
Detailed Heap Profiling
Stuart Byma

School of Computer and Communication Sciences
EPFL

Switzerland
stuart.byma@epfl.ch

James R. Larus
School of Computer and Communication Sciences

EPFL
Switzerland

james.larus@epfl.ch

Abstract
Modern software systems heavily use the memory heap. As
systems grow more complex and compute with increasing
amounts of data, it can be difficult for developers to under-
stand how their programs actually use the bytes that they
allocate on the heap and whether improvements are possible.
To answer this question of heap usage efficiency, we have
built a new, detailed heap profiler called Memoro. Memoro
uses a combination of static instrumentation, subroutine
interception, and runtime data collection to build a clear
picture of exactly when and where a program performs heap
allocation, and crucially how it actually uses that memory.
Memoro also introduces a new visualization application that
can distill collected data into scores and visual cues that allow
developers to quickly pinpoint and eliminate inefficient heap
usage in their software. Our evaluation and experience with
several applications demonstrates that Memoro can reduce
heap usage and produce runtime improvements of 10%.

CCS Concepts • Human-centered computing → Visu-
alization systems and tools;

Keywords Heap profiling, static instrumentation
ACM Reference Format:
Stuart Byma and James R. Larus. 2018. Detailed Heap Profiling. In
Proceedings of 2018 ACM SIGPLAN International Symposium onMem-
ory Management (ISMM’18). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3210563.3210564

1 Introduction
With few exceptions, modern software relies on heap mem-
ory; even small applications can perform millions of alloca-
tions at thousands of different locations. Inefficient use of
dynamically allocated memory, however, can increase both
peak memory usage and program run time. Understanding
and fixing memory allocation problems is not simple because
libraries, frameworks, and packages hide internal memory

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ISMM’18, June 18, 2018, Philadelphia, PA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5801-9/18/06.
https://doi.org/10.1145/3210563.3210564

x[7] = 42;
__memoro_record(x,28);

int* x = malloc(32);

Instrumented Binary Visualizer App

Heap Chunk

Metadata

Runtime

Compile + instrument

Heap Usage
History

Figure 1. Overview of Memoro operation. The runtime in-
tercepts allocation calls and updates metadata at every access
to a heap chunk. Accesses are detected by program instru-
mentation inserted by the compiler. Data is dumped to disk
and visualized.

allocations inside abstraction boundaries, which makes dis-
covering and fixing problems challenging, particularly in
large complex systems. As a result, it is very easy for inef-
ficient heap usage and performance-adverse allocations to
go completely unnoticed. These can also be difficult to find
even when a developer is actively looking for performance
problems. Development tools, however, can help a software
developer find and fix these issues. This paper describes a
dynamic tool called Memoro that tracks and analyzes mem-
ory allocations and usage, and visualizes the resulting data,
to aid in identifying and correcting memory allocation, use,
and deallocation defects.

Most existing tools provide only a simple, one-dimensional
perspective on memory allocation. Typically, they report
how many bytes of memory are allocated at each allocation
call site and provide a mechanism for aggregating allocations
up a dynamic call graph.Tools for managed languages may
also report statistics related to the garbage collector. This
data, while often quite useful, is lacking richness and the
insight necessary to understand memory performance prob-
lems. Other methods of data aggregation and presentations
offer deeper insights into program behavior. For example,
objects of the same type may be allocated at many points
in a program; and to understand the performance effects of
these objects, it is often helpful to consider all allocations of
the same type of object together. In addition, it is valuable
to know how efficiently a program actually uses the words
of memory that it allocates:

1

https://doi.org/10.1145/3210563.3210564
https://doi.org/10.1145/3210563.3210564

ISMM’18, June 18, 2018, Philadelphia, PA, USA Stuart Byma and James R. Larus

• How much has the program actually written and read
the memory (i.e., was this allocation necessary)?
• How much of the allocated memory block was ac-
cessed by the program?
• Was the memory block write-only? Read-only?
• What was ratio of reads to writes?
• Was the memory block accessed by multiple threads?

Finally, there are dynamic patterns of memory usage that
strongly hint at program performance problems. For exam-
ple, allocating an insufficiently large region of memory and
repeatedly growing it leads to unnecessary data copying.
Or, freeing an object long after its final access prolongs its
memory block’s lifetime and increases memory usage.

While memory allocation in managed (garbage collected)
languages has been heavily studied, fewer tools are available
for unmanaged languages, despite the increasing use of im-
plicit memory allocation in C++ libraries. This paper focuses
on memory performance problems in other languages, such
as C and C++, with explicit memory allocation and dealloca-
tion. Most recent research on explicit allocation has focused
on correctness concerns such as premature deallocation or
data races. This paper, by contrast, focus on allocation and
deallocation performance problems.
This paper presents a new heap profiler called Memoro

that provides a developer with a meaningful, quantitative
analysis of a program’s heap usage and indications of how
efficiently it uses the heap. Figure 1 shows an overview of
Memoro operation. Memoro uses a combination of func-
tion call interception, static compiler instrumentation, and
runtime data collection and analysis to capture detailed in-
formation about heap allocations and the use of allocated
memory. This detailed information is then distilled into a set
of scores that measure heap usage efficiency in several cat-
egories. A cross-platform Memoro visualizer presents both
summary and detailed information in a concise and effective
format, allowing developers to quickly pinpoint potential
problems. While Memoro collects a large amount of data,
careful static instrumentation keeps runtime overheads at
an acceptable level, similar to existing, less informative heap
profiling solutions. The Memoro implementation is based
on the LLVM/Clang AddressSanitizer framework and is thus
portable to any system that the sanitizer framework sup-
ports. In addition, since the instrumentation and runtime are
in the compiler back-end, other language front-ends should
be able to leverage Memoro as well.

This paper makes the following contributions:

• A combined interception-instrumentation technique
for tracking heap allocations, deallocations, and ac-
cesses to heap memory with a reasonable level of pro-
gram performance degradation.
• A set of measures or “scores” that quantify how effi-
ciently a program uses its heap memory.

• A methodology for aggregating allocations by under-
lying data type, which provides greater insight into a
program’s allocation behavior.
• A data visualization tool that presents Memoro data
and scores in several forms, including aggregation by
object data type, enabling developers to quickly diag-
nose heap usage issues.
• A case study demonstrating that Memoro identifies
performance improvements and that Memoro scores
provide meaningful guidance to a software developer.

Memoro is open source [8].
The rest of this paper is organized as follows: §2 discusses

heap profiling and related work. §3 describes Memoro data
collection methods and implementations. §4 shows how
Memoro analyzes collected data and the way the visualizer
presents it to users. §5 presents an evaluation of Memoro
and several case studies showing its benefits. §6 discusses
future directions for this work and §7 concludes the paper.

