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Abstract

Astronomy is one of the oldest sciences known to humanity. We have been studying celestial

objects for millennia, and continue to peer deeper into space in our thirst for knowledge

about our origins and the universe that surrounds us. Radio astronomy – observing celestial

objects at radio frequencies – has helped push the boundaries on the kind of objects we can

study. Indeed, some of the most important discoveries about the structure of our universe,

like the cosmic microwave background, and entire classes of objects like quasars and pulsars,

were made using radio astronomy. Radio interferometers are telescopes made of multiple

antennas spread over a distance. Signals detected at different antennas are combined to

provide images with much higher resolution and sensitivity than with a traditional single-

dish radio telescope. The Square Kilometre Array (SKA) is one such radio interferometer,

with plans to have antennas separated by as much as 3000 km. In its quest for ever-higher

resolution and ever-wider coverage of the sky, the SKA heralds a data explosion, with an

expected acquisition rate of 5 terabits per second. The high data rate fed into the pipeline can

be handled with a two-pronged approach – (i) scalable, parallel imaging algorithms that fully

utilize the latest computing technologies like accelerators and distributed clusters, and (ii)

dimensionality reduction methods that embed the high-dimensional telescope data to much

smaller sizes without losing information and guaranteeing accurate recovery of the images,

thereby enabling imaging methods to scale to big data sizes and alleviating heavy loads on

pipeline buffers without compromising on the science goals of the SKA.

In this thesis we propose fast and robust dimensionality reduction methods that embed data

to very low sizes while preserving information present in the original data. These methods are

presented in the context of compressed sensing theory and related signal recovery techniques.

The effectiveness of the reduction methods is illustrated by coupling them with advanced con-

vex optimization algorithms to solve a sparse recovery problem. Images thus reconstructed

from extremely low-sized embedded data are shown to have quality comparable to those

obtained from full data without any reduction. Comparisons with other standard ‘data com-

pression’ techniques in radio interferometry (like averaging) show a clear advantage in using

our methods which provide higher quality images from much lower data sizes. We confirm

these claims on both synthetic data simulating SKA data patterns as well as actual telescope

data from a state-of-the-art radio interferometer. Additionally, imaging with reduced data is

shown to have a lighter computational load – smaller memory footprint owing to the size and

faster iterative image recovery owing to the fast embedding.
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Abstract

Extensions to the work presented in this thesis are already underway. We propose an ‘on-line’

version of our reduction methods that work on blocks of data and thus can be applied on-

the-fly on data as they are being acquired by telescopes in real-time. This is of immediate

interest to the SKA where large buffers in the data acquisition pipeline are very expensive

and thus undesirable. Some directions to be probed in the immediate future are in transient

imaging, and imaging hyperspectral data to test computational load while in a high resolution,

multi-frequency setting.

Key words: big data, compressed sensing, convex optimization, dimensionality reduction,

inverse problems, radio interferometry, Square Kilometre Array (SKA)
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Résumé

L’astronomie est l’une des plus anciennes sciences. Nous étudions les objets célestes depuis

des millénaires et nous continuons, aujourd’hui encore, à regarder plus profondément dans

l’espace dans notre soif de connaissance de nos origines et celles de l’univers qui nous entoure.

La radioastronomie – l’observation des objets célestes dans les fréquences radios – nous aide

à repousser les limites du type d’objet que nous sommes capables d’étudier. Certaines des

découvertes les plus importantes au sujet de la structure de notre univers, comme celle du

fond diffus cosmologique (cosmic microwave background), ainsi que des classes entières

d’objets célestes, comme les quasars et les pulsars, ont été faites grâce à la radioastronomie.

Un interféromètre radio est un télescope qui se compose de plusieures antennes qui s’étalent

sur de grandes distances. Les signaux détectés par chacune des antennes sont combinés afin

de produire des images de plus haute résolution et avec une meilleure sensibilité que des

images produites par des télescopes radio traditionels avec une seule parabole (ou que par

des télescopes optiques). Le Square Kilometre Array (SKA) est un interféromètre radio qui sera

construit dans les prochaines années et dont les antennes seront séparées par des distances

considérables, jusqu’à 3000 km. Dans sa quête pour atteindre les plus hautes résolutions

et les plus larges couvertures du ciel, le SKA présage d’une explosion de la quantité des

données à traiter, avec un taux d’acquisition de données de 5 terabits par seconde. Avec

cet imminent déluge d’information, la recherche en traitement des données est en pleine

effervescence. Il est possible d’adresser les défis posés par ce taux élevé de production de

données avec une stratégie reposant sur deux axes – (i) la parallélisation des algorithmes

d’imagerie en utilisant les dernières avancées technologique en informatique telles que des

accélérateurs ou des clusters distribués et (ii) la réduction de la dimensionnalité, qui permettra

de représenter les données de manière très compacte sans perdre d’information, ce qui

garantit la reconstruction correcte de l’image. Cette réduction de la dimensionnalité permet

aux algorithmes de s’appliquer à des données de grande taille tout en atténuant les charges

importantes sur les tampons du pipeline de traitement des données – sans faire de compromis

sur les buts scientifiques du SKA.

Dans cette thèse, nous proposons des méthodes rapides et robustes pour réduire la dimension-

nalité des données à des tailles très petites en gardant l’information contenue dans les données

originales. Ces méthodes sont présentées dans le contexte de la théorie de l’acquisition com-

primée et des techniques de récupération de signaux liées. L’efficacité de ces méthodes de

réduction de la dimensionnalité est démontrée par les résultats obtenus par des algorithmes
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Résumé

d’optimisation convexe qui les utilisent pour récupérer des images à partir des donnés ré-

duites. La qualité de ces images est comparable à celle des images reconstruites à partir des

données originales. Nous comparons nos méthodes avec d’autre méthodes de référence de

réduction de la dimensionnalité (comme le calcul de la moyenne), et nous montrons qu’elle

présentent un avantage évident. Nous confirmons ces assértions par des expériences sur des

données simulées imitant les données du SKA ainsi que sur des données réelles acquises par

un interféromètre radio de dernière génération. En outre, les données réduites entraînent une

charge informatique moins importante – grâce á une réduction de taille dans la mémoire et à

une accélération de la récupération des images.

