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Résumé 

Dans le règne eucaryote, les mitochondries sont responsables de la respiration et de 

la production d’énergie au sein de la cellule et participent à de nombreux processus 

cellulaires, comme le métabolisme intermédiaire. Ainsi, la mitochondrie impacte 

directement sur certaines fonctions de l’organisme comme l’équilibre métabolique, la 

forme physique et le vieillissement. Par conséquent, le dysfonctionnement 

mitochondrial est impliqué dans de nombreuses maladies comme notamment les 

maladies neurodégénératives, l’obésité, le diabète et le cancer. Plusieurs réseaux de 

surveillance moléculaire assurent continuellement le bon fonctionnement des 

mitochondries. Parmi les réponses déclenchées par le stress moléculaire, la 

« mitochondrial unfolded protein response » (UPRmt) (réponse mitochondriale aux 

protéines dénaturées) vise à maintenir et restaurer la protéostasie au sein de cette 

organelle. Une meilleure compréhension de la réponse cellulaire au stress 

mitochondrial pourrait contribuer à élargir notre connaissance fondamentale des 

processus physiologiques et pathologiques impliquant les mitochondries, pouvant 

potentiellement conduire à de nouvelles avancées thérapeutiques ciblant ces 

organelles.  

Cette thèse porte sur la caractérisation mécanistique et physiologique de la réponse 

au stress mitochondrial dans différents organismes.  

J’ai utilisé l’organisme modèle Caenorhabditis elegans pour rechercher de nouveaux 

régulateurs de l’UPRmt et j’ai pu identifier la protéine liant le poly-A pab-1. A l’aide de 

profilage transcriptomique, nous avons montré que l’induction des gènes 

immunitaires est une conséquence commune à plusieurs types de stress 

mitochondriaux. Nous avons démontré que pab-1 régule aussi bien l’activation de la 

réponse au stress mitochondrial que l’activation de l’immunité innée. De plus, pab-1 

est nécessaire pour la survie de C. elegans à certaines infections bactériennes. Des 

données transcriptomiques provenant de plusieurs tissus humains révèlent une 

conservation potentielle de ce rôle immunitaire chez l’orthologue humain de pab-1, 

PABPC1.  

Chez la souris, j’ai étudié la régulation de la réponse au stress mitochondrial au 

moyen d’une combinaison d’approches expérimentales bioinformatiques et in vivo. 
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Une association d’analyses transcriptomiques et protéomiques dans la population 

génétique de référence murine BXD a révélé une forte co-régulation des orthologues 

du UPRmt en conditions physiologique normale. A titre d’approche complémentaire, 

nous avons pharmacologiquement induit un stress mitochondrial chez des souris 

adultes et nouvellement nées. Compte tenu de l’ascendance bactérienne des 

mitochondries, l’antibiotique doxycycline (dox) a également des effets délétères sur 

ces organelles. Nous avons établi que la dox altère l’homéostasie protéique au sein 

des mitochondries ainsi que la consommation d’oxygène chez les souris adultes. 

Cependant, le stress mitochondrial induit par traitement post-natal à la dox ne 

présente pas d’effets durables sur la physiologie et la longévité des souris, 

contrairement à ce qui a été observé chez C. elegans. 

La flore intestinale des mammifères joue un rôle important dans l’homéostasie de 

leur organisme. L’utilisation d’antibiotiques perturbe l’équilibre de la flore et se 

répercute sur le métabolisme, l’inflammation et le système nerveux. Afin d’écarter 

ces effets collatéraux, nous avons traité des souris sans flore avec de la dox afin de 

caractériser plus précisément la réponse aux conséquences purement liées au stress 

mitochondrial. Au moyen du profilage multi-omique, nous avons établi que les 

organes, dont le fonctionnement dépend fortement des mitochondries, présentent 

des signatures transcriptomiques et protéomiques spécifiques suite au traitement à la 

dox. Dans le rein, nous avons observé une inhibition de la traduction des protéines et 

de la voie liée à la cible mammifère de la rapamycin (mamalian Target of Rapamycin 

ou mTOR), accompagnée d’une activation de la réponse au stress intégré 

(Integrated Stress Response ou ISR). Dans le foie, la dox a conduit à un remodelage 

du métabolisme des lipides. Dans ces deux organes, les marqueurs de la réponse 

antivirale de l’interféron type I ont été induits par la dox au niveau trancriptionnel.  

Cette thèse démontre que la réponse au stress mitochondrial représente un 

processus varié comprenant des aspects conservés à travers les espèces, les 

organes et les conditions.  

Mots-clés : stress mitochondrial, protéines « poly(A)-binding », immunité innée, 

UPRmt, régulation post-transcriptionelle, souris sans flore, protéostase, méthodes 

transcriptomiques et protéomiques, « integrated stress response »  
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Summary 

Mitochondria are responsible for respiration and energy harvesting across the 

eukaryotic kingdom. They also take part in other cellular processes like intermediary 

metabolism. As a result, mitochondrial function directly impacts organismal features 

such as metabolic homeostasis, fitness and aging. Moreover, mitochondrial 

dysfunction is involved in numerous pathologies, such as neurodegenerative 

disease, obesity, diabetes and cancer. Several surveillance pathways constantly 

monitor mitochondria to ensure their proper function. Among the pathways triggered 

by stress, the mitochondrial unfolded protein response (UPRmt) aims to restore 

proteostasis within this organelle. A better understanding of the cellular response to 

mitochondrial stress would expand our fundamental knowledge of physiological and 

pathological processes involving mitochondria, leading to potential new therapeutics 

that target these organelles.  

This thesis focuses on the mechanistic and physiological characterization of the 

mitochondrial stress response in several organisms.  

I used the model organism Caenorhabtis elegans to screen for novel players of the 

UPRmt and found the poly(A)-binding protein pab-1. Using transcript profiling, we 

showed that the induction of immune genes is a common consequence of several 

mitochondrial stressors. We demonstrated that pab-1 regulates the activation of the 

mitochondrial stress response and innate immunity as well. On top, pab-1 is required 

for the survival of C. elegans upon bacterial infection. Transcriptomic data from 

multiple human tissues suggest that the human pab-1 orthologue, PABPC1, has a 

conserved role in immunity.  

In mice, I explored the regulation of the mitochondrial stress response using a 

combination of bioinformatics and in vivo experimental approaches. Combined 

transcriptomic and proteomic analyses in the BXD mouse genetic reference 

population revealed a tight co-regulation of the orthologues of the UPRmt under 

normal physiological conditions. As a complementary approach, we triggered 

mitochondrial stress pharmacologically in newly born and adult mice. Due to the 

bacterial ancestry of mitochondria, the effects of the antibiotic doxycycline (dox) are 

also deleterious to this organelle. We found that dox impairs mitochondrial 
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proteostasis and oxygen consumption in adult mice. However, mitochondrial stress 

induced by post-natal dox treatment did not cause long-lasting effects on mouse 

physiology and longevity, which is very distinct from observations in C. elegans.  

The mammalian gut flora plays an important role in organismal homeostasis. The use 

of an antibiotic causes perturbations of the microbiota, with repercussions on 

metabolism, inflammation, and the nervous system. To eliminate these confounding 

effects, we also treated germ-free mice with dox to characterize the response of the 

mouse to a so-called “pure” mitochondrial stress. Using multi-omics profiling, we 

found that organs highly dependent on mitochondria display specific transcriptomic 

and proteomic signatures following dox treatment. In the kidney, we observed an 

inhibition of translation and of the mTOR pathway, accompanied by an activation of 

the ATF4 integrated stress response (ISR). In the liver, dox led to a remodelling of 

lipid metabolism. In both organs, target transcripts of type I interferon anti-viral 

response were induced.  

This thesis demonstrates that the response to mitochondrial stress is a multi-faceted 

process with conserved aspects across species, organs and conditions. 

Keywords: mitochondrial stress, poly(A)-binding proteins, innate immunity, UPRmt, 

post-transcriptional regulation, germ-free mice, proteostasis, transcriptomics, 

proteomics, integrated stress response 
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Chapter 1 Introduction 
1.1 Mitonuclear communication in stress  
Adapted from  

Quiros PM*, Mottis A*, Auwerx J. Mitonuclear communication in homeostasis and 

stress. 2016 Nature reviews Molecular cell biology 17, 213-226. doi: 10.1038 

 

*Co-first authors 
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1.1.1 Introduction 

Mitochondria are derived from -proteobacteria that were engulfed by the precursor 

of modern eukaryotic cells before evolving as endosymbionts over millions of years. 

These organelles have maintained some of their ancestral bacterial characteristics, 

such as a circular genome and the capacity to produce ATP — mitochondria are the 

core of energy metabolism within the cell (Friedman and Nunnari, 2014). During 

evolution, however, many of the proteobacterial genes were progressively transferred 

to the nuclear genome, while mitochondria acquired new components and functions 

from the host cell, resulting in profound changes in both the mitochondrial and 

nuclear genome and proteome (Wallace, 2009). Out of over 1,200 proteins present in 

mitochondria, only 13 are encoded by the mammalian mitochondrial DNA (mtDNA) 

(12 in Caenorhabditis elegans) (Mercer et al., 2011; Pagliarini et al., 2008). These 13 

proteins constitute important components of all complexes of the electron transport 
chain (ETC) except for complex II, the components of which are exclusively encoded 

within the nuclear genome. Therefore, the nucleus and mitochondria must 

continuously coordinate the transcription and translation, as well as the translocation 

and import of mitochondrial proteins (Pagliarini et al., 2008).  

Mitochondria are not only at the heart of cellular energy harvesting, however — they 

also regulate many aspects of intermediate metabolism, calcium buffering and 

processes such as apoptosis. Consequently, mitochondrial function is under tight 

nuclear control, through so-called ‘anterograde regulation’, which can decrease or 

increase mitochondrial activity, as well as promote mitochondrial biogenesis, 

depending on cellular needs. Conversely, mitochondria can generate a ‘retrograde 

response’ that signals to the nucleus to alter the expression of nuclear genes to 

modify cellular function and reprogram its metabolism. The integration of these 

anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to 

nucleus) signals — also known as mitonuclear communication — constitutes a robust 

network that help cells to maintain homeostasis under basal conditions and enables 

their adaptation to a variety of stressors. However, mitonuclear communication is 

most often bidirectional and of a hormetic nature, combining anterograde and 

retrograde signals. Thus, retrograde signals generated in reaction to some 

mitochondrial stressors trigger particular nuclear responses, which will induce the 

specific expression of certain mitochondrial proteins; in turn, these proteins will 
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resolve the original perturbations in the mitochondria through ‘mitonuclear feedback’. 

Depending on the severity and nature of the initial stress signal, mitonuclear 

communication can also result in an ‘integrated stress response’, which can also be 

induced by other stress signals such as those originating from endoplasmic reticulum 

(ER) stress, triggering a global cellular response by decreasing protein synthesis. 

Moreover, mitonuclear stress can also trigger a ‘cell non-autonomous response’, 

which modulates the function of distant cells to facilitate an organismal response or 

adaptation to stress (Figure 1.1). 

Mitochondria generate a wide variety of retrograde signals through which they 

regulate different cellular and organismal activities, and protect against mitochondrial 

dysfunction by activating the expression of nuclear genes involved in metabolic 

reprogramming or stress defence (Jazwinski, 2013). The retrograde response exists 

in all organisms, but the regulation and nature of the pathways involved can vary. 

Despite the pleiotropic nature of the retrograde signals, these pathways can be 

classified into energetic stress responses, calcium-dependent responses and 

reactive oxygen species (ROS) stress responses, depending on the trigger.  

 
Figure 1.1 : Mitonuclear communication  

Mitochondria and the nucleus communicate closely with each other. From a ‘mitocentric’ point of view, 
as illustrated here, signals sent from the nucleus to mitochondria constitute anterograde regulation, 
whereas those sent by mitochondria to the nucleus are defined as the retrograde response. Although 
mitonuclear feedback responses can be orchestrated bidirectionally, they usually originate from 
mitochondria and consequently induce a nuclear response that is specifically geared towards the 
mitochondria. The integrated stress response is a general cellular stress pathway that controls 
cytosolic protein synthesis; this stress response can be triggered in mitochondria, in the endoplasmic 
reticulum (ER) and in the cytosol. Mitonuclear communication can also be extracellular, as 
mitochondria can send extracellular cues known as mitokines, which affect nuclear regulation in a cell-
non-autonomous manner. 
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1.1.2 Retrograde response 

Energetic stress responses. The retrograde stress response was initially described 

in yeast, in which it regulates carbon and nitrogen metabolism (Liu and Butow, 2006). 

Yeast contains the retrograde response genes (RTG) 1–3, which induce different 

metabolic enzymes and thereby activate alternative metabolic pathways to 

counteract mitochondrial dysfunction (Sekito et al., 2000), including peroxisomal 

anaplerotic reactions such as the glyoxylate cycle (Jazwinski and Kriete, 2012). 

Independent of the induction of the RTG genes, other pathways, including the carbon 

catabolite-derepressing protein kinase (also known as Snf1; the yeast orthologue of 

AMPK), the target of rapamycin complex 1 (TORC1) pathway and the Sir2 pathway, 

can also be activated in response to energetic stress in yeast to prevent abnormal 

histone deacetylation and reprogram metabolism, and to regulate protein synthesis 

and improve protein homeostasis, respectively (Caballero et al., 2011; Friis et al., 

2014; Heeren et al., 2009).  

Although the absence of clear RTG orthologues in other species hindered the simple 

generalization of the retrograde signal, some pathways are activated in a similar 

fashion after mitochondrial stress, testifying to functional conservation. In C. elegans, 

mutations in the ETC subunits isp-1 and clk-1 activate AMPK subunit -2 (Curtis et 

al., 2006), which transduces changes in cellular energy levels ensuing from 

mitochondrial stress (Apfeld et al., 2004). Defects in the TCA cycle also trigger the 

expression of glyoxylate cycle genes such as gei-7 — a isocitrate lyase/malate 

synthase — through mechanisms that are ill-defined but that most likely involve aak-

2, mediating the transition to mitochondria-independent energy production (Edwards 

et al., 2013; Gallo et al., 2011). Administration of -ketoglutarate — a key TCA cycle 

intermediate — also mediates cellular adaptations leading to lifespan extension 

through TOR, aak-2 and daf-16 (Chin et al., 2014).  

In mammals, the retrograde response has also been linked to mammalian TOR 

(mTOR) and AMPK; however, as mammalian cells lack the glyoxylate cycle, they use 

different anaplerotic reactions to adapt their metabolism to manage energy deficits. A 

decrease in mitochondrial ATP synthesis stimulates AMPK, promoting the activation 

of PGC1 , which stimulates mitochondrial energy metabolism and biogenesis 

(Garcia-Roves et al., 2008) (Figure 1.2). AMPK also triggers the mitochondrial quality 

control system, which regulates mitochondrial dynamics and induces mitophagy 
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(Egan et al., 2011). Similarly, reduced mTOR activity, such as under energetic stress 

(for example, during exercise and nutrient limitation), facilitates mitochondrial 

retrograde signaling, whereas its activation inhibits the retrograde response (Lerner 

et al., 2013). 

 
Figure 1.2 : The retrograde response 

Defects in oxidative phosphorylation or mtDNA, by damage in electron transport chain (ETC) and 
mutations in the mtDNA, activate a retrograde response to the nucleus that can be triggered by a 
decrease in the level of ATP, increased signalling by reactive oxygen species (ROS) or the release of 
calcium ions (Ca2+) from mitochondria. Low ATP levels activate AMP-activated protein kinase 
(AMPK), which stimulates mitochondrial biogenesis and quality control. An increase in ROS also 
activates anterograde regulation through AMPK or the c-Jun N-terminal kinase (JNK) pathway, by 
activating PPAR gamma coactivator 1  (PGC1��. Increased levels of ROS inhibits the KEAP1-
mediated proteasomal degradation of nuclear factor erythroid 2-related factor 2 (NFE2L2) and 
facilitates the translocation of NFE2L2 to the nucleus and the subsequent activation of an antioxidant 
response. Loss of the mitochondrial membrane potential ( m) results in the release of calcium from 
mitochondria, inducing the expression of genes for calcium metabolism and glycolysis through two 
mechanisms. First, calcineurin translocates to the nucleus with nuclear factor B (NF- B), which can 
also be activated by ROS, and with nuclear factor of activated T cells (NFATc). Alternatively, calcium 
can activate several kinases, such as protein kinase C (PKC), JNK--p38 and calcium/calmodulin-
dependent protein kinase type IV (CAMKIV), which, in turn, activate different transcription factors, 
such as EGR1, ATF2, cAMP response element-binding protein (CREB), CCAAT/enhancer-binding 
protein  (C/EBP ) and C/EBP homologous protein (CHOP). The release of calcium can also activate 
anterograde regulation though calcium/calmodulin-dependent protein kinase type IV (CAMKIV). ETC, 
electron transport chain; ROS, reactive oxygen species; mtDNA: mitochondrial DNA; OXPHOS: 
oxidative phosphorylation system. 
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Calcium-dependent stress responses. Mitochondria are essential to regulate the 

levels of intracellular calcium (Rizzuto et al., 2012). Different mitochondrial stressors, 

such as the loss of, or mutations in, mtDNA, disruption of ETC complexes and 

OXPHOS or treatment with ionophores, trigger the loss of mitochondrial membrane 

potential and the subsequent release of Ca2+ into the cytoplasm (Amuthan et al., 

2002; Arnould et al., 2002; Luo et al., 1997; Srinivasan et al., 2015). Elevated levels 

of free cytosolic Ca2+ activate the phosphatase calcineurin, which activates the 

nuclear factor- B (NF- B) p105 subunit and nuclear factor of activated T cells 

(NFATc) (Biswas et al., 1999; Biswas et al., 2003; Formentini et al., 2012) (Figure 

1.2). Both are transcription factors, which then translocate to the nucleus where they 

promote the synthesis of proteins involved in Ca2+ transport and storage (Amuthan et 

al., 2001; Biswas et al., 1999), and of glycolytic and gluconeogenic 

enzymes(Amuthan et al., 2001). Elevated Ca2+ also directly activates different 

calcium-regulated kinases, such as CaMKIV, Ca2+-dependent protein kinase C, c-Jun 

amino-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), 

which, in turn, stimulate different transcription factors, such as CREB, EGR-1, cAMP-

dependent transcription factor ATF2, CCAAT/enhancer-binding protein  (C/EBP ) 

and C/EBP homologous protein (CHOP) (Arnould et al., 2002; Biswas et al., 2003) 

(Figure 3). Which of these transcription factors is activated depends on the cell type 

and the activating stimulus; furthermore, activation not only facilitates mitochondrial 

adaptation, but also leads to pleiotropic responses affecting calcium metabolism, 

insulin signaling, glucose metabolism and cell proliferation (Amuthan et al., 2001; 

Biswas et al., 1999; Biswas et al., 2003; Formentini et al., 2012; Guha et al., 2010; 

Lim et al., 2006; Srinivasan et al., 2015; Woods et al., 2005; Wu et al., 2002). 

ROS-dependent responses. Mitochondrial ROS are generated through aerobic 

metabolism, often resulting from defective ETC, and act directly by regulating redox 

biology and as a signaling molecule for numerous cellular processes, in normal as 

well as stress conditions (Schieber and Chandel, 2014; Shadel and Horvath, 2015). 

In C. elegans, mutation in clk-1 — a mitochondrial hydrolase required for synthesizing 

the ETC component ubiquinone (Miyadera et al., 2001) — inhibits respiration and 

increases ROS levels, which stabilize and activate hypoxia-inducible factor 1 (HIF-1), 

a transcription factor regulating the adaptation to low oxygen levels (Lee et al., 2010). 

ROS also signal through the orthologue of stress-inducible p38 MAPK, PMK-1, which 
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phosphorylates and activates the transcription factor skinhead-1 (SKN-1), thereby 

promoting its nuclear localization (Inoue et al., 2005; Schmeisser et al., 2013; Zarse 

et al., 2012). These mechanisms induce the expression of adaptive ROS defense 

genes, such as superoxide dismutase and catalase (Zarse et al., 2012). CLK-1 itself 

can also act as a messenger of mitochondrial stress, as certain CLK-1 isoforms 

translocate to the nucleus following ROS formation and induce a protective program 

while inhibiting the mitochondrial unfolded protein response (UPRmt) by binding 

chromatin, a property that is conserved in mammalian cells (Monaghan et al., 2015).  

In Drosophila melanogaster, disruption of complex I of the ETC triggers a signaling 

cascade that involves ROS-mediated dimerization of the D. melanogaster homologue 

of the mammalian kinase ASK1, which promotes JNK signaling to the FOXO 

transcription factor and activates the cyclin-dependent kinase inhibitor Dacapo 

(Owusu-Ansah et al., 2008). In parallel, increased AMP levels arising from a 

decrease in mitochondrial ATP synthesis activate AMPK and p53, leading to the 

downregulation of cyclin E1 and subsequent G1 arrest as part of the G1–S cell-cycle 

checkpoint (Owusu-Ansah et al., 2008). Through the JNK pathway, ROS also 

activate the UPRmt in flies with muscle-specific depletion of the complex I subunit 

NADH-ubiquinone oxidoreductase 75 kDa (ND75) (Owusu-Ansah et al., 2013) (see 

below).  

In mammals, increases in ROS to levels that are not deleterious to cell function 

induce a retrograde signal to activate detoxification enzymes and antioxidant proteins 

in mitochondria and the cytosol (Chen and Kunsch, 2004; Kops et al., 2002; Lu et al., 

2012; Tan et al., 2008). This activation is mediated by the binding of transcription 

factors such as nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as 

NRF2, but not to be confused with GABP  mentioned above), to antioxidant 

response elements (Nguyen et al., 2009) (Figure 1.2). Increased levels of 

mitochondrial ROS were also reported to activate NF- B, thereby promoting cellular 

proliferation and survival in cancer cells (Formentini et al., 2012). ROS can also 

induce mitochondrial biogenesis and the expression of genes involved in oxidative 

phosphorylation by promoting JNK--PGC1  signalling (Chae et al., 2013); and 

promote mitochondria fuel switching by mediating complex II phosphorylation (Acin-

Perez et al., 2014) and metabolic reprogramming through mitochondrial uncoupling 

and AMPK activation (Shi et al., 2015). 
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1.1.3 Mitonuclear feedback and proteostasis  

A well-conserved protein quality control system, comprising mainly chaperones and 

proteases encoded in the nucleus, exists in mitochondria to maintain mitochondrial 

proteostasis (Quiros et al., 2015). These proteins participate in the folding, assembly 

and turnover of mitochondrial proteins in both normal and stress conditions. Stresses 

that exceed the capacity of this protein quality control system are sensed by 

mitochondria and communicated to the nucleus to promote the expression of these 

quality control components, as well as other compensatory genes that have been 

implicated in restoring mitochondrial homeostasis through bidirectional 

communication between both organelles. Depending on the nature of the stressor, 

three different mitonuclear proteostasis responses have been described: the UPRmt, 

which activates the expression of proteases, chaperones and other stress response 

genes; proteolytic stress responses, which specifically induce the expression of some 

mitochondrial proteases; and the heat shock response, which activates mitochondrial 

chaperones. 

 

UPRmt. The UPRmt is a protective transcriptional response that promotes the 

expression of mitochondrial proteostasis genes to stabilize mitochondrial function and 

of metabolic genes to adapt to the provoking stress. The UPRmt is triggered by 

mitochondrial proteotoxic stresses, such as the accumulation of unfolded proteins, 

impairment of the protein quality control system, mitonuclear imbalance, or inhibition 

of the ETC(Jovaisaite et al., 2014). The UPRmt has been characterized most fully in 

C. elegans, in which it can be induced using RNAi directed against some nuclear-

encoded mitochondrial proteins, such as cytochrome c oxidase (cco-1), a 

mitochondrial protein quality-control protease (spg-7), or several mitochondrial 

ribosomal proteins, typified by mrps-5 (Durieux et al., 2011a; Houtkooper et al., 2013) 

(more on mrps-5 below). Furthermore, doxycycline and chloramphenicol — 

antibiotics that target bacterial as well as mitochondrial translation owing to the 

evolutionary conservation of the machinery — activate the UPRmt by depleting 

mitochondrial encoded ETC subunits, similarly to mtDNA depletion by ethidium 

bromide (Houtkooper et al., 2013). PARP inhibitors or NAD+ precursors that activate 

SIRT1 and mitochondrial function, as well as the longevity compounds resveratrol 

and rapamycin, also activate the UPRmt due to a mitonuclear imbalance, in this case 
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generated by enhancing the production of mtDNA-encoded ETC proteins (Gariani et 

al., 2015; Mouchiroud et al., 2013; Pirinen et al., 2014).  

The UPRmt in C. elegans involves the digestion by the matrix protease ClpP of 

unfolded or unassembled mitochondrial proteins into peptides, which are transported 

into the cytoplasm by the HAF-1 transporter (Haynes et al., 2010) (Figure 1.3). 