2 Related Work
Memoro extends the functionality of existing profilers, as
heap profiling is not a new concept.

One of the best-known systems for profiling program be-
havior is Valgrind [21]. Valgrind is a framework for dynamic
analysis of binaries. It translates a binary at runtime into
an intermediate representation and allows other tools to in-
sert instrumentation to analyze and measure the executed
instruction stream. Massif [3] is a Valgrind tool for profiling
the heap. It tracks how many bytes of memory each line in a
program has allocated at specific points in time (snapshots).
Third-party tools exist to visualize Massif data, but since it
is snapshot-based, high-frequency events can be missed if
they happen between snapshots. Memoro on the other hand
continuously monitors all heap events without snapshots,
retaining maximum data fidelity. Any aggregation or win-
dowing of data is done interactively after profiling the pro-
gram. Another Valgrind tool called Dynamic Heap Analysis
Tool (DHAT) [26] attempts to analyze heap usage efficiency
and collects data similar to Memoro. DHAT only produces
text output that is often difficult to parse and understand,
and does not allow aggregation by data type. In addition, for
large programs with many allocations, DHAT provides no
mechanism to help programmers identify the most ineffi-
cient allocation points. Another drawback of Valgrind-based
solutions is their high overhead, which can be up to 50×.

Other heap profilers intercept and redefine allocation rou-
tines in a runtime library that can be used with any exe-
cutable. Google Perftools [1] uses this approach; as does
HeapTrack [2], a Linux heap profiler; and MTuner [25], a
Windows heap profiler. These tools have higher resolution
thanMassif, as they do not snapshot, and lower runtime over-
head. Unlike Memoro, they do not collect any information
as to how a program actually used its heap memory.

2

Detailed Heap Profiling ISMM’18, June 18, 2018, Philadelphia, PA, USA

In non-native languages, Shaham et al. profiled Java heap
allocations to perform more timely garbage collection and
reduce memory consumption [24]. Chis et al. use a Con-
tainerOrContained relation to detect high-impact patterns
within Java heaps [9], some of which are similar to the pat-
terns that Memoro detects. Blended Program Analysis [11]
also makes use of static analysis in conjunction with a dy-
namic representation of program call structure to better un-
derstand Java application performance.

There are several tools that use static instrumentation to
analyze programs to find memory access bugs like overflows
and out-of-bounds. Of particular note here is the Address-
Sanitizer framework [23], which we have used to build the
Memoro static instrumentation and runtime system. Ad-
dressSanitizer uses static instrumentation and a specialized
allocator to detect memory errors such as out-of-bounds
accesses and use-after-free. Other tools built on AddressSan-
itizer include a leak detector and a race condition detector.
DINAMITE [20] is a system that also uses compile time

instrumentation to trace memory accesses, allocations and
function calls, with the general goal of analyzing memory
performance bottlenecks. It does not focus particularly on
heap memory, and suffers from high overhead as well (36×
to 537×, depending on the level of analysis).

GCSpy [22] is tool that also attempts to provide visualiza-
tions of the heap, focusing on garbage collected languages. A
server API implementation is required for other languages,
and it does not appear to analyze how efficiently a program
uses its heap objects.
Overall, Memoro goes beyond existing solutions by pro-

viding detailed profiling and heap usage efficiency analysis
in a low-overhead package. Most heap profilers for native
languages use allocation routine interception to build a time-
based log of heap allocations and deallocations. While this
approach can track heap usage through time, it is typically
the only data collected and displayed to a developer. She thus
lacks insight into how her program actually uses the bytes
that it allocated. Gleaning this information from source code,
by trying to guess what objects were accessed where and
when, can be time consuming and error-prone, and it is often
impractical on large projects in which developers may be
unfamiliar with a majority of the code.

In addition to all of these concerns, existing profilers lack
a means of mapping heap allocations to object types. Since
objects of the same type can be allocated at different places
in a program, without this information, there is no easy way
to view their heap usage holistically.
Finally, there are few if any heap profilers (or associated

data visualization tools) that are truly cross-platform.

3 Memoro Profiler
We built the Memoro system to provide developers with data,
analyses, and visualizations that allow quick identification

and diagnosis of inefficient heap usage and poor allocation
strategies.
Inefficient heap usage can occur in many ways. For ex-

ample, a program may allocate memory that it never writes
or reads; it may be possible to eliminate these allocations
completely.1 Similarly, a program may allocate memory that
it only writes and never reads. A program may allocate a
chunk of memory but only use a small fraction of it, effec-
tively wasting the rest. Objects may also live on the heap
long after their last reference, taking up space that could
have been reused. Alternatively, objects may be allocated
long before their first usage, wasting memory in another
manner.
Poor allocation strategies include repeatedly allocating

and deallocating an object and successively growing a buffer
to larger sizes. All of these dysfunctional allocation strategies
can have an impact on performance, both directly because
of the time spent in allocation routines and indirectly by
fragmenting the heap and making subsequent allocations
more expensive.

Memoro enables detailed heap profiling by recording heap
allocations, deallocations, as well as how a program uses its
allocations. In this section we will describe the large amount
data that is captured by Memoro and how it is collected.
Analysis and visualization of the data is described in §4. We
provide the following terminology and definitions to avoid
confusion:
• Allocation Point: a location in a program that ex-
plicitly allocates memory (e.g. malloc, new), fully
identified by its dynamic call stack trace. The stack
trace disambiguates different call sequences leading to
an allocation point [5] and provides the basis for aggre-
gating chunks with the same call context. It is unique
up to intra-procedural control flow and loop iteration
counts. We did not find path-sensitive information to
be necessary.
• Chunk: A region of heap memory returned at an al-
location point. An allocation point produces multiple
chunks in subsequent calls.
• (Chunk) Metadata: The data pertaining to a specific
chunk.

3.1 Data Collection
Similar to some other profilers,Memoro builds a time-indexed
log of all heap allocations and deallocations in a program.
This is done by intercepting calls on the standard allocation
routines (new, malloc, etc). For each allocation, the stack

1 The program transformations described in this paper are correct only if
they do not change program behavior on all possible execution paths. Since
dynamic analysis tools capture program behavior only along a subset of
these paths, we assume that the developer will examine the program and
find a transformation that is correct. It may be possible to build a tool to
analyze and implement these restructurings, but that is beyond the scope
of this paper.

3

ISMM’18, June 18, 2018, Philadelphia, PA, USA Stuart Byma and James R. Larus

trace is logged [5] along with the allocation size and the time
since the start of program execution. Time is measured in
CPU clock cycles2 Each unique allocation point is associated
with all chunks that it allocated over the execution of the
program, including the chunks that were freed.
To discover inefficient heap usage and multi-thread ac-

cesses, additional information is required about how and
when a program accesses heap chunks. To acquire this in-
formation, Memoro notes each reference to every chunk
allocated in the heap. Beyond the allocation point that pro-
duced the chunk and the chunk size, Memoro records the
following chunk metadata:
• The time of the first memory access to the chunk.
• The time of the last memory access to the chunk (be-
fore deallocation or program termination).
• The access interval, defined as the address range of
bytes within the chunk that were accessed by a pro-
gram.
• The number of reads and number of writes to the
chunk. The maximum of this value is configurable, but
larger maximums can increase the metadata size over-
head as more bits are required to store larger numbers.
• Whether the chunk was accessed by multiple threads.

3.2 Static Instrumentation
To collect this information, memory accesses in a program
are instrumented. We use static instrumentation in the com-
piler because it is a low-overhead method to collect a large
amount of data about low-level program activity. Binary
instrumentation is possible as well. Dynamic instrumenta-
tion (like Valgrind) is more costly, but it has the advantage
that program source is not necessary and it need not be
recompiled.

