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Abstract

The conventional wisdom is that aggressive networking requirements, such as high packet

rates for small messages and μs-scale tail latency, are best addressed outside the kernel, in a

user-level networking stack. In particular, dataplanes borrow design elements from network

middleboxes to run tasks to completion in tight loops. In its basic form, the dataplane design

leverages sweeping simplifications such as the elimination of any resource management

and any task scheduling to improve throughput and lower latency. As a result, dataplanes

perform best when the request rate is predictable (since there is no resource management)

and the service time of each task has a low execution time and a low dispersion. On the other

hand, they exhibit poor energy proportionality and workload consolidation, and suffer from

head-of-line blocking.

This thesis proposes the introduction of resource management to dataplanes. Current data-

planes decrease latency by constantly polling for incoming network packets. This approach

trades energy usage for latency. We argue that it is possible to introduce a control plane, which

manages the resources in the most optimal way in terms of power usage without affecting the

performance of the dataplane.

Additionally, this thesis proposes the introduction of scheduling to dataplanes. Current

designs operate in a strict FIFO and run-to-completion manner. This method is effective only

when the incoming request requires a minimal amount of processing in the order of a few

microseconds. When the processing time of requests is (a) longer or (b) follows a distribution

with higher dispersion, the transient load imbalances and head-of-line blocking deteriorate

the performance of the dataplane. We claim that it is possible to introduce a scheduler to

dataplanes, which routes requests to the appropriate core and effectively reduce the tail

latency of the system while at the same time support a wider range of workloads.

Keywords: web-scale application, datacenter, scale-out, virtualization, networking, operat-

ing system, energy proportionality, resource management, scheduling, work stealing, work

conservation, head-of-line blocking, dataplane
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Résumé
Dans le milieu académique, il est communément accepté qu’afin de satisfaire des exigences
élevées en termes de performance des réseaux, telles que de hauts débits pour des messages
courts, ou une latence (tail-latency) à l’échelle de quelques microseconds, le stack réseau du
noyau (kernel) doit être remplacé par des implémentations plus efficaces et spécialisées, au
niveau utilisateur. En particulier, les dataplanes empruntent des éléments de design aux midd-
leboxes réseaux et exécutent les tâches suivant un modèle « run-to-completion ». Dans leur
forme la plus simple, les dataplanes reposent sur des simplifications telles que l’élimination de
toutes gestions des ressources et de tout « scheduling » (ordonnancement) de tâches. Ces sim-
plifications permettent de réduire la logique des dataplanes à une boucle d’exécution courte,
et d’ainsi améliorer le débit tout en réduisant les latences. Cependant, ces simplifications
radicales ne fonctionnent vraiment que lorsque les taux de requêtes sont prévisibles (dû au
manque de gestion des ressources) et lorsque les temps d’exécution individuels des requêtes
sont courts et homogènes. D’autre part, les dataplanes ont en général une mauvaise gestion
de leur consommation énergétique (energy-proportionality), une mauvaise exploitation des
ressources (workload consolidation) et sont sujets au « head-of-line blocking ».

Cette thèse propose de réintroduire une forme de gestion des ressources dans les dataplanes.
Les implémentations actuelles reposent sur un « polling » constant afin de traiter au plus vite
les paquets entrants et de réduire les temps de latence. Cette approche sacrifie la consom-
mation énergétique au profit de meilleures performances. Nous soutenons qu’il est possible
d’introduire un « control plane », responsable de la gestion optimale de la consommation
d’énergie, sans pour autant impacter les performances du dataplane.

De plus, cette thèse propose d’ajouter une forme de scheduling aux dataplanes. Les implémen-
tations existantes reposent sur un modèle “FIFO” et traitent, entièrement, tour-à-tour chaque
paquet (run-to-completion). Cette méthode n’est efficace que lorsque les requêtes entrantes
correspondent à des temps d’exécution faibles, de l’ordre de quelques micro-seconds. Lorsque
les temps d’exécution sont (a) plus longs ou (b) suivent une distribution avec une dispersion
plus élevée, les déséquilibres sporadiques en terme de charge de travail, ainsi que les éven-
tuelles situations de head-of-line blocking, détériorent les performances des dataplanes. Nous
affirmons qu’il est possible d’introduire un « scheduler » dans les dataplanes, responsable
de la répartition des tâches parmi les différents cœurs du processeur, et d’ainsi réduire la
tail-latency du système tout en supportant des charges de travail hétérogènes.

Mots clefs : application à l’échelle du Web, centre de données, scale-out, virtualisation, réseaux,
système d’exploitation, proportionnalité énergétique, gestion des ressources, scheduling, work
stealing, conservation du travail/workload conservation, head-of-line blocking, dataplane
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1 Introduction

1.1 Web-scale applications

Contemporary computer applications operate on a datacenter-scale [6]. Web search, social

networking, e-commerce platforms, and ad serving are examples of applications that fall in this

category. In order to support this massive scale, these applications are designed, implemented,

and deployed as datacenter-wide distributed applications. Researchers have identified three

major problems for the next generation of web-scale applications:

• Tail latency. User studies at Amazon, Bing, and Google have shown that even a minor

increase of end-user latency in the orders of a couple of milliseconds negatively affects

revenue [78, 118]. End-user latency depends in part on the internal deployment of

these applications. It turns out that some of them are internally organized as a set

of micro-services, which communicate in various high fan-in / fan-out patterns. The

nature of this type of communication reveals the importance of tail latency [25].

• Microsecond computing. Datacenter operators deploy such latency-critical applica-

tions in memory in order to avoid the increased latency of accessing secondary storage.

In-memory applications operate in the order of microseconds, which means that most

of the commodity operating systems abstractions and mechanisms, such as schedulers,

threads, and interrupt driven I/O are currently inadequate in terms of performance [8].

• Energy proportional computing. Another important aspect of datacenter-scale latency

critical applications is resource efficiency. Most datacenter operators run their equip-

ment at a deliberately low CPU utilization [7, 27, 4, 111] in order to accommodate for

user requests spikes and respect the service level objectives. Of course, this practice

leads to higher capital expenses. At the same time, datacenter operators face higher

operational expenses, because modern CPUs do not exhibit a proportional energy-load

relationship, by default. It is an elaborate task to configure the CPU so that it is more

energy proportional [7].
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Chapter 1. Introduction

Researchers and datacenter operators have been increasingly interested over the last few

years in network dataplanes. Network dataplanes replace the traditional networking stack of

commodity operating systems with a specialized and optimized stack. The goal is to provide

stricter guarantees for the tail latency and at the same time support serving requests which

require a couple of microseconds each. Dataplanes take advantage of the fact that existing

networking stacks that are integrated in the operating systems are evolving very slowly for

reasons of backward compatibility and complexity, which renders them unsuitable for modern

workloads and/or hardware [121].

This thesis extends dataplanes in two ways: energy efficiency and work scheduling. The energy

efficiency improvements rely on the introduction of an external control plane agent, which

observes key latency metrics of the dataplane and takes coarse-grain decision in the order of

milliseconds. The work scheduling improvements rely on the design and implementation of

a low overhead work stealing mechanism, which is able to operate in the order of microsec-

onds. This mechanism provides work conservation and reduces head-of-line blocking. Both

mechanisms increase the potential impact of dataplanes and simplify their adoption as an

architecture for serving low-latency microsecond-scale workloads with energy efficiency.

The following subsections summarize the three key issues for the next generation of web-scale

applications: §1.1.1 summarizes the tail at scale problem as described by Dean et al. [25],

§1.1.2 summarizes the microsecond scale computing problem as described by Barroso et

al. [8], and §1.1.3 summarizes the energy proportionality computing problem as described by

Barroso et al. [7].

1.1.1 The tail at scale

The tail at scale problem describes the complexity of taming the tail of the latency distribu-

tion for interactive datacenter-scale applications. The basic assumption is that variability

unavoidably exists in computer systems. Shared resources, daemons, global resource sharing,

maintenance activities, queueing, power limits, garbage collection, and energy management

can all contribute to variability.

The first class of actions to mitigate variability include differentiating service classes, keeping

low-level queues short, reducing head-of-line blocking by splitting long requests into a series

of short ones, managing and synchronizing background activities. Despite these efforts,

variability in latency cannot be completely eliminated. Moreover, fanning out a request from a

root to a number of leaf servers, which is necessary in order to scale an application, amplifies

the latency variability of the root request.

The solution to the tail at scale problem takes advantages of the fact that systems are usually

already designed with fault-tolerance in mind, thus most of the data and services are replicated.

Hedged requests and tied requests rely on issuing the same request multiple times; when the

fastest response arrives, the remaining requests are cancelled. These techniques lower tail

2



1.1. Web-scale applications

latency because the source of latency is often not inherent in the request itself but rather due

to other forms of interference and because factors that cause variability do not tend to affect

multiple nodes at the same time.

In this thesis, we will discuss dataplanes, which have the potential to help with the tail at scale

problem because they are designed primarily to reduce latency and jitter, thus also reducing

tail latency. Moreover, they reduce the end-to-end latency of network communication, which

reduces the cost of implementing the techniques mentioned above, such as the tied requests.

1.1.2 Microsecond computing

Existing hardware and software mechanisms are designed to mitigate latencies in the order

of nanoseconds or milliseconds. Hardware techniques, such as prefetching, out-of-order

execution, and branch prediction, can hide nanosecond-scale latencies. On the other hand,

software is capable of dealing with millisecond latencies incurred by standard I/O devices, for

example.

The emergence of new low-latency I/O, such as datacenter networking, raw flash devices, and

non-volatile memory, makes microsecond operations much more common than before, as all

these new I/O have (or are expected to have) latencies in the order of microseconds. Moreover,

in-memory systems (such as RAMCloud [99]) also have latencies in the same range.

In order to utilize the full potential of this new hardware, system designers need to rethink the

software stack. An RDMA operation can have a latency of 2 μs but will take more than 50 μs if

it is used with a feature-filled RPC stack or even TCP/IP. The same behavior will be observed if

a raw flash device is used with the standard storage subsystem of any operating system.

Another important aspect when dealing with microsecond-scale computing is the absolute

need to reduce overheads, such as interrupts, data copies, and context switches. It is obvious

that when the service time is short, an overhead of a few microseconds can lead to a reduction

of the overall system efficiency.

Finally, it is worth noting that the system design for datacenter-scale computing systems

must solve the microsecond computing challenge while at the same time optimize for high

utilization in order to reduce the total cost of ownership of the equipment.

As the most interesting new datacenter technologies start to operate at that time scale, dat-

aplanes become increasingly crucial as a component that can deal with these technologies.

Dataplanes have been designed from the ground up in order to provide a microsecond-

optimized system stack. Their layers and abstractions are tailored to the new workloads and

their time scales. In this thesis, we will demonstrate how dataplanes can deal with a wide

range of microsecond computations and at the same time remain resource efficient.
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1.1.3 Energy-proportional computing

A major effort in system design for datacenters is the case for energy-proportional computing.

Energy efficiency has always been a major driver in the mobile and embedded computing

areas where it maximized the battery life of devices. Lately, it is gaining significance also in

general-purpose computing, because thermal constraints limit further CPU performance

improvements.

Additionally, energy management is a key issue for datacenters because of cost and environ-

mental reasons. Servers in datacenters cannot be completely turned off because each server

holds a part of the datacenter’s replicated data. Moreover, servers operate most of the time

at between 10 and 50 percent of their maximum utilization [7, 27, 4, 111]. This behavior is

by design so that servers can meet throughput and latency service level objectives even in

the presence of load spikes and unexpected software or hardware events. Unfortunately, this

range of utilization corresponds to the lowest energy-efficiency region of the server; essentially,

a server still consumes about half of its full power when doing virtually no work.

CPU hardware improvements may improve this situation by widening the dynamic power

range of the CPU. At the same time, software is responsible to use the hardware in the most

energy-efficient way.

A naive implementation of a dataplane suffers from poor energy-proportionality because of

constantly polling for network packets even at low load. In this thesis, we will demonstrate

the design and implementation of a control agent to monitor load and adjust the resource

allocation to the dataplane in the most energy efficient way.

1.2 Resource management for web-scale applications

It is obvious that managing and minimizing energy consumption is necessary to sustain a

datacenter-scale application [7]. Datacenter operators prefer to run fully utilized servers

in order to minimize their capital expenses. In addition, they would rather improve the

proportionality of load vs. power to cut down on operational expenses. There are two goals

towards this direction: (a) energy proportionality, which minimizes the energy consumed

to deliver a workload and (b) workload consolidation, which raises server utilization and

minimizes the number of servers needed for a set of workloads.

As we have seen before, a parallel trend in datacenter application is the effort to guarantee

strict microscale-scale response latencies. This is necessary in order to support the large

fan-out patterns that exist in modern datacenter applications, which are deployed as a set

of microservices. Such latency-sensitive services are challenging to run in the presence of

concurrent tasks on the same server, thus preventing workload consolidation. Additionally,

these services must be able to respond to load spikes, so datacenter operators deploy them on
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Figure 1.1 – Dynamic resource controls with IX for a workload consolidation scenario with a
latency-sensitive application (e.g., ���������) and a background batch task (e.g., analytics).
The controller, ���	, partitions cores among the applications and adjusts the processor’s DVFS
settings.

dedicated servers running at low utilization. We can understand that it is difficult to combine

the need for minimizing energy consumption and the trend for microsecond-scale computing.

To understand the challenges for resource management for latency-critical services, we per-

formed a broad set of experiments under various configurations, such as core allocations,

CPU frequency, use of hyperthreads, and existence of background tasks. Based on the results

of these experiments and the Pareto methodology, we derived optimal strategies for achieving

energy proportionality and/or workload consolidation. We integrate those strategies in IX, a

state-of-the-art dataplane operating system that optimizes both throughput and latency for

latency-critical workloads [13].

Fig. 1.1 illustrates our approach: the dynamic controller (���	) adjusts the number of cores

allocated to a latency-sensitive application running on top of IX and the DVFS settings for

these cores. The remaining cores can be placed in idle modes to reduce power consumption

or can be safely used to run background tasks.

In §2.4.5 and §2.4.6, we introduce the design and the implementation of the control plane for

IX. We present the methodology and the results of the exhaustive analysis of the configurations

in §2.5.3. And, finally, in §2.6, we present the evaluation of the control plane.

1.3 Microsecond-scale scheduling for web-scale applications

Conventional operating system abstractions and mechanisms, such as schedulers, threads,

and interrupt driven I/O, are not suitable for microsecond-scale microservices for performance

reasons [8]. This observation led many researchers and engineers to develop solutions that

bypass the operating system in order to achieve maximum performance [13, 103, 77, 57, 84, 59].
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Most of these kernel-bypass approaches abandon the complicated schedulers [19] in favor for a

much simpler execution model that involves polling, run-to-completion, and synchronization-

free, flow-consistent mapping of requests to cores e.g., via RSS [90], or similar hardware

mechanism.

The performance of this dataplane model relies on the elimination of system overheads

that traditional operating systems face because of their complicated abstractions and layers.

When the service time of the application is comparable to these overheads (e.g., for key-value

stores), then the dataplane model improves throughput substantially (by up to 6× [13]). The

limitations of this model appear for different applications or workloads where the service time

is (a) either higher or (b) follows a distribution with high dispersion. In these cases, the lack

of a proper scheduling mechanism reduces (and in some cases completely eliminates) the

performance benefit of dataplanes vs. conventional operating systems.

The theoretical justification is well understood: (a) single-queue, multiple-processor models

deliver lower tail latency than parallel single-queue, single-processor models and (b) FCFS

delivers the best tail latency for low-dispersion tasks while processor sharing delivers superior

results in high dispersion service time distributions [143]. Traditional operating systems follow

more closely the first paradigm, while dataplanes adhere to the second one. Unfortunately,

this leads to two inefficiencies: (a) the dataplane is not a work conserving scheduler, i.e., a core

may be idle while there are pending requests, and (b) it suffers from head-of-line blocking, i.e.,

a request may be blocked until the previous tasks complete execution.

In chapter 3, we present ZYGOS, a new approach to system software optimized for μs-scale,

in-memory computing. ZYGOS implements a work-conserving scheduler free of any head-

of-line blocking. While the design decisions voluntarily deviate from dataplane principles,

ZYGOS retains the bulk of their performance advantages.

1.4 Thesis Statement

The “dataplane operating system” approach bypasses general-purpose operating systems and

rely on sweeping simplifications such as the use of polling, run-to-completion, coherency-free

execution, and in general the elimination of all forms of scheduling to increase throughput

and/or reduce tail latency in a narrow set of conditions. These sweeping simplifications come

with multiple hidden tradeoffs, such as loss of energy proportionality or head of line blocking,

which limit their current applicability to a narrow set of workloads that consist of extremely

small tasks with low dispersion of task service time.

This thesis demonstrates that energy management, resource allocation and request scheduling

can be reintroduced within dataplane operating systems in order to eliminate these hidden

tradeoffs. Energy proportionality (and workload consolidation) require a sophisticated control

plane that interacts with the dataplane. Scheduling and elimination of head-of-line blocking
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require the design and implementation, within the dataplane, of a work-conserving scheduler

suitable for microsecond-scale network tasks.

1.5 Thesis Contributions

This thesis makes the following key contributions:

1.5.1 Resource management control plane for dataplane operating systems

• We design and develop an external agent (control plane) which manages CPU resources

(cores and frequency) while running a dataplane operating system. Certain metrics are

exported in real time from the dataplane to the control plane. Then, the control plane

aggregates the metrics and employs a control loop to make decisions regarding the CPU

frequency and the number of dedicated CPU cores for the dataplane. The operator

can configure the control plane in two modes: (a) maximum power efficiency and (b)

maximum work consolidation. Under the maximum power efficiency mode, the control

plane will use the minimum number of CPU cores and the minimum CPU frequency

as required by the real time load of the dataplane without violating a defined service

level objective (SLO). Under the maximum work consolidation mode, the control plane

will schedule a configured background process to execute on as few cores as possible

without violating the SLO of the dataplane.

• We develop techniques for fine-grain resource management for latency-critical work-

loads. This includes mechanisms for detection of load changes in sub-second timescales

and for rebalancing flow-groups between cores without causing packet drops or re-

ordered deliveries. In our experiments, this mechanism completes in less than 2 ms 95%

of the time, and in at most 3.5 ms.

• We provide a methodology that uses the Pareto frontier of a set of static configurations

to derive resource allocation policies. We derive two policies for ��������� that respect

the SLO constraints of a latency-critical in-memory key-value store. These policies

lead to 42%–51% energy savings for a variety of load patterns, and enable workload

consolidation with background jobs executing at 31%–44% of their peak throughput

on a standalone machine. These gains are close to the Pareto-optimal bounds for the

server used, within 91% and 81%–92% respectively.

• We demonstrate that precise and fine-grain control of cores, hyperthreads, and DVFS has

a huge impact on both energy proportionality and workload consolidation, especially

when load is highly variable. DVFS is a necessary but insufficient mechanism to control

latency-critical applications that rely on polling.

7



Chapter 1. Introduction

1.5.2 Work conserving scheduler for dataplane operating systems

• We design and implement a scheduler for a dataplane operating system. Originally, each

CPU core of a dataplane process requests independently from the other cores in order to

minimize contention and cache-coherence traffic. This operation model resembles the

nxM/G/1 queueing model, which is inferior to the M/G/n model according to queueing

theory. Based on this theoretical observation, we designed a work stealing system where

idle CPU cores steal connections from busy CPU cores. Additionally, we addressed the

head-of-line blocking problem, which happens when a short network request follows a

long network request. To mitigate this situation, we used inter-processor interrupts to

notify a busy CPU core that it must perform a minimal amount of network processing in

order to allow idle cores to steal requests from its queue.