Through a poorly understood mechanism, the cytoplasmic accumulation of these 

peptides induces a transcriptional response co-ordinated by ATFS-1 (activating 

transcription factor associated with stress). ATFS-1 possesses a mitochondrial 

targeting sequence as well as a nuclear localization signal. In normal conditions it 

constantly shuttles to mitochondria, where it is degraded by the LonP protease; 

however, in response to mitochondrial stress, ATFS-1 import to mitochondria is 

attenuated, causing it to localize in the nucleus instead (Nargund et al., 2012). Here, 

ATFS-1 and two other factors, DVE-1 and ubiquitin-like 5 (UBL-5), induce the 

expression of several genes involved in mitochondrial quality control and cellular 

metabolism to restore proteostasis, including the mitochondrial chaperones hsp-6, 

hsp-60 and dnj-10, the i-AAA protease ymel-1, the mitochondrial fission factor drp-1, 

glycolytic genes such as gpd-2, detoxification genes such as the transcription factor 

skn-1, and the core components of the TIM23 complex, tim-23 and tim-17 (Benedetti 

et al., 2006; Haynes et al., 2007; Haynes et al., 2010; Nargund et al., 2015; Nargund 

et al., 2012) (Figure 4a). During stress, ATFS-1 also limits the expression of other 

mitochondrial genes in the nucleus, such as those encoding TCA cycle enzymes and 

ETC subunits, by repressing their promoters (Nargund et al., 2015). To ensure that 

the expression of mitochondrial and nuclear ETC subunits is coordinated under 

stress conditions, certain splice variants of ATFS-1 are specifically imported into 

mitochondria during stress (through an unknown mechanism) where they repress the 

expression of mtDNA-encoded ETC subunits (Nargund et al., 2015) (Figure 1.3).  

The UPRmt has also been described in D. melanogaster, although it has been less 

extensively studied in this model. Overexpression of a mutated form of the 

mitochondrial ornithine transcarbamylase containing an internal deletion ( OTC), 

which causes mitochondrial protein overload, induces the expression of the D. 

melanogaster orthologues of the chaperones of HSP60 and mtHSP70 (Pimenta de 

Castro et al., 2012). Mild mitochondrial distress in muscle cells arising from the 

muscle-specific knockdown of ND75 from complex I in D. melanogaster also induces 
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the UPRmt together with a mitohormesis response (Owusu-Ansah et al., 2013) (see 

below).  

Several lines of evidence suggest a certain degree of conservation of the existence 

of the UPRmt in vertebrates, including in humans. The first line of evidence comes 

from studies using cell lines. In monkey kidney COS7 cells, the mitochondrial protein 

overload generated by OTC causes the activation of CHOP and C/EBP  (Horibe 

and Hoogenraad, 2007; Zhao et al., 2002). Heterodimers of these transcription 

factors bind to conserved mitochondrial unfolded response elements and induce the 

expression of UPRmt genes, including those encoding the chaperones HSP60, 

HSP10 and mtDNAJ, the proteases YME1L1, CLPP and PMPCB, the mitochondrial 

import complex subunit TIM17A and some mitochondrial enzymes, such as 

thioredoxin 2 (Aldridge et al., 2007). Knock down of mitochondrial leucine-rich PPR 

motif-containing protein, which impairs complex IV, activates the UPRmt by inducing 

mitonuclear imbalance in a neuroblastoma cell line and in worms (Kohler et al., 

2015). Independent of CHOP, the mammalian mitochondrial deacetylase SIRT3 is 

also activated following mitochondrial proteotoxic stress; SIRT3 coordinates an 

antioxidant response and mitophagy (Papa and Germain, 2014) (Figure 1.3). 

Overexpression of ClpX, the regulatory subunit of complex ClpXP, is reportedly 

sufficient to induce the UPRmt in C2C12 myoblasts (Al-Furoukh et al., 2015). 

Inhibition of Hsp90 chaperones in the mitochondria of a human glioblastoma cell line 

triggers the UPRmt and autophagy, potentially by inducing CHOP and C/EBP  and 

repressing NF- B (Siegelin et al., 2011). Beside the induction of UPRmt, 

overexpression of OTC also leads to the activation of mitophagy, suggesting a 

communication between the different mitochondrial quality control systems (Jin and 

Youle, 2013).  

Further evidence comes from several mouse models with mitochondrial dysfunction, 

in which the UPRmt is induced, indicating that it seems to exert homeostatic functions 

in mammals. For instance, deficiency of aspartyl tRNA synthetase in mouse skeletal 

and heart muscle causes the loss of mitochondrial proteostasis, which in the heart 

activates the UPRmt and promotes mitochondrial biogenesis (Dogan et al., 2014). 

Cardiomyocyte-specific deletion of the mitofusins in mice prevents mitochondrial 

fusion, thereby impairing mitophagy and causing the accumulation of dysfunctional 

mitochondria and the activation of the UPRmt (Song et al., 2015). A mutation in the 
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mitochondrial helicase Twinkle, which causes multiple mtDNA deletions and late

onset mitochondrial disease in mice, induces a progressive OXPHOS deficiency 

accompanied by an increase in HSP60, mtHSP70 and CLPP protein levels in muscle 

(Khan et al., 2014). The histone deacetylase SIRT7, which has emerged as a master 

regulator of mitochondrial homeostasis (Ryu et al., 2014), can also promote, in 

conjunction with NRF1, the regenerative capacity of aged haematopoietic stem cells 

through a mechanism that potentially involves the UPRmt (Mohrin et al., 2015). 

Finally, another indication in support of the conservation of the UPRmt in mammals 

comes from work in the mouse BXD genetic reference population, where the 

expression of the prototypical UPRmt gene network, comprising mammalian 

orthologues of six worm UPRmt regulators, negatively correlates with the expression 

of Cox5b/COX5B and Spg7/SPG7 — the mouse/human orthologues of worm cco-1 

and spg-7 — suggesting that the low abundance of these genes triggers the UPRmt in 

mammals as it does in C. elegans (Wu et al., 2014). 

Heat shock response. Heat stress constitutes a threat for proteins in all cellular 

compartments (Akerfelt et al., 2010), but can also elicit a specific mitochondrial signal 

to the nucleus, causing the expression of the mitochondrial chaperones HSP10 and 

HSP60 in addition to regular heat shock proteins (Tan et al., 2015). In cultured cells, 

heat causes the translocation of the mitochondrial single-stranded DNA-binding 

protein 1 (SSBP1) in a complex with heat shock factor 1 (HSF1) into the nucleus, 

where, by recruiting the chromatin-remodelling factor BRG1, it induces the 

expression of mitochondrial and cytoplasmic/nuclear chaperones that are essential 

for maintaining the mitochondrial membrane potential and for survival following heat 

shock (Figure 1.3). 



12 

 

Figure 1.3 Mitonuclear feedback. 

In worms, the ClpP-mediated cleavage of unfolded proteins in mitochondria initiates UPRmt signalling. 
The efflux of short peptides through the mitochondrial transporter HAF-1 somehow inhibits 
mitochondrial protein import and, consequently, the transcription factor ATFS-1, which is normally 
imported into mitochondria and degraded by the Lon protease, translocates into the nucleus. Here, 
together with UBL-5 and DVE-1, it induces the expression of UPRmt target genes — namely, 
chaperones and proteases — to restore proteostasis. ATFS-1 can also positively regulate glycolysis 
and assembly of the oxidative phosphorylation system, and negatively the expression of TCA cycle 
and oxidative phosphorylation genes. In response to mitochondrial stress, splice variants of ATFS-1 
accumulate in mitochondria and repress the expression of mitochondrial genes involved in ETC.  

b | In mammals, the activation of c-JUN by JNK2 leads to the induction of CHOP and C/EBP , which 
heterodimerize and activate UPRmt genes. Mitochondrial proteotoxic stress also activates sirtuin 3 
(SIRT3), which deacetylates FOXO3a, causing its translocation to the nucleus to induce the 
expression of ROS detoxification genes and mitophagy. The import of StAR from the mitochondrial 
outer membrane into the matrix induces, through an unknown mechanism, the expression of several 
proteases, which subsequently clear StAR from mitochondria. Heat causes single-stranded DNA-
binding protein 1 (SSBP1) to translocate into the nucleus in association with heat shock factor HSF1 to 
bind the chromatin modifier BRG1 and induce the expression of mitochondrial and cytosolic 
chaperones. mtDNA: mitochondrial DNA; OXPHOS: oxidative phosphorylation system; TCA, 
tricarboxylic acid; ROS, reactive oxygen species. LonP: Lon protease; Afg3L2: AFG3-like AAA 
ATPase 2; Spg7: spastic paraplegia 7; Yme1l1: YME1 like 1 ATPase. 
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1.1.4 Integrated stress response 

Mitochondrial stress can also activate the integrated stress response (ISR), which is 

a general cellular response that modulates global protein synthesis (Figure 5). This 

response is induced by different stress stimuli, including the ER unfolded protein 

response (UPRer), the UPRmt, oxidative stress, nutrient deprivation, viral double-

stranded RNA or haem deficiencies (Harding et al., 2000; Harding et al., 2003). The 

key component of this stress response is the  subunit of eukaryotic translation 

initiation factor 2 (eIF2 ); its phosphorylation by a number of different kinases, 

including general control non-derepressible-2 (GCN2), PKR-like ER-kinase, protein 

kinase double stranded RNA-dependent or haem-regulated inhibitor globally inhibits 

protein synthesis but concurrently facilitates the specific expression of stress-

response genes (Donnelly et al., 2013), such as activating transcription factor 4 

(ATF4) (Palam et al., 2011). ATF4, in turn, induces the expression of a wide range of 

stress proteins, such as CHOP, growth arrest and DNA damage-inducible protein 

(GADD34), ATF3, immunoglobulin heavy chain-binding protein (BiP; also known as 

GRP-78) or tribbles homolog 3 (TRIB3), to restore proper cellular function (Harding et 

al., 2000; Novoa et al., 2001; Ohoka et al., 2005).  

The ISR and the phosphorylation of eIF2  as its pivot is highly conserved. In C. 

elegans, mutations in several ETC genes, such as clk-1 or isp-1, induce ROS-

mediated phosphorylation of eIF2  by the kinase GCN-2, thereby reducing cytosolic 

translation and the generation of new mitochondrial proteins (Baker et al., 2012). 

Activation of the ISR in this context appears crucial, as the loss of function of GCN2 

affects mitochondrial activity and sensitizes cells to mitochondrial stress, with 

detrimental consequences (Baker et al., 2012).  

In mammals, different mitochondrial stressors can activate the ISR. Arsenic-mediated 

mitochondrial stress, through eIF2  phosphorylation, impairs the function of the 

mitochondrial protein import complex and activates a gene expression program for 

maintaining mitochondrial proteostasis in mammals, as well as in C. elegans 

(Rainbolt et al., 2013). Altered or impaired expression of mtDNA in different 

mammalian cell types activates the GCN2-mediated ISR, triggering the expression of 

several different stress proteins, such as CHOP, TRIB3, ATF3 and hairy/enhancer-of-

split related with YRPW motif protein (Michel et al., 2015). Tetracyclines such as 

doxycycline, which induce mitonuclear imbalance and mitochondrial dysfunction 
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(Houtkooper et al., 2013; Moullan et al., 2015), can also trigger the ATF4-mediated 

expression of stress genes (Bruning et al., 2014). The accumulation of unfolded 

proteins in the inner mitochondrial membrane generated by the loss of the serine 

protease HTRA2 in the brain also activates a CHOP-dependent ISR, protecting 

against neuronal cell death (Moisoi et al., 2009). In cultured cells, the outcome of the 

link between mitochondrial stress and the ISR can be protective or deleterious, most 

likely depending on the intensity and duration of the mitochondrial insults. In certain 

cells, inhibition of some mitochondrial ETC subunits activates an ATF4-dependent 

ISR, promoting cell viability and metabolic reprogramming (Evstafieva et al., 2014; 

Martinez-Reyes et al., 2012); however, the mitochondrial-dependent activation of the 

ISR is deleterious in other cell types, inhibiting cell proliferation or altering lipid 

metabolism (Silva et al., 2009; Viader et al., 2013).  

Finally, beyond the prototypical ISR, other mechanisms aimed at controlling and 

decreasing global protein synthesis can be activated under conditions of 

mitochondrial stress, especially in yeast. In this organism, mitochondrial stress 

generated by loss of mitochondrial membrane potential or by defects in proteins of 

the mitochondrial import machinery decreases mitochondrial protein import, resulting 

in the aberrant cytosolic accumulation of newly synthesized unfolded mitochondrial 

peptides (Wang and Chen, 2015; Wrobel et al., 2015). This so-called mitochondrial 

precursor over-accumulation stress (mPOS) not only can lead to mitochondria-

mediated cell death, but also can mitigate the stress by upregulating a large network 

of cytosolic genes to promote alternative pathways of protein synthesis and folding, 

as well as cell surviva l(Wang and Chen, 2015) (Figure 5). The mPOS response can 

also induce a UPR activated by mistargeting of proteins (UPRam), which protects the 

cell against defects in mitochondrial import by inhibiting protein synthesis and 

activating the proteasome (Wrobel et al., 2015).  
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Figure 1.4 : The integrated stress response (ISR) 

The central regulation node of the ISR is the translation initiation factor eIF2 , which, when 
phosphorylated, inhibits cytosolic translation. Four different kinases are known to phosphorylate eIF2  
in response to various stresses: general control non-derepressible-2 (GCN2) is activated by amino 
acid starvation; PKR-like ER-kinase (PERK) is activated following endoplasmic reticulum (ER) stress; 
protein kinase double stranded RNA-dependent (PKR) is activated by dsRNA following viral infection; 
and haem-regulated inhibitor (HRI) is activated by heavy metals and haem deficiency. Defects in the 
electron transport chain (ETC), ROS and mitochondrial proteotoxic stresses can activate GCN2, 
PERK or HRI depending on the context. Phosphorylation of eIF2  promotes the selective translation 
of the transcription factor ATF4, which, in turn, promotes the expression of CHOP, GADD34, ATF3, 
BiP and TRIB3, as well as others transcription factors to restore cellular homeostasis. However, 
apoptosis can also ensue in the case of irreversible cellular damage. In conditions of mitochondrial 
stress, when protein import to mitochondria is slowed, newly translated mitochondrial polypeptides 
accumulate in the cytosol, inducing mitochondrial precursor over-accumulation stress (mPOS). This 
accumulation blocks translation and triggers UPR activated by mistargeting of proteins (UPRam), 
which activates the proteasomal degradation pathway and induces the expression of gene sets aimed 
at restoring cellular homeostasis. dsRNA: double-stranded RNA; ETC, electron transport chain; ROS, 
reactive oxygen species; MTS: mitochondrial targeting sequence. 

1.1.5 Mitonuclear stress signalling and the immune response 

Given their crucial functions in energy metabolism, mitochondria are the Achilles heel 

of cellular activities, constituting a prime target for attacks by pathogens and toxins 

that target mitochondrial activity and integrity (Arnoult et al., 2011). Furthermore, the 

proto-bacterial origin of mitochondria makes it tempting to speculate that cellular 

defence pathways against pathogens share similarities with those that defend 

against mitochondrial stress: when some molecules, such as mtDNA and formyl 

peptides, are released from damaged mitochondria, the immune system can be 

activated as it is during bacterial infection. The UPRmt is involved in both 
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mitochondrial and immune surveillance to resolve mitochondrial stress and infection 

alike. Several bacterial species encountered by C. elegans induce mitochondrial 

dysfunction and consequently activate the UPRmt as a protective response (Liu et al., 

2014). Mutants in the UPRmt genes ubl-5, dve-1 and atfs-1 display weakened 

immunity and reduced survival against bacteria that are commonly pathogenic for C. 

elegans (Hwang et al., 2014; Pellegrino et al., 2014). Following exposure to 

Pseudomonas aeruginosa, ATFS-1 induces the expression of genes encoding 

components of the innate immunity response such as lysozyme and antimicrobial 

peptides(Pellegrino et al., 2014). Immunity is also intimately linked to signalling by 

reactive oxygen species (ROS), as ROS activate aak-2 and hif-1, leading to 

increased resistance of C. elegans to pathogenic strains of Escherichia coli (Hwang 

et al., 2014). 

In mammals, mitochondrial stress also elicits an enhanced immune response. 

Moderate mitochondrial DNA stress induced by loss of function of transcription factor 

A, mitochondrial (TFAM), activates a cytosolic antiviral signal that enhances the 

expression of a subset of interferon-responsive genes (West et al., 2015). 

Mitochondria are also involved in antiviral defence through the mitochondria-

associated viral sensor, a mitochondrial outer membrane protein that activates an 

antiviral signalling response (Arnoult et al., 2011). Mitochondrial-generated ROS 

contribute to the bactericidal activity of macrophages by activating cell surface Toll-

like receptors (West et al., 2011). ROS also enhance immunity of mice heterozygous 

for a mutation in mitochondrial 5-demethoxyubiquinone hydroxylase — a protein 

involved in ubiquinone biosynthesis — against Salmonella enterica and tumour-cell 

grafts through the activation of hypoxia-inducible factor-1 (Wang et al., 2010; Wang 

et al., 2012). Cellular protection against intracellular pathogens such as 

Mycobacterium spp. or S. enterica is furthermore dependent on mechanisms similar 

to mitophagy, the removal of defective mitochondria (Manzanillo et al., 2013). 

Conversely, extreme mitochondrial stress caused by TFAM deficiency in T cells 

causes lysosomal defects and an increased inflammatory response, which are 

recovered by restoring NAD+ levels and mitochondrial function (Baixauli et al., 2015). 
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1.2 The innate immune response in C. elegans  

1.2.1 C. elegans as a model organism 

It has been over 40 years since Sydney Brenner first introduced the free-living 

nematode Caenorhabitis elegans for research use in the laboratory (Brenner, 1974). 

Indeed, its characteristics i.e. ease of maintenance, combined hermaphrodite and 

sexual reproduction, short life cycle (3 days at 20°C) and lifespan (about 20 days at 

20°C) render it a very convenient model organism for eukaryotic biology. As an 

additional strength, C. elegans is a simple organism with a multi-tissues anatomy -

comprising epidermis, muscles, reproductive system, intestine and nervous system - 

and a fixed number of 959 cells, whose complete lineage has been characterized 

and whose neuronal connections completely mapped (Sulston and Horvitz, 1977). 

Although the evolutionary distance from nematodes to humans is big, most of the 

essential pathways regulating homeostasis and development are present in C. 

elegans (Corsi et al., 2015). On top, the nematode genome possesses orthologues to 

60-80% of human genes (Kaletta and Hengartner, 2006) and some pathologies not 

occurring naturally in worms can be modelled and studied in C. elegans, such as 

Alzheimer’s disease and other degenerative diseases (Sorrentino et al., 2017). C. 

elegans has been used extensively in research and was therefore the first metazoan 

organism to be fully sequenced in 1998 (C. elegans Sequencing Consortium, 1998) . 

Furthermore, for C. elegans extremely powerful genetic tools, like whole genome 

RNA interference (RNAi) feeding libraries, have been developed (Kamath and 

Ahringer, 2003) that allow to modulate the expression of almost all genes with 

relative ease. It is therefore no surprise that the study of C. elegans enabled the 

discovery of many key biological processes, such as the discovery of microRNAs 

(Lee et al., 1993) and apoptosis genes (Hedgecock et al., 1983).  
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Figure 1.5 The life cycle of C. elegans  

After hatching, the 4 larval stages and the adult stage of C. elegans are separated by molts. The 
indicated durations of the stages refer to growth at 22°C. This figure is adapted from the Worm Atlas 
(www.wormatlas.org). 

1.2.2 General considerations about innate immunity in C. elegans  

The activation of innate immunity in higher metazoans relies on pattern recognition 

receptors (PRRs), which are able to detect components of pathogens, called 

pathogen-associated molecular patterns (PAMPs), or components released from 

injured cells of the host, referred to as damage-associated molecular patterns 

(DAMPs) (Newton and Dixit, 2012). Amongst the best described PRRs are the Toll-

like receptors (TLRs) (activated by viral or bacterial PAMPs, such as 

lipopolysaccharide), RIG-I-like receptors (RLRs) (responding to the presence of viral 

or bacterial nucleic acid in the cytoplasm) and NOD-like receptors (NLRs) (triggered 

by various PAMPS and DAMPs), which induce gene expression of innate immune 

effectors and pro-inflammatory cytokines mediated by NF- B, type I interferon (IFN) 

and/or MAPK activation.  

As an invertebrate, C. elegans does not possess any adaptive immune system and, 

as opposed to Drosophila melanogaster and higher organisms, the nematode does 
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not have specialized innate immune cells (Engelmann and Pujol, 2010). Thus, to fight 

pathogens, it mainly relies on immunity driven by epithelial cells at the body surface 

and in the intestine (Cohen and Troemel, 2015). Indeed, the main route of infection 

by bacteria, fungi and yeast is ingestion into the intestine, while some fungi and 

bacteria can affect the integrity of the epidermis or invade the germline through the 

vulva (Engelmann and Pujol, 2010). Activation of the innate immune response in 

worms mainly triggers the expression of effectors molecules (Engelmann and Pujol, 

2010), such as (i) antimicrobial peptides of several classes, such as neuropeptide-

like proteins (NLPs), (ii) lectins (lec and clec genes, binding carbohydrates on 

bacterial surface and involved in many species in recognition or effector functions), 

(iii) lysozymes (lys genes), (iv) caenopores (saponin-like proteins (spp) genes, killing 

bacteria by perforation of their membranes), and (v) ROS. Pathogenic defence also 

leads to upregulation of detoxification genes and efflux pumps (Shivers et al., 2008).  

How the nematode recognizes pathogens is not clearly understood. The panel of the 

induced immune genes clearly depends on the pathogen and the type of infection, 

which proves selectivity of the response (Shivers et al., 2008; Tjahjono and Kirienko, 

2017; Troemel et al., 2006). This suggests that worms might be able to detect 

features of the encountered pathogen to elicit an appropriate and specific response. 

However, surprisingly, no PRR able to directly recognize bacterial PAMPs has been 

identified in C. elegans. In addition, no obvious orthologues of NF- B exist in worms. 

The only conserved member of the TLR family in the nematode, TOL-1, does not 

detect microbial components per se, but is involved in the activation of the neuronal 

arm of the immune response in C. elegans through the MAPK kinase cascade, 

(Pradel et al., 2007). TIR-1, a Toll-Interleukin 1 Receptor (TIR) domain adaptor 

protein, is required for the activation of the p38 MAPK cascade following pathogen 

attack, but the receptor activating TIR-1 is still unknown (Liberati et al., 2004).  

Beside immune gene induction, worms sense the presence of pathogenic bacteria, 

for example through detection of high CO2 concentrations by specialized neurons 

(Bretscher et al., 2008), and as result escape the area, which is commonly referred to 

as “avoidance behaviour” (Zhang et al., 2005).  

Since nematodes are bacteriophages, it appears logical that they cannot simply react 

against any bacterial features. Therefore, rather than by sensing directly pathogenic 

features, innate immunity in C. elegans seems to rely on the detection of impaired 
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cellular functions and homeostasis, which has been defined and well characterized in 

plants as “effector-triggered immunity” (Jones and Dangl, 2006). Indeed, the genetic 

impairment of essential cellular processes such as translation, mitochondrial 

respiration or proteasomal degradation induces immune gene reporters and triggers 

avoidance behaviour (Melo and Ruvkun, 2012). 

While C. elegans reacts against its natural pathogens, it can also been used 

successfully to study the molecular mechanisms of pathogen virulence and immune 

response to human pathogens, which are not encountered naturally by C. elegans 

(Marsh and May, 2012). The focus of this introduction will be on the most abundantly 

studied pathogen in C. elegans, the Gram-negative bacteria Pseudomonas 

aeruginosa, an opportunistic pathogen of plants and animal (Cohen and Troemel, 

2015). Studies using the nematode as a host for P. aeruginosa revealed very 

informative virulence mechanisms, that proved to be relevant to higher metazoan 

innate immunity (Alper et al., 2010; Kirienko et al., 2015). Therefore, the nematode 

represents a powerful genetic model to dissect and understand ancient and 

potentially conserved molecular mechanisms responsible for innate immunity 

(Irazoqui et al., 2010) 

1.2.3 The many facets of the nematode innate immune response against P. 
aeruginosa 

As for most human-pathogenic bacteria infecting the intestine of C. elegans, the 

central arm of immune activation upon P. aeruginosa infection signals through a 

MAPK cascade involving the p38 MAPK, PMK-1, and the transcription factors, ATF-7 

and SKN-1/Nrf, the receptor initially activating the pathway still unknown (Ewbank 

and Pujol, 2016; Papp et al., 2012) (Figure 1.6). This leads to the expression of C-

type lectins (clec), CUB-domain containing proteins (mainly extracellular proteases) 

and anti-microbial peptides (Troemel et al., 2006), as well as to the activation of 

neuronal circuitry, as mentioned above.  

Many of the effects of P. aeruginosa infection are mediated by its Exotoxin A, which 

blocks host translation (Yates et al., 2006). As a result, two additional key players, 

the basic leucine zipper motif-containing transcription factor, ZIP-2, and the G 

protein-coupled receptor, FSHR-1, a distant orthologue of the gonadotropin receptor 

in vertebrates, activate distinct and partially overlapping sets of immune and 
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detoxification genes, in parallel to PMK-1 branch. ZIP-2 appears as an integrator of 

the effector-triggered immunity in C. elegans, since it also mediates the immune 

induction following genetic perturbations of mitochondria or histones in collaboration 

with CEBP-2, the orthologues of mammalian C/EBP-  (Dunbar et al., 2012). 

Interestingly, ZIP-2 regulation is based on upstream open reading frames that allow 

translation of zip-2 mRNA despite the translational block, a mechanism similar to the 

translational regulation of the stress-responsive mammalian transcription factor ATF4 

(Lemaitre and Girardin, 2013).  