In effect, every memory access is transformed from:
*address = ...; // or: ... = *address;

to:
if (IsHeapChunk(address)) {

MemoroRecord(address, kAccessSize, kIsWrite);
}
*address = ...; // or: ... = *address;

The compiler inserts a runtime function call before a mem-
ory accessing instruction. First, a predicate provided by the
runtime system determines if an address points into heap
memory. This is possible because the runtime system imple-
ments the memory allocator and is aware of all of the heap
address spaces. If the predicate evaluates true, the runtime

2In recent multicore architectures, the timestamp counter (accessed via
rdtsc on Intel processors) is synchronized across cores, making this ap-
proach time-distortion free. Although the execution of the timestamp in-
struction can be reordered by an out-of-order processor [10], introducing
uncertainty, the events that we log are relatively infrequent and unlikely to
be affected by this.

records the access to a chunk in the chunk’s metadata. The
memory access then executes as normal in either case.

In the compiler, the instrumentation pass runs after the op-
timization passes, to avoid instrumenting memory accesses
that are optimized away. This approach to instrumentation
is similar to other tools in the sanitizer framework [23].

Because we are only interested in heap memory accesses,
not all memory accesses need be instrumented. There are
several regions of memory in a program: global, stack and
heap. Ideally we would only instrument the heap accesses. 3
However, in the LLVM IR, global, stack and heap memory are
all accessed via the same instructions (loads and stores), so
it is necessary to examine the pointer operand to determine
which type of memory is being accessed. In many cases, it is
easy to deduce that a reference points to a local stack object
produced by alloca; in this case we omit instrumentation
because the memory is not in the heap. In the future, it might
be valuable to analyze references to stack-allocated memory,
but since its behavior is quite different from heap-allocated
memory, Memoro does not currently track it.

Other cases are more complex. For example, an object may
be allocated on the stack, and a pointer to the object passed
to another function. It is difficult to tell at compile time what
type of memory a pointer points to without interprocedual
analysis similar to escape analysis [7]. Without this analysis,
an access must be instrumented conservatively and a pointer
checked at runtime, or we risk missing a potential heap
access.
Our instrumentation follows a single link in the static

single assignment (SSA) of the LLVM IR to determine if an
access is to stack allocated memory. By examining whether
the pointer operand came directly from a stack allocation
(alloca) instruction, we are able to identify references to
stack allocated variables and avoid instrumenting a large
number of loads and stores, reducing the instrumentation
overhead. More complex computations that produce pointers
to the stack are currently not fully analyzed and their mem-
ory access is instrumented. In the future, a more thorough
propagation analysis might eliminate more unnecessary in-
strumentation.

3.2.1 Type Extraction
We have found that it is useful to know the data type of a
chunk when visualizing and analyzing collected data. For
example, objects of a class such as a tree node may be allo-
cated at several different points in a program, and it is often
convenient to aggregate these allocations and treat them as
if they occurred at one call site. To this end, we have modi-
fied the instrumentation pass in the compiler associate type
information with allocation points.

3This is not to say that stack objects are not interesting, but they are beyond
the scope of this paper. Future work could integrate stack memory analysis
into Memoro.

4

Detailed Heap Profiling ISMM’18, June 18, 2018, Philadelphia, PA, USA

Many allocations correspond semantically to allocating
typed objects or arrays of typed objects, even though the
allocate routines return void* (new or malloc). In the LLVM
IR, an allocation function call is usually followed by a cast
instruction. The type for a particular allocation point can
be inferred from this cast. In the absence of a cast, a byte
type (e.g., char*) is assumed. In the rare case of multiple cast
instructions, the first type that is not a byte type is preferred.
The compiler pass writes (code location, type) pairs to a

file, which the visualizer uses in displaying the other data. Oc-
casionally, in templated code or at allocation code in header
files, we see multiple different types mapped to one alloca-
tion point. This occurs because the compiler scope is limited
to a single compilation unit (i.e., a source file), and an alloca-
tion point in a header can therefore appear in multiple places.
Rather than make complex modifications to the compiler,
the instrumentation pass emits all types encountered for an
allocation point. The visualizer, having access to full stack
traces from the runtime system, will display the first type
that is compatible with the stack trace. Although this tech-
nique is a heuristic, we find it is correct in the vast majority
of cases.

3.3 Runtime System
The runtime system for Memoro provides two types of func-
tionality: 1) a memory allocator to keep track of which ad-
dress ranges are heap allocated, and 2) mechanisms to log
and store metadata corresponding to individual heap chunks.
Metadata for a chunk includes the chunk size, where it was
allocated (stacktrace), timestamps recording the times of the
first and last reads/writes to the chunk, the byte access inter-
val, the number of reads and writes, and whether the chunk
was accessed by multiple threads (§3.1). This data must be
updated every time a chunk is accessed.
As described above in §3.2, memory references in the

program are conservatively instrumented, and not all instru-
mented references will be to heap memory. The runtime
must first determine whether the pointer in question is actu-
ally pointing to memory owned by the heap, and then update
the associated chunk metadata. To keep runtime overhead
low, both the pointer ownership check and metadata lookup
and update must be done quickly, as memory accesses occur
frequently in programs.
The amount of metadata per allocated heap chunk, cur-

rently 60 bytes, is large because timestamps need to be 64 bits.
64 bits are required since time is measured in CPU cycles;
even unsigned 32 bit counters would overflow before most
programs finish executing. Chunk metadata can be stored
in memory, which is fast, but sometimes the region for the
storedmetadata of freed chunks needs to be expanded, which
involves copying and is expensive. We believe a better idea
would be to log data to disk at this point, but care must be
taken to ensure the runtime does not block.

Our runtime system borrows from the AddressSanitizer
framework, whose runtime implements both the allocator
and the allocation routine interception. The allocator consists
of two components: a thread-local primary allocator, and a
shared secondary allocator. The primary can allocate chunks
efficiently without locking, but is limited in the alignments/-
sizes of chunks it can allocate. The secondary is a fallback
that can allocate any size/alignment, but must be locked to
ensure safety when accessing shared data structures used to
allocate/deallocate chunks, and when determining pointer
ownership.
The primary allocator maps up-front a large portion of

address space from the OS via mmap. Regions, divided into
freelists of chunks of varying size, utilize this space. Meta-
data for each chunk resides at the upper end of the address
space of a region. The metadata for a chunk is thus accessed
at a fixed offset, which is fast and does not require condi-
tional branches. Because the primary allocator is aware of
its address space, pointer ownership can be determined in
constant time by a simple boundary comparison.

The secondary allocator is meant to service large and rare
allocations, and will mmap chunks andmetadata directly, with
the metadata being placed in extra space at a page boundary.
This requires locking for thread safety. The chunk metadata,
however, can still be accessed in constant time because it is
at a known offset. However, because the set of chunks is now
disjoint, the secondary allocator must traverse the array of
chunks when determining whether it owns a pointer. In addi-
tion, the allocator must be locked to do so safely. Therefore,
programs that allocate large chunks accessed by multiple
threads will experience higher than average overhead4 due
to linear traversal, and lock contention in the secondary
allocator.
To reduce this overhead, Memoro provides the option to

use a modified allocator that avoids locking while determin-
ing pointer ownership or looking up metadata. This relies
on the assumption that the user has correctly synchronized
accesses to shared memory, and will not deallocate shared
chunks while another thread is accessing them. The trade-off
however, is that if unrelated chunks are allocated/deallocated
(modifying the array of chunks that the allocator manages),
the array traversal during a pointer ownership test might
miss an owned pointer, resulting in a false negative and a
missed access to a heap chunk. Program semantics and safety
are preserved, provided the user’s program has no race con-
ditions as described above. We examine and quantify the
overhead and benefit of the allocator modifications in more
detail in §5.
While active chunk metadata is stored and managed by

the allocator, freed chunk metadata is copied and stored
in a separate memory-mapped array associated with the

4This is simply an artifact of the current implementation; in §6 we discuss
other allocator schemes and tradeoffs that may alleviate this overhead.