• We design a new system (ZYGOS), which leverages many conventional operating sys-

tem building blocks such as the use of symmetric multiprocessing networking stacks,

alternate use of polling and interrupts, inter-processor interrupts (IPI), and task stealing

with the overall goal of delivering a work-conserving schedule. ZYGOS is architected

into three distinct layers: (a) a lower networking layer, which runs in strict isolation

on each core, (b) a middle shuffle layer which allows idle cores to aggressively steal

pending events, and (c) an upper execution layer, which exposes a commutative API to

applications for scalability [22]. The shuffle layer eliminates head-of-line-blocking while

also offering strong ordering semantics of events associated with the same connection.

• We implement ZYGOS, which includes an idle loop logic designed to aggressively identify

task stealing opportunities throughout the operating system and down to the NIC

hardware queues. Our implementation leverages hardware virtualization and the Dune

framework [11] and handles IPIs in an exit-less manner similar to ELI [42].

• We develop a methodology using microbenchmarks with synthetic service times to iden-

tify system overheads as a function of task duration and distribution. This methodology

allows us to identify both design limitations and implementation overheads. We apply

this approach to Linux for event-driven execution models (using both partitioned and

floating connections among threads), IX and ZYGOS and show that all converge as the

task granularity increases, but at noticeably different rates, to distinct, well-understood

models. For an SLO of 10× the mean service time at the 99th percentile, ZYGOS achieves

75% of the maximum possible theoretical load for 10μs tasks, and 88% of the equivalent

load for 25μs tasks (§3.6.1).

• We compare ZYGOS to IX, a state-of-the-art dataplane with strict run-to-completion that

partitions flows onto cores [13]. While ZYGOS’s scheduler introduces some necessary

buffering, communication and synchronization (which are measurable for extremely

small tasks), it eliminates head-of-line blocking and clearly outperforms IX for tasks

≥10μs (§3.6.1). IX does outperform ZYGOS for workloads with very small task durations
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such as ���������. The difference is primarily due to IX’s adaptive bounded batching,

which is not currently supported in ZYGOS. (§3.6.2)

• Last but not least, we evaluate the benefits of ZYGOS for an in-memory, transactional

database running the TPC-C workload. Our setup uses Silo [130], a state-of-the-art,

in-memory transactional database prototype. As Silo is only a library, we added clien-

t/server support to Silo, ported it to Linux, IX, and ZYGOS, and benchmarked it using an

open-loop load generator for an SLO of 1000μs at the 99th percentile tail latency. ZYGOS

can deliver a 1.63× speedup over Linux and a 1.26× speedup over IX. The speedup over

Linux is explained by the use of many dataplane implementation principles in ZYGOS.

The speedup over IX is explained by ZYGOS’s work-conserving scheduler, which rebal-

ances tasks to deliver consistently low tail latency nearly up to the point of saturation

(§3.6.3).

1.6 Thesis Roadmap

This thesis is organized as follows:

• Chapter 2 presents the design, implementation, and evaluation of the IX dataplane

operating system. Additionally, it includes a study of the impact of various power man-

agement features of a modern CPU to the performance of a dataplane operating system

in terms of throughput and latency. Finally, it introduces the resource management

control plane for the IX dataplane operating system.

• Chapter 3 includes a detailed analysis of the throughput and latency performance

of various queueing models and various service time distributions. Additionally, it

introduces a methodology to identify system overheads as a function of task duration

for different systems. Finally, it describes the design and implementation of ZYGOS,

which extends the IX dataplane operating system with a work conserving scheduler.

• Chapter 4 concludes the thesis and presents future directions.

1.7 Bibliographic Notes

Portions of this thesis are based on the work I have previously published with my advisor and

my colleagues. Chapter 2 is based on a journal article published in the ACM Transactions

on Computer Systems (TOCS) in 2017 [13]; the article itself is based on a conference paper

published in the Proceedings of the 11th Symposium on Operating System Design and Imple-

mentation (OSDI) in 2014 [12] and a conference paper published in the Proceedings of the

2015 ACM Symposium on Cloud Computing (SOCC) in 2015 [107]. Chapter 3 is based on a

conference paper published in the Proceedings of the 26th ACM Symposium on Operating

Systems Principles (SOSP) in 2016 [106].
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It is important to note that from chapter 2 the contribution of this thesis is the Pareto analysis,

and the design, implementation, and evaluation of the control plane. From chapter 3 this

thesis’ contribution does not include §3.2.3.

10



2 Dataplane OS and resource manage-
ment

The conventional wisdom is that aggressive networking requirements, such as high packet

rates for small messages and μs-scale tail latency, are best addressed outside the kernel, in a

user-level networking stack. We present IX, a dataplane operating system that provides high

I/O performance and high resource efficiency while maintaining the protection and isolation

benefits of existing kernels.

IX uses hardware virtualization to separate management and scheduling functions of the

kernel (control plane) from network processing (dataplane). The dataplane architecture builds

upon a native, zero-copy API and optimizes for both bandwidth and latency by dedicating

hardware threads and networking queues to dataplane instances, processing bounded batches

of packets to completion, and by eliminating coherence traffic and multi-core synchronization.

The control plane dynamically adjusts core allocations and voltage/frequency settings to meet

service-level objectives.

We demonstrate that IX outperforms Linux and a user-space network stack significantly in

both throughput and end-to-end latency. Moreover, IX improves the throughput of a widely

deployed, key-value store by up to 6.1× and reduces tail latency by more than 1.9×. With three

varying load patterns, the control plane saves 42%–51% of processor energy, and it allows

background jobs to run at 31%–44% of their standalone throughput.

2.1 Introduction

Datacenter applications have evolved with the advent of web-scale services. User-facing, large-

scale applications such as search, social networking, and e-commerce now rely extensively

on high fan-out patterns between low-latency services. Such services exhibit low per-request

service times (a handful of μs for a key-value store), have strict service-level objectives (SLO,

e.g. < 500μs at the 99th percentile), and must sustain massive request rates for short messages

with high client fan-in connection counts and churn [3, 25, 98].
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The conventional wisdom is that there is a basic mismatch between these requirements

and existing networking stacks in commodity operating systems. To address the perfor-

mance concern, some systems bypass the kernel and implement the networking stack in

user-space [57, 59, 84, 125, 128]. While kernel bypass eliminates privilege level crossing over-

heads, on its own it does not eliminate the difficult tradeoffs between high packet rates and

low latency (see §2.5.2). Moreover, user-level networking suffers from lack of protection. Appli-

cation bugs and crashes can corrupt the networking stack and impact other workloads. Other

systems go a step further by also replacing TCP/IP with RDMA in order to offload network

processing to specialized adapters [31, 58, 91, 99]. However, such adapters must be present at

both ends of the connection and can only be used within the datacenter.

Such latency-critical services are also challenging to run in a shared infrastructure environ-

ment. They are particularly sensitive to resource allocation and frequency settings, and they

suffer frequent tail latency violations when common power management or consolidation

approaches are used [71, 74]. As a result, operators typically deploy them on dedicated servers

running in polling mode, forgoing opportunities for workload consolidation and reduced

power consumption at below-peak utilization levels. Since these services are deployed on

thousands of servers in large-scale datacenters, this deployment practice represents a huge

waster in resource use.

Ideally, we want these services to achieve energy proportionality, so that their energy con-

sumption scales with observed load [7, 79]. Hardware enhancements, primarily in dynamic

voltage/frequency scaling (DVFS) and idle modes in modern processors [62, 114] provide a

foundation for energy proportionality. Moreover, we want these services to allow for workload

consolidation, so that any spare resources during periods of low load can be used by workloads

such as background analytics in order to raise server utilization [136, 135]. The two goals map

to distinct economic objectives: energy proportionality reduces operational expenses (opex),

whereas workload consolidation reduces capital expenses (capex). Since capital costs often

dominate the datacenter’s total cost of ownership (TCO), consolidation is highly desirable.

Nevertheless, it is not always possible, e.g., when one application consumes the entirety of a

given resource, e.g., memory. In such cases, energy proportionality is a necessity.

We propose IX, an operating system designed to break the 4-way tradeoff between high

throughput, low latency, strong protection, and resource efficiency. Its architecture builds

upon lessons from high performance middleboxes, such as firewalls, load-balancers, and

software routers [29, 66]. IX separates the control plane, which is responsible for system con-

figuration and coarse-grain resource provisioning between applications, from the dataplanes,

which run the networking stack and application logic. IX leverages Dune and virtualization

hardware to run the dataplane kernel and the application at distinct protection levels and to

isolate the control plane from the dataplane [11]. In our implementation, the control plane

leverages mechanisms of the full Linux kernel to dynamically reallocate resources, and the

dataplanes run as protected, library-based operating systems on dedicated hardware threads.
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The IX dataplane allows for networking stacks that optimize for both bandwidth and latency.

It is designed around a native, zero-copy API that supports processing of bounded batches

of packets to completion. Each dataplane executes all network processing stages for a batch

of packets in the dataplane kernel, followed by the associated application processing in user

mode. This approach amortizes API overheads and improves both instruction and data locality.

We set the batch size adaptively based on load. The IX dataplane also optimizes for multi-core

scalability. The network adapters (NICs) perform flow-consistent hashing of incoming traffic

to distinct queues. Each dataplane instance exclusively controls a set of these queues and

runs the networking stack and a single application without the need for synchronization

or coherence traffic during common case operation. The IX API departs from the POSIX

API, and its design is guided by the commutativity rule [22]. However, the ����� user-level

library includes an event-based API similar to the popular �������� library [108], providing

compatibility with a wide range of existing applications.

The core of the IX control plane is a dynamic controller that adjusts the number of cores

allocated to a latency-sensitive application running on top of IX and the DVFS settings for

these cores. The remaining cores can be placed in idle modes to reduce power consumption or

can be safely used to run background tasks. The controller builds upon two key mechanisms.

The first mechanism detects backlog and increases in queuing delays that exceed the allowable

upper bound for the specific latency-critical application. It monitors CPU utilization and

signals required adjustments in resource allocation. The second mechanism, implemented in

coordination with the dataplane, quickly migrates both network and application processing

between cores transparently and without dropping or reordering packets.

To evaluate the dataplane, we compare IX with a TCP/IP dataplane against Linux 4.8 and

mTCP, a state-of-the-art user-level TCP/IP stack [57]. On a 10GbE experiment using short

messages, IX outperforms Linux and mTCP by up to 6.3× and 1.8× respectively for throughput.

IX further scales to a 4x10GbE configuration using a single multi-core socket. The unloaded

uni-directional latency for two IX servers is 5.8μs, which is 2.7× better than between standard

Linux kernels and an order of magnitude better than mTCP, as both trade-off latency for

throughput. Our evaluation with 	�	
�
��, a widely deployed key-value store, shows that IX

improves upon Linux by up to 6.1× in terms of throughput at a given 99th percentile latency

bound, as it can reduce kernel time, due essentially to network processing, from ∼ 80% with

Linux to 60% with IX.

Before evaluating the control plane, we performed an exhaustive analysis of static config-

urations for a latency-critical service (	�	
�
�� [89]) running on a modern server to gain

a principled understanding of the challenges for resource management in the presence of

latency-critical services. We explored up to 224 possible settings for core allocation, use

of hyperthreads, DVFS frequencies, and Turbo Boost. While our experiments use a single

application, the implications have broad applicability because 	�	
�
�� has aggressive

latency requirements, short service times, and a large number of independent clients that are

common among many latency-critical applications. Our experiments reveal that there is an
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inherent tradeoff for any given static configuration between the maximum throughput and

the overall efficiency when operating below peak load. Furthermore, the experiments reveal a

Pareto-optimal frontier in the efficiency of static configurations at any given load level, which

allows for close to linear improvements in energy-proportionality and workload consolidation

factors.

We then evaluated our control plane with two control policies that optimize for energy propor-

tionality and workload consolidation, respectively. A policy determines how resources (cores,

hyperthreads, and DVFS settings) are adjusted to reduce underutilization or to restore violated

SLO. The two policies are derived from the exhaustive analysis of the 224 static configurations.

For the platform studied (a Xeon E5-2665), we conclude that: for best energy proportionality, (i)

we start with the lowest clock rate and allocate additional cores to the latency-critical task as its

load grows, using at first only one hyperthread per core; (ii) we enable the second hyperthread

only when all cores are in use; and finally (iii) we increase the clock rate for the cores running

the latency-critical task. For best consolidation, (i) we start at the nominal clock rate and add

cores with both hyperthreads enabled as load increases; and (ii) finally enable Turbo Boost as

a last resort.

IX demonstrates that, by revisiting networking APIs and taking advantage of modern NICs and

multi-core chips, we can design systems that achieve high throughput, low latency, robust

protection, and resource efficiency. It also shows that, by separating the small subset of

performance-critical I/O functions from the rest of the kernel, we can architect radically

different I/O systems and achieve large performance gains, while retaining compatibility

with the huge set of APIs and services provided by a modern OS like Linux. Finally, we also

demonstrate that latency-sensitive applications can be deployed efficiently through dynamic

resource allocation policies that target a specific tail latency.

This chapter contains the research contributions of two conference papers that focus on the

dataplane [12] and the control plane [107], respectively. The evaluation results presented in

this chapter have been reproduced with IX v.1.0, which is available in open-source [55]. A

corresponding technical report provides detailed instructions to reproduce all the results of

this chapter [105].

The rest of the chapter is organized as follows. §2.2 motivates the need for a new OS architec-

ture. §2.3 and §2.4 present the design principles and implementation of IX. §2.5 presents the

quantitative evaluation. §2.7 and §2.8 discuss open issues and related work. We conclude in

§2.9.

2.2 Background and Motivation

Our work focuses on improving operating systems for applications with aggressive networking

requirements running on multi-core servers.
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2.2.1 Challenges for Datacenter Applications

Large-scale, datacenter applications pose unique challenges to system software and their

networking stacks:

Microsecond tail latency To enable rich interactions between a large number of services

without impacting the overall latency experienced by the user, it is essential to reduce the

latency for some service requests to a few tens of μs [5, 115]. Because each user request often

involves hundreds of servers, we must also consider the long tail of the latency distributions

of RPC requests across the datacenter [25]. Although tail-tolerance is actually an end-to-end

challenge, the system software stack plays a significant role in exacerbating the problem [71].

Overall, each service node must ideally provide tight bounds on the 99th percentile request

latency.

High packet rates The requests and, often times, the replies between the various services

that comprise a datacenter application are quite small. In Facebook’s ��������� service, for

example, the vast majority of requests use keys shorter than 50 bytes and involve values shorter

than 500 bytes [3], and each node can scale to serve millions of requests per second [98].

The high packet rate must also be sustainable under a large number of concurrent connections

and high connection churn [43]. If the system software cannot handle large connection

counts, there can be significant implications for applications. The large connection count

between application and ��������� servers at Facebook made it impractical to use TCP

sockets between these two tiers, resulting in deployments that use UDP datagrams for ���

operations and an aggregation proxy for 	
� operations [98].

Protections Since multiple services commonly share servers in both public and private data-

centers [25, 49, 119], there is need for isolation between applications. The use of kernel-based

or hypervisor-based networking stacks largely addresses the problem. A trusted network stack

can firewall applications, enforce access control lists (ACLs), and implement limiters and other

policies based on bandwidth metering.

Resource efficiency The load of datacenter applications varies significantly due to diurnal

patterns and spikes in user traffic. Ideally, each service node will use the fewest resources

(cores, memory, or IOPS) needed to satisfy packet rate and tail latency requirements at any

point. Unfortunately, classic operating system schedulers are ill-matched to ensure tail con-

trol [71, 74]. Novel dynamic resource management mechanisms and policies are required

to improve energy proportionality and workload consolidation in the presence of latency-

sensitive applications [79, 80, 73].

2.2.2 The Hardware – OS Mismatch

The wealth of hardware resources in modern servers should allow for low latency and high

packet rates for datacenter applications. A typical server includes one or two processor sockets,
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each with eight or more multithreaded cores and multiple, high-speed channels to DRAM and

PCIe devices. Solid-state drives and PCIe-based Flash storage are also increasingly popular.

For networking, 10 GbE NICs and switches are widely deployed in datacenters, with 40 GbE

and 100 GbE technologies right around the corner. The combination of tens of hardware

threads and 10 GbE NICs should allow for rates of 15M packets/sec with minimum sized

packets. We should also achieve 10–20μs round-trip latencies given 3μs latency across a pair

of 10 GbE NICs, one to five switch crossings with cut-through latencies of a few hundred ns

each, and propagation delays of 500ns for 100 meters of distance within a datacenter.

Unfortunately, commodity operating systems have been designed under very different hard-

ware assumptions. Kernel schedulers, networking APIs, and network stacks are based on an

assumption of multiple applications sharing a single processing core and packet inter-arrival

times being many times higher than the latency of interrupts and system calls. As a result,

such operating systems trade off both latency and throughput in favor of fine-grain resource

scheduling. Interrupt coalescing (used to reduce processing overheads), queuing latency due

to device driver processing intervals, the use of intermediate buffering, and CPU scheduling

delays frequently add up to several hundred μs of latency to remote requests. The overheads

of buffering and synchronization needed to support flexible, fine-grain scheduling of ap-

plications to cores increases CPU and memory system overheads, which limits throughput.

As requests between service tiers of datacenter applications often consist of small packets,

common NIC hardware optimizations, such as TCP segmentation and receive side coalescing,

have a marginal impact on packet rate.

2.2.3 Alternative Approaches

Since the network stacks within commodity kernels cannot take advantage of the abundance of

hardware resources, a number of alternative approaches have been suggested. Each alternative

addresses a subset, but not all of the requirements for datacenter applications.

User-space networking stacks Systems such as OpenOnload [125], mTCP [57], and Sand-

storm [84] run the entire networking stack in user-space in order to eliminate kernel crossing

overheads and optimize packet processing without incurring the complexity of kernel modifi-

cations. However, there are still tradeoffs between packet rate and latency. For instance, mTCP

uses dedicated threads for the TCP stack, which communicate at relatively coarse granularity

with application threads. This aggressive batching amortizes switching overheads at the ex-

pense of higher latency (see §2.5). It also complicates resource sharing as the network stack

must use a large number of hardware threads regardless of the actual load. More importantly,

security tradeoffs emerge when networking is lifted into the user-space and application bugs

can corrupt the networking stack. For example, an attacker may be able to transmit raw

packets (a capability that normally requires root privileges) to exploit weaknesses in network

protocols and impact other services [14]. It is difficult to enforce any security or metering

policies beyond what is directly supported by the NIC hardware.
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Alternatives to TCP In addition to kernel bypass, some low-latency object stores rely on RDMA

to offload protocol processing on dedicated Infiniband host channel adapters [31, 58, 91, 99].

RDMA can reduce latency, but requires that specialized adapters be present at both ends of

the connection. Using commodity Ethernet networking, Facebook’s ��������� deployment

uses UDP to avoid connection scalability limitations [98]. Even though UDP is running in the

kernel, reliable communication and congestion management are entrusted to applications.

Alternatives to POSIX API MegaPipe replaces the POSIX API with lightweight sockets imple-

mented with in-memory command rings [45]. This reduces some software overheads and

increases packet rates, but retains all other challenges of using an existing, kernel-based

networking stack.

OS enhancements Tuning kernel-based stacks provides incremental benefits with superior

ease of deployment. Linux ��	
�����
� allows multi-threaded applications to accept in-

coming connections in parallel. Affinity-accept reduces overheads by ensuring all processing

for a network flow is affinitized to the same core [102]. Recent Linux Kernels support a busy

polling driver mode that trades increased CPU utilization for reduced latency [52], but it is not

yet compatible with �����. When microsecond latencies are irrelevant, properly tuned stacks

can maintain millions of open connections [141].

2.3 IX Design Approach

The first two requirements in §2.2.1 — microsecond latency and high packet rates — are not

unique to datacenter applications. These requirements have been addressed in the design of

middleboxes such as firewalls, load-balancers, and software routers [29, 66] by integrating the

networking stack and the application into a single dataplane. The two remaining requirements

— protection and resource efficiency — are not addressed in middleboxes because they are

single-purpose systems, not exposed directly to users.