Nous proposons également un certain nombre d’extensions pour les méthodes proposées

dans cette thèse, notamment une version ‘on-line’ de nos méthodes qui fonctionne sur des

blocs de données et qui peut donc être appliquée aux données pendant leur acquisition. Cela

peut être particulièrement utile pour le SKA où il y a un risque d’avoir besoin de tampons d’une

grande taille, ce qui pourrait entraîner des côuts importants. Quelques autres directions pour

les prochaines étapes de recherche concernent les sujets d’imagerie des objets éphémères et

d’imagerie hyperspectrale dans un cadre haute-résolution et multi-fréquence.

Mots clefs : big data (mégadonnées), acquisition comprimée, optimisation convexe, réduction

de la dimensionnalité, problèmes inverses, interférométrie radio, Square Kilometre Array

(SKA)
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Introduction

Humankind has been curious about the skies above since time immemorial. From the very

first attempts to chart different stars and planets, millennia of advancements have brought

us to the present day where astronomy is a rich and diverse field of study, with discoveries of

celestial objects covering practically every part of the electromagnetic spectrum.

The range of ‘radio frequencies’ of the spectrum are particularly interesting, because some

of the most active and energetic objects in the universe emit radiation in these frequencies.

‘Radio’ astronomy, thus, provides an exciting window to study such astronomical objects.

Indeed, radio astronomy has furthered collective human knowledge about the universe, and

we have been able to draw conclusions about various celestial processes and objects that

would otherwise have gone undetected with optical astronomy.

Of course, as in any field of science, the quest for higher precision and more detailed obser-

vations in radio astronomy has been the driving factor for many innovations. Chief among

them is the development of radio interferometers – telescopes made by combining multiple

radio antennas spread over large distances. Combining antennas in this manner effectively

works like one huge telescope with very high precision – this is also seen by the fact that radio

interferometers provide higher-resolution images than other telescopes.

To achieve ever increasing precision and detail, proposed next-generation radio interferome-

ters are expected to map the sky with unprecedented resolution. One such ambitious project

is the upcoming SKA telescope, which plans to produce gigapixel images of the sky with

extremely fine detail and quality. This, however, is accompanied with an explosion of the data

volume acquired by such telescopes. Extremely high data rates (of the order of terabits per

second) are expected to swamp currently available signal acquisition pipelines, and a flurry

of research activity is now focused on designing techniques to ingest this high data rate and

process the incoming signals to provide images.

Motivation

The research work described in this thesis was undertaken primarily to address the issues

arising from the imminent explosion of data from next-generation radio interferometers.

1



Introduction

Currently employed imaging techniques are ill-equipped to perform effectively in a big data

regime, and are consequently expected to struggle to scale with increasing data acquisition.

Efforts at designing newer, scalable imaging algorithms are well underway. While these

ongoing efforts address scalability in terms of parallel and distributed imaging methods, the

research described here aims to complement these efforts by approaching the challenge of

scalable imaging from an entirely different angle – that of reducing data dimensionality. The

driving motivation behind this is the assumption that reducing data size before feeding the

data to an imaging algorithm will tackle the root of the scalability issue. By reducing data size

to ‘manageable’ quantities, current and future imaging techniques can be expected to perform

efficiently and scale with increasing data size, since dimensionality reduction would render

this increase invisible while preserving the information available in the data.

The final goal is, evidently, to be able to combine these new developments, in both scalable

imaging techniques and dimensionality reduction techniques, and to forge an imaging so-

lution that (i) continues to remain computationally efficient in a big data regime thanks to

dimensionality reduction, and (ii) takes advantage of a scalable imaging algorithm, either

through parallelization or faster design to exploit computing hardware resources.

Main contributions

The main contributions of the research presented in this thesis are briefly summarized here:

• Designing and developing dimensionality reduction methods that appropriately fit in

the compressed sensing framework of signal reconstruction, while remaining computa-

tionally efficient and practical to implement [Kartik et al., 2017a,b].

• Proof-of-concept of a new model for dimensionality reduction, shown on data acquired

by currently operating radio interferometers, including real-world image reconstruction

results and comparisons with the prevalent methods in the field. Proposal of an ‘on-line’

dimensionality reduction method for real-time application during data acquisition [Kar-

tik et al., 2017c].

• Designing and evaluating different dimensionality reduction methods, including spatial

frequency thresholding and various standard random projection techniques. Evalu-

ation included quality comparison of images reconstructed with reduced data with

those from established image reconstruction methods on full data, and quantifying the

computational benefits afforded by these methods for large-scale data [Kartik et al.,

2015].

• Developing a scalable imaging algorithm for radio interferometry data. This involved

an extensive study of a set of convex optimization algorithms for image reconstruction,

particularly with respect to the effects of increasing data size on the computational

efficiency of these methods [Carrillo et al., 2015].

2



Introduction

Thesis outline

This thesis is structured as follows:

• The current chapter provides the context for the research work described in this thesis.

We present a bird’s eye view of the setting in which the current work is based, and outline

the motivation for the undertaken research direction.

