de position au sein du cadre de

référence, et finalement,(3) la rigidité en gain du système qui module les contributions

de la force et de la position. L’approche est ensuite étendue aux tâches bimanuelles

asymétriques grâce à l’extraction de caractéristiques qui facilitent la coordination;

l’interaction mâıtre-esclave établit la priorité, tandis que la coordination mouvement-

mouvement ou force-mouvement facilite l’interaction avec un objet. Cet ensemble de

contraintes, encodées indépendamment du temps, permet de spécifier un prototype

d’exécution pour une tâche donnee.

En deuxième partie, l’intérêt est tourné vers la découverte de comportements

complémentaires implicite à la démonstration. Ces caractéristiques sont déterminées

afin d’évaluer deux aspects de l’interaction avec le robot: (1) la performance de

l’utilisateur et (2) l’amélioration du comportement de l’utilisateur. Ayant extrait

un prototype d’exécution basé sur des contraintes, il est possible d’évaluer la perfor-

mance d’un utilisateur en function des comportements qui accompagnent la tâche.

Nous pouvons ensuite étudier l’impact d’un retour visuel provenant de l’évaluation

de la performance de l’utilisateur par le robot sur l’apprentissage de la tâche. Notre

approche est évaluée à l’aide de deux platesformes robotiques: deux Kuka LWR ayant

chacun sept degrés de liberté, et un robot humanöıde iCub en comptant cinquante-

trois.

Mots Cle: programmation par démonstration, extraction de contraintes, tâches bi-

manuelles, systèmes d’apprentissage et d’adaptation, expressions faciales du robot,

dynamique d’interaction, mesures d’interaction, facteurs humains
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Chapter 1

Introduction

1.1 Motivation

Humans perform daily activities, switching between actions with ease, ma-

nipulating multiple tools in a dexterous way, and coordinating their arms to

exert desired effects on objects by inducing a relative motion or force. Actions

are typically performed either individually or collaborating with another per-

son. Additionally humans can effortlessly master new skills by simply watching

other persons execute a task, by receiving instructions and by rehearsing until

obtaining the desired goal. They are also able to transfer skills just as easily by

directing the other person’s attention to the important aspects of the task.

When faced with the challenge of learning a new task, humans often inte-

grate various learning modalities: visual, verbal, auditory, kinesthetic. Combin-

ing sensory feedback such as visual and kinesthetic guidance provided manually

by a coach for learning a bimanual rhythmic task is shown to lead to an im-

proved performance (Zhu et al., 2017). However learners might prefer a certain

modality. For example students perform best when assigned to their preferred

learning style. This applies to both sports coaching Dunn (2009) as well as to

teaching a technical skill, such as cardiac dissection where students preference

was linked to their learning style (Allavena et al., 2017): using a simulator for

kinesthetic learners versus video recordings of the task for visual learners. In

other cases visual information alone might not be sufficient for transferring all

the aspects of the task, and directly experiencing it might lead to better results.

Kinesthetic learning in particular is commonly used in tasks that require

experiencing the body movement in areas such as crafts, sports, medical and

rehabilitation. Since it makes use of muscle memory, the kinesthetic information

of the skill can be reused in situations when visual information is limited. This

is fundamental in precision tasks, such as surgeon training (Pinzon et al., 2016).

Kinesthetic learning is also preferred in nursing (Stirling, 2017) and was shown

to improve engagement of nursing students (Elissa, 2014).

Typically in sports this method is used in conjunction with other methods

such as: feedback from a knowledgeable coach and observing peer performance

in elite gymnastics Hars and Calmels (2007); the use of mental imagery in

athletes regardless of the type sport they practice (Gregg et al., 2016), and also

3



for improving accuracy and performance in tennis Guillot et al. (2012).

In rehabilitation the sense of touch is often used to compensate for another

missing or impaired sense, for example using haptic applications for training

students with impaired vision (Murphy and Darrah, 2015). Robotic devices

are often used for various cases of motor and neurorehabilitation: such as gait

(Morone et al., 2017), or upper limb training in stroke subjects (Taheri et al.,

2016; Milot et al., 2016) or spinal cord injured subjects (Kadivar et al., 2011).

Furthermore tactile feedback from a vibrotactile suit can improve accuracy when

learning a new motor task (Lieberman and Breazeal, 2007).

In the case of fine manipulation, using a haptic assistive device was shown

to improve writing of persons suffering from sensorimotor integration disorders

(Atashzar et al., 2013); conversely the force exerted when writing (both the grip

force and the force exerted by the pen on the writing surface) has been shown to

be significant in characterizing impaired handwriting (Schneider et al., 2010).

In this thesis we focus on teaching robots how to perform common manip-

ulation tasks. We take a programming by demonstration approach given the

extent of kinesthetic learning in humans and the complexity of the information

that the human teacher needs to transfer. Many daily life tasks, require special-

ized tools such as a knife or a peeler. For maneuvering these tools humans often

employ both arms, such that one offers support (i.e. by holding, stabilizing,

assisting) while the other is performing active manipulation (such as cutting,

mixing, scooping etc. see Fig. 1.1). Since these actions typically demand pre-

cise motions or exerting forces, learning such tasks often requires kinesthetic

practice, aside examples and instructions.

However robots are expected to learn and perform such routine tasks with

just as much ease as humans and in a reliable way. This constitutes an important

challenge as adaptation to new configurations, new tools and new scenarios

should happen on the fly. Therefore the possibility to learn by observing the

user and to integrate kinesthetic information about the task has the potential

to speed up robot learning in domestic environments. Additionally the ability

to reuse or refine skills (Sauser et al., 2012), as well as observing which aspects

remain consistent in similar tasks improve the robot’s ability to apply the same

skill in different contexts.

Furthermore the interaction with the user should be intuitive for non-technical

persons and the robot’s state should be transparent (Breazeal, 2009). Therefore

alongside the skill learning capability, robots are expected to display social be-

havior, and enable a safe interaction (Ding et al., 2013). Such aspects have an

impact on the human perception of the interaction and acceptance of the robot.

Consequently the second challenge, namely of providing optimal feedback for

the user, tackled by this thesis relies on understanding and relating the robot’s

performance with the important aspects of the task; understanding user behav-

ior relative to the robot and the task; and deciding on which feedback modality

would best emphasize the current robot state.
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Figure 1.1 Daily activities and corresponding setup for kinesthetically demon-
strating them to a robot. Humans perform with ease activities that typically
require manipulating tools, and changing the state of the objects by applying
forces. Cutting or peeling a vegetable requires force control ; slicing or chopping
an onion requires stiffness modulation; arm coordination is used when rolling a
dough with both hands moving in symmetry with each other, or when asym-
metrically coordinating to mix the contents of a bowl, by holding it with one
hand and mixing with the other. Finally a precise use of the tools is essential
for achieving task goals.

1.2 Goals of this thesis

Therefore this thesis focuses on developing approaches for obtaining task

representations and improving human–robot interaction, using a Programming

by demonstration approach.

We aim to sequence the task into actions and represent each action through

a set of soft constraints. This information can be directly used by the robot

during execution by embedding it in the control law. The purpose is to allow

robots to easily acquire new skills that extend their original set of capabilities

by observing and interacting with human users.

This calls attention to three key issues which represent the goals of this

thesis:

(1) bootstrapping knowledge for learning by extracting important aspects of

the task (i.e. constraints that remain invariant across multiple demon-

strations) from observing the humans performing real life tasks. Our aim

is to extract segmentation points coordination variables and to determine

whether this is a position versus force control type of task.

(2) user performance assessment by correlating the task constraints with the

way the user manipulates the tools to obtain the desired effect.

5



(3) transparency for the user by providing feedback aimed at improving the

dynamics of the human-robot interaction during teaching and implicitly

improving the quality of the demonstrations.

Our first goal relates to information that cannot be easily programmed into

a robot, such as how to modulate the stiffness of the arm when performing a

certain movement or how to apply a force. However a human has this knowl-

edge empirically and can easily demonstrate the task. Thus the robot extracts

information which is implicit in the demonstrated behavior, but constitutes as-

pects that are key to the task success and should be reproduced according to the

given context. For example the force applied when grating different vegetables

depends on how soft they are; pouring sauce depends on moving relative to the

container in which it should be poured; successfully scooping requires adjusting

the stiffness of both arms as one applies a force and the other is resisting the

motion; mixing in a bowl or peeling a vegetable also require arm coordination

and continuous adaptation.

While realising the first goal gives the robot autonomy in executing the

task, realising our second goal gives the robot awareness about user behavior,

namely assessing if the user is performing the task properly with respect to the

constraints extracted previously. This has multiple implications that lead to a

more responsive and initiative–taking robot. Firstly the robot can decide from

which demonstrations or which users to learn the task in order to obtain better

performance. Secondly the robot can enforce the constraints when executing

the task collaboratively with the human, by adopting an assistive behavior.

Finally our last goal focuses on improving robot’s responsiveness by pro-

viding relevant feedback in a social manner. To reveal the robot’s state while

performing a manipulation task, the feedback should be related directly to the

task constraints. Moreover the feedback should be presented in a social man-

ner, using facial cues, voice, gestures, to encourage human engagement in the

interaction.

1.3 Context

The approaches proposed in this thesis make use of different types of inter-

action, aimed at improving both learning and human engagement. We study in-

teraction during programming by demonstration as a modality of passing knowl-

edge from the user to the robot. However the dynamics of the interaction is

influenced by both the user’s behavior and the human perception of this behav-

ior. We thus review the general context of social robotics, its applications to

learning and its influence on the user to position our work.
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Social robotics and interaction modalities

Social robots are robots capable of interacting with humans in a social man-

ner, making use of cues such as facial expressivity, speech and gestures. There-

fore they can offer a rich interaction, making them suitable for domestic envi-

ronments as in human-human interaction the quality of the communication de-

termines engagement and responsiveness. For daily interaction with naive users

robots are expected to be aware of their environment and to express their state

in a given situation (Breazeal, 2009). Hegel et al. (2011) distinguish between

two ways a robot can transmit information to the user: signals that resemble

human communication (such as speech, hand gestures, etc) or artificial signals

correlated with the user’s understanding of its behavior (LEDs, GUIs).

Interaction with social robots has proven effective in several areas: autism

spectrum disorder (long term studies show improvements in the behavior of

autistic children when using social robots such as Kaspar due to their simpli-

fied facial features (Iacono et al., 2011)), robots that resemble animals (Stanton

et al., 2008) used for encouraging social interaction between the elderly or stim-

ulate attention in children (Nakanishi et al., 2014), artistic expression (Levillain

et al., 2017), therapy and education, stimulating creativity (Kahn et al., 2014),

dementia care (Shibata, 2012; Hebesberger et al., 2016) promoting exercise and

healthy living (Fasola and Matarić, 2013; Ros et al., 2016), interacting with

children suffering from diabetes (Alotaibi and Choudhury, 2015; Coninx et al.,

2016) or in general to intermediate interaction between children (Hirose et al.,

2014; Yamazaki et al., 2013).

In our work we aim to enhance the interaction with the user during Program-

ming by Demonstration with social feedback for two reasons. Firstly communi-

cating the state of the robot relative to the important aspects of the task gives

the human an understanding of how well the demonstration is performed. For

example in a task in which it is crucial to apply proper forces, mapping force

values to the intensity of facial expressions or a form of verbal feedback can

help the human understand what the robot is perceiving and thus improve the

human demonstrations. Secondly giving the feedback in a natural way, through

social cues (unlike e.g. displaying numeric values on a screen) makes it very

intuitive for the user, and in consequence the user might be more engaged in

the interaction.

While a robot’s capabilities for human-like communication are limited and

can vary depending on the robot’s embodiment, still expressive modalities such

as speech and gaze keep a user engaged and focused in the interaction (Ivaldi

et al., 2017; Kennedy et al., 2017). Additionally making use of these expres-

sive modalities leads to perceiving the robot as ”friendly” or ”helpful” which

increases and sustains user engagement (Corrigan et al., 2015). However de-

ciding when and how to make use of the expressive behavior is mostly task
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specific, typically being displayed when a particular event takes place. An emo-

tion can also be displayed based on a more complex architecture incorporating

personality models and mood (Han et al., 2013).

One significant downside of social robotics is that as they tend to be more

human–like (i.e. (Ishiguro, 2008; Becker-Asano and Ishiguro, 2011)) people tend

to perceive them as ”uncanny”. Mori (1970) explained this effect by the ”un-

canny valley” concept, stating that as the human likeliness of a robot increases

(from industrial robots to toy robots), so does the human affinity. However there

is a major drop in affinity as the likeliness increases, but fails to come close to

the resemblance of a healthy person. The perception of a robot as being ”un-

canny” can be caused by the body appearance (Kanda et al., 2008) affecting the

nonverbal behavior of the human, appearance of the face and facial expressions

(Seyama and Nagayama, 2007); or lack of human–like skin in robotic hands

which fail to display a soft tissue, or temperature properties similar to that of

the humans (Cabibihan et al., 2006), placing a prosthetic hand in the valley.

The existence of the ”uncanny valley” effect plays an important role in the

interaction(Ho and MacDorman, 2017) and bridging the valley can be done

in several ways: by focusing on the minimal design requirements, natural and

diverse human–like motions (Ishiguro, 2008), response time taken needed by a

robot during communication (Shiwa et al., 2009), displaying emotions during

social interaction (Koschate et al., 2016). Dealing with these aspects can lead to

humans accepting robots as interaction and collaboration partners, even from a

small age (Park et al., 2015). In our work we aim to avoid the uncanny valley

effect by providing basic facial expressions implemented using LEDs.

Social robotics focuses mostly on the use of verbal feedback as well as a

set of non-verbal cues (facial display of emotions, gestures). Providing haptic

feedback, in the form of touch and force when in physical contact, is a less

prevalent form of interaction. However touch plays an important role as haptic

feedback enables people to collaborate in a task that requires physical contact.

Similarly, when collaborating with a robot for physically manipulating an object

both the human and the robot adapt to the force transmitted through the object

by the other partner.

Noohi and Zefran (2014) propose a set of metrics for characterizing per-

formance in collaborative tasks by analyzing the forces applied with respect

to cooperativeness, effectiveness and efficiency of the collaboration. Human ex-

change haptic cues as a communication method that complements gestures, gaze

or verbal communication (Javaid et al., 2014) and such interaction patterns can

be classified based on force-velocity patterns (Madan et al., 2015). Moreover

haptic stimuli can carry additional information. A simple 1 DOF device can pro-

vide stimuli with affective nuances Bianchi et al. (2017) or can indicate changes

in dominance between partners in haptic interaction (Groten et al., 2009).

In our work we focus on the importance of haptic interaction in collaborative

tasks. For example a robot can predict the intention of the human to apply a
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force and adapt by increasing its stiffness. This haptic cue can be a signal for

the human that the robot is ready for the task. Conversely a human can signal

its intention to start a manipulation task by the intensity of the tactile contacts

when holding a tool.

Learning from human demonstrations

Teaching a robot through instructions and demonstrations is a natural method

of task learning (Nicolescu and Mataric, 2003), similar to the way a human

teaches another human (Peacock, 2001). It mainly consists of providing the

demonstrations, generalization over multiple demonstrations using statistical

methods and practice trials (Nicolescu and Mataric, 2003) while the users should

be engaged in the interaction in each stage (Amershi et al., 2014). Practice trials

are useful in tasks where replays of the demonstrations are required in order to

record forces, or tactile information not influenced by the touch of the human

(Sauser et al., 2012), while allowing the human to observe what the robot has

learned and adjust the following demonstrations accordingly (Pais et al., 2013).

Demonstration modalities include (a) observing a human performing the

task (based on visual data, or object tracking, and suitable for basic tasks, such

as reaching); (b) directly driving the robotic arm(s) to experience the forces

required by the task (kinesthetic demonstrations in which the robot records

proprioceptive data consisting of position and force); (c) active teaching which

combines observations while kinesthetic demonstrations are used for refining the

motions (Calinon and Billard, 2007c). These approaches presume that the user

demonstrates the full trajectories. Thus they are suitable for complex tasks that

require well defined motions.

Active teaching can also be employed in the form of corrective feedback

(Argall et al., 2011) or critique (Argall et al., 2007) coming from the human

teacher which helps in iteratively learning and refining a task policy. These

type of incremental learning approaches (Vijayakumar et al., 2005) enable nat-

ural human-robot interactions (Breazeal et al., 2004) and long-term learning

(Grollman and Jenkins, 2007).

An alternative approach are key-frame demonstrations (Akgun and Thomaz,

2016) in which the user focuses on the desired final poses of the robot in each

action. Keyframe demonstrations are useful when demonstrating the trajectory

is irrelevant for the task, or when it is impractical (e.g. robot’s limbs are not

backdrivable or are too large for the humans to move). However this looses the

fluidity and dynamics of the motion.

Kinesthetic demonstrations in particular assume that a human user directly

moves the robot arms for teaching the required actions. Thus they represent

a particular case of human-robot physical interaction. Unlike observational

learning in kinesthetic teaching the robot can experience the forces required for

completing the task. The human touch can be mapped to different behaviors,
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such as: teaching desired levels of stiffness for different joints by wiggling the

robot (Kronander and Billard, 2014); pressing on robot’s fingertips for teaching

it different configurations for holding an object and the corresponding tactile

feedback (Sauser et al., 2012). Complementary to the proprioception informa-

tion, the effect that an action has on an object or on the environment can bring

important information about the task. Focusing on different parts of the scene

can be done by specifying ”perceptual landmarks” (Huang and Cakmak, 2016).

One problem is that of providing good demonstrations or improving the hu-

man demonstrations in time. One such approach is ”teaching guidance” in the

form of instructions provided to the demonstrator and derived from heuristics

(Cakmak and Thomaz, 2014b). End-users can be trained into using a Pro-

gramming by Demonstration interface, with video examples proven to be more

efficient than written text (Cakmak and Takayama, 2014). Multiple demonstra-

tions that showcase the same task performed in changing conditions are typically

required for a good generalization however this can be tiring for the user and can

result in low quality or non-exhaustive training sets. One approach to address

this issue is crowdsourcing the cases in which the learned action would not be

effective (Forbes et al., 2014).

Alternatively the robot can provide feedback relative to the learned behavior

by adapting online its joint stiffness (Kronander and Billard, 2014); or iteratively

through rounds of replay and refinement of the demonstrated gesture (Sauser

et al., 2012). In our work we focus on correlating the tactile response on a

robot’s fingertips with expressive modalities such as facial displays to inform

the demonstrator in real-time of how suitable the current posture is. This leads

to a decrease in the time necessary for demonstrating the task, and an increase

in the user’s satisfaction with the robot’s behavior. Using a social partner can

influence the outcome of a learning interaction (Cakmak et al., 2010).

Throughout the different chapters of this thesis we take a programming by

demonstration approach in which we use kinesthetic teaching to allow the robot

to record full trajectories and to experience the forces required by the task.

Based on this information we sequence the task and extract the reference frame

to be used in each action. We then determine the important variables to be

used on each axis of the previously extracted frame, obtaining a decomposition

for performing hybrid control in that frame. We also determine a stiffness

modulation factor weighting the contribution of position and force on each axis.

We thus contribute to extracting task constraints from human demonstra-

tions emphasising the force and stiffness aspects, whereas existing works focus

mainly on kinematic constraints Calinon (2007). Alternatively in the keyframe

approach (Akgun and Thomaz, 2016) the user is explicitly drawing the robot’s

attention to the important aspects of the task, thus making them explicit rather

than extracting them.

Additionally when demonstrating bimanual tasks we propose a custom setup

in which a demonstrator can backdrive a robotic arm with one hand, and demon-
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strate the task of the other hand dexterously wearing a dataglove that records

the motion of the fingers. This allows us to record the motion of the fingers

and the tactile activation as the user is maneuvering the tool, in conjunction

with the state of the robot. From this information we extract coordination

patterns between the two arms and generalize the task to be executed either

autonomously or in physical collaboration with a human partner.

User-perceived interaction

Designing a social robot augmented with expressive capabilities is done with

the aim of improving the user’s perception of these stimuli and interaction ex-

perience. Multiple human factors play a decisive role in the dynamics of the

interaction. One such factor is the change in authority when humans have to

share or delegate responsibility with robots (Hinds et al., 2004), which can lead

to observing emerging models of interaction such as the master-servant case ob-

served in Sung et al. (2007). In Programming by Demonstration the human user

is in a position of power and authority as the person holding the task knowledge.

This explains the need for a responsive robot that behaves as expected.

Complementary to the concept of authority is that of trust that contributes

to maintaining the interaction. Yagoda and Gillan (2012) describe trust as a

multi-dimensional concept, dependant of the task, the human-robot team and

the context. In PbD tasks, trust of the robot is expected to increase if the robot

showcases reliable behavior. Also trust can be maintained through appropriate

feedback reflecting the robot’s state. For example a robot employing gestures to

signal poor task performance was perceived by the user as trustworthy (van den

Brule et al., 2016)

Social norms also apply to human-robot interaction (Huettenrauch et al.,

2006), and can have a major role in teaching tasks. Firstly, spatial distance

and orientation of the robot with respect to the human (Hall, 1966), as well

as the robot’s approaching speed (Sardar et al., 2012) impact the interaction.

When demonstrating a task to a robot it is easier to keep the robot fixed and

let the user approach the robot at a convenient distance. Secondly, gestures can

foster HRI along with other communication mechanisms. Nehaniv et al. (2005)

identify five classes of gestures specific to HRI, however Otero et al. (2006) show

that only two of them (interactional and manipulative gestures) occur naturally

in demonstrating a household task to a robot.

Lastly, touch–based interaction affect the human perception of the robot.

When touching a robot humans have different expectations on how this should

respond in terms of moving the touched part, looking towards that part of

the body or stiffening the concerned part of the body (Basoeki et al., 2015).

On the other hand being touched by a robot can be encouraging for a human

(Shiomi et al., 2017). However humans prefer particular touching behaviors.

A user study aimed at analyzing the force and finger motion during a patting
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gestures (Cabibihan et al., 2011) shows that human subjects prefer particular

hand configurations, using mostly the wrist, palm and proximal phalanges rather

than distal phalanges. However people respond positively to a touch initiated

by a robotic nurse for either cleaning or comforting regardless of the presence

of verbal communication (Chen et al., 2011).

In teaching interactions the knowledge that the user has about the task

can influence the outcome of the learning as well as the perceived interaction.

Therefore it is important for the robot to distinguish between a proficient and

an unskilled user demonstrating the same task. Allowing the robot to passively

characterize user performance while demonstrating a task can improve and di-

rect the provided feedback. Alternatively roles can be inversed and a robot

having a representation of a task can become assistive, helping an unskilled

user improve its performance.

Human performance can be assessed based on various metrics most of them

being time–based: reaction time, time to task completion etc. Other factors that

are used in assessing human performance are fine and gross dexterity, reaction

time and visual acuity and depth perception (Paperno et al., 2016). A user

study with 89 participants performed by Paperno et al. (2016) showed that

dexterity could be a good predictor of user performance in simple robotic tasks

such as pick-and-place or find-and-fetch.

In our work we contribute to improving human perceived interaction by two

means. Firstly we provide social feedback which proved to improve user engage-

ment and satisfaction with the outcome of the teaching procedure. Secondly we

propose a method for evaluating user performance using the extracted task con-

straints as benchmark. Based on this information the robot can adapt to the

users intentions and can improve its own performance relative to the task goal.

Thus this can lead to an improved interaction.

1.4 Approach

In this thesis we focus on tasks that presume successfully completing a se-

quence of actions. For example spreading butter on a slice of bread (as illus-

trated in Fig. 1.2) consists of reaching with the knife on top of the butter

container, scraping butter with the knife, reaching the slice of bread, spreading

butter, and finally taking the tool away.

Similarly pouring a glass of water consists of reaching for the bottle, identi-

fying a glass and placing it in the proper position, reaching for the glass, pouring

the desired amount of water and reaching for the table to put down the bottle.

Completing each low-level action depends on properly understanding what in-

formation is important for that region of the task (e.g. forces, torques, tactile

information, or the position of the end-effector).

This requires dealing with multiple aspects: a high dimensional input-space
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(a) Reach the butter
container

(b) Take Butter (c) Reach the slice of
bread

(d) Spread butter (e) Go up

Figure 1.2 Sequence of logical steps in demonstrating the Butter Spreading Task

(as a demonstration typically consist of data from multiple sensors: propriocep-

tive position and force sensed by the robot, vision tracking for external objects,

hand shape information if tracking the users hand), motion segmentation, de-

termining the relative importance of each input dimension in each region of the

task (extract the task constraints).

Current approaches address these problems separately, while this thesis ex-

plores the possibility of directly using the extracted constraints for generating

robot control strategies.

The work described in the following chapters relies on two main tools:

kinesthetic Programming by Demonstration (PbD) for acquiring data;

Cartesian impedance control for executing the robot’s motion

We use kinesthetic PbD to teach robots how to perform various tasks: such

as grating or peeling vegetables, scooping etc (illustrated in Fig. 1.1). A human

user is required to perform the same task in varying configurations of the objects,

while backdriving a robotic arm (see Fig. 1.3).

Based on this information we extract task constraints as features that have

remained consistent across demonstrations (in Fig. 1.4 we exemplify this for a

grating task in which the motion is constrained horizontally along the main axis

of the grater, while a vertical force is constantly applied).

They represent constraints guiding the motion of each arm as well as biman-

ual constraints ensuring arm coordination. Additionally we make the assump-
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Figure 1.3 Demonstrating the grating task from different starting positions

Figure 1.4 Constraints in the grating task.

tion that the way the user holds the tool influences the forces applied in the

task. Based on this information we extract embodiment constraints allowing

a robot to anticipate and adapt to a human’s intention to apply a force when

executing a task collaboratively.

We use the extracted constraints first to guide model learning (i.e. encoding

profiles or motion, force and stiffness) and secondly for parameterizing a Carte-

sian impedance controller at runtime. We thus use a single controller for the

whole task duration, switching the reference frame, adapting the stiffness of the

arm, and where possible employing hybrid control by using a decomposition in

force and position control along the axis of the desired reference frame.

Lastly we explore various modalities of giving feedback to the user during

teaching interactions such as to maximize engagement and the robot’s perfor-

mance as the teaching outcome. Understanding and adapting to user particu-

larities, as well as acquiring task skills, allows optimal human-robot interaction.

Our approaches are validated on common daily tasks and we assess aspects of

human-robot interaction through user studies with naive subjects.
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1.5 Contributions

Constraint–based task representation

We propose an approach for learning task specifications automatically,

by observing human demonstrations. Using this allows a robot to com-

bine representations of individual actions to achieve a high-level goal.

We hypothesize that task specifications consist of variables that present

a pattern of change that is invariant across demonstrations.

We identify these specifications at different stages of task completion.

Changes in task constraints allow us to identify transitions in the task

description and to segment them into sub-tasks. We extract the follow-

ing task-space constraints: (1) the reference frame in which to express

the task variables, (2) the variable of interest at each time step, posi-

tion or force at the end effector; and (3) a factor that can modulate the

contribution of force and position in a hybrid impedance controller.

We then extend this approach to bimanual tasks by automatically de-

termining the role of the arms as master or slave; the type of coupling

as simple motion coordination, or force–motion coordination; and the

pre-condition that enables the transition between actions.

Context–aware execution

We use the task representation obtained above to give the robot the

ability to perform a task in two cases: (1) autonomous execution, in

which a robot can execute a unimanual or bimanual task following the

extracted constraints. (2) collaborative execution, in this case, alongside

the task representation used previously we also assess the user’s specific

manner to use the tools when executing the task.

We analyze the grasping quality as an indication of whether the grasp

is adapted for exerting forces and torques across directions of interest.

These features allow the robot to anticipate and adapt to the user’s

actions, when performing the task collaboratively.

User performance assessment in force control tasks

We propose an approach for automatically assessing the performance

from demonstration data of multiple users. We develop objective task–

specific metrics. These are related directly to the task constraints which

we extract automatically. The determined skill is then used for selec-

tively learning parts of the task from different users. We test the system

performance on a daily task.
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Chapter 
1

Chapter 
2

Chapter 
3

Chapter 
4

Chapter 
5

Chapter 
6

Intuitive interaction

Reliability

Predictability

Bootstrapping learning 
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Improved Performance and 
Interaction

Transparency for the user

Control Variables

Task Decomposition

Generalization

Master – slave roles

Arm coupling

Transition conditions

Unimanual Constraints

Coordination Constraints

Objective Metrics

Selective Learning

User profiling

User Engagement

Improved Skill Acquisition

Demonstration Quality

Skill Assessment

Interaction Dynamics

Goal Reaching Limitations Future Work

Figure 1.5 Conceptual organization of the chapters.

Sustained interaction dynamics through robot feedback

We evaluate an iterative teaching procedure, by correlating the user’s

perceived satisfaction with the quality of the demonstration across both

objective and subjective metrics. We show that robot provided feed-

back, in particular facial expressivity, significantly improves the user

experience and perception of the whole interaction.

1.6 Thesis Outline

The results in this thesis have been either previously published or are cur-

rently under submission. Following the thesis structure we provide a brief sum-

mary of each chapter. The logical flow is illustrated in Fig. 1.5.

Chapter 2. Constraint–based task representation

This chapter presents an approach for extracting unimanual task con-

straints from human demonstrations. They consist of the reference

frame, the relevant variables and the stiffness modulation. A change

in the constraints determines a switch to a new action, thus segmenting

the data into meaningful parts. The constraints drive model learning

and facilitate the control of the robot by parameterizing a cartesian

impedance controller used throughout the task. This work has been

published in Ureche et al. (2015).
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Chapter 3. Constraint-representation of coordinated behavior

In this chapter we extend the approach introduced previously to biman-

ual tasks, and extract additional coordination features that are included

in the task representation. We use this representation for both au-

tonomous and collaborative execution. This chapter is based on a jour-

nal publication currently under review Pais Ureche and Billard (2017a).

Chapter 4. User skill assessment based on task constraints

In this chapter we use the previous proposed approach of constraints

extraction to assess a user’s performance when demonstrating the task.

This provides an objective assessment which is task–specific but per-

formed automatically with respect to the constraints. We evaluated

this approach through a user study where we show a correlation be-

tween the identified skill of the user when demonstrating the task and

the performance of the robot when autonomously executing the same

task from the models extracted from that user. This work is under

review in Pais Ureche and Billard (2017b).

Chapter 5. Interaction dynamics in PbD

In this chapter we focus on improving teaching interactions through

feedback provided by the robot. We conducted a user study on the iCub

humanoid robot to explore various modalities of providing feedback that

was correlated with the teaching quality. Facial expressivity, specific to

humanoid robots, proved to be the most efficient way of communicating

states that led to increased demonstration quality and user satisfaction.

This work was presented in Pais et al. (2013).

Chapter 6. Conclusions

We conclude by an overall assessment of our contributions with respect

to the goals identified in the introductory section. We discuss the limi-

tations of our approaches and identify directions for future work.

17





Chapter 2

Constraint–representation

of unimanual tasks

The work presented in this chapter has been published in:

Pais Ureche A. L., Umezawa K, Nakamura Y, Billard A (2015) Task parameter-

ization using continuous constraints extracted from human demonstrations,

IEEE Transactions on Robotics, 31(6), 1458 – 1471, [TRO 2015]

2.1 Forward

Under the general theme of this thesis of extracting and using task con-

straints, in this chapter we focus on unimanual constraints. We specifically

target manipulation tasks, that consist of several actions requiring different

specifications, such as a position–controlled reaching action, followed by a force–

controlled manipulation action and an additional reaching movement. In this

chapter we propose an approach for learning these task specifications automat-

ically, by observing kinesthetic human demonstrations.

We hypothesize that task specifications consist of variables that present a

pattern of change that is invariant across demonstrations. We identify these

specifications at different stages of task completion. Changes in task constraints

allow us to identify transitions in the task description and to segment them into

sub-tasks. We extract the following task-space constraints: (1) the reference

frame in which to express the task variables, (2) the variable of interest at each

time step, position or force at the end effector; and (3) a factor that can modulate

the contribution of force and position in a hybrid impedance controller.

The extracted constraints serve two purposes: first they guide model learning

such that we encode the variables of interest across the corresponding relevant

directions. Secondly they parameterize a Cartesian impedance controller used

for the entire task duration which allows switching between the reference frames

of each action, applying the corresponding force-motion profiles and adapting

the stiffness of the arm.

We validate the approach on a 7 DOF Kuka arm, performing 2 different

tasks: grating vegetables and extracting a battery from a charging stand. Us-

ing this constraint–representation allows the robot to combine specifications of

individual actions to achieve a high-level goal.
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Figure 2.1 From recording human demonstrations (top row), we detect the
relevant frame of reference and the direction in which to apply a hybrid force
and position controller. In this figure the robot has correctly extracted that the
frame of reference is attached to the grater and that force has to be applied
along the vertical axis, whereas position control is needed along the horizontal
plane of the grater. This allows the robot to reproduce the task even when the
grater is moved to a different position and orientation (bottom row).

2.2 Introduction

Daily activities such as dish washing or preparing a meal often require com-

pleting multiple actions while interacting with different objects. When per-

forming such tasks, humans are able to focus on the key aspects necessary for

achieving the goal. For example when grating a vegetable they naturally push

against the grater, and focus on maintaining a certain speed and contact force

with the grating surface. Moreover, humans naturally introduce variability by

repositioning objects or by using different paths between two objects.

Consequently, obtaining a feature-based representation for such high-level

tasks requires:

1. relating these features to the objects in the task (extracting the local frame

of reference).

2. accounting for the large variability between demonstrations and decid-

ing what feature should be reproduced (extracting task constraints with

respect to trajectories, force profiles and necessary stiffness modulation)

In this work we propose an approach for automatically extracting continuous
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task constraints required for successfully completing a task. We consider the

task presented in Fig. 2.1, consisting of grating a vegetable and disposing the

remains. We use Programming by Demonstration (PbD) to record a set of

kinesthetic demonstrations while varying the initial positions of the robot and

the spatial configuration of the objects used.

We use the demonstration data to extract the object to be used in each

part of the task (either o1 or o2, see Fig. 2.1) and the way the task should

be performed (i.e. alternating force and position control). More specifically we

consider a hybrid impedance controller:

τ = JT (K(x− xr) + F ) (2.1)

where τ ∈ R
n is the joint control input for an n degrees of freedom manipulator,

J is the Jacobian. The following variables: xr ∈ R
D, the reference cartesian

position, F ∈ R
D, the desired force and K ∈ R

D×D, the stiffness matrix are

extracted from the user demonstrations. In this case the number of dimensions

is D = 3.

We aim to learn a parametrization of this control law applicable for the whole

task duration. Our approach exploits the variability between demonstrations to

learn a criterion for determining a notion of coherence in the demonstration.

First for each time step, we extract a reference frame R in which the variables

are most consistent. In some cases this may represent a quasi-orthogonal de-

composition of position and force control along the axes of the object, although

we continuously use a Cartesian impedance controller.

Secondly we extract the variables of interest in the selected reference frame.

Specifically, a task variable (such as the force perceived at the end effector) might

have a large variability within a demonstration, thus indicating that it becomes

important only in a given region of the task. Regions in which a variable changes

very little throughout a set of sequential demonstrations prove coherency in that

part of the task. Therefore we focus on extracting such behaviors as the task

constraints that should be reproduced.

Third we extract the stiffness parameter K which allows us to modulate

the contribution of position and force when there is no decomposition in hybrid

control as well as to ensure safe interaction and proper task completion.

These task specifications change when switching from one action to another.

Typically we record demonstrations of a full task, consisting of several such

actions. Applying our method automatically segments the demonstration data.

The grating task for example consists of 3 distinct phases: reaching for the

grater, grating and reaching for the trash can. Two reference frames are used

(Fig. 2.1): object o1 (the grater) for the first two segments and object o2 (the

bowl) for the third part of the task.