Many middlebox dataplanes adopt design principles that differ from traditional OSes. First,

they run each packet to completion. All network protocol and application processing for a

packet is done before moving on to the next packet, and application logic is typically in-

termingled with the networking stack without any isolation. By contrast, a commodity OS

decouples protocol processing from the application itself in order to provide scheduling and

flow control flexibility. For example, the kernel relies on device and soft interrupts to context

switch from applications to protocol processing. Similarly, the kernel’s network stack will

generate TCP ACKs and slide its receive window even when the application is not consum-

ing data, up to an extent. Second, middlebox dataplanes optimize for synchronization-free

operation in order to scale well on many cores. Network flows are distributed into distinct

queues via flow-consistent hashing and common case packet processing requires no syn-

chronization or coherence traffic between cores. By contrast, commodity OSes tend to rely

heavily on coherence traffic and are structured to make frequent use of locks and other forms

of synchronization.
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IX extends the dataplane architecture to support untrusted, general-purpose applications and

satisfy all requirements in §2.2.1. Its design is based on the following key principles:

Separation and protection of control and data plane IX separates the control function of the

kernel, responsible for resource configuration, provisioning, scheduling, and monitoring, from

the dataplane, which runs the networking stack and application logic. Like a conventional

OS, the control plane multiplexes and schedules resources among dataplanes, but in a coarse-

grained manner in space and time. Entire cores are dedicated to dataplanes, memory is

allocated at large page granularity, and NIC queues are assigned to dataplane cores. The

control plane is also responsible for elastically adjusting the allocation of resources between

dataplanes.

The separation of control and data plane also allows us to consider radically different I/O APIs,

while permitting other OS functionality, such as file system support, to be passed through

to the control plane for compatibility. Similar to the Exokernel [35], each dataplane runs a

single application in a single address space. However, we use modern virtualization hardware

to provide three-way isolation between the control plane, the dataplane, and untrusted user

code [11]. Dataplanes have capabilities similar to guest OSes in virtualized systems. They

manage their own address translations, on top of the address space provided by the control

plane, and can protect the networking stack from untrusted application logic through the use

of privilege rings. Moreover, dataplanes are given direct pass-through access to NIC queues

through memory mapped I/O.

Run to completion with adaptive batching IX dataplanes run to completion all stages needed

to receive and transmit a packet, interleaving protocol processing (kernel mode) and ap-

plication logic (user mode) at well-defined transition points. Hence, there is no need for

intermediate buffering between protocol stages or between application logic and the network-

ing stack. Unlike previous work that applied a similar approach to eliminate receive livelocks

during congestion periods [92], IX uses run to completion during all load conditions. Thus, we

are able to use polling and avoid interrupt overhead in the common case by dedicating cores

to the dataplane. We still rely on interrupts as a mechanism to regain control, for example, if

application logic is slow to respond. Run to completion improves both message throughput

and latency because successive stages tend to access many of the same data, leading to better

data cache locality.

The IX dataplane also makes extensive use of batching. Previous systems applied batching

at the system call boundary [45, 124] and at the network API and hardware queue level [57].

We apply batching in every stage of the network stack, including but not limited to system

calls and queues. Moreover, we use batching adaptively as follows: (i) we never wait to

batch requests and batching only occurs in the presence of congestion; (ii) we set an upper

bound on the number of batched packets. Using batching only on congestion allows us to

minimize the impact on latency, while bounding the batch size prevents the live set from

exceeding cache capacities and avoids transmit queue starvation. Batching improves packet
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Figure 2.1 – Protection and separation of control and data plane in IX.

rate because it amortizes system call transition overheads and improves instruction cache

locality, prefetching effectiveness, and branch prediction accuracy. When applied adaptively,

batching also decreases latency because these same efficiencies reduce head-of-line blocking.

The combination of bounded, adaptive batching and run to completion means that queues

for incoming packets can build up only at the NIC edge, before packet processing starts in

the dataplane. The networking stack sends acknowledgments to peers only as fast as the

application can process them. Any slowdown in the application-processing rate quickly leads

to shrinking windows in peers. The dataplane can also monitor queue depths at the NIC

edge and signal the control plane to allocate additional resources for the dataplane (more

hardware threads, increased clock frequency), notify peers explicitly about congestion (e.g.,

via ECN [109]), and make policy decisions for congestion management (e.g., via RED [40]).

Native, zero-copy API with explicit flow control We do not expose or emulate the POSIX API

for networking. Instead, the dataplane kernel and the application communicate at coordinated

transition points via messages stored in memory. Our API is designed for true zero-copy

operation in both directions, improving both latency and packet rate. The dataplane and

application cooperatively manage the message buffer pool. Incoming packets are mapped

read-only into the application, which may hold onto message buffers and return them to

the dataplane at a later point. The application sends to the dataplane scatter/gather lists of

memory locations for transmission but, since contents are not copied, the application must

keep the content immutable until the peer acknowledges reception. The dataplane enforces

flow control correctness and may trim transmission requests that exceed the available size of

the sliding window, but the application controls transmit buffering.

Flow consistent, synchronization-free processing We use multi-queue NICs with receive-

side scaling (RSS [90]) to provide flow-consistent hashing of incoming traffic to distinct hard-
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ware queues. Each hardware thread (hyperthread) serves a single receive and transmit queue

per NIC, eliminating the need for synchronization and coherence traffic between cores in

the networking stack. Similarly, memory management is organized in distinct pools for each

hardware thread. The absence of a POSIX socket API eliminates the issue of the shared file de-

scriptor namespace in multithreaded applications [22]. Overall, the IX dataplane design scales

well with the increasing number of cores in modern servers, which improves both packet

rate and latency. This approach does not restrict the memory model for applications, which

can take advantage of coherent, shared memory to exchange information and synchronize

between cores.

TCP-friendly flow group migration The IX control plane establishes dynamically the map-

ping of RSS flow groups to queues to balance the traffic among the hardware threads. The

IX dataplane implements the actual flow group migration and programs the NIC’s RSS Redi-

rection Table [53] to change the mappings. The implementation does not impact the steady

state performance of the dataplane and its coherence-free design. The migration algorithm

contains distinct phases that ensure that migration does not create network anomalies such

as dropping packets or processing them out of order in the networking stack.

Dynamic control loop with user-defined policies At its core, the control plane has a control

loop that monitors the queuing delay to detect likely SLO violations and reacts by adding

system resources within milliseconds. It monitors the utilization of the IX dataplane to similarly

remove unnecessary system resources. The IX control plane relies on the host Linux kernel

mechanisms to adjust system resources such as changing the processor frequency or the

number of cores allocated to the IX dataplane. It relies on the IX dataplane’s TCP-friendly

flow group migration mechanism to balance the load among the cores. Although the control

loop specifies when resources must be adjusted, it does not specify which resource must be

added or removed, as this policy decision is a function of the platform’s characteristics, the

application’s ability to scale horizontally, and the overall objective (energy proportionality or

workload consolidation).

2.4 IX Implementation

2.4.1 Overview

Fig. 2.1 presents the IX architecture, focusing on the separation between the control plane and

the multiple dataplanes. The hardware environment is a multi-core server with one or more

multi-queue NICs with RSS support. The IX control plane consists of the full Linux kernel

and ����, a user-level program. The Linux kernel initializes PCIe devices, such as the NICs,

and provides the basic mechanisms for resource allocation to the dataplanes, including cores,

memory, and network queues. Equally important, Linux provides system calls and services

that are necessary for compatibility with a wide range of applications, such as file system and
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Figure 2.2 – Interleaving of protocol processing and application execution in the IX dataplane.

signal support. ���� monitors resource usage and dataplane performance and implements

resource allocation policies.

We run the Linux kernel in VMX root ring 0, the mode typically used to run hypervisors in

virtualized systems [131]. We use the Dune module within Linux to enable dataplanes to run

as application-specific OSes in VMX non-root ring 0, the mode typically used to run guest

kernels in virtualized systems [11]. Applications run in VMX non-root ring 3, as usual. This

approach provides dataplanes with direct access to hardware features, such as page tables and

exceptions, and pass-through access to NICs. Moreover, it provides full, three-way protection

between the control plane, dataplanes, and untrusted application code.

Each IX dataplane supports a single, multithreaded application. For instance, Fig. 2.1 shows

one dataplane for a multi-threaded ������	�
 server and another dataplane for a multi-

threaded 	���
 server. The control plane allocates resources to each dataplane in a coarse-

grained manner. Core allocation is controlled through real-time priorities and ������;

memory is allocated in large pages; each NIC hardware queue is assigned to a single dataplane.

This approach avoids the overheads and unpredictability of fine-grained time multiplexing of

resources between demanding applications [71].

Each IX dataplane operates as a single address-space OS and supports two thread types within

a shared, user-level address space: (i) elastic threads which interact with the IX dataplane to

initiate and consume network I/O and (ii) background threads. Both elastic and background

threads can issue arbitrary POSIX system calls that are intermediated and validated for security

by the dataplane before being forwarded to the Linux kernel. Elastic threads are expected to

not issue blocking calls because of the adverse impact on network behavior resulting from

delayed packet processing. Each elastic thread makes exclusive use of a core or hardware

thread allocated to the dataplane in order to achieve high performance with predictable

latency. In contrast, multiple background threads may timeshare an allocated hardware
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thread. For example, if an application were allocated four hardware threads, it could use all of

them as elastic threads to serve external requests or it could temporarily transition to three

elastic threads and use one background thread to execute tasks such as garbage collection.

When the control plane revokes or allocates an additional hardware thread using a protocol

similar to the one in Exokernel [35], the dataplane adjusts its number of elastic threads.

2.4.2 The IX Dataplane

We now discuss the IX dataplane in more detail. It differs from a typical kernel in that it is

specialized for high performance network I/O and runs only a single application, similar to a

library OS but with memory isolation. However, our dataplane still provides many familiar

kernel-level services.

For memory management, we accept some internal memory fragmentation in order to reduce

complexity and improve efficiency. All hot-path data objects are allocated from per hardware

thread memory pools. Each memory pool is structured as arrays of identically sized objects,

provisioned in page-sized blocks. Free objects are tracked with a simple free list, and allocation

routines are inlined directly into calling functions. Mbufs, the storage object for network

packets, are stored as contiguous chunks of bookkeeping data and MTU-sized buffers, and are

used for both receiving and transmitting packets.

The dataplane also manages its own virtual address translations, supported through nested

paging. In contrast to contemporary OSes, it uses exclusively large pages (2MB). We favor large

pages due to their reduced address translation overhead [9, 11] and the relative abundance of

physical memory resources in modern servers. The dataplane maintains only a single address

space; kernel pages are protected with supervisor bits. We deliberately chose not to support

swappable memory in order to avoid adding performance variability.

We provide a hierarchical timing wheel implementation for managing network timeouts, such

as TCP retransmissions [133]. It is optimized for the common case where most timers are

canceled before they expire. We support extremely high-resolution timeouts, as low as 16 μs,

which has been shown to improve performance during TCP incast congestion [134].

Our current IX dataplane implementation is based on Dune and requires the VT-x virtualization

features available on Intel x86-64 systems [131]. However, it could be ported to any architecture

with virtualization support, such as ARM, SPARC, and Power. It also requires one or more Intel

82599 chipset NICs, but it is designed to easily support additional drivers.

Table 2.1 lists the code size (in thousands of SLOC [142]). The rows correspond to the different

protection domains of the system while the columns correspond to the different open-source

projects involved. The TCP/IP stack uses a highly-modified version of lwIP [33]. We chose

lwIP as a starting point for TCP/IP processing because of its modularity and its maturity as

a RFC-compliant, feature-rich networking stack. We implemented our own RFC-compliant

support for UDP, ARP, and ICMP. Since lwIP was optimized for memory efficiency in embedded
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KSLOC IX lwIP Dune total
Control plane 0.4 0.4

Data plane 9.7 9.4 4.9 24.0
Linux kernel 2.5 2.5

User-level library 1.0 1.0

Table 2.1 – Lines of code (in thousands).

System Calls (batched)
Type Parameters Description
connect cookie, dst_IP, dst_port Opens a connection
accept handle, cookie Accepts a connection
sendv handle, scatter_gather_array Transmits a scatter-gather array of data
recv_done handle, bytes_acked Advances the receive window and frees mem-

ory buffers
close handle Closes or rejects a connection

Event Conditions
Type Parameters Description
knock handle, src_IP, src_port A remotely initiated connection was opened
connected cookie, outcome A locally initiated connection finished open-

ing
recv cookie, mbuf_ptr, mbuf_len A message buffer was received
sent cookie, bytes_sent, window_size A send completed and/or the window size

changed
dead cookie, reason A connection was terminated

Table 2.2 – The IX dataplane system call and event condition API.

environments, we had to radically change its internal data structures for multi-core scalability

and fine-grained timer management. However, we did not yet optimize the lwIP code for

performance. Hence, the results of §2.5 have room for improvement. In addition, the IX

dataplane links with an unmodified DPDK library, which is used to initially configure the NIC.

DPDK code is not used during datapath operations; instead, IX accesses NIC descriptor rings

directly.

2.4.3 Dataplane API and Operation

The elastic threads of an application interact with the IX dataplane through three asyn-

chronous, non-blocking mechanisms summarized in Table 2.2: they issue batched systems

calls to the dataplane; they consume event conditions generated by the dataplane; and they

have direct, but safe, access to mbufs containing incoming payloads. The latter allows for

zero-copy access to incoming network traffic. The application can hold on to mbufs until it

asks the dataplane to release them via the ��������� batched system call.

Both batched system calls and event conditions are passed through arrays of shared memory,

managed by the user and the kernel respectively. IX provides an unbatched system call
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(������) that yields control to the kernel and initiates a new run to completion cycle. As part

of the cycle, the kernel overwrites the array of batched system call requests with corresponding

return codes and populates the array of event conditions. The handles defined in Table 2.2 are

kernel-level flow identifiers. Each handle is associated with a cookie, an opaque value provided

by the user at connection establishment to enable efficient user-level state lookup [45].

IX differs from POSIX sockets in that it directly exposes flow control conditions to the ap-

plication. The ���	
 system call does not return the number of bytes buffered. Instead, it

returns the number of bytes that were accepted and sent by the TCP stack, as constrained

by correct TCP sliding window operation. When the receiver acknowledges the bytes, a ����

event condition informs the application that it is possible to send more data. Thus, send

window-sizing policy is determined entirely by the application. By contrast, conventional

OSes buffer send data beyond raw TCP constraints and apply flow control policy inside the

kernel.

We built a user-level library, called ����, which abstracts away the complexity of our low-level

API. It provides a compatible programming model for legacy applications and significantly

simplifies the development of new applications. ���� currently includes a very similar inter-

face to ���
��� and non-blocking POSIX socket operations. It also includes new interfaces

for zero-copy read and write operations that are more efficient, at the expense of requiring

changes to existing applications.

���� automatically coalesces multiple write requests into single ���	
 system calls during

each batching round. This improves locality, simplifies error handling, and ensures correct

behavior, as it preserves the data stream order even if a transmit fails. Coalescing also facilitates

transmit flow control because we can use the transmit vector (the argument to ���	
) to keep

track of outgoing data buffers and, if necessary, reissue writes when the transmit window

has more available space, as notified by the ���� event condition. Our buffer sizing policy is

currently very basic; we enforce a maximum pending send byte limit, but we plan to make this

more dynamic in the future [39].

Fig. 2.2 illustrates the run-to-completion operation for an elastic thread in the IX dataplane.

NIC receive buffers are mapped in the server’s main memory and the NIC’s receive descrip-

tor ring is filled with a set of buffer descriptors that allow it to transfer incoming packets

using DMA. The elastic thread (1) polls the receive descriptor ring and potentially posts fresh

buffer descriptors to the NIC for use with future incoming packets. The elastic thread then

(2) processes a bounded number of packets through the TCP/IP networking stack, thereby

generating event conditions. Next, the thread (3) switches to the user-space application, which

consumes all event conditions. Assuming that the incoming packets include remote requests,

the application processes these requests and responds with a batch of system calls. Upon

return of control from user-space, the thread (4) processes all batched system calls, and in

particular the ones that direct outgoing TCP/IP traffic. The thread also (5) runs all kernel

timers in order to ensure compliant TCP behavior. Finally (6), it places outgoing Ethernet
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frames in the NIC’s transmit descriptor ring for transmission, and it notifies the NIC to initiate

a DMA transfer for these frames by updating the transmit ring’s tail register. In a separate pass,

it also informs the protocol stack of any buffers that have finished transmitting, based on the

transmit ring’s head position. The process repeats in a loop until there is no network activity.

In this case, the thread enters a quiescent state which involves either hyperthread-friendly

polling or optionally entering a power efficient C-state, at the cost of some additional latency.

2.4.4 Multi-core Scalability

The IX dataplane is optimized for multi-core scalability, as elastic threads operate in a syn-

chronization and coherence free manner in the common case. This is a stronger requirement

than lock-free synchronization, which requires expensive atomic instructions even when a

single thread is the primary consumer of a particular data structure [24]. This is made possible

through a set of conscious design and implementation tradeoffs.

First, system call implementations can only be synchronization-free if the API itself is commu-

tative [22]. The IX API is commutative between elastic threads. Each elastic thread has its own

flow identifier namespace, and an elastic thread cannot directly perform operations on flows

that it does not own.

Second, the API implementation is carefully optimized. Each elastic thread manages its

own memory pools, hardware queues, event condition array, and batched system call array.

The implementation of event conditions and batched system calls benefits directly from

the explicit, cooperative control transfers between IX and the application. Since there is no

concurrent execution by producer and consumer, event conditions and batched system calls

are implemented without synchronization primitives based on atomics.

Third, the use of flow-consistent hashing at the NICs ensures that each elastic thread operates

on a disjoint subset of TCP flows. Hence, no synchronization or coherence occurs during

the processing of incoming requests for a server application. For client applications with

outbound connections, we need to ensure that the reply is assigned to the same elastic thread

that made the request. Since we cannot reverse the Toeplitz hash used by RSS [90], we simply

probe the ephemeral port range to find a port number that would lead to the desired behavior.

Note that this implies that two elastic threads in a client cannot share a flow to a server.

IX does have a small number of shared structures, including some that require synchronization

on updates. For example, the ARP table is shared by all elastic threads and is protected by RCU

locks [86]. Hence, the common case reads are coherence-free but the rare updates are not.

RCU objects are garbage collected after a quiescent period that spans the time it takes each

elastic thread to finish a run to completion cycle.

Finally, the application code may include inter-thread communication and synchronization.

While using IX does not eliminate the need to develop scalable application code, it ensures

that there are no scaling bottlenecks in the system and protocol processing code.
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(a) Thread-centric view (b) Packet-centric view

Figure 2.3 – Flow-group Migration Algorithm

2.4.5 Flow group migration

When adding or removing a thread, ���� generates a set of migration requests. Each individual

request is for a set of flow groups (���) currently handled by one elastic thread � to be handled

by elastic thread 	. To simplify the implementation, the controller serializes the migration

requests and the dataplane assumes that at most one such request is in progress at any point

in time. Each thread has three queues that can hold incoming network packets and ensure

that packets are delivered in order to the network layer.

Fig. 2.3 illustrates the migration steps in a thread-centric view (Fig. 2.3a) and in a packet-

centric view (Fig. 2.3b). The controller and the dataplane threads communicate via lock-free

structures in shared memory. First, the controller signals � to migrate ��� to 	. � first marks

each flow group of the set ��� with a special tag to hold off normal processing on all threads,

moves packets which belong to the flow group set ��� from 
�������� to ��������	 and

stops all timers belonging to the flow group set. � then reprograms the NIC’s RSS Relocation

Table for index ���. Packets still received by �will be appended to ��������	; packets received

by 	 will go to �������	.