• Chapter 1 provides a self-contained description of radio interferometry and the big

data challenges for imaging pipelines in next-generation interferometers. Chapter 2

describes radio-interferometric imaging, and also includes a survey of the state of

the art. In chapter 3 we introduce the theoretical background of compressed sensing

and convex optimization techniques, highlighting the relevance of the two topics in

improving imaging techniques for big data in radio interferometry.

• Chapter 4 presents a detailed discussion of different dimensionality reduction methods,

their use in analyzing large amounts of data, and their role in handling radio interfer-

ometry data for imaging algorithms. We move from general dimensionality reduction

methods to specific dimension embeddings relevant to compressed sensing-based

image reconstruction, and observe their applicability to radio interferometry data.

• Chapter 5 introduces a major contribution of the research work described in this thesis –

a novel dimensionality reduction method which is shown to be a practical and fast way

to handle large dimensional radio interferometry data. Experimental results on large-

scale simulations show that the proposed method drastically reduces computational

requirements for imaging algorithms, while maintaining the image reconstruction

quality to a high degree.

• Chapter 6 describes the results of dimensionality reduction on large-scale data cur-

rently being acquired from radio interferometers in the United States and South Africa.

The encouraging results on previously described simulations are confirmed on real

observations, and provide validation of the proposed dimensionality reduction.

• Chapter 7 presents conclusions about the methods developed as described in chapters 5

and 6, highlighting their suitability in scalable imaging techniques for next-generation

radio interferometers. We conclude by indicating avenues for future work in dimension-

ality reduction, especially by taking into account antenna characteristics and calibration

effects. We outline concrete experiments to be undertaken in the immediate future on

imaging problems with immediate astrophysical value – like imaging transient sources.

The advances presented in the coming chapters, along with the indicated next steps for

widening the scope of our method to handle more relevant, large-scale use cases will, we

hope, provide convincing arguments for the inclusion of the reduction method proposed

in this thesis into the data processing pipeline of next-generation radio interferometers

like the SKA telescope.

3





1 Radio astronomy and the SKA

1.1 The role of radio astronomy

Radio astronomy is the study of celestial objects that emit radiation in ‘radio frequencies’,

i.e., in the range of 3 kHz to 300 GHz. Fig. 1.1 shows the position of ‘radio’ frequencies in the

electromagnetic spectrum, relative to sizes in terms of both wavelength and frequency of other

common physical objects. Radio astronomy has several advantages over other techniques (e.g.,

optical astronomy) – especially when it comes to observing celestial objects that (i) have very

fine angular detail, or need to be localized in space with high angular precision, or (ii) exhibit

phenomena only in radio frequencies, while being relatively ‘silent’ in optical and other ranges

of the electromagnetic spectrum. Radio astronomy techniques can produce angular accuracy

of the order of 10−3 arcsec1 for absolute positions of astronomical objects, as opposed to

current optical measurements (from earth) which have a resolution of ≈ 0.05 arcsec. Advances

in the technology available for telescopes in optical, infrared, X-ray and other frequencies con-

tinue to enable ever-finer resolutions, and are expected to eventually reach values comparable

to those obtained in radio astronomy today. However, radio frequencies will continue to be

important sources of astronomical information since they allow us to observe objects and

processes that do not emit radiation in other parts of the electromagnetic spectrum, or are

blocked en route to earth by galactic dust clouds [Thompson et al., 2001].

Radio emissions originating in the far reaches of the universe tend to manifest as very weak

signals at receiving stations on earth. Most antennas identify a signal as voltage fluctuations;

these signals are usually indistinguishable from Gaussian random noise. Signal characteristics

are usually constant over the time scales of typical radio astronomy observations,2 and are

assumed to be stationary and ergodic. The power spectrum of the majority of the signal power

(which is in the form of continuum radiation) varies very slowly with frequency, and may also

be considered to be constant over the receiving bandwidth of the antenna (in most cases). The

nature of the slow variation of the power spectrum can provide clues about the composition

11degree = 3600arcseconds.
2Observation durations are of the order of minutes or hours.
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Chapter 1. Radio astronomy and the SKA

Figure 1.1 – The electromagnetic spectrum showing the relative position of ‘radio’ frequencies.
[Source: NASA public domain image, CC-BY-SA 3.0]

of the underlying astronomical object, like electron densities and magnetic fields in certain

radio galaxies, or electron-ion collisions in nebulae. In contrast, spectral line radiation shows

a discontinuous power spectrum, with narrow peaks at specific frequencies corresponding to

underlying atomic and molecular processes. A very well-known and well-studied example

is the ‘21-cm spectral line’ belonging to neutral atomic hydrogen. The 21-cm line and its

Doppler-shifted variants are used to glean information about galactic structure and dynamics.

It is widely studied since the signal reaches earth with minimal obstruction from galactic dust,

which normally blocks radiation in optical frequencies, as mentioned earlier.

The power from continuum and spectral line radiation emitted by different astronomical

objects is measured as a spectral flux density, expressed in watts per square meter per hertz.

The unit is the jansky (Jy), named after the pioneering radio astronomer Karl G. Jansky.3 1Jy =
10−26 Wm−2Hz−1. The spectral flux density received by a radio antenna per unit solid angle

subtended by an astronomical object (or ‘source’) under observation gives us the intensity of

the radiation emitted from that source, and it is this intensity that is used to generate images

of the radio emission, from which further astrophysical conclusions may be drawn.

The power received from radio sources is usually very small, with a correspondingly weak

signal. Although single-dish telescopes are in use for many cases in radio astronomy, they

need to be extremely large to collect enough emission to attain a reasonable signal-to-noise

ratio (SNR). In addition, since angular resolution is proportional to the diameter of the dish (in

units of the wavelength being observed), such radio telescope dishes would need to be orders

3Jansky birthed the field of radio astronomy by first discovering radio waves, which he correctly concluded to
have an extraterrestrial origin (seemingly emanating from the centre of the Milky Way).
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1.2. Radio interferometry

of magnitude larger than optical telescope dishes for comparable precision. These limitations

were overcome by the development of radio interferometry, a sub-field of radio astronomy

which involves observing radio emissions through an array of radio antennas trained at a

portion of the sky.