Automatically obtaining this decomposition guides the learning phase of

the PbD framework. A different model can be learnt for each atomic action
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(using various machine learning techniques for motion encoding), in the local

frame of reference, using the data between two changes of constraints. In our

approach we learn from the demonstrations a time–invariant path profile for

the directions along which position is the variable of interest (xr). For the

directions along which force is important, we learn a dependency between the

desired force profile and the desired trajectory. For the particular task of grating

vegetables we obtain a decomposition of force and position control. This applies

to the motion along the grater’s surface where force control is performed (thus

F becomes a function of other variables, such as in Eq. 2.2, F = f(x1)), while

position is controlled on the other two axes, leading to:

τ = JTR

⎡
⎢⎢⎢⎣

K1(x1 − xr1)

K2(x2 − xr2)

F

⎤
⎥⎥⎥⎦ (2.2)

Our approach is aimed at bootstrapping information for learning and has

the following contributions:

1. it automatizes learning, by bootstrapping information about the task, and

parameterizing the learned models. It performs automatic task segmen-

tation and reduces the number of the variables encoded for each segment

by extracting the important ones. This simplifies the learned model by

focusing only on the variables of interest resulted from this decomposition

(e.g. instead of learning a full encoding of 3D force vs. 3D position model,

one simplifies the model by encoding just the force profile corresponding

to the axis where this is applied).

2. it identifies task constraints directly from variables that can be used for

control (end effector position, force and stiffness) and offers a clear decom-

position of these. This enables a consistent encoding of all the subtasks for

using a single controller and ensures a smooth execution by directly em-

bedding the constraints. This is applied through a Cartesian impedance

controller, by modulating the stiffness (e.g. having zero stiffness on one

axis is equivalent to performing pure force control on that axis). There-

fore we learn a stiffness modulation profile to be applied online during the

execution.

3. the learned skill is generalizable to different locations or similar objects.

This is achieved by learning the desired control with respect to the deter-

mined object frame (i.e. relating the action to the object on which this

is performed). The system is robust to perturbations due to the time–

invariant encoding.

4. it extracts task constraints without requiring any prior information about

the goal of the task, actions in the task or models of the objects.
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Next we review related work in Section 2.3 and describe the different stages

of our task constraints extraction in Section 2.4. We contrast the extraction of

constraints for two tasks differing in the duration and number of important vari-

ables in Section 2.5. We discuss the advantages and limitations of our approach

in Section 2.6.

2.3 Related Work

In this work we focus on extracting artificial task constraints as described

in Villani and De Schutter (2008); Howard et al. (2009), based on the variabil-

ity observed in the demonstration data. The idea that invariants in motion

determine important task features was first used by Bobick and Wilson (1997)

for recognizing gestures from continuous data, and representing them as an en-

chainment of states. In our work we use the variance not only to segment data

but also to determine the relative importance between various variables and

the frame in which these are most consistent. We reconstruct the task from a

sequence of states, parameterized with the extracted constraints. Therefore we

review related work with respect to automatic extraction of constraints, task

segmentation, and constraint–based motion planning.

2.3.1 Automatic extraction of reference frames

In our previous work (Calinon et al., 2007) we proposed extracting the refer-

ence frame in a manipulation task with respect to a proposed metric of imitation.

Data recorded from demonstrations (arm joint angles, hand cartesian position

relative to the objects and gripper status) is projected into a lower dimension-

ality latent space and further encoded in a time-dependent manner using a

Gaussian Mixture Model (GMM). Gaussian Mixture Regression (GMR) is used

to reproduce the motion. In an early attempt, temporal variations are encoded

in an Hidden Markov Model (HMM) and implicit segmentation is performed

through HMM states (Calinon et al., 2006). These implementations have the

limitations of encoding the motion in a time-dependent manner. Additionally

in our approach we focus only on the end effector state (actual position and

force, observed in the demonstration), thus making the skill easily transferable

to other robotic platforms. Moreover we increase the task complexity and the

number of encoded constraints.

A different method of selecting a task-space is based on three criteria (Muhlig

et al., 2009): a variance–based analysis of object trajectories, attention focus

on objects in the task and an evaluation of the teacher’s discomfort during

demonstration. While this method takes into account many factors, it is applied

solely to vision–tracked human demonstrations. In our case the demonstrations

are performed kinesthetically in order to allow the robot to experience forces
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that should be applied on objects. Moreover analyzing if the human maintains

an uncomfortable posture during demonstration might reveal that the particular

action was important for the task (Muhlig et al., 2009). In our case a direct

evaluation is done on robot’s proprioceptive data, while the user chooses an

arbitrary position for demonstration.

The approaches mentioned above lack information about how the manip-

ulation is performed that in some tasks may be key to successful execution.

Therefore we build on these existing approaches by extracting constraints with

respect to force profiles and robot stiffness in different regions of the task, and

assess the effects this has on task completion.

Expressing the control variables in the local reference frame of the object on

which manipulation is performed at a given time, allows the robot to properly

execute the task when the positions of the objects change in the scene. Moreover

this allows us to consider constraints not only as factors that limit the robot’s

motion (Stilman, 2007), but that also add meaning to the motion (i.e. a grating

motion, characterized by a given force and motion profile, is only meaningful

when performed on a grater in the context of a grating scenario).

In some cases there might be multiple actions performed on the same ob-

ject. The methods presented above extract one reference frame, but cannot

disambiguate between the different positioning needed for each action. In our

work we address this issue by also extracting an attractor frame (relative to the

reference frame extracted above).

2.3.2 Automatic extraction of force information

The ability to successfully perform complex tasks resides in making use of

additional sensing. For example, assessing joint torque values can be an indi-

cator of whether the motion of the end effector is constrained Sukhoy et al.

(2012). Therefore the second aspect that we address is detecting axes in task

space where force control applies and encoding these force profiles. Typically

the decision of choosing an axis in task space on which to perform force control

or position control is engineered in advance. In the proposed approach we were

able to automatically determine an arbitrary reference frame with respect to

the object of interest in which a decomposition of force and position control can

be obtained and we selected the suitable type of control that applies to each

axis. However, adding the force information, while of high importance for the

task, can be challenging depending on the platform. Kinesthetic teaching for

demonstrating the motion might need to be used in conjunction with a haptic

device for demonstrating the required force profile (Kormushev et al., 2011).

Additionally the stiffness is an important parameter when executing a task,

as varying the robot’s stiffness according to the task ensures safer interaction

(Calinon et al., 2010). In our approach we determine the required stiffness mod-
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ulation as a relative measure between the contribution of force and position on

each axis of the object. This leads to learning hybrid control in an automatically

determined frame.

2.3.3 Task segmentation

The constraints extraction topic is complementary to performing task seg-

mentation which on the long term offers the possibility to easily recognize,

classify and reuse motions (Wang et al., 2003; Lin and Kulic, 2011; Shim and

Thomaz, 2011).

Typically in robot learning from demonstration of a task that consists of

several actions, each gesture is shown to the robot separately. The main reason is

that task specifications change from action to action. In the proposed approach

we are able to automatically determine when these task specifications need to

change and the next set of specifications.

In our work we do not explicitly seek to segment the data, however segmenta-

tion occurs naturally when the task constraints change, resulting in meaningful

segments that encode atomic actions. This allows a flexible representation of

the task, exploiting the local behavior in each sub-task. A vast majority of

recent works in segmentation focus solely on motion data represented by sets

of joint positions or hand positions and orientation retrieved by motion capture

systems in the case of human motion and by robots proprioception in the case

of robotic motions. However very few works focus on segmenting task data that

includes force information.

The existing approaches for motion segmentation (Wang et al., 2003) rely

on either (1) classification based on existing motion primitives used for prior

training (Mangin and Oudeyer, 2012; Tao et al., 2012; Kulic et al., 2012); (2)

looking for changes in a variable, like zero-crossings (Takano and Nakamura,

2006); or (3) clustering similar motions by means of unsupervised learning (Kulic

et al., 2008; Grollman and Jenkins, 2010). The downside of these approaches is

the need of prior task knowledge, which may be poor and incomplete in real-

life situations. Moreover they are sensitive to the variables encoded and have

difficulties when applied to data such as force information where a large number

of zero crossings may appear, making the encoding of motion primitives difficult.

The first approach for segmentation can ease robot control because of the

existence of motion primitives. However while it is safe to assume that human

motions are likely to follow a specific pattern in a known context, rather than

being random (as shown in (Bennewitz et al., 2005)), a major drawback is the

need to include prior knowledge. It also restricts the scope of segmentation

by knowing what the task is about, such as segmenting motions used in robot

assisted surgery (Tao et al., 2012).

The second segmentation involves searching for zero velocity crossings (ZVC)
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(Takano and Nakamura, 2006) or other changes in a variable compared to a

known state (Sukhoy et al., 2012). This approach is sensitive to the variables

encoded while one needs to find a way that would ensure optimal segmentation

across all task dimensions. Regions of low variance have been alternatively

used to determine segmentation points Lee et al. (2011). Furthermore most of

them rely on other techniques for human motion analysis which include (Wang

et al., 2003): Dynamic Time Warping (DTW) used in the temporal alignment

of recorded data; or HMM for analyzing data that varies in time (such as hand

movements sign language (Matsuo et al., 2008)). Additionally when humans

demonstrate a task to a robot, they may stop during the demonstration to

rearrange an object or teach in a different manner. In these cases the above

mentioned approaches over-segment the data.

The third approach encompasses a more complex view of human motion,

such as learning and clustering motion primitives in an incremental manner,

from observing humans (Kulic et al., 2008). The method in (Kulic et al.,

2008) performs unsupervised segmentation based on motion encoded through

an HMM. The obtained segments are clustered according to a measure of rel-

ative distance and organized in a tree structure. It encodes generic motions

at the root, that gradually become more specialized close to the leaves. The

algorithm allows to change the model according to known primitives (Kulic and

Nakamura, 2008), and to use the same learned model not only for recognizing,

but also for generating motions (Kulic et al., 2012). While being one of the

most robust implementations to date, the approach lacks time independency in

motion encoding.

These approaches, while efficient, have the shortcoming of being task specific

and requiring a considerable amount of prior knowledge which may be poor and

incomplete in real-life situations. Thus they achieve little generalization across

a wide range of tasks. They also fail to model specific features of the motion,

focusing mainly on changes in position. Moreover these algorithms focus on

extracting motion primitives, as opposed to learning a parametrization of a

control system that remains the same all along the task, as in our approach.

This allows learning and reproducing a task in a seamless manner.

Our approach departs from the above-mentioned implementations by: (1)

taking a broader view on the task and analyzing the motion also with respect

to constraints that apply to forces and stiffness; (2) extracting task constraints

from a low number of demonstrations, while removing the over-segmentation;

(3) finding the relevant atomic actions in a task, without embedding any prior

information about the goal of the task, nor models of the objects.

This makes the approach suitable for tasks that encompass switching be-

tween multiple atomic actions. Moreover we consider continuous constraints

that may apply throughout or only on a subpart of the task. Finally, we use

a single controller throughout the task execution, while the constraints identify

values taken by the variables of the impedance controller as the task unfolds.
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2.3.4 Constraint based motion planning

Knowing the constraints that apply to each action that is to be performed can

lead to a better task planning (Oriolo and Vendittelli, 2009; Ye and Alterovitz,

2011). A constraint–based representation of a complex task can be used by a

high level planner (Beetz et al., 2010) for executing plans or for inferring motion

grammars (Dantam and Stilman, 2013) for a high-level representation.

Common ways of encoding the task sequence use: Finite State Machines

(FSM) (Schutter et al., 2007; Niekum et al., 2013), Petri nets, Markov Models

(Lee et al., 2011; Arsenio, 2004), graph and tree representations (Jäkel et al.,

2010; Konidaris et al., 2012).

In our work we consider the sequence of atomic actions implicit in the demon-

stration. We therefore determine a Finite State Machine (FSM) to execute the

task. The states are not known a priori but extracted. They correspond to the

atomic actions identified previously and encode their corresponding constraints.

Our implementation takes a low-level approach by encoding constraints, directly

in the control variables. This guarantees the task success without knowing the

conceptual goal, and allows isolating atomic actions for individual reuse. The

task is executed using a single controller and embedding the constraints online,

during the execution.

2.4 Method

We consider a set of N demonstrations of a task performed under changing

conditions, using a number No of objects. The data set is a vector of L = 2

components ξid = {F id, xid} consisting of end effector measurements of force and

position. The upper indices correspond to representing the data in the reference

frame of each object oi, i ∈ 1 . . . No, while the lower indices correspond to the

dimensions considered d = 1 . . . D. The ξ0 corresponds to the original recorded

data (in R0), the fixed referential in the base of the robot. The data was

temporally aligned using Dynamic Time Warping (DTW), resulting in a set of

length T . Each demonstration is composed of a series of T ·D ·L measurements,

with t = 1 . . . T number of time steps, d = 1 . . . D, dimension of each of the

l = 1 . . . L components.

We postulate that if a variable (a) changes value significantly within a single

demonstration and (b) changes this value in a systematic way across demon-

strations then this variable is significant for the task. It hence becomes a task

constraint that should be reproduced. We thus propose a criterion, computed

for all variables D · L and all objects No, given by the difference between the

variance over the time window and that over trials. This allows comparing the

task variables in a relative manner, without setting any hard thresholds. At
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Figure 2.2 Example of recorded data and computed variance over trials
(V artrial) and over a time window (V arwin) for a measured variable xi. Region
A shows data with little variance across trials (i.e. a feature of that should
be reproduced). Region B shows data with large variance over trials, and low
variance over a time window (almost constant).

each time step the criterion is computed on each dimension as:

C
(
ξid,l

)
= V arwin

(
ξid,l

)− V artrial
(
ξid,l

)
(2.3)

thus comparing the force and position measurements on each axis. The obtained

value is normalized C(ξid,l) ∈ [−1, 1]. The variances V artrial and V arwin are

defined as:

V artrial
(
ξid,l

)
=

1

N

N∑
i=1

(
V ar(ξid,l)

)
(2.4)

V arwin
(
ξid,l

(
t : t+ ω)) =

1

N

N∑
i=1

(
V ar(ξid,l(t : t+ ω))

)
(2.5)

The values of the two variances are normalized such that V artrial, V arwin ∈
[−1, 1].

In a typical robotic task a minimum of D ·L variables have to be compared

if using a 3D measurement of position and force (3 groups of 2 variables). The

total number of criteria to be computed for a task is given by NC = No · L ·D.

The size of the time window is an open parameter. In this case it is chosen

arbitrarily as being the shortest time period in which we see noticeable changes

in the task flow.

The proposed method for extracting the task constraints is illustrated below,

on an uni-dimensional measurement (D = 1) of two variables: force F ∈ R and

cartesian position x ∈ R of the robot’s end effector. For the purpose of this

example we drop the lower index d. We also consider two objects o1, o2. The

data set is composed of the pair of elements: ξi = {F i, xi} considered to be

recorded over a number of N demonstrations of a task (see Fig. 2.2 (a)). This

determines NC = 4 computed criteria, as shown in Fig. 2.3 (a).
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Figure 2.3 Comparison between the criteria computed for uni-dimensional mea-
surements of force (F) and position (x) in 2 reference frames (RF1 and RF2).

2.4.1 Determining the Task Constraints

Using the defined criterion we extract the following task constraints: the

frame of reference (as explained in Section 2.4.1), the relative importance of

position and force on each axis of the object (see Section 2.4.1), and a weighting

factor between the two, used to modulate the controller’s stiffness throughout

the task (Section 2.4.1). The procedure is summarized in Alg. 2.1.

Extraction of the Reference Frame

For choosing a frame of reference we compare the computed criteria and

choose at each time index t, t = 1 . . . T the value of the highest criterion for

all the variables considered max(C(ξid,l)), see Fig. 2.3 (b). Thus the vector

of obtained maximum values max(C(ξid,l)) is analyzed separately for each di-

mension d, using a time window of arbitrary size (in this case w1 = 100 time

steps). We consider that in each time window the reference frame is given by

the object o with the highest number of occurrences of its corresponding crite-

rion max(C(ξod,l)). In this example there are two changes of reference frame, as

shown in Fig. 2.4 (a): for the first 100 time steps the reference frame R is given

by object o2, for the next 200 time steps there is a change to o1, and for the

rest of the motion the RF is changed to o2.

The changes in the reference frame determine a set of segmentation points

ψs, s = 1 . . . S which delimit the actions performed on each object. In this

example there are 3 actions (one performed on object 1 and two performed on

object 2) determined by the change of RF. Each segmentation point corresponds

to a state that contains the time index ts when the change occurred and the id

of the reference frame used up to that point ψs = [ts, Rs].
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Figure 2.4 The reference frame and variables of interest are given by the max-
imum criterion in a time window ωi.

Extraction of the Relevant Task Variables

The criterion defined in Eq. 2.3 allows us to compare in a relative manner

the influence of variables of different types (like force vs. position), and that

vary across different scales, see Fig. 2.3 (a). The aim is to be able to quantify

their relevance with respect to the task, so as to give more importance to the

variable of interest in the controller and to adjust it when a change occurs.

For determining the relevant task variables, we analyze the criterion on each

dimension d using a time window of arbitrary size (in this case w2 = 100 time

steps). Similarly to extracting the reference frame, we consider the relevant

variable in each time window to be the one that has the highest occurrence of

its corresponding maximum criterion in that interval. In the given example,

there are several changes between position and force as variables of interest (see

Fig. 2.4 (b)).

The changes in the variable of interest determine additional segmentation

points which together with the initial points determined by the change of ref-

erence frame delimit individual atomic actions such as reaching movements. In

the example described above, there are 3 segmentation points corresponding to

the change of the variable of interest (see Fig. 2.4 (b)). The first two points

are identical to the segmentation points ψ1 and ψ2 found by the change in the

reference frame. The next point ψ3 marks a change from a force-based part

of the task to a position based part. The final point ψ4 concludes the motion.

The points are sorted according to the time index when the segmentation oc-

curred. The information about the variable of interest is added to the vector

ψs = [ts, Rs, ξ
s
d,l]. The current ξsd,l now contains only the data between the

previous and current segmentation points.

Extraction of the Stiffness Modulation Factor

Determining the axis-specific relative importance between the two variables

can be done by computing a weighting factor λ that balances the contribution
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of the force and position according to the relevance determined above. Thus,

for each dimension d the value of λd ∈ R
D is given by the normalized difference

between the criterion computed for position and the one computed for force

λd = C(xd)− C(Fd) (2.6)

Thus the value of λ ∈ [0, 1] becomes a weighting factor for the controller’s

stiffness K. Therefore we can use an impedance controller for reproducing the

motion with the factors described above representing continuous constraints,

that can be directly embedded in the robot’s control.

τ = JT ·R · (λK(x− xr) + F ) (2.7)

The corresponding λ profile for each segment of the motion is added to the

constraints vector ψs = [ts, RFs, ξ
s
d,k, λs]

Choice of time–window size

In the example presented above the size of the time window was chosen

arbitrarily. When performing manual tuning our aim was to determine a time

window that would result in avoiding very sudden changes from an important

variable to another. For example switching from force control to position control

for less that 10 ms will not have an effect on the task.

However a variable time window is desirable. We propose a way of deter-

mining a suitable time window by comparing the average variance with the

instantaneous variance, therefore monitoring the rate of change in the signal.

For example in the signal presented in Fig. 2.5(a), choosing a large time win-

dow (e.g. 1200 time steps) leads to loosing information because the average

variance in the first part of the signal is different and not representative for

the second part of the signal. Therefore the average variance in a local time

window (vartw) should be similar with the instantaneous variance computed

at each time step (varts). A change in the average variance determines a step
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Algorithm 2.1 Task Constraints Extraction

Bootstrapping(Set of N demonstrations: ξid,l
1→N

= {F i
d, x

i
d})

Do DTW, dataset length T

Criteria: C(ξid,l) = V arwin(ξ
i
d,l)− V artrial(ξ

i
d,l)

s = 0 % number of segmentation points

% Determine the reference frame:
for t = 1 : ω1 : T do

R(t) = Ri for which Cmax = max
t:t+ω1

(C(ξil ))

if RF (t) �= RF (t− 1) then

s = s+ 1; % Create a new segmentation point

ψs = [ts, Ri] % add the current constraints

end if
end for

% Determine the variable of interest:

for each dimension d = 1 : D do

for t = 1 : ω2 : T do

add ξid,k to the current constraints vector

ψs = [ts, Ri, ξ
i
d,l] for which Cmax = max

t:t+ω2

(C(ξid,l))

if ξid,l(t) �= ξid,l(t− 1) then

Insert a new segmentation point

end if
end for

% Determine the stiffness modulation factor:

for each segment s do

add λd,s(t) = C(ξd,1(t)− ξd,2(t)) to the constraints vector

ψs = [ts, Ri, ξ
i
k, λd,s]

end for
end for

return ψ1:s

end

change in the instantaneous value. Therefore we can compute a suitable time

window using a variable ε defined as: ε = |vartw − varts|. A significant change

in this measure determines starting a new window. According to this variable

(see Fig. 2.5(b)) we were able to determine two windows (ω1 = 513 samples

and ω2 = 595 samples for the given example, based on an abrupt change in ε.

2.4.2 Constraint–based Motion Learning

In our work, segmentation of the demonstrated data occurs whenever there

is a change in the extracted constraints. This is a natural manner of segmenting

as the points in which either the reference frame or the variables of interest

change, delimit atomic actions (e.g. the force sensed at the end effector might

be relevant in the first part of the task while after the segmentation point, end

effector’s position could become more relevant). Segmenting and interpreting

the data in a stochastic manner allows regenerating the motion according to

the measures determined to be important as well as finding optimal control

strategies with respect to the variables of interest (see Table 2.1, Columns 1

and 2).
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When encoding the motion profile we aim to preserve the exact behavior

seen during demonstration. We therefore choose to encode variables that show

a temporal coupling (like position and orientation, that change synchronously

towards a target posture (the attractor)) using our Coupled Dynamical Systems

(CDS) approach Shukla and Billard (2012). This encompasses the following

advantages: (a) the motion is encoded in a time–invariant manner and ensures

asymptotical stability at the target of both dynamical systems; (b) the motion

follows the demonstrated dynamics even if the execution starts from unknown

regions of the space, far from the demonstrated motion, without the need to

replan or re-scale the trajectory; (c) the temporal–correlated behavior of the

two variables is preserved and thus a perturbation in one of the systems does

not cause an unsynchronized behavior, the robot being able to adapt online to

changes in the environment.

With respect to a given reference frame R extracted previously the CDS

approach determines an attractor (a relative positioning and learns the motion

profile with respect to this frame). In the given example there are two attractors

with respect to the grater object and one for the bowl.

Learning the motion profile

We choose to encode the motion using a coupled dynamical system approach,

as described in Shukla and Billard (2012), which allows us to preserve the cou-

pled evolution of position and orientation towards the target posture, that was

observed in the demonstrations. The force profile is encoded separately, as a

function of the position. This allows the robot to execute the task in changing

conditions and to generalize to situations not seen during training (Fig. 2.1).

Each individual variable is encoded as a non-linear dynamical system of the

form ẋ = f(x), which encodes the mapping between a variable and its first

derivative thus removing the explicit time dependency. Here x and ẋ ∈ R
D

represent the cartesian position and velocity of the end effector. The function

f : RD �→ R
D (initially unknown, but implicit in the demonstrated behavior) is

a continuous and continuously differentiable function stable only at the attrac-

tor
∗
x. The non–linear behavior of function f is encoded using a mixture of k

Gaussians, specified by a vector θkx = [πkx, μ
k
x,Σ

k
x], representing the parameters

of the GMMs (priors, means, covariance matrices), such that P (x, ẋ|θkx) repre-
sents the dynamics of system 1. Based on this encoding the velocity ẋ is thus

computed as ẋ = E{p(ẋ|x; θkx)}. The model is learned through maximization of

likelihood under stability constraints (see Shukla and Billard (2012) for details).

In our case the absolute position of the attractor in each segment is estimated

from the initial set ξ0 (in R0) as the average of all the points from the N

demonstrations, on each dimension d, at the segmentation time ts, resulting in:
∗
xd = avg

1→N
(xd(ts)). The motion is encoded in the attractor’s reference frame R∗,
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State Constraints Motion Encoding

ψ1 [ts1 , R1, F, λ1] Cψ1
= [Cx, θ

k
F , θ

k
λ]

ψ2 [ts2 , R2, x, λ2] Cψ2 = [Cx, θ
k
λ]

ψ3 [ts3 , R2, F, λ3] Cψ3
= [Cx, θ

k
F , θ

k
λ]

ψ4 [ts4 , R1, x, λ4] Cψ4
= [Cx, θ

k
λ]

Table 2.1 Final task parametrization for the given example, consisting of states
ψs, the extracted constraints and the corresponding statistical encoding to be
used by the controller in each segment, Cψs

.

Figure 2.6 Finite State Machine used for executing the task. Each state encodes
the determined constraints. We consider that the order of the demonstrated
actions is implicit for the task flow.

such that the attractor becomes
∗
x = 0. The axis of the attractor’s reference

frame are not necessarily aligned with those of Ri and the origin is located at
∗
x. In a grating task for example there are two attractors with respect to the

grating surface: the top (initial point touched on the grater) and the bottom

(after passing the blade).

Similarly we encode the rotation specified by an axis-angle representation r ∈
R

4, as P (r, ṙ|θkr ), with respect to an estimated attractor
∗
r. Finally P (γ(x), r|θkc )

represents a coupling function between the two systems, learned using maxi-

mization of likelihood. During the execution the system updates the dynamics

of system 1 through GMR, second the coupling is updated and this determines

updating the second system (in this case the orientation) (see Alg. 2.2).

The model can be further parameterized to control the speed and amplitude

of the robot’s behavior under perturbation, using two scalars α, β. While in

the original implementation in Shukla and Billard (2012) these parameters are

learned from recording good trials and perturbed demonstrations, here we can

estimate them based on the variance information, such that in regions with

high variability the adaptation is slower than in regions with low variability.

Thus, in the proposed impedance controller, the reference trajectory for the

reaching segments is given by the learned CDS model. This ensures that the

learned model follows the original dynamics of the demonstrated motion, and

it is stable at the target. The synchronous evolution is ensured through the

coupling function. The complete CDS encoding of the motion in a sub-part of

the task is thus specified by the vector: Cx = [θkx, θ
k
r , θ

k
ξ ,

∗
x,

∗
r, α, β].
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Algorithm 2.2 Constraint–based task execution

FSM Execution(ψi, Cψi
, i = 1 : s)

do
read robot current position ξd,1 and EE force ξd,2
read objects positions
for all task segments s do

Use current state’s constraints ψs = [ts, Rs, ξdl , λs]

Transform data to Rs

% Compute the next desired robot position {x(t+ 1), r(t+ 1)},
% using CDS (Shukla and Billard, 2012)
if current attractor

∗
x,

∗
r not reached then

% Compute next end effector position
ẋ = E{p(ẋ|x; θkx)};
x(t+ 1) = x(t) + ẋ(t)Δt

% Infer orientation based on current position
r̃ = E{p(r|γ(x); θkc )};

% Compute next end effector orientation
ṙ = E{p(ṙ|β(r − r̃); θkr )};
r(t+ 1) = r(t) + αṙ(t)Δt

% Determine stiffness modulation based on current position
λ = E{p(λ|x)}

if Force is important on dimension d then

% Predict force based on current position
F = E{p(F |x)}

end if
Transform all data back to RF0

Update robot’s motion (according to eq. 2.7)
end if
Else Go to the next state

end for
until Task completed

end

Learning the force profile

For segments of the task, and across the dimensions in which force becomes

important, we use GMM to learn a joint distribution of the variables F and x.

We choose to encode the force profile with respect to the axis in which we see

noticeable changes in position. In the grating task for example, force control is

performed along the Z axis of the object; there is no modification in position

along the Y axis (i.e. along the width of the grater, but the highest variance

is observed with respect to the motion along the X axis (the grater’s length),

which is thus the variable with respect to which we encode the force profile.

We use a model comprising a mixture of K Gaussian components, such that:

p(F, x) =
K∑
k=1

(πkF · p(F, x;μkF ,ΣkF )), where πkF , μkF and ΣkF represent the priors,

the mean and the covariance matrix for the Gaussian model. These parameters

are learned through (EM) Expectation – Maximization algorithm. The vector

θkF = [πkF , μ
k
F ,Σ

k
F ] is added to the Cψs

= [θkF ]. During the execution, GMR

is used for predicting the force to be applied based on the current position:

E{p(F |x)}. Unlike the encoding of position, for the force there is no attractor,

as force control is performed along a trajectory.
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(a) Reaching the grater (b) Grating the whole
vegetable

(c) Trashing the remains

Figure 2.7 Atomic actions in the Vegetable Grating Task. The user demonstrates
the task, using different starting configurations of the objects and the robot.

Learning the stiffness profile

We encode the stiffness modulation factor λ similarly to encoding the force,

by learning a joint distribution p(λ, x) using a mixture of k gaussians. The

model is parameterized by the vector θkλ = [πkλ, μ
k
λ,Σ

k
λ], representing the priors,

means and covariance matrices.

2.4.3 Constraint–based Execution

We assume that the order of the actions is implicit in the demonstration, thus

the reproduction is based on the determined sequence of ψ1:S points. A finite

State Machine containing the inferred states is generated, as shown in Fig. 2.6.

A state is generated for each change of constraints and contains: (a) the ex-

tracted constraints, and (b) the learned motion models, as they are summarized

in Table 2.1, Column 3. Typically the transition between states occurs when

the attractor of the current state is reached. This implies that reaching the

determined relative frame is the main factor for advancing the execution. How-

ever the variables that were not determined as important for control might still

hold complementary information, useful for state transitioning. The constraint–

based task execution is presented in Alg. 2.2.

2.5 Validation

This approach was validated on two robot experiments performed using a

7 degrees of freedom (DOF) KUKA Light Weight Robot arm (LWR), with the

provided Cartesian Impedance controller. The controller takes as parameters

the desired position, force and stiffness and it automatically adjust the damping

and dynamics terms for stability. The two experiments consisting of a kitchen

task, grating vegetables, and an office task removing a battery from a charging

stand, differ in duration, number of variables used for control and objects in-

volved. We performed a quantitative evaluation of the extracted constraints

with respect to the learned models, and a qualitative assessment with respect

to the task performance.
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2.5.1 Experiment I. Vegetable Grating Task

Task description

The task consisted of several atomic actions, presented in Fig. 2.7: reaching

from the initial position to the slicer (the motion takes around 3 to 5 seconds),

a repetitive slicing motion (on average around 30 seconds), a reaching motion

from the slicer to the trashing container (on average 2 seconds).

Two objects were used: a grater (o1) and a bowl (o2). Data was recorded

from the robot at 100 Hz, using kinesthetic demonstration and consisting of:

end effector position x ∈ R
3 and orientation (r ∈ R

3×3), and external forces

estimated at the end effector (F ∈ R
3). The objects were tracked at 100 Hz

using an OptiTrack motion capture system.

The variability of the task consisted in: (1) starting each demonstration

from a different initial position of the robot, and placing the objects in different

positions in the reachable space of the robot (we recorded data for 3 different

positions of the objects, placed on average 30, 45 and 65 cm apart from the initial

position); (2) using vegetables of different sizes and types (we recorded data for

3 types of vegetables (carrots, zukinis and cucumbers). The vegetables varied

in length, from a minimum of 10 cm for a carrot to a maximum of 35 cm for a

cucumber, and with about 2 cm in diameter); the variability of the manipulated

object affected the force applied by the user when providing demonstrations

and the duration of the demonstration. The task lasted until the vegetable

was fully grated; (3) inherent user variability between demonstrations. A total

of N = 18 demonstrations were recorded, 6 for each vegetable type, using 3

different objects poses.

Extracted Constraints

For extracting the task constraints we evaluated the 3D measurements of

position and force projected in the reference frame of each object. Following

the approach described in Section 2.4, the criterion on each axis was evaluated

in a time window of width w = 200 time steps (2 seconds) for determining

the reference frame. This resulted in one segmentation point. The motions

of reaching and grating were expressed in the reference frame of object 1, the

grater, and the motion of reaching the trash container was expressed in the

reference frame of object 2, the bowl.

Similarly, we evaluated the criterion on each dimension, using a time window

of width w = 300 time steps (3 seconds) for determining the variable of interest.

The results showed that the force on the vertical axis became important in

the second part of the task (grating and trashing), while only position was

important in the first part of the motion (corresponding to reaching the grater).
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Figure 2.8 The obtained segmentation overlapped on the demonstration data

The change in the variable of interest determined a new segmentation point.

A final point concludes the motion. Therefore 3 segmentation points ψs were

determined for this task (see Fig. 2.8), involving the 3 different states.

Two attractors were determined relative to the grater: one near the handle

(Grater top); one at the bottom (Grater bottom), after passing over the blade.

Similarly at the end of the motion the positioning was relative to the trash-

ing bowl. We thus obtained an attractor–based encoding of each action. The

learned dynamics for reaching the grater o1 and the trash o2 respectively are

shown in Fig. 9 (a) and Fig. 9 (b), with generalization across different starting

postures. Generalization with respect to a moving target is shown in Fig. 9(c);

the force and stiffness modulation are presented in Fig. 2.10.

A finite state machine was generated as described in Section 2.4.3. The

advancement of the FSM happened when the current attractor was reached, or

when the number of grating passes was completed. For evaluation purposes the

number of times the grating was performed was an additional condition for the

transition between states ψ1 and ψ2.

Task Evaluation

We performed both a qualitative and quantitative assessments and evaluated

(1) the correct extraction of task constraints; and (2) the ability of the system

to generalize to new object locations and different vegetables.

Evaluation of the extraction of constraints

We validated whether the model had correctly extracted the dimensions onto

which to provide either force or position control, by comparing the robot’s quan-

titative performance in executing the task when using the proposed approach

or other simple control schemes. For the quantitative assessment we measured
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Figure 2.9 Learned dynamics. Figures (a) and (b) show generalization with
respect to different starting locations; figure (c) shows the automatic adaptation
of the trajectory with respect to changing positions of the object.
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the effects of the determined variables as the determined constraints.

For evaluating the framework we compared our approach with standard con-

trol modes: a position controller and an impedance controller with fixed stiff-

ness values. For these two control modes, N = 5 different demonstrations were

provided, using gravity compensation mode (gcp) and robot’s execution was

evaluated during motion replays (Repi, i = 1 . . . 5) in the different setups: posi-

tion control (pos) and impedance control (imp). The performance under these

control modes was compared to the developed approach (amp). Several replays

were performed for each demonstrated motion. We constantly compensated for

the decrease of the vegetable’s height, during replays. Each group of 1 demon-

stration followed by 5 replays were performed on the same vegetable. A single

vegetable type was used, and the task was demonstrated using 5 passes over the

grating surface during each trial.

For all the trials we measured: the original and final weight of the vegetable

(uinit, ufin[g]); the original and final height (hinit, hfin[cm]). The original values

were measured before the demonstration was performed, while the final values

were measured at the end of the last replay round. For each round of demon-

stration and replay we measured the weight of the grated part (Δu[g]) with a

precision of ±1g and counted the number of successful passes (SP).

We evaluated the performance with respect to the following measures:

1. uratio[%] the ratio of the grated vegetable (ugrated =
∑

Δu) as a percent-

age of the initial weight.

2. hratio[%] the percentage of the vegetable length being grated (hinit−hfin)
with respect to the initial length.

3. SPratio[%] the percentage of successful passes (SP) out of the total passes

performed.

Results are presented in Table 2.2. Using a standard position controller

(Trials 1 - 5) for replaying the motion gave good results in a very low number of

cases: mean (M) = 12% and standard deviation (SD) = 10.95 successful passes,

while the amount of vegetable grated was bellow one gram per trial (M = 0.80g,

SD = 0.83). When replaying the recorded motion using an impedance controller

the number of successful passes increased (M = 52.5%, SD = 25.16).

These results were compared against the proposed approach (see Table 2.2,

Trial 6), using the parametrization learned from demonstrations. The grating

performance was assessed using the same performance metrics as for the stan-

dard control modes. The overall performance was better with respect to the

amount of grated vegetable, and the number of successful passes.
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Figure 2.11 Experimental setup for removing a battery from a charging stand.