Upon reception of the first packet whose flow group belongs to ��� by 	, 	 signals � to initiate

the final stage of migration. Then, 	 finalizes the migration by re-enabling ���’s timers,

removing all migration tags, and pre-pending to its 
�������	 the packets from ��������	

and the packets from �������	. Finally, 	 notifies the control plane that the operation is

complete. A migration timer ensures completion of the operation when the NIC does not

receive further packets.

2.4.6 The IXCP Control Loop

The IXCP daemon largely relies on Linux host and IX dataplane provided mechanisms. It is

implemented in ∼500 lines of Python. At its core, the controller adjusts processor resources by

suspending and resuming IX elastic threads, specifying the mapping between flow groups and
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threads, and controlling the processor frequency. For server consolidation scenarios, it may

additionally control the resources allocated to background tasks.

The control loop implements a user-specified policy which determines the upper bound on

the acceptable queuing delay and the sequence of resource allocation adjustments. For this, it

relies on a key side effect of IX’s use of adaptive batching: unprocessed packets that form the

backlog are queued in a central location, namely in step (1) in the pipeline of Fig. 2.2. Packets

are then processed in order, in bounded batches to completion through both the networking

stack and the application logic. In other words, each IX core operates like a simple FCFS

queuing server, onto which classic queuing and control theory principles can be easily applied.

In contrast, conventional operating systems distribute buffers throughout the system: in the

NIC (because of coalesced interrupts), in the driver before networking processing, and in the

socket layer before being consumed by the application. Furthermore, these conventional

systems provide no ordering guarantees across flows, which makes it difficult to pinpoint

congestion.

To estimate queuing delays, the controller monitors the iteration time τ and the queue depth

Q. With B the maximal batch size, the tail latency is ∼max(del ay) = �Q/B�∗τ. The dataplane

computes each instantaneous metric every 10ms for the previous 10ms interval. As these

metrics are subject to jitter, the dataplane computes the exponential weighted moving averages

using multiple smoothing factors (α) in parallel. For example, we track the queue depth as

Q(t ,α) = α∗Qnow + (1−α)∗Q(t −1,α). The control loop executes at a frequency of 10 Hz,

which is sufficient to adapt to load changes.

The control loop is responsible to determine when to adjust resources, but not the sequence

of resource adjustment steps. For example, adding a core, enabling hyperthread or increasing

processor frequency can each increase throughput. In principle, the selection of the resource

allocation (and deallocation) sequence can be derived from a Pareto analysis among all

possible static configuration. For energy proportionality, the optimization metric is the energy

consumption; for workload consolidation, it is the throughput of the background job. We

show in §2.5.3 how such a methodology can be applied in practice for a given workload and

compute platform.

Deciding when to remove resources is trickier than deciding when to add them, as shallow

and near-empty queues do not provide reliable metrics. Instead, the control loop measures

idle time and relies on the observation that each change in the configuration adds or removes

a predictable level of throughput. The control loop makes resource deallocation decisions

when idle time exceeds the throughput ratio.

2.4.7 Security Model

The IX API and implementation has a cooperative flow control model between application

code and the network-processing stack. Unlike user-level stacks, where the application is
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trusted for correct networking behavior, the IX protection model makes few assumptions

about the application. A malicious or misbehaving application can only hurt itself. It cannot

corrupt the networking stack or affect other applications. All application code in IX runs

in user-mode, while dataplane code runs in protected ring 0. Applications cannot access

dataplane memory, except for read-only message buffers. No sequence of batched system calls

or other user-level actions can be used to violate correct adherence to TCP and other network

specifications. Furthermore, the dataplane can be used to enforce network security policies,

such as firewalling and access control lists. The IX security model is as strong as conventional

kernel-based networking stacks, a feature that is missing from all recently proposed user-level

stacks.

The IX dataplane and the application collaboratively manage memory. To enable zero-copy

operation, a buffer used for an incoming packet is passed read-only to the application, using

virtual memory protection. Applications are encouraged (but not required) to limit the time

they hold message buffers, both to improve locality and to reduce fragmentation because of

the fixed size of message buffers. In the transmit direction, zero-copy operation requires that

the application must not modify outgoing data until reception is acknowledged by the peer,

but if the application violates this requirement, it will only result in incorrect data payload.

Since elastic threads in IX execute both the network stack and application code, a long running

application can block further network processing for a set of flows. This behavior in no way

affects other applications or dataplanes. We use a timeout interrupt to detect elastic threads

that spend excessive time in user mode (e.g., in excess of 10ms). We mark such applications as

non-responsive and notify the control plane.

The current IX prototype does not yet use an IOMMU. As a result, the IX dataplane is trusted

code that has access to descriptor rings with host-physical addresses. This limitation does not

affect the security model provided to applications.

2.5 Evaluation of the dataplane

We compared IX to a baseline running Linux kernel version 4.8 and to mTCP [57]. Our evalua-

tion uses both networking microbenchmarks and a widely deployed, event-based application.

In all cases, we use TCP as the networking protocol.

2.5.1 Experimental Methodology

Our experimental setup consists of a cluster of 24 clients and one server connected by a

Quanta/Cumulus 48x10GbE switch with a Broadcom Trident+ ASIC. The client machines are a

mix of Xeon E5-2637 @ 3.5 Ghz and Xeon E5-2650 @ 2.6 Ghz. The server is a Xeon E5-2665 @

2.4 Ghz with 256 GB of DRAM. Each client and server socket has 8 cores and 16 hyperthreads.

All machines are configured with Intel x520 10GbE NICs (82599EB chipset). We connect clients
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Figure 2.4 – NetPIPE performance for varying message sizes and system software configura-
tions.

to the switch through a single NIC port, while for the server it depends on the experiment. For

10GbE experiments, we use a single NIC port, and for 4x10GbE experiments, we use four NIC

ports bonded by the switch with a L3+L4 hash.

Our baseline configuration in each machine is an Ubuntu LTS 14.0.4 distribution, updated

to the 4.8 Linux kernel, the most recent at time of writing. We enable hyperthreading when

it improves performance. Except for §2.5.2, client machines always run Linux. All power

management features are disabled for all systems in all experiments. Jumbo frames are never

enabled. All Linux workloads are pinned to hardware threads to avoid scheduling jitter, and

background tasks are disabled.

The Linux client and server implementations of our benchmarks use the �������� framework

with the ��	�� system call. We downloaded and installed mTCP from the public-domain

release [56], but had to write the benchmarks ourselves using the mTCP API. We run mTCP

with the 2.6.36 Linux kernel, as this is the most recent supported kernel version. We report only

10GbE results for mTCP, as it does not support NIC bonding. For IX, we bound the maximum

batch size to B = 64 packets per iteration, which maximizes throughput on microbenchmarks

(see §2.7).
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2.5.2 Dataplane performance

Latency and Single-flow Bandwidth

We first evaluated the latency of IX using NetPIPE, a popular ping-pong benchmark, using our

10GbE setup. NetPIPE simply exchanges a fixed-size message between two servers and helps

calibrate the latency and bandwidth of a single flow [123]. In all cases, we run the same system

on both ends (Linux, mTCP, or IX).

Fig. 2.4 shows the goodput achieved for different message sizes. Two IX servers have a one-way

latency of 5.8μs for 64B messages and achieve goodput of 5 Gbps, half of the maximum, with

messages as small as 20000 bytes. In contrast, two Linux servers have a one-way latency of

15.5μs and require 96KB messages to achieve 5 Gbps. The differences in system architecture

explain the disparity: IX has a dataplane model that polls queues and processes packets to

completion whereas Linux has an interrupt model, which wakes up the blocked process.

mTCP uses aggressive batching to offset the cost of context switching [57], which comes at the

expense of higher latency than both IX and Linux in this particular test.

Throughput and Scalability

We evaluate IX’s throughput and multi-core scalability with the same benchmark used to

evaluate MegaPipe [45] and mTCP [57]. 18 clients connect to a single server listening on a

single port, send a remote request of size s bytes, and wait for an echo of a message of the

same size. Similar to the NetPIPE benchmark, while receiving the message, the server holds

off its echo response until the message has been entirely received. Each client performs this

synchronous remote procedure call n times before closing the connection. As in [57], clients

close the connection using a reset (TCP RST) to avoid exhausting ephemeral ports.

Fig. 2.5 shows the message rate or goodput for both the 10GbE and the 40GbE configurations

as we vary the number of cores used, the number of round-trip messages per connection, and

the message size respectively. For the 10GbE configuration, the results for Linux and mTCP

are consistent with those published in the mTCP paper [57]. For all three tests (core scaling,

message count scaling, message size scaling), IX scales more aggressively than mTCP and

Linux. Fig. 2.5a shows that IX needs only 4 cores to saturate the 10GbE link whereas mTCP

requires all 8 cores. On Fig. 2.5b for 1024 round-trips per connection, IX delivers 8.5 million

messages per second, which is 1.8× the throughput of mTCP and of and 6.3× that of Linux.

With this packet rate, IX achieves line rate and is limited only by 10GbE bandwidth.

Fig. 2.5 also shows that IX scales well beyond 10GbE to a 4x10GbE configuration. Fig. 2.5a

shows that IX linearly scales to deliver 4.2 million TCP connections per second on 4x10GbE.

Fig. 2.5b shows a speedup of 2.0× with n = 1 and of 1.5× with n = 1024 over 10GbE IX. Finally,

Fig. 2.5c shows IX can deliver 8KB messages with a goodput of 34.8 Gbps, for a wire throughput

of 38.3 Gbps, out of a possible 39.7 Gbps. Overall, IX makes it practical to scale protected

TCP/IP processing beyond 10GbE, even with a single socket multi-core server.
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Figure 2.5 – Multi-core scalability and high connection churn for 10GbE and 4x10GbE setups.
In (a), half steps indicate hyperthreads.
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Figure 2.6 – Connection scalability of IX.
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Connection Scalability

We also evaluate IX’s scalability when handling a large number of concurrent connections on

the 4x10GbE setup. 18 client machines runs n threads, with each thread repeatedly performing

a 64B remote procedure call to the server with a variable number of active connections. We

experimentally set n = 24 to maximize throughput. We report the maximal throughput in

messages per second for a range of total established connections.

Fig. 2.6 shows up to 250,000 connections, which is the upper bound we can reach with the

available client machines. As expected, Fig. 2.6a shows that throughput increases with the

degree of connection concurrency, but then decreases for very large connections counts due to

the increasingly high cost of multiplexing among open connections. At the peak, IX performs

11× better than Linux, consistent with the results from Fig. 2.5b. With 250,000 connections

and 4x10GbE, IX is able to deliver 42% of its own peak throughput.

Fig. 2.6b shows that the drop in throughput is not due to an increase in the instruction count,

but instead can be attributed to the performance of the memory subsystem. Intel’s Data Direct

I/O technology, an evolution of DCA [51], eliminates nearly all cache misses associated with

DMA transfers when given enough time between polling intervals, resulting in as little as 2.0

L3 cache misses per message for up to 2,500 concurrent connections, a scale where all of IX’s

data structures fit easily in the L3 cache. In contrast, the workload averages 29 L3 cache misses

per message when handling 250,000 concurrent connections. At high connection counts, the

working set of this workload is dominated by the TCP connection state and does not fit into

the processor’s L3 cache. Nevertheless, we believe that further optimizations in the size and

access pattern of lwIP’s TCP/IP protocol control block structures can substantially reduce this

handicap.

Fig. 2.6b additionally gives insights about the positive impact of the adaptive batching. As

the load increases, the average batch size increases from 0 to the maximum configured value,

which is 64 in our benchmark setup. At the same time, the average number of cycles per

message decreases from 9,000 to less than 4,000, before it starts increasing again due to the

negative impact of L3 cache misses.

��������� Performance

Finally, we evaluated the performance benefits of IX with ���������, a widely deployed, in-

memory, key-value store built on top of the �	
���� framework [89]. It is frequently used as

a high-throughput, low-latency caching tier in front of persistent database servers. ���������

is a network-bound application, with threads spending over 80% of execution time in kernel

mode for network processing [71]. It is a difficult application to scale because the common

deployments involve high connection counts for ��������� servers and small-sized requests

and replies [3, 98]. Furthermore, ��������� has well-known scalability limitations [77]. To

alleviate some of the limitations, we configure ��������� with a larger hash table size (��
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Figure 2.7 – Average and 99th percentile latency as a function of throughput for the ETC and
USR ��������� workloads.
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���������	
�) and use a random replacement policy instead of the built-in LRU, which

requires a global lock. We configure ������� similarly for Linux and IX.

We use the �������� load-generator to place a selected load on the server in terms of requests

per second (RPS) and measure response latency [94]. �������� coordinates a large number

of client threads across multiple machines to generate the desired RPS load, while a separate

unloaded client measures latency by issuing one request at a time across 32 open connec-

tions, to eliminate statistical errors due to slight potential imbalances across network card

queues and respective CPU cores handling those queues. We configure �������� to generate

load representative of two workloads from Facebook [3]: the ETC workload that represents

that highest capacity deployment in Facebook, has 20B–70B keys, 1B–1KB values, and 75%

GET requests; and the USR workload that represents deployment with most GET requests

in Facebook, has short keys (<20B), 2B values, and 99% GET requests. In USR, almost all

traffic involves minimum-sized TCP packets. Each request is issued separately (no ��������

operations). However, clients are permitted to pipeline up to four requests per connection if

needed to keep up with their target request rate. We use 11 client machines to generate load

for a total of 2,752 connections to the ������� server.

To provide insights into the full range of system behaviors, we report average and 99th per-

centile latency as a function of the achieved throughput. The 99th percentile latency captures

tail latency issues and is the most relevant metric for datacenter applications [25]. Most

commercial ������� deployments provision each server so that the 99th percentile latency

does not exceed 200μs to 500μs.

We carefully tune the Linux baseline setup according to the guidelines in [71]: we pin �������

threads, configure interrupt-distribution based on thread-affinity, and tune interrupt mod-

eration thresholds. Additionally, we increase the socket accept queue size and disable SYN

cookies via ����� and via the respective ������� command line argument to accommo-

date for the large connection accept rate at the beginning of the benchmark. Finally, to resolve

observed unexpected 99th pct. latency spikes when running ������� under Linux, we

disable transparent huge pages via �����, instruct ������� to use the ������� system

call and utilize ������ to pin memory pages on the desired NUMA node of our server. We

believe that our baseline Linux numbers are as tuned as possible for this hardware using the

open-source version of ��������������. We report the results for the server configuration

that provides the best performance: 8 cores with hyperthreading enabled.

Porting ������� to IX primarily consisted of adapting it to use our event library. In most

cases, the port was straightforward, replacing Linux and �������� function calls with their

equivalent versions in our API. We did yet not attempt to tune the internal scalability of

������� [37] or to support zero-copy I/O operations.

Fig. 2.7a and Fig. 2.7b show the throughput-latency curves for the two ������� workloads

for Linux and IX, while Table 2.3 reports the unloaded, round-trip latencies and maximum

request rate that meets a service-level agreement, both measured at the 99th percentile. IX
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Configuration Minimum latency RPS for SLO:
@99th pct < 500μs @99th pct

ETC-Linux 72μs 897K
ETC-IX 46μs 4183K
USR-Linux 65μs 903K
USR-IX 34μs 5552K

Table 2.3 – Unloaded latency and maximum RPS for a given service-level agreement for the
��������� workloads ETC and USR.

cuts the unloaded latency of both workloads in half. Note that we use Linux clients for these

experiments; running IX on clients should further reduce latency.

At high request rates, the distribution of CPU time shifts from being ∼ 80% in the Linux kernel

to 60% in the IX dataplane kernel. This allows IX to increase throughput by 4.7× and 6.1× for

ETC and USR respectively at a 500μs tail latency SLO.

2.5.3 Pareto-Optimal Static Configurations

Static resource configurations allow for controlled experiments to quantify the tradeoff be-

tween an application’s performance and the resources consumed. Our approach limits bias

by considering many possible static configurations in the three-dimensional space of core,

hyperthread, and frequency. For each static configuration, we characterize the maximum

load that meets the SLO (≤ 500μs @ 99th percentile); we then measure the energy draw and

throughput of the background job for all load levels up to the maximum load supported.

From this large data set, we derive the set of meaningful static configurations and build the

Pareto efficiency frontier. The frontier specifies, for any possible load level, the optimal static

configuration and the resulting minimal energy draw or maximum background throughput,

depending on the scenario.

Fig. 2.8 presents the frontier for the ���������USR workload for two different policies: energy

proportionality, which aims to minimize the amount of energy consumed while maintaining

SLO and workload consolidation, which aims to maximize the throughput of some background

process while also maintaining the SLO of the latency-sensitive application.

The graphs each plot the objective—which is either to minimize energy or maximize back-

ground throughput—as a function of the foreground throughput, provided that the SLO is

met. Except for the red lines, each line corresponds to a distinct static configuration of the

system: the green curves correspond to configuration at the minimal clock rate of 1.2 Ghz;

the blue curves use all available cores and hyperthreads; other configurations are in black.

In Turbo Boost mode, the energy drawn is reported as a band since it depends on operating

temperature.
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Figure 2.8 – Pareto efficiency for energy proportionality and workload consolidation for IX. The
Pareto efficiency is in red while the various static configurations are color-coded according to
their distinctive characteristics.
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Finally, the red line is the Pareto frontier, which corresponds, for any load level, to the optimal

result using any of the static configurations available. Each graph only shows the static

configurations that participate in the frontier.

A note on Turbo Boost: For any given throughput level, we observe that the reported power

utilization is stable for all CPU frequencies except for Turbo Boost. When running in Turbo

Boost, the temperature of the CPU gradually rises over a few minutes from 58°C to 78°C, and

with it the dissipated energy rises by 4 W for the same level of performance. The experiments

in §2.5.3 run for a long time in Turbo Boost mode with a hot processor; we therefore report

those results as an energy band of 4 W.

Energy proportionality We evaluate 224 distinct combinations: from one to eight cores, using

consistently either one or two threads per core, for 14 different DVFS levels from 1.2 Ghz to

2.4 Ghz as well as Turbo Boost. Fig. 2.8a shows the 45 static configurations (out of 224) that

build the Pareto frontier for energy proportionality. The figures confirm the intuition that:

(i) various static configurations have very different dynamic ranges, beyond which they are

no longer able to meet the SLO; (ii) each static configuration draws substantially different

levels of energy for the same amount of work; (iii) at the low-end of the curve, many distinct

configurations operate at the minimal frequency of 1.2 Ghz, obviously with a different number

of cores and threads, and contribute to the frontier; these are shown in green in the Figure; (iv)

at the high-end of the range, many configurations operate with the maximum of 8 cores, with

different frequencies including Turbo Boost.

Consolidation The methodology here is a little different. We first characterize the background

job, and observe that it delivers energy-proportional throughput up to 2.4 Ghz, but that

Turbo Boost came at an energy/throughput premium. Consequently, we restrict the Pareto

configuration space at 2.4 Ghz; the objective function is the throughput of the background job,

expressed as a fraction of the throughput of that same job without any foreground application.

Background jobs run on all cores that are not used by the foreground application. Fig. 2.8b

shows the background throughput, expressed as a fraction of the standalone throughput, as a

function of the foreground throughput, provided that the foreground application meets the

SLO: as the foreground application requires additional cores to meet the SLO, the background

throughput decreases proportionally.

DVFS-only alternative Fig. 2.9 further analyzes the data and compares the Pareto frontiers

of Linux 4.8 and IX for the energy-proportional scenario with an alternate frontier that only

considers changes in DVFS frequency. We observe that the impact of DVFS-only controls

differs noticeably between Linux and IX: with Linux, the DVFS-only alternate frontier is

very close to the Pareto frontier, meaning that a DVFS-only approach such as Pegasus [79]

or Adrenaline [50] would be adequate. This is due to Linux’s idling behavior, which saves

resources. In the case of IX however—and likely for any polling-based dataplane—a DVFS-

only scheduler would provide worse energy proportionality at low-moderate loads than a

corresponding Linux-based solution. As many datacenter servers operate in the 10%-30%
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range [6], we conclude that a dynamic resource allocation scheme involving both DVFS and

core allocation is necessary for dataplane architectures.