1.2 Radio interferometry

Radio interferometers contain several antennas spread over a large area; individual recordings

at each antenna are correlated with recordings at other antennas of the array to obtain a

combined signal by interfering pairs of signals. Grossly speaking, this array of antennas

functions as an equivalent single dish with a diameter equal to the separation between the

two furthest antennas of the array. This allows observations of the sky with extremely high

angular resolutions (increasing with the largest separation of antennas) – this is essential to

measure the positions of sources with enough accuracy to identify them with corresponding

measurements from optical and other frequencies – in their intensities, polarizations and

spectra. A higher SNR is achieved by collecting data through multiple antennas; the achieved

sensitivity increasing with the number of measurements and the total acquisition surface.

Interferometry as a way of observing astronomical sources was first proposed by Michelson

and others in the early 20th century, and the first observation targets were stars in the optical

frequencies. This was quickly adapted for observations in radio frequencies, and in 1946

Ryle and Vonberg successfully used radio interferometry to corroborate observations made

years earlier by Jansky and other astronomers, thereby providing the proof-of-concept and the

groundwork for the development of the field of radio interferometry [Ryle and Vonberg, 1946,

1948]. McCready et al. [1947] independently made the first radio interferometric observations

of the sun in 1945, using a ‘sea interferometer’, by observing the sun directly and through

its reflection in the sea. Ryle developed the technique of radio interferometry further, most

notably with the introduction of phase switching in 1952 which enabled radio astronomers to

detect very weak signals in the presence of instrument noise that was typically several orders

of magnitude higher [Ryle, 1952]. Phase switching was then gradually replaced by what is

known today as the correlator, which effectively performs the same function. Another equally

important advance in radio astronomy was the development of ‘aperture synthesis’, put

forward by Blythe [1957], Ryle and Hewish [1960]. Aperture synthesis forms the cornerstone of

radio interferometric imaging, effectively emulating a large single-dish radio telescope by the

simple process of moving around antennas in different configurations to cover the same area

and then intelligently combining the measurements obtained at each configuration. A more

detailed description of aperture synthesis is presented in section 2.1. Ryle and Hewish shared

the 1974 Nobel Prize in Physics for this and other contributions to radio astronomy.

These developments provided a boost to the field and several large arrays were commissioned

and developed using a combination of these new techniques with the latest advances in elec-

tronics and computing. A surge in new, miniaturized electronics allowed receiver equipment
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Chapter 1. Radio astronomy and the SKA

to be installed locally at each individual antenna, which consequently enabled antennas to

spread further and further apart. All the radio interferometers built in the late 1960s and on-

wards exploit these advances, and have proven to perform really well and produce interesting

science results. The One-Mile Radio Telescope in Cambridge, UK, operated by the Mullard

Radio Astronomy Observatory (MRAO), produced the first detailed images of the structures

of radio sources with very strong emissions – galaxies like Cygnus A and Cassiopeia A. Subse-

quently, other telescopes came into operation – like the Green Bank Telescope (GBT) in West

Virginia, USA, and the Very Large Array (VLA) in New Mexico, USA, operated by the National

Radio Astronomy Observatory (NRAO), the Westerbork Synthesis Radio Telescope (WSRT)

in The Netherlands, and the Giant Metre-Wave Radio Telescope (GMRT) in India – bringing

even higher resolution images and faster scanning of the sky at different frequencies. This

trend continues today, with some of these telescopes receiving upgrades over the years; a good

example is the VLA, which has been producing data since 1974, and was recently upgraded to

have increased sensitivity over an extended observation frequency range of 1 to 50 GHz [Perley

et al., 2009].4

1.3 The SKA era

The field of radio interferometry has advanced considerably – over the last six decades many

novel contributions have been made, leading to the current high-fidelity imaging and high

resolution mapping of the sky available to radio astronomers. The quest for ever-higher

angular resolution in radio astronomy continues to fuel development in the design and use of

bigger and more powerful radio interferometers. Most notably, in recent years, this has led

to a unified effort towards constructing an unprecedented radio telescope – an array spread

over the globe, centred mainly in South Africa and Australia. On completion, this telescope

is expected to contain several thousand dishes (in Africa) and hundreds of thousands of

individual antennas (in Australia), to give an effective collecting area of one square kilometre.

This array is called, unsurprisingly, the Square Kilometre Array (SKA). Initial phases of the

SKA design and development are well under way, and construction of the partial array has

already begun. Fig. 1.2 shows an artist’s depiction of a small portion of the SKA. Pathfinders

and precursors to the SKA are currently being built and have already entered their data-taking

phase. In South Africa, the MeerKAT telescope has been acquiring data since July 2016, and

is acting as a technology demonstrator for the SKA, which will subsume MeerKAT antennas

into its mid-frequency component in the first operation phase. Similarly, the Australian SKA

Pathfinder (ASKAP) has been running its ‘Early Science Program’ since October 2016, with

encouraging first results supporting the validity of SKA science projects for low-frequency

observations. The ambitious scale of the SKA project means that, on completion, the SKA

is expected to be the largest radio telescope in the world, observing the skies over a wide

frequency range from 50 MHz to 25 GHz. A wide field of view combined with high sensitivity

receivers is expected to allow the SKA to survey large parts of the sky at a time at a high rate.