Evaluation of the generalization ability

We tested whether the automatic segmentation of the task and the extraction

of reference frame was correct and led to a correct reproduction when the posi-

tion of the objects was changed. The robot regenerated the complete sequence

and managed to complete the overall task comprising the 3 segments even when

the objects were located in arbitrary positions and orientations, none of which

were seen during training.

The importance of being able to change the reference frame is illustrated

in Fig. 2.1, when using different positions and orientations of the two objects.

In this case we performed a pure qualitative assessment by placing the objects

in random positions and orientations in the robot’s reachable space, and using

different vegetables. We measured the number of successful passes over the

grater (using a normal and a larger surface).

2.5.2 Experiment II. Battery removal from charger

We tested the ability of the proposed method to properly extract constraints

on a second task, i.e. removing a battery from a charging stand, see Fig. 2.11.

The task was very fast paced. From the first segment to the last segment the

task lasted on average less than 5 seconds.

In this example we used a single object o, the battery stand. We recorded

data at 1 kHz, from human demonstrations by using vision to track the motion

of the tool and of the object. Additionally we mounted a 6 axis force torque

sensor on the tool to record precise interaction forces (Fig. 2.11). The steps

of the task are shown in Fig. 2.12. The data-set consisted of 9 variables, 3D

measurements of end effector position, force and torque. We computed the

criterion as described in Section 2.4, using a time window of 1000 time steps,

for position, force and torque on each axis of the object (see Fig. 2.13 and 2.15).

For the first part of the task (reaching) the criterion for position was domi-

nant on all axes. For the following part (pushing and lifting the battery) there
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(a) Reaching (b) Pushing (c) Lifting (d) Reaching back

Figure 2.12 Atomic actions in performing the task. The task typically consists
of reaching for the battery stand, applying a force that tensions the spring inside
the support (pushing), taking out the battery (lifting), and reaching away
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Figure 2.13 Computed Criteria. We contrast the contribution of Position, Force
and Torque as variables of interest. Segmentation obtained using time window
of various sizes: ω1 = 1000 time steps; ω2 = 500 time steps; ω3 = 250 time
steps. We retain the segments obtained after using the time window ω1.

was a clear separation between the two segments on the X and Z axis of the

object (see Fig. 2.13 (a), (c), marked by changing the variable of interest (i.e

torque than force), while on the Y axis (perpendicular to the object) torque and

force were equally important with a small relative difference in their criterion

(Fig. 2.13 (b)). In this case, the proposed approach, does not offer a clear

decomposition of the task, suitable for hybrid force–position control.

The method offers a relative weighting between the importance of different

variables acting on the same axis. However to use a hybrid controller, we need

to determine the relative importance between axes, as in this case the forces

and torques acting sideways were a reaction to the motion of taking out the

battery. For this we propose studying the causal relation between the variables

of interest determined above, across all the N demonstrations, in order to: (1)

have a relative weighting of the axis’s importance; (2) determine on which of

the other axis the motion should be conditioned on.
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Figure 2.14 Causality relationships corresponding to the ”push” and ”lift” seg-
ments. The oriented arrow shows the start variable to be causal for the end
variable. An un-oriented edge shows double causality.
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Figure 2.15 Segmentation for the battery extraction task

(a) Reaching (b) Pushing (c) Lifting (d) Back

Figure 2.16 Robot task execution using different configurations of the object with respect
to the robot’s base.
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For analyzing the causality in the data we have used an existing Matlab

toolbox (Seth, 2010a). Fig. 2.14 (a) shows the relationship between the vari-

ables of interest determined on each axis for the ”push” segment. The force

component on the X axis along the object (corresponding to torque around the

X axis of the end effector) was causal for the force components around other

axes. The amplitude of the causal interaction was 0.37 for the torque around the

Y axis and 0.1793 for the force on the Z axis, thus proving that the interaction

is stronger in the XY plane of the battery charger.

Secondly we studied the connectivity of the most important variable with

all the other secondary variables (i.e the change of position on all axis, see Fig.

2.14 (b)), which showed a causality relation in both ways. This allowed us:

� to reduce the number of axis on which we perform force control in this

segment to one (the X axis)

� to automatically determine that it should be encoded based on a change

of position and along which axis.

Similarly analyzing the causal structure in the data for the ”lifting” segment

(Fig. 2.14 (c)) allowed us to reduce the dimensionality of this model.

Fig. 2.16 shows robot reproduction and generalization to different positions

of the battery charger stand.

2.6 Discussion

Our approach of extracting continuous soft constraints from human demon-

stration was tested on a cooking task encompassing 3 segments and on an office

task with 4 segments. The tasks differed in duration and the set of important

variables. The proposed method extracted the necessary control information for

encoding and performing the tasks without using prior knowledge. The tasks

were executed using a time–invariant encoding, and an impedance controller

parameterized by the continuous constraints. We further discuss aspects that

influence our approach.

2.6.1 Open Parameters

This work relies on several open parameters: the variables taken into account

for segmentation, the choice of window size, and the termination condition. We

address each separately.

Variables included in the analysis

The variables included in the analysis are specified by the user. In the

work presented above we focused on position and force–torque measurements,
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Figure 2.17 Segmentation points and controller type obtained when accounting
for 4 variables: end effector position, force, torque, and velocity.

however the approach can be extend to account for other variables. For the

grating task, for instance, we computed the variance over trials and time window

for 2 other measures: the torques sensed at the end effector, and the end effector

velocity (a total of L = 4 variables). The analysis, using the same approach

presented in Section 2.4, showed that using the extra information provided by

the velocity, or torque data did not significantly modify the segmentation points.

The information related to the end effector orientation, even if it was not used for

segmentation, it was retained for each action and incorporated in the dynamical

systems used for reaching. The attractor for each action was specified in both

position and orientation. The arm reached it using a coupled dynamical systems

implementation (Shukla and Billard, 2012), in which a different dynamics was

learned for both position and orientation, as well as a coupling function ensuring

synchronization.

Choice of window size

In the current implementation the window size was chosen by the user. Its

size might influence the number and location of the segmentation points ob-

tained. A small window size can lead to over segmentation, while a high window

size can leave aside important aspects of the task.

Properly scaling the window depends highly on the task pace, such that

for the two tasks analyzed in this chapter we used a window size equal to our

sampling rate.

This might not always be applicable, therefore an automatic way of obtaining

an adaptive time window was proposed in Section III. This however required

to set a threshold of the minimum amount of change and hence introduced yet

another open parameter. In figure 2.18 we show how various time window sizes

affect the variance computation.

Ending condition for repetitive tasks

While in the grating task, reaching the first attractor was needed for starting

the grating, still the complementary force information indicated that at the end

of the segment the end effector was in contact. Similarly, during the grating
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Figure 2.18 The change of time window variance with respect to the window
size. This representation corresponds to the criterion for position on the X axis
of the battery task.

motion, mainly the vertical force was the important variable for control.

However the vertical position of the end-effector with respect to the grater,

held complementary information for ending this action. Namely for each grater

pass we observed a decrease in height by approximately 2mm. The task was

demonstrated until the vegetable was fully grated, which implied finishing the

grating action at the same height above the grater. Therefore we could consider

this information as an ending condition for the repetitive motion.

2.6.2 Advantages

We further emphasize specific advantages of the proposed method.

Task representation

The method developed in this work bootstraps information for learning, thus

automating this part of a Learning from Demonstration (LfD) procedure which

was usually done manually, while the decision of choosing certain dimensions

for encoding a model was typically hardcoded.

It thus decreases the task complexity by focusing on learning just the vari-

ables that are important for each region of the task (i.e. encode just end effector

position for a reaching motion vs. accounting for position and force on a certain

axis in manipulation sub-tasks). It determines the chain of actions in the task

and the conditions for the transition between actions. Automatically extracting

this information contributes to both simplifying the control and to automating

this part of the the learning procedure.

Stiffness modulation

Moreover the choice of the actual values of stiffness (which in our case is

modulated throughout the task by the λ factor), is not intuitive and requires

learning. Additionally by applying the same method to extract different rela-
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Figure 2.19 Problems encountered when using standard control modes, mostly
due to the size variation in the vegetable (from left to right): robot missed the
grating target, incomplete slicing, high force applied, causes the vegetable to
bend or break.

tionships in force/torque and position control in two different tasks confirms

that the method is agnostic to the particular choice of frame of reference of

position versus force control.

Modulating the arm’s stiffness is important for several reasons. Firstly it

allows us to apply the determined decomposition of force and position control.

Secondly proper stiffness contributes to successfully executing the task. For

example a robot that is too stiff in the grating segment would break the carrot

or other soft vegetables (like a cucumber) during grating, while a robot that

lacks sufficient stiffness would not be able to pass over the grater’s blade and

therefore not manage to perform the task (see Fig. 2.19).

Lastly it is a safety issue: a stiff robot is required to be able to perform some

parts of the task, but a less stiff robot when reaching the trash for example is

safer, in case of colliding with a human.

Human Robot Interaction considerations

The decomposition of position versus force control might be intuitive for an

engineer, but it would be hard for a naive user to make it explicit. The LfD

approach taken in this work allows the human to demonstrate a complex task to

a robot in a natural manner, while the robot can transfer the demonstrated task

into a mathematical and computational framework interpretable by its control

system.

From an HRI perspective, the proposed method can facilitate teaching inter-

actions as it allows the user to demonstrate the whole task rather than individ-

ual actions. A fragmented demonstration can be demanding when the user has

to focus on actively teaching the robot how to perform the task. As multiple

demonstrations are required for generalization, it is more convenient for the user

to demonstrate the whole task, rather than individual actions, such as reaching

movements.
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Figure 2.20 The change of reference frame with respect to object’s location.

Task Generalization

Determining the frame of reference to be used in each action allows the robot

to easily generalize to changing configurations of the objects. Proper execution

is ensured as control is performed with respect to this frame attached to the

object (see Figure. 2.20).

However the proposed approach has a two–level specification of the refer-

ence frame, by determining an object of interest and one or more attractors

(i.e. relative positioning), with respect to this object. There can be multiple

attractors with respect to a single object. For example in the grating task we

needed to reach the grater at a certain point above the blade, but the grating

motion ended at a point just after passing the blade. The two points deter-

mined different actions performed with respect to the same object, and thus

refining the task encoding. Relating the attractors to the initial frame, rather

than storing only the attractor points with respect to the world, allowed us to

implicitly capture properties of the object, such as rigidity.

Additionally, for the first task, we tested the developed controller for a dif-

ferent grating surface and a softer vegetable. This resulted in proper grating.

Furthermore in the current implementation the choice of modeling the force as

conditioned on the position was ad-hoc, prior information. The possibility to

learn and extract automatically that there is a correlation between these two

variables and the directionality of the correlation was explored in the second

robotic experiment, in Section 2.5.2.

2.6.3 Limitations

A major limitation of this work is the fact that it does not use any high level

information about the objects used, the environment, the task specification or

the desired effect. Thus the method is limited to relating only the arm behavior

to how the manipulation should be performed on an object. However it is not

suitable for modeling effects on the object. Visual information could have been
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used for relating the effects that applying a force has on the state of the object.

Moreover the method does not directly apply to tasks where the ”lack of change”

is important (such as controlling for zero force on one axis) as being key to task

completion. However this can be addressed by studying the relative importance

of each axis, extending the approach proposed in Section 2.5.2. Lastly the

demonstration setup can become an impediment for the user. Often during a

demonstration the user has to adjust the position of the robot, maneuvering its

7 degrees of freedom, until it feels comfortable to demonstrate the task. This

can affect the ability of the user to provide good demonstrations, as well as the

demonstrated trajectories.

2.7 Conclusions

The presented approach for extracting task constraints takes advantage of

the existing variance in the demonstrated data, and proposes a criterion for

detecting regions of coherence across demonstrations. Objects upon which an

action was performed are determined. The action is further encoded in the local

frame of reference, in a time–invariant manner, preserving the flow of actions in

the task.

In particular, we compared different measurements (like position and force)

and modulated their contribution to the controller used in reproducing the mo-

tion, by using a weighting factor that adapts the robot’s stiffness. Also by

weighting the relative importance of each of the task variables when expressed

in the reference system of the objects involved in the task we can determine the

suitable reference frame to be used in each segment.

Finally a set of segmentation points were obtained by splitting the motion

whenever a change in the reference frame or in the variables of interest occurred.

The approach was validated on a kitchen task (grating vegetables), and an office

task (removing a battery from a charging stand) achieving good generalization

results, and managing to capture the dynamics of a fast task.
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Chapter 3

Constraint–representation

of coordinated behavior

The work presented in this chapter has been published in:

Pais Ureche, A. L., and Billard, A. (2018) Constraints Extraction from Asym-

metrical Bimanual Tasks and Their Use in Coordinated Behavior, Robotics

and Autonomous Systems, vol. 103, pp 222-235, 2018.

3.1 Forward

In this chapter we extend our approach of extracting task constraints (de-

scribed in Chapter 2, (Ureche et al., 2015)) to asymmetrical bimanual tasks.

Such tasks require continuous coordination between the arms which results in

a relative movement or contact force, often transmitted through an object.

We start by decomposing the task in a set of actions and identifying for every

action the coordination features as relationships between the sets of unimanual

constraints corresponding to each arm. This leads to automatically determining

the role of the arms as master or slave; the type of coupling as simple motion

coordination, or force–motion coordination as well as the coupling function;

and the pre-condition that enables the transition between actions. We use this

representation for autonomous execution.

Secondly we aim to use the same constraint–representation for executing the

task in collaboration with a human user. For this we extend the set of features

with the embodiment features which allow the robot to anticipate and adapt

to the user’s actions. These features are a representation of the user’s specific

manner to use the tool during each action. For example the grasping quality

is an indication of whether the grasp is adapted for exerting forces and torques

across directions of interest. A robot able to adapt its stiffness in response

to s user’s intention to apply a force, contributes to an intuitive and reliable

interaction.

We encode the task based on the extracted features and we execute it both

autonomously and collaboratively. We validate our approach on common bi-

manual daily tasks: scooping, peeling and mixing.
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Figure 3.1 We record bimanual demonstrations of asymmetrical tasks, using a
custom setup that consists of a kinesthetically guided robot arm, and a human
arm wearing a sensorized glove. We extract a task representation encoding arm
coordination features and human’s dexterous use of the tool. We execute the
task autonomously or collaboratively using this representation.

3.2 Introduction

Bimanual tasks rely on the coordination between the arms. In particular,

asymmetrical bimanual tasks are both common and natural for humans: i.e. we

can scoop a fruit with one hand, but the task becomes easier when the other

hand is holding it. The hands interact indirectly, transmitting a desired relative

movement or contact force through an object. Thus the action of each arm

is characterized by a motion profile, and use of force which we automatically

determine using our previously proposed approach (Ureche et al., 2015). How-

ever these unimanual features are interrelated as one arm adapts to the other,

switching their roles as master and slave, and changing the type of coupling

from motion coordination to force–motion coordination.

In this chapter we focus on extracting coordination features from human

demonstrations. We use them for 3 execution cases: (1) autonomous execution

by a bimanual robot, (2) collaborative execution with a human partner in which

the human acts as master, or (3) the robot acts as master.

In the last two cases a reliable interaction requires the robot to anticipate

and adapt to the counterpart’s intention to apply a force before this is actually

applied in the task. For example in the scooping task a robot arm holding the

fruit can adapt its stiffness in response to a force that the human arm is expected
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to exert. We thus analyze the way humans use the tools in relation to the

constraints extracted before. Based on the hand shape and tactile signature we

compute a grasping quality metric. A high value of this metric in the direction

in which force is a constraint indicates that the user is ready for the task and

his hand is shaped appropriately. This allows the robot to update its stiffness

according to the user’s state. The approach is summarized in Fig. 3.1.

We address these aspects by taking advantage of factors implicit in human

behavior when employing tools with high dexterity, and working towards a goal.

The role of the dominant and non–dominant hands is not hardcoded, but as-

signed depending on the task constraints (Hughes et al., 2013). Therefore it can

change during manipulation, based on a force–motion relationship (Johansson

et al., 2006). With respect to handedness, position control is often employed by

the non-dominant hand while force control is commonly used by the dominant

hand (Ferrand and Jaric, 2006). However the force coordination is stronger

within rather than between arms (Krishnan and Jaric, 2010; Jaric et al., 2006).

A change in the task is typically initiated by the non-dominant hand (de Poel

et al., 2006). However the passive arm sets the frame of reference for the active

arm (Guiard, 1987), establishing a master–slave relationship.

Additionally when explaining to someone how to perform an action which

requires maneuvering a new tool, people often indicate that the tool should be

held in a certain way, thus making the hand features explicit. The grasp that

the humans use is often adapted for applying forces and torques across a desired

direction (de Souza et al., 2015). The same tool is held differently when used

in different actions, adopting distinctive hand shapes and making contact with

particular parts of the hand (de Souza et al., 2015). In the tasks we study in

this chapter (scooping, peeling and mixing), the tool is always in hand, but

the grasp changes continuously, as the hand adapts to the requirements of the

current action: i.e. enclosing on the tool before applying a force or switching

from a precision to a power grasp.

This chapter builds upon our previous work on automatic task segmentation

and constraints extraction (Ureche et al., 2015) for unimanual tasks. Here we

extend the framework to target the extraction of bimanual constraints. In par-

ticular, we focus on learning the change in the master–slave relationship between

the two arms, on determining coupled dimensions and transition conditions be-

tween the actions, that ensure coordination. Additionally we use this constraint

based representation in both autonomous and collaborative execution modes.

We achieve this by analyzing the human grasping behavior and updating the

robot’s stiffness for ensuring an intuitive interaction in collaborative mode.

Consequently our approach is applicable as a middle layer between planning

and control, contributing to:

(1) abstracting a representation of the coordinated behavior applicable to dif-

ferent asymmetrical bimanual tasks

53



(2) using a common representation when executing the task autonomously

and in physical coordination with a human

(3) validating the approach on a real robotic platform

We tested the approach (described in Section 3.4) on real life tasks Section

3.5. We discuss our results and conclusions in Sections 3.6 and 3.7, and the

state of the art in Section 3.3.

3.3 Related Work

Demonstrating bimanual tasks is often problematic as recording data re-

quires kinesthetically driving two robots, potentially with hands. This can be

demanding given the high number of DOF (i.e. a demonstrator needs to use

both hands for unscrewing a light bulb, using a 16 DOF Allegro hand on a

stationary robotic arm (Li et al., 2014)). Conversely the lack of kinesthetic

interaction leads to a correspondence problem.

Common approaches are: teleoperation (Peters et al., 2003), suitable for

arm motions, but not for manipulation; or demonstrating gestures using motion

sensors and refining them kinesthetically (Calinon and Billard, 2007b). Alter-

natively custom setups allow directly demonstrating force patterns. One such

example is transmitting stiffness patterns through a coupling device that con-

nects the human and robot arm in conjunction with EMG for detecting the

grasping state of the hand (Yang et al., 2015). In our work we also use a custom

setup for kinesthetically demonstrating the task. The setup consists of a robotic

arm from which we record pose and force–torque information, in conjunction

with the hand shape and tactile signature from a glove covered with pressure

sensors. We modified the tool to embed a 6 axis force torque sensor. This setup

allows the human to freely manipulate the tool in a dexterous way. We analyze

the forces applied both as a feature of the task, as well as in conjunction with

the tool use. Based on a grasp quality metric we show that the position of

the tool in hand changes continuously as it adapts to the requirements of the

current action, unlike having only two discreet states: hand opened or closed.

This information facilitates the interaction during collaborative execution.

3.3.1 Coordination in bimanual tasks

Coordinated behavior can be represented through features such as: stable

postures (Gribovskaya and Billard, 2008); keyframes (or keypoints) as impor-

tant ”snapshots” of the task (Asfour et al., 2008); the grasping state of the

hand (Jkel et al., 2010); or spatial and temporal constraints (Calinon and Bil-

lard, 2007b; Asfour et al., 2008; Park and Lee, 2015; Berthet-Rayne et al., 2016).

While coordination is typically continuous, there are instances when it can be
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represented through discreet stable postures at the trajectory level, i.e. in sym-

metrical tasks.

In reference (Gribovskaya and Billard, 2008) the authors extract stable pos-

tures by analyzing the rate of change in the demonstrations. The movement

is described by a generic variable (e.g. the relative distance, or phase between

the arms), which remains constant during an action (Gribovskaya and Billard,

2008) and the encoding is time-dependent. However in our work, the spatial

constraints are not rigid, the coordination is action–specific and continuous,

done with respect to different reference frames. We use a time-independent

encoding in which the synchronization between the arms becomes implicit.

Similarly to the stable postures approach, keypoints of a task and time

dependencies between the arms are identified as features using an HMM (Hidden

Markov Model) approach (Asfour et al., 2008). In our work we focus on the

importance of the continuous coordination between the arms throughout an

action, especially required during manipulation actions. Additionally in our case

the spectrum of task features encompasses a sequence of actions characterized

by the coupled trajectories of the two arms, force-motion coupling during actions

that require exerting forces and stiffness modulation of the two arms.

In reference (Likar et al., 2015) the authors employ iterative learning control

for online adaptation to inaccuracies in the environment during the execution of

bimanual tasks that require exerting forces. In our case we obtain a decomposi-

tion of force and position controlled dimensions for each arm by extracting the

reference frame used in each action. Additionally we compute a stiffness mod-

ulation factor that weights the contribution of force and position continuously

during each action. An alternative approach to controlling the arms separately

is controlling the closed kinematic chain that results in bimanual manipula-

tion while ensuring the exertion of proper forces (Liu et al., 2016). While this

method is suitable for manipulation actions, in our work we consider tasks that

encompass a sequence of actions that don’t always form closed kinematic chains.

Typically the passive arm defines the reference for the active arm (Calinon

et al., 2012). In our work, we automatically detected the reference frame to be

used in each action and based on this information we determine the role of the

arms as master or slave. In reference (Silvrio et al., 2015) the authors highlight

the importance of properly choosing the reference frames and of encoding the

task of one arm relative to the other end effector, especially allowing the arms

to react to perturbations applied to the opposite arm. In our work we also

stress this aspect of adaption especially to perturbation in the environment,

which can be avoided by properly assigning reference frames and maintaining

the precedence between the arms.

In asymmetrical tasks the master–slave role is also reflected in the behavior of

each arm (i.e. performing manipulation or assisting (Xu et al., 2012)). Typically

one arm is having an assisting role, and therefore adjusts its stiffness to resist

the motion of the active arm. A user might not always be consistent in this
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aspect allowing the passive arm a relatively high range of movement between

demonstrations. However the user might be very conservative in the force that

the active arm needs to apply, as this is essential for the task. We extract this

information as different types of coupling between the arms (motion - motion vs.

force – motion coupling). The coupling changes between actions, and require

the adaptation of the both arms.

3.3.2 Coordination in physically collaborative tasks

Physical human-robot collaboration consists of transmitting motion through

an object and relies mostly on modelling force and torque data (Rozo et al.,

2016) (i.e a force-velocity dependency is used for collaborative carrying an object

(Evrard et al., 2009)). The robot can predict and adapt to the human, and assist

in execution (Berthet-Rayne et al., 2016). Impedance modulation is used for

dealing with the uncertainty from the human input (Ficuciello et al., 2015). In

our case we estimate the user’s intention to apply a force and modulate the

stiffness accordingly by monitoring the user’s hand and computing the grasping

quality in relation to the force applied.

The hand state (grasping or not) is action–specific. It has been used for

segmentation based on thresholds for the wrist and fingers velocities (Jkel et al.,

2010) or on observed object states (Zollner et al., 2004). Prior information

improves the segmentation accuracy: predefining the roles of the hands (Zollner

et al., 2004) or annotating data in critical tasks, i.e. surgery (Dergachyova et al.,

2016). By contrast, we show that even when the tool remains in hand across

actions the hand shape adapts to the task requirements (e.g. different grasps

are employed in scooping and trashing).

3.3.3 Task representations and execution

Specific representations of bimanual tasks include: graphs (Jkel et al., 2010),

macro operators for specifying the roles of each arm and the coordinated action

(Zollner et al., 2004), symbolic representations based on changes of the objects

states (Zollner and Dillmann, 2003); hierarchical state machines (Steffen et al.,

2010), while dealing with platform–specific aspects: i.e. the common manipula-

tion space of the arms (Colomé and Torras, 2014), or decomposing the actions

in different subspaces for each arm (Zacharias et al., 2010).

Our representation enables execution using hybrid control and fits a sub–

symbolic level encoding the task through probabilistic models, similar to (Jkel

et al., 2010). The bootstrapping is based only on the sensory information with-

out a model of the environment. However adding high–level information can

be done at the planning level (Nyga and Beetz, 2015), making use of language

or previously acquired knowledge (Wrgtter et al., 2015). This requires estimat-
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ing the object’s state (Hebert et al., 2013), the effect that the task has on the

environment and replicating it (Paxton et al., 2016).

The constraints are used to direct task learning often using time–dependant

models (Gribovskaya et al., 2011; Calinon and Billard, 2007b; Smith et al.,

2014). Alternatively task parameterized gaussian mixture models (TP-GMM),

for representing position and orientation of both arms in one compact model

(Silvrio et al., 2015). We use a time–independent encoding following a coupled

dynamical systems approach (Shukla and Billard, 2012), aimed to preserve the

coordinated behavior.Typically the choice of the coupled variables is arbitrary:

i.e. coupling finger and arm motion when reaching for an object (Shukla and

Billard, 2012); or multi–level eye–arm–hand coordination (Lukic et al., 2014).

In contrast in our work we identify the coupled dimensions.

3.3.4 Summary of the extraction of task constraints

We provide a summary of the extraction of unimanual constraints and the

corresponding encoding (Ureche et al., 2015) as used throughout this chapter.

Figure 3.2 Regions of high and low
variance (constraint) in sensor data

Figure 3.3 Segmentation based on
maximum criterion

Unimanual Constraints are determined by identifying regions of consistent be-

havior (low variance) across demonstrations (see Fig. 3.2). We project all data

onto each reference frame Ri, of the objects No and the opposite arm. For each

dimension 1 : 3 of the position and force measurements we compute a selection

criterion C given by the difference between the variance in a time window ω

and the variance over trials.

C(Rix1:3) = V art:t+ω(Rix1:3)− V ar1:T (Rix1:3) (3.1)

The reference frame R is given by the object with the maximum correspond-

ing criterion (see Fig. 3.8). The variable of interest for each axis ν is given by

the maximum criterion of either position or force. A stiffness modulation factor

λ weights the contribution of position and force.
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Variable Description

xp, xo ∈ R
3 end effector position and orientation

ẋp, ẋo ∈ R
3 end effector translational and rotational velocities

γp,o coupling function between the position and orientation

γνM ,νS coupling function between the master and the slave

FR, FL ∈ R
3 right arm (R) and left arm (L) cartesian forces

TR, TL ∈ R
3 right arm (R) and left arm (L) cartesian torques

Fe ∈ R estimated force on the axis where force is a constraint

Fd ∈ R desired force on a force constrained axis

wp, wo ∈ R
3 wrist position and orientation

θ ∈ R
22 finger joint angles

φ ∈ R
34 hand tactile signature

oip, o
i
o ∈ R

3 position and orientation of objects oi ∈ 1 . . . No

ND Total number of demonstrations

NΨ Total number of actions

No Total number of objects

Ψi The set of actions in the task i ∈ 1 . . . NΨ

R,
∗
x reference frame, and attractor frame

ν ∈ R
3 vector of important variables for each axis

λ ∈ R
3 normalized stiffness modulation, λ1:3 ∈ [0, 1]

C ∈ R
3 selection criteria for each axis

κ transition condition

role arm role: master|slave|uncoordinated
ρ{νR,νL} coordinated variables between the arms

ϑ ∈ R normalized grasp quality for each force constrained axis

α, β ∈ [0 . . . 1] controller gains

π, μ,Σ GMM parameters: priors, means and covariance matrix

Table 3.1 Summary of the notation used throughout the chapter
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Rt:t+ω : max(C(Rix1:3))

ν1:3 : max(C(x1:3), C(F1:3))) (3.2)

λ1:3 : C(x1:3)− C(F1:3)

Changes in the constraints indicate segmentation points, determining the action

sequence Ψi, i ∈ [1..NΨ]. Fig. 3.3 shows an example of two selection criteria and

the segmentation obtained corresponding to changes of the maximum criterion.

Figure 3.4 gaussian encoding of trajectories

Trajectory Encoding We encode the trajectory of each arm using a Coupled

Dynamical System approach (CDS) (Shukla and Billard, 2012). The system has

3 components. The position xp ∈ R
3 and orientation xo ∈ R

3 are represented

by a first order autonomous dynamical system of the form:

ẋ = f(x). (3.3)

The function f is encoded as a Gaussian Mixture Model (GMM) with K

components, specified by the priors π, means μ, and covariance matrices Σ (see

Fig. 3.4). A function γ{p,o} couples the two previously learned dynamics, such

that a desired orientation x̃o is inferred given the current position xp.

ẋp = E{p(ẋp|xp; ΩKxp
)}, ΩKxp

= [πKxp
, μKxp

,ΣKxp
]

ẋo = E{p(ẋo|β(xo − x̃o),Ω
K
xo
)}, ΩKxo

= [πKxo
, μKxo

,ΣKxo
]

γ{p,o} = ‖.‖, (3.4)

x̃o = E{p(xp|γ{p,o}; ΩKc )}, ΩKc = [πKc , μ
K
c ,Σ

K
c ]
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Figure 3.5 CDS motion, generalization to different starting positions

Trajectory Computation For each arm we compute the next desired pose by

integrating the translational and rotational velocities from the models (eq. 3.5).

The gains α, β control the amplitude and speed of the system.

xp(t+ 1) = xp(t) + ẋp(t)Δt % update position

x̃o = E{p(xo|γ(xp); ΩKc )} % update coupling (3.5)

ẋo = E{p(ẋo|β(xo − x̃o); Ω
K
xo
)} % update orientation

xo(t+ 1) = xo(t) + αẋo(t)Δt

The model ensures asymptotic stability when reaching the attractors in both

position and orientation. The coupling ensures synchronicity. The model is ro-

bust to temporal (Khansari-Zadeh and Billard, 2011) and spatial perturbations

(Khansari-Zadeh and Billard, 2012) and can generalize to different starting po-

sitions (see Fig. 3.5).

Figure 3.6 Example of GMM encoding of the
task force given the distance to the attractor

Force and Stiffness Encoding The desired force and stiffness are encoded across

the directions where force is a variable of interest (in the reference frame R

extracted previously) based on the distance to the attractor (see Fig. 3.6).

Fd = E{p(F |x)}
λ = E{p(λ|x)};

(3.6)
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Figure 3.7 Pipeline of the proposed approach

3.4 Method

We focus on asymmetrical bimanual tasks performed in physical contact.

For each arm we consider a Cartesian impedance controller given by:

τ = JT (λKb(x− xr) + Fd) (3.7)

where τ ∈ R
7 is the joint control input, J ∈ R

6×7 the Jacobian. For each arm

the controller is parameterized with constraints extracted from demonstration

(Ureche et al., 2015), such that: the desired position xr ∈ R
6, force F ∈ R

6 and

stiffness modulation λ ∈ R
6 are computed by querying corresponding models

(Ureche et al., 2015). The models are learned with respect to the reference

frame relative to which the arm moves and force models are learned only for the

directions in which force is a variable of interest.

In this work we determine the role of each arm as master or slave, and a

function coupling the motion of the master xMr to that of the slave xSr , ensuring

precedence. We then determine a transition condition for switching between

actions. Additionally we analyze the dexterous use of the tool as an indication

of the user’s intention to apply a force. We execute the task autonomously and

in physical coordination with a human. The approach is summarized in Fig.

3.7.

We record ND kinesthetic demonstrations of the task in which the left arm

(L) arm is maneuvering the tool (while wearing a Cyberglove covered with

Tekscan pressure sensors) and the right robot arm (R) arm is backdriving a

robotic arm (we use a 7 Degrees of Freedom (DOF) KUKA Light Weight Robot

(LWR)). For the left arm we record joint angles of the human hand θ ∈ R
22,

tactile signature for each phalange and the palm φ ∈ R
34; wrist position and

orientation wp, wo ∈ R
3 and forces and torques at the tool Ft, Tt ∈ R

3. For

the right arm we record end effector, position and orientation xp, xo ∈ R
3, and

cartesian forces and torques Fe, Te ∈ R
3. We track the position and orientation

op, oo ∈ R
3 of No objects using an OptiTrack vision system.

We present the approach in relation to an experiment consisting of a scooping
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(a) Right arm (b) Left arm

Figure 3.8 Extraction of the reference frame R. We compare the arm motion
in the object frame Ro (blue) versus the opposite arm (red). R is given by the
maximum criterion in a time window of 1s

Right arm (Holding) Left arm (Scooping)

RR ν role RL ν

Ψ1 RR
o [xx, xy, xz] master − slave RL

R [xx, xy, xz]

Ψ2 RR
o [xx, xy, xz] master − slave RL

R [xx, Fy, Fz]

Ψ3 RR
L [xx, xy, xz] slave−master RL

o [xx, xy, xz]

Ψ4 RR
o [xx, xy, xz] uncoordinated RL

o [xx, xy, xz]

Table 3.2 Unimanual constraints and the determined role for each arm

task. We recorded ND = 10 demonstrations, with an average duration of 17s.

We obtained a decomposition in 4 actions (Ureche et al., 2015), shown in Fig

3.9: reaching for the initial configuration; scooping ; departing by switching

the position on top of the trashing bowl; and trashing. The corresponding

constraints are listed in Table 3.2. We obtained 2 changes of reference frame

for the right arm (see Fig. 3.8a): at 12s from from object to the left arm, and

back to the object at 15s; and one change for the left arm: at 12s from the right

arm to the object frame (Fig. 3.8b). The right arm was position controlled

during all actions νRΨ1:4
= {x1:3}. The left arm applied a vertical force and

torque during scooping νL2 = {x1, F2, T3} and used position control during the

remaining actions νLΨ1,3,4
= {x1:3}.

The master-slave role ensures that both arms respect precedence when reach-

ing their targets. We exemplify this in Figure 3.10, showcasing the reaching

action Ψ1 from the scooping task. The arm holding the mellon needs to reach a

target above the bowl. The arm holding the scoop needs to reach above the first

arm. When their roles are assigned accordingly (first arm master, second arm

slave) then the master starts and drives the motion. Precedence is thus pre-

served when a perturbation occurs, which moves the bowl closer to the scooping

arm. In the second case, when the arms are uncoordinated and the same per-

turbation is applied to the bowl, the scooping arm reaches first as the target is

closer, and the holding arm no longer has space to converge.

Therefore typically one arm sets the reference frame for the other. This

defines it as a master, as a change in its pose determines the second arm to
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(a) Ψ1 − Reach (b) Ψ2 − Scoop

(c) Ψ3 −Depart (d) Ψ4 − Trash

Figure 3.9 The decomposition of the task into actions

follow (i.e. slave behavior). We determine the arm roles from the extracted

reference frames, such that an arm i is master for an arm j if the reference frame

of its motion is given by an object o in the environment, and it sets the reference

frame for the motion of the other arm j; it becomes slave when this relationship

is inverted; the two arms are uncoordinated when moving independently with

respect to one or more objects (eq. 3.8). With each action that requires changing

the reference frames, the roles also change.

role{armi,armj} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

master − slave, {Rio, Rji}
slave−master, {Rji , Rjo}
uncoordinated, {Rio, Rjo}

(3.8)

In the scooping task there were two role changes (Table 3.2). The right

arm (holding) was master during the reaching and scooping actions, moving

with respect to the trashing bowl. The roles inverted in the depart action.

The scooping arm became master, moving on top of the trashing bowl, while

the right arm made room by moving aside. During trashing the arms were

uncoordinated, moving relative to the trashing bowl: the scooping arm dropped

the scooped piece, the holding arm moved backwards.