Mitochondrial homeostasis appears as a central hub in the pathogenesis of and 

response to P. aeruginosa (Figure 1.6, orange section). Depending on the growth 

conditions of the bacteria, other virulence factors can be released, such as pyoverdin 

in “liquid killing” culture, which induces mitochondrial dysfunction and hypoxia as a 

consequence of its iron-scavenging action, and which activates the HIF-1 response 

as a result (Kirienko et al., 2013). In the regular “slow killing” condition relying on 

Exotoxin A virulence, the UPRmt is activated upon the infection by several bacteria 

(Liu et al., 2014) and the UPRmt transcription factor atfs-1 also participates in immune 

gene expression (Pellegrino et al., 2014). As result, eliciting mitochondrial stress in a 

certain time window can improve the resistance of worms to subsequent 

P.aeruginosa infection (Nargund et al., 2012). Of note, ceramide and lipid metabolism 

is necessary for the signalling of this response (Liu et al., 2014). Mitophagy and 

autophagy also take part in the survival of C. elegans following P. aeruginosa 

infection, by removing damaged mitochondria (Kirienko et al., 2015) and preventing 

necrosis (Zou et al., 2014) respectively, thus rescuing the adverse effects of 

pathogenesis.  

Finally, mitochondrial proline catabolic enzymes are essential in the modulation of 

ROS production to fight P. aeruginosa and elicit the PMK-1/SKN-1-dependent 

activation of detoxification genes (Tang and Pang, 2016). Mitochondrial insults 

caused by P. aeruginosa also lead the induction of surveillance genes belonging to 

the phylogenetically-conserved Ethanol and Stress Response Element (ESRE) 

network (Tjahjono and Kirienko, 2017). Genes belonging to this response contain the 

conserved ESRE motif and are induced following exposure to ethanol and other 

pleiotropic stresses (Kirienko and Fay, 2010).  
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Figure 1.6 : The main defence mechanisms against P. aeruginosa in C. elegans  

In green, the resulting effects of the signalling, which contribute to tolerance and defence against P. 
aeruginosa, light green representing the transcriptional responses. In orange, the mitochondria-related 
mechanisms. In blue, the longevity-related and systemic triggers of stress resistance. 

As for ESRE, an additional layer of the innate immunity integrates the activation of 

other stress response and longevity pathways, such as the heat shock response and 

the unfolded protein response of the endoplasmic reticulum (UPRER) (Figure 1.6, blue 

sections). Worms with inactive hsf-1 or xbp-1, the respective mediators of these 

responses, show a decreased resistance to P. aeruginosa (Richardson et al., 2010; 

Singh and Aballay, 2006). Amongst the most famous lifespan-extending 

manipulations are the mutation of the insulin-like growth factor receptor 1 homolog 

daf-2, as well as the ablation or impaired development of the germline through 

mutation of glp-1 (Kenyon, 2010). These pro-longevity interventions also promote 

resistance to P. aeruginosa (Garsin et al., 2003). To exert this action, they depend on 

the FOXO homolog DAF-16 and PMK-1, which induce the expression of distinct 

stress response genes in parallel to each other (Troemel et al., 2006). Surprisingly, 

although P. aeruginosa does not appear to be a natural pathogen of C. elegans, it 

can interfere with the insulin signalling pathway by activating the daf-2 receptor to 

inhibit host immunity, which is suggestive of an adaptive mechanism due to a 
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possible coevolution in the past in the frame of an ancient host-pathogen relationship 

(Evans et al., 2008).  

Even if restricting to the response to P. aeruginosa only, one can already conclude 

that innate immunity in C. elegans integrates many of the arms of surveillance and 

longevity cellular signalling pathways. Although P. aeruginosa does not affect DNA 

integrity, while some pathogenic Escherichia coli strains do, it is interesting to 

mention that ultraviolet- or ionizing radiation-driven DNA-damage in the germline 

leads to the systemic activation of the ubiquitin proteasome system, as well as 

immune, heat and oxidative stress responses in distant somatic tissues (Ermolaeva 

et al., 2013). Of note, this systemic stress response, mediated by the ERK kinase 

MPK-1 in the germline and by PMK-1 in the soma, induces resistance to subsequent 

P. aeruginosa infection (Ermolaeva et al., 2013). This example demonstrates an 

additional layer of how innate immunity in the nematode uses cellular pathways to 

mount a coordinated and systemic resistance as a reaction to multiple triggers of 

surveillance.  
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Chapter 2 Thesis objectives 
 

Mitochondria play a crucial role in cellular metabolism and viability. The altered 

function of these organelles has therefore been linked to various pathologies such as 

metabolic diseases, cancer and neurodegenerative disorders. The UPRmt is part of 

the mitochondrial quality control system that guarantees protein homeostasis. It is 

thus relevant to investigate this particular stress pathway, as well as the response to 

mitochondrial stress in a broader sense, and their implications in physiology. 

However, compared to its equivalent UPR in the endoplasmic reticulum, the UPRmt 

remains poorly characterized, particularly in mammals. My research project therefore 

focused on the study of the molecular regulators and mechanisms involved in UPRmt 

and thereby also the mitochondrial stress response in a broader sense.  

My first aim was to use C. elegans to perform a RNAi screening to find new 

candidate genes regulating UPRmt. We identified new protein members, protein 

families and pathways modulating the UPRmt. I focused on the study of an RNA-

binding proteins, pab-1, and of its role in mitochondrial stress and innate immunity 

(Chapter 3) .  

My second aim was to explore and characterize the mitochondrial stress response 

in mammals. With a combined approach using bioinformatics and in vivo 

experiments, our initial goal was to investigate whether UPRmt is conserved in mice. 

Using the mouse genetic reference population and systems genetics, we 

documented the regulation of UPRmt genes under normal physiological state 

(Chapter 4.1). As a complementary approach, I studied the mitochondrial response to 

stress induced by doxycycline treatment and examined its impact on physiology and 

longevity (Chapter 4.2). Finally, I characterized the response to doxycycline-induced 

mitochondrial stress, in a setting devoid of the interferences linked to perturbations of 

the microbiome in mice. I therefore treated germ-free mice with and without 

doxycycline and characterized the organ-specific response to mitochondrial stress 

using multi-omics approaches (Chapter 5), allowing me to distinguish stress induced 

on the “mitobiome” independent of effects on the “microbiome”.   
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Chapter 3 The poly(A)-binding protein 
PAB-1 is required for mitochondrial stress 
signalling and defence against 
Pseudomonas aeruginosa in C. elegans 
 

Adapted from 

Mottis A, D’Amico D, Mouchiroud L, Li H, Jovaisaite V, Wolff S, Dillin A and §Auwerx 

J. In preparation.  

§ Co-corresponding author 

This project constituted my initial thesis project. I designed and performed the 

experiments and analysed the C. elegans transcriptomics data. I built and wrote the 

manuscript with guidance from JA and advices from DD. The screening was 

performed in collaboration in the laboratory of Andrew Dillin.  

 

3.1 Abstract 
How mitochondrial stress is signalled to remodel cellular pathways and to restore 

homeostasis is not yet totally understood. We performed a screen to identify 

suppressors of the mitochondrial unfolded protein response (UPRmt), a pathway 

ensuring recovery of proteostasis following mitochondrial stress in C. elegans and 

identified pab-1 as an essential player to elicit this transcriptional program. A major 

facet of the response to mitochondrial stress involves the induction of innate 

immunity genes, which critically depends on pab-1. In line with these observations, 

the loss of function of pab-1 impedes the resistance of worms towards Pseudomonas 

aeruginosa infection in a manner partly dependent on atfs-1, the transcription factor 

governing UPRmt. 

3.2 Introduction 
Mitochondria have historically been viewed as the seat of cellular energy harvesting. 

However, it is becoming increasingly clear that they are not only the powerhouses of 
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cell, but that they have pleiotropic functions, impacting on several cellular functions. 

Therefore, many aspects of mitochondrial function have to be closely monitored, 

including energy harvesting, mitochondrial dynamics balance, management of 

reactive oxygen species, as well as proteostasis. Some conserved surveillance 

pathways have ensued to monitor proteostasis within specific cellular compartments, 

thereby guaranteeing homeostasis of the whole cell and organism by extension. 

Such pathways include the unfolded protein response in the endosplasmic reticulum 

(UPRER) or the heat shock response in the cytosol. Amongst the specialized 

pathways aimed at restoring proteostasis, the mitochondrial unfolded protein 

response (UPRmt), a pathway discovered and best characterized in C. elegans, is 

induced by the accumulation of misfolded proteins in mitochondria (Quiros et al., 

2016). The UPRmt is mainly governed by the stress-driven relocation of the 

transcription factor atfs-1 from the mitochondria to the nucleus, where it induces the 

transcription of mitochondrial chaperones and proteases, such as hsp-6, hsp-60 and 

clpp-1, to ultimately resolve the proteotoxic stress in mitochondria (Mottis et al., 

2014). 

Other safeguard mechanisms are specialized in the defence of the cell against 

pathogens and can crosstalk with cellular regulatory networks to detect and fight 

microorganisms. When the pathogenic Gram-negative bacteria, Pseudomonas 

aeruginosa colonizes the gut of C. elegans, it upregulates several innate immune 

genes as a result of downstream signalling by the p38 MAPK, PMK-1, the bZIP 

transcription factor, ZIP-2, and the G protein-coupled receptor, FSHR-1 (McEwan et 

al., 2012; Reddy et al., 2016; Troemel et al., 2006). An efficient way for nematodes to 

detect pathogenic bacteria is to sense the bacterial toxin-induced damage to cellular 

functions. Impairments of translation, proteasomal function or mitochondrial 

respiration lead to bacterial avoidance behaviour and expression of innate immune 

genes in C. elegans (Melo and Ruvkun, 2012). Therefore, when the transcription 

factor atfs-1 relocalizes to the nucleus upon mitochondrial stress, or when ZIP-2 

protein levels increase upon a block in translation, they transduce a stress signal to 

the nucleus, inducing a reparative transcriptional response of genes involved in 

proteostasis or innate immunity (Dunbar et al., 2012; Liu et al., 2014).  

We here identify a new player in the integration of responses towards mitochondrial 

and pathogen stress: the cytoplasmic poly(A)-binding (PAB) protein pab-1. We used 



29 

doxycycline to inhibit mitochondrial translation and induce a mitochondrial stress 

typified by the UPRmt(Houtkooper et al., 2013). We then screened for RNAi clones 

interrupting UPRmt signalling and identified the poly-A binding protein, pab-1, as a 

regulator of mitochondrial surveillance. Using a genomics strategy, we found that the 

transcriptional signature of the pab-1-driven stress response is enriched in immune 

genes and subsequently demonstrated that pab-1 is not only required to regulate the 

UPRmt  but also to provide resistance to P. aeruginosa infection, in a manner partly 

dependent on atfs-1. Of note, some degree of evolutionary conservation of this 

regulatory mechanism was suggested by the high correlation of the expression of the 

cytoplasmic PAB protein PABPC1, the closest human orthologue of pab-1, with 

innate immune and inflammatory gene sets in human genomics data. Altogether, our 

data point to a new mechanism for the regulation of immune and mitochondrial stress 

pathways, where pab-1 might bind to A-rich sequence in these mRNAs, possibly 

stabilizing them and favouring their translation.  
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3.3 Results 

3.3.1 pab-1 is a positive regulator of the UPRmt  

We carried out an RNA-interference (RNAi) screening (Kamath and Ahringer, 2003) 

to identify proteins required for the activation of the UPRmt upon mitochondrial stress, 

induced by doxycycline (dox), a bacterial and mitochondrial translation inhibitor 

(Houtkooper et al., 2013). We used the hsp-6::gfp reporter as a readout for the 

UPRmt (Figure 3.1A) (Yoneda et al., 2004) and identified 189 out of 1809 pre-

selected RNAi bacterial clones (from a custom made RNAi feeding library targeting 

transcription factors and chromatin modulators – see M&M for details) that decreased 

the GFP fluorescence upon dox treatment of hsp-6::gfp reporter worms, implying that 

the genes targeted by these clones are necessary for UPRmt signalling. We 

systematically narrowed down to the most relevant hits through a few validation steps 

(Figure 3.1A). First, the RNAi hits were tested in hsp-6::gfp reporter worms using 

now, instead of a pharmacological, a genetic strategy to activate the UPRmt, i.e. 

through the knock-down of the mitochondrial protease spg-7, a central player in 

mitochondrial protein quality control (PQC) (Yoneda et al., 2004). We visually 

evaluated the capacity of the 189 RNAi hits of the primary screen to reduce the GFP 

signal triggered by the suppression of this crucial PQC protease. We accordingly 

ranked them (Table 1) and selected the 8 best RNAi hits (Figure 3. 1B). As a second 

validation step, we quantified the GFP signal and selected 6 RNAi that attenuated the 

UPRmt activation by at least 50% in hsp-6::GFP worms under spg-7 silencing for 

further study (Figure 3.1C). It is worth noting that the demethylase jmjd-3.1, which 

was shown to regulate UPRmt (Merkwirth et al., 2016), was amongst these 8 top hits. 

The third validation step relied on the use of the rab-3::cco-1HP;ges-1::hsp-6::gfp 

strain (Figure 3.1D), which displays a constitutive, cell-non-autonomous activation of 

the UPRmt reporter in the intestine due to the stable silencing of the electron transport 

chain (ETC) subunit cytochrome c oxidase subunit cco-1 (part of ETC Complex IV) in 

the neurons (Durieux et al., 2011a). Three candidates passed this final validation 

filter, i.e. pab-1, B0336.3 and elt-2. B0336.3 is a poorly characterized gene, whereas 

the elt-2 RNAi was not specific for the UPRmt as it also robustly attenuated the effect 

of tunicamycin on the UPRER (Supp. Figure 3.8C). In contrast, we found a more 

limited inhibitory effect of pab-1 RNAi on UPRER activation (Supp. Figure 3.8C), 

which accordingly implies that it is more a selective mediator of mitochondrial stress 
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signalling, with equivalent effects on the UPRER as atfs-1 (Supp. Figure 3.8C). 

Therefore, we focussed on pab-1, a cytosolic cytosolic poly(A)-binding protein for 

further validation studies. We established that pab-1 RNAi was able to decrease the 

expression of several UPRmt genes in wild type (WT) N2 worms treated with dox 

(Figure 3.1E). Mutation in several ETC subunits activates UPRmt signalling (Benedetti 

et al., 2006; Yoneda et al., 2004); pab-1 knock-down (KD) furthermore also reduced 

the induction of UPRmt gene expression in nuo-6 mutants of the NADH 

dehydrogenase subunit of ETC Complex I (Figure 3.1F). Taken together, our 

screening identified pab-1 as a new regulator of the UPRmt. 

 
Figure 3.1 : Screening for mediators of UPRmt response identifies pab-1  

A. Schematic representation of the screening strategy to identify candidate regulators of mitochondrial 
stress. B. Representative pictures of hsp-6::gfp reporter worms fed with RNAi against the 8 top hits 
from our screen mixed in a ½ ratio with spg-7 RNAi. C. Quantification of the suppressive effect on hsp-
6::gfp fluorescence of RNAi against the 8 top hits mixed with spg-7 RNAi. D. Quantification of the 
suppressive effect of the fluorescence of the mitokine-driven UPRmt signalling reporter by the 6 top hits 
after quantification in 1C. C.D. Bars show mean±SEM, ***student t-test p-value P 0.001 E and F. RT-
qPCR validation of the suppressive effect of pab-1 RNAi on the transcript levels of UPRmt mediators 
induced by doxycycline treatment (E) or nuo-6 mutation(F). Bars show mean±SD, *ANOVA p-value 
P 0.05, **P 0.01, *** P 0.001. [a larger version of the figure can be found in Annexes] 
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3.3.2 The immune response is activated by mitochondrial stress in nuo-6 
mutants in a pab-1 dependent manner 

To gain insights into the molecular consequences of down-regulating pab-1 in the 

context of mitochondrial stress, we analysed by RNA-Seq the impact of pab-1 loss-

of-function on transcript levels in both wild type N2 and nuo-6 mutant worms. The 4 

conditions were clearly segregated from each other by Principal Component Analysis 

(PCA) (Figure 3.2A), implying that the nuo-6 mutation and pab-1 silencing led to an 

extensive remodelling of gene expression, beyond the well-documented changes in 

the transcripts of the key UPRmt genes (Supp.Figure 3.8C). To explore processes 

affected by pab-1 LOF during mitochondrial stress, we focussed on those genes that 

were concomitantly up-regulated by the nuo-6 mutation and down-regulated by pab-1 

LOF, eliminating from this group the genes down-regulated by pab-1 KD in WT N2 

(see green arrows in the scheme in Figure 3.2A). This analysis identified 417 genes 

fulfilling these filtering criteria. The top significant biological process terms that were 

enriched upon GO analysis were related to immunity, including “defence response”, 

“innate immune response”, “defence response to bacterium” (Figure 3.2B). Other 

enriched processes were linked to stress response, detoxification and metabolism, 

which corresponds to pathways usually induced by mitochondrial stress (Nargund et 

al., 2012). Further, the significantly enriched cellular component (CC) terms included 

several mitochondria-related terms, demonstrating the implication of the cytosolic 

pab-1 protein in mitochondrial surveillance (Figure 3.2C). As an illustration of our 

selection process, pab-1-dependent genes belonging to the GO set “innate immune 

response” showed striking nuo-6- and pab-1- regulated changes in transcript levels 

(Figure 3.2D). Altogether, this analysis of gene expression patterns suggests that 

mitochondrial stress triggers the expression of innate immunity genes in a pab-1-

dependent manner. 
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Figure 3.2 : pab-1 drives the expression of immune genes in nuo-6 mutants 

A. Left: Principal component analysis of the RNA-Seq results from samples belonging to the 4 
experimental conditions depicted in the legend. Right: The set of pab-1-dependent genes induced 
upon mito-stress comprises genes fulfilling three conditions: (i) being up-regulated by at least 1.5 fold 
in nuo-6 mutants compared to N2 worms (ii) being down-regulated by at least 1.5 fold by pab-1 RNAi 
in nuo-6 mutant background; and (iii) not being down-regulated by at least 1.5 fold by pab-1 RNAi in 
N2 WT background (FDR 0.05 for each condition). B. GO biological processes (GO BP) enriched in 
the pab-1-dependent gene set. C. GO cellular component (GO CC) enriched in the pab-1-dependent 
gene set. D. Heatmap representing the mRNA levels of the innate immunity genes in the RNA-Seq 
results in the 4 groups of worms. 

3.3.3 The immune response as a major pathway activated by mitochondrial 
stress 

Several studies already showed that immune response genes are triggered upon 

mitochondrial stress in C. elegans (Liu et al., 2014; Pellegrino et al., 2014). We 

wanted to extend this observation and ascertain that the immune response was a 

common pathway triggered by different mitochondrial stressors and hence we 

profiled transcript levels induced by three different mitochondrial stress conditions, 

i.e. nuo-6 mutant worms, with an ETC Complex I subunit deletion, worms fed with an 

RNAi targeting the Complex IV protein cco-1, and worms treated with the bacterial 

and translational inhibitor, dox. We identified 667 genes that were commonly up-

regulated amongst these 3 conditions (Figure 3.3A). The only significant GO term 

enriched in this common mitochondrial stress gene set was the “innate immune 
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response” (Figure 3.3B). Volcano plots of the differentially expressed genes in each 

of the three mito-stress conditions (Figure 3.3C), showed a clear induction of genes 

that are members of the mitochondrial stress geneset (from the Venn overlap; 

highlighted in orange), as well as members of the “innate immune response” (GO: 

0045087; highlighted in green). Heatmaps representing the expression pattern of 

immune genes (Figure 3.3D) provide further convincing proof of their common 

activation by these three mito-stress conditions. Together, these data demonstrate 

that induction of immune genes is a common response to various types of 

mitochondrial stress (genetic as well as pharmacological) in C.elegans and are 

aligned with previous studies (Liu et al., 2014; Pellegrino et al., 2014). 

 
Figure 3.3 : Innate immunity genes are enriched in the common differentially expressed genes 
to three different triggers of mitochondrial stress 

A. Venn diagram displaying the genes commonly up-regulated between 4 different conditions of 
mitochondrial stress : (i) RNA-Seq of nuo-6 mutants vs N2 WT worms (fold change (FC) 1.5, 
FDR 0.05); (ii) microarray expression data of transcripts induced upon cco-1 RNAi (fold change 
(FC) 1.2, nom.p-value 0.025); (iii) microarray expression data of transcripts induced by dox (fold 
change (FC) 1.2, nom.p-value 0.025. 667 genes in the middle represent the common set of genes 
induced by 3 independent mitochondrial stressors. B. GO biological processes (GO BP) enriched in 
the genes induced by mitochondrial stress. C. Volcano plots displaying –log(nom. p-value) and 
log(FC) of all genes for each of the three mitochondrial stress conditions. Orange dots represent the 
genes belonging to the mitochondrial stress gene set, whereas the green circles represent innate 
immunity genes (GO: 0045087). D. Heatmaps of the common innate immunity genes (30) induced in 
each of the 3 mitochondrial stress conditions. [a larger version of the figure can be found in Annexes] 
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3.3.4 pab-1 is required for the expression of immune genes upon PA14 
infection and dox treatment 

To further ascertain the relevance of pab-1 in the immune response, we overlapped 

the set of genes commonly up-regulated by mitochondrial stress (see Figure 3.3A) 

with the group of pab-1-regulated genes (Figure 3.2) and genes up-regulated upon 

infection of C. elegans with the Gram-negative, pathogenic bacterial strain 

Pseudomonas aeruginosa 14 (PA14) (Troemel et al., 2006) (Figure 3.4A). The 

resulting overlapping core set contained only 9 genes (Figure 3.4B), 7 of which were 

related to innate immunity (Figure 3.4B). As such the GO term analysis showed that 

the only significantly enriched process was innate immunity (Figure 3.4C). In 

accordance, pab-1 RNAi robustly blunted the increased expression of this core set of 

immune genes upon infection of C. elegans by PA14 (Figure 3.4D and Supp. Figure 

3.9A). pab-1 LOF also inhibited the induction of the same transcripts following dox-

induced mitochondrial stress.. Hence, these results demonstrate that pab-1 is 

required to mount a proper transcriptional response involving immune genes, not only 

during mitochondrial stress, but also upon infection with the PA14 strain.  

 

Figure 3.4 : Immune gene expression following dox or PA14 infection is dependent on pab-1  

A. Venn diagram representing the 9 overlapping genes between (i) mitochondrial stress (from Fig.3A), 
(ii) the pab-1-dependent gene set (from Fig.2A) and (iii) the genes induced by P.aeruginosa PA14 
infection, 4h and 8h post-infection (Troemel et al., 2006). B. List of the nine genes present in the core 
overlapping gene set. Four of these genes are known regulators of the immune response based on 
GO annotations (bold red) and three are linked to immunity based on their description on Wormbase 
(bold black). C. GO biological processes (GO BP) enriched in the core gene set. D. RT-qPCR results 
showing transcript levels of the core genes 24h post infection by P.aeruginosa PA14. Bars show 
mean±SD, *ANOVA p-value P 0.05, **P 0.01, *** P 0.001. E. RT-qPCR results showing transcript 
levels of the core set genes after doxycycline treatment. Bars show mean±SD, *ANOVA p-value 
P 0.05, **P 0.01, *** P 0.001. 
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3.3.5 PABPC1-correlated genes are enriched for immune and inflammation GO 
terms in human tissues 

In order to gain insights into a possible conservation of this phenomenon in higher 

organisms, we carried out population-level gene set analysis (PGSA) for PABPC1 in 

human population transcriptome data archived in the GTEx portal (Battle et al., 

2017). This bioinformatic analysis provided an unbiased identification and 

quantification of the correlation between the expression of GO gene sets with the 

expression of PABPC1, the closest human orthologue to pab-1, across multiple 

tissues. Although GTEx does not provide expression data for immune cells per se, 

the clustering of immune terms amongst the most strongly correlated gene sets in 

aorta, liver, transverse colon, heart and oesophagus (Figure 3.5A) or in other tissues 

(Figure 3.5B), firmly suggests a conserved role of PABPC1 in controlling immune 

gene expression as part of the defence program against microorganisms or 

inflammation. These results point out an important and conserved role of pab-1 and 

its human orthologue PABPC1 in the expression of innate immune genes.  

 

Figure 3.5 : The expression of human PABPC1 correlates with immune and inflammatory gene 
sets 

A. Volcano plots displaying the –log(nom. p-value) and normalized enrichment score (NES) in 
population gene set analysis (PGSA) results for PABPC1, respectively in each of the mentioned 
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tissues of human GTEx database samples. Immune-related GO terms are highlighted in turquoise. B. 
Heatmap showing the correlation of PABPC1 with immune GO terms within the human tissues 
available in GTEx database. [a larger version of the figure can be found in Annexes] 

3.3.6 pab-1 LOF impairs survival to P. aeruginosa infection in an atfs-1-
dependent manner 

We next verified whether the robust impact of pab-1 on immune genes translates into 

concrete effects on worm physiology and assessed the survival of worms in response 

to PA14 infection, in a slow-killing experimental set-up (Kirienko et al., 2014). WT N2 

worms showed a mild, but significant, decrease in survival to bacterial infection upon 

pab-1 RNAi feeding (Figure 3.6A). In addition, the exacerbated escaping behaviour 

of worms fed pab-1 RNAi further demonstrated that they were suffering more than 

the control (Figure 3.6A, inset) (Battle et al., 2017).  