5

ISMM’18, June 18, 2018, Philadelphia, PA, USA Stuart Byma and James R. Larus

corresponding allocation point. At program exit, a routine
compresses and records the chunk metadata array of each
allocation point in a compact binary file. The metadata itself,
as well as the runtime storage of active and freed chunk
metadata, will lead to slightly higher memory use compared
to uninstrumented programs.
The runtime system also intercepts a variety of standard

library calls that access memory (e.g., memset, memcpy),
as opposed to providing an instrumented standard library.
Many of these interceptions aggregate multiple accesses
(individual loads and stores) into one large access, which
helps reduce overhead.
The compiler modification source and binaries are avail-

able [8].

4 Memoro Visualizer
While the instrumentation and runtime system collect a large
amount of raw data, the Memoro visualizer provides insight
into program behavior using that data. As the name suggests,
the visualizer makes heavy use of visual cues, produced by
aggregating and analyzing data, to direct a developer to areas
of a program that display inefficient usage or performance-
detrimental allocation patterns. As there are many inefficient
usage and allocation patterns that can be difficult to see in
raw data, Memoro employs a new technique to distill and
quantify these patterns into scores. Scores form the primary
analysis that helps prioritize the visual cues used in the visu-
alizer. These scores run on a scale between 0 and 1, where 0 is
undesirable or inefficient behavior and 1 is themost desirable,
efficient behavior. Alongside data visuals, scores provide a
developer with a specific indication of the problemwith heap
usage and the ability to quickly pinpoint the locations that
are most likely responsible for poor behavior/performance.
The following subsections describe the scoring algorithms,
the visual displays that use the scores, and how they inform
a developer.

4.1 Data Analysis and Scoring Algorithm
Memoro takes into account several aspects of heap usage
when measuring how efficiently a program has used the
heap, generating scores quantifying lifetime, usage and useful
lifetime.

4.1.1 Lifetime
Lifetime refers to how long heap chunks are active before be-
ing freed. Memoro pays particular attention to short lifetime
chunks, especially those that are grouped tightly in time.
These patterns indicate regions of code in which chunks are
constantly being allocated and deallocated, typically with
very few reads and writes to the chunks. An example is when
a developer (perhaps mistakenly) explicitly creates an object
inside an inner loop. Often, these objects are not explicitly
malloced, but rather are a stack-allocated container object

whose constructor allocates heap memory. In a tight loop, re-
peatedly allocating memory, particularly if not heavily used,
can have significant performance impacts.

Memoro builds a lifetime score by looking for short lifetime
chunks from the same allocation point that were allocated
close together in time, where “short” is a modifiable parame-
ter. To build these groups of short lifetime chunks, the array
of all chunks for an allocation point is sorted by time and
traversed. Any chunks allocated within some threshold time
of each other are added to the same group. The threshold
interval is a parameter, with a default of 0.1% of total run
time. Then, a score Sд for each group G in allocation point
A is computed as follows:

Sд =

∑
C∈G Cl
|Cд |

Gl

whereCl is lifetime of chunk l , |Cд | is the number of chunks
in group д, andGl is the group lifetime. The group lifetime is
defined as the time difference between the earliest allocation
and the latest deallocation.
The lifetime score Sl for allocation point A is then com-

puted as:

Sl =

∑
G ∈A Sд

|G |

where |G | is the total number of groups.
In essence, the average chunk lifetime of each group is

normalized by the group lifetimeGl and the allocation point
lifetime score Sl is the average of all the group scores, re-
sulting in a normalized value between 0 and 1, where 1 is
best and 0 is worst. The group normalization avoids the situ-
ation in which a few abnormal short-lived allocations exert
a strong influence on the final score.

4.1.2 Usage
The usage score for an allocation point provides a measure
of how well a program makes use of the bytes of memory
that it allocates. In an ideal situation, every allocated chunk
will be fully written and read by a program, preferably many
times (good reuse). A poor usage score can indicate that
areas in a heap chunk are unused or write-only, or that only
a fraction of the bytes of a heap chunk are read or written.
For example, a larger than necessary buffer may contain a
number of unused elements. Eliminating these can reduce
the total heap usage and improve allocator behavior.

The usage score Su is computed for an allocation point A
as follows:

Su =

∑
C ∈AUc ·CBytesAccessed∑

C ∈ACTotalBytes

Uc =

{
0 Crd = 0 | | Cwr = 0
1 otherwise

6

Detailed Heap Profiling ISMM’18, June 18, 2018, Philadelphia, PA, USA

Uc is the Useless function, which returns 0 if a chunk has no
reads or no writes. The usage score is thus a normalized av-
erage of the number of bytes actually accessed by a program
relative to the total bytes allocated. To keep overheads rea-
sonable, the profiler does not collect the full byte-level access
statistics, but rather an access interval (lowest and highest
accessed location), which is updated whenever a chunk is
accessed.

4.1.3 Useful Lifetime
Even when chunks on the heap live for a long period of time,
a programmay notmake good use of them during their entire
life. Chunks may be allocated and not written or read for a
long period, or vice-versa, chunks may be allocated and used
but then sit idle for a long time. Heap usage over time could
be reduced by allocating these chunks when they are needed
and freeing themwhen they are no longer needed. The useful
lifetime score quantifies this concept for an allocation point:

Sul =

∑
C∈A Cact ivel i f e

Cl

|C |

where active life is the time difference between the first and
last accesses to the chunk (recorded via instrumentation) and
Cl is the total chunk lifetime. The sum is then normalized
by the number of chunks to produce another score between
0 and 1.
Finally, global scores are calculated by determining the

geometric mean of each score across all allocation points.
Variances of global scores are also calculated to give the
programmer an estimate of the score distribution across the
program.

4.1.4 Discussion
These scores are intended to provide developers with clear,
digestible measures of how efficiently their program uses the
heap. They do not always convey an unequivocal truth and
can be context dependent, occasionally requiring a manual
examination of a program. For example, different inputs or
workloads for a given program may affect which bytes are
accessed in a chunk or how long a chunks lives. In general, it
is not possible to modify a program to achieve a score of 1.0.
However, we have found in practice that the scores provide
very helpful information to pinpoint heap usage issues. The
case study in §5.2 provides some examples.

4.1.5 Other Inferences
Memoro will make several other metrics based on the col-
lected data and display them for each allocation point, to
help a developer prioritize issues. These include:
• Top percentile of bytes allocated: Memoro marks an
allocation point if it is in the top 90th percentile of
maximum heap usage.

• Top percentile of chunks allocated: Memoro marks an
allocation point if it is in the top 90th percentile of
total chunks allocated.
• Read- or write-only chunks (i.e., useless chunks).
• Runs of monotonically increasing allocation sizes, in-
dicative that early allocations were too small.