3.4.1 Master–slave coupling between the arms

The motion of the arms is continuously coupled enabling adaptation during

manipulation.
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Master Slave

Master Target
Slave Target

Final Trajectory
Initial Trajectory

Perturbation

MR
SR

oR
World  
Frame

oRRRRRRRRRRRRRRRR

Precedence is 
preserved

(a) Coupled. Master arm moves wrt. the bowl, slave wrt. master

Master Target
Slave Target

Final Trajectory
Initial Trajectory

Perturbation

Master Master

oR

1MR
2MR

World  
Frame oR

RR

Reaches 
first

Cannot 
converge

(b) Uncoupled. Both arms move relative to the external bowl

Figure 3.10 Importance of the master–slave role in respecting precedence in the
motion of the two arms. (a) master arm moves with respect to the bowl and
slave arm relative master. When the bowl changes position the precedence is
preserved; (b) both targets are set relative the bowl (i.e. both arms master).
When the bowl moves closer to the arm on the right, this one reaches faster
while the other arm has no place to converge.
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(a) Ψ1 – Reach (b) Ψ3 – Depart (c) Ψ4 – Trash

Figure 3.11 Motion–motion coupling for the reaching actions. Coupled dimen-
sions in Ψ1 and Ψ3, and no coordination in Ψ4

(a) Motion Coupling Ψ1 - Reaching (b) Motion Coupling Ψ3 - Departing

Figure 3.12 Coupling functions between the master and the slave in the reach
and depart actions. In each case the profiles are encoded as autonomous dynam-
ical systems, taking for each arm the norm of the coupled dimensions obtained
in Fig. 3.11. The holding and scooping arm switch their master-slave roles.

Motion–motion coupling

For actions in which both arms employ position control we determined the

coupled dimensions by analyzing the pair–wise interactions between the compo-

nents of νM , νS using Granger Causality (Seth, 2010b). For the scooping task

the dependencies are shown in Fig. 3.11: in Ψ1 the scooping arm was condi-

tioned by reaching the vertical plane of the holding arm; a horizontal translation

of the two arms in Ψ3; and no coordination in Ψ4.

We further determined a continuous coupling function γ{νM ,νS} by encoding

the norm of the coupled variables using an SEDS model (stable estimator of

dynamical system (Khansari-Zadeh and Billard, 2011)). In the reaching action

(Fig. 3.12(a)) the master got in the vicinity of its attractor sooner, allowing the

slave to position relative to it. In the departing action (Fig. 3.12 (b)) the slave

moved a smaller distance, but converged simultaneously with the master.

This coupled the position of the master and the slave as they reached their

respective attractors (shown in Fig. 3.12). We thus use eq. 3.5 for controlling

the master arm xMp , x
M
o , while the velocity of the slave arm adapted given the

position of the master (eq. 3.9):
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(a) Force profile (b) Torque profile

Figure 3.13 Force–motion coupling in the scooping action. The scooping arm
(slave) applies a force and torque profile with respect to the holding arm (master)

xSp (t+ 1) = xSp (t) + γẋSp (t);

xSo (t+ 1) = xSo (t) + αẋSo (t);
(3.9)

Three aspects of coordinated behavior become implicit: continuous coupling

- the slave adapts to the master throughout an action; end–state coupling -

both arms reach the desired configuration simultaneously; temporal coupling -

perturbing one of the arms does not cause a desynchronization.

Force–motion coupling

In actions in which force was applied (i.e. Ψ2, scooping), the coupling was

determined directly by the variables of interest. The scooping arm applied the

force in the reference frame of the holding arm, while the holding arm was

maintaining its position. The time independent encoding of the force/torque

applied with respect to the distance to the attractor is shown in Fig. 3.13 (a)

and (b).

Stiffness modulation

For the holding arm the estimated stiffness modulation increased gradually

as the scooping arm applied more force and decreased when the force was re-

leased (see Fig. 3.14. For the scooping arm the estimated stiffness is low on the

axes on which force control should be used and higher for the position controlled

axis ((Fig. 3.15) (b)).

In the case of autonomous execution stiffness of both robot arms was updated

based on the encoded profiles λM,S = E{p(λ|x)} (Fig. 3.15).

In the collaborative case we updated the stiffness based on the eq. 3.10,

which also takes into account the state of the user given its current grasp on

the tool:

λh =

⎧⎨
⎩
λΨi + ϑFe, F ∈ νSΨi

ϑFe, dist(xS ,
∗
x
S
) > xS(ts)&F �∈ νSΨi

(3.10)
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(a) Ψ1 – Reach (b) Ψ2 – Scoop (c) Ψ3 – Depart (d) Ψ4 – Trash

Figure 3.14 Stiffness modulation for the passive arm: average stiffness in the
reaching actions Ψ1,Ψ3,Ψ4, while during manipulation (Ψ2), the stiffness adapts
to the force applied by the active arm.

(a) stiffness modulation - master (b) stiffness modulation - slave

Figure 3.15 Stiffness modulation for the two arms during the Ψ2 scooping phase
with respect to the distance to the attractor.

where λΨi is the previous stiffness profile, ϑ ∈ [0, 1] represents a grasping

quality metric across the dimensions where force or torque are constraints, while

Fe is the estimated force that the user could apply on the force-constrained

axis given the current hand configuration. This allows the robot to update its

stiffness according to the user’s intention to apply a force, such that a low ϑ

or Fe lead to a low robot stiffness, which allows the user to freely reposition it.

Conversely high values of these variables suggest the user is ready for the task.

3.4.2 Encoding of the hand shape and grasping

quality

From the hand state (finger joint angles θ ∈ R
22, tactile signature φ ∈ R

34;

wrist position and orientation wp, wo) we compute the grasping quality metric

ϑ for the task directions where force or torque are variables of interest, using

the approach described in (Borst et al., 1999; de Souza et al., 2015)). This value

indicates if the current grasp is shaped for applying forces on the desired axes.

Conversely a change in the hand shape influences the grasping quality. We thus

retain a subset of significant joints θs ⊆ θ determined using the criterion in

eq. 3.1. We encode the dependency between these two variables in a GMM

P (θs, ϑ|ΩKθs)}, see Fig. 3.18. Additionally since ϑ is an indication of the task

force, we encode a second GMM P (ϑ, F |ΩKϑ ). We use these two models (see
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(a) Ψ1 – Reaching. Loose
grasp

(b) Low contact on all
patches

(c) The hand was preshaped
for the task

(d) Ψ2 – Scooping. Fin-
gers enclose on the tool

(e) Ψ2 – Pressure increased
on the Index and Thumb

(f) Consistent movement of
all joints as they enclose

(g) Ψ3 – Depart. User
switched to a power grasp

(h) Pressure switches to
palm

(i) Joints responsible for the
configuration change

(j) Ψ4 – Trash. Enclosing
on the tool

(k) Ψ4 - High contact on
palm

(l) Fingers enclose, preshape
remained the same

Figure 3.16 (left column) The grasp changed over actions from a directional
grasp for the scooping action to a power grasp while departing, and trashing;
(center column) pressure was higher during scooping and trashing, while contact
localization changed from thumb and index in the first case to palm in the second
case; (right column) averaged selection criterion for each of the finger joints. A
positive criterion indicates joints that moved consistently across demonstrations

Figure 3.17 (left) glove and joint mapping; (right) grasp assessment pipeline
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(a) Ψ1 - Reach (b) Ψ2 - Scoop (c) Ψ3 - Depart

Figure 3.18 Normalized grasping quality ϑ given the set of significant joints for
each action θs. The value of ϑ on the vertical Z axis increased during reaching
and was highest in the scooping action as the user prepared for and applied task
forces. ϑ decreased in the departing action.

Fig. 3.17) to update the stiffness of the robot (eq. 3.10) as follows:

ϑ = E{p(ϑ|θs, φs)} % ϑ from hand shape (3.11)

Fe = E{p(Fe|ϑ)} % force given current ϑ (3.12)

For the scooping task we obtained four grasps corresponding to each action

(see Fig. 3.16), and encoding in Fig. 3.18.

3.4.3 Transition conditions

During autonomous execution we switch between actions when reaching an

attractor in either position (
∗
x) or in force (

∗
F ) depending on the variables of

interest ν in the following action (eq. 3.13).

κS,MΨi→i+1
=

⎧⎨
⎩
norm(d(x,

∗
x)) ≤ ε, x, F ∈ νSΨi

& x ∈ νSΨi+1

F ≥
∗
F , x ∈ νSΨi

& F ∈ νSΨi+1

(3.13)

where
∗
F was the force at the segmentation time ts.

In the collaborative case the attractor in force is given by the user’s ability

to apply or resist the task forces (eq. 3.14).

κh =

⎧⎨
⎩
Fe >

∗
F F ∈ νSΨi+1

Fe > FΨi
F ∈ νSΨi

(3.14)

The approach is summarized in Algorithm 3.1.
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Algorithm 3.1 Extraction of coordination features

Coordination features(Set of actions Ψi, i = 1 . . . NΨ,)

for each action Ψi, i = 1 . . . NΨ do

Get current unimanual constraints for arms A, B:

◦ reference frames: RA
Ψi

, RB
Ψi

◦ control variables: νAΨi
, νBΨi

% Determine arm roles (eq. 3.8):

if RA → RA
o and RB → RB

o then

A ⇒ master % motion in the object frame

B ⇒ master % motion in the object frame

else if RA → RA
o and RB → RB

A then

A ⇒ master % motion in the object frame

B ⇒ slave % motion in the frame of robot A

else if RA → RA
B and RB → RB

o then

A ⇒ slave % motion in the frame of robot B

B ⇒ master % motion in the object frame

end if

% Determine coupling:

if A ⇒ master and B ⇒ master then

break % uncoordinated motion

else if νA = x1:3, νB = x1:3 % position control on all axes then

% motion-motion coupling

{νAs , νBs } = significant pairwise causal interactions {νA1:3, νB1:3}
encode norm of νAs , νBs as a SEDS model (Khansari-Zadeh and Billard, 2012)

else if force is a control variable F ∈ νA or F ∈ νB then

% force-motion coupling

encode F wrt. distance to attractor, in the master RF

end if

% Determine stiffness modulation

encode λ wrt. distance to attractor

encode ϑ given the set of significant joint angles θs

encode the estimated force Fe given ϑ

% Determine transition condition κ for each arm (eq. 3.13):

if (x or F ∈ νΨi
) & (x1:3 ∈ νΨi+1

) then

κ: d(x,
∗
x)) ≤ ε % distance to attractor

else if (x ∈ νΨi
) & (F ∈ νSΨi+1

) then

κ: F ≥
∗
F % motion ends in contact

end if

% Transition to the following action

Ψi → Ψi+1: {κM , κS} = true

end for
end
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(a) Ψ1 −Reach (b) Ψ2 − Scoop

(c) Ψ3 −Depart (d) Ψ4 − Trash

Figure 3.19 Autonomous execution, snapshots of each action

3.5 Validation

We evaluate the execution of the scooping task in the three execution cases.

Additionally we showcase the extraction of constraints for two other experi-

ments: peeling and mixing.

3.5.1 Mellon Scooping

Autonomous Execution For the autonomous execution we used two 7 DOF

Kuka LWR robot arms and a 4 DOF Barret hand for holding the mellon (snap-

shots in Fig 3.19). The scooping tool was rigidly attached, with an embedded

6 axis force–torque sensor.

We obtained a success rate of 8 out of 10 consecutive trials, also shown

in the accompanying video. The first failed trial was due to not managing to

completely remove the scooped piece. In the second case the robot removed just

a tiny amount, due to scooping close to the skin.

Collaborative Execution - Robot master

In this scenario the robot held the mellon, while the human was performing

the scoop (Fig. 3.20). The master arm initiated the motion and waited for

the human counterpart to complete its current action. The robot increased its

stiffness based on the anticipated intention of the human to apply a force. The

success rate was 10 out of 10 trials (illustrated in the accompanying video).
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(a) Ψ1 −Reach (b) Ψ2 − Scoop

(c) Ψ3 −Depart (d) Ψ4 − Trash

Figure 3.20 Collaborative execution, robot master

(a) Ψ1 −Reach (b) Ψ2 − Scoop

(c) Ψ3 −Depart (d) Ψ4 − Trash

Figure 3.21 Snapshots taken during the task execution: (top row) autonomous
execution; (middle row) collaborative execution, robot master; (bottom row)
collaborative execution, human master
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(a) autonomous execution (b) collaborative, robot master

(c) collaborative, human master

Figure 3.22 Forces and torques applied by the scooping tool in the 3 execu-
tion cases. The human when maneuvering the tool could better adapt to the
environment, therefore achieving successful scoops with low forces (i.e. trial 1,
when scooping on a new mellon). Conversely when the human was holding the
mellon, the high variance comes from trembling in the human arm and improper
adaptation of the stiffness in response to the robot applied forces (c). This hap-
pens particularly at the end of the motion when the robot arm starts going up
removing the scooped piece.

Collaborative Execution - Human master

The robot arm scooped, while the human had to adapt to the applied force

(Fig. 3.21). The success rate was 8 out of 10, due to the human hand trembling

in the first failed trial, and the robot scooping a small amount due to improper

positioning in the second failed trial.

We provide a comparison of the forces applied in the 3 cases in Fig. 3.22.

Overall there was a high variance of the forces in the two collaborative cases

(Fig. 3.22b and 3.22c) compared to the autonomous case (Fig. 3.22a). This

was due to better estimating the task conditions in case (b), but not adapting

well to the robot in case (c).

3.5.2 Vegetable Peeling

We apply the extraction of task constraints to an additional experiment:

peeling a vegetable, as shown in fig. 3.24. The task was originally segmented
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Depart/Rotate
Move away

Reach
Peel

Figure 3.23 Typical motions for the 4 actions in the peeling task.

(a) Coupled dimensions,
Reaching action

(b) Coupled dimensions,
Depart / Rotate

(c) Peeling force applied by the left
arm

Figure 3.24 Constraints for the peeling task.

using a BP-HMM approach (Figueroa and Billard, 2016), and the constraints

were extracted for each action individually (Ureche et al., 2015). Four actions

were obtained: reaching, peeling, departing while the holding arm rotates, and

retracting.

The right arm holding the vegetable acted as master throughout the task.

Force constraints are used by both arms. The right arm ends the reaching

action in contact with the table, and maintains contact by applying a constant

force during the peeling and rotating actions. The left arm applied a force

perpendicular to the zucchini in the peeling phase (Fig. 3.24c). The coupled

dimensions in the third action (Fig. 3.24b) show that the right arm’s motion

determines the left arm to retract backwards and down during the rotation.

Using the constraints we obtained a success rate of 10 out of 10 trials.

3.5.3 Bowl Mixing

Lastly we performed an experiment of mixing in a bowl using a spoon, while

the other arm was holding the bowl. The task took about 20 seconds to complete

(Figure 3.25a). We obtained a decomposition in 3 actions: reaching, mixing and

moving away. The holding arm acted as master throughout the task, applying a

vertical force for maintaining contact with the table and using position control

otherwise. The mixing arm was slave and employed force control during the

mixing action.
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Mix Move awayReach

(a) actions and grasp close-ups

(b) directional grasp (c) mixing power grasp

(d) Master - stiffness modulation (e) Slave- stiffness modulation

Figure 3.25 Bowl mixing task

Fig. 3.25b and 3.25c show the hand shape used for holding, with the corre-

spondingly activated tactile patches. The grasp was adapted to applying a high

force on the X axis (ϑx = 0.6) for stabilizing motions in the plane of the table,

and a medium grasping quality (ϑ = 0.46) on the vertical axis ensuring contact

with the environment.

We show the stiffness modulation of the master and slave arms in Fig. 3.25d

and 3.25e respectively. The master arm had a low stiffness on the vertical axis

for applying a force that maintains contact with the table and high stiffness

on the other two axes. However residual motions of the bowl were the result

of the low stiffness of the human arm. The stiffness of the slave arm changed

continuously during each mixing pass.
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3.6 Discussion

We described an approach for obtaining coordination constraints from demon-

strations of asymmetric bimanual tasks. The approach is incremental, by de-

tecting relations between the sets of unimanual constraints. The method proved

efficient in the examples we explored, however we discuss multiple factors that

posed limitations, and future work.

3.6.1 Advantages

The obtained representation allowed the robot to execute the task both

autonomously as well as in physical collaboration with a human. Using the

hand information in conjunction with the task constraints was important for

the task success. Estimating the human’s intention based only on distance from

its corresponding attractors, might not be sufficient, as shown in Fig. 3.26.

The robot could correctly adapt its stiffness when the human approached from

a demonstrated pose. But it would not adapt when approaching from above.

However in both cases the user employed the same grasp, adapted for applying

high forces. This is due to the fact that different actions require different ways

of holding the tool (de Souza et al., 2015).

Thus the hand is shaped to apply a desired motion or force in accordance to

the constraints of the current action. Therefore the grasp has a complementary

role to the constraints. It is informative on how the tool should be used to

achieve the desired effects on the object. This information can allow the robot

to predict the human’s intent to apply a force and adjust accordingly.

In our experiment the tools (the fruit and the scoop) were already grasped

when the task started and remained in hand throughout the task. Therefore

the hand preshape was already task–specific, however the grasp continuously

adapted to the current constraints. Additionally the estimated force ensured

that the robot was able to adapt to scooping objects of different consistencies.

For example the user would apply significantly less force when scooping cream

vs. mellon, however the grasping quality alone does not give a direct indication

of the amplitude of the force.

3.6.2 Limitations

The method described in this work applies only to asymmetrical bimanual tasks

in which the two arms maneuver different objects either for reaching different

targets or for performing actions in physical contact.

Task modeling

The proposed approach modelled directly the demonstrated behavior how-

ever this might not be the most efficient manner to execute the task. However
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Free 
Motion

Low 
Stiffness

High 
Stiffness

High 
Force

Low 
Stiffness

High 
Force

Figure 3.26 Stiffness update based on vision only estimation of the wrist posi-
tion. (left) free motion for safe interaction; (center) the human wrist enters the
vicinity of the estimated attractor following the demonstrated behavior. The
robot is able to increase stiffness; (right) the user is ready to apply high force,
but being further from the attractor the robot does not increase its stiffness.

we consider that the behavior that the user demonstrated is the one that should

be reproduced. We don’t focus on determining if this behavior is optimal for

the task, or if certain gestures should not be included in the task model.

For example in the case of the scooping experiment, the departing and reach-

ing back actions could have been modeled in a single action as they serve the

same purpose thus avoiding the change of models and reference frames. While

these changes occur in complex tasks requiring multiple subtasks it is preferable

to design a way to aggregate actions with respect to the current goal.

Similarly, in the ”bowl-mixing task” the arm holding the bowl showcased

some residual motions as the active arm was mixing. This was due to the lower

stiffness of the human arm during demonstration, and was not necessary for

successfully completing the task.

Moreover the effect on the object was modeled indirectly through the exerted

forces. However even though this was a feature of the task, it does not necessarily

ensure that an autonomous execution would always be successful (i.e. obtaining

a plastic deformation, where the scooped part is actually removed, but in a

changing context: using a hard pumpkin instead of a mellon). This could be

achieved by making use of higher–level information about the actual state of the

object and correlating it with the applied forces. Conversely, when executing

the task collaboratively, the human might have to apply higher forces than

what was demonstrated to achieve the goal. In this case our encoding of the

coordinated behavior could ensure successful execution, regardless of the fact

that the robot lacks a representation of the high–level goal.

Hardware setup

The setup used for recording demonstrations is not suitable for demonstrat-

ing dexterous manipulation for two hands. This would require two data gloves
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(a) Ψ1 − Reach (b) Ψ2 − Scoop

(c) Ψ3 −Depart (d) Ψ4 − Trash

Figure 3.27 The line plots show the maximum criterion at each time step cor-
responding to the change of reference frame. Dark green correspond to the
criterion of the holding arm moving with respect to the the bowl, and light
green moving wrt. the active arm. Similarly for the arm holding the tool, the
dark blue line corresponds to moving wrt. the bowl, and light blue wrt. the
holding arm. The patches show the arm roles for each action, as attributed
during segmentation.

and two sensorized tools that capture directly the motion of the human hand

and the forces exerted by the arm. However in this case transferring the task to

the robot (especially the dexterous aspect) raises different challenges, such as

determining the appropriate mapping between the human and the robotic hand,

which we don’t address here. The setup is also a downside during collaborative

execution as the user always has to wear the glove for the robot to access the

hand state.

Algorithm

In the current work we don’t explicitly consider the end effector orientation

when performing segmentation. However this information is retained for each

action and incorporated in the behavior of the robot when reaching a target,

through our dynamical systems implementation (Shukla and Billard, 2012).

Also our algorithm is sensitive to the way the user holds the tool and to

changing the grasp in a consistent way across demonstrations, as this influences

our extracted vector of important joint angles θs. Various users might feel more

comfortable holding the tool in different ways, or not varying the grasp across
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(a) Ψ1 − Reach (b) Ψ2 − Scoop

(c) Ψ3 −Depart (d) Ψ4 − Trash

Figure 3.28 The maximum criterion at each time step corresponding to the
variable of interest for each arm. Light red, green, and blue lines correspond
to position control on the X, Y and Z axis respectively. The dark colored lines
correspond to force control.

actions, even if this behavior is not optimal for the task.

Moreover constraints in configuration space are important for safe task ex-

ecution. However the method described here does not extract these type of

constraints (such as self-collision avoidance). But if these aspects related to

arm kinematics are known they could be accounted for during the execution

phase.

Lastly we don’t consider all the possible combinations of subsystems when

studying coordination. While this reduces our search space, it might let inter-

esting correlations escape unobserved (such as the coordination between fingers,

or the motion of one arm might influence the finger movement of the opposite

hand).

Choice of window size

Our algorithm is sensitive to the window size used for segmentation. A

small window size can lead to oversegmentation, while a large window size has

a smoothing effect. In Fig. 3.27 we show the maximum criterion (for the choice

of reference frame) obtained at each time step before applying a time window

for performing the segmentation.
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From this criteria we can identify subtle events: (1) the active arm became

master for a short period of time (< 1s) which corresponded to the maximum

force being applied; (2) the passive arm switched shortly to a slave behavior as

the active arm finished scooping and was moving up; (3) the master/slave role

switched during the departing action; (4) the motion became uncoordinated as

both arms switched to the object reference frame.

These changes were smoothed out in our segmentation as we used a time

window equal to our sampling rate, with no visible effect in this low paced task.

However in other tasks it might be important to catch these events. The axis–

specific control variables also change according to the action requirements (see

Fig. 3.28). Position is the relevant variable in reaching actions (Ψ1,Ψ3). During

scooping the active arm employed force and torque across the Y and Z axis; the

passive arm was position controlled. A change to force control for the holding

arm occurred as the active arm released the scooping force. The last action

(departing) does not end in contact, the arm holding the tool accelerates and

shakes to drop the scooped piece, thus inducing dynamic forces. These can be

filtered while in this case the transition condition depends on the arms reaching

their respective attractors.

3.6.3 Stability considerations

The motion of each arm is generated using a coupled dynamical systems

(CDS) representation, with 3 components: a position dynamics, a orientation

dynamics and a coupling between the position and orientation. The stability of

a CDS system has been addressed previously in Shukla and Billard (2012) by

analyzing the stability of its components.

We further encode the coupling between the arms as a SEDS (stable estima-

tor of dynamical systems) (Khansari-Zadeh and Billard, 2011). SEDS ensures

global asymptotical stability in reaching the attractor (see Khansari-Zadeh and

Billard (2011) for a formal proof), robustness to perturbations and online adap-

tation for obstacle avoidance (Khansari-Zadeh and Billard, 2012). This applies

both to changes in the object’s position as well as to changes in the motion of

the human hand during collaborative execution.

During the task execution we use the cartesian impedance controller provided

through the Kuka Fast Research Interface (FRI 1.0): τ = JT (Km(x − xm) +

Fm) +D + fdynamics(q, q̇, q̈), in which the stiffness Km, position and xm, force

Fm are model based, while the last two terms are compensated by the controller.

3.6.4 Future Work

As previously mentioned, constraints alone might not be sufficient for ob-

taining a generic task representation. Therefore one future direction focuses
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on including high–level information about the state of the manipulated objects

coming from vision or other sensors. This can influence the system’s ability to

generalization: such as obtaining the same effect using different tools, or modi-

fying the placement of the scoop inside the mellon as a function of the remaining

amount of fruit pulp. This can also lead to practical metric of task completion.

Such meta–information is essential for reasoning about the task, inferring miss-

ing information, or even correlating the action with semantic data, whereas in

the current work, the action labels were manually added.

Secondly this technique applied to collaborative tasks has the potential to

improve interaction, by making the robot’s behavior more predictable for a

human partner.

3.7 Conclusions

In this chapter we presented an approach for abstracting a representation

of asymmetrical bimanual tasks from user demonstrations. While the motion

of each arm is characterized by its own set of constraints, we are particularly

interested in coordination features, which we identify as relationships between

the unimanual constraints.

We form a task prototype based on constraints, motions models and embod-

iment features that represent the user specific way of performing the task. We

tested the proposed approach on two common cooking tasks. We showed that

the same prototype can be instantiated when performing the task on a bimanual

platform, as well as in collaboration with a human. However this approach has

limitations with respect to the efficiency of the encoding as well as the user’s

ability to demonstrate the task in the proposed manner.

Lastly we investigated how the motion of the two arms can be coupled for ac-

tions that have different requirements. We also showed that the roles governing

the motion change, as well as the type of coupling.
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Chapter 4

User skill assessment based

on task constraints

The work presented in this chapter is currently under review:

Pais Ureche, A. L., and Billard, A. (2017) Automatic skill assessment in

learning from demonstration. [Under Submission, IJSR 2017]

4.1 Forward

In this chapter we explore an alternative use of the soft task constraints

introduced previously. The constraints are identified based on a notion of con-

sistency in the execution of multiple demonstrations. Here we perform a user

study to investigate firstly how consistent behavior relates to applying the re-

quired task forces and to maneuvering the tool, and secondly whether it affects

the performance of the subject as perceived by himself or by an external rater.

Thus the proposed approach constitutes an automatic assessment of the user

performance through objective task–specific metrics.

We test the approach on a daily bimanual task, in a user study involving 37

participants1. We compare our metrics with two subjective evaluations: user’s

self–assessed skill, and skill assessed by video raters.

Our work is based on the observation that Programming by demonstration

(PbD/LfD) often relies on experts performing the task, however users might

be more or less skilled in performing the same task, especially when force con-

trol and dexterous tool use are required. This can impact the quality of the

demonstrations, of the learned models and of the interaction. Despite this fact

user performance is typically evaluated through hardcoded metrics, making the

assessment difficult.

We then show that the user skill impacts robot performance while executing

the learned task and that the hand state can be an indicator of user performance

in relation to the task constraints. We then use the skill information to classify

the users hand state seen during task demonstrations. We show that in the case

of collaborative execution signal the expected level of human performance given

the current constraints.

1The data and code from this experiment are provided on the following link.
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Figure 4.1 We record demonstrations from multiple users. For each we extract
a constraint–based representation consisting of: the action sequence, the refer-
ence frame for each arm, the relevant variables in each action, and the stiffness
modulation (Ureche et al., 2015). We evaluate performance across users given
the different strategies they adopt, assessing how consistent they are through
consecutive trials and how their performance is correlated with various factors
such as the force they apply, or the way they manipulate the tool.

4.2 Introduction

When learning a task through Programming by Demonstration (PbD/LfD)

the aim is obtaining an accurate execution while giving the robot the ability to

generalize to various contexts. The demonstrator is often an expert, and the

task is typically learned from good demonstrations.

In this chapter we address the fact that multiple users can be successful in

providing demonstrations however some perform the task with ease, while others

struggle to obtain the desired effect. Users might adopt different strategies

of using the tool, adapted to the local conditions, which result in successful

demonstrations. However applying the same strategy might not result in a

good execution under different conditions.

We consider our previous approach Ureche et al. (2015) which identifies

regions of low variability across multiple demonstrations as task constraints. For
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Figure 4.2 Typically user performance is linked to task performance evaluated
at the end of the learning cycle. In our approach we bootstrap task constraints
and embodiment features related to the way the user manipulates the tool. We
determine user performance based on these two sets of features and show that
it is linked to robot performance during execution.

a given task the constraints remain the same across demonstrators. Therefore

this notion of consistency (i.e. regions of low variability) in relation to the

task constraints can constitute an indication of the ability to perform the task

properly.

We thus make the hypothesis that a skilled user shows consistency over

trials. This most likely originates from prior knowledge of the task and results

in the ability to reproduce the skill properly from the beginning. In contrast,

an unskilled user who tries different strategies, shows little to no consistency

across multiple demonstrations, thus leading to over segmentation.

This aspect is in line with other observations of human skilled performance.

In sports for example skill is defined as a ”consistent production” of move-

ments or gestures that were learned and that serve the task goal (McMorris,

2004). Thus a skill is acquired when a subject is able to show consistency in

performing it (McMorris, 2004). Moreover subjects who already have a cogni-

tive representation of the task are better able to control their voluntary motions

thus showing more consistent structures and better controlled force and position

profiles (Seegelke and Schack, 2016).

Therefore we also investigate the way consistent performance is linked to

other aspects of task execution, namely: exerting forces, modulating the arm’s

stiffness, maneuvering the tool (as different actions require holding the tool in

different ways (de Souza et al., 2015)) or the time required to complete the task.

Manipulation tasks, such as scooping a fruit, require the two arms to co-

ordinate for obtaining a physical effect, by adjusting their relative pose, force

and impedance, which represent the task constraints (Ureche et al., 2015; Pais

and Billard, 2015). However the way the tool is employed favors applying these

constraints (see Fig. 4.1). Moreover a human learning to use a new tool is often

shown the best way to hold it by an experienced person.

Typically performance is evaluated indirectly at execution time through spe-

cific task success metrics. In our work we propose performing an assessment

directly on demonstration data, by correlating user’s behavior with the task
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constraints (see Fig. 4.2).

We show that the two evaluations are correlated thus making user perfor-

mance a good indicator of the robot performance in autonomous execution. For

example the fact that a user did not implicitly emphasize the constraints during

demonstration (i.e. by applying forces randomly rather than on the direction of

interest for the task), can influence the robot’s ability to generalize.

Conversely we show that a robot aware of the task constraints can use this

information for estimating the performance level based on the user’s hand state.

Our approach contributes to task learning by:

(1) providing objective task–specific metrics related to automatically extracted

constraints, instead of hardcoded metrics or a ground truth model;

(2) identifying patterns that unskilled users have in common thus revealing

difficult aspects of the task.

(3) using the performance estimation both for selectively learning parts of the

task from different users and for evaluating user behavior in realtime;

We structure our work around addressing the following research questions:

RQ1 Can the user performance during demonstration be reliably assessed based

on objective task constraints?

RQ2 Is the user performance during the demonstration directly correlated with

the robot’s ability to execute the task?

RQ3 Can the user performance be predicted from the ability to dexterously

manipulate the tool?

We present our method for assessing user performance and the experiment

we conduct for evaluating it in Section 4.4. We further investigate causes of

poor performance in Section 4.5.

We then relate our user performance assessment with robot performance

during autonomous task execution in Section 4.6.

Finally we use the computed performance to label and classify users’ hand

state during demonstrations and show that this information can be used to

reliably estimate performance levels in Section 4.7. Implications and limitations

are discussed in Section 4.8. Section 4.3 presents related work.
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4.3 Related Work

We address the evaluation of human’s performance during kinesthetic teach-

ing interactions. Despite successfully completing a task, users might not always

provide demonstrations that generalize to new contexts.

4.3.1 User assessment in teaching interactions

Teaching interactions can be evaluated objectively during the execution

phase with respect to whether the task has been transferred successfully (i.e.

the robot’s ability to reproduce the task) (Kronander and Billard, 2014), or

subjectively based on the quality of the interaction, as perceived by the user

(Pais et al., 2013). In our work we propose a method of assessing the user

performance through objective metrics, during the demonstration phase. We

show that this assessment is correlated with the robot’s performance during the

execution and that performance can increase when selectively learning actions

based on the user assessment.

Teaching interaction and implicitly the quality of the demonstration data

can be improved by: providing instructions to guide teaching (Cakmak and

Thomaz, 2014a); asking questions (Cakmak and Thomaz, 2012a); using mea-

sures of demonstration quality (Kaiser et al., 1995).

However all these approaches assume prior knowledge of the task, and of

what makes a good demonstration. In our work we minimize the use of prior

information about the task by automatically extracting the constraints and

assessing the user’s performance relative to them.

Additionally we explore information relative to the way a user is performing

the task, particularly using the tool, as a means of achieving the goal. For

example choosing a particular configuration of the arms when performing a

bimanual task can affect the strategy people use to stabilize the system (Saha

and Morasso, 2010).

4.3.2 User assessment during an interaction

Kinesthetic demonstrations are a particular case of human robot interaction

(HRI). In HRI assessing the user performance can affect the system’s efficiency,

robustness, and learning ability when dealing with uncertainty (Kannan and

Parker, 2007). However few works focus on characterizing and quantifying user

behavior in force control tasks. Physical interaction during a kinesthetic demon-

stration becomes challenging as the user should be skilled not only in performing

the task but also in maneuvering the robot to continuously apply the proper

forces.
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Common objective metrics used in HRI to quantify human performance

focus on optimizing various measurements: time to task completion (Salcudean

et al., 1997; Murphy and Schreckenghost, 2013) – however depending on the

task characteristics this information might not be as relevant as the quality of

the demonstration; distance traveled with the tool, which should be minimized

in precision tasks, such as surgery (Jog et al., 2011); relative to respecting

position and force (Salcudean et al., 1997); optimal paths with respect to a

known geometric configuration (Chen and Zelinsky, 2003); relative to contact

errors (Steinfeld et al., 2006) as an indicator of accuracy in manipulation tasks;

relative to the task goal (i.e. in the context of rendering forces for a teleoperated

suturing task (Mohareri et al., 2014)).

While task relevant, these metrics are handcoded, enforcing a certain way

of performing the task. In our work we emphasize the possibility of automati-

cally sequencing the task and obtaining a representation based on constraints.

Performance is evaluated based on the ability to enforce these constraints.

In Jain et al. (2015) objective and automatic performance measures for a

human operating with a robot are proposed by segmenting video data of the

human performance and identifying specific steps. However this method requires

ground truth, and does not take into account interaction forces.

Subjective evaluation in HRI implies user–related metrics such as ”trust” or

the ”degree of mental computation” (Murphy and Schreckenghost, 2013; Stein-

feld et al., 2006). Alternatively, teaching interactions are a particular case of

human-robot team interactions. Team–specific metrics are proposed in (Olsen

and Goodrich, 2003) valuing a decrease in the human’s interaction effort.

4.3.3 Particularities of bimanual behavior

In this chapter we focus on an asymmetrical bimanual task which requires

manipulating the tool for exerting relative forces between the arms. Skill in this

case influences arm motion and impacts performance when operating machinery

(Suzuki et al., 2008). In bimanual tasks the arms work in synergy (Kazennikov

et al., 2002), synchronizing towards reaching a goal (Perrig et al., 1999) while

showcasing spatial and temporal coupling (Franz et al., 1991; Kazennikov et al.,

2002). Decoupling in arm motion might indicate hesitation.

Apart from motion coordination, modification in control strategies may oc-

cur (Dimitriou et al., 2011). These can be considered a ”decoupling” in the

movement pattern (Mutha and Sainburg, 2009) and can be observed in the way

the motion is being performed.

These factors have implications in the way a task is demonstrated to a robot,

as users who are not skilled themselves in performing a task may showcase many

instances of decoupling.
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(a) Demonstration Setup (b) Execution Setup

Figure 4.3 During demonstrations the subject is kinesthetically driving a
KUKA LWR arm used for holding. The tool is maneuvered by the opposite
hand while wearing a glove covered with tactile sensing. Vision is used for
tracking the tool, the wrist and the bowl. Two Kuka LWR arms with FT
sensors, and vision tracking are used for autonomous execution.

4.4 User performance assessment

The ability of a robot to learn and generalize a newly demonstrated task

depends greatly on the quality of the demonstrations. Therefore this experi-

ment was carried out to study whether skilled performance of a person can be

assessed through consistency in relation to the task constraints and to evaluate

the impact it has on the robot’s performance.

4.4.1 Study design

The experiment consisted of an asymmetrical bimanual task: scooping.

Properly completing the task required coordinating the arms, and maneuvering

the tool to exert appropriate forces.