Amongst the genes down-regulated by pab-1 silencing in N2 worms in our RNA-Seq 

data, many relate to germline development (Supp. Figure 3.9B), which is line with the 

previous literature documenting a major role for pab-1 in the development of the 

worm germline (Ko et al., 2013). Accordingly, we observed that pab-1 LOF worms 

laid a significantly lower number of eggs than controls (Supp. Figure 3.9C), 

corroborating a disturbed development of their germline. Interestingly, germline 

impairment and the resulting signalling (Hsin and Kenyon, 1999; Lin et al., 2001), 

known as germline signalling, have been shown to increase worm resistance to PA14 

(Alper et al., 2010). Therefore, we hypothesize that pab-1 LOF leads to 2 opposite 

consequences: the activation of germline signalling and the reduction of immune 

genes expression, which respectively act as pro- and anti-survival signals during 

PA14 infection (Figure 3.6B). Hence, to avoid the confounding effects of germline 

signalling, we silenced pab-1 by RNAi feeding in the glp-1 mutants that are devoid of 

germline (Priess et al., 1987). As expected, when the germline was absent, the 

detrimental impact of pab-1 LOF on the survival (Figure 3.6C) was accentuated. 

As stated above, mitochondrial stress and immunity have already been shown to 

relate closely to each other, and exposing worms to mitochondrial stress primes them 

for an immune response and improves their resistance to a subsequent infection by 

PA14 (Pellegrino et al., 2014). atfs-1 has been proven necessary for this particular 

type of stress-driven immunity. Interestingly, pab-1 silencing disrupts the activation of 

hsp-6::gfp reporter following PA14 infection (Figure 3.6D). Since the pab-1 LOF 
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phenotype combines alterations in both mitochondrial and immune responses, we 

hypothesized that it might at least in part require the action of atfs-1. Indeed, pab-1 

RNAi fails to impair the survival of atfs-1 mutant worms when exposed to PA14 

infection (Figure 3.6E). In line, the decrease of some UPRmt genes observed in WT 

N2 worms upon pab-1 RNAi feeding and PA14 infection is abrogated in the atfs-1 

mutant (Figure 3.6F). During PA 14 infection, atfs-1 LOF also partially blunts the 

inhibitory effect of pab-1 RNAi on some pab-1-dependent immune genes, such as 

dod-22, C17H12.6 and glc-1 (Figure 3.6G). However, for some other genes, like 

K08D8.5 or F53A9.8 (Supp. Figure 3.9G), atfs-1 LOF does not affect the down-

regulation induced by pab-1 silencing.  

 
Figure 3.6 : pab-1 is required for the survival upon P. aeruginosa infection 

A. Survival curves of N2 WT worms exposed to P.aeruginosa PA14 (statistics with log-rank (Mantel-
Cox) method) and percentage escapers per plate 24h post PA14 infection (Bars show mean±SD, 
***student t-test p-value P 0.001). B. Scheme illustrating the dual effect of pab-1 silencing on worm 
survival upon P.aeruginosa PA14 infection: we show that pab-1 LOF impairs immune gene 
expression, whereas it also activates germline signalling, a pro-survival intervention in the context of 
PA14 infection. C. Survival curves of glp-1 mutant worms exposed to P.aeruginosa PA14 (statistics 
with log-rank (Mantel-Cox) method) and percentage escapers per plate 24h post-infection (Bars show 
mean±SD, ***student t-test p-value P 0.001). D. Representative pictures of the hsp-6::gfp reporter 
worms treated with P.aeruginosa PA14 strain and ev (control empty vector) or pab-1 RNAi. E. Survival 
curves of atfs-1 mutant worms exposed to P.aeruginosa PA14 (statistics with log-rank (Mantel-Cox) 
method). F. RT-qPCR results showing the effect of pab-1 RNAi on UPRmt genes in N2 WT and atfs-1 
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mutant worms treated with P.aeruginosa PA14 strain. Bars show mean±SD, *student t-test p-value 
P 0.05, **P 0.01, *** P 0.001. G. RT-qPCR results showing the effect of pab-1 RNAi on UPRmt genes 
in N2 WT and atfs-1 mutant worms treated with P.aeruginosa PA14 strain. Bars show mean±SD, * 
ANOVA p-value P 0.05, **P 0.01, *** P 0.001. H. Schematic model representing the main results 
shown in this study. 

Taken together, these results demonstrate that pab-1 is required for C. elegans defence 

against P. aeruginosa infection. In addition, pab-1 RNAi affects the survival to P. aeruginosa 

through a mechanism that depends at least in part on atfs-1 and UPRmt gene expression 

(Figure 3.6H). However, at least when considering the expression of some immune 

transcripts (K08D8.5 or F53A9.8), atfs-1 does not seem to be the only mediator, since the 

effect of pab-1 LOF for these genes is similar in WT and in atfs-1 mutant context, suggesting 

the involvement of other mediators (Figure 3.6H). 

To get insights into the mechanism used by pab-1 to regulate immune and 

mitochondrial stress responses, we searched into the literature for a role of its 

orthologues in stress conditions. Although PAB proteins are considered to mainly 

bind to the 3’ poly(A)-tail of mRNAs (Smith et al., 2014), studies in plants (Xu et al., 

2017), yeast (Gilbert et al., 2007) and mammalian cells (Kini et al., 2016; Sladic et al., 

2004) report the ability of PAB proteins to bind A- and AU-rich regions all along 

mRNA sequences. Most interestingly, this special binding activity by PAB proteins 

seems to result in a dynamic regulation of mRNA translation, allowing the cell to react 

to abrupt environmental changes. Indeed, we found that the 5’UTR of the genes 

regulated by pab-1 were significantly enriched in A-rich sequences (Figure 3.7 A). 

This suggests that these A-rich stretches might account for the mechanism of pab-1-

driven regulation of mRNA levels. 
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Figure 3.7 : A possible implication of A-rich sequences in the regulation of mRNAs by pab-1 
during stress 

A. Enriched motifs in the 5’ UTR of pab-1-dependent genes according to Multiple Em for Motif 
Elicitation (MEME) analysis from the MEME suite software. B. Model of a possible mechanism for the 
regulation exerted by pab-1 in the context of innate immunity and mito-stress response. 

 

3.4 Discussion 
In this study, we establish pab-1 as a new regulator of mitochondrial stress and 

immune response in C. elegans. We further show the physiological relevance of pab-

1 by demonstrating that it is required for the defence against the Gram-negative 

bacteria P. aeruginosa. Finally, we confirm that its role in both mitochondrial stress 

and infection response involves atfs-1, a transcription factor proven to regulate both 

mitochondrial stress and immunity genes (Nargund et al., 2012; Pellegrino et al., 

2014). atfs-1, however, does not seem to be the only mediator of the transcriptional 

regulation exerted by pab-1.  

The mammalian orthologue of pab-1, the cytoplasmic poly(A)-binding protein 

PABPC1, is known to bind non-specifically the poly(A)-tail of most mRNAs (Blobel, 

1973), favouring their cap-dependent translation and their stability (Mangus et al., 

2003; Smith et al., 2014). Paradoxically, it can also inhibit translation, regulate mRNA 

decay in a context- or mRNA-specific manner and it is involved in microRNA-

silencing (Smith et al., 2014), as is pab-1 in C. elegans (Flamand et al., 2016). 
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Therefore, one can speculate that pab-1 most likely exerts its action post-

transcriptionally and/or translationally. 

The exact mechanism by which pab-1 regulates immune genes is not fully 

understood. However, considering that we find an A-rich stretch enriched in 

transcripts regulated by pab-1, we can formulate two possible hypotheses. First, pab-

1 could bind to these A-rich regions in its target mRNAs, namely immune and 

mitochondrial stress genes, resulting in their stabilization during stress (Figure 3.6B). 

This is supported by the reduction we observe in mRNA levels upon pab-1 silencing 

and by previous findings about PABPC1 in mammalian cells, where A-rich 

sequences also impact on mRNA stability (Kini et al., 2016). Indeed, during 

inflammation, PABPC1 antagonizes the recruitment of destabilizing proteins binding 

to AU-rich regions of unstable mRNAs such as that of tumour necrosis factor (TNF) in 

macrophages (Rowlett et al., 2008). A second mechanism could involve the 

regulation of cap-independent translation of stress response mRNAs by pab-1. When 

cells undergo infection (Lemaitre and Girardin, 2013) or mitochondrial stress 

(D'Amico et al., 2017), they display an extensive and rapid remodelling of their 

translational landscape in order to cope with the inducing insult. Canonical translation 

initiation occurs via the recruitment of the eIF4F complex on mRNAs and is referred 

to as “cap-dependent translation” (Jackson et al., 2010). Under stress, to save 

energy and adapt the metabolic fate of the cell, the cap-dependent translation is 

slowed down. However, stress-response genes have to be translated to restore 

homeostasis. To bypass the block of regular translation, these stress-responsive 

mRNAs are translated specifically by cap-independent mechanisms that rely on 

sequence-specific features, such as internal open reading frames (Jackson et al., 

2010). Although it is more speculative, the regulation of cap-independent translation 

might constitute a conserved regulatory mechanism, since pab-1 orthologues in 

plants and yeast exert such role. In yeast, several genes required for invasive growth 

under glucose deprivation contain A-rich stretches that are able to initiate cap-

independent translation via the recruitment of Pab1 and ribosomal subunits (Gilbert 

et al., 2007). In the plant Arabidopsis thaliana, PAB2 was recently shown to bind to 

5’UTR A-rich sequences to increase the translation efficiency of immune genes upon 

immune challenge (Xu et al., 2017). 
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Considering these striking similarities, we expect that the mechanism underlying our 

observations involves stabilization and/or translational regulation of stress-responsive 

mRNAs by pab-1, possibly through the interaction with A-rich regions of its target 

mRNAs (Figure 3.6B).  

The mechanism of how pab-1 senses the immune challenge still remains to be 

elucidated. Interestingly, K08D8.5, one of the genes not responding to atfs-1 

impairment (Figure 3.5G), is a target of the p38 MAPK/PMK-1, a well-defined 

regulator of C. elegans immunity (Troemel et al., 2006). Interestingly, a similar 

mechanism, recently described in plants, shows the phosphorylation of PAB2 by 

MAPK (Xu et al., 2017), whereas PABPC1 in mouse cells is also phosphorylated by 

p38 MAPK in macrophages (Rowlett et al., 2008). This strongly suggests a possible 

implication of pmk-1 in the pab-1-driven immune regulation, although more 

experimental studies will be required to integrate all facets of this complex regulation. 

Further studies will be required to fully decipher the exact mechanism underlying our 

observations. 

In accordance with our study, PAB proteins are implicated in stress response 

throughout evolution in various manners. Indeed, several studies associate 

PABPC1/Pab1 levels with stress tolerance (Ma et al., 2009). In addition, from yeast 

to mammals, Pab1/PAB-1/PABPC1 are components of stress-granules, structures 

that form dynamically in the cytoplasmic following a set of insults and that retain 

mRNAs intact and dormant until stress resolves (Anderson and Kedersha, 2006; 

Lechler et al., 2017; Riback et al., 2017). Interestingly, structural properties of the low 

complexity regions of yeast Pab1 confer a stress sensor activity to the protein: 

variations in temperature or pH modify the physical and assembly properties of Pab1, 

leading to extensive remodelling of stress granules and maintenance of fitness during 

prolonged stress (Riback et al., 2017). Since we did not explore this field, we cannot 

exclude our observations to be partially explained by changes in mRNA stability/ 

localization due the regulation exerted by pab-1 on stress granules. 
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3.5 Materials and methods 
C. elegans strains and RNAi experiments 

All strains were provided by the Caenorhabditis genetics center (University of 

Minesota). Strains used were wild-type Bristol N2, MQ1333(nuo-6(qm200)), NL2099 

(rrf-3(pk1426)II), SJ4100 (zcIs13[hsp-6::GFP]), SJ4005 (zcIs4[hsp-4::GFP]), 

CB4037(glp-1(e2141ts)). Strains were cultivated at 20°C, except glp-1(e2141ts) 

strain, which was kept at 15°C, on nematode growth media agar plates seeded with 

E.coli OP50. To perform the experiments, glp-1(e2141ts) eggs were seeded per plate 

and raised at 25°C (to eliminate germ cells) for 40 hr, then shifted to 20°C for the 

rest of worm’s life. rab-3::cco-1HP;ges-1::hsp-6::gfp strain was provided by the Dillin 

laboratory.  

Bacterial feeding RNAi experiments were carried out essentially as described 

previously (Kamath et al., 2001). Clones used were HT115, pab-1 (Y106G6H.2), spg

7 (Y47G6A.10) and mrps-5 (E02A10.1). Clones were purchased from GeneService 

and confirmed by sequencing. 

UPRmt screening 

C. elegans were age synchronized by egg bleaching and cultivated in liquid culture in 

96-well plates, exposed to RNAi to be screened and dox (15 g/ml) from hatching. 

Fluorescence was read at day 1 of adulthood using a large particle flow cytometry 

device (Copas plateform, Union biometrica). The screening library of RNAi-bacterial 

clones was assembled by combining subsets of the genome-wide, RNAi Ahringer’s 

library, namely « transcription factors » (387 genes), « chromatin players» (263 

genes) and «mitochondrial proteins » (680 genes) commercially available from 

GeneService, as well as a fourth subset of cherry-picked genes encoding for 

additional transcriptional regulators (479 genes) to complement the three other sets. 

Worms were synchronized at L1 larval stage just after hatching and treated with 

RNAi and doxycycline (15 g/ml) from that time until the fluorescence was read at day 

1 of adulthood. To increase the sensitivity, the worm strain used for the screening 

was derived from a cross between the strain bearing the hsp-6 ::gfp reporter 

(SJ4100) and a strain hypersensitive to RNAi due to a rrf-3 mutation (NL2099). 
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GFP reporter analysis  

GFP expression and quantification was carried out according to the protocol 

previously described (Durieux et al., 2011). GFP expression was monitored in day 1 

adults. Fluorimetric assays were performed using a Victor X4 multilabel plate reader 

(Perkin Elmer Life Science). Eighty worms per condition were randomly picked and 

analyzed in black-walled 96-well plate. An average of 20 worms were put per well 

filled with 100 L M9 medium. For fluorescence microscopy pictures, worms were 

randomly picked and immobilized with a 10 mM solution of tetramisole hydrochloride 

(Sigma) during picture acquisition. Each well was read 6 times, then averaged and 

normalized by the exact number of worms contained by the well. To trigger UPRER, 

tunicamycin 25ng/ul was added to the worm-containing M9 directly in wells. 

Fluorescence was read after 5 hours of incubation. 

Pseudomonas survival assay 

Culturing and seeding of Pseudomonas aeruginosa PA14 (obtained from CGC) on 

modified NGM agar plates, as well as the C. elegans slow killing assay were 

performed as described in (Kirienko et al., 2014). Briefly, worms were grown OP50 

until L4 stage and then transferred to plates seeded with PA14. Survival was scored 

twice per day until all worms were dead. Worms that escaped on the side of the plate 

were censored. Prism 5 software was used for statistical analysis to determine 

significance calculated using the log-rank (Mantel-Cox) method.  

RNA isolation and quantitative RT-PCR 

For RT-qPCR analysis, C. elegans were age synchronized by egg bleaching and 

cultivated on NGM agar plates seeded with HT115 bacteria expressing RNAi 

constructs at 20°C and/or containing doxycycline hyclate 15 g/ml. L4 worms were 

infected with PA14 and recovered with M9 minimal liquid medium after 24h of 

exposure. Five biological replicates for each condition were prepared, consisting of 

~600 worms per sample in M9. Before mRNA preparation, samples were washed 

twice with 5 mL M9 to eliminate residual bacteria. Total RNA was prepared using 

TRIzol (Invitrogen) according to the manufacturer's instructions. RNA was treated 

with DNase, and 1 g of RNA was used for reverse transcription (RT). 15X diluted 

cDNA was used for RT  quantitative PCR (RT qPCR) reactions. The RT qPCR 
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reactions were performed using the LightCycler 480 System (Roche Applied Science) 

and a qPCR Supermix (QIAGEN) with the indicated primers. At least 2 housekeeping 

genes (* in the sequences below) were used as normalization control. Three 

technical replicates were used for each biological replicate.  

The primers used for the C. elegans genes were the following:  

spg-7 (Y47G6A.10): fw: aagtatgcaggacaaacgtgc, rv: tgaggtttgggatttcgcgt.  
hsp-6 (C37H5.8): fw: aaccaccgtcaacaacgccg, rv: agcgatgatcttatctccagcgtcc.  
hsp-60 (Y22D7AL.5): fw: ttctcgccagagccatcgcc, rv: tctcttcgggggtggtgaccttc.  
lonp-1 (C34B2.6): fw: cgatgatggccattgtgcag, rv: cgctttgaaacatcaatttcatcca. 
C17H12.6 : fw: accacaattccagcaggagc,  rv: ggagaacgacttgaaacacgag 
clec-17 (E03H4.10):fw: tggctctgcacagagttacg,  rv: acagtcgtctgcatgagttgt 
F14H3.12:fw: gctgatcaggaagatcaggcg,  rv: agtgtgcagacctcgatatccc 
F53A9.6:fw: atatgctccaccaccagtcc,  rv: ggctttcgtagtgtcctccg 
F53A9.8 :fw: catgaggaccatcacgagca,  rv: cttcatgggagtcgtgagca 
glc-1 (F11A5.10):fw: agcccaacaagctagaacga,  rv: ggtcgcactcggaaatcgta 
K08D8.5 :fw: aaaacccagtacgagtcggg,  rv: tcccggaggatattttgaccag 
T16G1.5 :fw: gtgaacaagtacgctggcat,  rv: cctgtctgtcagcaccagag 
*act-1 (T04C12.6): fw: gctggacgtgatcttactgattacc, rv: gtagcagagcttctccttgatgtc. 
*pmp-3 (C54G10.3): fw: gttcccgtgttcatcactcat, rv: acaccgtcgagaagctgtaga 
*cdc-42 (R07G3.1): fw:, agccattctggccgctctcg  rv: gcaaccgcttctcgtttggc 
*Y45F10D.4: fw: gtcgcttcaaatcagttcagc, rv: gttcttgtcaagtgatccgaca 
 

RNA Sequencing and microarray analysis 

N2 and nuo-6 mutants were age synchronized by egg bleaching and cultivated on 

NGM agar plates seeded with HT115 bacteria expressing RNAi constructs or 

containing doxycycline hyclate 15 g/ml. Worms were harvested at L4 stage. Before 

RNA extraction, samples were washed twice with 5 mL M9 to eliminate residual 

bacteria. Total RNA was isolated using Trizol (Life Technologies) and purified using 

the RNeasy Mini Kit (Qiagen) in accordance with the manufacturer’s instructions. It 

was then assessed for degradation using an Advanced Analytical Agilent Fragment 

Analyzer. For each condition, the 3 best quality samples were selected and taken 

further for microarray or RNA-Seq.  

For RNA-Seq, all 12 samples had an RNA Quality Number >9.6. Ilumina Truseq 

stranded polyA-mRNA library was prepared and sequenced for 100 cycles at the 

Genome Technologies Facility at the University of Lausanne. The 12 samples were 

multiplexed and sequenced on two lanes of an Illumina Hiseq 2500, yielding a 

minimum of about 30 million reads per sample. All obtained results passed the quality 
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check and were subsequently quantified and mapped to the C. elegans reference 

genome using the Kallisto-Sleuth R package. Differentially expressed genes were 

determined using false discovery rate FDR<0.05 with DESeq R package (Anders and 

Huber, 2010).  

Microarray analysis was performed using Affymetrix C. elegans Gene 1.0ST chips in 

triplicates per RNAi condition. Microarray data was normalized with RMA-sketch 

method and analyzed using the Affymetrix Expression and Transcriptome analysis 

consoles. Volcano plots, heatmaps and Venn diagrams were generated with R 

(www.r-project.org). GO terms enrichment was determined with the “goana” function 

from the limma R package (3.2BC) or using the DAVID online tool (Huang da et al., 

2009) (3.3B, 3.4C), for both methods using Bonferroni adjusted p value < 0.05. 

PGSA 

Transcript expressions in human tissues were downloaded from the GTEx Portal 

(version v6p) [PMID: 23715323]. Gene expression residuals after removing 

covariates, including first three genetic principle components, gender, and other 

available covariates by PEER (probabilistic estimation of expression residuals) 

[PMID: 22343431] were used for the enrichment analysis. For gene set enrichment 

analysis (GSEA), genes were ranked based on their Pearson correlation coefficients 

with the expression residuals of PABPC1, and GSEA was performed to find the 

enriched gene sets co-expressed with PABPC1 using the R/fgsea package [PMID: 

16199517; doi: 10.1101/060012].  

The gene-level statistics was performed based on the Pearson correlation coefficient 

of the expression of genes and the gene of interest in the transcriptome datasets. We 

calculated the gene set statistics through a Kolmogorov–Smirnov statistic [PMID: 

16199517]. Assume that we have the set  with  genes along with computed 

statistics and corresponding p-values. All genes are ranked due to the correlations of 

expression level with expression of the gene-of-interest . Then the 

two running sums are constructed:  is for the genes from the set and  for all other 

genes: 
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Enrichment score (ES) is defined as the maximum deviation from zero of their 

difference . Letting  here. Significance of the 

observed score is assessed using the null distribution formed of the statistics 

computed on permuted gene labels. The empirical p value is calculated based on the 

probability that the random gene sets statistics are equal or larger than the original 

gene set statistics. Normalized enrichment score (NES) is obtained by normalizing 

the size of each gene set to account for gene set size. The multiple testing problem 

given the high number of gene sets tested is corrected using false discovery rate 

(FDR) estimation.  

For plotting, the logarithm of the empirical p values were plotted against the NES, 

with the size of the dots representing the gene set sizes, and the darkness of the 

dots indicating the FDR of the enrichment. Mitochondrial relevant gene sets were 

colored in green and immune relevant gene sets were colored in blue.  

MEME analysis 

5’UTR sequence of pab-1–regulated genes were retrieved using the biomaRt 

package on R (Durinck et al., 2005) and submitted to MEME website (http://meme-

suite.org/tools/meme) for analysis of enriched sequences, using default parameters 

and “search on given strand only” option, since RNA was being analysed.  

Statistical analysis 

Survival analyses were performed using the Kaplan Meier method and the 

significance was calculated using the log rank test. Differences between two groups 

were assessed using two-tailed t-tests. Analysis of variance, assessed by 

Bonferroni’s multiple comparison test, was used when comparing more than two 

groups. The statistical software used was GraphPad Prism 5 and p<0,05 was 

considered significant. 
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3.6 Supplementary tables and figures 

Hit Function Orthologue % reduction 
by A  by B  

pab-1 RBP Pabpc1 95 95 
elt-2 TF Gata4/Gata6 100 98 
phi-7 TF/RBP* Cdc5l 90 90 
B0336.3 RBP* Rbm26 95 95 
let-607 TF* Creb3l3/CrebH 80 90 
jmjd-3.1 KDM Jmjd3/Utx/Uty 70-100 80 
sptf-3 TF Sp4, Sp3, Sp1 30-60 60 
crh-2 TF Creb3l2 30-60 50 
sec-23 vesicular protein* Sec23A/Sec23B 100 98 
W01D2.1 ribosomal protein* 60S ribosomal protein L37 100 98 
ceh-1 TF* Nkx1-1, Nkx1-2 30 40 
hmp-2 adhesion molecule  Ctnnb-1 (beta-catenin) 30 40 
nhr-8 NHR Vdr (Vit D receptor) 30 20 
cep-1 TF p53 10-20 10-20 
nhr-66 NHR RXR-beta 20-30 10-20 
tbx-30 TF* Mga (MAX-gene associated protein) 40 20 
ztf-4  RBP* Hnrnpc  0-10 10-20 
oma-1 TF/RBP Tristetraprolin (TTP) (Zfp36) 10 0-10 
ceh-48 TF HNF6/Onecut2 30 0-10 
nhr-38 NHR Nr5a1/ Nr5a2 20 0-10 
Table 3.1 : UPRmt screening hits 

Ranking of the 20 top hits by relevance and their suppressive effect on hsp-6::gfp fluorescence upon 
spg-7 RNAi treatment by visual assessment by person A and B. (TF= transcription factor, 
NHR=nuclear hormone receptor, RBP=RNA-binding protein, KDM= histone lysine (K)-demethylase, 
Hnrpc= heterogenous nuclear ribonucleoproteins C1/C2, *=putative function) 
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Supp. Figure 3.8 

A. Representative pictures of the hsp-6::gfp reporter worms fed with RNAi mixed with mrps-5 RNAi. B. 
Quantification of the suppressive effect of the fluorescence of the UPRER signalling reporter by the 3 
top hits after treatment with tunicamycin 25ng/ul for 5 hours. Bars show mean±SEM, ANOVA p-value 
P 0.05, **P 0.01, *** P 0.001. C. Heatmap representing the mRNA levels of the UPRmt genes in the 
RNA-Seq results. 