2.6 Evaluation

We use the results from §2.5.3 to derive a resource configuration policy framework, whose pur-

pose is to determine the sequence of configurations to be applied, as a function of the load on

the foreground application, to both the foreground (latency-sensitive) and background (batch)

applications. Specifically, given an ever-increasing (or -decreasing) load on the foreground

applications, the goal is to determine the sequence of resource configurations minimizing

energy consumption or maximizing background throughput, respectively.

We observe that (i) the latency-sensitive application (���������) can scale nearly linearly,

up to the 8 cores of the processor; (ii) it benefits from running a second thread on each core,

with a consistent speedup of 1.3×; (iii) it is most energy-efficient to first utilize the various

cores, and only then to enable the second hyperthread on each core, rather than the other way

around; and (iv) it is least energy-efficient to increase the frequency.

We observe that the background application (i) also scales linearly; but (ii) does not benefit

from the 2nd hyperthread; (iii) is nearly energy-proportional across the frequency spectrum,

with the exception of Turbo Boost. From a total cost of ownership perspective, the most

efficient operating point for the workload consolidation of the background task is therefore to

run the system at the processor’s nominal 2.4 Ghz frequency whenever possible.

We combine these observations with the data from the Pareto analysis and derive the following

policies:

Energy Proportional Policy As a base state, run with only one core and hyperthread with the

socket set at the minimal clock rate (1.2Ghz). To add resources, first enable additional cores,

then enable hyperthreads on all cores (as a single step), and only after that gradually increase

the clock rate until reaching the nominal rate (2.4Ghz); finally enable Turbo Boost. To remove

resources, do the opposite. This policy leads to a sequence of 22 different configurations.

Workload Consolidation Policy As a base state, run the background jobs on all available cores

with the processor at the nominal clock rate. To add resources to the foreground application,

first shift cores from the background thread to the foreground application one at a time. This

is done by first suspending the background threads; use both hyperthreads of the newly freed

core for the foreground application. Next, stop the background job entirely and allocate all

cores to the foreground applications. As a final step, enable Turbo Boost. This policy leads to a

sequence of 9 different configurations.

These policies closely track the corresponding Pareto frontier. For energy proportionality,

(i) the 45 different static configurations of the frontier are a superset of the configurations
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Figure 2.10 – Energy proportionality (left) and workload consolidation (right) for the slope
pattern
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Figure 2.11 – Energy proportionality (left) and workload consolidation (right) for the step
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Figure 2.12 – Energy proportionality (left) and workload consolidation (right) for the sin+noise
pattern
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2.6. Evaluation

Smooth Step Sine+noise
Energy Proportionality (W)

Max. power 93 93 95
Measured 46 (-51%) 47 (-50%) 55 (-42%)
Pareto bound 42 (-54%) 43 (-54%) 49 (-49%)

Server consolidation opportunity (% of peak)
Pareto bound 48% 47% 38%
Measured 44% 41% 31%

Table 2.4 – Energy Proportionality and Consolidation gains.

enabled by the policy, and (ii) the difference in overall impact in terms of energy spent is

marginal. For consolidation, Pareto and policy nearly identically overlap.

We use three synthetic, time-accelerated load patterns to evaluate the effectiveness of the

control loop under stressful conditions. All three vary between nearly idle and maximum

throughput within a four minute period: the slope pattern gradually raises the target load from

0 and 6.2M RPS and then reduces its load; the step pattern increases load by 500 KRPS every 10

seconds; and finally the sine+noise pattern is a basic sinusoidal pattern modified by randomly

adding sharp noise that is uniformly distributed over [-250,+250] KRPS and re-computed every

5 seconds. The slope pattern provides a baseline to study smooth changes, the step pattern

models abrupt and massive changes, while the sine+noise pattern is representative of daily

web patterns [132].

Fig. 2.10, Fig. 2.11 and Fig. 2.12, show the results of these three dynamic load patterns for the

energy proportionality and workload consolidation scenarios. In each case, the top figure

measures the observed throughput. They are annotated with the control loop events that add

resources (green) or remove them (red). Empty triangles correspond to core allocations and

full triangles to DVFS changes. The middle figure evaluates the soundness of the algorithm

and reports the 99th percentile latency, as observed by a client machine and reported every

second. Finally, the bottom figures compare the overall efficiency of our solution based on

dynamic resource controls with (i) the maximal static configuration, using all cores and Turbo

Boost, and (ii) the ideal, synthetic efficiency computed using the Pareto frontier of Fig. 2.8.

Energy Proportionality

The left column of Figs. 2.10–2.11–2.12 shows the dynamic behavior for the energy proportion-

ality scenario. The top-left graph shows that the workload tracks the desired throughput of the

pattern and exercises the entire sequence of configurations, gradually adding cores, enabling

hyperthreading, increasing the frequency and finally enabling Turbo Boost, before doing it

in reverse. The step pattern of Fig 2.11 is particularly challenging, as the instant change in

load level requires multiple, back-to-back, configurations changes. With a few exceptions,

the middle-left graph shows that the latencies remain well below the 500μs SLO. We further

discuss the violations below. For these three figures, the bottom-left graph compares the

43



Chapter 2. Dataplane OS and resource management

power dissipated by the workload with the corresponding power levels as determined by the

Pareto frontier (lower bound) or the maximum static configuration (upper bound). This graph

measures the effectiveness of the control loop to maximize energy proportionality. We observe

that the dynamic (actually measured) power curve tracks the Pareto (synthetic) curve well,

which defines a bound on energy savings. When the dynamic resource controls enter Turbo

Boost mode, the measured power in all three cases starts at the lower end of the 4 W range and

then gradually rises, as expected. Table 2.4 shows that the three patterns have Pareto savings

bounds of 49%, 54% and 54%. IX’s dynamic resource controls results in energy savings of 42%,

50% and 51%, which is 87%, 93% and 94% of the theoretical bound.

Consolidation

The right column of Figs. 2.10–2.11–2.12 shows the dynamic behavior for the workload con-

solidation scenario. Here also, the top-right graphs show that the throughput tracks well the

desired load. Recall that the consolidation policy always operates at the processor’s nominal

rate (or Turbo), which limits the number of configuration changes. The middle-right graph

similarly confirms that the system meets the SLO, with few exceptions. The bottom-right

graphs plot the throughput of the background batch application, expressed as a percentage of

its throughput on a dedicated processor at 2.4 Ghz. We compare it only to the Pareto optimal

upper bound as a maximum configuration would monopolize cores and deliver zero back-

ground throughput. Table 2.4 shows that, for these three patterns, our consolidation policy

delivers 31%–44% of the standalone throughput of the background job, which corresponds to

81%–92% of the Pareto bound.

SLO violations A careful study of the SLO violations of the 6 runs shows that they fall into two

categories. First, there are 16 violations caused by delays in packet processing due to flow

group migrations resulting from the addition of a core. Second, there are 9 violations caused

by abrupt increase of throughput, mostly in the step pattern, which occur before any flow

migrations. The control plane then reacts quickly (in ∼100 ms) and accommodates to the

new throughput by adjusting resources. To further confirm the abrupt nature of throughput

increase specific to the step pattern, we note that the system performed up three consecutive

increases in resources in order to resolve a single violation. 23 of the 25 total violations last

a single second, with the remaining two violations lasting two seconds. We believe that the

compliance with the SLO achieved by our system is more than adequate for any practical

production deployment.

Flow group migration analysis Table 2.5 measures the latency of the 550 flow group migra-

tions that occur during the 6 benchmarks, as described in §2.4.5. It also reports the total

number of packets whose processing is deferred during the migration (rather than dropped or

reordered). We first observe that migrations present distinct behaviors when scaling up and

when scaling down the number of cores. The difference can be intuitively explained since the

migrations during the scale up are performed in a heavily loaded system, while the system

during the scale down is partially idle. In absolute terms, migrations that occur when adding a
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2.7. Discussion

avg 95th pct. max. stddev

ad
d

co
re

prepare (μs) 98 249 3293 341
wait (μs) 187 747 1120 237
rpc (μs) 164 417 918 143
deferred (μs) 134 433 2676 304
total (μs) 585 1684 6126 697
# packets 87 510 2711 263

re
m

ov
e

co
re prepare (μs) 22 48 287 24

wait (μs) 36 105 309 39
rpc (μs) 12 26 40 8
deferred (μs) 16 35 78 11
total (μs) 89 162 335 44
# packets 3 8 13 2

Table 2.5 – Breakdown of flow group migration measured during the six benchmarks.

core take 585 on average and less than 1.5 ms 95% of the time. The outliers can be explained by

rare occurrences of longer preparation times or when processing up to 2711 deferred packets.

2.7 Discussion

What makes IX fast The results in §2.5 show that a networking stack can be implemented in a

protected OS kernel and still deliver wire-rate performance for most benchmarks. The tight

coupling of the dataplane architecture, using only a minimal amount of batching to amortize

transition costs, causes application logic to be scheduled at the right time, which is essential

for latency-sensitive workloads. Therefore, the benefits of IX go beyond just minimizing

kernel overheads. The lack of intermediate buffers allows for efficient, application-specific

implementations of I/O abstractions such the ����� event library. The zero-copy approach

helps even when the user-level libraries add a level of copying, as it is the case for the ��������

compatible interfaces in �����. The extra copy occurs much closer to the actual use, thereby

increasing cache locality. Finally, we carefully tuned IX for multi-core scalability, eliminating

constructs that introduce synchronization or coherence traffic.

The IX dataplane optimizations — run to completion, adaptive batching, and a zero-copy API

— can also be implemented in a user-level networking stack in order to get similar benefits

in terms of throughput and latency. While a user-level implementation would eliminate

protection domain crossings, it would not lead to significant performance improvements over

IX. Protection domain crossings inside VMX non-root mode add only a small amount of extra

overhead, on the order of a single L3 cache miss [11]. Moreover, these overheads are quickly

amortized at higher packet rates.

Subtleties of adaptive batching Batching is commonly understood to trade off higher latency

at low loads for better throughput at high loads. IX uses adaptive, bounded batching to

actually improve on both metrics. Fig. 2.13 compares the latency vs. throughput on the USR
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Figure 2.13 – 99th percentile latency as a function of throughput for USR workload from
Fig. 2.7b, for different values of the batch bound B .

��������� workload of Fig. 2.7b for different upper bounds B to the batch size. At low load,

B does not impact tail latency, as adaptive batching does not delay processing of pending

packets. At higher load, larger values of B improve throughput, by 29% between B = 1 to

B = 16. For this workload, B ≥ 16 maximizes throughput.

While tuning IX performance, we ran into an unexpected hardware limitation that was triggered

at high packet rates with small average batch sizes (i.e. before the dataplane was saturated): the

high rate of PCIe writes required to post fresh descriptors at every iteration led to performance

degradation as we scaled the number of cores. To avoid this bottleneck, we simply coalesced

PCIe writes on the receive path so that we replenished at least 32 descriptor entries at a time.

Luckily, we did not have to coalesce PCIe writes on the transmit path, as that would have

impacted latency.

Using Pareto as a guide Even though the Pareto results are not used by the dynamic resource

controller, the Pareto frontier proved to be a valuable guide, first to motivate and quantify

the problem, then to derive the configuration policy sequence, and finally to evaluate the

effectiveness of the dynamic resource control by setting an upper bound on the gains result-

ing from dynamic resource allocation. Many factors such as software scalability, hardware

resource contention, network and disk I/O bottlenecks, will influence the Pareto frontier of

any given application, and therefore the derived control loop policies. Without violating the

SLO, the methodology explicitly trades off worst average and tail latency for better overall
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efficiency. More complex SLOs, taking into account multiple aspects of latency distribution,

would define a different Pareto frontier, and likely require adjustments to the control loop.

Adaptive, flow-centric scheduling The new flow-group migration algorithm of §2.4.5 leads to

a flow-centric approach to resource scheduling, where the network stack and application logic

always follow the steering decision. POSIX applications can balance flows by migrating file

descriptors between threads or processes, but this tends to be inefficient because it is difficult

for the kernel to match the flow’s destination receive queue to changes in CPU affinity. Flow

director can be used by Linux to adjust the affinity of individual network flows as a reactive

measure to application-level and kernel thread migration rebalancing, but the limited size of

the redirection table prevents this mechanism from scaling to large connection counts. By

contrast, our approach allows flows to be migrated in entire groups, improving efficiency, and

is compatible with more scalable hardware flow steering mechanisms based on RSS.

Limitations of current prototype The current IX implementation does not yet exploit IOM-

MUs or VT-d. Instead, it maps descriptor rings directly into IX memory, using the Linux

pagemap interface to determine physical addresses. Although this choice puts some level

of trust into the IX dataplane, application code remains securely isolated. In the future, we

plan on using IOMMU support to further isolate IX dataplanes. We anticipate overhead will

be low because of our use of large pages. We also plan to add support for interrupts to the

IX dataplanes. The IX execution model assumes some cooperation from application code

running in elastic threads. Specifically, applications should handle events in a quick, non-

blocking manner; operations with extended execution times are expected to be delegated to

background threads rather than execute within the context of elastic threads. The IX dataplane

is designed around polling, with the provision that interrupts can be configured as a fallback

optimization to refresh receive descriptor rings when they are nearly full and to refill transmit

descriptor rings when they are empty (steps (1) and (6) in Fig 2.2). Occasional timer interrupts

are also required to ensure full TCP compliance in the event an elastic thread blocks for an

extended period.

Hardware trends Our experimental setup using one Sandy Bridge processor and the Intel

82599 NIC [53]. Hash filters for flow group steering could benefit from recent trends in NIC

hardware. For example, Intel’s new XL710 chipset [54], has a 512 entry hash LUT (as well as

independent 64 entry LUTs for each VF) in contrast to the 128 entries available in the 82599

chipset. This has the potential to reduce connection imbalances between cores, especially

with high core counts. The newly released Haswell processors provide per-core DVFS controls,

which further increases the Pareto space.

Future work We also plan to explore the synergies between IX and networking protocols

designed to support microsecond-level latencies and the reduced buffering characteristics of

IX deployments, such as DCTCP [1] and ECN [109]. Note that the IX dataplane is not specific

to TCP/IP. The same design principles can benefit alternative, potentially application specific,

network protocols, as well as high-performance protocols for non-volatile memory access.
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Finally, we will investigate library support for alternative APIs on top of our low-level interface,

such as MegaPipe [45], cooperative threading [138], and rule-based models [127]. Such APIs

and programming models will make it easier for applications to benefit from the performance

and scalability advantages of IX.

2.8 Related Work

We organize the discussion topically, while avoiding redundancy with the commentary in

§2.2.3.

Hardware virtualization Hardware support for virtualization naturally separates control and

execution functions, e.g., to build type-2 hypervisors [17, 63], run virtual appliances [116],

or provide processes with access to privileged instructions [11]. Similar to IX, Arrakis uses

hardware virtualization to separate the I/O dataplane from the control plane [103]. IX differs

in that it uses a full Linux kernel as the control plane; provides three-way isolation between

the control plane, networking stack, and application; and proposes a dataplane architecture

that optimizes for both high throughput and low latency. On the other hand, Arrakis uses

Barrelfish as the control plane [10] and includes support for IOMMUs and SR-IOV.

Library operating systems Exokernels extend the end-to-end principle to resource man-

agement by implementing system abstractions via library operating systems linked in with

applications [35]. Library operating systems often run as virtual machines [16] used, for in-

stance, to deploy cloud services [83]. IX limits itself to the implementation of the networking

stack, allowing applications to implement their own resource management policies, e.g. via

the �������� compatibility layer.

Asynchronous and zero-copy communication Systems with exception-less, asynchronous,

or batched system calls substantially reduce the overheads associated with frequent kernel

transitions and context switches [45, 57, 113, 124]. IX’s use of adaptive batching shares sim-

ilar benefits but is also suitable for low-latency communication. Zero-copy reduces data

movement overheads and simplifies resource management [101]. POSIX OSes have been

modified to support zero-copy through page remapping and copy-on-write [21]. By contrast,

IX’s cooperative memory management enables zero-copy without page remapping. Similar to

IX, TinyOS passes pointers to packet buffers between the network stack and the application

in a cooperative, zero-copy fashion [72]. However, IX is optimized for datacenter workloads,

while TinyOS focuses on memory constrained, sensor environments.

Scheduling Scheduler activations [2] give applications greater control over hardware threads

and provide a mechanism for custom application-level scheduling. Callisto [48] uses a similar

strategy to improve the performance of co-located parallel runtime systems. Our approach dif-

fers in that an independent control plane manages the scheduling of hardware threads based

on receive queuing latency indicators while the dataplane exposes a simple kernel threading

abstraction. SEDA [140] also monitors queuing behavior to make scheduling decisions such as
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thread pool sizing. Chronos [59] makes use of software-based flow steering, but with a focus

on balancing load to reduce latency. Affinity Accept [102] embraces a mixture of software

and hardware-based flow steering in order to improve TCP connection affinity and increase

throughput. We focus instead on energy proportionality and workload consolidation.

Energy Proportionality The energy proportionality problem [7] has been well explored in

previous work. Some systems have focused on solutions tailored to throughput-oriented

workloads [87] or read-only workloads [67]. Meisner et. al. [88] highlight unique challenges

for low latency workloads and advocate full system active low-power modes. Similar to our

system, Pegasus [79] achieves CPU energy proportionality for low latency workloads. Our work

expands on Pegasus by exploring the elastic allocation of hardware threads in combination

with processor power management states and by basing scheduling decisions on internal

latency metrics within a host endpoint instead of an external controller. Niccolini et. al. show

that a software router, running on a dedicated machine, can be made energy-proportional [97].

Similar to our approach, queue length is used as a control signal to manage core allocation and

DVFS settings. However, we focus on latency-sensitive applications, rather than middlebox

traffic, and consider the additional case of workload consolidation.

Co-location Because host endpoints contain some components that are not energy propor-

tional and thus are most efficient when operating at 100% utilization, co-location of workloads

is also an important tool for improving energy efficiency. At the cluster scheduler level, Bub-

bleUp [85] and Paragon [26] make scheduling decisions that are interference-aware through

efficient classification of the behavior of workload co-location. Leverich et. al. [71] demon-

strate that co-location of batch and low latency jobs is possible on commodity operating

systems. Our approach explores this issue at higher throughputs and with tighter latency

SLOs. Bubble-Flux [144] additionally controls background threads; we control background

and latency-sensitive threads. CPI2 [149] detects performance interference by observing

changes in CPI and throttles offending jobs. This work is orthogonal to ours and could be a

useful additional signal for our control plane. Heracles manages multiple hardware and soft-

ware isolation mechanisms, including packet scheduling and cache partitioning, to co-locate

latency-sensitive applications with batch tasks while maintaining millisecond SLOs [80]. We

limit our focus to DVFS and core assignment but target more aggressive SLOs.

2.9 Conclusion

We described IX, a dataplane operating system that leverages hardware virtualization to sepa-

rate and isolate the Linux control plane, the IX dataplane instances that implement in-kernel

network processing, and the network-bound applications running on top of them. The IX

dataplane provides a native, zero-copy API that explicitly exposes flow control to applications.

The dataplane architecture optimizes for both bandwidth and latency by processing bounded

batches of packets to completion and by eliminating synchronization on multi-core servers.
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The dynamic resource controller allocates cores and sets processor frequency to adapt to

changes in the load of latency-sensitive applications. The novel rebalancing mechanisms do

not impact the steady-state performance of the dataplane and can migrate a set of flow groups

in milliseconds without dropping or reordering packets. We develop two resource control

policies focused on optimizing energy proportionality and workload consolidation.