We thus test the hypothesis that consistency in the execution can be used as

an indicator of skilled performance and that it is further related to other task

aspects such as exerting proper forces and manipulating the tool.

Experimental Setup For recording demonstrations we used the setup shown in

Figure 4.3a. A 7 degrees of freedom (DoF) Kuka LWR robotic arm, and a Barret

hand (4 DoF), was used for holding the mellon to be scooped. The demonstrator

could kinesthetically guide the arm with his left hand. The subject scooped with

the other arm, wearing a data glove covered with Tekscan tactile sensors on the

front and side of the phalanges. Force–torque sensors were mounted both on

the tool and on the robot’s arm. We tracked the tool, human wrist and trashing

bowl using an Optitrack Vision System. External cameras recorded the subject’s

performance. For executing the task we used two 7 DoF KUKA LWR arms.

The first arm with the 4 DoF Barret hand was used for holding. The scooping

tool was rigidly attached to the second arm. A vision tracked bowl was used as

external object (Fig. 4.3b).
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(a) Reach (b) Scoop (c) Trash

Figure 4.4 Typical steps in the scooping task

Study Protocol The participants were told to start the task from a comfortable

position, scoop a piece of the pulp, and drop it in the bowl2. This delimits

3 actions Ψ1 − Reach, Ψ2 − Scoop, Ψ3 − Trash, as shown in Figure 4.4. No

specific instructions were given on how to achieve these actions. The participants

were requested to provide a minimum of 10 demonstrations, and were allowed

to continue performing the task up to 20 times if desired. We thus collected

a total of 480 demonstrations with most of the subjects performing between

12 and 15 trials. The participants filled in a post-experiment questionnaire (in

English), for evaluating their overall perception of the task. Each demonstration

was filmed and raters who have not done the experiment, were asked to rate the

overall performance of each subject as well as during individual trials.

Participants The study involved N = 37 participants (28 male, 9 female), age

28.75± 3.88, right–handed, part of the university staff pursuing a master, PhD

or post doc.

Measurements For each demonstration we recorded the following data:

1. the position, orientation rp, ro ∈ R
3 of the robot’s end effector;

2. the forces Fe ∈ R
6 on the robot’s end effector;

3. the motion of the wrist wp, wo ∈ R
3;

4. the forces and torques acting on the tool Ft ∈ R
6;

5. the tool pose tp, to ∈ R
3;

6. the bowl pose op, oo ∈ R
3;

7. the finger joint angles θ ∈ R
23

8. tactile readings: averaged tactile pressure on the frontal patches φf ∈ R
18

and side patches φs ∈ R
18;

9. the time length of each demonstration T (s);

10. the scooped quantity (g);

2The data recording started when the tool was already in hand, such that we didn’t assess
the initial reaching for the tool nor the grasping phase.
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(a) Reference frames (b) force–torque ellipsoid

Figure 4.5 Constraints extraction for the scooping task. The human arm Rw
moves with respect to the robot Rx; the robot moves relative to the bowl on the
table Ro. The directions to apply force and torque are illustrated on the right.

From the first 6 measurements we determined a constraint representation of

the task by using our previously proposed approach (Ureche et al., 2015). We

automatically segmented the task actions and extracted soft constraints that

consisted of: the reference frame used for manipulation, the relevant variables

with respect to this frame (illustrated in Fig. 4.5) and a stiffness modulation

factor for each arm.

Metrics

We propose 4 sets of metrics for comparing our automatic assessment of

performance (metrics A) with: objective task measurements (metrics B); the

user’s self-assessed performance (metrics C); and with the performance assessed

by video raters (metrics D).

A.Metrics related to the autonomous extraction of task constraints:

(1) number of segments Ψ, a ∈ [1..NΨ]

(2) important variables in each action ν ∈ R
3:

(3) stiffness modulation in each action λ ∈ R
3

(4) user skill {skilled, unskilled}

(5) metrics regarding dexterous tool use:

1. grasp adaptability ϑ ∈ R
6

2. maximum pressure per patch

3. demonstration quality {low, high}

For each subject we determined the task constraints based on the total num-

ber of demonstrations, using our previous approach (Ureche et al., 2015). For

each arm we used the state of the end effector: {rp, ro, Fe} for the robot and
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{tp, to, Ff} for the tool to determine the constraints consisting of: the reference

frame relative to which the arm moved; ν the important variable on each axis

(position, force or torque); and a stiffness modulation factor λ ∈ [0 . . . 1] which

weights the contribution of position and force on each axis. Lower stiffness

is expected for dimensions where force control should be used and higher for

position controlled axes.

A segmentation point was determined by either a change in the reference

frame (e.g. when scooping the tool moves relative to the holding arm, but when

trashing the motion is done relative to the bowl), or by a change in the variables

of interest (i.e. switching from position to force control). Over-segmentation

can be caused by the subject changing the control strategy. For each user the

value of Ψa indicated the total number of segments determined automatically.

We compared this number with hand segmented data as ground truth delimiting

the actions shown in Fig. 4.4, Ψg, g ∈ 1..3. Based on the number of segments we

attribute each subject a skill value, such that a skilled user completes each action

in one segment NΨa
= NΨg

, while an unskilled user shows over segmentation.

The metrics regarding dexterous tool use were computed for each action

Ψg, g ∈ 1..3 and for each demonstration. The grasp adaptability ϑ was com-

puted according to (de Souza et al., 2015), based on the hand shape, the tactile

signature, the position of the tool in hand and the position of the wrist with

respect to the robot frame. It represents a measure of how adapted the grasp

was to exert forces or torques across the dimensions of interest. Therefore a

high ϑ is expected along the axis in ν where force should have been exerted,

and low for the rest. Based on this observation we marked each demonstration

as ’low’ quality, if ϑ < 0.7 on a dimension where force control should have been

applied, and ’high’ quality if the tool was properly used.

B. Objective task measurements:

(1) action duration tΨi (s), i ∈ 1..NΨg

(2) scooped amount w (g)

The task duration represented the length of each demonstration for each

user. The duration of each action Ψg, represents an average over demonstrations

as the action set is obtained after segmentation, which requires aligning the

demonstration data using Dynamic Time Warping (DTW). The total scooped

amount was weighted for each subject at the end of the experiment. An average

value was computed given the total number of demonstrations.

C. Self–rating post-experiment questionnaire:

The questionnaire involved 3 parts evaluating general task aspects, usability

and task load. The general evaluation included 4 questions with a 5 level Likert

scale answers:
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1. How easy was to teach the robot?

2. How familiar were you with the scoop tool?

3. How would you rate your performance?

4. How often do you perform cooking tasks?

5. Which aspect of the task posed most difficulties?

(maneuvering the robotic arm / wearing the glove / maneuvering the tool)

6. Overall impression (free text)

For assessing usability we employed the SUS test (Brooke, 1996b). For measur-

ing the physical, mental, and temporal task load we used the NASA TLX test

(Hart and Staveland, 1988a).

D. Video Rating

The video raters were shown the demonstrations ordered per subject. They

rated each demonstration individually. After the last demonstration they rated

the subject’s overall performance.

The demonstration rating involved 4 questions:

1. Rate the scooped amount: (too little/normal/too much))

2. Did this person perform the task with ease (yes/no)

3. How was the task pace (too slow/normal/too fast)

4. The applied force was: (too little/normal/too much)

The subject’s overall evaluation comprised 4 questions:

1. Was this subject consistent over trials? (yes/no)

2. Did this subject improve over trials? (yes/no)

3. Could this subject manage the setup well? (yes/no)

4. What was the main issue this subject had: (arm coordination / grasping

the tool / direction of movement / none of the above)

4.4.2 Data analysis

We analyze the data averaged per users and per demonstration. We compute

Anova statistics using as factors the automatically determined skill auto-skill,

the user self-assessed skill through the questionnaire self-skill and the skill as-

sessed through video rating rated-skill. Each of the factors mentioned above has

two levels: ’skilled ’, ’unskilled ’. We also compute Spearman correlations.
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(a) skilled – selection criteria (b) unskilled – selection criteria

(c) skilled – force profile (d) unskilled – force profile

(e) skilled – torque (f) unskilled – torque profile

(g) skilled – grasp (h) unskilled – grasp

Figure 4.6 Comparison between skilled (left column) and unskilled (right col-
umn) users. Change of important variables (left column): a skilled user em-
ployed position control in reaching, and trashing actions and force control in
scooping. An unskilled user changed the control strategy during scooping, pass-
ing from applying a torque to position control and back to applying a torque;
force and torque profiles – columns 2 and 3; hand shape and pressure for a
skilled and unskilled user in column 4.
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(a) axis 1 (b) axis 2

(c) axis 3

Figure 4.7 Maximum force applied by skilled and unskilled subjects

4.4.3 Results

We analyzed the data for each subject and we present results in relation to

the 4 categories of objective metrics, thus addressing the first research question.

User performance based on constraints

Action sequence and task constraints

Applying our constraints extraction method (Ureche et al., 2015) showed

that each user completed the reaching and trashing actions in one segment

(Ψ1,3). For these actions the automatic segmentation corresponded with the

ground truth (NΨa
= NΨg

). During the scooping action over–segmentation

occurred for some subjects. This was caused by changes in the important vari-

ables especially along axes were force and torque should have been applied (see

Fig. 4.6). Nine out of all demonstrators completed the scooping action in one

segment and were marked as skilled, cumulating 110 demonstrations, while the

other 28 subjects were marked as unskilled (for a total of 370 demonstrations).

Force applied

Comparing skilled and unskilled users with respect to the force (see Fig.

4.6c vs. Fig. 4.6d) and torque profiles (Fig. 4.6e and. Fig. 4.6f) showed that

skilled users applied the force for a shorter time, compared to unskilled users,

suggesting that their movements were more precise. Unskilled users applied

either smaller, or higher forces than skilled users.

95



(a) passive arm (b) active arm

Figure 4.8 Stiffness modulation of skilled and unskilled subjects

Averaged per user skilled users applied 18.83N±5.99 on the direction where

force was a variable of interest. Some unskilled users (13 out of 28) applied

considerably less force 12.18N±7.79, while 15 applied more force 21.81N±7.67

(see Fig. 4.7).

For the second axis the average maximum value of force applied by the

skilled users was 12.72N , while the unskilled users were divided in two groups:

16 subjects applied less 12N (average value 6.93N ± 3.25), while the rest 12

subjects applied 19.54N ± 5.68.

In the case of the 3rd axis where force was not a variable of interest, all of

the 9 skilled users applied less than 10N , while 7 out of 9 skilled users applied

on average 1.10N ± 0.27. In the case of unskilled users the maximum value of

force applied on this axis was 13.65N and the average was 3.75N ± 2.85.

Overall the subjects that we marked as skilled were better able to control

their force for the important axes and they were not applying too much force. In

comparison, the unskilled subjects applied either too much or too little force on

the main axis while on the secondary axes they had higher values than the skilled

users. The differences are significant across users on all axes: F (36, 479) =

22.68, p− value < 0.001, axis 2: F (36, 479) = 43.01, p− value < 0.001, and for

the 3rd axis F (36, 479) = 6, p − value < 0.001. For the computed skill factor

(auto-skill) the effect was significant only in the case of the axis where force was

a variable of interest: F (1, 479) = 5.52, p− value = 0.019.

Stiffness modulation

Overall for the arm holding the tool the skilled subjects displayed a lower

average stiffness during Scooping (λ = 0.37±0.09) on the axis on which force was

becoming an active constraint, compared to unskilled users (λ = 0.39±0.12), see

Fig. 4.8b. Conversely the skilled users were stiffer than unskilled users for one

of the remaining axis (λ = 0.41±0.08 versus λ = 0.38±0.08), while for the third

axis there was no significant difference (λ = 0.42± 0.10 versus λ = 0.41± 0.08).

For the holding arm the skilled users were stiffer on the vertical axis (λ =

0.44 ± 0.09) compared to unskilled users (λY = 0.41 ± 0.10) Fig. 4.8a. The

stiffness of the passive arm was inversely correlated with the scooped weight

ρ = −0.36 and directly correlated with the total demos ρ = 0.3, suggesting
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(a) Directional grasp (b) Directional grasp

(c) Power grasp

Figure 4.9 Subjects employed a variety of grasps. The adopted hand shape
has an effect on their ability to maneuver the tool. The first two images are
examples of directional grasps in which one of the fingers is used to direct the
motion: the index (a) and the thumb (b). The first grasp is well suited for this
task. The last image shows a power grasp.

that people who were able to properly maneuver the robot arm were capable of

scooping more and were willing to provide more demonstrations.

This confirms earlier results as part of acquiring a skill is learning in which

direction to apply the correct amount of stiffness (Erden and Billard, 2015).

Dexterous use of the tool

In this task the force was applied using a tool which could be held by the

subject in a dexterous way. The hand shape influenced the ability to maneuver

the tool. This determined the pattern of tactile activation and could influence

way the force was applied. We related these measures through the grasping

quality ϑ. For the first 2 task segments this was computed in the reference

frame of the robot and represents the adaptability of the hand to applying

forces with respect to this frame. Examples of grasps are shown in Fig. 4.9.

For skilled subjects the average value of the grasping quality along the axis

where force would be applied (the Y axis of the robot) was ϑskilled = 0.78±0.28,

with just two subjects providing low average values of 0.44 and 0.45 respectively.

In the case of unskilled users the average was ϑunskilled = 1.02± 0.5. While the

overall value is higher, this group was very diverse, with 6 subjects having an

average below 0.5 and 5 subjects having values above 1.5.

In the case of skilled subjects the value of ϑskilled was correlated with ap-

plying higher task forces (Spearman ρ = 0.45), while for the group of unskilled

subjects there is no correlation along this direction (ρ = 0.01). This suggests

that even when they were holding the tool properly, still there were other factors

that were not allowing them to exert proper forces for completing the task.
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Ψ1 : Reaching Ψ2 : Scooping Ψ3 : Trashing

RFRobot RFRobot RFBowl

Skilled Unskilled Skilled Unskilled Skilled Unskilled

mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

ϑx 0.83 ± 0.45 0.80 ± 0.40 0.78 ± 0.36 0.92 ± 0.44 0.74 ± 0.33 0.71 ± 0.44

ϑy 0.67 ± 0.29 0.82 ± 0.41 0.78 ± 0.28 1.02 ± 0.50 0.86 ± 0.43 0.88 ± 0.37

ϑz 0.43 ± 0.21 0.54 ± 0.30 0.43 ± 0.31 0.54 ± 0.29 0.51 ± 0.17 0.49 ± 0.24

ϑrx 0.47 ± 0.43 0.39 ± 0.36 0.32 ± 0.26 0.25 ± 0.16 0.31 ± 0.40 0.31 ± 0.28

ϑry 0.47 ± 0.45 0.33 ± 0.34 0.32 ± 0.26 0.26 ± 0.24 0.32 ± 0.27 0.37 ± 0.38

ϑrz 0.51 ± 0.45 0.59 ± 0.68 0.33 ± 0.27 0.34 ± 0.27 0.56 ± 0.53 0.66 ± 0.68

Table 4.1 Average values for the grasp adaptability metric per user for each
segment of the task, across the directions of the local frame of interest.

For the other axes the values for skilled and unskilled users were: λz =

0.43 ± 0.31 for skilled user, and λz = 0.54 ± 0.29 for unskilled users. However

here for skilled subjects a high value of λ was correlated to scooping lower

amounts (ρ = −0.37), while for unskilled users there was a positive correlation

with the scooped quantity (ρ = 0.25) and with applying a high force (ρ = 0.52),

suggesting that the two groups used different hand shapes. These results are

summarized in Table 4.1.

There was little difference in the grasping quality for the Reaching and Scoop-

ing actions, given that the grasp was already preshaped. When passing from

Scooping to Trashing there was a change of reference frame as the scooping arm

was no longer moving with respect to the holding arm, but positioning itself

with respect to the trashing bowl. Force was no longer a variable of interest,

still the motion was similar, moving downwards in the bowl reference frame.

We further analyzed the data per demonstration. We marked a demonstra-

tion as ’low ’ or ’high’ quality using a threshold of 0.7 for the grasping quality.

Most unskilled subjects provided at least one high quality demonstration. We

summarize the effects of the skill and demonstration rating on the computed

measures in Table 4.2.

(a) force direction (b) torque direction

Figure 4.10 Grasping quality per action, averaged for high and low quality
demonstrations
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Skill Rating Demonstration Rating

Fstat p− value Fstat p− value

ϑFx 2.53 p = 0.113 15.30 p < 0.001

ϑFy 8.56 p = 0.004 514.31 p < 0.05

ϑFz 2.36 p = 0.125 00.03 p = 0.860

ϑTx 9.71 p = 0.002 00.32 p = 0.570

ϑTy 1.28 p = 0.259 12.05 p < 0.001

ϑTz 0.03 p = 0.870 00.27 p = 0.601

maxF 05.52 p = 0.019 0.89 p = 0.345

maxT 05.58 p = 0.019 0.66 p = 0.418

PThumb 09.08 p = 0.003 00.31 p = 0.581

PIndex 36.06 p < 0.001 00.74 p = 0.390

PMiddle 00.28 p = 0.596 00.39 p = 0.535

PRing 07.65 p = 0.006 13.39 p < 0.001

PPinky 00.30 p = 0.583 08.69 p = 0.003

PPalm 13.80 p < 0.001 05.19 p = 0.023

tΨ1 2.17 p = 0.150 09.21 p = 0.005

tΨ2 1.30 p = 0.263 11.49 p = 0.002

tΨ3 0.07 p = 0.792 03.28 p = 0.079

Table 4.2 Effect of the skill (two levels: ’skilled ’, ’unskilled ’) and demonstration
rating (two levels: ’low ’, ’high’) on the computed metrics per demonstration.
We highlight significant interactions (p− value < 0.05).

.

Low skill High skill

mean ± std mean ± std

Ψ1 : Reaching 1.10± 0.33 2.03 ± 1.86

Ψ2 : Scooping 3.44± 1.24 6.86 ± 8.88

Ψ3 : Trashing 4.72± 0.81 5.05 ± 3.68

Total task time 9.51 ± 2.02 15.16 ± 12.57

Table 4.3 Time (in seconds) required per segment and for the whole task, for
skilled and unskilled subjects.
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Objective task measurements

Task timing

The total task time was lower for skilled subjects (9.51s ± 2.02) compared

to unskilled subjects (15.15s± 12.57). Duration per segment was also different

among skilled and unskilled demonstrators (see Table 4.3). All subjects took

between 1 and 2 seconds to complete the first reaching action. The duration of

the second scooping action constituted the biggest difference among subjects,

with an average of 3.44 s ± 1.24 for skilled subjects versus 6.86s ± 8.88 for

unskilled subjects. The effect of skill on action duration was not significant (see

Table 4.2), however there was a significant effect of the demonstration quality

on the duration of the reaching and scooping actions (Fig. 4.11).

When considering the skilled and unskilled users separately, the duration of

the scooping segment was inversely correlated with the stiffness of the active arm

ρ = −0.41 for skilled subjects and ρ = −0.13 for unskilled subjects. Overall,

the segment duration was inversely correlated with the grasping quality for the

torque direction (ρ = −0.34), suggesting that the ability to exert proper torques

might contribute to completing the task faster. The segment duration was also

correlated with the subjects age ρ = 0.31

Scooped amount

The average scooped weight was weakly correlated with our assessment of

consistency (Spearman ρ = 0.20). For consistent subjects the average scooped

weight was 11.49± 3.74g, with a minimum of 7g per scoop and a maximum of

17.9g per scoop. For subjects that showed inconsistency the differences in the

scooped amount are higher: mean 9.70± 3.97. The minimum scooped amount

was 2.83g and the maximum was 20.36g per trial.

The big differences between users with respect to the scooped amount were

mostly justified by the fact that there were few subjects who have applied a high

force and managed to remove a big amount of the pulp even if they struggled to

Figure 4.11 Duration per action. Unskilled
users took longer time to perform the task
than skilled users.
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do so. On the contrary there are subjects who tried different strategies, were not

very successful with either of them and thus scooped little. Overall the scooped

amount was correlated with the force across the direction of interest (ρ = 0.52),

however this correlation is higher for the subjects showing consistency (ρ = 0.61)

than for the inconsistent ones (ρ = 0.49).

Additionally the scooped amount was inversely correlated with the stiffness

across the axis where force was a variable of interest ρ = −0.43, meaning that

subjects able to properly control their stiffness would scoop more. However the

scooped quantity was not correlated to the grasping quality with respect to the

direction of force. There was also no correlation between the scooped weight

and the total task time or the duration of the scooping segment.

Post-experiment questionnaire results

We present the results with respect to the 3 categories from the post-

experiment questionnaire.

General evaluation

The average self–rating of the participants skill was 3.51±0.65, on a scale of

1 (very bad) to 5 (very good). No subject rated their performance as very bad,

and only one rated as bad. Most subjects rated themselves as medium (18) or

good (16) and only two as very good.

Most participants cook often: 18 daily, 17 weekly and 2 monthly. On average

the subjects were familiar with the tool (3.02± 1.25) on a scale of 1 to 5, with

no significant difference between the lower skilled - i.e. levels 1 - 3 of the self

assessed skill (3.00 ± 1.20) and highly skilled - levels 4 and 5 (3.05 ± 1.34). A

total of 6 subjects had never used the tool before, while 4 were very familiar

with it.

Most subjects provided free text impressions: 22 positive, 7 negative, while

8 subjects did not provide comments. Examples are given in Table 4.4. The

type of comment was directly correlated with the self assessed skill (r = 0.23).

Additionally the type of comment has an effect on how easy the participants

perceived the teaching procedure to be F (1, 36) = 4.76, p = 0.01. Most negative

comments were provided by subjects not familiar with the tool (implicitly nor

with the task), and by those reporting problems in maneuvering the tool.

Choosing between the robot arm, glove or tool as the aspect that posed

most difficulties was aimed at highlighting possible issues in working with the

given setup. Interestingly, the participants rated their performance lowest when

they indicated a problem in manipulating the tool (see Fig. 4.12a), suggesting

they perceived this as an important aspect of the task, however negative com-

ments are mostly related to maneuvering the robotic arm. Furthermore subjects

that had problems with the robot arm or glove also rated the teaching proce-

dure lower (2.43± 1.18) than those having difficulties with the tool 3.20± 1.64.
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Overall impressions (free text)

Positive remarks

”Very easy and quick experiment to
perform.”

”I felt good being able to teach a robot in
such a way.”

”I was comfortable to use the system.”

”I felt comfortable and it didn’t take too
much time.”

”Great, I found the robotic arm to be very
easy to handle.”

”Actually I believe it would have been
more difficult to use my left hand to
handle the melon because I could not have
the same grip as the robotic arm.”

”The task was generally easy to do but
it became even easier when gained more
familiarity with the robot.”

Negative remarks

”The glove and the robot arm were limit-
ing the movements, they were not like real
moves I would do with my bare hands.”

”It was an easy task to do but harder to
do on the robot.”

”Because of the glove, I felt I am doing
something alien.”

”I had difficulties using the tool. However
I easily controlled the robot.”

”It was easy to learn, but moving the arm
was more difficult.”

”I found the task a bit unnatural for me
as I had to adapt my movements to the
constraints imposed by the kinematics of
the robot. Moreover, the weight of the
sensors wore on my right arm affected my
motions.”

Table 4.4 Samples of free text impressions from the participants

Moreover identifying the use of tool as a difficult aspect was not linked with

how familiar participants were with it (Fig. 4.12a).

With respect to the statistics computed per user the gender had a significant

effect on the duration of the scooping segment (F (1, 36) = 4.31, p − value =

0.045), with women taking slightly longer to complete the segment than men.

Also gender influenced the maximum force applied on the Z axis (F (1, 36) =

4.32, p−value = 0.044), with women applying on average more force than men.

SUS Ratings

The results of the SUS ratings are summarized in Table 4.5, grouped in two

levels of self assessed skill: low self skill for levels 1 - 3 , and high self skill –

levels 4 and 5. We further analyze Spearman correlations between these factors.

Overall the participants rated the system more positively when they also

rated their performance higher. As a result a high self-assessed skill was cor-

related with high levels of the positive statements in the SUS scale (see Fig.

4.12b). Skilled participants were confident with the system and found it easy to

use. These two factors were correlated with being open to using the system more

often (ρ = 0.56, ρ = 0.52) and with providing a positive comment (ρ = 0.30,

ρ = 0.15). Additionally finding the system easy to use was highly correlated

with thinking that other people would learn to use it quickly (ρ = 0.62), but

it was inversely correlated with how easy it was to teach (ρ = −0.53). How-

ever subjects confident in using the system performed the task much faster
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(a) Difficult task aspects (b) SUS positive statements

(c) SUS negative statements

Figure 4.12 General evaluation and comparing SUS ratings for positive and
negative statements

Low skill High skill

mean ± std mean ± std

Positive statements scores

Use system frequently 3.05 ± 0.70 3.50 ± 1.04

Easy to use 3.57 ± 1.01 4.00 ± 0.84

Well integrated system 3.52 ± 0.96 3.88 ± 0.83

Easy to learn to use 4.00 ± 0.81 4.38 ± 0.84

Confident using system 3.52 ± 0.84 3.88 ± 0.83

Negative statements scores

System too complex 2.00 ± 0.81 2.05 ± 0.80

Need technical support 2.63 ± 1.34 1.72 ± 0.95

System inconsistencies 2.10 ± 0.99 1.88 ± 0.96

System cumbersome 3.10 ± 1.04 2.72 ± 1.48

Need previous knowledge 1.78 ± 0.91 1.72 ± 0.82

Total Score 29.31 ± 9.46 29.77 ± 9.43

Table 4.5 Results of the System Usability Evaluation (SUS), averaged for the
low and high self–assessed skill ratings.
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Low self skill High self skill

mean ± std mean ± std

Mental load 04.94 ± 3.23 5.61 ± 3.82

Physical Load 09.57 ± 5.38 8.16 ± 4.24

Temporal Load 04.42 ± 3.84 3.61 ± 3.44

Success 12.52 ± 4.67 6.72 ± 5.51

Effort 08.57 ± 5.51 5.33 ± 3.72

Frustration 02.94 ± 3.06 4.11 ± 4.48

Total Score 43.00 ± 25.72 33.55 ± 25.24

Table 4.6 Task Load Index (TLX)

(10.30s±2.07) compared to subjects who felt a low level of confidence (25.85s).

On the contrary a low self assessed skill was linked to rating higher the nega-

tive statements in the SUS questionnaire (see Fig. 4.12c). Unskilled participants

highlighted the need for technical support and prior learning. Rating the sys-

tem as being too complex was correlated with finding it inconsistent (ρ = 0.30)

and cumbersome (ρ = 0.57). Also the wish to use the system more frequently

was inversely correlated with rating the system as inconsistent (ρ = −0.51) and

cumbersome (ρ = −0.52).

Lastly, subjects that scooped higher amounts were less likely to see the need

for technical support (Spearman ρ = −0.26), or to rate the system as incon-

sistent (ρ = −0.30). The scooped amount was also correlated with reporting

confident in using the system (ρ = 0.34), the desire to use the system more fre-

quently (ρ = 0.36) and only slightly correlated with their self-skill assessment

(ρ = 0.28).

However for the subgroup of subjects who were consistent in the execution,

and thus labeled as skilled by our automatic analysis (auto-skill), the scooped

amount was correlated with their self-skill rating (ρ = 0.60), with being con-

fident with the system (ρ = 0.45) and with the desire to use the system more

frequently (ρ = 0.76). Scooping a higher amount was correlated with perceiving

the task pace as higher (ρ = 0.67).

TLX Ratings

The perceived mental load was higher for the subjects who rated themselves

as skilled (see Table 4.6). The mental load was inversely correlated with the

need of technical feedback (ρ = −0.2), which had a significant effect on this

metric (F (4, 32) = 4.19, p < 0.01). The lower skilled subjects perceived a higher

physical and temporal load than the skilled subjects. The rating on the teaching

procedure had an impact on the perceived temporal demand (F (4, 32) = 4.87,

p = 0.01), such that the subjects who considered demonstrating the task was

easy also perceived the task pace higher (ρ = 0.29). Perceiving a higher physical
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(a) (b) (c)

Figure 4.13 Influence of SUS factors on TLX ratings

load was correlated with scooping a higher amount (ρ = 0.23).

Surprisingly the low skilled participants (self-skill rating) indicated a higher

success rate in achieving what they were asked to do (TLX success rate) com-

pared to skilled subjects. This happened despite rating their own performance as

low (F (3, 33) = 4.48, p = 0.01), the two being inversely correlated (ρ = −0.51),

see Fig. 4.13a. The more complex they perceived the system to be the higher

they rated their success rate (F (4, 32) = 4.91, p < 0.01), see Fig. 4.13b.

Lastly the lower skilled subjects perceived their effort as higher than skilled

subjects, but their frustration level was lower. The frustration level was linked

to being open to use system more frequently (F (4, 32) = 2.90, p < 0.05), see

Fig. 4.13c.

Video rating results

Ratings per user

After watching all the demonstrations done by a subject the raters were

asked to perform an overall assessment of that particular subject with respect

to 4 aspects: consistency in execution over trials, improvement over trials, ability

to manage the robotic setup and the most common issue during the execution

(either of the following: arm coordination, tool grasping, direction of movement

or no issue). Please see Metrics D in Section 4.4.1 for the exact questions. Table

4.7 summarizes the Cohen’s Kappa agreement rates between the raters.

Overall the raters agreed on whether the subject was consistent (kappa =

0.78). All the subjects marked by our approach as skilled were also marked by

rater 1 as consistent. In the case of rater 2 one such subject was marked as

unskilled. However for the subjects marked as unskilled by our approach, only

one was marked as inconsistent by rater 1 and 7 by rater 2. Their agreement

rate for unskilled subjects was 0.75.
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Cohen’s Kappa

Consistency over trials 0.78

Improvement over trials 0.59

Ability to manage the setup 0.72

Issues in arm coordination 0.75

Issues in tool grasping 0.78

Issues in movement 0.75

No issue 0.56

Table 4.7 Agreement rate for subject rating. All values are above 0.5.

rated-skill

Fstat p− value

improve over trials 1.86 p = 0.17

manage setup 5.58 p < 0.001

grasp problems 0.81 p = 0.44

movement problems 2.31 p = 0.11

Table 4.8 Effect of the rated-skill on the video ratings per user. We highlight
significant interactions.

.

We considered a subject as consistent when marked by both raters as such

and correlated these values with our metric of skill (auto-skill) (Spearman cor-

relation). The raters showed a medium correlation of 0.58 for 16 subjects,

however for the first 11 subjects and the last 10 the correlation was low. This

was expected as the raters required time to adapt to different performances and

understand which aspects could vary in the task, while in the end it was mostly

due to the raters fatigue.

The consistency in execution (rated − skill) was also inversely correlated

with the total task time (ρ = −0.22) suggesting that a skilled person finishes

the task faster. There was also an inverse correlation (ρ = −0.42) with the

maximum force applied by the users on an axis on which force was not a variable

of interest, showing that the video raters could correctly identify this aspect as

an aspect of successful execution. Lastly there was a direct correlation with the

scooped weight (ρ − 0.30), and with several factors from the post-experiment

questionnaire: confidence in using the system (ρ = 0.24), and how easy it was

to teach the robot (ρ = 0.21).

The ability to improve over trials was correlated with the scooped weight

(ρ = 0.27) and also with the grasp adaptability to applying torques (ρ = 0.30).

The ability to manage the setup was correlated with several of the subjects

answers to the questionnaire.There was a direct correlation with rating the
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Cohen’s Kappa

Scooped amount 0.62

Task performed with ease 0.77

Task pace 0.73

Applied force 0.73

Table 4.9 Agreement rate for demonstration rating. All values are above 0.5.

system as being easy to use (ρ = 0.24) and with the desire to use the system

more frequently (ρ = 0.30). It was also inversely correlated with the TLX

mental demand (ρ = −0.22), physical demand (ρ = −0.23), TLX task pace

(ρ = −0.33) and TLX effort (ρ = −0.22), indicating an agreement between

the way the subjects and the raters perceive the task performance. Likewise

the identified problems in grasping by the video raters are inversely correlated

with the TLX physical demand as indicated by the subjects (ρ = −0.38), while

problems in movement are inversely correlated with the TLX mental demand

(ρ = −0.21).

Overall the raters showcased good agreement rates between themselves, how-

ever their ratings are only weekly to medium correlated with our sensor metrics

and with the subjects self assessment through the questionnaire.

Ratings per demonstration

For each demonstration the raters had to assess 4 factors: the scooped

amount, if the person performed the task with ease, the task pace, and the

force applied. Overall their agreement rates (summarized in Table 4.9) were

above 0.5, with the highest value for assessing wether the task was performed

with ease. This is related to our extraction of task constraints, as struggling to

perform the task introduces variability and leads to over-segmentation. Con-

versely, consistency leads to fluency in execution.

We further assessed how this factors relate to the corresponding sensor met-

rics. The estimated scooped amount was slightly correlated with the measured

amount (Spearman ρ = 0.25) and also with the maximum force and torque

(ρ = 0.28 and 0.25 respectively). Also the estimated scooped weight was in-

versely correlated with the number of segments (ρ = −0.23) suggesting that a

smooth execution also could occasionally lead to scooping higher amounts.

The force estimated by the raters was not correlated with the maximum

task force (ρ = 0.14). The estimated task pace per demonstration was inversely

correlated with the average task duration (ρ = −0.25).
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(a) zigzag trajectory (b) repeating the motion

(c) scraping (d) round scoop

Figure 4.14 Motion strategies adopted by unskilled users. In the first 3 cases
subjects adjusted their trajectory as they were applying too little force. In the
last case the subject applied too much force as he consistently positioned the
scoop pressing down with the tip, rather than with the cutting edge.

4.5 Possible causes of poor performance

The metrics computed above can help a robot characterize skilled users

through a notion of consistency in execution. This aspect is related to users

able to respect the task constraints when exerting forces on an object and ma-

nipulating tools. This information can help a robot distinguish between poor

and good performance. We further identify traits of unskilled demonstrators

and strategies for task adaptation by performing a qualitative evaluation.

4.5.1 Motion strategy

One aspect of the adopted motion strategies is the coordination between

the arms. While skilled users typically move their two arms to reach a point

above the trashing bowl, unskilled subjects either keep the holding arm station-

ary above the bowl and only move their active arm, either the inverse (active

arm remains always on top of the bowl, performing small movements while the

passive arm moves aside to free space when necessary).

A second aspect related to motion strategy is the trajectory employed when

applying a force. In Fig. 4.14 we illustrate various strategies adopted by un-

skilled users. In the first and second case (Fig. 4.14a and 4.14b) the subjects

applied too little force and therefore had to modify their trajectories to be able

to scoop, either by moving sideways or by repeating the motion. In the third
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(a) user skill (b) demonstration quality

Figure 4.15 Comparing normalized pressure values on each hand part, for two
factors: subjects skill and the demonstration rating.

case (Fig. 4.14c) the subject performed a linear motion outwards, rather than a

scooping motion. This was mostly due to not being able to adapt the stiffness of

the passive arm (which on average was low for this subject λ = 0.40±0.06) while

the active arm was applying a force. With this strategy instead of adapting to

a vertical force, the arm has maintain the position while resisting a torque.

The last aspect of the motion strategy is related to the approach direction.

In the last image (Fig. 4.14d) the subject approaches the mellon from above.

The task became harder starting with this tool position and orientation as it

required too much force. The subject applied a force of 23.05N and a torque

of 1.3Nm, while his grasping quality related to the torque dimension was very

low ϑT = 0.225.

4.5.2 Tool use in relation to the task constraints

Over demonstrations, for skilled subjects the force applied on the direction

of interest was correlated with the pressure on the palm (Spearman ρ = 0.50),

thumb (ρ = 0.37) and middle fingers (ρ = 0.27). This showed a clear tendency

to use these hand parts when manipulating the tool since there is no correlation

with the pressure on the ring (ρ = 0.04) and pinky fingers (ρ = −0.24). How-

ever the pressure on the ring and pinky are correlated with applying torques

(ρ = 0.49, ρ = 0.67). For the index finger, the pressure is correlated with the

maximum vertical force applied on the mellon (ρ = 0.34).