 

Supp. Figure 3.9 

A. RT-qPCR results showing transcript levels of some of the core genes (Figure 3.4A) upon 
doxycycline treatment (top row) or infection by P.aeruginosa PA14 (bottom row). Bars show 
mean±SD, *ANOVA p-value P 0.05, **P 0.01, *** P 0.001. B. GO biological processes (GO BP) 
enriched amongst genes down-regulated by pab-1 silencing in N2 WT worms (RNA-Seq experiment 
(Figure 3.2A), by at least 1.5 fold decrease, FDR 0.05. C. The effect of pab-1 silencing on egg laying 
of N2 WT worms. Bars show mean±SEM, student t-test p-value, *** P 0.001. D. RT-qPCR results 
showing the effect of pab-1 RNAi on UPRmt genes in N2 WT and atfs-1 mutant worms treated with 
P.aeruginosa PA14 strain. Bars show mean±SD, * ANOVA p-value,*** P 0.001.  
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 p-value 
mean 
survival(h) SEM  deaths total  

N2; ev  68.8 2.4 46 150 

N2; pab-1 0.0118* 64.5 3.09 29 150 

glp-1; ev  111.5 3.06 70 150 

glp-1; pab-1  < 0.0001*** 70.9 3 24 150 

atfs-1; ev  62.4 3.96 50 200 

atfs-1; pab-1  0.1138 76.2 3.51 65 200 

Table 3.2 : Survival statistics for the PA14 slow killing assay 
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Chapter 4 Exploring the conservation of 
the mitochondrial unfolded protein 
response (UPRmt) in mammals 
4.1 Multilayered genetic and omics dissection of mitochondrial 
activity in a mouse reference population 
Adapted from  

Wu Y*, Williams EG*, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, 

Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J§, Aebersold R§. Multilayered 

Genetic and Omics Dissection of Mitochondrial Activity in a Mouse Reference 

Population. 2014, Cell 158, 1415-1430. doi: 10.1016 

 

* Co-first author 

§ Co-corresponding author 

 

In this study, I achieved the C. elegans experiments and contributed in the 

experimental design and the writing of the figure about UPRmt. I include here only the 

parts of the above-mentioned article that are needed for a clear understanding of 

how this study relates to UPRmt.  

4.1.1 Introduction 

The central dogma of molecular biology states that genetic information encoded in 

DNA is first transcribed by RNA polymerase, then translated by ribosomes into 

proteins. However, the DNA sequence of a gene provides little information for 

predicting when, where, and to what extent its associated RNA and protein products 

will be expressed. Since the advent of microarray technology, comprehensive gene 

expression patterns—i.e. the transcriptome—can be precisely and comprehensively 

quantified across large populations. Unfortunately, transcript levels generally have 

only modest correlation with the levels of corresponding proteins (Ghazalpour et al., 

2011; Gygi et al., 1999; Schwanhausser et al., 2011), and genetic variants similarly 

affecting both the transcript and peptide levels of a gene are relatively uncommon 
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(Albert et al., 2014; Skelly et al., 2013). As proteins in most cases are more directly 

responsible than transcripts in the regulation of cellular pathways—and ultimately 

phenotypic traits—there is a critical need for efficient, large-scale and accurately 

quantitative proteomics methods to complement transcriptomic datasets.  

Over the past decade, the development of discovery mass spectrometry (“shotgun”) 

has allowed the first large-scale studies on quantitative proteomics. In this approach, 

protein extracts are cleaved into short peptide sequences, which are then 

chromatographically separated and analyzed by tandem mass spectrometry. This 

allows the untargeted discovery of thousands of peptides, but if the number of unique 

peptide fragments in a sample significantly exceeds the number of available 

sequencing cycles (as in whole proteome extracts), any individual peptide will be 

inconsistently sampled across repeat analyses. This reduces the technical 

reproducibility, but moreover means that the number of peptides consistently 

quantified across all (or most) samples decreases as the study size increases 

(Karpievitch et al., 2012). Consequently, discovery mass spectrometry strategy has 

yielded mixed results in large population studies (Ghazalpour et al., 2011; Holdt et 

al., 2013), particularly as specific peptides of interest cannot be targeted, and the 

most consistently identified peptides are biased towards those of higher abundance 

(Callister et al., 2006). To overcome these hurdles, selected reaction monitoring 

(SRM) was developed, which perfects technical reproducibility and allows consistent 

multiplexed quantitation of target proteins by deploying a mass spectrometric 

measurement assay that is specific for each targeted peptide (Lange et al., 2008). 

Thus, hundreds of target peptides can be consistently and accurately quantified 

across large populations of samples. Recent studies in yeast have shown that the 

proteins and transcripts of genes are typically controlled by different, distinct 

mechanisms (Albert et al., 2014; Picotti et al., 2013). However, these hypotheses 

have not been well tested in mammalian genetic reference populations (GRPs) 

through multilayered transcriptomic and proteomic strategies. 

Large GRPs are frequently used to determine to which extent phenotypic variation is 

driven by genetic variants (i.e. heritability), and to subsequently identify genes driving 

such variation. These genes can be identified by genome-wide association (GWA) or 

by quantitative trait locus (QTL) mapping, approaches that have been applied to 

various species and have led to the successful identification of dozens of major allelic 
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variants (Andreux et al., 2012; De Luca et al., 2003; Deeb et al., 1998; Yvert et al., 

2003). In mammals, the murine BXD family is the largest and best studied GRP, 

consisting of ~150 recombinant inbred strains descended from C57BL/6J (B6) and 

DBA/2J (D2) (Andreux et al., 2012). Using 40 strains of this population on both chow 

(CD) and high fat (HFD) diets, we have obtained major metabolic phenotypes and 

established a multilayered dataset focused on 192 metabolic genes expressed in the 

liver. For all genes, we know the sequence variants, transcript levels, and protein 

levels in all cohorts. We further used the integrated molecular profiles to characterize 

complex pathways, as illustrated with the mitochondrial unfolded protein response 

(UPRmt). UPRmt  shows strikingly variant responses at the transcript and protein level 

that are remarkably conserved between C.elegans, mice, and humans. Overall, these 

examples demonstrate the value of an integrated multilayered omics approach to 

characterize complex metabolic phenotypes. 

4.1.2 Protein targeting across a genetically & environmentally diverse murine 
population 

We first selected 192 metabolic proteins for study, with particular focus on genes 

regulating mitochondria and general energy metabolism. For each gene, synthetic 

peptides were generated based on established assays (Picotti et al., 2010) (Figure 

4.1A) to accurately quantify each protein across all cohorts. 

It has been well-established that transcriptomic networks of many metabolic 

processes covary quite well, e.g. within the electron transport chain or within the citric 

acid cycle (Ihmels et al., 2002). On protein level, proteins which function in common 

biological processes or which localize to the same functional modules are also 

reported to be subject to similar regulatory process and generally co-vary (Foster et 

al., 2006). To validate and identify which of these 192 proteins vary synchronously, 

we computed the robust Spearman correlation network for all protein pairs using the 

full SRM dataset (Figure 4.1B). The resulting network contained 82 correlated nodes 

(proteins) with 211 edges in 3 main enrichment clusters. As expected, many of the 

mitochondrial proteins and proteins involved in lipid metabolism are highly correlated 

(Figure 4.1B, cluster a and b). Within cluster a. are five of the six measured proteins 

involved in mitochondrial unfolded protein response (UPRmt) (HSPD1, HSPE1, 

HSPA9, CLPP, and LONP1 indicated in red), along with three of the four measured 

NADH dehydrogenase genes (NDUFA1, NDUFB3 and NDUFS6—in blue), and four 
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of the eight measured mitochondrial-encoded proteins (MT-CYB, MT-CO2, MT-CO3, 

and MT-ND3 in black). Meanwhile, proteins involved in carbohydrate metabolism are 

enriched in the same cluster (Figure 4.1B, cluster c). These results show that 

functionally-related proteins tend to be coordinately regulated at a protein level, and 

that coregulation of protein abundance is strongly maintained for certain processes. 

To validate biological significance of these function-based covariation clusters, we 

further investigated one, the UPRmt network (elaborated in Figure 4.2). 

 
Figure 4.1 : SRM-based Protein Quantification and Covariation Network 

A. SRM assay development for targeted proteomic measurements. 309 peptides corresponding to 192 
genes were designed and synthesized via SPOT synthesis. Fragment ion spectra were generated on 
a triple-quadrupole MS with SRM-triggered MS2 mode, then ions were selected based on their relative 
intensities. Dot colors indicate different amino acids. m/z, mass-to-charge ratio. Mouse liver 
homogenate combined with the heavy reference proteome was analyzed with SRM on a triple-
quadrupole MS. Different dot colors represent different peptides (Quadrupole 1) or product ions 
(Quadrupole 3). B. Protein association network based on robust Spearman correlation measures for 
all protein pairs. Statistically significant and strong positive associations (p < 0.01 & r > 0.6) are edges. 
The largest correlation clusters are labeled “a.”, “b.”, and “c.”. Nodes are labeled with protein names 
and colored according to their biological process, as reported by DAVID (Huang da et al., 2009). 

4.1.3 The mitochondrial unfolded protein response 

The UPRmt is a mitochondrial stress response pathway that is activated by 

proteostatic stress, such as by accumulation of unassembled or unfolded proteins in 

the mitochondria (Zhao et al., 2002), by the presence of an imbalance between 

mitochondrial and nuclear encoded proteins (Houtkooper et al., 2013), or by electron 

transport chain defects (Durieux et al., 2011b; Runkel et al., 2013). The activation of 
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UPRmt in turn leads to the transcription/translation of nuclear-encoded protective 

genes such as mitochondrial chaperones and proteases to reestablish mitochondrial 

proteostasis (reviewed in (Haynes et al., 2013; Jovaisaite et al., 2014; Wolff et al., 

2014)). The bulk of research on UPRmt has taken place using C. elegans and 

mammalian cell lines, thus little is known about when or how UPRmt occurs in vivo in 

mammals. Furthermore, as the UPRmt is a stress response tied to maintaining 

mitochondrial protein balance, we hypothesized that its protein correlation networks 

may be different than those generally examined at the transcriptional level. 

In the worm, two “classical” approaches have been typically used to induce UPRmt: 

loss-of-function of cco-1, a nuclear encoded component of the electron transport 

chain (Durieux et al., 2011b), or loss of function of spg-7, a mitochondrial protein 

quality-control protease (Yoneda et al., 2004). We confirmed that the knockdown of 

either gene by RNAi triggers the UPRmt response in C. elegans, by strong induction 

of the mitochondrial chaperone hsp-6 and of the proteases lonp-1 and clpp-1 (Figure 

6A). Moreover, we linked this UPRmt activation to specific phenotypes—a major 

reduction in size and mobility, as well as a decrease in oxygen consumption—which 

are consequences of mitochondrial stress (Figure 6B). However, whether this 

coordinated regulation of UPRmt genes is conserved in mammals in vivo, has not 

been previously shown.  

In the BXDs, we investigated the expression of six members of the UPRmt pathway, 

which are well-conserved from C. elegans: mitochondrial chaperones (Hspd1, Hspe1, 

Hspa9), proteases (Clpp, Lonp1), and a transcriptional regulator involved in UPRmt 

(Ubl5). These UPRmt genes are also coordinately regulated at both mRNA and 

protein level in the BXDs, but with much stronger connections among proteins 

(Figure 6C). Moreover, the UPRmt network correlates negatively with Cox5b and 

Spg7 (mouse orthologues of worm cco-1 and spg-7, respectively), indicating that low 

abundance of these genes amplifies UPRmt in mammals as in C. elegans (Figure 

6D). The network is also influenced in part by diet. While Cox5b expression patterns 

are similar between CD and HFD, Spg7 covariation is disjointed between the dietary 

cohorts (Figure 6E). This may explain why, despite a similar overall UPRmt response 

in both diets (Figure 6D & F), Spg7 trends positively in HFD cohorts, while Cox5b 

remains consistent (Figure 6G). Using four large transcriptional studies of human 

tissue biopsies, we observe similar transcriptional links, particularly including a strong 
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network between all the UPRmt genes (Figure 6H). In humans, SPG7 is a consistent 

negative correlate of this network, in contrast to COX5B, which generally has positive 

covariation with the UPRmt response (Figure 6I). Thus, while many of the overall 

regulators of UPRmt remain coregulated across species—worm, mouse and human—

particular nuances of its activation pathways appear variable dependent on species, 

environment, tissue, and likely other factors.  

 
Figure 4.2 : The Mitochondrial Unfolded Protein Response 

A. UPRmt induction in C. elegans triggered by interference with ETC (RNAi of cco-1) or mitochondrial 
proteostasis (RNAi for spg-7). These triggers result in upregulation of UPRmt effectors hsp-6, clpp-1, 
and lonp-1 and a reduction in ubl-5. The orthologous mouse genes are indicated below the respective 
C. elegans gene symbol. Error bars represent mean + SEM. B. UPRmt induction in C. elegans 
decreases movement, size, and oxygen consumption. C. UPRmt genes and proteins form a network of 
coordinately expressed mRNAs and proteins in vivo in mice, which is stronger at the protein than at 
the mRNA level. D. Cox5b and Spg7 (orthologs of C. elegans cco-1 and spg-7), are generally 
negatively associated with the levels of all UPRmt genes in CD cohorts, particularly at the protein level, 
in line with observations in the worm. E. While the levels of Cox5b and Spg7 are not affected by diet, 
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expression is consistent by strain across the two diets only for Cox5b. F. The UPRmt network in HFD 
livers is similar to that observed in CD, but somewhat weaker. Ubl5 remains a striking negative 
correlate at the mRNA level. G. In HFD, Cox5b remains a negative correlate of UPRmt transcripts and 
proteins, while Spg7 does not. H. The features of the UPRmt network are also conserved in 427 human 
liver biopsies (Schadt et al., 2008), 405 lung biopsies (Ding et al., 2004), 180 lymphoblast lines (Monks 
et al., 2004), and 43 hippocampi (Berchtold et al., 2008). I. In humans, SPG7 is a consistent negative 
correlate of the UPRmt transcripts. 

 

4.1.4 Discussion 

Due to major differences in transcript and protein regulation, it has become 

increasingly clear that systems proteomics is essential for the analysis of complex 

systems such as metabolism (Khan et al., 2013; Skelly et al., 2013). In this study, we 

quantified 192 metabolism genes at the transcript and protein level in livers from 77 

cohorts of the BXD GRP under two different dietary conditions. 

It is worth stressing that novel regulatory mechanisms can be found either through 

QTL analysis and their equivalent from GWAS, SNP analysis, or through network 

analyses, which are a complementary and powerful approach to dissect complex 

traits. The network approach is particularly viable when backed by high-depth 

multilayered datasets such as illustrated by our example on UPRmt. UPRmt is a 

reparative pathway activated by mitochondrial proteotoxic stress that has been 

primarily studied in the C. elegans and in cultured cells, but little is known about 

whether it occurs in vivo in mammals. We examined six genes that are known to be 

major regulators of C. elegans UPRmt and which are conserved in mammals. These 

six genes form a robust coexpression network in both diets at the transcriptional and 

proteomic levels, with the proteomic connections being stronger, befitting the role of 

UPRmt as a sensor and regulator of protein stress. One observation that stood out in 

the analysis of the UPRmt, was the striking “contradiction” between the Ubl5 transcript 

and UBL5 protein correlations to the UPRmt network. Ubl5 is a transcriptional 

regulator known to induce UPRmt, yet in both worms and mice, its transcript levels 

decrease when UPRmt is activated. Conversely, the UBL5 protein is increased with 

UPRmt activation in the BXDs, an observation also previously reported in C. elegans 

(Benedetti et al., 2006). This discordance in protein/transcript regulation suggests the 

existence of posttranscriptional mechanisms or a negative feedback loop, which 

could not be detected at the transcript or protein level alone. While there remains a 

great deal of this pathway left to be explored, it is clear that accurate, systems-scale 
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protein measurements are essential to effectively model complex protein response 

networks like UPRmt. 
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4.2 Assessing the effects of doxycycline on murine physiology 
and longevity 
Data and text of paragraph 4.2.2 adapted from  

Moullan N*, Mouchiroud L*, Wang X, Ryu D, Williams EG, Mottis A, Jovaisaite V, 

Frochaux MV, Quiros PM, Deplancke B, Houtkooper RH§ and Auwerx J§. 

Tetracyclines disturb mitochondrial function across eukaryotic models: a call for 

caution in Biomedical Research. 2015, Cell reports, pii: S2211-1247(15)00180-1. doi: 

10.1016 

* Co-first author 

§ Co-corresponding author 

This chapter combines published results from a study where I contributed (4.2.2, see 

below for details) and unpublished results (4.2.3, post-natal dox study, that I 

achieved in collaboration with another PhD student, V.Jovaisaite).  

 

4.2.1 Introduction 

Bioinformatic studies revealed a marked trend of coexpression of UPRmt genes in 

genomics and proteomics data from both mice and human (Chapter 4.1) (Wu et al., 

2014). This suggests a conserved coregulation of this pathway in mammals in normal 

physiological state. We hypothesized that studying the features and effects of the 

mitochondrial response when triggering a stress in vivo would complement our 

understanding. For this purpose, we used the well-characterized antibiotic 

doxycycline (dox) from the tetracycline class, targeting bacterial translation. Dox 

leads to the specific inhibition of mitochondrial translation in eukaryotic cells due the 

bacterial origin of this organelle (Clark-Walker and Linnane, 1966). Dox therefore 

blocks the production of mitochondria-encoded OXPHOS complex subunits. Since 

nuclear-encoded subunits are still produced, it disturbs the stoichiometry of 

respiratory complexes and the proteostasis in the mitochondria (Houtkooper et al., 

2013). This state of mitonuclear imbalance causes mitochondrial stress and the 

activation of UPRmt, which has been more extensively characterized in C.elegans. 

Moreover, when worms are subjected to UPRmt activation during a particular 

developmental window, it leads to their lifespan extension (Durieux et al., 2011a). 
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Epigenetic remodeling of histone marks by the histone demethylases jmjd-3.1 and 

phf-8 was shown to mediate this long-lasting effect on longevity (Merkwirth et al., 

2016). Additionally, in theBXDs, expression of the mammalian orthologues Jmjd3 and 

Phf8 correlates with that of UPRmt genes (Merkwirth et al., 2016). Mitochondrial 

stress is at the origin of lifespan extension in several genetic models, including 

mammals (Quiros et al., 2016). Finally, like knocking-down mitochondrial ribosomal 

proteins (MRPs) extends lifespan in worms, and Mrps5 was found in a genomic loci 

regulating lifespan in mice and its expression correlates negatively with longevity in 

the BXDs (Houtkooper et al., 2013). All these evidences suggest that 

pharmacological disturbance of mitochondrial function early in life might be 

epigenetically imprinted and have long-lasting effect on physiology and longevity. To 

this purpose, we investigated the effects of post-natal dox treatment in mice.  

4.2.2 Doxycycline disturbs mitochondrial proteostasis and function in mice  

Adapted from (Moullan et al., 2015). In this study, I contributed in performing and 

analysing the in vivo experiments in mice. 

Male C57BL/6J mice were treated with 50- or 500-mg /kg/day of dox dissolved in 

their drinking water supplemented with sucrose for 14 days. We used 50-mg/kg/day 

amoxicillin as a control, since this antibiotic does not interfere with 

bacterial/mitochondrial translation, but disrupts the bacterial cell wall. Dox dose-

dependently induced mitonuclear protein imbalance in different mouse tissues 

including liver, heart, and brain (Figure 4.3A, B, C). We analysed the physiological 

consequences of dox treatment in mice. The treatment did not affect body weight or 

food intake, suggesting no overt toxicity for the treatment timeframe and dosage used 

(Figure 4.3D, E). At the whole-body level, these short-term treatments did not affect 

body composition in either lean or fat mass between the amoxicillin and dox groups 

(Figure 4.3F, G). The decreased oxygen consumption of dox-treated mice, indicative 

for reduced energy expenditure (Figure 4.3H), and the marked increase in physical 

activity (Figure 4.3I) are, however, clear indicators for altered physiological tness. 
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Figure 4.3 : Dox in vivo treatment in mice impairs OXPHOS proteostasis and energy 
expenditure. 

A-C. Dox (at 50 and 500 mg/kg/day in the drinking water) induces mitonuclear protein imbalance in 
liver (A), heart (B), and brain (C), as shown by the reduced ratio between mtDNA-encoded MTCO1 
and nDNA-encoded SDHA when compared with amoxicillin (at 50 mg/kg/day) after 14 days of 
treatment. D-E. Dox treatment (500 mg/kg/day in drinking water for 14 days) in mice does not affect 
body weight (BW) (D) or food intake (E) compared to mice treated with amoxicillin (at 50 mg/kg/day). 
F-G. Fat mass (F) and lean mass (G) were not affected by dox. H-I. Dox treatment reduced energy 
expenditure (H), but increases locomotor activity (I) in dox- compared to amoxicillin-treated mice. The 
gray area shows the time when lights in the animal facility were switched off. Bar graphs are 
expressed as mean + SEM, *p % 0.05 

4.2.3 Post-natal doxycycline does not show long-term effects on physiology 
and longevity 

We subjected C57BL/6J males to post-natal (from the morning following their birth) 

treatment with dox 500-mg /kg/day in the drinking water supplemented with sucrose 

during 6 weeks. Since dox is excreted in the milk (Aupee et al., 2009), the treatment 

was dependent on the mother until weaning at week 3 after birth. We phenotyped the 

mice at 6 months of age to analyse the long-lasting physiological consequences of 

post-natal dox treatment, in comparison with control mice (Suc, receiving sucrose 

only) and amoxicillin-treated mice (50-mg/kg/day). No difference was observed in 

body weight of the mice at 6 months (Figure 4.4A). Similarly, food intake, fat and lean 

mass were not changed (Figure 4.4B, C, D). While dox treatment impacts on oxygen 

consumption (Figure 4.3H), post-natal administration of dox did not cause 

sustainable negative or positive effects on VO2 (Figure 4.4E). However, we found 
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that dox, as well as amoxicillin, significantly reduced the activity of 6-months old mice 

subjected to these drugs at birth (Figure 4.4F, G, H). Finally, post-natal dox 

administration, did not impact on longevity of the mice neither when compared to 

control nor to amoxicillin-treated mice (Figure 4.4I). Altogether, these results suggest 

that post-natal dox treatment did not have a major long-term impact on health- and 

life-span. However, mice treated post-natally with dox, as well as amoxicillin, 

displayed decreased activity compared to control mice, suggesting that some effects 

of the post-natal intervention persisted in time. 

 
Figure 4.4 : Post-natal dox treatment does not show specific consequences on physiology and 
longevity over the long term 

A-E. Dox and amoxicillin (Amox) treatment in mice for 6 weeks (from their time of birth) do not affect 
body weight (BW) (A), food intake (B), lean (C), fat mass (D) and oxygen consumption (VO2) (E) in 
comparison to control mice (Suc) at 6 months of age. F-H. Post-natal dox (Dox) and amoxicillin 
(Amox) treatment decreased the locomotor activity at 6 months of age. Top panel: counts in function of 
time. Bottom panel: Mean counts during dark phase (gray area), i.e. when lights are switched off. I. 
Post-natal dox (Dox) and amoxicillin (Amox) treatment do not affect mouse lifespan. Bar graphs are 
expressed as mean + SEM, ***p <0.001 
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4.2.4 Discussion 

Here, we showed that dox induces mitonuclear imbalance in vivo and impacts on 

mitochondrial function and whole body physiology; namely, it reduces oxygen 

consumption and increases mobility, as it does in flies and worms (Moullan et al., 

2015). In C. elegans, dox and mitochondrial stress signaled by UPRmt prolong 

lifespan through the intervention of epigenetic modifications mediated by conserved 

demethylases (Houtkooper et al., 2013; Jovaisaite et al., 2014). Although it is 

tempting to speculate that physiological effects of mitochondrial stress may be long-

lasting, we found that they do not persist in mice subjected to dox postnatally. 

Longevity also was not impacted by early life dox treatment.  

Decreased physical activity was the only long-term consequence of post-natal dox 

treatment, which, however, was also observed in mice treated with amoxicillin. As 

amoxicillin does not affect mitochondria, we concluded that the reduced activity 

probably resulted from the alteration of their gut microbiota due to the antibiotic 

treatment. A decrease in general locomotor activity can also be a sign of anxiety and 

depressive behavior. Indeed, many studies demonstrated that alterations of the gut 

microbiota, especially in early life, affect the gut-brain axis, leading to anxiety and 

depression (Foster and McVey Neufeld, 2013). This observation therefore highlights 

the physiological impact of altering the microbiota post-natally through treatment with 

antibiotics (Cho and Blaser, 2012; Cho et al., 2012). The fact that similar data were 

obtained with two antibiotics that have a divergent impact on the mitochondria also 

suggest that an accurate assessment of mitochondrial stress induced by dox should 

be performed in an experimental set-up which is free of microbiota, such as in mice 

raised in a germ-free environment.  

4.3 Materials and methods 

4.3.1 Materials and Methods to corresponding to section 4.1 

Animals 

40 strains of the BXD population—40 on CD, 37 on HFD—with ~10 male animals 

from each strain were separated into two cohorts of five for each diet. Food access 

was ad libitum for CD—Harlan 2018 6% kCal/fat, 74% carbohydrates, 20% protein—

or for HFD—Harlan 06414 (60% kCal/fat, 20% carbohydrate, 20% protein). HFD 

cohorts received the diet from week 8 until sacrifice. Each cohort was communally 
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housed until wk 23, after which animals were single caged until tissues collection at 

29 wks after an overnight fast. Tissues were collected from 183 CD and 168 HFD 

animals, with at least 3 biological replicates for all cohorts. 

Sample Preparation and Analysis 

For liver analyses, three ~100 mg pieces were taken from cold storage for each 

individual, then weighed and sorted for mRNA, protein, and metabolite 

measurements. For microarray, mRNA from 3–5 individuals per cohort were 

prepared separately then pooled equally after nanodrop quantification and run on the 

Affymetrix Mouse Gene 1.0 ST array platform. For proteomics, protein was prepared 

from one to three biological replicates per cohort.  

SRM Assay Development and Protein Quantification  

Generation of peptide library and development of SRM assays were performed as 

described (Picotti et al., 2010). Identical SRM assays for all 192 target proteins were 

run on all 77 cohorts. SRM traces were manually checked according to established 

criteria (Lange et al., 2008). For relative quantification of each protein across the set 

of different cohorts, the raw intensity of transitions of the native and (13C6, 15N4)-

Arginine, (13C6, 15N2)-Lysine peptides were considered. Technical reproducibility of 

SRM-based quantification was validated by measuring the individual samples with 

three independent mass-spectrometry injections. 