4The upgraded VLA is now named the Karl G. Jansky Very Large Array.
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1.3. The SKA era

Figure 1.2 – SKA dishes in The Karoo, South Africa – an artist’s depiction. [Source: SKA Project

Development Office/Swinburne Astronomy Productions, CC-BY-SA 3.0]

1.3.1 SKA goals: science and technology

The SKA has very ambitious science goals. These science goals are divided into ‘Key Science

Projects’ (KSPs) that touch practically every aspect of the universe, ranging from details of its

origins and the birth of the very first galaxies (the ‘Dark Ages’ KSP), to the evolution of galaxies

and dark energy, to studies of black holes and pulsars to test general relativity and theories of

gravity, to planet formation and searching for extraterrestrial intelligence (the ‘Cradle of Life’

KSP), and many other unknowns, including the eventual death of our universe. The findings

from the SKA will have far reaching consequences in fields as diverse as astronomy, cosmology,

fundamental physics, and astrobiology.

Achieving these science goals means that the SKA will need to be a cutting edge instrument,

with simultaneous abilities to have wide fields of view, high resolution and extreme sensitivity,

acquiring hyperspectral data at an extremely high rate. To achieve such a high level of perfor-

mance across these disparate figures of merit, the SKA will also need to push the envelope for

engineering and technology advances. The scientific challenges will be addressed through

appropriate application of cutting edge technology to enable that the final goals are met

within budget constraints. The SKA will take advantage of the developments in high-speed

data transmission with fibre optics, which would enable finer timing control over signals

acquired over large distances. High speed digital signal processing solutions and dedicated

integrated circuits and systems-on-chips are expected to be used for quick signal analysis,

increasing survey speeds. Very recent improvements in computing, like high-frequency CPUs,
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Chapter 1. Radio astronomy and the SKA

memory chips and high-capacity storage solutions will be used to make possible an even

larger search space for the SKA.

1.3.2 Data handling challenges

As seen in the previous section, the unprecedented science and technology objectives of

next-generation radio telescopes can only be achieved by acquiring corresponding data at

an explosive rate. The current estimate for the SKA is a data rate of up to 5 terabits per

second [Broekema et al., 2015]. This high data rate is a direct consequence of the thousands of

antennas collecting data over very wide fields of view across several gigahertz of bandwidth.

The science data processing (SDP) for this deluge of data is a challenge, owing to the limitations

on the computational resources, in terms of both raw numerical processing of the data, as

well as providing large real-time buffers to enable unhindered data acquisition (i.e., CPU,

RAM and storage). The cost of the data processing components is a major deciding factor

in the choice of technical solutions for each science goal. The cost of adopting a particular

technology can be the difference between rendering a particular data processing method

infeasible for the SKA and it being a major contributor to achieving faster and better science

data processing. Consequently, appropriate processing techniques need to be designed and

evaluated in this context in order to be able to handle these imminent challenges. The main

‘product’ of the SKA is to be high-resolution, high-dynamic range images reconstructed from

the raw data it acquires. So, a large proportion of the imminent data challenges falls squarely

on the radio-interferometric imaging techniques that need to ingest a high data rate and

produce high-quality output images.
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2 Radio-interferometric imaging

In this chapter we discuss the general principles of recovering images from telescope data. A

more detailed background of the acquisition of these data is warranted at this point to enable

a deeper treatment of the imaging methods described later in the chapter. A common way

of collecting cosmic signals as interferometer data is through aperture synthesis. The low-

and mid-frequency collecting portions of the SKA are also aperture synthesis array designs.

Therefore, our discussion on radio-interferometric imaging will be focussed on aperture

synthesis imaging of radio interferometer data.

2.1 Aperture synthesis

Aperture synthesis was introduced by Ryle and Hewish [1960], building on the concept devel-

oped by Blythe [1957]. The basic principle states that we can effectively make observations of

the sky as if we were using a single telescope with a large collecting area, or aperture – using

much smaller antennas – either by placing stationary antennas spread over a large area, or by

moving individual antennas to cover a given area over time. Radio interferometers lend them-

selves particularly readily to aperture synthesis because of the widespread use of electronics

at individual receivers in antennas that handle the recording of signal timing information (like

phase) and transport the digitized signal to a central location for correlation in software at

a later stage. This is made possible because of the long wavelengths of the incoming signals

handled by radio interferometers. As a counter example, aperture synthesis is less suited for

optical wavelengths which cannot make use of standard electronics equipment to transport

signals and correlate them in software. Performing optical interference and ensuring reliable

transport of optical signals is an expensive endeavour, and affordable technology to make

this feasible has only matured in recent years to the point where aperture synthesis became a

possibility, whereas this has been used in radio interferometry since the 1960s.

At the time that aperture synthesis was proposed, the relationship between the intensity distri-

bution of a source and the response of an interferometer observing that source was already

well established. The Wiener-Khinchin relation states that, for weak-sense stationary signals,
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Figure 2.1 – Illustration explaining the coordinate system used in radio interferometry. The uv
plane lies normal to the direction pointing at the source, s0. The corresponding lm plane lies
tangent to the celestial sphere at the point where s0 meets the sphere. Note that the w axis is
also taken to point at the source.

the power spectrum is the Fourier transform of the autocorrelation of the signal [Wiener, 1930].

We can already see how this statement may link to the acquisition of radio interferometer

data – which are essentially cross correlation components of the intensity distribution of radio

sources. This Fourier relationship did not go unnoticed, and was first used by McCready

et al. [1947] in the analysis of their pioneering radio interferometric observations of the sun.

In the following sections, we introduce the process of observing a source through a radio

interferometer, in a general setting, and show that, with an appropriately chosen coordinate

system, the output of the radio interferometer can be seen to be the Fourier transform of the

power spectrum of the signal received from the source.