In the case of unskilled subjects the correlations were much weaker: ρ = 0.14

for the palm and ρ = 0.12 for the middle, while the vertical force was not

correlated with the pressure on the index finger ρ = −0.17. However the highest

correlation values between the pressure and force were found for applying forces

on the Y axis: index finger ρ = 0.48, ring ρ = 0.37, and pinky ρ = 0.54.

In Fig. 4.15a we showcase the difference in the applied pressure for the

skilled and unskilled subjects for each hand part. The effect of the user skill

was significant for the following areas: thumb (F (1, 480) = 9.08, p − value =

0.003); index (F (1, 480) = 36.06, p − value < 0.001); ring (F (1, 480) = 7.65,

p− value = 0.006); and palm (F (1, 480) = 13.80, p− value < 0.001).
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(a) High contact on a low area (b) Fingers not enclosing

(c) contact shift to back

Figure 4.16 Common ways of misusing the tool among unskilled demonstrators.

For the demonstration quality factor (Fig. 4.15b), significant differences were

obtained for the pressure on the ring (F (1, 480) = 13.39, p − value < 0.001);

pinky (F (1, 480) = 8.69, p − value = 0.003); and palm (F (1, 480) = 5.19,

p− value = 0.023).

Overall skilled and unskilled subjects used different strategies in manipulat-

ing the tool, and they relied on using different parts of the hand.

4.5.3 Contact Localization

The grasping quality was computed based on the hand shape, tactile signa-

ture and hand localization with respect to the object on which force should be

exerted. Here we evaluate these aspects separately, aiming to find patterns that

lead to improper usage of the tool.

Analyzing the demonstrations with a ’low’ rating we observed 3 common

types of holding the tool which led to low grasping qualities, also illustrated in

Fig. 4.16. In the first case (Fig. 4.16a) the demonstrator employed a pinch

grasp, with the contact localized on the thumb and index. Exerting a high

pressure on a low area (no contact on the palm and little contact on other

phalanges), made it hard to maintain a good grip on the tool. In the second

case (Fig. 4.16b) the demonstrator employed a power grasp, however not all

the fingers were properly enclosed around the tool. In the last type of common

grasp (shown in Fig. 4.16c) the user shifted the maximum contact to the palm,
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(a) skilled user - consistent behavior,
using {index,middle, palm}

(b) unskilled user - consistent behavior,
using {index, ring, pinky}

(c) unskilled user - inconsistent behavior,
switching between active hand parts

Figure 4.17 Averaged pressure across demonstrations for each hand part. The
contact localization across trials was used to compare the consistency of skilled
and unskilled users. The pressure was averaged per fingers and palm during the
scooping segment. We highlighted the trials rated as ’high’ quality

pinky and ring fingers, while the thumb, index and middle have little to no

contact. This type of grasp was not suitable for applying the required torque.

Most skilled users preferred a grasp that favored the distribution of pressure

across hand parts while the maximum contact was applied on the index, middle

and palm and they were consistent across trials (such as Fig. 4.17a). In unskilled

users two behaviors were often encountered: either they preferred exerting more

force on the index, ring, and pinky (leading to the tool misusage shown in Fig.

4.16c) and this behavior was consistent across trials (Fig. 4.17b); either the

way they held the tool and thus the tactile signature varied between trials (Fig.

4.17c). In the first two cases these hand parts were also used when applying the

Figure 4.18 Pressure on each finger corresponding to the maximum
applied force. First two subjects show consistency, while the last
subject changed the strategy in using the tool.
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Figure 4.19 Re-grasping during the scooping action.

maximum force (see Fig. 4.17), but not always for the last case. In Fig. 4.18

we show the pressure on each hand part corresponding to the maximum applied

force for 3 different subjects. Some were consistent across trials, while others

switched the active hand parts trying out different grasps.

4.5.4 Re–grasping

Subjects often employ re-grasping as a strategy of dealing with poor perfor-

mance. Re-grasping can occur during an action, when switching to a different

action or between trials. We analyze these cases separately.

Re-grasping during an action

Fig. 4.19 shows an example of re-grasping while scooping. This behavior

was observed often in 3 subjects and it was observed in situations when the

tool got stuck while the subject was applying low torques and holding the tool

loosely. Therefore the subject had to re-grasp to continue the task. In this

particular case the applied torque was very low (0.07Nm). Even if changing

the grasp was an indication of adaptation to the task, all cases of re-grasping

during an action were marked as low performance by the video raters, as this

behavior was interpreted as hesitation.

Re-grasping between actions

In Fig. 4.20 we show an example of a subject switching from a directional

grasp while scooping to a power grasp while trashing. This happened as the

requirements of each action are different. The first grasp allowed the subject

to apply high force in the mellon reference frame (ϑF = 0.96). In the trashing

action the motion was performed with respect to the reference frame of the bowl,

and changing the grasp facilitates in this case the vertical motion (ϑ = 1.13).

Re-grasping between trials

Most subjects changed the position of the tool in hand while preparing to
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Figure 4.20 Re-grasping between actions in the same demonstration. The sub-
ject switches from a directional grasp to a power grasp.

Figure 4.21 Re-grasping trials as a form of adaptation to the task constraints.
The subject starts by using a power grasp (left), switches to an intermediary
grasp (center), and to a directional grasp (right).

start a new trial. This was correlated with an increase in performance over

trials, and with marking a subject as having improved by the video raters. In

Fig. 4.21 we show the change in hand shape for the same subject in different

trials. The subject managed to increase his grasping quality on both the force

(ϑF = 0.55/0.64/0.70) and the torque dimension (ϑT = 0.12/0.27/0.44). Video

raters also marked this subject as having improved over trials.

4.5.5 Visual Feedback

The way the subjects coordinated their arms also impacted their ability to

use visual feedback and thus see what they were scooping. In Fig. 4.22 we

compare a skilled subject who always kept the bowl upwards and was able

to cover the entire surface efficiently while scooping, with a subject holding
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Figure 4.22 Comparison between a subject who used visual feedback with one
who did not (i.e. the holding arm was pointing down and the subject had to
rely only on kinesthetic information.

the bowl downwards and thus having no visual feedback. This difference was

reflected in the quantity being scooped (160g vs. 99g), despite applying similar

amount of force (∼ 14N for both subjects). The video raters rated the first

subject as good performance and the second as very low performance, despite

their subjective ratings being similar.

4.6 Robot performance during task execution

In this section, we address our second research question, by evaluating robot

performance during task execution in 3 cases:

1. learning the task from an uskilled user;

2. learning from a skilled user

3. learning selectively from good demonstrations regardless of user skill

We encoded the task using time independent models of the end effector

motion, cartesian force and stiffness. For the trajectories we used a coupled dy-

namical systems approach (Shukla and Billard, 2012). We encoded the position

and orientation of each end effector as a first order dynamical system of the

form ẋ = f(x). The function f is estimated using a Gaussian Mixture Model

(GMM). The force profiles are learned only for the directions in which force

is a variable of interest and are encoded in a GMM as a function of position.

Similarly we use a GMM encoding for the stiffness as a function of end effector

position (Ureche et al., 2015).

For quantifying the robot’s success rate while executing the task we measured

the scooped quantity. We marked a trial as successful if the robot was able to

scoop at least 2g and to completely remove the scooped part. For each case we

performed the scoops on a new mellon which we rotated between the trials.

For the first case we have performed 10 trials, out of which just 4 were

successful. The total scooped amount was 11g. In 4 of the trials nothing was

scooped; in 2 of the trials the scooped amount was about 1g, while in other

4 trials the scooped amount was between 2 and 4g. The reasons of failure
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(a) only a small amount
was scooped

(b) scooped part was not
removed

(c) the initial contact force
was too low

Figure 4.23 Failure illustration when using the force-torque encoding from the
unskilled user.

(a) (b) (c)

Figure 4.24 We show snapshots of the robot’s performance when learning from
a skilled user: images (a) and (b) and when learning only from good demon-
strations (c).

are illustrated in Fig. 4.23. They can be summarized as: applying a low initial

contact force which meant that the scoop did not go very deep inside the mellon,

especially when scooping closer to the skin; applying a low force towards the end

of the motion which resulted in the scooped piece not being completely removed;

lastly, scooping small amounts of about 1g was also considered a failed trial.

In the second case we performed 10 trials with data from a skilled user. The

total scooped amount was 46g, averaging 4.6±2.1g per trial. In the last case we

used data only from demonstrations marked as high quality. We performed 5

trials, and scooped a total amount of 35g, averaging 7± 2.23g per trial. Overall

the performance when using data from the unskilled user was significantly lower

than in the following two cases. Conversely using data from good demonstra-

tions resulted in proper execution (see Fig. 4.24) and Table 4.10.

These results answer our second research question, namely that the robot’s

ability to execute the task is correlated with the user’s ability to provide good

demonstrations.

4.7 Performance estimation based on hand

state

As emphasized in the previous section, performance in manipulation tasks

depends considerably on respecting the task constraints. Consequently holding
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Task model Trials Success Total Average

rate (%) weight (g) weight (g)

unskilled user 10 40 11 2.1± 1.2

skilled user 10 100 46 4.6± 2.1

selective learning 5 100 35 7± 2.23

Table 4.10 Robot performance in the 3 execution cases. While both the sec-
ond and third case aimed a high success rate, the best result relative to the
scooped weight per trial was obtained when using models learned from good
demonstrations (highlighted).

the tool in a way that allows easily applying forces and torques across the correct

directions results in good performance. This confirms previous results showing

that the grasp on the tool is always task dependent (El-Khoury et al., 2015).

We thus focus on classifying the hand states (consisting of finger joint angles,

pressure on frontal and side patches) seen during the demonstrations. Given

that the grasp changes dynamically throughout the task (by enclosing on the

tool, re-grasping, or changing the action), for each demonstration we take as

datapoints the sampled hand state at every half a second during the reaching

and scooping actions (Ψ1 and Ψ2)
3, aiming a total of 27880 points. We label the

demonstration data as ”good” or ”bad performance” by discretizing the grasping

quality using a threshold of 0.8.

We compare the performance of two classification methods: support vector

machine (SVM), and a feedforward neural network (NN) (see Table 4.11). We

trained each classifier separately for four cases, using only:

(1) pressure on the frontal patches (18 features);

(2) pressure on the front and side patches (36 features);

(3) finger joint angles (23 features);

(4) and all features combined (59 total features)

Classification in all cases was above chance level (50%). We further discuss

particularities of each method.

4.7.1 Classification with SVM

We trained a support vector machine (SVM), using an RBF kernel function.

Using a training–testing ratio of 20/80 we obtained an accuracy of: 83.94% on

training data vs. 73.56 on the testing set for case (1); 92.14% vs. 78.15% for

3We don’t include data from the last action Ψ3 trashing, as the constraints change: the
reference frame for the human arm is given by the trashing bowl, and the arm is performing
a reaching motion. The grasping quality in this case is computed with respect to the bowl
frame and is thus irrelevant for the force controlled action.
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Feedforward neural network Support Vector Machine

Features Training set Testing set Training set Testing set

Tactile front patches 86.96 71.39 83.59 76.35

Front & side patches 94.33 75.67 92.83 81.94

Finger joint angles 79.41 75.05 98.56 94.72

All features combined 98.43 83.23 99.54 89.56

Table 4.11 Comparison of the classification performance (%) obtained using a
feedforward neural network and SVM. We highlight the best obtained values.

Neurons per layer (L) Performance (%)

NN L1 L2 L3 L4 Train set Test set

2 layers 60 2 98 83

3 layers 60 10 2 95 80

4 layers 60 10 30 2 95 81

Table 4.12 Performance using various structures for the neural network. We
highlight the best obtained values.

case (2); 98.45% vs. 92.14% for case (3); and 99.65% vs. 84.28 for case (4).

Increasing the training–testing ratio to 30/70 (8364 data points vs. 19516 data

points) increased accuracy as follows: 83.68% on training data vs. 74.40% on

testing data for case (1); 92.54% vs. 79.41% in case (2); 98.47% vs. 92.96% for

case (3); 99.56% vs. 85.90% for case (4). We obtained the best results using

40% training data and 60% testing data, see Table 4.11. Further increasing the

training–testing ratio did not improve significantly the results. The training

time was 34.72s for case (1), 15.51s for case (2), 26.25s for case (3) and 114.95s

for case (4).

Frontal pressure alone was not enough to discriminate between grasps. The

best accuracy on testing set in this case was 76.35%, and increased when adding

the information on the lateral patches placed on the side of the fingers (75.67%).

The hand shape given by the finger joint angles was the most informative when

deciding if a grasp was adapted to the task (94.72% accuracy on testing set).

The best performance obtained when including all hand features was 89.56%.

4.7.2 Classification with feedforward neural

network

Implementation was done using Google Tensor Flow (Abadi et al., 2016).

We have tested several configurations with different numbers of neurons in each

layer and different activation functions, both linear and non-linear.
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Number of layers With a data ratio of 30/70 we obtained the best performance

with 2 layers (98% on training data and 83% on testing data). For a data ratio

of 50/50 the best performance was obtained with 4 layers (95% on training

data and 85% on testing data). For a data ratio of 60/40 we obtained 93% on

training data and 83% on testing data. Adding more data in the training set

did not significantly improve accuracy. Also adding more than 4 layers did not

improve accuracy. For 5 and 6 layers networks we obtained 94% performance

on training data and 80% on testing data.

Number of neurons per layer The configurations that led to the best results

are presented in Table 4.12. In all cases at the output we had 2 neurons.

Activation function We tested different non-linear activation functions, ReLU,

softmax and softsign. We observed consistently better results when the input

and output layers were using the sigsign function. This can be explained by the

cut-off nature of this function. This enabled a clear separation between active an

non-active patches and, on the output, between the active and passive neuron.

For each combination of parameters we ran 10000 iterations and the model

converged in each case. Overall the SVM performed slightly better (about 5%

increase in accuracy) than the feedforward neural network. For both methods

similar trends were observed across training cases. Classification rate was lowest

when including only tactile data and increased when all features were taken into

account.

The results presented in this section answer our last research question,

namely that the hand state can be used to estimate user performance.

4.8 Discussion

Our hypothesis was only partially supported by our results, and specifically

by the results of video rating performed by naive users. Even if in sports sciences

consistency in performance is considered an indicator of skill (McMorris, 2004),

this proved difficult to assess.

In our case consistency was not directly linked to an external measurement,

such as the scooped amount. Moreover this notion of consistency was also not

easy to assess by video rating. This was due to the fact that no specific set

of rules were used to define ”skilled performance” or ”consistency”. For the

first set of raters the concept of ”skill” was left ambiguous, while for the second

group of raters assessing ”consistency” also proved problematic as they were not

aware of the sources of variability in the task. Therefore their rating was very

subjective and could not easily relate to our metric.

On the contrary, in sports, there are specific, well defined standards that

should be met by a skilled performance. These are well known by experts
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and often unfamiliar to novices or naive viewers. For example complex figure

skating routines might appear flawless to an unaccustomed person, but very

small mistakes, sometimes imperceptible to an untrained judge, can lead to

very different scores given by the official judges.

Lastly the task addressed in this experiment was very common, despite re-

quiring arm coordination and exerting forces. This increased the raters toler-

ance in their assessment, compared to a precision task that requires a very exact

assessment.

In summary this method would be more suitable as a qualitative performance

assessment than a quantitative one. We further summarize the advantages of

the proposed approach and discuss limitations and future work.

4.8.1 Advantages

The proposed method gives the robot the ability to quantify human perfor-

mance during task demonstrations. This was shown to improve the teaching

outcome by selectively learning from good demonstrations of different users.

While in this case we used a ground truth pre-segmented data for comparison,

the common features of the task remain constant across skilled users. The as-

sessment can be performed automatically with respect to the task constraints.

This represents an objective task–specific evaluation, unlike using metrics pre-

defined by the user. Therefore the method is generic and applicable to a variety

of manipulation tasks. Moreover it provides insight into the humans behavior

during manipulation tasks.

Additionally given enough examples the robot can estimate the expected

quality of user performance continuously, by monitoring the hand state. Since

the performance estimation can be done as soon as the tool is in hand (i.e. even

before a force is actually applied in the task) makes it suitable for estimating if

the user is ready to start the task. This can be applied when executing a task

collaboratively, when training a new user on performing the task, or in cases

when the robot needs to become assistive. The approach has the potential to

make the interaction more reliable and predictable for the human. For example

a robot can increase its stiffness in response to a human’s intention to apply a

force, before actually doing so.

4.8.2 Limitations

We further discuss several limitations in our approach.

Task Modeling

Firstly, in our work we only focused on the robot performance achieved

when using a certain encoding of the task variables, known to generalize poorly
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when poor quality data is provided. Alternative methods of task learning might

compensate for the data quality, such as learning from failed demonstrations

(Grollman and Billard, 2012).

Secondly, the method cannot differentiate between a user preference of doing

the task in a different way. Some users had a low value of force or torque on the

expected axis, but applied higher values on other axes. This might correspond

to using a different strategy. For example applying a horizontal force instead of

torque corresponds to ”scraping” instead of ”scooping”.

Lastly when computing the grasping quality the tool is always considered

cylindrical. No complex model of the tool is taken into account.

Human Factors not accounted for in the assessment

Several limitations with respect to the user assessment might influence the

approach overall. Firstly in this work we assess the skill of the human in demon-

strating the task, and not the skill actually in performing it unrestrained.

Wearing the glove might limit the tactile perception of the user making the

scooping task harder. Several users complained about the weight of the glove

and transceiver that they had to wear on their arm (see Table 4.4). Users did not

always change the grasp as expected, possibly because the setup was interfering

with their natural motions Also maneuvering a robotic arm for holding the

mellon, might have affected the natural coordination and adaptation between

the arms.

Secondly users might prefer a certain way of doing the task, which is not

necessarily the most efficient. The current framework does not offer a way

of differentiating a preferred style from an unskilled performance. However

consistency (i.e. relatively small variability) can hint towards a user preference

and can be prioritized during model learning.

User performance is not always clean. Ideally we would expect to obtain

a clear decomposition into hybrid control. This was only observed for a low

number of subjects. Most subjects have components of force and torque on all

axes, however most are resulting FT. This issue of distinguishing between the

important and resulting forces can be addressed as proposed in (Ureche et al.,

2015) (see Chapter 2), by analysing causal interactions between the variables.

Lastly, there are multiple human factors that could influence the quality of

the demonstrations, that we do not assess here, either because they are hard

to quantify and measure, either because they require a long term evaluation.

For example: aging as this can influence the coordination ability, as well as the

strength of the grip (Gorniak and Alberts, 2013), however a proper assessment

can only be done through a long term study; handedness ; which we could not

assess due to our setup designed for right handed users only; skill in performing

the actual task without the robotic equipment; task features features required

by the task, in our case we tested on a single task, but in a different one (like

knitting for example) the coordination might be more complex.
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Setup Limitations

The setup was custom built and the tactile patches used for measuring the

pressure exerted on the tool were not firmly attached to the glove. Additionally

the tactile patches are not bendable. Bending a patch leads to saturating the

value of the pressure reading.

However bending of some patches might happen accidentally when the user

moves the hand freely. This depends highly on the hand size of the participants

(the length of the fingers and the thickness of the hands which can modify

the position of the patches). To better suit the individual characteristics a

calibration procedure has been devised, but proved impractical due to the long

duration (approximately 1 hour per subject), while the experiment duration was

about 15 minutes. Therefore a default calibration of a person with an averaged

sized hand has been used for all subjects.

Lastly the need to always wear the glove for monitoring to be possible makes

the manipulation more difficult such that fine movements or fine adjustments

of force are no longer possible. Thus the approach would only be suitable for

tasks that require relatively high forces (such as scooping in our case), but not

for fine manipulation.

4.9 Conclusions

In this chapter we presented a method for assessing user performance when

demonstrating the task to a robot. We provide objective metrics that directly

relate the user’s behavior when manipulating the tool with the task constraints.

The constraints are automatically extracted, rather than using hardcoded task

specific metrics. For a known task prototype the robot can estimate the user’s

behavior from the use of the tool.

Skilled demonstrators in contrast with unskilled users showcase: a better

ability to maneuver the tool in order to apply the force required by the task; a

low number of changes in the extracted constraints, especially in the variables

of interest; task constraints remain consistent during the same action.

While the demonstrations are successful, still a robot learning from these

data would not always be successful in applying that strategy in a slightly

different context. However failure can be linked to the wrong use of the tool.

This results in applying forces that are not optimal for the task and as such the

task is not successful when being reproduced by a robot.

Other aspects of user performance and the way it influences the task should

also be studied. For example a person who performs poorly a task requiring

arm coordination and force control might also be prone at performing poorly

other tasks. These suggests several directions worth investigating: (a) providing

feedback to the user on which aspect of the performance should be improved (i.e.

the grasp used on the tool, the force applied, the direction of the motion etc.); (b)

121



using the robot to train these skills while having a quantitative feedback; or (c)

use the robot as an assistive device that complements the human’s performance

while reinforcing the task constraints such as applying more force.

Secondly humans might have a certain preference in executing the task that

they would like to see displayed in the robot’s behavior. Encoding the task with

respect to the constraints might affect the way it is perceived by a human, by

favoring a robotic–looking execution, rather than a natural–looking behavior.
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Chapter 5

Interaction dynamics in

PbD

The work presented in this chapter has been published in:

Pais, A. L., Argall, B.D. and Billard, A. (2013) Assessing Interaction Dynam-

ics in the Context of Robot Programming by Demonstration. International

Journal of Social Robotics, November 2013, Volume 5, Issue 4, pp 477 – 490.

5.1 Forward

In this chapter we focus on improving human–robot interactions through

robot feedback provided during demonstrations. While in the previous chapters

we have discussed approaches for extracting task constraints from kinesthetic

demonstrations, here we assume that the robot already has an understanding of

the important aspects of the task. Therefore the demonstrations that the user

provides should fit these requirements.

The task that we are addressing is teaching a robot various configurations

of the hand and fingers that would allow it to hold a cup and adjust to pertur-

bations without letting it fall. The key aspect is maintaining a good contact

between the fingertips of the robot and the cup while the fingers are backdriven

by the demonstrator into different positions.

5.2 Introduction

Programming by Demonstration (PbD) methods contribute to Human-Robot

Interaction (HRI), by making robots accessible to naive users, who have little

knowledge of a robotic platform or programming language. Necessary tools are

provided so that a robot is able to learn how to accomplish a task by simply

observing the necessary gestures. This paper focuses on evaluating the user-

friendliness of our framework for teaching a robot how to refine its manipulation

skills (Sauser et al., 2012). Specifically we seek to identify the factors that make

the interaction more engaging for the teacher. An engaged user may be more

willing to teach the robot longer, and may pay more attention to the procedure,

which may improve robot’s performance (Gielniak and Thomaz, 2011).
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Evaluating a robot teaching by demonstration procedure can be done with

respect to (1) the quality of the demonstration as a measure of the amount of

useful data that can be included in learning the task (Sauser et al., 2012); (2)

the teaching efficiency, which is a measure of how well the robot can reproduce

the demonstrated task (Calinon and Billard, 2007a) and (3) the perceived user

satisfaction, which is the aspect addressed in this paper.

The framework that we are evaluating consists of a multi-step iterative learn-

ing procedure, in which a human shows a robot multiple ways of holding a can,

via tactile feedback, and several rounds of demonstration. The teaching proce-

dure consists of three phases:

(1) demonstration, in which the user shows the robot different ways of holding

an object by moving the robot’s fingers, using their passive compliance

capability. A certain contact signature corresponds to each demonstrated

posture, and is reflected by the activation of the robot’s tactile sensors on

the fingertips;

(2) replay, in which the robot replays the sequence of hand postures, to record

data that is not influenced by the touch of the teacher; and

(3) testing, in which the adequacy of the learned model is reflected by the

robot’s ability to adapt the fingers’ positions in response to perturbations

in the position of the object.

Alongside the teaching procedure users are provided with various feedback

modalities (detailed in Section 5.5) that expresses the robot’s current state.

The following section reviews works on identifying human factors involved

in HRI teaching applications, that are the basis of the work presented here. Sec-

tion 5.4 presents user study results validating a set of facial expressions on the

humanoid robot iCub, that are later used as feedback in our framework. Sec-

tion 5.5 describes our PbD interface and assesses the HRI development during

teaching. Section 5.6 presents conclusions.

5.3 Related Work

From a human perspective, teaching a robot by demonstrating a task is a

natural approach as it resembles the way humans teach another person (Pea-

cock, 2001). From a robot’s perspective, learning can occur (a) by observing

gestures, natural language, and other cues offered by the teacher or (b) by ex-

perience, being directly guided through the task. Natural methods for robot

task learning include (Nicolescu and Mataric, 2003): instructive demonstra-

tions, generalization over multiple demonstrations and practice trials. In our

work we take a similar approach by including demonstrations, rounds of replay,

and testing. These guidelines are complemented by stressing the importance of
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using social cues as a natural way of structuring and guiding the robot’s learning

(Breazeal, 2009). The robot should make its states transparent to the tutor by

using communicative acts, while the instructor builds a mental model of what

the robot has learned. While this highlights the importance of bi-directional

teaching (Dautenhahn, 1998), that allows for the improvement of both learner

and teacher, it also raises two main concerns: (1) finding the appropriate type

of feedback for the robot to provide so that the teacher easily understands the

effects that teaching has on the robot and (2) designing the interaction so that

the tutor does not lose interest in teaching.

To address the first question, various ways of providing feedback in tutoring

applications have been tested: gazing at what the teacher is doing (Breazeal,

2009); emotional reactions that influence human performance in collaborative

tasks (Ushida, 2010); verbal cues that increased the frequency and accuracy of

demonstrations in a dancing task (Leyzberg et al., 2011). Given that proper

feedback is provided, the social component goes as far as attributing emotional

states to artificial objects (Giusti and Marti, 2006), thus increasing the user’s

implication. In our case, holding an object requires good contact on all fingertips

and, in particular, on fingers placed in opposition on the object to ensure the

stability of the grasp. Therefore, we take a similar approach to (Breazeal, 2009)

and make this information (i.e. how good the contact is at the fingertips)

transparent to the user, by correlating it with different feedback modalities.

This helps the user create a mental model of the level of adaptation the robot

achieves throughout multiple rounds of demonstration, replay and testing.

Addressing the second question of whether the interaction is sustainable

is particularly relevant in demonstrating a task to a robot because the user

should be engaged for the proper amount of time to deliver the required number

of demonstrations. Initial user curiosity might drive the interaction (Hanson,

2005), but a sustained interaction is subject to six factors (Robins et al., 2005)

responsible for keeping the user engaged. The first two factors, described in

(Robins et al., 2005), address the problem of setting up the interaction, by: (1)

providing contextual objects and knowledge, shown to dramatically improve hu-

man participation, as well as (2) initiating the interaction. The other four factors

focus on regulating the interaction by: (3) having the robot provide responses in

a timely manner and having a mechanism for managing role-switching, (4) using

feedback to express robot’s states, (5) using turn-taking for sustaining a certain

rhythm in the interaction and (6) confirming robot’s engagement by showing

attention. Using these factors increases the complexity of the interaction which

may promote accepting the robot as an interaction partner (Dautenhahn and

Werry, 2000).

In our work we aim to add social components to a programming by demon-

stration interaction such that it keeps the user engaged and willing to deliver

better quality demonstrations, see Experiment II. In designing the interaction

we use four out of the six factors mentioned above, throughout the whole teach-
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ing procedure: first, the user is given contextual knowledge about the task to be

performed; second, the robot responds in a timely manner to the user’s actions;

third, the teaching procedure is implicitly designed for turn taking by alternat-

ing the user’s lead in the demonstration and testing phases with the robot’s lead

in the replay step; and fourth, the robot’s states are conveyed to the user.

We test three active ways in which to convey the robot’s internal states,

namely via verbal feedback from a knowledgeable person, a graphical user in-

terface and robot facial expressions. These modalities are contrasted against a

control group in which no feedback was offered. For using adequate expressions

a prior user study is conducted to validate a set of 20 custom face displays and

choose the best recognized ones, see Experiment I. Adding social components

to the teaching paradigm (Calinon and Billard, 2007a; Breazeal, 2009; Cakmak

and Thomaz, 2012b), changes the classical approach to teach robots, where the

robot is passive and learns solely from observing the teacher performing the

task. The active feedback provided by the robot contributes to a novel view of

human-robot team work, where both agents work cooperatively to achieve the

same goal, namely transfer of skills.

5.4 Experiment I. Facial displays validation

Validating a robot’s expressive capabilities is a necessary step before using

them in real applications, as embodiment particularities can influence both the

way the user perceives the expressions as well as the recognition accuracy (Bart-

neck et al., 2004). Thus we conducted an experiment to assess to what extent

humans can decode and interpret facial emotion expressions on the iCub robot.

The goal was to determine a subset of best recognized expressions that we could

later use to provide feedback in a PbD framework, described in Section 5.5. The

underlying model for building the emotional displays and the implementation

are described next.

5.4.1 iCub Facial Displays

Emotion Representation

When using robot emotions it is important to represent them in a way hu-

mans could easily understand. Russell (1980) determined that humans have an

innate capability of representing affect and thus proposed a circumplex model of

clustering emotions, containing 28 facial expressions positioned in a two dimen-

sional space. The first dimension emerges in studies of intra-personal behavior,

and it is easily interpretable regardless of the users’ culture, while the second di-

mension is validated on inter-personal behavior (Russell, 1991). The dimensions

are considered implicit in the human understanding of emotion (Russell, 1991)
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and are given by (a) valence, pleasure or positivity and (b) activity, arousal or

activation (Russell, 1991). Our work will refer to this first axis as valence and

the second as arousal.

The design of emotion displays used in this study was based on Russell’s

model of arousal and valence Russell (1997) because: (1) it provides an easy

mapping between emotion features and robot expressive capabilities, (2) these

dimensions are easily interpretable as discussed above, and (3) these dimen-

sions emerge in inter-personal behavior, making the emotions validated in this

study suitable for communicating internal states in HRI. In robotics applica-

tions, the arousal and valence dimensions are explored in different contexts.

The first dimension can be communicated through haptic interaction (Yohanan

and MacLean, 2011), while the emotional valence of a situation can lead to

perceiving a robot as being empathetic (Cramer et al., 2010).

Expressions Implementation

The facial expressions were implemented on the humanoid robot iCub using

LEDs for representing the eyebrows and mouth, and actuators for controlling the

eyelids opening angle. The changes along the arousal dimension were modeled

by the opening of the eyelids and the curvature of the eyebrows, while the

changes along the valence axis were mapped to changes in the lip curvature.

LEDs are used to project the eyebrows and mouth facial features onto the face

shell. The projection makes the line of consecutive individual LEDs appear

continuous. There are 19 LEDs for the mouth and 4 sets of 5 LEDs for the

eyebrows. An overview of all the implemented expressions is shown in Fig. 5.1.

5.4.2 Study Design

A subset of 20 out of 28 expressions in Russell’s original model were cho-

sen arbitrarily as representing the maximum set of iCub displays that could

be easily distinguishable. The designed expressions fit 2 valence levels (posi-

tive and negative) and 3 arousal levels (low, medium, and high). The displays

were investigated, according to four categories: (1) positive, and intense: as-

tonishment, delightedness, gladness, happiness, and pleased; (2) negative, and

intense: alarmed, afraid, tensed, angry, and annoyed; (4) negative, not intense:

miserable, depressed, sad, gloomy, and bored; (4) positive, not intense: satisfied,

content, serene, calm, relaxed.

This way of dividing emotions allowed us to assess the degree of granularity

that we could use for the expressions to still be interpretable by the users. Thus

we evaluated the recognition rates on different levels of granularity: 2 classes,

if only the distinction between positively and negatively valanced emotions was

considered, 3 classes according to the arousal levels; 4 classes, given by Russell’s

categories and 20 classes when classification by emotion name was considered.
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Figure 5.1 Snapshot of each implemented expression, according to the four
categories in Russell’s model.
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The study addressed the overall question of how easily the iCub’s facial

expressions could be recognized if conveyed only through features like lip curva-

ture, eyebrows and eyelids. We made the following untested assumptions: (1)

the designed mapping between human emotions and robot displays was correct,

implying that the implemented expressions were as close as possible to the hu-

man ones; (2) subjects were able to identify these emotions in humans. Based

on these assumptions, our working hypotheses were:

H1: The categories in Russell’s model of emotions are identifiable in robot

expressions by most humans.

H2: Subjects claiming to be skilled in recognizing human emotions might also

be skilled in recognizing robot displays.

H3: The time a user requires for classifying an emotion is correlated with the

arousal level of that emotion.

Participants

The experiment involved 23 participants (5 females and 18 males), from

various places of origin (13 European, 6 Asian, 4 North American), with an

average age of M = 27.52, standard deviation SD = 5.43 (minimum of 21 and

maximum of 48).

Study Protocol

In a pre-experiment questionnaire the subjects had to assess their skill in

understanding human emotions. The questions were:

1. How often can you read a person’s facial expressions?

(Never/rarely/often/always)

2. How often do you check for emotional cues while interacting with a person?

(Never/rarely/often/always)

3. What is easier for you to recognize from a person’s facial expression?

(Sadness/happiness/both)

The answer to each of the first two questions was marked with a score from 0 to

3, for the third question a point was given for being able to recognize sadness

or happiness, two points for both or minus two for none. The sum of the points

obtained represented a general evaluation of the responders’ confidence levels

(self-assessed skill) in recognizing human emotions. Based on this score partic-

ipants were divided in three skill levels: low, 4 subjects; medium, 9 subjects;

and high, 10 subjects.

In the second part of the study, the subjects were shown the facial displays,

and for each asked to: classify the display as positive or negative valence, to as-

sign an arousal level, and a name from a given list, and to rate the arousal level
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in comparison to the previous emotion. Each participant was exposed to a se-

quence of 60 facial displays, consisting of 20 different expressions, each repeated

3 times. The order in which the expressions were displayed was randomized,

while avoiding the consecutive display of identical or closely related emotions.

Participants were facing the robot during the whole experiment. The subject

controlled the moment when the displayed emotion changed. They were not

shown examples of iCub facial expressions prior to taking the survey. The time

between the emotion display and the selection of each answer was recorded.

Participants were not told that the experiment was timed, to avoid rushed an-

swers. The survey required up to 40 minutes per user for completion. The

study language was English, however as not all subjects were native speakers,

some required clarifications for emotion names. Commonly hard to distinguish

emotion terms were ”content vs. serene”; ”calm vs. relaxed”; and ”sad vs.

gloomy”. In a post-experiment questionnaire the subjects were asked to rate

their general expectations of HRI when these facial displays would be provided.

On a 5 level Likert scale(Likert, 1932) subjects rated the Interaction (ranging

from distracting to engaging), and the Aesthetical component (ranging from

unpleasant to pleasant).

Measurements

The coding of each emotion was done using an initially assigned value for

valence (P = positive or N = negative), one of three arousal levels (L = low,

M = medium, and H = high), and a name label, based on Russell’s mapping
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of emotions to the arousal and valence axes (See Table 5.1, columns 1 and 2).

For each facial emotional expression we recorded the arousal, valence levels and

the name label attributed by the user, and the time the user took to assign a

value. Secondly we recorded the user’s answers to the pre and post-experiment

questionnaires.

5.4.3 Results

Results are presented in relation to the working hypotheses, and consist of

evaluating the recognition rates for each emotion, and in making a subjective

evaluation of the user’s experience while seeing the displays.

Recognition Rates

To determine whether participants were able to correctly identify emotions in

Russell’s model (hypothesis H1), recognition rates were evaluated over multiple

categories, in order to assess how well people can differentiate between different

levels of granularity. Recognition rates for the valence level (Table 5.1, 3rd

column), arousal level (4th column) and name (6th column) were computed by

comparing the score attributed by the user for each level and the name label

with the initially assigned values for each emotion. A good match was marked

with 1 and a no-match with 0. The rates presented in Table 5.1 represent

the percentage of recognized displays (number of matches) from the 60 total

displayed emotions. Similarly, the recognition score for both valence and arousal

levels (5th column), represents the number of correct matches for both levels,

from the total number of displayed emotions.