General Informatic Analyses 

Correlations are Pearson’s r or Spearman’s rho, depending on the absence or 

presence of outliers. Student’s t-test was used for comparing two groups in 

normalized data (all protein and mRNA are normalized). Bonferroni’s correction for 

multiple testing was performed, and cutoffs for both nominal significance (p < 0.05) 

and corrected significance (p < 0.05/n-tests) are displayed. Except for QTL plots, 

graphs and analyses were performed in R.  

C. elegans experiments 

Wild type Bristol N2 C. elegans provided by the Caenorhabditis Genetics Center 

(University of Minnesota) were cultured at 20°C and sustained on the OP50 E. coli 

strain. Bacterial feeding RNAi experiments were carried out as described (Kamath et 
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al., 2001). cco 1 (F26E4.9) and spg 7 (Y47G6A.10) clones were purchased from 

GeneService and sequenced.  

For qPCR analysis, five biological replicates for each condition were prepared, 

consisting of ~600 worms per sample in M9 minimal liquid medium. Before mRNA 

preparation, samples were washed twice with 5 mL M9 to eliminate residual bacteria. 

Total RNA was prepared using TRIzol (Invitrogen) according to the manufacturer's 

instructions. RNA was treated with DNase, and 1 g of RNA was used for reverse 

transcription (RT). 15X diluted cDNA was used for RT  quantitative PCR (RT qPCR) 

reactions. The RT qPCR reactions were performed using the LightCycler 480 System 

(Roche Applied Science) and a qPCR Supermix (QIAGEN) with the indicated 

primers. act 1 was used as normalization control. Three technical replicates were 

used for each biological replicate.  

The primers used for the C. elegans genes were as follows:  

cco-1 (F26E4.9): fw: gctcgtcttgctggagatgatcgtt, rv: ggtcggcgtcgactcccttg.  

spg-7 (Y47G6A.10): fw: aagtatgcaggacaaacgtgc, rv: tgaggtttgggatttcgcgt.  

hsp-6 (C37H5.8): fw: aaccaccgtcaacaacgccg, rv: agcgatgatcttatctccagcgtcc.  

hsp-60 (Y22D7AL.5): fw: ttctcgccagagccatcgcc, rv: tctcttcgggggtggtgaccttc.  

hsp-10(Y22D7AL.10): fw: gggaaaagtccttgaagccac, rv: ctccgagaagatcagactcgc. 

clpp-1 (ZK970.2): fw: tgcacagggaacctgctcgg, rv: ttgagagcttcgtgggcgct. 

lonp-1 (C34B2.6): fw: cgatgatggccattgtgcag, rv: cgctttgaaacatcaatttcatcca. 

ubl-5 (F46F11.4): fw: acgaatcaagtgcaatccatcag, rv: gctcgaaattgaatccctcgtg. 

act-1 (T04C12.6): fw: gctggacgtgatcttactgattacc, rv: gtagcagagcttctccttgatgtc. 

For C. elegans phenotyping, oxygen consumption was measured using the Seahorse 

XF96 equipment (Seahorse Bioscience Inc.) as described previously (Yamamoto et 

al., 2011). Typically, 100 worms per condition were recovered from plates with 

Nematode Growth Medium (NGM), then washed three times in 2 mL of M9 liquid 

medium to eliminate residual bacteria, and resuspended again in 500 L of M9. 

Worms were transferred in 96 well standard Seahorse plates (#100777 004) (10 

worms per well) and oxygen consumption was measured 6 times. Respiration rates 

were normalized to the number of worms in each individual well.  

Movement was recorded for 45 seconds at day 2 of adulthood using a Nikon DS L2 / 

DS Fi1 camera and controller setup, attached to a computerized Nikon bright field 
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microscope. Five plates of worms, with 20 worms per plate, were measured in each 

condition. The movement of worms during this time was calculated by following the 

worm centroids using the same modified version of the freely available for the 

Parallel Worm Tracker in MATLAB (Ramot et al., 2008). 

4.3.2 Materials and Methods corresponding to section 4.2 

Mouse experiments 

Male C57BL/6J mice at 8 weeks of age were treated for 14 days with 50 or 500 

mg/kg/day doxycycline hyclate (Sigma) or 50 mg/kg/day amoxicillin (Mepha) in 

drinking water. As doxycycline is bitter we supplemented the water for all the 

conditions (treatments and controls) with 50 g/L sucrose. Drinking water was 

changed every 48 hours.  

For post-natal dox treatment, female mice were put in the empty cage of their 

breeder 3 days before mating in order to stimulate their fertility, therefore ensuring a 

good synchronization of the breeding mothers housed in the same cage. The day 

pups were born, they were treated with 500 mg/kg/day doxycycline (Sigma) or 50 

mg/kg/day amoxicillin (Mepha) supplemented in drinking water. Drinking water for 

both dox and control groups was supplemented with 50 g/L sucrose. As doxycycline 

is bitter we supplemented the water for all the conditions (treatments and controls) 

with 50 g/L sucrose. Drinking water was changed every 48 hours. Male pups were 

treated for 6 weeks after birth.  

At 6 months of age, indirect calorimetry to monitor O2 consumption and 

measurement of activity was assessed using Comprehensive Lab Animal Monitoring 

System (CLAMS; Columbus Instruments). Lean and fat mass was measured by 

echoMRI. About 75 animals per conditions were used to monitor survival. Mouse 

experiments were performed in accordance with Swiss law and institutional 

guidelines. 

Western blotting 

Proteins were extracted from liver and cells in protein extraction buffer containing 25 

mM Tris-HCl, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS 

withadded protease inhibitor cocktail (Roche). We used 20 g of total protein lysate 

to detect mitochondrial protein imbalance. Antibodies against MTCO1, SDHA (both 
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from Abcam) and  tubulin, GAPDH (both from Santa-Cruz) were used for 

immunoblotting. 
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Chapter 5 Doxycycline-induced 
mitochondrial stress in microbiota-free 
mice reveals organ-specific response 
 

Adapted from 

Mottis A, D’Amico D, Williams EG, Quiros PM, Moullan N, Jovaisaite V, Harris N, 

Zamboni N, Aebersold R, §Auwerx J. In preparation.  

§ Co-corresponding author 

I initially conceived this project. I supervised the in vivo experiment (achieved in 

germ-free incubator of Harris laboratory) and harvested/extracted all samples for the 

different analysis. Proteomics and metabolomics analyses were done in collaboration 

with laboratories that are expert in these techniques. I analyzed the data, conceived 

and wrote the manuscript with guidance from JA and advices from DD.  

 

5.1 Introduction 
Mitochondria have long been considered as simple “energy factories” that host 

cellular respiration and ATP production. Studies over the last decades have 

expanded the functions of the mitochondria and have shown that they crucially 

contribute to the homeostasis of the cell and the whole organism, far beyond the 

simple fact of harvesting energy. Mitochondria house numerous pathways with both 

anabolic as well as catabolic functions and hence directly control metabolite balance, 

and by extension also control a number of epigenetic modifications (Matilainen et al., 

2017a). In addition, an ever-growing importance is being attributed to the role of 

mitochondria in immunity (Mills et al., 2017). Their outer membrane constitutes a 

central platform for intracellular immune signalling, containing key players such as 

the mitochondrial antiviral signalling protein (MAVS), which is activated by the viral 

RNA sensors RIG-I and MDA5 (Mills et al., 2017). Mitochondria can also engage in a 

sentinel function by sending danger signals when they are being targeted and 

damaged by infectious microorganisms, a so called danger-associated molecular 
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pattern (DAMP). For instance, the release of mtDNA into the cytosol is sensed by the 

cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) DNA-

sensing system, which subsequently triggers anti-viral and inflammatory cascades, 

such as type 1 interferon (IFN) or NF- B (West and Shadel, 2017). 

Mitochondria are therefore in constant communication with the other subcellular 

compartments, such as the nucleus and the endoplasmic reticulum (ER) (Friedman 

and Nunnari, 2014; Quiros et al., 2016). When facing a stress that disrupts 

mitochondrial homeostasis, mitochondria send signals to the nucleus to activate 

stress resistance genes. Doxycycline (dox) is an antibiotic agent that blocks bacterial 

protein synthesis. This compound was also found to affect mitochondrial function 

across the eukaryotic kingdom due to the similarities of the mitochondrial translation 

machinery with their bacterial ancestor (Houtkooper et al., 2013; Moullan et al., 

2015). Dox impedes mitochondrial protein synthesis and the production of the 

mtDNA-encoded OXPHOS subunits, leading to an accumulation of orphan nuclear-

encoded OXPHOS subunits that cannot assemble into complexes with their 

mitochondria-encoded partner subunits. This so called mito-nuclear protein 

imbalance imposes a mitochondrial proteotoxic stress, leading to the activation of the 

UPRmt. This transcriptional, reparative response has been well characterized in C. 

elegans, but the adaptations to mitochondrial stress in mammals still remain poorly 

characterized. Characterizing the effects of in vivo administration of mitochondrial 

stressors will provide a better understanding of the responses that help to restore or 

ameliorate mitochondrial function in normal physiology, as well as in the context of 

disease. Indeed, it is now commonly accepted that mitochondrial dysfunction 

participates in the pathology of a wide range of common disorders, such as diabetes, 

neurodegenerative diseases, cancer and muscular dystrophies (Andreux et al., 

2013). 

Since mitochondria evolved from bacterial ancestors, most of the drugs that generate 

mitochondrial stress also will impact on bacteria. Higher metazoans have coevolved 

in a symbiotic relationship with the bacteria that constitute their flora. As a result, 

microbiota influence many aspects of mammalian physiology, ranging from 

metabolism, inflammation, immunity, to the function of the nervous system (Cho and 

Blaser, 2012). In this study, we describe the in vivo consequences of a pure 

mitochondrial stress that is void of any interference caused by an impact on the 
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microbiota. We therefore treated germ-free mice with dox and characterized the 

change in the transcriptome and proteome in their liver, kidney, heart and muscle—

metabolic organs with high mitochondrial activity. Our results show distinct organ 

specific signatures in response to doxycycline and allow us to distinguish the effects 

of dox on the so-called “mitobiome” from those on the “microbiome”. 

5.2 Results  

5.2.1 Microbiota-independent transcriptomic signatures of doxycycline 
treatment show differential organ responses 

We treated 9-week old mice C57BL/6J mice raised in a germ-free environment during 

16 days with 500mkd doxycycline (dox) in drinking water supplemented with sucrose. 

Germ-free mice allow the study mitochondrial stress induced by dox in vivo, 

independent of an eventual impact of the compound on the microbiota (Figure 5.1A). 

Mice were sacrificed in the non-fasted state. Body weight at the time of the sacrifice 

was not different between the groups, suggesting the absence of obvious adverse 

effects attributable to the dox treatment or to the germ-free status (Supp. Figure 

5.9B) We assessed changes in whole genome transcript levels elicited by dox in 4 

organs, i.e. kidney, liver, heart and a skeletal muscle, gastrocnemius by microarray 

profiling (Figure 5.1A). The number and distribution of differentially expressed genes 

represented by volcano plots for each tissue indicated differential effects of dox 

treatment. Liver and kidney, the two main metabolic organs, display more 

differentially expressed genes than do cardiac and skeletal muscles (Figure 5.1B). 

Venn diagrams displaying the number of significantly up- and down-regulated genes 

in common among these organs, showed that there was no common up-regulated 

gene and only one gene was down-regulated in common across these tissues with 

the most stringent significance threshold (Figure 5.1C); similar results were obtained 

when a lower stringency cut-off was used (Supp. Figure 5.1B). Of note and in 

common, however, was the low percentage of mitochondrial genes amongst the 

differentially expressed genes in the 4 tissues (only 3% or 6%; Figure 5.1D). 

Together, these results suggest that the changes in transcript levels elicited by the 

dox are different among the kidney, liver, heart and gastrocnemius and are hence 

organ-specific. Moreover, perturbation of mitochondrial gene expression does not 

appear as the main component of the response to mitochondrial stress.  
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Figure 5.1 : Transcriptomics analysis of doxycycline treatment in germ-free mice 

A. Schematic representation of the present study: C57BL/6J mice raised and maintained in a germ-
free environment were treated with doxycycline (dox) and the resulting transcript signatures were 
analyzed in kidney, liver, heart and gastrocnemius. B. Volcano plots displaying –log(nom. p-value) and 
the log fold change (FC) of all genes in each organ. Above the graph, the number of differentially 
expressed genes is indicated (in black, genes with adjusted p value adj.pval<0.05, in gray with 
adj.pval<0.01 with Benjamini-Hochberg correction). C. Venn diagrams displaying the genes commonly 
up and down-regulated between 4 different tissues upon mitochondrial stress (differentially expressed 
genes with adj.pval<0.05). D. Barplot displaying the total number and percentage of mitochondrial 
versus non-mitochondrial differentially expressed genes in each organ (differentially expressed genes 
with adj.pval<0.05). [a larger version of the figure can be found in Annexes] 

5.2.2 Mitochondrial proteins are differentially regulated in liver compared to 
kidney 

We used SWATH-MS proteomics (Bai et al., 2017) measurements  to analyse the 

changes in the liver and kidney proteome of dox-treated mice. Volcano plots (Figure 

5.2A), supported by the counts in the Venn diagrams (Figure 5.2B), demonstrated a 

striking contrast of the effect of dox on protein levels in liver versus kidney. Although 

there were a relatively comparable number of down-regulated proteins, few of them 

are common to both organs. In addition, a lot more proteins were up-regulated by dox 

in kidney compared to liver. This general trend is further illustrated by scatterplots 

putting in relation protein versus transcript levels for each measured protein (Figure 

5.2C). However, assessing the Pearson correlation between proteomic and the 

transcriptomic data revealed that proteins levels in the liver have a higher chance to 

directly reflect changes at the transcript level, compared to kidney. The correlation for 

the blue subgroup (i.e. significantly changed upon dox at the mRNA level only), as 

well as the purple line for overall correlation, was significant in liver; in the kidney, the 

transcript correlation was not significant and even showed a trend towards an inverse 
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correlation (Figure 5.2C). This suggests that there are extensive compensatory or 

post-transcriptional mechanisms causing a discrepancy between transcript and 

protein levels in the kidney.  

Assessing the differentially expressed proteins either localized in the mitochondria 

versus protein not in the mitochondria, indicated that mitochondrial proteins had a 

tendency to be down-regulated in the liver, while being up-regulated in the kidney 

following dox (Figure 5.2D). Together, these results suggest that dox-driven 

mitochondrial stress leads to a higher proportion of down-regulated proteins in liver 

compared to kidney, especially when considering mitochondrial proteins.  

 
Figure 5.2 : Proteomics analysis of doxycycline treatment in germ-free mice 

A. Volcano plots displaying –log(nom. p-value) and log(FC) of all measured proteins in kidney and liver 
(threshold set at nominal pval<0.05 for colored genes and the number of genes indicated above the 
graph). B. Venn diagrams displaying the genes commonly up and down-regulated between the 
different tissues upon mitochondrial stress (proteins with <0.05). C. Scatterplot displaying the relation 
between log(FC) of transcriptomics and of proteomics measurements for each of the measured 
proteins in kidney and liver. Blue, red and green correspond to significance at transcriptomics, 
proteomics and both levels, respectively (nom. pvalue<0.05). Lines represent the Pearson correlation 
of each group of genes accordingly to the color, with rho value and p value, purple corresponding to 
the general correlation of all dots together. D. Barplot displaying the total number and percentage of 
mitochondrial versus non-mitochondrial differentially expressed proteins in each organ (differentially 
expressed genes with nom. pval<0.05). [a larger version of the figure can be found in Annexes] 
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5.2.3 Dox does not affect OXPHOS activity in the liver despite a decrease in 
their protein levels 

In order to understand which processes were affected by dox treatment, we searched 

for enriched gene ontology biological process (GO BP) terms in the list of all 

measured proteins, ranked from the most to the least down-regulated proteins. 

Several mitochondria-related terms, such as “mitochondrial respiratory chain complex 

assembly” and “NADH dehydrogenase complex assembly” were enriched (Figure 

5.3A). A heatmap showing levels of OXPHOS proteins (Figure 5.3B), complemented 

by immunoblots (Figure 5.3C), confirms that respiratory complexes are down-

regulated upon dox in the liver. This result validated previous findings showing that, 

although dox initially impairs mitochondrial translation, the consequent mitonuclear 

imbalance leads, in a second phase, to a general decrease in OXPHOS complex 

levels independently of the nuclear or mitochondrial origin of the proteins (Quiros et 

al., 2017). The scatterplot of the OXPHOS subunits shows that this general decrease 

of their protein levels is apparently not driven by a down-regulation of their transcripts 

levels, since none of them is decreased at the mRNA level, most of them rather 

displaying an up-regulation of their transcripts levels (Figure 5.3D). Surprisingly, there 

were no consequences of the changes in OXPHOS protein levels on the activity of 

the individual OXPHOS complexes or on the activity of citrate synthase, and ATP 

levels in the liver (Figure 5.3E). In fact, complex I and ATP levels rather showed 

tendencies towards an increase. Together, proteomics measurements confirm the 

negative effect of dox-driven mitochondrial stress on OXPHOS protein levels in vivo, 

but OXPHOS activity and ATP production remained intact or even tended to 

increase, suggesting the existence of compensatory mechanisms. 
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Figure 5.3 : The effect of dox treatment on OXPHOS proteins and activity in liver 

A. Up-regulated gene ontology biological processes (GO BP) terms enriched from the list of measured 
proteins ranked by their decreasing fold change upon dox treatment in liver. B. Heatmap representing 
the protein levels of the OXPHOS proteins in control (CON) versus dox-treated mice (DOX). C. 
Immunoblots of OXPHOS protein levels in liver of control and dox-treated germ-free mice. D. 
Scatterplot displaying the relation between log(FC) of transcriptomics and of proteomics 
measurements for each measured OXPHOS proteins in liver (based on GO: 0006119). Blue, red and 
green correspond to significance at transcriptomics, proteomics and both levels, respectively (nom. 
pvalue<0.05). E. Activity measurements of OXPHOS complexes I to V, of citrate synthase (CS) and 
measurement of ATP levels in liver of control and dox-treated germ-free mice. 

5.2.4 Dox remodels liver metabolism 

Although only few proteins were significantly increased in the liver, exploring the GO 

BP enrichment of the list of measured proteins (ranked in a decreasing order by their 

fold change) identified several lipid-related processes: GO BP terms such as “lipid 

metabolic process”, “fatty acid catabolic process” or “lipid biosynthetic process” were 

enriched (Figure 5.4A). The scatterplot for all proteins belonging to the “lipid 

metabolic process” showed a robust correlation, reflecting a good probability for 

these changes to be transcriptionally driven (Figure 5.4B). Some proteins implicated 

in both catabolic and biosynthetic lipid pathways, such as fatty acid oxidation (FAO), 

fatty acid synthesis (FAS) or cholesterol synthesis were amongst the most induced 

proteins. Of note, amongst the top induced transcripts are those encoding for the 

FAS genes, Fasn and Acss2, the FAO genes, Acaa1a and Acaa1b as well as the 

cholesterol synthesis gene, Hmgcs1 (Figure 5.4B). To assess the physiological 

impact of this regulation, we measured triglyceride (TG), free fatty acid (FFA) and 
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cholesterol levels in liver and plasma (Figure 5.4C). Liver and plasma TG, FFA and 

cholesterol levels were not affected by dox. In the liver, however, several 

phospholipids were increased, as highlighted by metabolomic measurements (Figure 

5.4C). Similarly, levels of several intermediates of the TCA cycle were increased 

(Figure 5.4C). Therefore, our results suggest that selected lipid and metabolic 

pathways are remodelled by dox, without any clear commitment towards either 

anabolic or catabolic lipid metabolism. On top, immunoblotting of phosphorylated 

adenosine monophosphate-activated protein kinase (AMPK), which constitutes a 

sensor of cellular energy level, was not changed upon dox treatment (data not 

shown). It hence suggests that the observed lipid remodelling does not simply result 

from the regulation imposed by the cellular energy (nutrient) state.  

 
Figure 5.4 : The effect of dox treatment on lipid metabolism in liver 

A. Up-regulated GO BP terms enriched from the list of measured proteins ranked by their decreasing 
fold change upon dox treatment in liver. B. Scatterplot displaying the relation between log(FC) of 
transcriptomics and of proteomics measurements for each measured lipid-metabolism proteins in liver 
(based on GO: 0006629). Blue, red and green correspond to significance at transcriptomics, 
proteomics and both levels, respectively (nom. pvalue<0.05). The purple line shows the general 
Pearson correlation of all dots. C. Measurements of cholesterol, triglyceride (TG), free fatty acids (FA), 
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phospholipids (PL) and TCA cycle intermediates, in liver and plasma of control and dox-treated germ-
free mice. [a larger version of the figure can be found in Annexes] 

 

5.2.5 Liver transcriptome data shows activation of ER and cytosolic stress 
responses as well as the type I interferon response in dox-treated mice 

To further explore the processes and pathways modulated in response to dox in the 

liver, we performed Gene Set Enrichment Analysis (GSEA) using several gene set 

compendia: Reactome pathways, GO biological processes, KEGG pathways gene 

sets and transcription factors motifs. Among the most induced pathways, several 

lipid-related gene sets (in blue) and the “KEGG TCA cycle” were enriched, consistent 

with our previous observations (Figure 5.5A, 5.5B, Supp. Figure 5.10B, 5.11A, 5.12C, 

highlighted in blue). Another noteworthy response was the enrichment of the 

unfolded protein response in the endoplasmic reticulum (Figure 5.5A, 5.5B, Supp. 

Figure 5.10B, 5.11A, in red). The enrichment of “XBP1_01” among the top motifs, 

also supported the involvement of the X-box protein protein 1 (XBP1) (Supp. Figure 

5.10A), a master regulator of ER stress response. Along the same line, the only 

transcription factors motif significantly enriched was “TTCNRGNNNNTTC_HSF_Q6” 

(Supp. Figure 5.10A), supporting that the heat shock factor (HSF) response, a 

transcriptional program governing the expression of cytosolic chaperones 

subsequent to heat stress, was activated. ROS ensuing from disturbed mitochondrial 

function are a major trigger of cellular stress pathways. Interestingly, several 

metabolites from the glutathione (GSH) pathway were increased by dox in the liver 

(Figure 5.5C, Supp. Figure 5.12D), consistent with the observation that “glutathione 

metabolism” was amongst the top upregulated terms in metabolite set enriched 

analysis (MSEA) (Supp. Figure 5.12A). The GSH pathway constitutes one of the 

major buffering systems for ROS and the increase in GSS-GSSH can therefore be 

seen as another layer of cellular adaptation to increased oxidative stress. The 

enrichment of “NRF2_01” the top motifs (Figure 5.5C, Supp. Figure 5.10A), i.e. genes 

activated by the nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2), a 

major antioxidant response, also reinforces this hypothesis. These observations are 

therefore in line with several studies that indicated that mitochondrial stress is often 

signalled to other cellular stress networks in several species (Kim et al., 2016; 

Matilainen et al., 2017b) (reviewed in (D'Amico et al., 2017)). 
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Amongst the dox-induced enriched up-regulated Reactome and GO BP pathways 

were those related to virus infection, such as “Reactome Influenza viral RNA 

transcription and replication” (Figure 5.5A), “GO viral life cycle” or “GO defence 

response to virus” (Supp. Figure 5.10B), as well as several immune function-related 

terms (Figure 5.5A, 5B, Supp. Figure 10B, 5.11A,, in green). Notably, the interferon 

regulatory factor 7 (Irf7) was one of the few genes commonly up-regulated in liver 

and kidney (Figure 5.1C). This transcription factor activates inflammatory and 

antiviral genes downstream of viral nucleic acid-sensing pathways (Chen et al., 

2016). On top, “IRF_Q6”, which is the motif recognised by the IRF family transcription 

factors was one of the highest enriched transcription factor binding motifs (Supp. 

Figure 5.10A). IRF7 is one of the transcription factors that mediates the gene 

expression program induced upon sensing of dsDNA in the cytosol and the 

downstream signalling of the antiviral cytokines type I interferon (IFN  and IFN ). 