4.2 Visualizer Application
Modern applications, even small ones, can perform millions
of allocations at thousands of different locations. Presen-
tation and meaningful analysis of this mountain of data is
crucial to properly interpreting and quickly diagnosing prob-
lems. The visualizer application of Memoro is a separate tool
that provides a visualization of the data that the instrumen-
tation and runtime system collects. A global view gives a
developer a bird’s eye view of the entire dataset, with the
option to “zoom in” to specific data points in the detailed
view. In both views, the user can filter and aggregate by stack
trace function name, time interval, or object type. Memoro
scores are used throughout to give intuitive visual cues to
the user, in order to guide them to areas of interest.

4.2.1 Global View
The global view aims to provide a developerwith an overview
and summary of a program’s behavior as a whole. This is
achieved via two visuals, a flame graph [13] (Figure 2) and a
line graph showing the total (aggregate) heap usage across
the program lifetime (Figure 3e). A flame graph is a visualiza-
tion that shows stack depth in the y axis, and stack frames
in the x axis, sized proportionally according to some value,
typically the number of samples in a CPU profile. The pro-
portional size of a frame is equal to the aggregate size of
all of its children plus the frame’s own value. For example,
Figure 2 shows a flame graph in which the frame sizes are
proportional to the number of allocations over the program
lifetime. Function main in contrived.cpp contains three
allocation points, one of which is contained deeper inside a
std::vector::push_back() call. Flame graphs are useful
because they give an overall summary of how the memory
usage occurs at different points in a program, over its entire
execution.

The Memoro flame graph can display several categories of
data values, including total number of allocations per alloca-
tion point (as seen in Figure 2), and total bytes per allocation
point at a given point in time (selectable by the user). This is
similar to memory flame graphs described in [14]. The flame
graph “tips” correspond to unique allocation points, and are
colored with a severity indicator, a visual cue that maps Mem-
oro scores for that allocation point to a set of colors. The
mapping is from the geometric average of all scores to a set
of 12 colors, roughly, from blue to green to yellow to red. In
addition, global scores for lifetime, usage, and useful lifetime
are displayed along with total allocations, maximum heap

7

ISMM’18, June 18, 2018, Philadelphia, PA, USA Stuart Byma and James R. Larus

usage, total allocation points, and the approximate time the
program spent in allocation routines.

Figure 2. Visualizer flamegraph representation, showing a
global view of all allocation points in the program. It can be
organized by number of allocations (shown here), or by byte
usage at any point in time. The severity indicator that color
codes an allocation point score is mapped to the flamegraph
allocation points. Long stack traces can be viewed fully in
the bottom left, or via the tooltip.

4.3 Detailed View
While the global view can identify problematic allocation
points, a developer may need to examine these points in
more detail. The detailed view allows a developer to drill
down and examine individual allocation points, view their
allocation patterns over time, and easily identify the cause
of low scores. Figure 3a shows how individual allocation
points are displayed, along with their aggregate heap usage
– the line graph overlaid on the global aggregate graph. This
makes it easy to see how individual points contribute to
the total heap usage. The severity indicator in the top right
corner of each allocation point again provides a visual cue
flagging points with poor overall scores. Full stack traces are
also displayed, with the ability to open source files and jump
to the corresponding line of code. Statistics and inferences for
an allocation point are displayed separately, including their
individual scores. Allocation points can be sorted by heap
usage, average score, individual score values, and number of
allocations.
Allocation patterns over time can also provide a visual

indication of poor allocation strategies or inefficient usage
that are not always obvious in an aggregated line graph or
simple statistics like the number of chunks allocated. Be-
cause programs can make many allocations, fidelity can be
lost when aggregating data. To this end, the visualizer also
displays individual chunks of an allocation point as blocks,
whose length corresponds to lifetime and whose color shade
corresponds to their size. Black vertical lines indicate the
access interval as recorded by the runtime system. Figure 3
shows some examples of this display, including common
inefficient patterns in an actual program, all of which are
screenshots from Memoro.

In Figure 3b, chunks are allocated inside a loop, where they
are written, read, and then freed – and then allocated again
in the next iteration. Figure 3c shows the reallocation pattern

(a) Visualizer allocation point representation, showing number of
chunks allocated, peak heap usage, object type, severity indicator,
and aggregate line graph.

(b) Heap chunk allocated inside a loop, written/read, and freed.

(c) std::vector reallocation pattern, with darker chunks indicate
larger byte sizes, and the chunk tooltip.

(d) Low useful life chunks, as indicated by extremely short access
interval.

(e) The aggregate total heap usage graph. A cursor shows the exact
cycle time and total heap usage at that time.

Figure 3. The detailed data presentation of Memoro. Time
increases from left to right and is measured in cycles. In
Figures b, c, and d, a rectangle represents an individual heap
chunk. The tool will draw short lifetime chunks with a mini-
mum size for legibility. Vertical lines indicate the time range
within which the program read or wrote the chunk (the ac-
cess interval). Note that Figures a through e are all on the
same time scale shown in Figure e.

for a std::vector. As integers are pushed into the vector,
it allocates a larger array, copies existing data, and frees the
old, smaller array. This happens several times as the vector

8

Detailed Heap Profiling ISMM’18, June 18, 2018, Philadelphia, PA, USA

grows exponentially. The visualizer marks larger byte size
chunks with darker colors. In addition, the visualizer tooltip
shows a developer additional detailed information about
individual chunks, including the number of reads, writes, size,
access interval, and whether or not the chunk was accessed
by multiple threads. Figure 3d shows chunks allocated and
freed in a loop with very short access intervals, indicating
low useful lifetimes. Finally, Figure 3e shows the combined
aggregate heap usage across time.

As can be seen in Figure 3a, the scores for each allocation
point are again translated to a clear visual cue for the user
— the color-coded severity indicator in the upper right cor-
ner of each allocation point displayed. We can see that the
third has the lowest score, because it allocates short lifetime
chunks that also have a short useful life, while accessing
only four bytes out of 400, giving a low usage score as well.
In contrast, the first point is much better, allocating longer
lived chunks that have a long useful life and in which every
byte is accessed. Note that this point could be reduced to a
single allocation had we called vector::reserve() before
pushing values.

The visualizer also contains a comprehensive filtering sys-
tem that allows a user to filter data by function name in stack
traces, by data type, or by time intervals. Aggregates, graphs
and visuals are updated according to the filters applied.

The visualizer application is available [8].

5 Evaluation and Case Study
5.1 Instrumentation and Runtime Overhead
We first evaluate the effectiveness of static analysis at reduc-
ing the number of memory references that must be instru-
mented (§3.2). Recall that our approach follows a single link
in the LLVM SSA graph to see if a load or store is accessing a
stack-allocated value. If this is the case, the instructions can
safely be left uninstrumented. On average, in all programs
in our study, we found that ∼66% of memory access passed
to the runtime were heap accesses. This means that ∼34%
of accesses could have been left uninstrumented, thereby
reducing overhead. However, as discussed in §3.2, this im-
provement requires more advanced program analysis.