Recognition rates vary across categories (see Fig. 5.2(a)). The best recog-

nized emotion from each category is shown in Fig. 5.3. Recognition rates for

positive emotions tended to decrease as the arousal increased, while with nega-

tive emotions, the opposite trend was observed. Participants could identify the

emotion valence (positive vs. negative) for more than two thirds of the emo-

tions (M = 78.84%, SD = 21.34%); see Fig. 5.2(b). This correlates well with

the fact that all participants agreed that they were capable to recognize when

someone was happy. Similarly, participants correctly associated Depressed, Mis-

erable and Sad with a negative emotion, even though they did not always label

the displayed emotion correctly. This again correlates well with participants’

ability to recognize when someone was sad. Analysis of recognition rates for

each of the three arousal levels (see Fig. 5.2(c)) shows that participants had

a tendency to better recognize low arousal (M = 43.47%, SD = 19.14%) and

medium arousal (M = 35.93%, SD = 15.63%) emotions, than high arousal emo-

tions (M = 28.62%, SD = 14.56%). In other words, the less intense the emotion

(whether positive or negative), the better it was recognized. This observation
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Figure 5.3 The best recognized facial displays with respect to the valence level
from each of the four categories

did not seem to match the observation that participants were good at recog-

nizing positive vs. negative emotions, and generally at associating emotions to

the correct Russell category. We suspect that these poor results are due to the

fact that participants may confuse some closely related emotions. The confusion

matrix for the intensity levels showed that in 53.62% of the cases the negative-

medium emotions were mistaken for negative-high emotions, and positive-low

for negative-low (18.55%), while negative-low emotions were equally assigned to

negative-low or negative-medium. The name recognition rates for each emotion

showed rather poor results, with an average of 20%. This is partially justified

by the difficulties subjects had in understanding the different terms used for the

given emotions.

Results presented in this subsection partially support hypothesis H1 for low

levels of granularity (e.g. differentiating positive emotions vs. negative dis-

plays). While category recognition rates were above chance level (5%), they

were overall poor. This is likely due to the simplicity of the LED coding which

does not allow rendering the full complexity of human facial expressions.

Human Factors Influence on Recognition Rates

To test hypotheses H2 and H3, we tested the influence of human factors on

the recognition rates, mainly the user’s self assessed skill in recognizing human

emotions, the reaction times (the time necessary to assign the appropriate levels

to each displayed emotion), and the user perceived aesthetics of the displays.

A. Evaluation of User’s Skill

We hypothesized that if participants felt confident in their general ability

to assess emotions, they would also be more competent at recognizing robot

emotions. Thus, we made a more general assessment about how confident par-

ticipants were at recognizing emotions in general. Almost half of the partici-

pants declared themselves as confident in their ability to detect a sad person

(M = 52.17 %, SD = 0.51%). The vast majority of participants claimed to be

able to recognize when a person was happy (M = 82.60%, SD = 0.38%). Most
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participants declared that they were often able to recognize facial expressions

and they often searched for facial cues while interacting with a human partner

(M = 82.60%, SD = 13.27%).

We tested the influence on the category-based recognition rates of 3 factors1

that aimed significant effects: (1) skill (F (2, 1379) = 69.9, p = 0.001), (2)

valence level (F (1, 1379) = 4.15, p = 0.04) and (3) arousal level (F (2, 1379) =

3.04, p = 0.01). The recognition rates are presented in relation to the 3 levels of

skill in Fig. 5.4(a). The users’ self assessed skill in recognizing human emotions

was not correlated with the recognition rates, showing that hypothesis H2 was

not supported.

The degree of engagement that the users assign to the human-robot inter-

action when facial cues are involved is correlated with the recognition rates.

Thus, people who rated the robot-expressed emotions as being very engaging

were also good at recognizing emotions (F (3, 1316) = 98.124, p < 0.01). The

effect of how aesthetic the interaction is when facial expressions are used is

also significant (F (4, 1315) = 50.96, p = 0.001). Age was also found to have

a significant impact on identifying the emotion valence, (F (1, 1369) = 98.575,

p = 0.001), and arousal level (F (2, 1369) = 164.784, p = 0.002), showing that

identification rates decrease with age.

B. Evaluation of Users’ Reaction Times

We tested the effect of 3 factors on users’ reaction times: the emotions’

arousal and valence levels and users’ skill. The average time required to clas-

sify valence was 10.41s for negative emotions and 16.7s for positive emotions,

suggesting that negative emotions were easier to understand. The average time

necessary for assigning an arousal level was significantly lower for high arousal

emotions (10s) compared to low arousal emotions (20s). The arousal level had

a significant impact on the time the user took to rate the displayed emotion

(F (2, 1375) = 10.34, and p = 0.002). Skill however, did not have a significant

effect on the arousal level classification time, but only on the valence classifi-

cation time (F (2, 1377) = 5.495, p = 0.004); see Fig. 5.4(b). Average valence

identification time for people that consider themselves not skilled in recognizing

human emotions was 10s, while for high skilled people was almost 30s, suggesting

that people who considered themselves skilled in recognizing human emotions

might be more motivated during the interaction. In addition users that rated

the interaction as engaging took a longer time to recognize if an emotion was

positive or negative (Fig. 5.5(a)), but had better recognition times for emo-

tion arousal level than those who rated the interaction as distracting (see Fig.

5.5(b)). Hypothesis H3, stating that the time to decision required for classifying

an emotion into a category was negatively correlated with the arousal level of

1Analysis was based on ANOVA, a statistical technique used for testing the null hypothesis
that there is no difference between groups. It is based on comparing the mean value of a
common component. When the null hypothesis is false, the result is significant, implying an
F value greater than 1, and a p-value p ≤ α, e.g. α = 0.05.
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Coding Emotion
Valence Arousal Both Name

[%] [%] [%] [%]

1. P H Astonish 68.12 44.93 31.88 39.13

2. P H Delight 89.86 36.23 36.23 11.59

3. P M Glad 89.86 50.72 50.72 07.25

4. P M Happy 91.3 47.83 46.38 15.94

5. P M Pleased 86.96 42.03 39.13 10.14

6. N H Alarmed 63.77 13.04 08.70 11.59

7. N H Afraid 92.75 20.29 20.29 0

8. N M Tense 81.16 43.48 39.13 02.90

9. N M Angry 85.51 13.04 13.04 76.81

10.N M Annoyed 98.55 10.14 08.70 10.14

11.N M Miserable 95.65 23.19 21.74 15.94

12.N M Sad 89.86 47.83 44.93 17.39

13.N L Gloomy 88.41 37.68 30.43 05.80

14.N L Bored 73.91 56.52 40.58 18.84

15.N L Depressed 98.55 13.04 13.04 14.49

16.P M Satisfied 84.06 43.48 36.23 05.80

17.P M Content 95.65 30.43 30.43 10.14

18.P L Serene 34.78 50.72 24.64 02.09

19.P L Calm 39.13 49.28 18.84 15.94

20.P L Relaxed 28.99 60.87 24.64 07.25

Table 5.1 Percentage of correctly identified emotions by valence and arousal
levels, by both arousal and valence, and by name. The coding indicates a
positive (P) or negative (N) valence and low (L), medium (M) or high(H) arousal
level

that emotion, was supported by the results presented in this subsection.

C. User-perceived Aesthetic Component

In the last part of the experiment, participants were asked to rate the aes-

thetics of the interaction (ranging from unpleasant to pleasant) when robot

facial displays were provided. The aesthetics component was rated lowest by

persons that rarely check for expressions of emotion in humans (2 subjects).

The highest rating was given by the group of subjects that always check for

emotional expressions in other persons (16 participants). This group also had

the best recognition rates for valence (M = 53%, SD = 0.2) and arousal levels

(M = 19.6%,M = 0.8).

Overall, above chance recognition rates occurred for all categories, with the
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best rates found for the smallest level of granularity (i.e. classification in two

classes, positive and negative emotions).

5.5 Experiment II. Robot feedback during

teaching interactions

The second experiment was carried out to study the impact of providing dif-

ferent types of robot feedback on the effectiveness of a teaching by demonstra-

tion framework, as well as on user satisfaction. The goal is to have human-users,

with no prior experience of interacting with the iCub platform, be able to teach

the robot how to refine its manipulation capabilities and achieve a satisfactory

model of holding a certain object, after providing the robot with several rounds

of kinesthetic teaching.
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Figure 5.6 PbD framework for teaching a manipulation task to a robot. A
human shows the robot various ways of holding a can through tactile guidance.
The robot replays the demonstrated motion and learns a model of the task that
can be tested and further refined by providing additional demonstrations

A multi step training procedure, illustrated in Fig. 5.6 was used to iter-

atively build a training data-set from teacher’s demonstrations and learner’s

replay. The teaching procedure consisted of three steps. The first step was the

demonstration, in which the user demonstrated the robot different finger posi-

tioning on the object using tactile guidance. The robot held the object with

3 fingers of the right arm (the thumb, index and middle finger), maintaining

contact just on the fingertips. The information recorded in this step consisted

of a set Θ ∈ R7 of robot finger joint angles. The second step was the replay, in

which the robot replayed the demonstrated motion in order to record for each

posture the corresponding tactile-sensor signature, without being influenced by

the additional pressure provided by the teacher. The contact information was

recorded using the pressure response of the tactile sensors on the robot’s finger-

tips. Each fingertip has 12 tactile nodes that were activated on contact with the

object, providing an 8-bit pressure value. Information recorded at this stage

consisted of sensor readings s ∈ R3, representing an averaged value for each

fingertip, and a vector φ ∈ R9 representing the computed 3D contact normal

direction. Based on the information recorded in the first 2 steps, the robot used

statistical techniques to learn a mapping between the tactile response on its fin-

gers and the corresponding finger positions φ → (Θ̂, ŝ), as described in (Sauser

et al., 2012). When a perturbation occurred the contact signature changed. The

learned model allowed the robot to predict a new hand configuration based on

the new sensed contact. The third step was the testing, in which the participant

could test the learned model by perturbing the position of the object. The dis-

placement of the robot’s fingers in response to perturbation gave an indication

of the adequacy of the model. The obtained model could be further refined by

providing additional rounds of demonstration, replay and testing.
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Situation Example Verbal Feedback GUI Feedback Facial Feedback

Happy

Content

Annoyed

Good 
contact on 
all fingers

Contact 
lost on 

one finger 

Contact 
lost on all 

fingers 

Good contact and posture.

You can show the 
robot more postures.

Be careful, one finger is 
no longer in contact.

You need to press 
harder on all fingertips.

The robot dropped the can.

You need to readjust 
the hand posture.

Figure 5.7 The usability of the PbD framework was tested using different modal-
ities of providing feedback to the user. The experimental setups according to
the 3 major situations in the experiment: verbal feedback, GUI feedback, facial
feedback. These setups were contrasted against a no feedback situation

The tactile information was important because of the way it was accounted

for in the learning algorithm. According to the reliability measure introduced

by Sauser et al. (2012) the stronger a contact sensor reading was, the more

reliable it was considered to be. This implied discarding weak contact read-

ings. Thus providing the user with a valid representation of this information

would dramatically improve the amount of useful information provided through

demonstration. This would be reflected in the learned model by achieving better

adaptation.

5.5.1 Study Design

The experiment was performed on the iCub robot. We studied four con-

ditions (experimental setups), shown in Fig. 5.7, which reflected the type of

feedback being provided. In the first setup (E1) no feedback was provided by

the robot, nor by the experimenter. This setup was called no-feedback. In the

second setup (E2) rich verbal feedback was given by a knowledgeable exper-

imenter whenever it was considered necessary (verbal-feedback). In the third

setup (E3), a Graphical User Interface (GUI) was used consisting of a diagram

of the tactile nodes on each fingertip. The GUI provided a real-time continuous

feedback on the tactile sensing intensity and area of activation, by highlighting

the activated tactile nodes. The subject knew when the object was in contact

with the robot’s fingertips and could see the variation in the contact area (GUI-

feedback). In the last setup (E4), robot facial expressions were provided as

discretized feedback to the subject on the adequacy of his/her teaching (facial-

feedback). Three facial expressions were used from the ones validated in the

previous experiment, and having the highest recognition rate on the valence
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axis in three of the categories tested previously. The expressions were mapped

to contact sensing as a 3 levels discrete feedback as follows: the happy expres-

sion was used when all 3 fingers of the robot were in contact with the object, the

content expression was used when one finger lost contact or the overall contact

was weak, and the annoyed expression was used when at least two fingers lost

contact. The types of feedback described above were provided for the whole

duration of the interaction, in all phases of the teaching procedure.

The study addressed two research questions:

RQ1: Does the feedback provided influence the teaching procedure and the

learned manipulation model?

RQ2: Does the effect that the type of feedback has on the subjective usability

ratings change in relation to task performance?

Participants

The participants (N = 57, 14 females and 43 males) were selected from uni-

versity staff and represented the 25-35 years age group. The selection criterion

was to not be directly working with robots. Participants were distributed as fol-

lows: 12 took the experiment in the first setup (no feedback), 16 were assigned

to verbal-feedback, 14 to GUI-feedback and 15 to facial feedback.

Study Protocol

Before beginning the experiment, participants were given general guidelines

and were shown a descriptive movie of the teaching procedure. For all setups,

the experiment consisted of providing three rounds of demonstration through

kinesthetic teaching, of 90 seconds each. Each demonstration round was followed

by the robot’s replay of the recorded motion. The model learning took place

offline after each replay step and was followed by a round of 90 seconds of testing.

A post-experiment questionnaire was employed to assess users’ satisfaction with

the outcome of the teaching task. The total length of the experiment for each

participant was 40 to 45 minutes.

Measurements

For each round robot measurements consisted of joint angles values for the 3

fingers used in the task, and the contact signature consisting of tactile response

and 3D normals. Four objective metrics were computed based on these mea-

sures, as defined in Sauser et al. (2012): (1) range of motion, (2) contact times,

(3) joint shakiness and (4) contact error. The range of motion is based on

the difference between the minimum and maximum joint angle values for each

finger. These ranges of joint angles are combined in 4 groups by summing the

proximal and distal ranges of motion for thumb, index and middle fingers and

separately for the thumb opposition angle. This measure allowed us to compute
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the percent of the range of motion that was actually demonstrated (when the

robot was holding the object) out of the total possible range of motion for a

given joint group.

Several metrics have been computed related to contact times : (a) the percent

of time two fingers and (b) three fingers were in contact with the object, out

of the total demonstration time; and (c) the time in force closure, representing

the percentage of the total demonstration time in which the three fingers were

in contact with the object and the resulting grasp attained force closure Bicchi

(1995). The time in force closure was used as a measure of grasp stability

and adaptation quality. The grasping quality was evaluated as described in

Ponce et al. (1996).Joint shakiness represented a measure of the instances of

jerky movements. It was evaluated in the testing phase and represented the

difference between the raw and smoothed joint velocities averaged across the

testing period. Contact error represented the difference between the contact

value that was predicted (the target) and what the controller executed (the

actual) contact value. It gives an overall assessment of the adaptation provided.

Responses from standardized post experiment questionnaires were used to

assess user satisfaction. The questionnaires involved: (1) NASA (Task Load

Index) TLX (Hart and Staveland, 1988b), (2) System Usability Scale (SUS)

(Brooke, 1996a) and (3) AttrakDiff (Hassenzahl et al., 2003). The question-

naires were given in English and clarifications have been provided when neces-

sary. NASA-TLX Hart and Staveland (1988b) is commonly used in studies of

interface design. It is a workload assessment tool used for evaluating how the

user perceived the physical, mental, and temporal demand during a task, and

perceived levels of effort, performance and frustration. It consists of 6 questions,

answered with a rating on a 21 point-scale, providing an overall workload score.

The SUS questionnaire (Brooke, 1996a) was used for assessing the overall satis-

faction with the system. It consisted of 10 statements (5 positives, 5 negatives)

rated on a five-point Likert scale (Likert, 1932). Positive questions are given

a rank according to the value of their index position minus 1, while negative

questions, have a contribution of 5 minus their index position. The score was

computed by summing the contribution of each individual component and mul-

tiplying the sum by 2.5. AttrakDiff (Hassenzahl et al., 2003) is a method for

assessing complementary aspects of the user experience: (1) pragmatic quality,

(2) hedonic quality and (3) attractiveness. However, in this study the hedonic

quality of identity was not tested, due to the fact that the robot together with

the interface being examined do not represent a commercial application. Thus,

the modified version of the questionnaire consisted of 19 pairs of sets of opposite

words, which users evaluated on a seven-step scale ranging from -3 to 3. Finally,

the participants’ assessment of the teaching procedure was evaluated separately

by answering 4 questions considering: how easy was the teaching, how satisfied

the participant was with the resulted model, if the robot behaved as expected,

and how comfortable the participant felt while providing the demonstrations.
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5.5.2 Results

Results are presented both with respect to objective, task-specific metrics,

as well as subjective user evaluation. Task completion time is constant among

users as the teaching and testing rounds were time restricted to 90 seconds.

Measures of Performance

All the task specific metrics presented below are computed based on joint

and pressure values of the three fingers that are in contact with the object.

They are evaluated for each round of teaching, and represent an evaluation of

the learned model. Analysis of variance (ANOVA) was conducted using the

measures of performance as dependant variables and the type of feedback as

main factor.

Range of motion

The range of motion is a percentage representing how much each joint group

moved with respect to the total possible range of motion for that group. The

robot’s ability to adapt over a higher range of motion shows that a higher range

of postures was demonstrated by the user. Detailed statistics are presented in

Table 5.2. The best results were obtained for the verbal feedback setup (E2).

Participants that were given graphical or facial display feedback (E3 and E4)

explored a significantly lower range of possible motion comparable to the case

when they were given no feedback at all (E1), as seen in Fig. 5.8(a). A main

effect of the experimental setup was found on the Range of Motion of each finger,

see Table 5.2, last column.

Contact Times

The percentage of time when two fingers and three fingers are in contact

with the object, out of the total testing time, was evaluated. A high time is

an indication of a good adaptation, while a poorly trained motion results in

the robot being stiff in that region and losing contact with the object when

perturbed. The experimental setup used had a significant effect on all the

contact times metrics defined, as seen in Fig. 5.8(b). The percentage of time

when 2 fingers were in contact with the object was lowest when the participant

was not given any feedback (M = 0.98, SD = 0.03, F (3, 171) = 7.58, p < 0.001)

and similarly when three fingers were in contact (F (3, 171) = 10.84, p < 0.001).

However an important observation is the fact that the percentage of time three

fingers were in contact with the object was highest when the graphical user

interface (E3) was used as feedback (M = 0.99, SD = 0.01), while the second

best result was obtained for both the facial display (E4) setup (M = 0.97, SD =

0.005) and the verbal feedback (E2) setup (M = 0.97, SD = 0.018). These
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results together with the negative correlation existing between the time 3 fingers

are in contact and average range of motion (Pearson r = −0.42), in the case

of E3 and r = −0.38 for E4, suggest that while the feedback provided may

have been distracting, keeping the user focused on the display rather than on

exploring the motion space, helped improve contact accuracy.

A decreasing trend was observed for the time in force closure as more feed-

back was being provided and similarly in the grasping quality, as shown in Fig.

5.9(b).

Shakiness

The Shakiness is also an indication of proper adaptation, with lower values

being desirable. The average Range of Motion and average Shakiness are in-

versely correlated (Pearson r = -0.58). Detailed results are presented in Table

5.2. A significant interaction effect of the experimental setup on the Shakiness

values was observed for all joint groups (see Fig. 5.9(a)) The lowest shakiness

values were found in the verbal feedback setup, followed by facial feedback.

Contact Error

Contact error decreased considerably as more feedback was provided, as

seen in Fig. 5.9(c), yielding the significant effect (F (3, 83) = 3.78, p = 0.01)

that the experimental setup had on achieving a more stable contact and a

smother adaptation. The lowest contact error was achieved when verbal feed-

back was provided (M = 3.23, SD = 0.62), while the highest contact error

(M = 3.58, SD = 0.85) is associated with facial feedback.

Interaction during Demonstration

User’s behavior while providing demonstrations was of particular interest as

it would influence the quality of the teaching. We were interested in finding fac-

tors that will keep the user engaged in the interaction, in order to assure good

quality demonstrations and also to be willing to provide an optimal number of

demonstrations for the robot to be able to properly learn the task. The demon-

stration phase is important for recording proper joint angles. In the replay step,

the robot will replay the recorded motion while also recording tactile informa-

tion and thus generating a set of data not influenced by the tutor. For the

teacher this step can give a clear understanding of what the robot has recorded

(e.g. if the demonstrator moved too fast, only some points in the trajectory will

be recorded and this will result in a shaky reproduction). Users’ initial attitudes

in relation to the feedback being provided influenced the learning by modifying

user reaction times, the exploratory motions performed or the observed test

patterns, as discussed below.
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Exploratory motions

According to our observations, (consistent with the ones mentioned in Han-

son (2005)), in all cases the initial interaction with the robot was driven by users’

curiosity. The subjects were not familiar with any humanoid robotic platform,

and were not given time to familiarize with our robot before the experiment.

However in the first round of providing demonstrations, they performed a lot

of exploratory motions: either pushing the robot to the joints limits, or on the

contrary starting from small motions, to try to understand how to control all

the degrees of freedom in the robot’s fingers. This behavior resulted in frequent

lost contact, shaky motions, and an overall poor demonstration. Losing contact

between the robot’s fingers and object results in poor replay and thus less pairs

of postures and contact signatures to be included in the model in the first round

of teaching. The improvement rates increase with the rounds of teaching. In

several cases, assessing the model improvement across users, regardless of the

setup, showed that the improvement rate dropped in the third round of teach-

ing, even if the user was now familiar with the robot capabilities. This might

have been due to user fatigue or might be a result of seeing little adaptation

while testing the previously obtained models. Exploratory motions performed

by the user are necessary in order to get familiar with the robot and to under-

stand the robot limits. In the case of facial feedback, seeing that the robot was

responsive to user actions seemed to encourage subjects to use caution when

teaching, which however negatively influenced the objective metrics: e.g. the

range of motion, see Fig. 5.8(a).

The subjects were asked to perform a minimum of 3 demonstrations, but

were not limited to an upper number. Interestingly, only 3 subjects decided to

perform a 4th demonstration (2 from the verbal feedback setup and one from the

GUI setup). Their overall performance ratings during the testing phase were not

the best in comparison with other subjects, but they managed to successfully

control the robot degrees of freedom so as to teach a wide range of motions.

Model testing

After each learning session the users were asked to test the obtained model

in order to decide what should be improved in the next round of teaching.

In almost all of the testing cases (M = 92% SD = 14.7), regardless of the

experimental setup, the user pushed the robot outside the trained range of

motion. During teaching, 4 types of movements were possible: left and right

translational movements, and left and right rotational movements. However in

more than 80% of the cases, regardless of the feedback provided, in the first

round of demonstration only translational movements were trained, but in the

testing phase, rotational movements for which no adaptation occurred were

tested as well. During the second and third round of demonstration, rotation

movements started to be taught, with a higher frequency on the verbal feedback
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TLX Factors and Overall Score

E3. GUI Fb E4. Expr Fb

mean ± std mean ± std

Mental Load 08.33 ± 04.79 10.18 ± 04.35

Physical Load 04.38 ± 02.32 08.31 ± 06.61

Temporal Load 07.07 ± 03.20 06.43 ± 04.30

Performance 09.84 ± 05.65 09.56 ± 04.70

Effort 09.00 ± 03.46 08.87 ± 04.68

Frustration 08.61 ± 04.94 05.93 ± 05.01

Total Score 47.23 ± 24.36 49.28 ± 29.65

Table 5.3 NASA Task Load Index (TLX)

setup. In 2 cases of users from the E1 setup (no feedback), rotational movements

were not trained at all.

User Reaction Times

Results showed that human adaptation time was better when either facial

feedback or graphical display feedback was being provided. The time between

the moments in which the contact was lost and when the human adjusted the

fingers positions was lower. The user provided a motion such as to immediately

correct the posture. However this may result in a shaky, sudden motion, thus

explaining the high shakiness in these two experimental setups (see Fig. 5.9(a)).

The fastest response time occurred in the case of facial feedback (M = 1.35s,

SD = 0.52), while the slowest response was recorded for the no feedback case of

(M = 7.56s, SD = 3.81).

Subjective Evaluation

For the first two experimental setups (no feedback and verbal feedback)

a general interaction assessment was made verbally by the participants. More

than 80% of the participants characterized the interaction as ”interesting”, ”mo-

tivating” and ”captivating”. They also described the shortcomings of the in-

teraction as being the ”lack of previous knowledge about the robot” and ”the

little time available for providing demonstrations”. As we were interested in

finding the best robot-provided feedback that would improve the interaction,

the participants in the other two experimental setups were subject to a more

thorough evaluation, being asked to fill in standardized usability questionnaires.

Results are presented below.

The effect of experimental setup on task load was not significant. Results

(see Table 5.3) show that mental demand and physical demand were perceived
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System Usability Evaluation

E3. GUI Fb E4. Expr Fb

mean ± std mean ± std

Use Freq. 2.93 ± 1.22 3.06 ± 0.85

Sys. Complex. 2.26 ± 0.96 1.81 ± 0.98

Ease of Use 3.20 ± 1.42 3.50 ± 1.26

Techn. Support 2.20 ± 1.26 2.31 ± 1.30

Funct. Integ. 3.40 ± 0.82 3.37 ± 0.71

Sys. Inconsis. 2.20 ± 1.01 2.12 ± 1.08

Learn to Use 2.93 ± 1.48 3.25 ± 1.12

Cumbersome 1.86 ± 0.99 1.62 ± 0.80

Confidence 3.06 ± 1.33 3.00 ± 1.03

Prev. Knowl. 1.80 ± 1.32 1.81 ± 0.91

Total Score 64.66 ± 15.20 64.68± 8.41

Table 5.4 System Usability Evaluation (SUS)

as higher when facial feedback was provided (E4 setup) compared to the case

when a graphical display was used (E3 setup). However, the level of frustration

perceived was much lower when facial expression feedback was provided and

similarly the effort perceived was lower, suggesting that it represents a more

natural means of interaction.

The experimental did not have a significant effect on the SUS ratings. How-

ever the participants in E4 rated the interface more positively on two key aspects

than the users in E3: the usage frequency (namely they would like to use the

system more frequently) and the ease of learning the functionality of the system.

Results of the SUS questionnaires are summarized in Table 5.4. An assessment

of how attractive the users found the teaching framework was made and results

are reported in Table 5.5. The users taking part in the facially-displayed feed-

back setup (E4) rated the interface higher on hedonic quality and attractiveness,

than the users given only graphically-displayed feedback (E3). What is more,

in the group of words describing the attractiveness, they all assigned the max-

imum value for the positive attributes (”pleasant”, ”likeable” ”inviting”, and

”creative”), suggesting that the E4 setup was more motivating and appealing.

Results from evaluating the teaching procedure are presented in Table 5.6.

The participants in the facial feedback experimental setup E4 reported an in-

creased satisfaction with the resulted model (M = 3.31, SD = 0.94) than those

offered only the GUI feedback (M = 2.86, SD = 1.12), even though the perfor-

mances in terms of objective metrics were clearly lower. Moreover the subjects

in E4 reported an increased perception of the fact that the robot behaved as

they expected. This suggests that seeing a responsive robot increased the users
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AttrakDiff Ratings

E3. GUI Fb E4. Expr Fb

mean ± std mean ± std

Pragmatic Quality PQ 0.56 ± 0.57 0.40 ± 0.35

Hedonic Quality HQ 0.47 ± 0.43 0.75 ± 0.66

ATT Score 0.74 ± 0.40 1.07 ± 0.64

Table 5.5 AttrakDiff Ratings

Teaching Procedure

E3. GUI Fb E4. Expr Fb

mean ± std mean ± std

Ease of Teaching 03.40 ± 01.12 03.12 ± 01.08

Satisfaction 02.80 ± 01.26 03.31 ± 00.60

Expectation 02.86 ± 01.12 03.31 ± 00.94

Comfortability 02.93 ± 01.48 03.50 ± 01.15

Table 5.6 User Evaluation of the Teaching Procedure

contentment with respect to the interaction. The subjects that took part in

E4 reported being significantly more comfortable (M = 3.5, SD = 1.15) than

participants in E3 (M = 2.93, SD = 1.48), suggesting that facially displayed

emotions facilitated a positive interaction.

5.6 Discussion

The work presented in this chapter paper addressed the problem of finding a

suitable type of feedback that would facilitate robot’s learning in a PbD context.

Making the human-robot interaction rewarding and keeping the user engaged

contributes to improving robot’s learning. Two user studies were presented.

5.6.1 Experiment I. Facial Expressions

The first experiment evaluated the correct classification of 20 robot expressed

facial emotions into given categories. The study targeted testing the assessment

that users can relate to robot displayed emotions just as well as they can do

with human emotions, and also that they perceive the relative order of emotions,

when the valence and arousal levels vary. Results showed that this hypothesis is

confirmed only for small levels of granularity, implying fewer emotion categories.
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For robot expressed emotions, through LEDs, there was a good recognition

rate along Russell’s valence axis (differentiating between positive and negative

emotions) and a poor recognition rate along the arousal axis. We found little

to no support for the second hypothesis that a high user’s self assessed skill

in recognizing human emotions might positively impact the ability to recognize

robot expressions. The third hypothesis, that intense emotions take a very small

reaction time was supported.

Limitations

Limitations of this study are threefold. First, the LED display used for

generating the facial expressions could not portray a good enough range of

human emotions. We aimed to determine a small set of best recognized facial

displays however the displayed faces raised problems in terms of ambiguity of

the LED display. The expression of the same emotion might look different when

using another robotic platform.

Second, the lack of prior interaction with the robot or its expressions made

the respondents unsure when assigning extreme intensity values for the displayed

emotions without having a prior idea of the possible range.

Third, we did not assess participants’ ability to recognize the same facial

expression when displayed by a human face.

5.6.2 Experiment II. Robot feedback

The second user study was conducted to assess the usability of a teaching

by demonstration interface, that was not initially based on a user-centered de-

sign. In our approach, similar to other robot teaching tasks, the interaction

was initiated by the human. We designed the interaction in a way that would

ease teaching for the human user, by having rounds of demonstration, robot re-

play and testing. This allowed not only the iterative refinement of the obtained

model, but it also helped the user to understand what the robot has learned at

each step and what needs to be improved in the next demonstration. Different

feedback modalities were used to reflect the strength of the contact between

the robot’s fingers and the object: verbal feedback, graphical user interface

feedback, facial displayed feedback and no feedback at all.

Results presented confirmed that the type of feedback provided by the robot

influenced both subjective and objective metrics. According to objective met-

rics, satisfactory results were obtained in all study cases. During testing, 3

fingers are in contact with the object in more than 95% of the time, force clo-

sure grasps are attained for more than one third of the testing time, and no large

differences can be seen between shakiness and grasping quality across setups.

While in most cases the verbal feedback from a knowledgable person proved the

best, this is not feasible in real world applications.
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Advantages of robot–provided feedback

Providing feedback in a natural manner helped the participants to perceive

the interaction as less restricting and have a lower temporal pressure. According

to the subjective metrics evaluation, the experimental setup influenced the ease

of the interaction, user demand and friendliness. Thus for a naive user who was

not familiar with the robot this might be the best way of obtaining a satisfactory

object manipulation model, in a comfortable and rewarding interaction.

Moreover the feedback provided by the robot is similar to the social cues

that humans might use when teaching another person, have the advantage of

giving the user an intuitive understanding of the robot’s limits. This might well

compensate for a lack of prior knowledge, while keeping the user focused and

motivated in the interaction for longer periods of time.

Limitations of the provided feedback

The different ways of providing feedback that we explored in this study

convey different types of information and thus make use of user’s attention in

different ways. In the case of verbal feedback we provide auditory information in

the form of specific instructions such as: ”you should press more”, ”make sure

all fingers are in contact” or ”move this finger more”. This made it easy for

the subject to focus on the demonstration, while following instructions. It also

gave the subjects more confidence when maneuvering the robot and it might be

the reason why the verbal feedback yielded the best results. However this setup

makes the user dependent on an external expert, present at all times, which is

unpractical in the real world.

GUI feedback makes use of visual information provided on a screen. This

makes the subject switch from looking at the robot’s hand to looking at the

screen. Some subjects chose to look mostly at the screen while blindly driving

the robot’s finger joints. This made them report a low mental and physical

demand. Additionally this setup favoured obtaining the best values for the

contact times compared to the rest of the setups. This was due to the fact

that the contact information was conveyed directly, with a high granularity.

The pressure information could be visualized on 255 levels of corresponding

to different shades of red, for each of the 12 taxels on each fingertip. Also

visualizing the taxels individually (grouped by fingertip) gave the subject an

idea about the area of contact of each finger and how this shifted when the

finger joints moved. However the fact that the subjects tended to ignore looking

at the robot’s hand was reflected in a higher joint shakiness and the fact that

the grasps were not always optimal for the task. This increased the subjects’

frustration when testing the obtained model. Additionally the GUI feedback

required technical knowledge and understanding of the mapping of touch sensors

to the displayed interface. However this was mostly intuitive for the participants

in our study since they mostly had an engineering background.
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The facial feedback setup also makes use of the subject’s visual attention. In

this case the subject has to switch from looking downwards to the robot’s hand

to looking upwards to the robot’s face. This proved to be difficult for most sub-

jects, and this was reflected in perceiving a higher physical and mental demand.

Moreover the granularity of the feedback was lower in this case compared to the

GUI feedback. Few expressions were used (thus leading to a lower granularity of

the feedback), each of them corresponded to a range of possible contact values.

This aspect might have influenced the time in contact metrics. Nevertheless,

the feedback was intuitive and engaging, according to the subjects.

Lastly, in the case of GUI and facial feedback the complexity of the in-

teraction is increased by the fact that the subject needs to take decisions on

their own (such as which joints to move, how hard to press etc.), based on the

feedback provided, unlike the case of verbal feedback where they mostly follow

instructions or corrective feedback given by the experimenter.

5.7 Conclusions

We conducted a user study in which we contrasted 4 conditions: no feed-

back, verbal feedback provided by a knowledgeable user, GUI feedback display-

ing a realtime map of the tactile contacts and the current pressure intensity,

and robot–provided feedback through facial displays of emotion correlated with

the intensity of the tactile sensing. The facial displays were initially validated

through another user study in which 20 emotions were tested and the 4 best

recognized ones were chosen to be used for providing feedback.

The results showed that both the verbal feedback and robot feedback proved

to be effective ways of making the user aware of the state of the robot and thus

improving the quality of the demonstrations. Additionally the robot provided

feedback kept the users engaged throughout the interaction, improving ratings

of subjective metrics regarding the perceived easiness to use the system and

their satisfaction with using the system.

Future work in the direction of using social cues in PbD should address the

question of what is the optimum level of feedback that should be provided to

the user. Particularly in our experiment mapping facial displays to how strong

the contact on the fingertips was had a great impact on improving the time

the fingers were in contact. However this was not enough for our task success

since the task also required exploring the range of motion. Therefore mapping

the range of motion to another social cue, such as voice or hand gestures done

with the other hand, might have increased the task success rate even further.

Subsequently task performance could be improved by assessing how the type of

feedback influences the users’ approach of the task. Namely providing feedback

to systematically guide the users’ training and testing could lead to an improved

robot performance.
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Chapter 6

Conclusions

6.1 Contributions

Throughout this thesis we have described approaches for automatically ob-

taining and using constraint–based task representations for facilitating robot’s

control and improving the interaction with the user. To summarize, this thesis

described 4 contributions regarding task representation and user interaction:

Contributions with respect to task representation

Bootstrapping unimanual and bimanual constraints. From kines-

thetic demonstrations of tasks we extracted the action sequence and soft con-

straints that parameterized a Cartesian impedance controller, obtaining a hybrid

decomposition into force and position control in the object frame. Embedding

the constraints in realtime during execution allowed the robot to adapt to chang-

ing conditions, such as different positions of the objects, of the arms or slight

changes in the tools being used (i.e. grating on different surfaces). We extended

this framework to bimanual tasks by studying coordination as relationships be-

tween the constraints of each arm. We used the constraint–based representation

to execute the task autonomously.