On microbenchmarks, IX noticeably outperforms both Linux and mTCP in terms of both

latency and throughput, scales to hundreds of thousands of active concurrent connections,

and can saturate 4x10GbE configurations using a single processor socket. Finally, we show

that porting ��������� to IX removes kernel bottlenecks and improves throughput by up to

6.1×, while reducing tail latency by more than 1.9×.

We use three varying load patterns to evaluate the effectiveness of our approach to resource

control. Our results show that resource controls can save 42%–51% of the processor’s energy,

or enable a background job to deliver 31%–44% of its standalone throughput. We synthesize

the Pareto frontier by combining the behavior of all possible static configurations. Our policies

deliver 87%–94% of the Pareto optimal bound in terms of energy proportionality, and 81%–92%

in terms of consolidation.
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3 Scheduling for dataplane OS

This chapter focuses on the efficient scheduling on multicore systems of very fine-grain

networked tasks, which are the typical building block of online data-intensive applications.

The explicit goal is to deliver high throughput (millions of remote procedure calls per second)

for tail latency service-level objectives that are a small multiple of the task duration.

We present ZYGOS1, a system optimized for μs-scale, in-memory computing on multicore

servers. It implements a work-conserving scheduler within a specialized operating system

designed for high request rates and a large number of network connections. ZYGOS uses

a combination of shared-memory data structures, multi-queue NICs, and inter-processor

interrupts to rebalance work across cores.

For an aggressive service-level objective expressed at the 99th percentile, ZYGOS achieves 75%

of the maximum possible load determined by a theoretical, zero-overhead model (centralized

queueing with FCFS) for 10μs tasks, and 88% for 25μs tasks.

We evaluate ZYGOS with a networked version of Silo, a state-of-the-art in-memory transac-

tional database, running TPC-C. For a service-level objective of 1000μs latency at the 99th

percentile, ZYGOS can deliver a 1.63× speedup over Linux (because of its dataplane architec-

ture) and a 1.26× speedup over IX, a state-of-the-art dataplane (because of its work-conserving

scheduler).

3.1 Introduction

To meet service-level objectives (SLO), web-scale online data-intensive applications, such as

search, e-commerce, and social applications, rely on the scale-out architectures of modern,

warehouse-scale datacenters [6]. In such deployments, a single application can comprise

hundreds of software components, deployed on thousands of servers organized in multiple

tiers and connected by commodity Ethernet switches. Such applications must support high

1The Greek word for balancing scales.
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concurrent connection counts and operate with user-facing SLOs, often defined in terms of

tail latency [3, 25, 98]. To meet these objectives, most such applications distribute all critical

data (e.g., the social graph) in the memory of hundreds of data services, such as memory-

resident transactional databases [130, 126, 137, 38, 139], NoSQL databases [110, 93], key-value

stores [31, 77, 89, 148], or specialized graph stores [15].

These in-memory data services typically service requests from hundreds of application servers

(high fan-in). Because each user request often involves hundreds of data services (high fan-out)

and must wait for the laggard to complete, the SLO of the data services must consider the long

tail of the latency distributions of requests [25]. Individual tasks often require only a handful

of μs to execute. These services would therefore ideally execute at the highest throughput,

efficiently use all system resources (CPU, NIC, and memory), and deliver a tail-latency SLO

that is only a small multiple of the typical task service time [8].

This hunt for the killer microseconds [8] requires researchers to revisit assumptions across the

network and compute stacks, whose policies and implementations play a significant role in

exacerbating the problem [71].

Our work focuses on the efficient scheduling on multicore systems of these very fine-grain

in-memory services. The theoretical answer is well understood: (a) single-queue, multiple-

processor models deliver lower tail latency than parallel single-queue, single-processor models

and (b) FCFS delivers the best tail latency for low-dispersion tasks while processor sharing

delivers superior results in high dispersion service time distributions [143].

The systems answer is, unfortunately, a lot less obvious, in particular when considering high

request rates consisting of short messages and small processing times. In such situations, the

state-of-the-art uses multi-queue NICs (e.g., RSS [90]) to scale the networking stack across

the multiple cores of the system. Current designs force users to choose between conventional

operating systems (i.e., typically Linux), and more specialized kernel-bypass approaches. The

former can efficiently schedule the resources of a multi-core server and prioritize latency-

sensitive tasks [19] but suffers from high overheads for μs-scale tasks. The latter improves

throughput substantially (by up to 6× for key-value stores [13]) through sweeping simplifica-

tions such as separation of control from the dataplane execution, polling, run-to-completion,

and synchronization-free, flow-consistent mapping of requests to cores [13, 103, 77, 57, 84, 59].

These sweeping simplifications lead to two related forms of inefficiencies: (a) the dataplane

is not a work conserving scheduler, i.e., a core may be idle while there are pending requests;

and (b) the dataplane suffers from head-of-line blocking, i.e., a request may be blocked

until the previous tasks complete execution. While these limitations might be acceptable to

workloads with near-deterministic task execution time and relatively loose SLO (e.g., some

widely-studied ���������workloads [89, 3] with an SLO at > 100× the mean service time [13]),

these assumptions break down when considering more complex workloads, e.g., in-memory

transaction processing with a TPC-C-like mix of requests or with more aggressive SLO targets.
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We present ZYGOS, a new approach to system software optimized for μs-scale, in-memory

computing. ZYGOS implements a work-conserving scheduler free of any head-of-line blocking.

While the design decisions voluntarily deviate from dataplane principles, ZYGOS retains the

bulk of their performance advantages. The design, implementation, and evaluation of ZYGOS

makes the following contributions:

(1) The design of ZYGOS, which leverages many conventional operating system building blocks

such as the use of symmetric multiprocessing networking stacks, alternate use of polling and

interrupts, inter-processor interrupts (IPI), and task stealing with the overall goal of delivering

a work-conserving schedule. ZYGOS is architected into three distinct layers: (a) a lower

networking layer, which runs in strict isolation on each core, (b) a middle shuffle layer which

allows idle cores to aggressively steal pending events, and (c) an upper execution layer, which

exposes a commutative API to applications for scalability [22]. The shuffle layer eliminates

head-of-line-blocking while also offering strong ordering semantics of events associated with

the same connection.

(2) The implementation of ZYGOS, which includes an idle loop logic designed to aggres-

sively identify task stealing opportunities throughout the operating system and down to the

NIC hardware queues. Our implementation leverages hardware virtualization and the Dune

framework [11] and handles IPIs in an exit-less manner similar to ELI [42].

(3) A methodology using microbenchmarks with synthetic service times to identify system

overheads as a function of task duration and distribution. This methodology allows us to

identify both design limitations and implementation overheads. We apply this approach to

Linux for event-driven execution models (using both partitioned and floating connections

among threads), IX and ZYGOS and show that all converge as the task granularity increases,

but at noticeably different rates, to distinct, well-understood models. For an SLO of 10× the

mean service time at the 99th percentile, ZYGOS achieves 75% of the maximum possible

theoretical load for 10μs tasks, and 88% of the equivalent load for 25μs tasks (§3.6.1).

(4) We compare ZYGOS to IX, a state-of-the-art dataplane with strict run-to-completion

that partitions flows onto cores [13]. While ZYGOS’s scheduler introduces some necessary

buffering, communication and synchronization (which are measurable for extremely small

tasks), it eliminates head-of-line blocking and clearly outperforms IX for tasks ≥10μs (§3.6.1).

IX does outperform ZYGOS for workloads with very small task durations such as ���������.

The difference is primarily due to IX’s adaptive bounded batching, which is not currently

supported in ZYGOS. (§3.6.2)

(5) Last but not least, we evaluate the benefits of ZYGOS for an in-memory, transactional

database running the TPC-C workload. Our setup uses Silo [130], a state-of-the-art, in-memory

transactional database prototype. As Silo is only a library, we added client/server support to

Silo, ported it to Linux, IX, and ZYGOS, and benchmarked it using an open-loop load generator

for an SLO of 1000μs at the 99th percentile tail latency. ZYGOS can deliver a 1.63× speedup

over Linux and a 1.26× speedup over IX. The speedup over Linux is explained by the use of
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many dataplane implementation principles in ZYGOS. The speedup over IX is explained by

ZYGOS’s work-conserving scheduler, which rebalances tasks to deliver consistently low tail

latency nearly up to the point of saturation (§3.6.3).

The source code of ZYGOS, along with benchmarks, scripts and simulation models, is available

in open source [151].

The rest of the chapter is organized as follows: §3.2 provides background on the problem and

the theory. §3.3 describes the experimental methodology and characterizes existing systems.

We describe the design (§3.4), implementation (§3.5) and evaluation of ZYGOS (§3.6). We

discuss a key tradeoff (§3.7), related work (§3.8), and conclude.

3.2 Background

3.2.1 Scaling remote procedure calls

In-memory data services typically expose a remote procedure call (RPC) interface. The prob-

lem of efficiently handling incoming RPCs dates back to the original C10k problem [18] when

socket scalability was the primary bottleneck. Today, fine-tuned commodity operating systems

can serve millions of requests per second and over a million of concurrent connections on a

commodity server [141, 102, 146].

The initial approaches to building scalable applications allocated a kernel thread or process

per connection; servicing a new request required a scheduling decision. However, despite

the sophistication of modern operating system schedulers such as Completely Fair Scheduler

(CFS) [19] and Borrowed Virtual Time (BVT) [32], context switch and stack management

overheads made developers move to more performant designs to serve incoming requests.

Today’s scalable designs fall into two main event-oriented patterns: symmetrical and asym-

metrical ones. Symmetrical designs split connections onto threads, and each thread interacts

with the operating system using non-blocking system calls. This pattern is used by the popular

�������� and ����� frameworks [75, 76]. On Linux, this pattern typically relies on the �	
��

system call, which has long provided a way to statically map connections to threads. To avoid

cases of load imbalance across cores because of imbalance across connections, developers

tried sharing the same connection among multiple threads. However, this led to thunder-

ing herd problems [68]. The recent addition in Linux 4.5 of ������������� avoids such

problems since in most cases only one thread is woken up to serve �	
�� [36].

In the asymmetrical pattern, a small number of threads handle all network I/O, identify RPC

boundaries and add RPC requests to a centralized queue from which other tasks pull requests.

This pattern is used by frameworks such as ���� [44] and applications such as recent versions

of ����� [96] and Apache Lucene [82]. While this pattern may increase the latency of an
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Figure 3.1 – Queuing models for n = 2 processors.

individual request and impact throughput when the tasks are small, it provides for an elegant

separation of concerns and enables the efficient use of all worker cores.

3.2.2 Kernel bypass and sweeping simplifications

Data plane approaches such as IX [13], Arrakis [103] and user-level stacks [120, 57, 30, 112,

104, 128] bypass the kernel and rely on I/O polling to both increase throughput and reduce

latency jitter [71, 74]. For example, IX increases the throughput of ��������� by up to 6.4×
over Linux [13].

While these sweeping simplifications provide substantial throughput improvements, they

come at a key cost when it comes to resource efficiency: the synchronization-free nature

of dataplanes forces each thread to process only the packets that were directed to it by the

NIC hardware. Assuming a balanced, high-connection count fan-in pattern, such a design

does not substantially impact throughput or even mean latency as all cores would get on

average the same amount of work. It, however, has a dramatic impact on tail latency when the

load is below saturation as some cores may be idle while others have a backlog. Dataplanes

that rely on historical information to rebalance future traffic from the NIC can only address

persistent imbalances and resource allocations problems [13]. The same limitation exists for

applications that are explicitly designed to statistically distribute the load on all cores such

as MICA in its CREW and CRCW execution models [77]. While such a design prevents any

sustained imbalance, the randomized selection process of mapping requests to cores does

nothing to prevent temporary imbalance between cores.

3.2.3 Just enough queuing theory

There are at least three distinct forms of imbalance which impact tail latency that can be

observed in systems:

55



Chapter 3. Scheduling for dataplane OS

16xM/G/1/PS 16xM/G/1/FCFS M/G/16/FCFS M/G/16/PS

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

2

4

6

8

10

12

14

L
a
te
n
c
y

(a) Deterministic

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

2

4

6

8

10

12

14

(b) Exponential

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

2

4

6

8

10

12

14

L
a
te
n
c
y

(c) Bimodal-1

0.0 0.2 0.4 0.6 0.8 1.0

Load

0

2

4

6

8

10

12

14

(d) Bimodal-2

Figure 3.2 – Simulation results for the 99th percentile tail latency for four service time distribu-
tions with S̄ = 1.
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1. Persistent imbalance occurs when different NIC queues observe different packet arrival

rates over long intervals. Unless the system can share the load dynamically, some cores

will be busier than others. This situation can occur if there is connection skew when

some clients request substantially more data than the average, or if there is data access

skew (e.g., the CREW protocol in MICA balances reads but not writes across cores [77]).

2. Arrival bursts cause temporary queuing even when the system is not saturated. The

well-known Poisson arrival process has such bursts which cause the gradual increase in

tail latency as a function of load, even if the time to process each request is fixed. In a

multi-queue system, the Poisson arrival process generates bursts on different cores at

different points in time. This creates a form of temporary imbalance that also impacts

tail latency.

3. Service time variability will also create backlog and head-of-line blocking. A long request

can occupy the processor for a long time, thus leading to a backlog of pending requests

and a severe increase in tail latency.

We use four open-loop queuing models to build an intuition for the impact of arrival bursts

and service time variability on tail latency. We use Kendall’s notation to describe the models,

where in the following expression A/S/n/K, A is the inter-arrival distribution, S is the service

time distribution, n is the number of workers and K is the policy implemented, i.e., first-come-

first-serve (FCFS) or processor sharing (PS). For simplicity of the analysis, all models assume a

Poisson inter-arrival time of requests (A=M). This is expected of many open-queuing models

and representative of datacenter traffic with high fan-in connection counts. The Poisson

process will generate arrival bursts and temporary imbalance in the multi-queue models, but

no persistent imbalance.

Figure 3.1 illustrates the four different modes. Each delivers the same maximum throughput at

saturation (λ= n/S̄), but with different tail latencies. The models idealize the implementations

of the systems of §3.2.

• The centralized-FCFS model (formally M/G/n/FCFS) idealizes event-driven applications

that process events from a single queue or that float connections across cores (e.g., using

the ����� exclusive flag).

• The partitioned-FCFS model (formally n×M/G/1/FCFS) idealizes event-driven applica-

tions that partition connections among cores (e.g., �������	-based applications) and

associate each core with its own private work queue. This model can be deployed on

conventional operating systems or shared-nothing dataplanes

• M/G/n/PS idealizes the thread-oriented pattern (1 thread per connection) deployed on

time-sharing operating systems. In practice, the task duration granularity must be a

multiple of the operating system time quantum.
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• n×M/G/1/PS similarly idealizes the thread-oriented pattern when the operating system

does not rebalance threads among cores.

Figure 3.2 illustrates simulation results for these idealized queueing models for a system with

n = 16 processors. The figure shows the result for four well-known distributions [81]:

• deterministic P [X = S̄] = 1

• exponential with mean service time S̄

• bimodal-1:P [X = S̄/2] = .9;P [X = 5.5× S̄] = .1

• bimodal-2:P [X = S̄/2] = .999;P [X = 500.5× S̄] = .001

For each distribution, Figure 3.2 shows the tail request latency (queuing delay + service time)

at the 99th percentile as a function of the load. Intuitively we understand that as the system

load increases and approaches the system’s limits, the number of requests in the queues

also increases. That leads to an increase in the queueing time and tail latency. As expected,

the minimum 99th-percentile latency is 1 for the deterministic distribution and 4.6 for the

exponential distribution. As for the two bimodal distribution, b1 has a minimum tail latency

of 5.5, which corresponds to the slow requests and b2 has a minimum tail latency of 0.5, which

corresponds to its fast requests.

We make two observations that inform our system design:

Observation 1: Single-queue systems (i.e., M/G/n/*) perform better compared to systems

with multiple queues (i.e., n×M/G/1/*) Systems with multiple queues, even with random

assignment of events to queues, suffer from temporary load imbalance. This imbalance

can create a backlog on some processors while other queues are empty. The lack of work

conservation in such models limits performance. In contrast, single-queue models with a

work-conserving scheduler (whether FCFS or PS) can immediately schedule the next task on

any available processor.

Observation 2: FCFS performs better in regards to tail latency for distributions with low

dispersion This result has also been theoretically analyzed by Wierman et al. [143]. In Fig-

ure 3.2, FCFS outperforms PS for the deterministic, exponential and bimodal-1 distribution.

PS only outperforms FCFS when the variance in service times increases, as in the case for

bimodal-2. Note that partitioned-FCFS performs that poorly in bimodal-2 that is not obvious

in these axis scales.

3.3 Experimental Methodology

We now describe the experimental methodology used to evaluate existing low-latency systems.

The challenge is to define metrics that help determine (a) the inherent design tradeoffs by
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Figure 3.3 – Maximum load that meets the SLO as a function of the mean service time S̄. The
SLO is set at ≤ (10× S̄) at the 99th percentile. The grey lines correspond to the ideal upper
bounds determined by the centralized-FCFS and partitioned-FCFS models.
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comparing real-life systems with the idealized models of §3.2.3; and (b) the sweet spot, in terms

of mean service time and distribution, of each system. We use synthetic microbenchmarks to

compare analytical results with experimental baseline results for three OS configurations.

3.3.1 Approach and metrics

We rely on microbenchmarks with synthetic execution times to systematically compare dif-

ferent systems approaches for different task granularities. From the perspective of user-level

execution, the applications are trivial: for each request, the application spins for an amount

of time randomly selected to match both service time (S̄) and distribution. From a systems

perspective, the application follows the event-driven model to accept remote procedure calls

sent over TCP/IP socket by client machines. The clients approximate an open-loop load-

generator where incoming requests follow a Poisson inter-arrival time on randomly-selected

connections [117]. All throughputs (requests per second) and 99th percentile tail latencies are

measured on the client-side.

We use two metrics to compare systems: (a) the conventional "tail latency vs. throughput" is

used to compare the efficiency of different systems for a given task granularity and distribution;

(b) the "maximum load @ SLO" is used to compare the efficiency across timescales, for a given

SLO expressed as a multiple of the mean service time.

This second metric is used to determine how fast different systems converge (or not) to

the expected behavior of their idealized model, as the service time increases. For example,

consider an SLO that requires 99% of requests to complete within ≤ 10× S̄. Queuing theory

predicts a maximum load for each configuration, e.g., for the exponential distribution a load

of 53.7% for the partitioned-FCFS model and of 96.2% for centralized-FCFS.

3.3.2 Experimental Environment

Our experimental setup consists of a cluster of 11 clients and one server connected by a

Quanta/Cumulus 48x10GbE switch with a Broadcom Trident+ ASIC. The client machines are a

mix of Xeon E5-2637 @ 3.5 GHz and Xeon E5-2650 @ 2.6 GHz. The server is a Xeon E5-2665 @

2.4 GHz with 8 cores (16 hyperthreads) and 256 GB of DRAM. All machines are configured with

Intel x520 10GbE NICs (82599EB chipset). We connect the clients and the server to the switch

through a single NIC port each. The client machines run �������� [71] as a load generator:

10 machines generate load and the 11th one measures latency. The machines connect to the

server over a total of 2752 TCP/IP connections. To minimize client latencies, we modified the

latency-measurement agent of �������� to use a DPDK-based, simple TCP/IP stack.