Runtime system overhead is heavily dependent on how a
program uses its heap. To break down this overhead and un-
derstand which factors influence it, we useMemoro to profile
two large, popular open-source programs — LevelDB [12]
and Memcached [4]. LevelDB is exercised using its internal
benchmark utility (db_bench) running the fillseq benchmark,
which sequentially writes a series of values to the database.
Mutilate [17], a Memcached load generator and measure-
ment tool, is used to generate Memcached get requests over
5 seconds, while Memcached itself is run with a single thread.
Mutilate is run with default values. LevelDB performance
is measured in MB/s while Memcached throughput is mea-
sured in Queries per Second. Experiments are run locally on

Table 1. Throughput and slowdown of Memcached and Lev-
elDB when unmodified, with no-op compiler instrumenta-
tion only, with full runtime data collection, and with the
modified non-locking secondary allocator to reduce over-
head.

Memcached (Q/s) LevelDB (MB/s)
Unmodified 52184.4 55.5
No-op Inst. 47668.3 (1.1×) 26.8 (2.1×)
Full Collection 18051.4 (2.89×) 1.8 (30.8×)
No-lock Sec. 22521.8 (2.32×) 4.1 (13.5×)

a server with two Xeon E5–2680v3 CPUs at 2.5 GHz with
256GB of RAM running Ubuntu 16.04. Results are show in
Table 1.

First, we examine the effect of the aggregate static instru-
mentation on performance, by replacing runtime instrumen-
tation library with empty functions, and hence recording no
data. Memcached has 1.1× lower throughput, while LevelDB
has 2.1× lower throughput. We find that this is primarily a
function of the number of instrumentation points — LevelDB
has significantly more loads and stores to be instrumented;
at the LLVM IR level, LevelDB contains 39% loads and stores
as opposed to Memcached’s 19% loads and stores.

Second, we fully enable Memoro instrumentation and data
collection. There is a large difference in overhead cost be-
tween the two programs, ranging from 2.89× for Memcached
to 30.8× for LevelDB. To understand why, we use a stan-
dard CPU profiler (Intel VTune 2017) to see where time is
spent. Profiling indicates nearly half of the time in LevelDB
is spent in the secondary allocator acquiring locks5to safely
record Memoro metadata. As it turns out, LevelDB uses an
arena allocator that obtains large memory blocks via malloc.
These allocations are served by the secondary allocator in
the Memoro runtime, as the primary thread-caching alloca-
tor is unable to handle such large allocations. The remainder
of the overhead (and the majority of overhead in the Mem-
cached experiment) comes from looking up the metadata for
a chunk and updating statistic counters.

This result prompted us to modify the secondary allocator
to eliminate locking when determining pointer ownership,
as discussed in §3.3. The final row of Table 1 shows that
with the modified secondary allocator with lock-free owner-
ship checking, overhead for Memcached is slightly reduced,
while overhead for LevelDB is reduced by over 50% to 13.5×.
Overhead for LevelDB is still higher primarily because the
ownership check in the secondary allocator is linear in com-
plexity, exacerbated by the fact that LevelDB had a high
number of instrumentation points. Furthermore, of all our
tests, LevelDB had the lowest proportion of heap accesses rel-
ative to all memory accesses, resulting in many full traversals
of the secondary allocator chunk list.
5The benchmark by default uses two threads

9

ISMM’18, June 18, 2018, Philadelphia, PA, USA Stuart Byma and James R. Larus

In terms of memory use overhead, the more allocations
that a program makes, the higher the overhead cost, because
Memoro records metadata for every allocated heap chunk.
Metadata is also the same size for all chunks, meaning that
small allocated chunks will have higher memory use over-
head relative to large chunks. In longer running profiles,
memory overhead may start to impact performance, how-
ever we have not experienced this in any program we have
profiled so far. Regardless, we are investigating static buffer-
ing techniques to eliminate this, also discussed in §6.

5.2 Case Study
In this section we illustrate a use of Memoro that leads to
improvements in heap efficiency and program runtime, as
well as examples that demonstrate the utility of the data
analysis that Memoro performs. All tests were performed on
a 2.5GHz Intel Core i7 processor with 16GB of RAM running
MacOS v10.12.16 (Sierra). The Memoro instrumentation used
was built into LLVM/Clang [16, 19] release version 4.0.

5.2.1 Protocol Buffers
Protocol buffers (protobuf) [15] is a popular framework from
Google for data serialization. In protobuf, messages are de-
fined using a declarative language, which the protobuf com-
piler compiles to classes in various languages that can serial-
ize themselves. The protocol buffer implementations makes
heavy use of the heap, especially when messages contain
repeated fields, or arrays of data. These can be arrays of ba-
sic supported data types or arrays of sub-messages. In either
case, deserializing or constructing protocol buffer messages
may perform many allocations, which can incur significant
performance overhead, especially in latency-sensitive sys-
tems that must process many messages per second.

Recently, the protocol buffer implementation added arena
allocation to alleviate this issue. An arena pre-allocates a
large block of memory and uses it for internal message data,
so as to avoid repetitive OS heap allocations when construct-
ing or deserializing messages. The point of our study is to
show that Memoro will correctly identify the problem allo-
cations that prompted this change, and present correct and
meaningful analyzed data.
We construct a benchmark using the following protobuf

message, which consists of a string field, a repeated field of
integers (an array), and a repeated field of a sub-message
that itself contains a repeated field of integers.
The benchmark serializes an instance of a Record with

1000 integers, and five sub-messages each with 1000 integers.
Then, the message is deserialized 1000 times in a loop, cre-
ating a new instance each time, and then destroying it. We
run the benchmark with and without the arena allocation,
after having compiled it with the Memoro instrumentation
and runtime system. The total number of allocations and
global scores generated by Memoro for each are summarized
in Table 2.

Table 2. Protobuf benchmark with and without arena allo-
cation. Note that the overheads are abnormally high because
the benchmark does very little work relative to the number
of allocations it makes.

Without Arena With Arena

Total Allocations 268117 112391
Lifetime Score 0.40 0.60
Usage Score 0.94 0.74
Useful Life Score 0.72 0.37
Runtime (ms) 72 65 (−9.7%)
Instr. Runtime (ms) 1520 (21.1×) 1623 (24.9×)
Memory (MB) Uninstr. Instr. Uninstr. Instr.

2.76 26.6 3.2 17.6
9.6× 5.5×

Without arena allocation, Memoro reports a global aver-
age lifetime score of only 0.40, indicating that many allo-
cation points in the program produce chunks that do not
live long and that we may have allocations in a tight loop,
as expected. Average usage is high however, since every
chunk allocated has been almost fully read and written by
the program. The useful life score is also relatively high at
0.72, since chunks are read and written during most of their
lifetime.

With arena allocation, however, we see a near reversal of
values. The lifetime score has increased to 0.60, showing that
the new allocation scheme has reduced the number of short
lifetime allocations. While we might expect a higher value,
the current implementation does not allocate strings in the
arena, and the arena itself allocates several short-lived items.
In addition, the loop is simply deserializing and not doing
any real work. The total number of allocations has been cut
nearly in half. The usage score has decreased, which may
seem counter-intuitive, but it is what we expect — because
the arena allocates large blocks up front, some parts of them
inevitably go unused. Likewise the useful lifetime score has
decreased to 0.37, because the arena blocks live for longer
than the period during which they are read and written by
the program.
In effect, Memoro shows clearly the trade-off that pro-

tobuf arena allocation makes: slightly less efficient use of
heap chunks in return for fewer, higher lifetime allocations,
ultimately resulting in lower runtimes. In the case of this
benchmark, a 9.7% improvement in execution time.