IRF7 binding induces its target genes by binding to IFN-stimulated response element 

(ISRE) DNA sequences, another motif enriched in GSEA results (Supp. Figure 

5.10A). Indeed, type I IFN related terms are enriched in both Reactome and GO BP 

GSEA upon dox (Figure 5.5A, Supp. Figure 5.10B). In combination all this suggests 

that dox induces an antiviral response orchestrated by type I IFN, possibly due to a 

leakage of mtDNA in the cytosol or in the circulation. 
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Figure 5.5 : GSEA of the liver transcript signature of dox treatment in germ-free mice 

A. Graph representing the top significant pathways enriched in GSEA analysis using Reactome 
pathways term library, ordered by decreasing adjusted p value. The horizontal axis corresponds the 
normalized enrichment score (NES). The size of the dots corresponds to the ratio. B. Enrichment 
score plot for each of the mentioned terms. C. Metabolomics measurements of the gluthatione 
pathway intermediates. Please refer to Supp. Figure 12D for their occurrence in the pathways. 
Enrichment score plot for the NRF2 motif. Bars show mean±SD, * Student t-test p-value P 0.05, 
**P 0.01, *** P 0.001. D. Scheme summarizing the observed changes in the liver of germ-free dox-
treated mice (green arrows represent the known effects of type I IFN). In A. and D. blue highlight 
corresponds to lipid-related, terms, pathways and processes; green to terms and pathways related to 
virus infection; red to ER and heat shock (HSR) stress. [a larger version of the figure can be found in 
Annexes] 

A major arm of the type I IFN response consists in counteracting the metabolic 

modulations elicited by a viral infection (Fritsch and Weichhart, 2016). Since the 

replication of viruses is an energy-demanding process, they hijack cellular 

metabolism to sustain their need in protein and nucleotide synthesis, pathways that 

are also upregulated in our metabolomics data (Supp. Figure 5.12A). Type I IFN 

metabolic modulation mainly include an activation of glycolysis, as we saw amongst 

up-regulated terms of GSEA and MSEA (Figure 5.5A, Supp. Figure 5.12A), as well 

as an increase in OXPHOS activity sustained by increased FAO rates dependent on 

de novo FAS (Wu et al., 2016). These type 1 IFN-driven metabolic changes are 
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orchestrated by the nuclear receptor PPAR  (Wu et al., 2016). Interestingly, the 

enrichment of “KEGG PPAR signalling pathway” and “Reactome PPARa activates 

gene expression”, although just not significant, may suggest a possible involvement 

of PPAR  (Figure 5.5B, Supp. Figure 5.12C). On top, both type 1 IFN and PPAR  

induce lipolysis, which could explain the tendency towards an increase of plasma 

FFAs (Figure 5.4C). As seen in the context of viral infection and subsequent type I 

IFN activation (Fritsch and Weichhart, 2016; Wu et al., 2016), FFAs arising from 

induced de novo FAS may be used directly by FAO and and the resulting acetyl-coA 

may be funneled into the TCA cycle, which could explain the moderate impact on 

steady lipid levels in liver (Figure 5.4C, 5.5D). In accordance, marked changes in 

transcript levels of lipid gene sets, but sometimes in opposite directions (Figure 5.5A, 

Supp. Figure 5.10B versus Supp. Figure 5.10C), reflect the ambivalent activation of 

both catabolic and anabolic lipid metabolic pathways (Figure 5.5D).  

Additionally, some phospholipid species were increased in liver (Figure 5.4C), in line 

with the extensive remodeling of membrane lipids dynamics caused by viruses and 

IFN (Fritsch and Weichhart, 2016).  

Together, these results suggest that the response to dox in the liver is multifaceted 

and involves of the activation of cellular stress pathways, such as the ER and heat 

shock stress responses, probably triggered by increased oxidative stress (Figure 

5.5D). In addition, the hepatic, metabolic response to mitochondrial stress in vivo 

seems to be driven by innate immunity and inflammation induced by dox. The 

induction of pathways such as glycolysis, TCA cycle, OXPHOS activity, FAO, FAS, 

cholesterol and phospholipid synthesis may result from a mimicry of a viral infection 

and the resulting action of type 1 IFN on metabolism, potentially mediated by PPAR  
(Figure 5.5D). 

5.2.6 Dox treatment impairs OXPHOS activity in the kidney 

We then analysed the kidney proteomics data by searching for enriched gene sets in 

the list of the most to the least up- and down-regulated proteins upon dox treatment. 

OXPHOS-related terms, in particular complex I, were down-regulated (Figure 5.6A), 

whereas several mitochondrial terms, such as “mitochondrion organization”, “cristae 

formation” or “mitochondrial translation” were enriched amongst the up-regulated 

terms (Figure 5.6B). The corresponding heatmaps confirmed these results, OXPHOS 



83 

proteins showing both tendencies to down- or up-regulation and “mitochondrial 

membrane organization“ genes being overall up-regulated (Figure 5.6C). The 

scatterplot for OXPHOS proteins, however, demonstrated that most of their 

transcripts were down-regulated (Figure 5.6D). In coherence with the proteomics 

measurements, the activity of complex I and IV, as well as ATP levels were down-

regulated in the kidney, and a clear tendency towards decreased complex V activity 

was observed (Figure 5.6E). Thus, proteomics and activity measurements together 

demonstrate that the activity and the protein level of some OXPHOS complexes are 

impaired by dox treatment, while some other mitochondrial proteins, involved in 

mitochondrial membrane organization are increased.  

 
Figure 5.6 : The effect of dox treatment on OXPHOS proteins and activity in kidney 

A. Up-regulated GO BP terms enriched from the list of measured proteins ranked by their decreasing 
fold change upon dox treatment in kidney. B. Down-regulated GO BP terms enriched from the list of 
measured proteins ranked by their increasing fold change upon dox treatment in kidney. C. Heatmap 
representing the expression of OXPHOS (left) and mitochondrial membrane organization (right; 
GO:0007006) proteins in control (CON) versus dox-treated mice (DOX), respectively. D. Scatterplot 
displaying the relation between log(FC) of transcriptomics and of proteomics measurements for each 
measured OXPHOS proteins in kidney (based on GO:0006119) (significance nom. P val<0.05). E. 
Activity measurements of OXPHOS complexes I to V and citrate synthase (CS) and measurement of 
ATP levels in kidney of control and dox-treated germ-free mice. * Student t-test p-value P 0.05 
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5.2.7 The transcriptomics response of dox treatment in the kidney features ER 
stress and a marked down-regulation of mitochondrial genes 

To characterize the transcript signature underpinning the proteomic changes 

observed following mitochondrial stress triggered by dox, we performed GSEA on the 

kidney transcriptomics data. We found similarities to the changes seen in liver: terms 

related to virus defence and type 1 IFN were enriched (Figure 5.7A, 5.7B, Supp. 

Figure 5.14, in green), and the motifs of STAT3 and NFKB (Supp. Figure 5.13A), 

other down-stream transcriptional mediators of type 1 IFN response were amongst 

the top ranked motifs. Also, the cytosolic and ER stress and quality control pathways 

(Figure 5.7A, 5.7B, Supp. Figure 5.14, in red) were enriched in the up-regulated 

terms, together with some up-regulated transcription factor motifs, such as HSF1 as 

mentioned above, or another ER stress transducer, CHOP (Supp. Figure 5.13A).  

Interestingly, many of the sets that were positively modulated in the liver 

transcriptome, such as the lipid-related (catabolic and anabolic), “PPAR”-, “TCA 

cycle”-, “pyruvate”- and “oxidative phosphorylation”-containing terms were strongly 

down-regulated in the kidney (Figure 5.7A, 5.7B, Supp. Figure 5.13B, 5.14, in blue). 

In line, GSEA analysis for GO cellular component (GO CC) terms confirmed the 

enrichment of mitochondrial components (Supp. Figure 5.15A) in the most down-

regulated sets, which clearly differs from the liver transcriptome data (Supp. Figure 

5.15B). We therefore concluded that mitochondrial mRNAs levels decreased upon 

dox treatment in the kidney, which seems as a paradox given that several 

mitochondrial proteins displayed increased proteins levels (Figure 5.6B, 5.6C, 5.6D). 

The scatterplot of all measured mitochondrial proteins confirmed this trend as a 

particularity of the kidney, i.e. that transcriptomic and proteomic measurements for 

mitochondrial proteins did not correlate in the kidney (Figure 5.7D), as opposed to in 

the liver (Supp. Figure 5.15C). Of note, genes significantly modulated at the mRNA 

level only were showing an inverse correlation approaching significance (Figure 

5.7D). However, a significant positive correlation existed amongst the genes for 

which both transcriptomics and proteomics data were significant (Figure 5.7D, in 

green). In particular, the chaperone Hspa9, the protease Lonp1 and the 

mitochondrial inner membrane protein Phb2 were part of this group. Hspa9 and 

Lonp1 are the respective orthologues of the UPRmt genes hsp-6 and lonp-1 in C. 

elegans, demonstrating a robust mitochondrial stress.  
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A possible explanation for the decreased mRNAs levels of mitochondrial proteins 

could be their active repression by inhibitory transcriptional mechanisms, a 

hypothesis that we cannot reject nor support with our data. Alternatively, some post-

transcriptional mechanisms could account for the decrease in mRNAs levels of 

mitochondrial proteins and a general remodeling of the RNA landscape. For instance, 

during stress, the activation of nonsense-mediated mRNA decay mitigates the ISR 

and contributes to restore homeostasis and prevent apoptosis(Nasif et al., 2017).  

Supporting this, we found several terms in the up-regulated processes in kidney, 

such as “Reactome nonsense mediated decay […]”, “Reactome metabolism of 

mRNA” and “GO RNA catabolic process” (Figure 5.7A, 5.7B, Supp. Figure 5.14, in 

orange). Similar terms (Figure 5.5A, 5.5B, Supp. Figure 5.10B, 5.11A, 5.12C, in 

orange), or other related terms like “Reactome regulation of mRNA stability by 

proteins that bind AU-rich elements” were also enriched in the liver (Supp. Figure 

5.11A, in orange).  

Together, the results indicated that a particularity of the renal response to dox was a 

down-regulation of mitochondrial gene sets. Similarly to liver, however, ER and heat 

shock stress response, as well as the antiviral type IFN 1 response were induced.  
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Figure 5.7 : GSEA of the kidney transcript signature of dox treatment in germ-free mice 

A. Graph representing the top significant pathways enriched in GSEA analysis using GO BP pathways 
term library, ordered by decreasing adjusted p value. The horizontal axis corresponds the normalized 
enrichment score (NES). The size of the dots corresponds to the ratio of the number of genes in the 
leading edge over the total number of genes in the term. Blue highlight corresponds to lipid-related, 
terms, pathways and processes; green to terms and pathways related to virus infection; red to ER and 
heat shock (HSR) stress; orange to RNA regulation–related pathways. B-C. Enrichment score plot for 
each of the mentioned terms. D. Scatterplot displaying the relation between log(FC) of transcriptomics 
and of proteomics measurements for each measured mitochondrial protein in kidney of dox treated 
germ-free mice. Blue, red and green correspond to significance at transcriptomics, proteomics and 
both levels, respectively (nom. pvalue<0.05). Lines represent the Pearson correlation of each group of 
genes accordingly to the color, with rho value and p value, purple corresponding to the general 
correlation of all dots without any group taken into consideration. [a larger version of the figure can be 
found in Annexes] 

5.2.8 The ATF4/ISR response is activated specifically in the kidney and is 
accompanied by an inhibition of cytosolic translation 

As stated above, the increased protein levels of some mitochondrial genes, such as 

Pck2, Hspa9, Lonp1 and Phb2, seem to result from increased transcript expression 

following dox-induced mitochondrial stress (Figure 5.7D, in green). Each of these 

proteins are confirmed or predicted targets of the ATF4 and ATF5 transcription 

factors, which activate the integrated stress response (ISR) in response to various 

stressors (Teske et al., 2013), including mitochondrial stress (Baker et al., 2012; 



87 

Fiorese et al., 2016; Munch and Harper, 2016; Quiros et al., 2017). Of note, GSEA 

scores a significant enrichment for “Reactome activation of genes by ATF4” (Supp. 

Figure 5.16B). In addition, the motif of ATF3, a target of ATF4, was amongst the top 

up-regulated motifs (Supp. Figure 5.13A). Dox furthermore increased the expression 

of other ATF4 targets, such as the endocrine peptides Fgf21 and Adm2 and of the 

anaplerotic genes Asns and Pck2 (Figure 5.8A). Western blot also showed that 

protein levels of ASNS, HSPA9 and LONP1 were increased (Figure 5.8B). The 

elevated expression and protein levels of ATF4 targets upon dox-treatment was 

confirmed also in mice that were raised in conventional, non-germ-free, conditions 

(Figure 5.8C,D), indicating that this response is independent to the presence and 

effect of dox to the microbiota. Ddit3/Chop and its target, Gdf15, recently identified as  

myomitokine induced by the mitochondrial stress response in mammalian cells 

(Chung et al., 2017), were up-regulated by dox in kidney (Supp. Figure 5.16C,D). 

However, these Atf4-, Atf5- and ISR-associated transcripts are not modulated by dox 

in the liver (Supp. Figure 5.16C,D). 

The increase in mitochondrial ribosomes in the kidney upon treatment with dox was a 

striking trend in the mitochondrial proteomic data, as illustrated by a heatmap of 

proteomics results (Figure 5.8E). Cytosolic ribosomes however, rather showed an 

opposite tendency (Figure 5.8E). The activation of the ATF4 response is directly 

regulated by the translational status of the cell (Jackson et al., 2010). Although a 

multitude of stressors can trigger the ISR, a common point of convergence is the 

phosphorylation of the eukaryotic translation initiation factor 2 (eIF2 ). This event 

results in a reduced availability of the ternary complex eIF2-tRNAMet-GTP, which has 

two consequences: (1) a general slow-down of the cytosolic cap-dependent 

translation, which represents an energy-costly process when cells have to save their 

resources to cope with the stress, and (2) an increase in the translation of the 

transcripts that contain an alternative ORF; ATF4 is one of the best characterized 

mRNAs with this feature (Jackson et al., 2010). This form of translational regulation 

was also evident in the dox-treated kidneys, since dox induced eIF2  

phosphorylation (Figure 5.8F). The absence of eIF2  modulation in the liver was in 

coherence with the fact that the ATF4 response was not activated in the liver (Figure 

5.8G). Upon mitochondrial stress, the eiF2 -dependent ISR crosstalks also with the 

mechanistic target of rapamycin (mTOR) pathway, although is not clear yet exactly 
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how this happens. mTOR is an integrator of cellular energy metabolism, which 

promotes cap-dependent translation and blocks autophagy depending on the 

abundance of growth factors and amino acids. A downstream effector of mTOR is the 

kinase of the ribosomal protein S6 (S6K), whose phosphorylation correlates with 

increase cap-dependent translation. Immunobloting of S6 phosphorylation proved 

that dox inhibited mTOR, in line with a blockade of cap-dependent translation in the 

context of an ATF4 response in the kidney (Figure 5.8F), whereas the unchanged 

phosphorylation levels of S6 and eIF2  corroborate that the translational block and 

subsequent activation of the ISR were more discrete in the liver (Figure 5.8G). Thus, 

these results suggest that in the kidney, dox inhibited mTOR signalling and slowed 

cap-dependent translation, resulting in the induction of the ATF4 response (Figure 

5.8H). Concomitantly, we observed an increase of mitochondrial and a mild decrease 

of cytosolic ribosomes.  

 
Figure 5.8 : Dox activates the ATF4-ISR response in the kidney of dox-treated germ-free and 
non-germ-free mice 

A. mRNA levels of ATF4 targets in the kidney of control and dox-treated germ-free mice analyzed by 
microarray. * Student t-test p-value P 0.05 B. Immunoblots of ATF4 targets in the kidney of control 
and dox-treated germ-free mice. C. mRNA levels of ATF4 targets in the kidney of control and dox-
treated germ-free mice analysed by RT-qPCR.* Student t-test p-value P 0.05 D. Immunoblots of ATF4 
targets in the kidney of control and dox-treated non germ-free mice. E. Heatmap representing the 
protein levels of the cytosolic (left) and mitochondrial (right) ribosomal proteins in the kidney of control 
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(CON) versus dox-treated mice (DOX). F-G. Immunoblots of phosphorylated eIF2  (peIF2 ) and 
phosphorylated S6 (pS6) in the kidney (F) and liver (G) of control and dox-treated germ-free mice. 
Quantification of the results is shown underneath the blots. H. Scheme summarizing the observed 
changes in the kidney of germ-free dox-treated mice. Dashed arrows represent unexplored relations.  

 

Pathways Liver Kidney 
Transcriptomics  
ER and HSR stresses UP UP 
type I IFN UP UP 
mitochondrial genes - DOWN 
lipid metabolism  UP DOWN 
ATF4 response - UP 
TCA cycle  UP DOWN 
glycolysis and pyruvate UP DOWN 
Proteomics  
OXPHOS DOWN UP/DOWN 
peIF2  - UP 
mTOR (pS6) - DOWN 
mitoribosomes - UP 

Table 5.1 : Summary of the main changes observed upon dox in liver versus kidney 

(-) represents no changes 

 

5.3 Discussion 
In this study, we performed a multi-omics characterization of the response elicited by 

in vivo treatment with the mitochondrial stressor, dox, in C57BL/6J mice raised in a 

germ-free environment. Transcriptomics and proteomics analysis demonstrated that 

organs highly dependent on mitochondria did not show a uniform response to 

mitochondrial stress. In the kidney, OXPHOS activity was clearly impeded, but the 

expression of several mitochondrial ribosomal and OXPHOS proteins was increased. 

In the liver, however, mitochondrial respiration was maintained and ATP production 

even marginally increased, despite a general decrease in OXPHOS and 

mitochondrial protein levels.  

Profiling the hepatic response at the level of gene and protein expression completed 

by metabolomics and lipid measurements demonstrated an increase in glycolysis, 

TCA cycle, ROS metabolism, as well as in lipid anabolic and catabolic pathways. 

Several similarities with the metabolic modulations caused by viral infection and the 

subsequent activation of type 1 IFN response, were evident in GSEA results in both 

liver and kidney. The precise trigger, the exact mechanism and consequences of the 

induction of the type 1 IFN response still require further characterization. Knowing 
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that mtDNA constitutes a potent DAMP (West et al., 2015), it is tempting to speculate 

that a release of mtDNA occurs when mitochondria are stressed by dox. This could 

activate the cGAS-STING cytosolic DNA sensor pathway, culminating into a type 1 

IFN response, as previously reported in other contexts (Bai et al., 2017; Oka et al., 

2012; Rath et al., 2012). However, since mitochondria constitute signalling platforms 

for other immune pathways such as RIG-I, these cascades could potentially also be 

(co-)activated as a consequence of disrupted mitochondrial membrane integrity. An 

example of such indirect activation can happen in the context of stress in the ER, 

whose membrane hosts the key mediator, STING, of the DNA sensing response 

(Chen et al., 2016; Petrasek et al., 2013; Smith et al., 2008). A detailed lipidomics 

profiling to assess how single lipid species are modulated in liver and plasma by dox 

could therefore provide insight, considering that lipids play a crucial signalling role in 

the communication of mitochondrial stress (Kim et al., 2016; Liu et al., 2014), and are 

central to mediating innate immunity and pathogen resistance (Liu et al., 2014).  

Another common trend in the hepatic and renal responses to mitochondrial stress 

was the induction of the HSF and ER stress responses. ER stress can on its turn also 

trigger the ATF4 and ISR response. Consistent with the fact that the ATF4 program is 

an integral part of the defence against mitochondrial stress in mammals (Munch and 

Harper, 2016; Quiros et al., 2017), we here show that a major arm of the renal 

response to dox in vivo is the ATF4-mediated activation of the ISR and the activation 

of a subset of mitochondrial proteases. Our work hence supports the observation that 

ATF4 targets are more typifying of the mammalian response to mitochondrial stress 

than the induction of the mammalian orthologues of the hsp-60, hsp-10 or clpp-1 

genes, the targets of the canonical UPRmt in C. elegans. We however observe in the 

kidney increased transcript and protein levels of Hspa9 and Lonp1, orthologues of 

worm hsp-6 and lonp-1 respectively. It has also  been proposed that ATF4 and ATF5 

targets could be considered as the hallmark mammalian UPRmt (Shpilka and Haynes, 

2017). In liver however, we could not observe the induction of the UPRmt. Future 

investigations should decipher these differences in mitochondrial stress response 

between these tissues and analyze other aspects, such as the timing of the response 

or starvation state of the organ.  

Finally, some open questions remain concerning the tissue-specific differences in the 

responses to dox. As distinct organs, they obviously have their respective metabolic 
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and functional specializations and a similar stress could have a different outcome in 

liver and kidney. On the basis of our data, one cannot reject that these differences 

could also be attributed in part to the respective tissue exposure to dox and the 

resulting level of stress, as well as to the chronology of the response in these tissues. 

Definitely, the tissue energy status has a major influence on their respective 

response. The kidney is characterized by an attenuated mTOR pathway, decreased 

levels ATP and OXPHOS activity, and a shutdown of metabolism and translation 

upon dox. On the opposite, the liver shows a tendency towards increased ATP levels, 

with replenishment of TCA intermediates and an anabolic metabolic signature. The 

remodelling of hepatic metabolism contrasted with regulatory changes in the kidney 

that rather underpinned a general metabolic shut-down, in line with the disruption of 

anabolic processes requiring a lot of energy such as cap-dependant translation. In 

line with this, the marked down-regulation of mitochondrial transcripts and their 

paradoxical increase at protein level in the kidney were corroborated by the absence 

of overall correlation between mitochondrial proteins and mRNAs. This phenomenon 

suggests the existence of mechanisms favouring the stabilization of existent 

mitochondrial proteins, while hampering the production and import of new 

mitochondrial proteins, which comes at a high energy cost and could potentially 

aggravate the situation (Figure 5.8H). Of importance, this mechanism is capable of 

discriminating and still allowing the transcription and translation of mitochondrial 

effector proteins participating in the reparative response, such the as the ATF4 

targets and the Lonp1 protease and the Hspa9 chaperone. Further mechanistic 

studies are hence warranted to identify the signals that result in such diverse 

outcomes, as a metabolic shut-down in the kidney versus processes oriented 

towards energy production in the liver.  

5.4 Materials and Methods 
Mouse experiments 

Male C57BL/6J mice at 9 weeks old of age were treated for 16 days with 500 

mg/kg/day doxycycline hyclate (Sigma) in drinking water. As doxycycline is bitter we 

supplemented the water for both conditions (treatments and controls) with 50 g/L 

sucrose. Drinking water was changed every 48 hours. Germ-free C57BL/6J mice 

were obtained from the Clean Mouse Facility, University of Bern (Bern, Switzerland), 
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and compared with specific pathogen-free (SPF) C57BL/6J mice from Janvier Labs. 

Mouse experiments were performed in accordance with Swiss law and institutional 

guidelines. 

RNA extraction and microarray analysis  

Total RNA was isolated using Trizol (Life Technologies) and purified using the 

RNeasy Mini Kit (Qiagen) in accordance with the manufacturer’s instructions. 

Microarray analysis was performed using Affymetrix mouse MAT1.0 chips in 

triplicates per condition. Microarray data was normalized with RMA-sketch method of 

the Affymetrix Expression console and analyzed using limma R package(Ritchie et 

al., 2015). Bonferroni adjusted p value<0.05 was used to determine the differentially 

expressed genes. Volcano plots, scatterplots, heatmaps and Venn diagrams were 

generated with R (www.r-project.org).  

GO enrichment  

GO enrichement was done using GOrilla online tool (http://cbl-

gorilla.cs.technion.ac.il/) using the mode allowing to search for terms densely 

enriched at the top of a ranked gene list. All measured proteins were listed by their 

logFC in the decreasing order to search for enriched terms in the up-regulated genes 

(respectively in the increasing order to look using Bonferroni adjusted p value < 0.05. 

GSEA 

GSEA was performed using the clusterPro ler package(Yu et al., 2012). GO 

genesets in gmt format were obtained from the MSigDB Collections website from the 

Broad Institute website. For each organ, all expressed genes were ordered by 

decreasing fold change based on the differential expression analysis upon dox. We 

used GO BP, GO CC, KEGG pathways, Reactome pathways and transcription factor 

targets gene set categories. For each organ and gene category, we performed 

10’000 permutations using the “fgsea” option, a minimum gene set size of 10, and a 

maximum of 1000. False discovery rate-adjusted P-values calculated using the 

Benjamini–Hochberg method were considered to determine significance of the 

enrichments. 
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qRT-PCR 

RNA from cells and tissues and worms was extracted using TRIzol and then 

transcribes in cDNA by the QuantiTect Reverse Transcription Kit (Qiagen) following 

the manufacturer's instructions. The RT-qPCR reactions were performed using the 

Light-Cycler system (Roche Applied Science) and the expression of selected genes 

was analyzed using the LightCycler 480 System (Roche) and SYBR Green 

chemistry. All quantitative polymerase chain reaction (PCR) results were presented 

relative to the mean of housekeeping genes ( Ct method). mRNA levels were 

normalized over 36B4 for gene expression for cell and tissue samples. 

The following primers were used :  

gene forward reverse 

Atf4 gcc ggt tta agt tgt gtg ct ctg gat tcg agg aat gtg ct 

Asns gag aaa ctc ttc cca ggc tttg caa gcg ttt ctt gat agc gtt 

gt 

Chop/Ddit3 cgg aac ctg agg aga gag 

tg  

cgt ttc ctg ggg atg aga ta 

Fgf21 cctctaggtttctttgccaacag aagctgcaggcctcaggat 

Adm2 tgcatcagcctcctctacct ggaaggaatcttagctgggg 

Lonp1 atgaccgtcccggatgtgt cctccacgatcttgataaagcg 

Pck2 gctatgctccttccttccccg agcccgtgccggctaa 

Hspa9 acaggccactaaggatgctggc tgccgcaacaaagcttggtcaa 

Phb2 cgtgcagcaggacacg cgcagggagatgttcacca 

36B4 tgt gtc cgt cgt gga tct ga cct gct tca cca cct tct tgat 

 

SWATH-MS Proteomics 

About 30-50mg of frozen tissue were used to prepare protein and peptides for 

SWATH-MS as described in(Wu et al., 2017).  