The machines run an Ubuntu LTS 16.04 distribution running Linux kernel version 4.11. Sys-

tems are tuned to reduce jitter: all power management features, including CPU frequency

governors and TurboBoost, and support for transparent huge pages, are disabled.
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3.3.3 Evaluated Systems

The synthetic microbenchmark models an event-oriented, scalable RPC server. During the

setup phase, it accepts all connections from the client machines. During the benchmark, it

simply receives request messages from the open connections, spins during the requested

amount of time and returns a response. The server is setup as a 16-way multi-threaded

application that uses all cores (and hyperthreads) and memory of the CPU socket connected

to the NIC. We deliberately leave the other socket unused to eliminate the potential impact of

NUMA policies in this study. We compare three configurations designed to support a large

number of incoming connections:

• Linux-partitioned: This mode minimizes communication and application logic at the

expense of load-imbalance: each thread accepts its set of connections (as directed

by the RSS in the NIC [90]) and then polls on that same set during the benchmark.

Partitioned-FCFS models the performance upper bound.

• Linux-floating: In this mode, all open connections are put into a single pool from which

all threads may poll. Our implementation uses a simple locking protocol to serialize

access to the same socket. Centralized-FCFS models the upper bound of performance.

• IX: The application uses the native dataplane ABI to receive socket events and respond

correspondingly. This is also modeled as centralized-FCFS.

Linux configuration The Linux systems were tuned to maximize throughput and minimize

latency, by settling them on a configuration that limits the number of returned events by

����� to 1. We did observe that some of these settings had a surprisingly small, or even

negative impact on either latency or throughput (e.g., the ������	
����� commit evaluated

the impact on thundering herds on a 250-thread setup whereas we only use one per core [36]).

We attribute this to the fact that we pinned each application thread to a distinct core, thereby

avoiding many of the subtle interactions associated with CPU scheduling.

IX configuration IX can process bounded batches of packets to completion, which improves

throughput only for very small task durations. Unless when explicitly mentioned, we disabled

it in our experiments as disabling batching noticeably improves tail latency. We also disabled

the control plane and configured IX to use all 16 hardware threads of the socket and use the

CPU at its nominal frequency of 2.4GHz.

3.3.4 Baseline results

Figure 3.3 shows the maximum load that meets the SLO of the 99th percentile ≤ 10× S̄ for

three baseline operating system configurations described in §3.3.3. We include in greyscale

two horizontal lines that correspond to the upper bound in performance, as predicted by

the partitioned-FCFS and centralized-FCFS, respectively. These upper bounds assume zero
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Figure 3.4 – Dataflow in the ZYGOS operating system. Steps (1) – (6) correspond to the normal
execution on the home core. Steps (a)-(b) occur during stealing and involve the home and
remote cores.

operating system overheads, no scheduling overheads, no propagation delays, no head-of-line

blocking, no interrupt delays, etc. In addition, the centralized model assumes a perfect, global

FCFS order of the allocation of requests to idle processors.

Figure 3.3 shows the result for three of the four distributions studied analytically in Figure 3.2.

We omit the bimodal-2 results as the analysis of §3.2.3 showed that multi-queue systems have

pathological tail latency with an FCFS scheduler. The figure shows clearly that:

(a) IX and Linux-partitioned both converge asymptotically to the expected 16×M/G/1 level of

performance. Intuitively, we understand that as the service time increases, the overhead of

the operating system becomes less prevalent. IX, which is optimized for small tasks, reaches

90% efficiency with tasks ≥25μs, ≥25μs, and ≥60μs for the deterministic, exponential, and

bimodal-1 distributions. Larger tasks are required for Linux-partitioned to reach the same

level of efficiency, i.e., ≥120μs, ≥120μs, and ≥90μs, respectively.

(b) Yet, Linux-floating actually provides the best performance for larger tasks and slowly con-

verges to the upper bound predicted by the centralized-FCFS model. The ability to rebalance

tasks across cores allows it to outperform IX for tasks that are ≥50μs, ≥20μs, and ≥14μs for

the deterministic, exponential and bimodal-1 distributions.

3.4 Design

3.4.1 Requirements

The theoretical analysis suggests, and in fact proves, that synchronization-free dataplane

approaches cannot provide a robust solution to the tail latency problem, in particular when

the service time distribution has a high dispersion. Yet, synchronization-free dataplanes

provide substantial throughput improvements over conventional operating systems.
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We design ZYGOS, a single-address space operating system for the latency-sensitive data

services, components of large-scale, online, data-intensive applications. Our design does not

make any client-side assumptions or require any changes to the network protocol stack. We

set the following hard requirements for our system design:

(1) Designed for current-generation datacenter architectures: Xeon multicore processors,

10GbE+ NICs with stateless offloads, Ethernet connectivity.

(2) Build a robust, multi-core, work-conserving scheduler free of head-of-line blocking for

event-driven applications.

(3) Provide clean, ordering semantics of task stealing operations to multi-threaded applications

when handling back-to-back events for the same socket.

(4) Minimally degrade the throughput of short tasks when compared with state-of-the-art,

shared-nothing dataplanes.

These hard requirements constrain the design space. While commodity operating systems

such as Linux meet requirements #1 and #2, they provide only partial support for #3, which

we will discuss in §3.4.3. As discussed in §3.2.2, the strict run-to-completion approach of

dataplanes and their shared-nothing design is not an appropriate architectural foundation.

We also rule out asymmetrical approaches which dedicate some cores to specific purposes

(such as network processing) as the partitioning of resources is highly sensitive to assumptions

on task granularities.

3.4.2 ZYGOS High-level Design

ZYGOS shares a number of architectural and implementation building blocks with IX [13]:

each ZYGOS instance runs a single application in a single address space, and accesses the

network through its dedicated NIC (physical or virtual function) with a dedicated IP address;

each ZYGOS instance runs on top of the Dune framework [11]; a separate control plane can

adjust resource allocations among instances.

Despite the lineage, ZYGOS is designed with radically different scheduling and communi-

cation principles than IX: IX is designed around a coherency-free execution model, i.e., no

cache-coherence traffic among cores is necessary, in the common case, to receive packets,

open connections, or execute application tasks; ZYGOS is optimized for task stealing which

has intrinsic communication requirements. IX achieves high throughput through adaptive

batching, an approach that ensures that a batch of packets is first carried through the net-

working stack and then —without further buffering— processed by the application; ZYGOS

uses intermediate buffering to enable stealing. Finally, IX is also designed around a run-to-

completion model where it alternates execution between network processing and application

execution, which cannot be interrupted; ZYGOS relies on intermediate buffering and IPIs to

eliminate head-of-line blocking.
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ZYGOS achieves work-conservation with minimal throughput impact by architecturally sepa-

rating the execution stack into three distinct layers, illustrated in Figure 3.4:

(1) the lower networking layer executes independently on each core, in a coherency-free

manner. This includes the hardware/software driver layer, which relies on RSS to dispatch

flow-consistent traffic to one receive queue per core. This also includes the layer-4 TCP/IP

and UDP/IP layer, all of their associated data structures, intermingled queues, and timers.

This design eliminates the need for any locking within the networking stack and ensures good

cache locality.

(2) the intermediate shuffle layer introduces a new data structure per core: the shuffle queue

is a single-producer, multiple-consumer queue which contains the list of ready connections

originating from a given core. Connections in the shuffle queue contain at least one outstand-

ing event and can be consumed by the core that produced it —the home core— or atomically

stolen by another remote core.

(3) the application execution layer manages the interactions between the kernel and the

application through event conditions and batched system calls [124]. Each core has its own

data structures and also operates in a coherency-free execution manner within that layer.

Obviously, the application itself may have synchronization or shared-memory communication

between cores and does not, in the general case, execute in a coherency-free manner.

Figure 3.4 shows the typical flow of events. Events numbered (1) – (5) occur when the packet is

processed on its home core (i.e., when no stealing occurs): (1) the driver dequeues packets

from the hardware ring into a software queue; (2) the TCP/IP stack processes a batch of packets

and enqueues ready connections into the shuffle queue; (3) the application execution layer

dequeues the top entry, generates corresponding event conditions for the application and

transfers execution to it. This, in turn, generates batched, system calls; (4) some system calls

may call back into the network stack leading to execution of timers and/or (5) packet transmits.

While the control flow resembles that of IX, the data flow is distinct as the shuffle queue breaks

the run-to-completion assumptions as data is asynchronously produced into it and consumed

from it.

Figure 3.4 also shows the interactions during a steal as the steps (a)-(b) in red. Consider

the case where the remote core has no pending packets in the hardware queue, no pending

packets in the software queue and no pending events in its shuffle queue. In step (a), it can

then steal from another shuffle queue, which leads to the normal execution of the events in

userspace, as step (3). The resulting batched system calls that relate to the networking stack are

then enqueued for processing back at the home core in a multiple-producer, single-consumer

queue, shown in step (b). Similar to the TCP input path, the TCP output path therefore also

executes in a coherency-free manner on the home core.

Figure 3.4 is only a high-level illustration of the system. In ZYGOS, each core acts as the home

core for a set of TCP connections and can act as the remote core for any other TCP connection
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whenever it is idle. We now describe the ordering semantics that enable stealing (§3.4.3) and

the data structures of the shuffle queue that eliminates head-of-line blocking (§3.4.4).

3.4.3 Ordering semantics in multi-threaded applications

When TCP sockets are statically assigned to threads, applications can rely on intuitive ordering

and concurrency semantics [70]. The situation changes dramatically when sockets can float

across cores as the ���� system call is not commutative when two threads access the same

socket. Even though the Linux system call ����� allows it, and was even recently optimized

for this use case [36], the implications on applications are far from trivial. Consider the case

of back-to-back messages sent to the same socket (e.g., two distinct RPC of the ���	�	
��

protocol) for a multi-threaded application that uses the Linux-floating model of §3.3.3. Un-

less the application takes additional steps at user-level to synchronize across requests, race

conditions lead to broken parsing of requests, out-of-order responses, or worse, intermingled

responses on the wire. As a practical manner, applications or frameworks must, therefore,

build their own synchronization and locking layer to eliminate these system races. This is

sufficiently non-trivial that no known popular applications have done it to date, to the best of

our knowledge. A related approach is the recent KCM kernel patch that provides a multiplexing

layer of messages to TCP connections [60, 61].

With its goal to ensure very fine-grain work-stealing, we designed ZYGOS to free the application

layer from the burden of synchronizing access to connection-oriented TCP/IP sockets. In this

case, ZYGOS has an ownership model that ensures the events that relate to the same socket

are implicitly ordered without the need for synchronization: whenever the home core or a

remote core grabs an event for processing at the application layer, it grabs the exclusive access

to the socket until the event execution has completed, including sending the replies on the

TCP socket.

3.4.4 Eliminating Head-of-Line Blocking

The ordering semantics of §3.4.3 introduce a substantial complication to the design of the

shuffle queue. ZYGOS eliminates head-of-line blocking by grouping events in the home core

by socket. The shuffle queue has the ordered subset of sockets that are (a) not currently being

processed on a core and (b) have pending data. The event queues are held in the per-socket

protocol control block (PCB). While it offers strong ordering semantics to applications, this

pre-sorting step does have an implication on the global order of packets, which is no longer

guaranteed to be FCFS.

Figure 3.5 shows the state machine diagram that controls the decisions for each socket.

Changes to the state machine and to the shuffle queue are atomic.
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Figure 3.5 – Connection state machine transitions for the general case where an event is
executed on a remote core (in blue). The connection is present in the shuffle queue exactly
once when it is in the “ready” state, and never otherwise.

• idle: Sockets in this state have no pending incoming events, events currently processed

by the application, or outgoing batched system calls.

• ready: The socket has pending incoming events, but is not currently being processed by

the application and has no pending system calls.

• busy: The socket is executing on a core, which is either the home or remote core.

The execution core dequeues the first ready connection and creates the event conditions for

the application. As previously discussed, system calls are returned back to the home core for

processing. System calls may each generate asynchronous responses for that socket. After the

execution of all system calls, the socket transitions either into the idle state if there is nothing

further to process or into the ready state otherwise. In the latter case, the PCB is once-again

enqueued into the shuffle queue.

3.4.5 Inter-processor Interrupts

The design in §3.4.4 eliminates head-of-line blocking concerns from the shuffle queue itself. In

a purely cooperative implementation of ZYGOS, the cores poll on each other’s data structures,

which causes head-of-line blocking situations both before network processing as well as after

application execution, since network processing explicitly takes place in the home core.
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First, consider the case where packets are available for network processing in the hardware NIC

queue but the shuffle queue is empty. This is the queue shown around step (1) in Figure 3.4.

As long as that core is executing application code, no remote core can steal the task. Idle cores

poll both software and hardware remote packets queues. If pending packets exist, it sends an

Inter-processor Interrupt (IPI) to the remote core can force the execution of the networking

stack, which replenishes the shuffle queue.

Second, remote batched system calls are enqueued by the remote core for execution on the

home core (shown as step (b) of Fig 3.4). In a cooperative model, these system calls are only

executed after the completion of application code, which unfortunately directly impacts RPC

latency as some of these system calls write responses on the socket. Here also, an IPI ensures

the timely execution of these remote system calls.

The shared IPI handler, therefore, performs two simple tasks when interrupting user-level

execution: (1) process incoming packets if the shuffle queue is empty and (2) execute all

remote batched system calls and transmit outgoing packets on the wire. The IPI interrupts

only user-level execution since kernel processing is short and bounded. The kernel executes

with interrupts disabled, thus avoiding starvation or reentrancy issues in the TCP/IP stack.

3.5 Implementation

The system architecture of ZYGOS is derived from the IX open-source release v1.0 [105]: it

relies on hardware virtualization and the Dune framework [11] to host a protected operating

system with direct access to VMX non-root mode ring 0 in the x86-64 architecture [131]. The

kernel links in with DPDK [30] for NIC drivers and lwIP for TCP/IP [33]. The modifications

to the application libraries are minor, but the kernel changes are extensive. Specifically, we

modified ∼2000 LOC of the IX kernel and ∼200 LOC of Dune. While we retain the tight code

base of IX, we revisit many of its fundamental design assumptions and principles.

The shuffle layer We chose a simple implementation to ensure the atomic transitions de-

scribed in §3.4.4. There is one spinlock per core which protects the shuffle queue of that core

as well as the state machine transitions for sockets that call that core home. The lightweight

nature of the operations that access it makes such a coarse-grain approach possible. Remote

cores rely on ������� for their steal attempts to further reduce contention. Each PCB main-

tains a distinct event queue of pending events. This is a single-producer (the home core) and

single consumer (the execution core) queue, implemented with one spinlock per PCB. The

transitions from the busy state must test whether the PCB queue is empty and must first grab

that lock.

Idle loop polling logic The core design principle of ZYGOS is to ensure that an idle core will

aggressively identify pending work. A core is idle when its shuffle queue, remote batch system

call queue, and software raw packet queue are all empty. When it enters its idle mode, it starts

to poll a sequence of memory locations, all of which are reads from cacheable locations. These
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locations include, in order of priority (a) the head of its own NIC hardware descriptor ring, (b)

the shuffle queue of all other cores, (c) the head of all unprocessed software packet queues of

all other cores, and (d) the head of the NIC hardware descriptor of all other cores. For steps (b-c-

d), the order of access is randomized. While heuristics could tradeoff a reduction of interrupts

for a slight degree of non-work conservation, our current implementation aggressively sends

interrupts as soon as a remote core detects a pending packet in the hardware queue and the

home core is executing at user-level.

Exit-less Inter-processor Interrupts ZYGOS relies on inter-processor interrupts to force a

home core to process pending packets identified in steps (c) and (d) of the idle loop and to

execute remote system calls back on the home core. Using an approach similar to ELI [42], we

added support in Dune for exit-less interrupts in non-root mode. ZYGOS’s interrupt handler

processes only interrupt 242 and redirects all other interrupts to the Linux host operating

system by performing a specific ������. There is, however, no guarantee that the destination

CPU will be VMX non-root mode when it receives the interrupt. We use interrupt 242, which

is also used by KVM [64]. Interrupts received in root-mode are simply ignored by the KVM

handler. As interrupts are used exclusively as hints, the unreliability of delivery impacts tail

latency, but not correctness.

Control plane interactions The IX control plane implement energy proportionality or work-

load consolidation by dynamically adjusting processor frequency and core allocation [107].

It operates in conjunction with the IX dataplane, which reprograms the NIC RSS settings.

In principle, ZYGOS is compatible with these RSS settings changes, although policies and

mechanisms would have to be adjusted as ZYGOS introduces new forms of buffering. We

leave the evaluation of these interactions to future work.

3.6 Evaluation

We use the same experimental setup explained in Section 3.3 to evaluate ZYGOS in a series of

microbenchmarks, use ��������� [89] to evaluate overheads on tiny tasks, and with a real

application running TPC-C [129].

3.6.1 Synthetic micro-benchmarks

Figure 3.6 and Figure 3.7 shows the latency vs. throughput of the three synthetic micro-

benchmarks of §3.3. We compare ZYGOS with existing systems (IX and Linux) as well as

the theoretical performance of a zero-overhead M/G/16/FCFS model for two granularities of

interest, namely 10μs and 25μs. We observe that:

• ZYGOS and Linux-floating both approximate the theoretical model, with ZYGOS sub-

stantially reducing tail latency over IX;
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Figure 3.6 – 99th percentile tail latency according to throughput for three distributions with
10μs mean task granularity. The horizontal line corresponds to the SLO of ≤ 10× S̄.
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Figure 3.7 – 99th percentile tail latency according to throughput for three distributions with
25μs mean task granularity. The horizontal line corresponds to the SLO of ≤ 10× S̄.
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Figure 3.8 – Maximum load that meets the SLO of the 99th percentile ≤ 10× S̄. The grey
lines correspond to the ideal upper bounds of the two theoretical, zero-overheads, models
(centralized-FCFS and partitioned-FCFS).
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Figure 3.9 – Normalized rate of stealing vs. throughput for exponential service time with mean
25 μs

• ZYGOS and IX have comparable throughput, even for tasks as small as 10μs; both clearly

outperform Linux;

• for the exponential distribution, ZYGOS achieves 75% throughput efficiency at the SLO

at 10× S̄ for S̄ = 10μs (Figure 3.6b) and 88% for S̄ = 25μs (Figure 3.7b);

• interrupts are necessary to eliminate head-of-line blocking with medium and high

dispersion workloads, and the cooperative model of ZYGOS without interrupts, which is

typical of pure user-level application, visibly impacts tail latency.

Efficiency for the 10× S̄ tail latency SLO Figure 3.8 reports the efficiency (in terms of max

load at SLO) as a function of task duration. We compare ZYGOS with the baseline shown in

Figure 3.3. We note the reduced X-axis truncated to 50μs for visibility; efficiency is stable

beyond that point. ZYGOS clearly outperforms IX and Linux for any tasks sizes ≥5 μs and all

three distributions for such a tight SLO. ZYGOS reaches 90% of the maximum possible load as

determined by the zero-overhead centralized-FCFS theoretical model for tasks ≥30μs for the

deterministic distribution, ≥40μs for exponential and ≥40μs for bimodal-1.

How much task stealing occurs? Figure 3.9 provides an insight into the rate of stealing events

as a function of load. The results are for the exponential distribution of Figure 3.7b but are

remarkably similar for other distributions and timescales. As expected, there are few steals

at low loads as more cores are near idle, and no steals at saturation as all cores are busy

processing their own queue.

72



3.6. Evaluation

Without interrupts, temporary imbalances lead to a steal rate that peaks at ∼33%. This rate is

consistent with the peak of ∼35% measured in a discrete event simulator that emulates the

shuffle queue in a cooperative model without interrupts. Interrupts —which are necessary

to eliminate head-of-line blocking— substantially increase the steal rate. At the peak, which

corresponds to 77% of saturation, steals, and therefore interrupts are very frequent. Stealing

opportunities become less frequent as the load further increases.

3.6.2 Overheads of ZYGOS on tiny tasks: ���������

We compare the overheads of ZYGOS to IX for tiny tasks with the goal of identifying the

task granularity where the sweeping simplifications of shared-nothing dataplanes such as

IX noticeably improve throughput. We use ��������� as an application (< 2μs mean task

duration), and use the methodology and reproduce the results from IX [13]. We consider

��������� a near worst case for ZYGOS as the application has very small task duration with a

small dispersion best approximated by a deterministic distribution.