5.2.2 Bioinformatics
Our second case study takes us to the bioinformatics field,
whose workloads are an interesting combination of big data
and computation. The particular toolset we analyze is the
bamtools API [6], a library and associated toolkit written in

10

Detailed Heap Profiling ISMM’18, June 18, 2018, Philadelphia, PA, USA

Table 3. Memoro profiling results when sorting a 4000 read
BAM file. Note how the large number of allocation points
with few allocations has skewed scores of the unmodified
version.

4K Read BAM file

Unmodified Modified
Total Allocations 64022 37333
Total AllocPoints 5705 279
Lifetime 0.90 0.85
Usage Score 0.92 0.82
Useful Lifetime Score 0.60 0.55

1M Read BAM file

Runtime (s) 31.83 28.49 (−10.5%)

C++ for manipulating BAM files [18], one of the most com-
mon file formats in bioinformatics. BAM is the binary coun-
terpart of SAM (Sequence Alignment Map), a format used
to store alignments of sequenced genomic data. Common
operations include data conversion, sorting, and filtering. In
this case study, we analyze two tools that use the bamtools
API: sorting and filtering.

We first compile the bamtools source code using Memoro
instrumentation, and run the sort tool using a BAM file
containing approximately 4000 aligned reads (snippets of
genomic data aligned to a reference genome). Each read
is 101 bases long, where a base is a genetic alphabet letter
— A, T, C, G, or N (an ambiguous base). After visualizing
the results using the Memoro visualizer, we make several
observations:
• The number of allocation points is very high — there
are over 5000 unique points in the code that allocate
memory in the heap.
• The total number of allocations is very high — over
64000 heap allocations over the program lifetime.
• The majority of points with many allocations have
extremely low lifetime scores, zero or close to zero.

A glance at the flamegraph shows that the vast majority
of these allocations are within the std::sort routine used
for sorting sub arrays of reads before merging them. Com-
paring the stacktraces of the high-allocation points, we see
that many of them involve either creating alignment data
structures, or copying the alignment data structures. When
we filter the data based on the primary alignment data struc-
ture copy constructor, we find that it is called in over half of
all allocation contexts. A quick look at the data structure re-
veals the issue: copying the structure is expensive, because it
contains several std::string and std::vector fields that
also allocate memory and copy data. Because this structure
is used as the template value for the sort, a great number of
allocations and copies are generated as the algorithm swaps
values.

Table 4. Instrumentation and runtime overhead sorting a
4000 read BAM file.

Uninstrumented Instrumented

Runtime (ms) 134 404 (3.01×)
Memory (KB) 7888.9 45674.5 (5.78×)

To reduce these costs, we identify the fields in the align-
ment structure that are read-only, and wrap them in shared
pointers. This way, the cost of copies is much reduced as
only a shared reference count is incremented. The result is
that the total number of allocations is reduced to ∼37000,
and the number of unique allocation points reduced dra-
matically to 279. All results of the sort analysis are display
in Tables 3 through 4. While the number of allocations is
still high, they have been removed from the computationally
intense portion of the program (along with associated copy-
ing), resulting in a execution time improvement of 10.5%
when tested with a BAM file containing one million reads.
A more extensive redesign of the data structure to avoid
using string altogether could produce further allocation
reductions, but would require pervasive changes to the code
base. The runtime overhead imposed by the instrumentation
was relatively low, approximately 3.0×.

We also analyze the filtering tool included with the bam-
tools API, profiling with the 4000 read BAM file and single
filter predicate that removes any read with a mapping qual-
ity below a value of 50. The visualizer quickly gives us a
rundown of potential problems. There are again a large num-
ber of allocations, primarily from constructing all of the
string data that comprises the alignment structure. The visu-
alizer also flags two allocation points in particular with very
low scores (and red indicators) — particularly low lifetimes
and low usage, and allocations proportional to input size.
The stack traces show these are caused by two data struc-
tures: std::queue and std::stack. The queue allocations
are caused by copying another queue, simply to iterate over
it without destroying the original since the queue interface
provides no iterators. The stack is used to parse and evaluate
boolean filter expressions, but since it is allocated on the
program stack, it is constantly created and destroyed (thus
allocating and freeing internal memory). In addition, the
underlying std::deque container allocates blocks of 4KB,
only a few bytes of which are actually used, causing the low
usage score.

We make two minor fixes to reduce the number of alloca-
tions and increase overall scores. First, we make the stack
object static in its function (safe since the program is not
multithreaded), which preserves its memory across invoca-
tions. Second, we change the queue object to a double-ended
queue (deque) to gain iterators and avoid copying. The net
result is that total allocations are reduced to ∼38000 and
the global average usage and useful life scores increase by

11

ISMM’18, June 18, 2018, Philadelphia, PA, USA Stuart Byma and James R. Larus

Table 5.Memoro profiling results when filtering a 4000 read
BAM file, pre and post modification.

4K Read BAM file

Unmodified Modified
Total Allocations 35708 27792
Total AllocPoints 363 349
Lifetime 0.90 0.90
Usage Score 0.82 0.83
Useful Lifetime Score 0.69 0.70

1M Read BAM file

Runtime (s) 15.85 14.34 (−9.5%)

Table 6. Instrumentation and runtime overhead filtering a
4000 read BAM file.

Uninstrumented Instrumented

Runtime (ms) 71 388 (5.46×)
Memory (KB) 3739.6 16297.9 (4.36×)

1%. Tables 5 through 6 summarize the results. Total execu-
tion time when filtering a BAM file with one million reads
using a single predicate is reduced by 9.5%. Thus we can
see that by improving Memoro scores, we can also improve
overall performance. The runtime overhead imposed by the
instrumentation is 5.5×, slightly higher than the previous
example.

5.3 Discussion
Using Memoro has helped us to design the visualization and
data presentation in a way that helps pinpoint issues very
quickly. In all of our case studies, Memoro made heap usage
issues plainly obvious. The majority of our time was spent
gaining familiarity with the code bases so as to identify and
understand the changes suggested by the data presentation.
We have not yet found an occasion when Memoro pro-

vided misleading information or false positives in terms of
lifetime, usage or useful life, or any other visualization.When
a low (poor) score is appears, it is usually very easy to un-
derstand by examining the allocation point in the detailed
view.

6 Future Work
Memoro currently works well and is easy to understand and
use. Nevertheless, we have plans to improve it by reducing its
runtime overhead. Currently, the compiler pass only traces
the address operand from a load or store instruction across
one arc in the SSA graph to see if it was produced by an
alloca instruction. Although simple, this analysis reduces
runtime overhead by roughly 10%. As we have seen with
the LevelDB experiment, a large proportion of instrumented

load/store instructions are not actually heap accesses. More
sophisticated analysis could trace more pointer operands
from alloca instructions, and eliminate more instrumen-
tation points and reduce overhead further. Moreover, it is
possible to detect strided access patterns (e.g., to a string
or array) and track all of their access with a single runtime
system call, rather than separately recording each memory
reference.