2.2 Basics of radio interferometer measurements

The antennas of an array point to the same portion of the sky, shown in Fig. 2.1 on the so-called

celestial sphere.1 A radio source, in general, may be spread out over a part of the sky, as shown

by the outline on the celestial sphere. We assume that the source is so far away that the

emissions received at the antennas may be assumed to be in the form of plane waves. In a

typical observation, the antennas point towards the centre of the source, defined as the ‘phase-

tracking centre’, given by a unit vector s0 ∈R3. The receiving systems of the array measure the

correlation between incoming plane waves recorded at each antenna pair. This measurement

1An imaginary sphere concentric to earth and with arbitrarily large radius, on which all celestial objects can be
projected and consequently observed on the inner surface.
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Antenna 1

Antenna 2

bλ

w
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u

Figure 2.2 – Illustration of a baseline bλ in 3-D space, and its components u, v , and w on the u,
v , and w axes, respectively. |bλ|, u, v , and w are all measured in multiples of the wavelength
of the received radio emission.

can be seen as an interference fringe pattern, assumed to be due to a hypothetical point

source at the phase-tracking centre, in the direction s0. This interference pattern varies in

amplitude and phase as a function of the antenna separations, and is expressed by a complex

visibility function. It is this visibility function that needs to be measured in order to recover

the intensity distribution of the source. These complex measurements are commonly referred

to simply as visibilities, and lie on a plane of observation normal to the direction of the source,

s0. We define this plane with the coordinate axes (u, v , w ). As marked in Fig. 2.1, w points in

the direction of the source, i.e. in s0; u and v point to the ‘east’ and ‘north’, respectively, as

seen from a plane through the origin, the phase-tracking centre and the pole. The antenna

separations that result in complex visibilities are defined by displacement vectors referred

to as baselines. Each baseline can be broken down into components along these coordinate

axes (u, v , w ). These components are then given by the values u, v , and w , as illustrated in

Fig. 2.2. The observation plane thus containing the u and v components is called the ‘uv

plane’, and the measured complex visibilities form a two-dimensional function on the uv

plane. Baseline magnitudes are commonly measured in wavelength of the received radio

emission,2 λ, and thus baseline components u,v , and w are usually in multiples of λ. We note

that to collect as much information as possible about the intensity distribution of a source, it

is desirable to have the highest number of possible baselines. Each baseline is represented

by a point in the uv plane. Thus the goal is to have measurements from a large number of

points in the uv plane, or a comprehensive uv coverage. Fig. 2.3 illustrates a uv coverage

from 254 antennas simulating a mid-frequency SKA array. Aperture synthesis attempts to

achieve an improved uv coverage by generating multiple baselines, by placing antennas at

different locations, either keeping them stationary or moving them over a given area. Even

2More precisely, the wavelength corresponding to the central frequency of the bandwidth of the receiving
system.

13



Chapter 2. Radio-interferometric imaging

Figure 2.3 – Illustration of uv coverage with simulated SKA antenna configuration for mid-
frequencies. Left: Short observation duration. Right: Longer observation duration, showing
the effects of earth rotation synthesis. Note that each baseline shown in blue at position (u, v)
has a corresponding conjugate baseline shown in red at (−u,−v).

in the case where moving antennas was possible (if inconvenient), the number of possible

antenna configurations was limited, which impacts the uv coverage. In order to collect more

data through a more ‘complete’ coverage of the uv plane, Ryle and Hewish [1960] proposed to

use the earth’s rotation as a way to embellish any existing antenna configuration. The rotation

of the earth causes variations in baseline positions relative to the source being observed,

which manifest as distinct uv points. The method, which quickly gained popularity as a

way to approximate a radio telescope with large aperture, is called earth rotation aperture

synthesis. We can see the effect of the earth’s rotation in Fig. 2.3, where both uv coverages are

generated with the same antenna configuration, but with different observation times. The

longer observation time is able to make use of the earth’s rotation and populate a larger area of

the uv plane, thus providing more data that is then used to recover the intensity distribution

image of the source. We also see in Fig. 2.3 that the uv coverage with earth rotation aperture

synthesis contains elliptical tracks. Each track is made of uv points that correspond to the

same pair of antennas but at different different positions relative to the line of sight during the

earth’s rotation, resulting in different baselines over time.

Analogous to the uv plane for the measurements, we can also define an image plane that

contains the underlying signal (i.e., the intensity distribution of the radio source being ob-

served). The image plane is parallel to the uv plane, and lies tangent to the celestial sphere

at the phase-tracking centre. The corresponding coordinate axes are labelled (l ,m,n), and

are the direction cosines measured with respect to the u, v and w axes respectively. The

phase-tracking centre initially given by s0 acts as the origin of the source intensity distribution,

giving us the centre of the corresponding image.
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The relation between the image on the l m plane and the corresponding visibility measure-

ments from the uv plane is the basis for all further discussions of radio-interferometric

imaging in this thesis, and is presented in the next section.

2.3 Measurement model

The aperture synthesis process of interfering signals received at different antennas relies on

the van Cittert-Zernike theorem which established a connection between the interference

pattern and the distribution of the source intensity [Zernike, 1938, Thompson et al., 2001].

Although synthesis imaging was being performed routinely since the 1960s, the importance

of the van Cittert-Zernike theorem was only realized much later with developments in signal

processing techniques that established a Fourier relationship between the correlator output

and the underlying source intensity distribution.

The origin of this relationship, in the context of the different factors affecting the measure-

ment of the source, including telescope characteristics, observation parameters, and physi-

cal constraints among others, can be discussed using the concept of a measurement equa-

tion [Hamaker et al., 1996, Sault et al., 1996, Smirnov, 2011a]. It is explained in this subsection

along with the description of the solution for the equation. The solution is constructed as a

convex optimization method, which lends itself to several computationally efficient algorithms

developed in a more general sense.