Western blotting 

Cells and tissues were lysed in RIPA buffer [50 mM tris (pH 7.4), 150 mM KCl, 1 mM 

EDTA, 0,1% SDS, 1% NP40, 100 mM NaF, 5mg/ml Sodium deoxycholate] with 
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HaltTM protease (78430, Thermo Fisher Scientific) and phosphatase (78442, Thermo 

Fisher Scientific) inhibitor cocktails. Proteins were separated by SDS-PAGE and 

transferred onto polyvinylidene difluoride membranes. Proteins were detected using 

commercial antibodies against eIF2 , phospho-eIF2 , phospho-S6 (all from Cell 

signalling), HP90 (Santa Cruz), ASNS (Atlas antibodies), HSPA9 (Antibodies Online), 

LONP1 (Sigma), OXPHOS proteins (Mitoprofile Total OXPHOS Rodent WB Antibody 

Cocktail , Mitoscience) and  tubulin (Santa Cruz). In addition to the housekeeping 

proteins, loading was monitored by Ponceau Red to ensure a homogeneous loading. 

Lipid measurements  

Hepatic lipids were extracted according to the Bligh & Dyer protocol(Bligh and Dyer, 

1959). TG, FFA and cholesterol contents in plasma and hepatic lipid fractions were 

quantified using enzymatic assays (Roche). BUN and ALAT concentrations in blood 

were determined using standard clinical chemistry methods. 

Respiratory complex activity 

All respiratory chain complex assays were based on methods described by Kramer 

(Kramer & Nowak, 1988) and Krakenbuhl (Krahenbuhl et al., 1994), both modified to 

match our apparatus requirements. The activities of all the complexes in each sample 

were normalized by the amount of protein or referred to citrate synthase activity to 

allow sample comparison.  

- Complex I activity measurement 

Briefly, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-ubiquinone 

reductase activity (complex I) was measured by following the disappearance of 

NADPH using rotenone as a specific inhibitor to ensure the specificity of the assay.  

-  Complex II activity measurement 

Complex II activity, succinate-ubiquinone reductase, was assayed through the 

reduction of 2,6-dichlorophenolindophenol, a final electron acceptor, after the 

addition of succinate.` 

-  Complex III activity measurement 
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The activity of complex III, ubiquinone-cytochrome c reductase, was determined by 

assaying the rate of reduction of cytochrome c. 

-  Complex IV activity measurement 

The cytochrome c oxidase (complex IV) activity was based on the same assay as for 

complex III using potassium cyanide to inhibit the activity of this enzyme.  

 - Complex V activity measurement 

Complex V activity was measured according to a method coupling ADP production to 

NADH disappearance through the conversion of phosphoenol-pyruvate into pyruvate 

then into lactate (Rustin et al., 1993).  

 -  Citrate synthase (CS) activity measurement 

The activity of CS was assayed as described previously (Itoh and Srere, 1970) with 

the reduction of DTNB caused by the de-acetylation of acetyl-CoA. 

ELISA measurements of FGF21  

FGF21 levels in the plasma were measured by commercial ELISA kit (Millipore) 

following the manufacturer's instructions.  

Metabolomics analysis 

Approximatively 20 mg of liver tissue was used for metabolites extraction by adding 

ice-cold acetonitrile/methanol/water (40:40:20, vol/vol). To remove cell debris, tubes 

were centrifuged (4°C, 13,000 rpm, 2 min), and the supernatants collected were 

assayed by flow injection analysis using time-of-flight mass spectrometry (6550 

QTOF; Agilent Technologies) operated in the negative ionization mode. High-

resolution mass spectra were recorded from 50–1,000 m/z and analyzed as 

described previously (Fuhrer et al., 2011). Detected ions were putatively annotated 

by as searching matching metabolites in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG;(Kanehisa et al., 2006)) using an m/z tolerance of 0.001 and 

including all common electrospray derivatives. Metabolites set analysis was done 

using the Metaboanalyst website (http://www.metaboanalyst.ca) 
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ATP quantification 

Total ATP content was measured by the CellTiter-Glo luminescent cell viability 

assays (Promega) in protein lysate of tissue. Typically, the luminescence was 

recorded with a Victor X4 plate reader (PerkinElmer) and values are normalized by 

the total protein concentration determined using a Bradford assay. 

Statistics  

Differences between two groups were assessed using two-tailed t-tests. GraphPad 

Prism 5 (GraphPad Software, Inc.) was used for all statistical analyses, and p<0.05 

was considered significant.  

  



97 

5.5 Supplementary figures 

 
Supp. Figure 5.9  

A. Body weight at the time of sacrifice of germ and non-germ-free mice, upon dox treatment. B. Venn 
diagrams displaying the genes commonly up and down-regulated between the 4 different tissues 
(differentially expressed genes with adj.p val<0.01). 

 
Supp. Figure 5.10 

A. Graph representing the top significant pathways enriched in GSEA analysis using transcription 
factor motif library, ordered by decreasing nominal p value, in liver of germ-free dox-treated mice. B. 
Graph representing the top significant pathways enriched in GSEA analysis using GO BP pathways 
library, ordered by decreasing adjusted p value, in liver of germ-free dox-treated mice. The horizontal 
axis corresponds the normalized enrichment score (NES). The size of the dots corresponds to the 
ratio of the number of genes in the leading edge over the total number of genes in the term. Blue 
highlight corresponds to lipid-related, terms, pathways and processes; green to terms and pathways 
related to virus infection; red to ER and heat shock (HSR) stress; orange to RNA regulation –related 
pathways. C. Enrichment plot for the down-regulated term 
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“GO_POSITIVE_REGULATION_OF_LIPID_BIOSYNTHETIC_PROCESS”. [a larger version of the 
figure can be found in Annexes] 

 

 

 

 
Supp. Figure 5.11 

A. Graph representing the top significant pathways enriched in GSEA analysis using Reactome 
pathways library, ordered by decreasing adjusted p value, in liver of germ-free dox-treated mice. The 
horizontal axis corresponds the normalized enrichment score (NES). The size of the dots corresponds 
to the ratio of the number of genes in the leading edge over the total number of genes in the term. 
Blue highlight corresponds to lipid-related, terms, pathways and processes; green to terms and 
pathways related to virus infection; red to ER and heat shock (HSR) stress; orange to RNA regulation–
related pathways. [a larger version of the figure can be found in Annexes] 
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Supp. Figure 5.12 

A-B. Metabolite set enrichment analysis (MSEA) results from the liver of germ-free dox-treated mice, 
of respectively up- (A) and down-regulated (B) metabolites. Color scale represents the nominal p 
value. C. Graph representing the top significant pathways enriched in GSEA analysis using KEGG 
pathways library, ordered by decreasing adjusted p value, in liver of germ-free dox-treated mice. The 
horizontal axis corresponds the normalized enrichment score (NES). The size of the dots corresponds 
to the ratio of the number of genes in the leading edge over the total number of genes in the term. 
Blue highlight corresponds to lipid-related, terms, pathways and processes. 
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Supp. Figure 5.13 

A. Graph representing the top significant pathways enriched in GSEA analysis using transcription 
factor motif library, ordered by decreasing nominal p value, in kidney of germ-free dox-treated mice. B. 
Graph representing the top significant pathways enriched in GSEA analysis using KEGG pathways 
library, ordered by decreasing adjusted p value, in kidney of germ-free dox-treated mice. The 
horizontal axis corresponds the normalized enrichment score (NES). The size of the dots corresponds 
to the ratio of the number of genes in the leading edge over the total number of genes in the term. 
Blue highlight corresponds to lipid-related, terms, pathways and processes. [a larger version of the 
figure can be found in Annexes] 

 



101 

 
Supp. Figure 5.14 

A. Graph representing the top significant pathways enriched in GSEA analysis using Reactome 
pathways library, ordered by decreasing adjusted p value, in kidney of germ-free dox-treated mice. 
The horizontal axis corresponds the normalized enrichment score (NES). The size of the dots 
corresponds to the ratio of the number of genes in the leading edge over the total number of genes in 
the term. Blue highlight corresponds to lipid-related, terms, pathways and processes; green to terms 
and pathways related to virus infection; red to ER and heat shock (HSR) stress; orange to RNA 
regulation–related pathways. [a larger version of the figure can be found in Annexes] 
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Supp. Figure 5.15 

A-B. Graph representing the top significant pathways enriched in GSEA analysis using GO cellular 
component (CC) pathways library, ordered by decreasing adjusted p value, in kidney (resp. liver B.) of 
germ-free dox-treated mice. The horizontal axis corresponds the normalized enrichment score (NES). 
The size of the dots corresponds to the ratio of the number of genes in the leading edge over the total 
number of genes in the term. C. Scatterplot displaying the relation between log(FC) of transcriptomics 
and proteomics measurements for each measured mitochondrial protein in kidney of dox treated 
germ-free mice. Blue, red and green correspond to significance at transcriptomics, proteomics and 
both levels, respectively (nom. pvalue<0.05). Lines represent the Pearson correlation of each group of 
genes accordingly to the color, with rho value and p value, purple corresponding to the general 
correlation of all dots together. [a larger version of the figure can be found in Annexes] 
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Supp. Figure 5.16 

A. Proteomics measurements of ATF4 targets in kidney of germ-free mice. B. Enrichment of 
“Reactome_ACTIVATION_OF_GENES_BY_ATF4”. C. mRNA levels of ATF4 targets in the liver of 
control and dox-treated germ-free mice analyzed by microarray. D. Heatmap displaying the gene 
expression of mammalian UPRmt genes in kidney and liver. E. Serum levels of FGF21 in control and 
dox-treated germ-free mice. F. Plasma levels of alanine aminotransferase (ALAT) and blood urea 
nitrogen (BUN). Bars show mean±SD,* Student t-test p-value P 0.05, **P 0.01, *** P 0.001. 

  





105 

Chapter 6 Conclusions and future 
perspectives 
6.1 Results achieved 
Beyond energy harvesting, mitochondria play a crucial role in cellular and organismal 

homeostasis. Therefore, proteostasis in mitochondria has to be closely monitored to 

ensure their optimal function. In my thesis project I investigated the signalling 

pathways activated by mitochondrial stress and in particular by the UPRmt and 

studied their physiological impact.  

In C. elegans, we screened for new members of the UPRmt signalling. We identified 

the cytosolic poly(A)-binding protein pab-1 as a novel regulator of mitochondrial 

stress and innate immunity. We demonstrated that pab-1 is required for the 

resistance of nematodes to P. aeruginosa infection and that it requires atfs-1, the 

master regulator of UPRmt, to regulate innate immunity. Using human transcriptomic 

data, we showed that the expression of immune genes correlates with that of 

PABPC1, the orthologue of pab-1, across multiple tissues. This suggests a 

conserved role of poly(A)-binding proteins in mammalian immunity and fuels 

optimism for future investigations in mammalian models to validate these findings.  

In mice, we used the BXD GRP to explore the conservation of UPRmt at the transcript 

and protein level. Using bioinformatics approaches, we found that the network of 

UPRmt genes is tightly co-regulated in mice under normal physiological conditions. As 

a complementary approach, we investigated the physiological impact of mitochondrial 

stress triggered by treatment of mice with doxycycline (dox) either at the adult stage 

of their life or in the immediate post-natal period. Although dox impacts on 

mitochondrial proteostasis and oxygen consumption, our study did not report any 

dox-specific, long-term consequences on physiology and longevity.  

Using multi-omics profiling of germ-free mice, we characterized the dox-induced 

mitochondrial stress response, as such controlling for any confounding influences of 

dox on the microbiota. We found that organs highly dependent on mitochondria show 

specific transcriptomic and proteomic signatures following dox treatment. Kidney 

displayed a general attenuation of metabolism and translation with the resulting 

activation of the ATF4 integrated stress response (ISR). Liver on the contrary 
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exhibited a remodelling of lipid metabolism with an activation of energy-producing 

pathways.  

Taken together, my work demonstrates that mitochondrial stress leads to a multi-

faceted response with commonly recurring themes like innate immunity and post-

transcriptional regulation, across species, tissues and conditions.  

6.2 Conclusions across projects 

6.2.1 Mitochondrial stress and immunity 

The major highlight of this thesis is that two different projects in evolutionary distant 

organisms (Chapter 3 and 5) independently unveiled an intimate interplay between 

mitochondrial stress and innate immunity. In C. elegans, several studies showed that 

bacterial infection triggers UPRmt and that atfs-1 participates in the resistance to 

infection (Liu et al., 2014; Pellegrino et al., 2014). Inversely, by comparing several 

mitochondrial stressors, we confirmed that the induction of innate immunity genes is 

a hallmark of mitochondrial stress response at the transcriptome level. We identified 

pab-1 at the regulatory crossroad between these two responses, a role possibly 

conserved for human PABPC1. Investigating the crosstalk of pab-1 with well-defined 

immune pathways in C. elegans will help to identify the exact mechanism underlying 

our observations and guide future studies of the role its mammalian orthologues. 

Also in germ-free mice, the type I IFN response was amongst the pathways 

commonly activated in liver and kidney upon treatment with the mitochondrial 

translation inhibitor and stressor, dox, and IRF7 is amongst the few commonly up-

regulated genes (5.2.5), although further validation of this tantalizing observation is 

required. The cGAS-cGAMP-STING mtDNA-sensing pathway is known to be 

activated upon infection-induced release of mtDNA into the cytosol as a DAMP 

mechanism (West and Shadel, 2017). Recent studies however report cases, where 

physiological responses are driven by the sensing of mtDNA. In obese mice, mtDNA 

release upon high-fat diet feeding was shown to trigger cGAS-cGAMP-STING in 

adipose tissue (Bai et al., 2017). Inversely, overexpression of the DsbA-L chaperone-

like protein in the mitochondrial matrix prevented mtDNA release and protected 

against obesity-induced inflammation. cGAS-cGAMP-STING signalling is also elicited 

by LOF of the mtDNA-binding protein TFAM (the transcription factor A, 

mitochondrial)(West et al., 2015). TFAM deficiency leads to moderate mtDNA 
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instability, as seen upon mitochondrial dysfunction linked to aging or various 

disorders. Future studies should characterize the exact trigger inducing cGAS-

cGAMP-STING and type I interferon upon dox treatment in mice and whether it 

participates in a systemic signalling of mitochondrial stress. A possible mechanism 

could be an opening of mitochondrial membrane pores leading to mitochondrial 

permeability, as it was observed in some stress conditions such as 

ischemia/reperfusion injury (Halestrap and Richardson, 2015).  

Due to their bacterial ancestry, mitochondria induce innate immunity and hence, a 

tight regulation of mitochondrial permeability and mitophagy participated in the 

evolution of the host tolerance to mitochondria (Rongvaux, 2017). Commonly, our 

study and these examples demonstrate that innate immune pathways conserved 

some reactivity towards mitochondria as a means to detect abnormal mitochondrial 

“behaviour”. Reinterpreting and targeting the crosstalk between mitochondrial stress 

and innate immunity might allow a better understanding and novel therapeutic 

strategies for disorders, such as neurodegenerative and autoimmune diseases. It is 

furthermore tempting to speculate and interesting to explore whether the induction of 

type I interferon signalling plays a role in the bacteriostatic actions of antibiotic 

agents, such as doxycycline that inhibit mitochondrial translation. 

6.2.2 Post-transcriptional and translational regulation 

The studies reported in this thesis identified pab-1 as the first RBP taking part in 

UPRmt signalling. The regulation of mitochondrial stress responses and of the UPRmt 

at the post-transcriptional and translational level remains poorly studied. However, as 

also observed in the renal response to dox (chapter 5), a block in translation is a 

common consequence of various types of stresses (D'Amico et al., 2017). Hence, 

pleiotropic mechanisms, extending beyond strict regulation of transcription, have to 

ensure the proper translation of specific mRNAs needed to cope with and resolve the 

stress, like the well-documented ATF4 response. In line with this premise, UPRmt 

genes correlate in a much tighter manner in the BXD GRP at the protein level than at 

the level of mRNA. This indeed suggests that mechanisms at the post-transcriptional 

and/or translational level might account for the tighter correlation of the network at 

protein level (Figure 4.2).  
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Only few RBPs regulating mitochondrial protein expression have been characterized 

sofar (Jourdain et al., 2013; Jourdain et al., 2017; Schatton et al., 2017). However, 

ongoing research in our lab identified the worm and mouse orthologues of the yeast 

pumilio factor PUF3p as an important player in regulation of mitochondrial function 

(unplublished data). This RBP was shown to play pleiotropic roles in the regulation of 

mitochondrial biogenesis and proteins in Saccharomyces cerevisiae (Rowe et al., 

2013; Tu et al., 2005). Therefore, it appears that post-transcriptional regulatory 

mechanism endorsed by RBPs shows a striking conservation across species.  

Our studies on pab-1 are another example of the conservation of post-transcriptional 

regulatory mechanisms governing mitochondrial and immune functions (Chapter 3). 

A recent study in A. thaliana described the binding of the plant pab-1 orthologue 

PAB2 to A-rich sequences in stress-responsive mRNAs, which were preferentially 

translated upon immune challenge (Xu et al., 2017). Our data documented the 

influence of pab-1 on transcript levels of immune and mitochondrial stress genes. 

However, the enrichment of an A-rich motif among pab-1-regulated mRNAs suggests 

that pab-1 may regulate translation of mitochondrial stress and immune proteins, 

similar to plant PAB2. Alternatively, the binding by pab-1 might also regulate mRNA 

stability (Figure 3.7B). Indeed, both liver and kidney transcript signatures upon dox 

treatment showed the enrichment of terms related to RNA metabolism, decay and 

stabilization (in orange in GSEA figures of chapter 5). Interestingly, liver transcript 

showed the enrichment for 

“Reactome_regulation_of_mRNA_stability_by_proteins_that_bind_AU_rich_elements

”, which contains Pabpc1, the mouse pab-1 ortholog.  

We therefore think that RBP-driven post-transcriptional/translational processes might 

constitute conserved regulatory mechanisms playing crucial, though poorly 

characterized, roles in the mitochondrial stress response. Thus, a promising strategy 

may lie in characterizing the translational signature caused by mitochondrial stress, 

using polysome profiling.  

Finally, pab-1 and its orthologues, from yeast to human, are well-documented 

members of stress granules. A recent study documented that aging and reduced 

fitness in C. elegans result from impaired stress granules dynamics (Lechler et al., 

2017). PAB-1 and other stress granules RBPs contain low complexity regions 
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causing the formation of deleterious aggregates upon aging. Mitochondrial stress 

triggered by RNAi against the OXPHOS subunit cyc-1 delayed the age-dependent 

aggregation of PAB-1 (Lechler et al., 2017). Along the same line, the induction of 

mitochondrial stress and mitophagy has recently been shown to impede the 

formation of -amyloid aggregates in Alzheimer’s disease (Sorrentino et al., 2017). 

Therefore, it may be relevant to explore whether pab-1 takes part in mitophagy or in 

aggregate formation in the context of mitochondrial stress and neurodegeneration.  

6.2.3 Evolution of the UPRmt and the mitochondrial stress response 

One of the initial goals of this thesis was to explore the conservation of the UPRmt in 

mammals, where it is less extensively characterized than in C.elegans. Examining 

the liver transcript and protein levels of the mouse orthologues of the canonical 

UPRmt in the BXD GRP supported a good co-regulation of this network in mammals 

(Chapter 4.1). In the organ-specific response to dox in germ-free mice, levels of 

Hspa9 and Lonp1 (orthologues of hsp-6 and lonp-1 respectively in worms), were 

clearly induced at the transcript and protein level. Other members of the mammalian 

UPRmt, such as CHOP, ATF4, ATF5 and their targets were also robustly induced in 

the kidney, proving a conservation of this response. However, they were not changed 

in the liver, although modulation of numerous transcripts and proteins was clearly 

observed in this organ upon dox treatment. This therefore suggests that the 

signalling of UPRmt might depend on multiple parameters such as timing of the 

response, the organ, the fasting/feeding state or perhaps even the age of the animal. 

We indeed cannot exclude, for example, that liver would also display a similar UPRmt 

activation after a shorter or longer exposure or an exposure during a different 

developmental window to dox. One can also speculate that the UPRmt and the 

mitochondrial stress response rather behave like a multi-arm response, the canonical 

UPRmt being one arm more easily responsive in the kidney in vivo upon dox 

treatment. Although ATF5 has been proposed as the mammalian functional 

orthologue of atfs-1 (Fiorese et al., 2016; Nargund et al., 2012), three additional 

transcription factors, i.e. ATF4, ATF5, CHOP, are already known to regulate the 

mammalian equivalent response. Therefore, this indicates that the mammalian 

response to mitochondrial stress probably evolved into a more complex and 

advanced version of the nematode UPRmt.  
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Another conserved aspect of the mitochondrial stress response is its crosstalk with 

other proteostatic networks. We found that mitochondrial stress elicited by dox in 

germ-free mice induced the transcripts of the heat shock cytosolic and ER stress 

response in liver and kidney (5.2.5 and 5.2.7). In C. elegans, mitochondrial stress 

and UPRmt are also coupled to the HSF-1-dependent activation of cytosolic 

chaperones (Kim et al., 2016; Matilainen et al., 2017b). This communication can be 

mediated by (1) an impaired balance of histone protein levels and the chromatin 

remodeling ISW-1 (Matilainen et al., 2017b) and (2) an accumulation in lipid and 

cardiolipin species (Kim et al., 2016). The need for lipid species to signal 

mitochondrial stress has already been reported. Ceramides are required for the role 

of UPRmt in immune mitochondrial surveillance (Liu et al., 2014). Thus, the 

remodeling of lipid metabolism seen in liver after dox in vivo treatment could also 

potentially play a signalling role and be linked to the HSR and ER stress. Indeed, 

impaired balance of membrane phospholipids triggered by choline deficiency in cells, 

called “membrane stress response”, activated the UPRER and the cytosolic HSR 

(Thibault et al., 2012). Therefore, more in-depth lipidomics profiling of mitochondrial 

stresses may open new research avenues. To conclude, the interaction of the 

mitochondrial stress response with other proteostatic networks reflects that 

mitochondrial function impacts on multiple aspects of cellular homeostasis.  

6.3 Perspectives  
This thesis highlights the versatile and intricate nature of the response to 

mitochondrial stress and its interconnectivity with other well-documented pathways 

and processes. I therefore hope that my work contributes to mitigate the perception 

that the mitochondrial stress response should have a single definition across species 

and conditions. Indeed, the outcome and the set of players involved in it may highly 

depend on the organ, the developmental and energy status, the species, as well as 

many other parameters. Since mitochondria take part in multiple processes, future 

research should further consider the globality of the consequences of mitochondrial 

stress on the cell and the organism. Therefore, the use of omics technologies to 

monitor mitochondrial stress-driven modulations at multiple cellular and systemic 

levels, and in multiple conditions, will help characterizing and integrate trends that 

appear difficult to detect and explain in single contexts. In addition, studying the 
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implications of mitochondrial stress in pathological conditions might lead to important 

therapeutic advances.  
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List of abbreviations 

AMPK Adenosine monophosphate-activated protein kinase 
ATF4 Activating transcription factor 
ATFS-1 Activating transcription factor associated with stress 1 
ATP  Adenosine triphosphate 
BXD recombinant inbred mouse cross (C57BL/6J x DBA/2J)   
CD  chow diet 
CHOP C/EBP homologous protein 
DAMP Damage-associated molecular pattern 
DAMP Danger-associated molecular pattern 
eIF2   subunit of eukaryotic translation initiation factor 2 
ER Endoplasmic reticulum 
ESRE Ethanol and Stress Response Element 
ETC Electron transport chain 
FAO Fatty acid oxidation 
FAS Fatty acid synthesis 
FFA Free fatty acid 
GADD34 growth arrest and DNA damage-inducible protein 
GCN2 General control non-derepressible 2 
GFP  green fluorescent protein 
GO  Gene ontology  
GO BP gene ontology biological process 
GO CC gene ontology cellular component 
GRP Genetic reference population 
GSEA Gene Set Enrichment Analysis 
GWAS genome-wide association study 
HFD high fat diet 
HIF-1 Hypoxia-inducible factor 1 
HSF heat shock factor  
HSR  heat shock response 
IFN interferon  
ISR Integrated stress response 
JNK c-Jun amino-terminal kinase  
KD knock-down 
LOF loss of function 
MAPK mitogen-activated protein kinase 
MSEA  metabolite set enrichment analysis 
mtDNA mammalian mitochondrial DNA 
mTOR mammalian target of rapamycin 
NADH Nicotinamide adenine dinucleotide, reduced 
ND75 NADH-ubiquinone oxidoreductase 75 kDa 
nDNA  nuclear DNA  
NFATc Nuclear factor of activated T cells  
NFE2L2/NRF2 Nuclear factor erythroid 2-related factor 2 



114 

NHR Nuclear hormone receptor 
NLP Neuropeptide-like protein 
NLR NOD-like receptor 
OXPHOS Oxidative phosphorylation 
p38 MAPK p38 mitogen-activated protein kinase 
PAB Poly(A)-binding protein 
PAMP Pathogen-associated molecular pattern 
PCA Principal Component Analysis 
PGSA Population-level gene set analysis 
PL phospholipid 
PPAR Peroxisome proliferator-activated receptor 
PQC Protein quality control 
PRR Pattern recognition receptor 
QTL Quantitative trait locus 
RBP RNA-binding protein 
RLRs RIG-I-like receptors  
RNAi  RNA interference 
ROS reactive oxygen species 
RTG Retrograde response genes 
SKN-1 Skinhead-1 
SNP  single nucleotide polymorphism 
SRM Selected reaction monitoring 
SRM  selected reaction monitoring  
SSBP1 Single-stranded DNA-binding protein 1 
TCA cycle  tricarboxylic acid cycle 
TF Transcription factor 
TFAM Transcription factor A mitochondrial 
TG Triglyceride  
TLR Toll-like receptor 
TNF Tumour necrosis factor 
TORC1 Target of rapamycin complex 1 
TRIB3 Tribbles homolog 3 
UPRER Unfolded protein response of the endoplasmic reticulum 
UPRmt mitochondrial unfolded protein response 
WT wild type 
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