Figure 3.10 shows the latency vs. throughput for the USR and ETC workloads, [3], as modelled

by ���	
��� [71]. We compare Linux, ZYGOS, and IX. For IX, we choose two configurations:

with adaptive batching disabled (B=1) and with adaptive batching enabled with the default

setting (B=64).

First, we observe that ZYGOS and IX both clearly outperform Linux. We then note that for this

particular SLO (500 μs), ZYGOS outperforms IX with batching disabled but lags behind IX with

adaptive bounded batching. IX implements a strict run-to-completion model bounded by the

batch size (B). ZYGOS currently implements adaptive bounded batching only on the receive

path. It then processes events individually, interleaving between user and kernel code. While

this hurts cache locality, it avoids head-of-line blocking. Similarly, it eagerly sends packets

through the TX TCP/IP path and the NIC, also to avoid head-of-line blocking.

Of note, ZYGOS has a differently shaped latency vs. throughput curve for this workload. As

described in §3.4.3 and §3.4.4, ZYGOS does not respect strict FIFO ordering on servicing

packets across different connections. For this workload configuration, up to four distinct

��������� requests can be pipelined onto the same connection. The resulting reordering

leads to a form of implicit batching of events, but only for those corresponding to the same

flow. This implicit batching improves throughput but at an increase in tail latency. Such a

behavior is hard to restrict since ZYGOS doesn’t know the boundaries of the requests in the

TCP byte stream. Linux applications which use KCM sockets [60] can potentially handle this

situation.

3.6.3 A real application: Silo running TPC-C

We validate the tail latency benefits of ZYGOS using Silo [130], a state-of-the-art in-memory

database optimized for multicore scalability.
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Figure 3.10 – 99th percentile tail latency vs. throughput for two ��������� workloads for
Linux, IX and, ZYGOS.
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Figure 3.11 – Complementary CDF of task execution time for Silo running the TPC-C bench-
mark under Linux.

Application setup

Silo was originally implemented and evaluated as a library linked in with the benchmark. In

the original evaluation, each thread runs as a closed loop issuing transaction requests, and in

particular the TPC-C mix.

We ported Silo to run as a networked server accepting requests over sockets. We replaced

the main loop of Silo with an event loop, which we used to run the workload on top of Linux,

IX, and ZYGOS. The workload uses �������� [71] with the same setup described in §3.3.2

to initiate transactions that then execute totally within the database server. Each remote

procedure call generates one transaction from the TPC-C mix of requests.

We did not attempt to implement a marshalling of the full SQL queries and their responses,

e.g., over a JDBC-like protocol, as this falls outside the scope of the research question. We

also note that Silo has a garbage-collection phase tied to its epoch-based commit protocol,

which introduces a periodic barrier for all threads, with transaction latencies exceeding 1ms.

We disabled garbage collection for our measurements as it adds experimental variability,

especially at the 99th percentile, depending on the experiment (and that taming the tail

latency impact of Silo’s GC also falls clearly outside the scope of this work)
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Figure 3.12 – 99th percentile end-to-end latency vs. throughput for Silo running the TPC-C
benchmark

Results

Figure 3.11 shows the complementary cumulative distribution of service time for the TPC-C

benchmark for each of the five transaction types of the benchmark as well as the mix. The

results were computed using Silo’s master branch [122], with Silo locally driving the TPC-C

benchmark. There is, therefore, no network activity, and indeed nearly no operating system

activity. We run with GC disabled across all 16 hardware threads of a single CPU socket.

The Figure reports the service time rather than the end-to-end latency (i.e., it excludes any

queueing delays).

System Linux IX ZYGOS
Max load@SLO 211 KTPS 267 KTPS 344 KTPS
Speedup 1.00× 1.26× 1.63×
Tail Lat. @ 50% 310μs (1.5×)@111 KTPS 379μs (1.9×)@133 KTPS 265μs (1.3×)@178 KTPS
Tail Lat. @ 75% 335μs (1.6×)@156 KTPS 530μs (2.6×)@200 KTPS 279μs (1.4×)@266 KTPS
Tail Lat. @ 90% 356μs (1.8×)@189 KTPS 774μs (3.8×)@256 KTPS 323μs (1.6×)@311 KTPS

Table 3.1 – Maximum throughput under the SLO of 1000 μs and respective latencies at ap-
proximately 50%, 75%, and 90% of that load for each Silo running the TPC-C benchmark. The
number in the parentheses is the ratio of the 99th percentile end-to-end latency to Silo’s 99th

percentile service time (203μs).
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In this setup, the achieved transaction rate was 460 KTPS, which corresponds to the maximal

throughput of the application, excluding any SLO and operating system overheads. Note that

this TPS is consistent with the reported results in [130], given the differences in thread counts

and processors. For the full mix, the average service time is 33μs, the median is 20μs, and the

99th percentile is 203μs. The figure clearly shows that Silo’s service time distribution is overall

multi-modal with small task granularity in the μs-scale.

Figure 3.12 shows the tail latency at the 99th percentile for Silo as a function of the load. To

compare maximum loads, we selected a stringent SLO of 1000μs, which corresponds to ∼33×
the average and ∼5× the 99th percentile tail latency. We observe:

• ZYGOS can support 344 KTPS without violating the SLO; this corresponds to a speedup

of 1.63× over Linux. This demonstrates the benefits of our approach for real-life in-

memory applications. The achieved transaction rate corresponds to 75% of the ideal,

zero-overhead load with no SLO restrictions.

• This rate also corresponds to a speedup of 1.26× over IX. ZYGOS’s work-conserving

scheduler and its ability to rebalance requests across cores avoids SLO violations until

the system becomes CPU bound on all cores.

Table 3.1 further quantifies the benefits of ZYGOS in terms of throughput at SLO and tail

latency at a specific fraction of their respective maximum load. ZYGOS and Linux both deliver

low end-to-end tail latencies for up to 90% of their respective capacity: 1.6× the 99th percentile

service time for ZYGOS and 1.8× for Linux. This is anticipated by the centralized-FCFS model.

In contrast, as anticipated by the partitioned-FCFS model, IX delivers substantially higher tail

latencies, e.g., 1.9× when operating at half capacity, 2.6× at 75% capacity, and 3.8× at 90%

capacity.

3.7 Discussion: the impact of SLO on systems

The choice of an SLO is driven by application requirements and scale, with the intuitive

understanding that a more stringent SLO reduces the delivery capacity of the system. We show

that the choice of an SLO also informs on the choice of the underlying operating system and

scheduling strategy.

Figure 3.13 illustrates the tradeoff through the latency vs. throughput curves for the synthetic

benchmark of §3.6.1 with an exponential service time of S̄ =10 μs. Figure 3.13a and 3.13b

actually show the results of the same experiment but on two different Y-axis corresponding to

two different SLO. ZYGOS consistently shines on the more stringent SLO of 100μs (Figure 3.13a,

10× S̄) as the work-conserving scheduler tames the tail latency, followed by IX with batching

disabled. For this SLO, IX (with batching enabled) consistently delivers the highest tail latency

and violates the SLO with the lowest throughput.
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Figure 3.13 – Comparison of IX (batch size 1 and 64) and ZYGOS for a deterministic service
time of 10 μs and 2 different SLOs.

However, for a more lenient SLO (Figure 3.13b, 100 × S̄), IX’s adaptive batching delivers

marginally higher throughput than ZYGOS before violating the SLO.

3.8 Related Work

Traditional event-driven models This is the de-facto standard approach for online data-

intensive services with high connection fan-in. On Linux, the use of the �����has substantially

improved system scalability. While ����� can be used in a floating model, and the recent

������	
����� eliminates thundering herds [36], applications must still rely on additional,

complex synchronization to take advantage of the feature. ZYGOS delivers built-in, ordered

semantics that guarantee that the replies from back-to-back remote procedure calls on the

same socket will be returned in order. However, unlike the case of Affinity-accept [102] where

each connection remains local to the core that accepted it, ZYGOS enables a connection to

be served by any available core. Hanford et al. [46] investigated the impact of affinity on

application throughput and proposed to distribute packet processing tasks across multiple

CPU cores to improve CPU cache hit ratio. Although our work does not consider cache effects,

we also conclude that strict request affinity can harm performance.

Traditional multi-threading model Standard operating system pre-emptive schedulers, such

as CFS [19] and BVT [32], favor latency-sensitive tasks. Applications can benefit from multi-

threading to lower tail latency of completion of tasks when the granularity is a multiple of the

scheduling quantum and the distribution has a high dispersion.

78



3.9. Conclusion

Shared-nothing dataplanes architectures Systems such as Arrakis [103], IX [13], mTCP [57],

MICA [77], Seastar [120] and Sandstorm [84] bypass the kernel (via frameworks such as

DPDK [30] or netmap [112]) and rely on NIC RSS to partition flows among cores. These

shared-nothing architectures (at the system-level) with run-to-completion approaches com-

pletely eliminate the need to make scheduling decisions. These sweeping simplifications

noticeably increase throughput but are oblivious to temporary imbalances across cores. MICA

uses a client-side randomizing protocol (CREW or CRCW) to eliminate some causes for persis-

tent imbalances among cores but does not address temporary imbalances. Decibel [95] and

Reflex [65] are designed for storage disaggregation, depend on the shared-nothing assump-

tion and similarly do not handle imbalance. ZYGOS is designed to eliminate such cases of

imbalance though work-stealing. RAMCloud clients leverage RDMA hardware to bypass the

kernel and communicate with a cluster of RAMCloud servers, with an asymmetric, push-based

approach to task scheduling [99]. ZYGOS works with commodity Ethernet NICs and handles

I/O and protocol processing symmetrically on all cores, with a pull-based, work-stealing

scheme for task execution.

Work-stealing within applications This commonly-used technique that has been mostly im-

plemented either within the application or in a userspace run-time that runs on top of the

operating system. Run-times such as Intel’s Cilk++, Intel’s C++ Threading Building Blocks

(TBB), Java’s Fork/Join Framework and OpenMP implement work-stealing schemes. Optimiz-

ing or building such run-times has also been studied intensely academically, e.g., [20, 23, 28].

Statically mapping connections to cores can result in load imbalance in event-based pro-

grams and requires a solution at the library level [41, 147]. Recent focus on work stealing for

latency-critical applications is at coarser timescales. [73, 145, 47]. The prior work largely

targets applications with millisecond-scale task granularities that are easily accommodated

by conventional operating systems. ZYGOS implements work-stealing within the operat-

ing system itself for network-driven to eliminate both persistent and temporary imbalances

and is suitable for μs-scale tasks. As an operating system, ZYGOS’s use of IPIs eliminates all

cooperative multitasking assumptions between the threads.

Cluster-level work-stealing Finally, load imbalance has been extensively studied at cluster-

scale. Lu et al. [81] proposed a 2-level load balancing scheme based on the power of two

to load balance traffic towards the front-end of cloud services. Sparrow [100] also relies on

power-of-two choices for batch job scheduling. Google’s Maglev [34] is a generic distributed

network load balancer that leverages consistent hashing to load balance packets across the

corresponding services.

3.9 Conclusion

We presented ZYGOS, a work-conserving operating system designed for latency-critical, in-

memory applications with high connection fan-in, high requests rates, and short individ-

ual task execution times. ZYGOS applies some well-proven work-stealing ideas within the
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framework of an execution environment but avoids the fundamental limitations of dataplane

designs with static partitioning of connections. We validate our ideas on a series of synthetic

microbenchmarks (with known theoretical bounds) and with a state-of-the-art, in-memory

transactional database. ZYGOS demonstrates that it is possible to schedule μs-scale tasks on

multicore systems to deliver high throughout together with low tail latency, nearly up to the

point of saturation.
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4 Conclusion

4.1 What we did

This thesis examines the use of dataplane operating systems in the deployment of modern

datacenter scale web applications. The state of the art dataplane tackles many inefficiencies

of the networking stacks of standard operating systems. Nevertheless, the use of a dataplane

introduces new challenges, such as increased energy usage and μs-scale scheduling decisions.

The adoption of dataplanes in modern datacenters relies on the resolution of such challenges.

In this thesis, we propose two systems that address those challenges. The first system deals

with the energy efficiency of a dataplane and proves that it is possible to run a dataplane

without wasting excessive energy. The second system introduces a scheduler that operates on

the μs-scale and is able to reduce the tail latency and alleviate head-of-line blocking.

The first contribution is a system that provides resource management to the IX dataplane

operating system. The goal of that solution is to decrease energy usage and/or enable work

consolidation. In order to achieve that goal, we start by doing an exhaustive analysis of

the power vs. performance tradeoff for our workload of interest on our hardware. This

analysis allows us to derive the optimal resource allocation strategy. The strategy maps

the dataplane’s load (expressed in requests per second) to a specific resource configuration

(expressed in number of cores utilized and operating frequency). Then, we present the design

and implementation of a control agent which monitors queueing delays and adjusts resource

usage based on the selected strategy. Finally, we evaluate the control plane by providing

time-varying load patterns and measuring the latency and power.

The second contribution is a system that provides μs-scale scheduling for the IX dataplane

operating system. Initially, we conduct an extensive study regarding the overheads as a

function of the task duration for Linux and IX. This study proves that existing dataplanes, such

as IX, outperform commodity operating system, such as Linux, for short task duration that

exhibit low dispersion. We recognize that Linux possesses a sophisticated scheduler which

gives it performance advantage as the task duration increases and the system overheads are
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not anymore the bottleneck. We designed and implement ZYGOS which combines IX with a

work-conserving scheduler. The basic operating principle is the use of work stealing in order to

mitigate the transient imbalances in queue depths among different cores. Additionally, ZYGOS

uses inter-processor interrupts (IPI) in order to further mitigate the head-of-line blocking

which occurs when a core is busy processing a long request. Finally, we evaluate ZYGOS and

compare it against Linux and IX on two different applications.

4.2 Future work

Despite the ongoing effort, there are a few missing core features before dataplanes become

ubiquitous. In this section, we will describe a few of them which are also indications of future

work for this thesis.

• This thesis discusses work on two axes: (a) coarse grain allocation of resources for energy

efficiency, (b) μs-scale scheduling for work conservation. It is possible to combine those

two aspects in a single system that achieves both goals. In this effort, we must rethink

the control plane so that it takes into account stolen TCP connections when it decides

to scale up or down the number of CPU cores. In addition, we must evaluate the

performance gain of work stealing when the system operates on a few cores, as we

expect that the benefits will be smaller in these cases. We anticipate that combining this

thesis into a single system is a worthwhile exercise.

• Throughout the duration of this thesis, the Linux kernel networking stack has received

numerous updates that improved its performance, reduced scalability problems, and

added more features for latency critical applications. We believe that this stream of

improvements is partially based on the parallel research effort on dataplanes and expect

that it will continue in the future. We are confident that it makes sense to incorporate

specific ideas from this thesis into a conventional operating system, such as Linux. A

potential first attempt can be the introduction of a thread pool mechanism inside the

Linux kernel which is controlled by the load of incoming network requests. As the load

increases, the kernel spawns additional threads on more cores and reconfigures the NIC

to forward packets to those cores. Another possibility is the introduction of a power

governor that is controlled by the latency of request-response pairs and adjusts the

frequency of the cores where a latency critical application is executing. We realize that

adding features in a mainstream operating system is a process that requires a lot of

coordination, effort, and time. We expect, though, that as hardware becomes faster

and provides more functionality, all operating systems must improve in order to expose

more performance and features to their applications.

• Currently, the IX dataplane operating system does not support the ���� system call. This

limitation stems from the use of Dune, which does not support multiple address spaces.

If a Dune process spawns a child process, then the new process is created outside of
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Dune mode and consequently outside of the dataplane. While certain applications (such

as ���������) use threads to exploit parallelism, other applications (such as ������)

use processes to achieve the same goal. We believe that adding support for multiple

address spaces in Dune would allow more applications to profit from the benefits of

dataplanes.

• Currently, dataplanes are restricted to execute a single application. Additionally, if the

machine is not using a PCI virtualization technology, such as SR-IOV, the restriction is

even more severe: single dataplane per physical NIC. The reason is that a dataplane

requires explicit hardware access to the NIC. Often running a single latency sensitive

application on a single server is adequate. There are cases, though, where it is feasible

to colocate two or more latency critical applications on the same server. Multiplexing

applications in such a way is very common with traditional operating systems. A com-

modity operating system has the necessary mechanisms to provide scheduling and

fairness across multiple applications which access a single hardware device, such as

a NIC. It is our belief that such mechanisms must be also implemented in dataplanes.

In doing so, we expect side benefits such as improved energy efficiency because of the

consolidation of applications.

• The IX dataplane operating system supports the standard network protocols, namely IP,

TCP, and UDP. In the last few years, there is an effort to design and adopt new protocols

that are more suited to each application. A prominent example is QUIC [69], which is a

protocol designed and deployed by Google and according to their estimates accounts

for 7% of Internet traffic. Regarding the potential use of dataplanes, we can observe that

they host RPC-style services most of the time. We expect that it is worthwhile to explore

the possibility of designing a new protocol to support such services, in order to avoid

the overheads of TCP and handle the missing features of UDP. We anticipate that using

such a newly designed protocol within a dataplane operating system will lead to further

improvements in performance.

• At present, the IX dataplane operating system supports only a limited number of network

interface cards, including the Intel X520 adapter and the Intel XL710 family of adapters.

The engineering effort to support a new device is split in two parts: (a) the first part is

the device initialization which is handled exclusively by DPDK and (b) the second part

is the device receive and transmit path which are modified to fit in the IX pipeline. It is

worth noting that support for the Intel XL710 family has been added during the project

and based on our experience from that effort, we argue that supporting more devices is

an engineering effort of easy to medium difficulty, as long as DPDK already supports

these devices.

• An extension of the above point is the fact that IX does not support RDMA. This is not

a fundamental design limitation and IX can support RDMA by simply supporting a

respective network adapter. In fact, the basic design principles for RDMA and IX are
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similar, such as kernel bypass and user-space networking. RDMA operation is usually

classified as one-sided or two-sided. We clarify the relationship of these modes to IX:

– Support for the two-sided RDMA primitives is straight forward, since in essence it

is similar to the receive and transmit operations of a conventional network adapter.

We expect that supporting RDMA-capable hardware will further reduce the latency

that IX can offer by a couple of μs. This reduction will mostly benefit applications

and workloads with short service times.

– On the other hand, one-sided RDMA operations assume that there is no executable

code running on the server. Therefore, support for one-sided RDMA primitives

is relevant only if IX is deployed as a client. It is important to mention that devel-

opers must rewrite their applications in order to utilize one-sided RDMA. IX is an

operating system and as such one of its main design goals is to accelerate existing

applications without requiring extensive modifications to them. It is up to the

developers of an application to decide if they want to operate with one-side RDMA

primitives. If they do, then IX can certainly run on the client side of the application.

• We performed the energy proportionality part of this thesis on an Intel Sandy Bridge

processor that has a single power domain for the whole CPU package. This CPU allowed

us to perform an exhaustive analysis of all the possible power configurations, but at

the same time limited the amount of available power levels. Newer processors (such

as Intel Haswell) provide an independent power domain per core. This technology

introduces new challenges regarding our work in energy efficiency. First, it expands the

configuration space beyond the point where exhaustive analysis is possible. Thus, we

have to come up with some heuristics to prune the configuration space. Second, the

power efficiency (or the workload consolidation) policy will involve more steps, which

potentially means that changes in frequency will happen more frequently. We must

evaluate whether the existing control loop algorithm will be able to take decisions that

are more frequent. We believe that it makes sense to design and implement an extension

of the dynamic resource control system for such processors, because it will make the

load vs. power curve even more proportional.
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