In addition, Memoro currently stores the metadata for all
freed chunks in arrays in memory until the program termi-
nates. We believe the memory pressure and array resizing
overhead could be reduced by fixing the amount of buffering
and using a separate runtime thread to periodically write
this data to disk.

Our goal is to include Memoro in the sanitizer framework
that is part of the Clang and GCC distributions. This will
make this tool for detailed heap analysis readily available to
users of these compilers on all platforms.
Moreover, the collection methods and data analysis pre-

sented in this paper are applicable to other languages and
runtime systems. Managed or dynamic language runtimes
could track the same data that Memoro collects and generate
output in our compact binary format. The Memoro visualizer
could then be used for these systems as well, performing the
same analyses and score generation, and offering the same
insight into heap and memory efficiency.

The Memoro visualizer also contains a C++ library for fast
processing of collected data. Advanced users have the op-
tion of writing additional methods in this library to provide
custom scores or other metrics drawn from the raw data.

7 Conclusion
In this paper, we have described Memoro, a new detailed
heap profiler that uses a combination of static instrumenta-
tion, interception, and runtime data collection to provide a
clear view of how efficiently a program uses the heap. This
is implemented in a cross-platform, low-overhead package
(3.3–5.7× overhead for typical software). The Memoro visu-
alizer presents collected information and analysis in a clear,
concise manner and automatically flags instances of low-
efficiency heap usage for a developer to investigate. The
result is quick and accurate diagnoses of problems, which, in
three evaluations, lead to significant performance improve-
ments. Memoro is open source and available [8].

References
[1] 2017. Google Perftools. https://github.com/gperftools/gperftools
[2] 2017. heaptrack: A heap memory profiler for Linux. https://github.

com/KDE/heaptrack
[3] 2017. Massif. http://valgrind.org/docs/manual/ms-manual.html
[4] 2017. Memcached: A Distributed Memory Object Caching System.

https://memcached.org. Accessed: 02-02-2018.
[5] Glenn Ammons and James R Larus. 1998. Improving Data-Flow Analy-

sis with Path Profiles. In ACM SIGPLAN Notices, Vol. 33. ACM, 72–84.

12

https://github.com/gperftools/gperftools
https://github.com/KDE/heaptrack
https://github.com/KDE/heaptrack
http://valgrind.org/docs/manual/ms-manual.html
https://memcached.org

Detailed Heap Profiling ISMM’18, June 18, 2018, Philadelphia, PA, USA

[6] Derek W Barnett, Erik K Garrison, Aaron R Quinlan, Michael P Ström-
berg, and Gabor T Marth. 2011. BamTools: a C++ API and Toolkit
for Analyzing and Managing BAM Files. Bioinformatics 27, 12 (2011),
1691–1692.

[7] Bruno Blanchet. 2003. Escape Analysis for JavaTM: Theory and Prac-
tice. ACM Transactions on Programming Languages and Systems 25, 6
(Nov. 2003), 713–775. https://doi.org/10.1145/945885.945886

[8] Stuart Byma. 2017. Memoro. https://github.com/epfl-vlsc/memoro.
Accessed: 01-11-2017.

[9] Adriana Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick
O’Sullivan, Trevor Parsons, and John Murphy. 2011. Patterns of Mem-
ory Inefficiency. ECOOPObject-Oriented Programming (2011), 383–407.

[10] Intel Corporation. 2017. Intel 64 and IA-32 Architec-
tures Software Developer’s Manual. https://www.intel.
com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.
pdf. Accessed: 01-11-2017.

[11] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007. Blended
Analysis for Performance Understanding of Framework-based Appli-
cations. In International Symposium on Software Testing and Analysis
(ISSTA ’07). ACM, New York, NY, USA, 118–128. https://doi.org/10.
1145/1273463.1273480

[12] Sanjay Ghemawat and Jeff Dean. 2017. LevelDB. https://github.com/
google/leveldb. Accessed: 02-02-2018.

[13] Brendan Gregg. 2017. Flame Graphs. http://www.brendangregg.com/
flamegraphs.html. Accessed: 01-11-2017.

[14] Brendan Gregg. 2017. Memory Flame Graphs. http://www.
brendangregg.com/FlameGraphs/memoryflamegraphs.html. Ac-
cessed: 01-11-2017.

[15] Google Inc. 2017. Protocol Buffers. https://developers.google.com/
protocol-buffers/. Accessed: 01-11-2017.

[16] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization. IEEE Computer Society,
75.

[17] Jacob Leverich. 2014. Mutilate: A High-Performance Memcached Load
Generator.

[18] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils
Homer, Gabor Marth, Goncalo Abecasis, and Richard Durbin. 2009.
The Sequence Alignment/Map Format and SAMtools. Bioinformatics
25, 16 (2009), 2078–2079.

[19] LLVM. 2017. Clang: A C Language Family Frontend for LLVM. https:
//clang.llvm.org/. Accessed: 01-11-2017.

[20] Svetozar Miucin, Conor Brady, and Alexandra Fedorova. 2016. DINA-
MITE: A Modern Approach to Memory Performance Profiling. CoRR
abs/1606.00396 (2016). arXiv:1606.00396 http://arxiv.org/abs/1606.
00396

[21] Nicholas Nethercote and Julian Seward. [n. d.]. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’07). ACM, New York, NY, USA, 89–100.
http://doi.acm.org/10.1145/1250734.1250746

[22] Tony Printezis and Richard Jones. 2002. GCspy: An Adaptable Heap
Visualisation Framework. Vol. 37. ACM.

[23] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity
Checker.. In USENIX Annual Technical Conference. 309–318.

[24] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. 2001. Heap Pro-
filing for Space-efficient Java. In Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Implementation
(PLDI ’01). ACM, New York, NY, USA, 104–113. https://doi.org/10.
1145/378795.378820

[25] Milos Tosic. 2017. MTuner: a C/C++ memory profiler and memory
leak finder for Windows, PlayStation 4, PlayStation 3, etc. https:
//github.com/milostosic/MTuner

[26] Valgrind. 2017. DHAT. http://valgrind.org/docs/manual/dh-manual.
html

13

https://doi.org/10.1145/945885.945886
https://github.com/epfl-vlsc/memoro
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://doi.org/10.1145/1273463.1273480
https://doi.org/10.1145/1273463.1273480
https://github.com/google/leveldb
https://github.com/google/leveldb
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://clang.llvm.org/
https://clang.llvm.org/
http://arxiv.org/abs/1606.00396
http://arxiv.org/abs/1606.00396
http://arxiv.org/abs/1606.00396
http://doi.acm.org/10.1145/1250734.1250746
https://doi.org/10.1145/378795.378820
https://doi.org/10.1145/378795.378820
https://github.com/milostosic/MTuner
https://github.com/milostosic/MTuner
http://valgrind.org/docs/manual/dh-manual.html
http://valgrind.org/docs/manual/dh-manual.html

	Abstract
	1 Introduction
	2 Related Work
	3 Memoro Profiler
	3.1 Data Collection
	3.2 Static Instrumentation
	3.3 Runtime System

	4 Memoro Visualizer
	4.1 Data Analysis and Scoring Algorithm
	4.2 Visualizer Application
	4.3 Detailed View

	5 Evaluation and Case Study
	5.1 Instrumentation and Runtime Overhead
	5.2 Case Study
	5.3 Discussion

	6 Future Work
	7 Conclusion
	References