2.3.1 Radio interferometry measurement equation (RIME)

We build our measurement model using the simplified single antenna pair observation set-up

illustrated in Fig. 2.1. The argument can be extended over multiple such pairs that form an

interferometer array.

A part of the radio source in the direction s = s0 +σ ∈R3 subtends a solid angle dΩ. Recalling

our definition of the spectral flux density in section 1.1, we can see that, over the observing

bandwidth Δν of the receiving system, this part of the source contributes 1
2 A(σ)x(σ)ΔνdΩ of

power at each antenna. Here A(σ) denotes the effective area of an antenna and x(σ) is the

unknown underlying source intensity distribution.

For an antenna separation given by the baseline bλ (in wavelengths as mentioned in sec-

tion 2.2), the extra distance (delay) for incoming emission to one antenna is given by bλ · s =
bλ · (s0 +σ). The complex visibilities measured at the output of the receiving system are

obtained by correlating the voltages generated at each antenna, producing an interference

fringe pattern. This fringe pattern depends on the delay, and appears in the correlator output

along with the received power, in the form

r (bλ, s0) =Δν

∫
4π

A(σ)x(σ)cos[(2πbλ · (s0 +σ)]dΩ. (2.1)
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The correlator output gives us our desired complex visibility for that baseline, which we define

here as a complex value y with magnitude |y | and phase φ, giving

y(bλ) = |y(bλ)|eiφλ (2.2)

=
∫

4π
A(σ)x(σ)e−2π ibλ·σ dΩ. (2.3)

We now use the coordinate system introduced in section 2.1 to reformulate this visibility

computation. The baseline bλ has components u, v , and w , and on the celestial sphere, the

direction vectors s, s0, and the distance σ can be expressed in terms of components l , m, and

n such that

bλ ·σ= bλ · s −bλ · s0 (2.4)

= (ul + vm +wn)−w, (2.5)

and dΩ= d l dm
n , for n2 = 1− l 2 −m2. Rewriting equation (2.3) using these coordinates, we get

the complete radio interferometry measurement equation (RIME) –

y(u, v, w) =
∫+∞

−∞

∫+∞

−∞
1

n
· A(l ,m)x(l ,m)e−2π i(ul+vm+w(n−1)) d l dm, (2.6)

where the integral limits (−∞,+∞) are made possible by the fact that A(l ,m)x(l ,m) quickly

decays to negligible values outside the field of interest which contains the source, due to the

receiving characteristics of the antennas.

We can obtain a simplified form of equation (2.6) by making the assumption that the antenna

array could lie entirely on the observation plane normal to the w direction, so that the w-

component of the baselines would be zero. In this case, the integral would simplify to

y(u, v, w) =
∫+∞

−∞

∫+∞

−∞
1

n
· A(l ,m)x(l ,m)e−2π i(ul+vm) d l dm, (2.7)

which we can immediately identify as the two-dimensional (2-D) Fourier transform relation.

We can thus deduce from equation (2.7) that the complex visibilities y are indeed Fourier

components of the unknown source intensity distribution x . The fact that visibilities are

complex can be explained here through the observation that the intensity distribution, while

real, is not (usually) symmetric. Each spatial (l ,m) point of the image plane thus has a

corresponding (u, v) point in spatial frequency through the Fourier transform.

While the assumption that all baselines lie in a plane normal to the w direction rarely holds,

we can continue to preserve the Fourier transform relation between the intensity distribution

x and the measured visibilities y through a variety of workarounds. Firstly, if we consider small

fields of view (i.e., where l ,m are small), we then see that the term w(n −1) in equation (2.6)

becomes negligible, and we reach equation (2.7). This is actually quite common as many radio

observations are performed on a limited portion of the sky. An approach to surveying large
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portions of the sky while maintaining the 2-D Fourier transform is to scan the sky as a mosaic

of multiple independent observations, each limited to a separate, smaller field of view and

then combining them together at a later stage with an appropriate change of coordinates.

Finally, observations of sources directly overhead (or reasonably close to being overhead)

also result in negligible w-components. Equation (2.7), which holds under some simplifying

assumptions on l , m, and w among others, is an instance of the van Cittert-Zernike theorem.

The simplifications and assumptions made here introduce errors in the measurement model,

and consequently in any signal recovered from these measurements. Some errors additionally

arise due to inappropriate handling of direction-dependent effects (DDEs) of the receiving

system. For example, the effective antenna collecting areas and response functions depend

on the pointing direction. The heterogeneous makeup of the ionosphere also contributes in

varying degrees depending on the direction. The non-negligible w-component of baselines is

a DDE that needs to be accounted for during imaging. DDEs become more pronounced with

wider fields of view and higher target sensitivities, and it is therefore crucial to correct for them

in next-generation radio interferometers. Yet other errors are due to direction-independent

effects (DIEs) from antenna electronics to propagation effects. DIEs can, in principle, be

accounted for by correcting the visibilities measured with DIEs through calibration proce-

dures [Smirnov, 2011b]. DDEs can also be (partially) handled by appropriately including them

in the measurement model used for imaging [Smirnov, 2011c]. For example, as mentioned in

section 2.3.3 that follows, general w-terms can be included in rows of the degridding matrix G

as part of the measurement equation. Of course, DIEs and DDEs can only be calibrated and

accounted for when they are detectable and quantifiable. The presence of unknown DIEs and

DDEs, or failing to model or correct these effects through calibration, leads to errors in signal

recovery. The recovered signals indicate the intensity distribution of the radio source, and

provide information about underlying astrophysical phenomena. The signal thus provides a

‘map’ or image of the source, and so the signal recovery process is called mapping, or, as it is

referred to in this thesis – radio-interferometric imaging.