Collaborative execution based on the task constraints. We extended

the constraint–based representation obtained previously to be used in collabo-

rative tasks, when a robot would execute the role of the master or of the slave in

physical collaboration with a human user. We tracked the state of the human

hand using a glove and tactile sensors and we predicted human intention by

analyzing if the way the user manipulated the tool was aligned with the task

constraints.

Contributions with respect to user interaction

Automatic user performance assessment in manipulation tasks We

used the constraint–based representation for assessing user performance and
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determining skilled and unskilled users. We quantified the performance by an-

alyzing the way users manipulated the tool in relation to the task constraints.

The analysis was performed directly on demonstration data, thus allowing the

robot to selectively learn parts of the task from different users, which resulted

in improved performance during autonomous execution.

Sustained interaction dynamics through robot feedbackWe provided

the robot the ability to express its state relative to an important task variable

(fingertip pressure in this case) as feedback provided to the user through various

modalities such as facial displays of emotion, or GUI rendering. We contrasted

these modalities with a no-feedback and a verbal feedback provided by a human

and evaluate the outcome of the teaching interaction in a user study. Results

showed that the feedback provided improved the quality of the demonstrations,

as well as the user experience.

6.2 Limitations

Offline vs. online performance

One of the main limitations of this work is the fact that the extraction of

constraints and model encoding are performed offline, after enough demonstra-

tions have been collected. While this gives reliable results, still it make the

overall time required for acquiring a task to be quite significant, leaving the

robot unable to react to the user’s action or to perform another task during this

interval.

Constraints on the demonstrations

The approach described in this paper requires the demonstrations to include

all the necessary actions performed in the same order, for the variance based

analysis to work. This requirement is constraining for the user who has to

repeat the same sequence of actions multiple times. It also structures the way

tasks need to be performed which is not a typical human behavior. Moreover

the demonstrations are not put in the context of more complex tasks and are

mostly performed using the same or slightly different tools and objects. We

extract the task constraints without having an explicit model of the object

makes the representation generic, however the extracted reference frame links

the current action with an object.

Problems posed by the experimental setups

Our approaches facilitate human interaction but depend heavily on the pos-

sibility to accurately observe the motion of the human. Most of the setups used

in this work are custom made, requiring combining different sensors, instead
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of being more self–contained. This makes them impractical and hard to inte-

grate in daily life, and sometimes even difficult for the user to maneuver when

demonstrating a task.

Performing experiments with naive subjects

Oftentimes users on one hand have their own mental representations of a

task, and on the other hand they lack a representation of the robot capabilities.

Asking them to do a particular task might lead to a different performance than

what was expected in the experiment. For example in the grasp adaptation ex-

periment (Chapter 5) some users preferred demonstrating the task while guiding

the robot’s hand with just one of their hands. This leads to severely limiting

the range of motion that can be explored due to the limitations of the human

hand. Similarly in the vegetable scooping experiment the users preferred hold-

ing the tool in ways that were familiar to them, even if that led to changing the

task completely (i.e. performing scraping instead of scooping). This behavior

is more likely to occur in real world interactions and thus algorithms should be

able to handle these situations.

Furthermore, subjects are not always good at performing self-assessment.

This was the case when we asked the subjects to assess their own skill in recog-

nizing robot displayed emotions (Chapter 5) or to assess their performance in

demonstrating the scooping task (Chapter 4). This factor might influence the

way the users perceive the interaction and the robot’s performance.

6.3 Future Work

While our proposed constraint–based task representation provided useful

knowledge about daily activities here we highlight potential improvements and

future directions.

Reasoning with constraints

One of the first fundamental improvements would be to provide the robot

the ability to segment and extract task constraints online, while incrementally

observing multiple demonstrations. Secondly the constraints could serve not

only in executing a task, but also in the high–level planning of a task that

consists of multiple subtasks. For example a humanoid robot could properly

position itself for executing a task that requires its arms to apply a force; could

allocate unimanual tasks to each arm independently, and could reason about

the required resources for completing complex tasks.

The task constraints together with information about the objects could be

used to disambiguate between the use of different objects for similar purposes

(such as mixing in a bowl, a glass or a pan). Also a constraint–representation
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of a task could be parameterized and used in a different context, such as mixing

ingredients in a bowl and egg beating. The two tasks are very similar in nature,

they both require a mixing motion while maintaining a vertical contact with

the bowl, however the mixing speed is different, and the task goal (or success

metric) is also different.

Moreover knowing the task constraints could allow a robot to arbitrarily

allocate parts of the task to multiple arms while enforcing the multi–arm coor-

dination. For example in the task of mixing ingredients in a bowl the holding

and mixing actions are continuous while the task might require the mixing arm

to stop and to pour additional ingredients. These discrete operations could be

allocated to a different arm. Additionally there are cases in which a single arm

might not manage to fulfil the task constraints, such as opening a bag or a

drawer. A second arm could be used for achieving the task goal.

Lastly knowing the constraints of a task the robot could acquire additional

data by passively observing the users perform task and linking the observed

behavior with the effects on the environment, on the objects, or on following

the task sequence.

User profiling for customized interaction

Different users might perform the same task in a different way, by choosing

different objects, different tools, or using them in a different way. Differences

across users might be significant and might showcase preferences in performing

the task. Allowing the robot to associate knowledge about the task constraints

with user preferences could facilitate a customized interaction and on the long

term lead to an increased user satisfaction.

Task assistance and training

Lastly, having a constraint–based representation of the task could allow the

robot to train a naive user in performing it well, by reinforcing the constraints

during training phases. Alternatively the robot could provide assistance to users

suffering from various disabilities affecting the proper functioning of the arms,

by ensuring that the task constraints are properly used (e.g. applying more

force in parts of the task where the user is not able to do this). This behavior

could also lead to initiative tasking in collaborative tasks.

6.4 Final Words

We conclude by highlighting several aspects of robot behavior that prove

indispensable for a meaningful a long–term interaction with human users.
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Comprehensive view of the daily activities

A robot in a domestic environment needs to have a comprehensive understand-

ing of the activities that are routinely performed and the way their goals are

achieved. In daily activities humans rarely perform all the actions in a task or

execute them in the same order. More often tasks are done in parallel, mixing

actions that serve different goals. Therefore tasks can be represented on dif-

ferent levels of granularity. For example cutting an onion requires a sequence

of atomic actions such as reaching, grabbing a knife, removing the skin, cut-

ting etc. However cutting the onion task can be part of making a salad which

can contribute to cooking dinner, or even to a bigger long term task such as

house holding. The robot needs to be able to reason not in isolation on small

tasks, but switch between these levels of granularity, schedule, plan and develop

long–term strategies.

Adaptability and initiative taking

Humans behavior is flexible and adaptive. People often find creative uses for

old tools to make them serve new purposes. For example a spoon can be used

for mixing in a cup of tea, but when this is not at hand the task can be done

with a kitchen knife or even a letter opening knife. A robot needs to be able

to show the same level of adaptation and flexibility. This aspect is particularly

important since lay users expect robots to be able to perform actions that extend

far beyond their current capabilities.
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Chapter 7

Appendix. Initial video

rating for the user study

in Chapter 4

An initial video rating was performed by 10 persons (5 male, 5 female). The

aim was to obtain a performance rating for each demonstration. However the

question used to assess this aspect (”How well did this person perform the

current trial?”) was confusing for the raters. In order to not influence the

raters they were not given a clear definition of what was a ”skilled performance”

assessed here. This led to raters having a lower agreement rate for this aspect as

some of them gave a rating based on the scooped quantity, while others looked

at how the task was performed. However they had a rather high agreement

rate on other questions (such as identifying the task pace or indicating if too

much or too little force was applied). We present these results below and discuss

subgroups of subject for which the agreement rates were higher.

7.1 Video rating assessment

The video rating was performed in 2 cases: 5 raters were shown the demon-

strations in random order, and 5 raters were shown the demonstrations ordered

per subject. In each case 2 participants rated the full sequence of demon-

strations, while 3 were given batches of one third of the total demonstrations.

Therefore each video has received 3 ratings for each rating case for a total of

2964 total ratings.

The rating of each demonstration involved 4 questions:

1. How well did this person perform the current trial?

(scale 1 (very bad) to 5 (very well))

2. How was the task pace

(too slow/normal/too fast)

3. Were there problems with the following aspects:

� arm coordination (yes/no)

� grasping the tool (yes/no)

� direction of movement (yes/no)

4. The applied force was: too little/normal/too much
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The raters shown the demonstrations in order, also had to rate the overall

performance for each subject:

1. Overall performance (5 level Likert scale)

2. Did this subject improve over trials? (yes/no)

3. Could this subject manage the setup well? (yes/no)

7.2 Video rating results

Ratings per demonstration

The average skill rating from videos was 2.69± 1.10. Out of the total 2964

ratings 282 were very low performance, 757 low performance, 960 medium, 716

high, and 249 very high. The rating case (random or ordered) affected the

performance rating (F (1, 2963) = 128.32, p < 0.001), such that the raters seeing

the demonstrations in order attributed lower scores per demonstration (2.74±
1.08) than those seeing them randomly 3.18±1.06. Averaged per demonstration

10 were marked as very low performance, 120 as low, 213 as medium, 144 as

high and 7 as very high.

The average inter-rater agreement for attributing a skill level was Cohen’s

kappa 0.33. The highest agreement rate was 0.73 for determining coordination

problems. In the case of observing grasping problems kappa was 0.66, however

the agreement was higher in the case of skilled rather than unskilled subjects.

Movement problems were easier to detect in unskilled subjects (kappa = 0.64).

The raters also agreed more on estimating the applied force of the skilled sub-

jects (kappa = 0.67). Results are summarized in Table 7.1.

The attributed skill is correlated with the estimated level of force (r = 0.43).

However this estimation of force from video rating was also correlated with

the actual force (r = 0.32) and the torque (r = 0.31) applied across the

direction of interest in the task, suggesting that raters could have a good

understanding of the task performance only by analyzing video recordings.

The skill rating had a significant effect on all the other measures: task pace

(F (1, 492) = 11.60, p < 0.001), identifying coordination problems (F (1, 492) =

43.24, p < 0.001), grasping problems (F (1, 492) = 30.29, p < 0.001), move-

ment problems (F (1, 492) = 29.28, p < 0.001) and estimating force applied

(F (1, 492) = 31.29, p < 0.001).

Grasping problems were commonly identified among demonstrations previ-

ously rated as as low and very low performance. In the case of medium and high

skilled performance problems were mostly related to the direction of movement

(Fig. 7.1a). The 3 types of problems also affected the pace (F (1, 492) = 25.17,

p < 0.05) and force estimated by the raters (F (1, 492) = 9.88, p < 0.05), such
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Cohen’s kappa

all subjects skilled unskilled

Skill 0.34 0.35 0.34

Task pace 0.64 0.63 0.65

Coordination problems 0.74 0.74 0.74

Grasping problems 0.66 0.73 0.64

Movement problems 0.63 0.60 0.64

Estimated force 0.63 0.67 0.61

Table 7.1 Inter–rater agreement for the video assessment. We highlight agree-
ment values greater than 0.65.

that identified problems led to a lower force rating and a lower task pace (see

Fig. 7.1).

Identified problems in the movement were correlated with a higher number of

subsegments (F (1, 492) = 8.02, p < 0.05). Problems in grasping were correlated

with applying a higher force in the directions which were not important for the

task (F (1, 492) = 7.03, p < 0.05), and lower force on the direction of interest

(F (1, 492) = 3.41, p = 0.06).

Ratings per subject

Five video raters watched the sequence of demonstrations in order for each

subject. At the end they had to rate the overall performance of that subject.

Two of the raters watched the full sequence of demonstrations for all subjects.

Each of the following 3 raters watched only a batch of videos corresponding to 12

subjects (for batches 1 and 2) and 13 subjects for batch 3. Each batch contained

3 skilled subjects (as rated automatically) while the rest were unskilled.

We compute the inter–rater agreement (Cohen Kappa) between each 2 raters

when taking into account their rating of all subjects, or of subjects only in a

given batch, for assigning a level of skill, assessing the subject’s improvement

over trials and the subject’s ability to manage the setup (see Table 7.2 for full

results).

For the skill level and taking into account all subjects, the highest agreement

rate observed was 0.41 between raters 2 and 3. Looking at individual batches

we notice that the agreement rates improve over batches (average 0.30 for batch

1, 0.43 for batch 2 and 0.45 for batch 3). The highest observed agreement was

0.54 between raters 1 and 2 for the second batch.

The generally low agreement rates could be explained by two factors. Firstly

no instructions were given to the raters on what a successful scoop was. There-

fore the raters were expected to have an internal understanding and represen-

tation of the task, the actions required to perform it and the result that should

be observed. Differences in this representation led too raters looking at var-
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(a) Total identified problems for each
skill level

(b) force rating

(c) task pace (d) skill rating

Figure 7.1 Identified problems are reflected in lower ratings of the estimated
force, task pace and skill. Issues in movement affect mostly the force and skill
rating, while grasping issues affect the task pace

Cohen’s kappa

Raters all subjects batch 1 batch 2 batch 3

S
k
il
l

R1 −R2 0.33 0.27 0.54 0.45

R1 −R3 0.37 0.18 0.33 0.44

R2 −R3 0.41 0.45 0.41 0.45

average 0.37 0.30 0.43 0.45

Im
p
ro
v
em

en
t

R1 −R2 0.32 0.36 0.30 0.30

R1 −R3 0.56 0.45 0.46 0.76

R2 −R3 0.32 0.36 0.38 0.23

average 0.40 0.39 0.38 0.43

M
a
n
a
g
e
se
tu
p

R1 −R2 0.64 0.63 0.61 0.69

R1 −R3 0.62 0.63 0.53 0.69

R2 −R3 0.70 0.81 0.61 0.69

average 0.65 0.69 0.58 0.69

Table 7.2 Inter–rater agreement evaluating the full performance of a subject.
We highlight agreement values greater than 0.50.
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Cohen’s kappa

Raters all subjects batch 1 batch 2 batch 3

skilled unskilled unskilled unskilled unskilled
V
id
eo

ra
ti
n
g
a
ss
es
sm

en
t S
k
il
l

R1 −R2 0.25 0.35 0.25 0.55 0.37

R1 −R3 0.33 0.44 0.12 0.33 0.50

R2 −R3 0.16 0.48 0.50 0.50 0.55

average 0.25 0.42 0.29 0.46 0.47

Im
p
ro
v
em

en
t

R1 −R2 0.50 0.39 0.50 0.40 0.30

R1 −R3 0.55 0.57 0.50 0.50 0.70

R2 −R3 0.50 0.25 0.25 0.30 0.20

average 0.50 0.40 0.41 0.40 0.40

M
a
n
a
g
e
se
tu
p

R1 −R2 0.77 0.60 0.50 0.60 0.70

R1 −R3 0.77 0.57 0.50 0.40 0.80

R2 −R3 0.77 0.67 0.75 0.60 0.70

average 0.77 0.61 0.58 0.53 0.73

Table 7.3 Inter–rater agreement for the subjects overall performance when con-
sidering subgroups of skilled or unskilled users as marked by our automatic
analysis. We highlight agreement values greater than 0.50.

ious aspects: the amount that was scooped, the confidence that the subject

displayed when performing the task, and not necessarily the fluidity and ease

of the motion. Similarly the subjects were not given specific instructions on

how to perform the task, which resulted in a multitude of approaches, ranging

from holding the tool in a different way to different strategies in performing the

motion. Secondly the fact that the agreement rate increased over batches is an

indication that the raters needed many examples of the task as a ”calibration”

step to even their expectations.

Higher agreement rates were observed when estimating the subject’s ability

to improve over trials, with the highest values of 0.76 between raters 1 and 3

for the third batch of subjects.

The highest agreement rates were obtained for rating the subject’s ability

to manage the setup (all values are above 0.5 in this case). The highest value is

0.81 as the agreement between raters 2 and 3 for batch 1. This is an indication

of the fact that despite the considerable equipment involved the raters were able

to consistently pinpoint problems related to the setup and alongside the task

execution.

We further analyze the agreement rate between all the pairs of raters when

considering subgroups of skilled or unskilled users as marked by our automatic

analysis (see Table 7.3).

The agreement rate between the video raters was higher when assigning a

skill level or assessing the improvement for the subjects labeled as unskilled by
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our approach, than those labeled as skilled (highest agreement rates 0.48, and

0.57 respectively). For the ability to manage the setup the inverse trend was

observed. It was easier to rate the skilled subjects (average kappa value 0.77)

than the unskilled ones (average kappa value 0.61).

For the individual batches we analyzed the agreement rates only for the

subjects labeled as unskilled. For both the video raters assigned skill and the

improvement over trials the highest agreement rate was observed for batch 3,

confirming our previous observation that raters actually need many examples of

the task to even their expectations. Similarly the ability to manage the setup

was better estimated for batch 3, with the maximum agreement rate of 0.80.

We do not present the results of the agreement rate for the skilled subjects in

batches, as there were only 3 skilled subjects in each batch. However a notable

exception was a Cohen’s kappa value of 1.00 obtained as agreement in rating

the skill between raters 2 and 3 for batch 2.

On a level of 1 (very low) to 5 (very high) the raters marked 1 subject as very

low performance, 12 as low, 16 as medium, 8 as high, and 0 as very high. The

overall performance was correlated with the skill computed from sensor metrics

(r = 0.36) and with the scooped weight (r = 0.44), but only weekly correlated

with the subjects self–assessed skill (r = 0.16).

On average 19 users were considered to have improved over trials, while 18

did not. Rating a subject as better over trials was linked with the subject’s

own perception of the task as being easy to teach (r = 0.27), and with the TLX

stress factor (r = 0.38).

The raters appreciated that 27 users did not have any problem manipulating

the setup, while 10 might have had. The ability to manage the setup well

was directly correlated with the grasping quality across the torque direction

(r = 0.4), as well as with the stiffness of the robot arm holding the mellon

(r = 0.25), and the stiffness of the arm maneuvering the tool (r = 0.20).

We then corroborated the setup management with the user’s self assessment.

Giving the impression that a subject can manage the setup was linked to a lower

need of technical support (r = 0.20), the TLX success factor (r = 0.22), and the

TLX effort factor (r = 0.24). Additionally the users able to manage the setup

completed the task on average in 12.47s, compared to 17.32s for those who did

not.
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K. Claes, and H. Bruyninckx. Constraint-based task specification and estima-
tion for sensor-based robot systems in the presence of geometric uncertainty.
I. J. Robotic Res., 26(5):433–455, 2007.

177



Seegelke, C. and T. Schack. Cognitive representation of human action: The-
ory, applications, and perspectives. Frontiers in Public Health, 4:24, 2016.
ISSN 2296-2565. doi: 10.3389/fpubh.2016.00024. URL https://www.

frontiersin.org/article/10.3389/fpubh.2016.00024.

Seth, A. K. A matlab toolbox for granger causal connectivity analysis. Journal
of Neuroscience Methods, 2010a.

Seth, A. K. A matlab toolbox for granger causal connectivity analysis. Jour-
nal of Neuroscience Methods, 186(2):262 – 273, 2010b. ISSN 0165-0270.
doi: http://dx.doi.org/10.1016/j.jneumeth.2009.11.020. URL http://www.

sciencedirect.com/science/article/pii/S0165027009006189.

Seyama, J. and R. S. Nagayama. The uncanny valley: Effect of realism on the
impression of artificial human faces. Presence: Teleoper. Virtual Environ., 16
(4):337–351, August 2007. ISSN 1054-7460. doi: 10.1162/pres.16.4.337. URL
http://dx.doi.org/10.1162/pres.16.4.337.

Shibata, T. Therapeutic seal robot as biofeedback medical device: Qualitative
and quantitative evaluations of robot therapy in dementia care. Proceedings
of the IEEE, 100(8):2527–2538, Aug 2012. ISSN 0018-9219. doi: 10.1109/
JPROC.2012.2200559.

Shim, J. and A. L. Thomaz. Human-like action segmentation for option learning.
In RO-MAN, pages 455–460, 2011.

Shiomi, M., K. Nakagawa, K. Shinozawa, R. Matsumura, H. Ishiguro,
and N. Hagita. Does a robot’s touch encourage human effort? In-
ternational Journal of Social Robotics, 9(1):5–15, 2017. ISSN 1875-
4805. doi: 10.1007/s12369-016-0339-x. URL http://dx.doi.org/10.1007/

s12369-016-0339-x.

Shiwa, T., T. Kanda, M. Imai, H. Ishiguro, and N. Hagita. How quickly should
a communication robot respond? delaying strategies and habituation effects.
International Journal of Social Robotics, 1(2):141–155, 2009. ISSN 1875-
4805. doi: 10.1007/s12369-009-0012-8. URL http://dx.doi.org/10.1007/

s12369-009-0012-8.

Shukla, A. and A. Billard. Coupled dynamical system based arm-hand grasp-
ing model for learning fast adaptation strategies. Robotics and Autonomous
Systems, 60(3):424 – 440, 2012. ISSN 0921-8890.

Silvrio, J., L. Rozo, S. Calinon, and D. G. Caldwell. Learning bimanual end-
effector poses from demonstrations using task-parameterized dynamical sys-
tems. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ Interna-
tional Conference on, pages 464–470, Sept 2015. doi: 10.1109/IROS.2015.
7353413.

Smith, A., C. Yang, H. Ma, P. Culverhouse, A. Cangelosi, and E. Burdet.
Dual adaptive control of bimanual manipulation with online fuzzy parameter
tuning. In 2014 IEEE International Symposium on Intelligent Control (ISIC),
pages 560–565, Oct 2014. doi: 10.1109/ISIC.2014.6967605.

Stanton, C. M., P. H. Kahn, R. L. Severson, J. H. Ruckert, and B. T. Gill.
Robotic animals might aid in the social development of children with autism.
In 2008 3rd ACM/IEEE International Conference on Human-Robot Interac-
tion (HRI), pages 271–278, March 2008. doi: 10.1145/1349822.1349858.

178



Steffen, J., C. Elbrechter, R. Haschke, and H. Ritter. Bio-inspired motion
strategies for a bimanual manipulation task. In 2010 10th IEEE-RAS In-
ternational Conference on Humanoid Robots, pages 625–630, Dec 2010. doi:
10.1109/ICHR.2010.5686830.

Steinfeld, A., T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz, and
M. Goodrich. Common metrics for human-robot interaction. In Proceedings
of the 1st ACM SIGCHI/SIGART Conference on Human-robot Interaction,
HRI ’06, pages 33–40, New York, NY, USA, 2006. ACM. ISBN 1-59593-294-1.
doi: 10.1145/1121241.1121249.

Stilman, M. Task constrained motion planning in robot joint space. In in IROS,
2007.

Stirling, B. V. Results of a study assessing teaching methods of faculty
after measuring student learning style preference. Nurse Education To-
day, 55:107 – 111, 2017. ISSN 0260-6917. doi: https://doi.org/10.
1016/j.nedt.2017.05.012. URL http://www.sciencedirect.com/science/

article/pii/S0260691717301156.

Sukhoy, V., V. Georgiev, T. Wegter, R. Sweidan, and A. Stoytchev. Learning
to slide a magnetic card through a card reader. In ICRA, pages 2398–2404,
2012.

Sung, J. Y., L. Guo, R. E. Grinter, and H. I. Christensen. ”My Roomba is
Rambo”: intimate home appliances. In UbiComp’07: Proceedings of the 9th
international conference on Ubiquitous computing, pages 145–162, 2007.

Suzuki, Y., H. Takase, Y. Pan, J. Ishikawa, and K. Furuta. Learning process of
bimanual coordination. In Control, Automation and Systems, 2008. ICCAS
2008. International Conference on, pages 2830–2835, Oct 2008. doi: 10.1109/
ICCAS.2008.4694241.

Taheri, H., S. A. Goodwin, J. A. Tigue, J. C. Perry, and E. T. Wolbrecht.
Design and optimization of partner: A parallel actuated robotic trainer for
neurorehabilitation. In 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), pages 2128–
2132, Aug 2016. doi: 10.1109/EMBC.2016.7591149.

Takano, W. and Y. Nakamura. Humanoid robot’s autonomous acquisition of
proto-symbols through motion segmentation. In Humanoids, pages 425–431,
2006.

Tao, L., E. Elhamifar, S. Khudanpur, G. Hager, and R. Vidal. Sparse hid-
den markov models for surgical gesture classification and skill evaluation. In
Abolmaesumi, P., L. Joskowicz, N. Navab, and P. Jannin, editors, Informa-
tion Processing in Computer-Assisted Interventions, volume 7330 of Lecture
Notes in Computer Science, pages 167–177. Springer Berlin / Heidelberg,
2012. ISBN 978-3-642-30617-4.

Ureche, A. L. P., K. Umezawa, Y. Nakamura, and A. Billard. Task parameter-
ization using continuous constraints extracted from human demonstrations.
IEEE Transactions on Robotics, 31(6):1458–1471, Dec 2015. ISSN 1552-3098.
doi: 10.1109/TRO.2015.2495003.

Ushida, H. Effect of social robot’s behavior in collaborative learning. In Pro-
ceedings of the 5th ACM/IEEE international conference on Human-robot in-
teraction, HRI ’10, pages 195–196, 2010.

179



van den Brule, R., G. Bijlstra, R. Dotsch, P. Haselager, and D. H. J. Wig-
boldus. Warning signals for poor performance improve human-robot interac-
tion. Journal of Human Robot Interaction, 5(2), 2016. doi: 10.5898/JHRI.5.
2.Van den Brule.

Vijayakumar, S., A. D’Souza, and S. Schaal. Incremental online learning in
high dimensions. Neural Computation, 17(12):2602–2634, Dec 2005. ISSN
0899-7667. doi: 10.1162/089976605774320557.

Villani, L. and J. De Schutter. Force control. In Siciliano, B. and O. Khatib,
editors, Springer Handbook of Robotics, pages 161–185. Springer Berlin Hei-
delberg, 2008. ISBN 978-3-540-23957-4.

Wang, L., W. Hu, and T. Tan. Recent developments in human motion analysis.
Pattern Recognition, 36(3):585–601, 2003.

Wrgtter, F., C. Geib, M. Tamosiunaite, E. E. Aksoy, J. Piater, H. Xiong,
A. Ude, B. Nemec, D. Kraft, N. Krger, M. Wchter, and T. Asfour. Struc-
tural bootstrapping: A novel, generative mechanism for faster and more effi-
cient acquisition of action-knowledge. IEEE Transactions on Autonomous
Mental Development, 7(2):140–154, June 2015. ISSN 1943-0604. doi:
10.1109/TAMD.2015.2427233.

Xu, W., H. Liu, Y. She, and B. Liang. Singularity-free path planning of dual-arm
space robot for keeping the base inertially stabilized during target capturing.
In 2012 IEEE International Conference on Robotics and Biomimetics (RO-
BIO), pages 1536–1541, Dec 2012. doi: 10.1109/ROBIO.2012.6491186.

Yagoda, R. and D. Gillan. You want me to trust a robot? the development of a
humanrobot interaction trust scale. International Journal of Social Robotics,
pages 1–14, 2012.

Yamazaki, R., S. Nishio, K. Ogawa, K. Matsumura, T. Minato, H. Ishiguro,
T. Fujinami, and M. Nishikawa. Promoting socialization of schoolchildren
using a teleoperated android: an interaction study. I. J. Humanoid Robotics,
10(1), 2013. doi: 10.1142/S0219843613500072. URL http://dx.doi.org/

10.1142/S0219843613500072.

Yang, C., P. Liang, Z. Li, A. Ajoudani, C. Y. Su, and A. Bicchi. Teaching
by demonstration on dual-arm robot using variable stiffness transferring. In
2015 IEEE International Conference on Robotics and Biomimetics (ROBIO),
pages 1202–1208, Dec 2015. doi: 10.1109/ROBIO.2015.7418935.

Ye, G. and R. Alterovitz. Demonstration-guided motion planning. International
Symposium on Robotics Research (ISRR), 2011.

Yohanan, S. and K. E. MacLean. Design and assessment of the haptic creature’s
affect display. In Proceedings of the 6th international conference on Human-
robot interaction, HRI ’11, pages 473–480, 2011.

Zacharias, F., D. Leidner, F. Schmidt, C. Borst, and G. Hirzinger. Exploiting
structure in two-armed manipulation tasks for humanoid robots. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on,
pages 5446–5452, Oct 2010. doi: 10.1109/IROS.2010.5651121.

Zhu, Q., T. Mirich, S. Huang, W. Snapp-Childs, and G. P. Bingham. When
kinesthetic information is neglected in learning a novel bimanual rhythmic

180



coordination. Attention, Perception, & Psychophysics, May 2017. ISSN 1943-
393X. doi: 10.3758/s13414-017-1336-3. URL http://dx.doi.org/10.3758/

s13414-017-1336-3.

Zollner, R., T. Asfour, and R. Dillmann. Programming by demonstration:
dual-arm manipulation tasks for humanoid robots. In Intelligent Robots
and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ Interna-
tional Conference on, volume 1, pages 479–484 vol.1, Sept 2004. doi:
10.1109/IROS.2004.1389398.

Zollner, R. D. and R. Dillmann. Using multiple probabilistic hypothesis for
programming one and two hand manipulation by demonstration. In Intelli-
gent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, volume 3, pages 2926–2931 vol.3, Oct 2003. doi:
10.1109/IROS.2003.1249315.

181



Lucia Ureche
Curriculum Vitae

Rue du Centre 72
1025 St-Sulpice, Switzerland

� +41 76 236 5035
� analucia.ureche@gmail.com

Robotics Engineer:
Human-robot interaction, User profiling,

Machine learning algorithms, Robot motion control

Education
2011–Present École Polytechnique Fédérale De Lausanne, EPFL.

PhD Student in Robotics, Laboratory of Learning Algorithms and Systems (LASA),
Graduation – Expected 2017

2009–2011 Polytechnic University of Bucharest, UPB.
Master in Intelligent Control Systems

2009–2011 Polytechnic University of Bucharest, UPB.
B.S. degree in Automation and Systems Engineering

Professional and Research Experience
2011–Present PhD Project, LASA, EPFL, ongoing.

”Autonomous extraction of task constraints from demonstrated robot motion” - Focuses
on applying machine learning algorithms for segmenting human demonstrations into
subtasks, and obtaining models to be used for robot control (EU project RoboHow).
� segmentation of complex tasks demonstrated by the user
� task constraints extraction and motion modeling
� user profiling based on tool manipulation and force-torque data

2011 Internship, LASA, EPFL, 6 months.
Studied human robot interaction dynamics on the humanoid robot iCub Part of the
EU FP 7 project RoboSkin
� emotion modeling and validation on the iCub robot
� analyzing user interaction patterns
� validating feedback modalities for sustained interaction

2011 Master Thesis, UPB.
Integrated framework for emotion recognition and expression using robot artists.

2009 Internship, Dacia Groupe Renault, 3 months.
Bachelor project ”Motion optimization for a carrier robot serving a finishing lathe”.

1/3



Professional Skills
Robot

control
iCub, KUKA LWR, Barrett hand, various sensors (ATI 6 axis FT sensors,
Tekscan tactile sensors, OptiTrack motion capture), educational robots

Programming Matlab, C++
Machine
Learning

Regression and Classification algorithms

Graphics Corel Paint Shop Pro, Painter, Draw, VideoStudio

Research Interests
� Human Robot Interaction � User skill–based profiling
� Robot Collaborative Tasks � Robot Tactile Sensing
� Programming by Demonstration � Machine Learning

Languages
English Fluent TOEFL score: 110/max.120
French Intermediate B2 - Conversationally fluent

Romanian Fluent Mother tongue

Scientific Publications

Journals:

[J1]: Pais Ureche A. L., Billard A. (2017) Automatic skill assessment in learning from demonstration,
[Under submission]

[J2]: Pais Ureche A. L., Billard A. (2017) Constraints extraction from asymmetrical bimanual tasks and
their use in coordinated behavior, [Under submission]

[J3]: Pais Ureche A. L., Umezawa K, Nakamura Y, Billard A (2015) Task parameterization using continuous
constraints extracted from human demonstrations, IEEE Transactions on Robotics, 31(6):1458–1471,
[TRO 2015]

[J4]: Pais A. L., Argall B.D. and Billard, A. (2013) Assessing Interaction Dynamics in the Context of
Robot Programming by Demonstration, International Journal of Social Robotics, November 2013,
Volume 5, Issue 4, pp 477-490, [IJSR 2013]

Conferences and Abstracts:

[C1]: Figueroa N., Pais Ureche A. L., Billard A. (2016) Learning complex sequential tasks from demonstra-
tion: A pizza dough rolling case study, In Proceedings of the 2016 ACM/IEEE International Conference
on Human-robot Interaction, ACM, [HRI 2016]

[C2]: Pais, A. L., Billard, A. (2015) Learning Bimanual Coordinated Tasks From Human Demonstrations,
Proceedings of the 2015 ACM/IEEE International Conference on Human-robot Interaction, [HRI 2015]

[C3]: Pais, A. L. and Billard, A. (2015) Metrics for Assessing Human Skill When Demonstrating a Bi-
manual Task to a Robot, Proceedings of the 2015 ACM/IEEE International Conference on Human-robot
Interaction, [HRI 2015]

[C4]: Beetz M., Beßler D., Winkler J., Worch J.H., Balint-Benczedi F., Bartels G., Billard A., Bozcuoglu A.K.,
Fang Z., Figueroa N., Haidu A., Langer H., Maldonado A., Ureche A.L., Tenorth M., Wiedemeyer T. (2016)

2/3



Open Robotics Research Using Web-based Knowledge Services, IEEE International Conference on
Robotics and Automation, [ICRA 2016, Accepted]

[C5]: Pais, A. L. and Billard, A. (2014) Encoding bi-manual coordination patterns from human demon-
strations, In Proceedings of the 9th ACM/IEEE International Conference on Human-Robot Interaction,
[HRI 2014]

[C6]: Pais, A.L., Billard, A., Robins, B., Dautenhahn, K., Improving human-robot interaction through facial
expressions of emotion and touch detection, In CogSys, Vienna, Austria, 2012

[C7]: Dichiu, D., Pais, A.L., Moga, A., Buiu, C., A Cognitive System for Detecting Emotions in Literary
Texts and Transposing them into Drawings, IEEE Int. Conf. on Systems, Man, and Cybernetics,
October 2010, [SMC 2010]

Workshops and other Publications:
[W1]: Pais Ureche, A. L. and Billard, A. (2015) Analyzing Human Behavior and Bootstrapping Task Con-

straints from Kinesthetic Demonstrations, HRI Pioneers Workshop, HRI 2015

[W2]: Pais, A. L., Keisuke Umezawa, Yoshihiko Nakamura and Billard, A. (2013) Learning Robot Skills through
Motion Segmentation and Constraints Extraction. Workshop on Collaborative Manipulation, HRI
2013

[W3]: Pais, A.L., Billard, A., Tactile interface user-friendliness evaluated in the context of robot pro-
gramming by demonstration, Workshop on Advances in tactile sensing and touch based HRI, HRI
2012

[W4]: El-Khoury, S., Li, M., Pais, A.L., Billard, A., Teaching Robots to Grasp through a User Friendly
Interface, Workshop: Beyond Robot Grasping - Modern Approaches for Dynamic Manipulation, IROS 2012

[W5]: Pais, A.L., Moga, A., Buiu, C., An Integrated Framework for Emotion Recognition and Expression
using Robot Artists, ICIC Express Letters, Part B : Applications, Vol. 1, No. 2, Dec. 2010, pp. 169-174,
ISSN 2185-2766, 2010

[W6]: Pais, A.L., Moga, A., Buiu, C., Emotions and robot artists: state-of-the-art and research challenges,
BMIF - Mathematics, Informatics, Physics Series, ISSN 124-4899, Vol. LXII, No. 1, pp. 26-40, 2010

For a full list of publications please see DBLP or Google Scholar profiles.

Personal Details
Romanian citizen, Swiss B permit, married, 1 child. References available upon request.

Last updated on July 26, 2017.

3/3