2.3.2 Visibility sampling in the uv plane

The 2-D Fourier transform relation between the complex visibilities and the unknown image is

a welcome boon to synthesis imaging methods. This is mainly due to the availability of the fast

Fourier transform (FFT) algorithm that allows us to quickly compute the discrete Fourier and

inverse Fourier components of a given function [Cooley and Tukey, 1965]. Indeed, in the years

before the FFT algorithm became prevalent, 2-D Fourier transforms used to be calculated by

hand in each dimension successively [Bracewell, 1956], and consequent imaging was – to put

it mildly – an unenviable task.

While the advent of the FFT algorithm and increasingly powerful computing resources greatly

helped the progress of imaging methods, the measurement model needed to be tweaked to

fit the limitations of these faster numerical computing methods. The FFT computes discrete
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Fourier transforms over a regular grid, whereas a typical uv coverage contains points at ar-

bitrarily continuous locations in Fourier space. So, while great computational advantages

can be had if the visibility data could be laid on a regular grid, each baseline of an interfer-

ometer array provides one sample of the visibility function at a location that may or may not

conform to the grid. Interferometer arrays are indeed designed with antenna spacings meant

to provide a desired sampling of the visibility function, but all (u, v) points cannot be made

to lie on a regular grid3 since baselines follow elliptical tracks on the uv plane. Therefore,

the visibility sample value at each regular grid point is obtained by interpolating over the

measured visibilities that fall in a pre-defined region/cell centred at the grid point4 – this

process is known as gridding. One simple way would be to average all visibilities in a cell

and use the average value at the corresponding grid point. More sophisticated interpolation

methods are usually employed, which apply a weighting on the visibilities before gridding.

Different weighting schemes have been developed over the years, each with its own merits

and demerits [Briggs, 1995, Boone, 2012]: ‘natural’ weighting uses inverse noise variances of

the visibility measurements as weights thus maximizing sensitivity; ‘uniform’ weights, on the

other hand, are inversely proportional to the number of measurements in a given cell, thus

maximizing resolution but losing sensitivity; ‘robust’ weighting takes a middle path, guaran-

teeing reasonable levels of both resolution and sensitivity; some other weighting schemes have

also been developed more recently, which propose a middle path through multi-step [Boone,

2012] and adaptive [Yatawatta, 2014] approaches. It is clear, then, that we should aim to have

a reasonable number of measurements in a given cell, to enable a good guess at the visibility

value at the corresponding grid point. Ideally, we would also like to have measurements in

each cell over the entire uv plane, since cells with no measurements indicate an incomplete

coverage of the Fourier space, and consequently, incomplete knowledge of the underlying

visibility function. This is, however, not always possible, and it is this incomplete uv coverage

that plays a major role in the measurement model, and consequently, the non-trivial process

of recovering the underlying intensity distribution.

2.3.3 RIME in matrix form

The linear measurement model, as it appears through a Fourier transform relation in equa-

tion (2.7), is discretized for computational purposes through sampling methods mentioned

in section 2.3.2. The original measurement model accounting for ‘continuous’ visibilities,

however, can be approximated in matrix form as

y =Φx +n, (2.8)

where x ∈ CN is the (vectorized) image to be recovered and y ∈ CM the visibilities vector,

n ∈CM being the noise in the measurements. The ‘measurement operator’ Φ ∈CM×N covers

3Unless an extremely fine grid is chosen, in which case the computational cost approaches that of a discrete-time
Fourier transform anyway.

4This is usually done through a convolution and hence cannot be called an interpolation, strictly speaking.
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the linear relation between the signal and the continuous visibilities, and is given by

Φ=GFDRZ, (2.9)

where Z is the zero-padding of the image needed to compute the 2-D discrete Fourier trans-

form of x on a finer sampling grid in the Fourier domain and F the 2-D discrete Fourier

transform operator in the oversampled case. G is a convolution interpolation operator to map

from the discrete frequency grid to the continuous uv plane – this is essentially the inverse

of the gridding process mentioned in section 2.3.2. Each row of G contains an interpolation

kernel of compact support [Fessler and Sutton, 2003]. Note that DDEs can be accounted for in

this model by allowing general interpolation kernels in each row of G. DR, the grid correction

term, is a diagonal matrix to implement the reciprocal of the inverse Fourier transform of the

interpolation kernel used in G, to undo the effects of the convolution by the interpolation

kernel in the spatial frequency domain. For brevity, we also define the combined operator

Z=DRZ. The measurement operator defined in equation (2.9) is then equivalently given by

Φ=GFZ ∈CM×N . (2.10)

Equation (2.8) thus presents a forward model, capturing how visibilities are measured from

an underlying intensity distribution image. Here we focus on the inverse problem, i.e., the

problem of tracing back through the forward model to recover the underlying image from the

measurements recorded at the observer’s end. Solving the inverse problem is thus equivalent

to obtaining the image x from the incomplete information available in the data y as given

in equation (2.8). Holes in the uv coverage of the data and the presence of noise in the

measurements provide an incomplete view of the visibility function, thus rendering the

linear system ill-posed, even though there are typically many more measurements available

compared to the image size, i.e., M � N . The incompleteness of the uv coverage is at the core

of our inability to analytically arrive at the true underlying intensity distribution image. This

ill-posed inverse problem is thus the cornerstone of the imaging challenge, and ultimately, the

science objectives in radio interferometry.

2.4 Radio-interferometric imaging

Imaging is a key component of the processing pipeline in radio interferometers. The final sci-

ence goals, from the astronomer’s perspective, are achieved through the images reconstructed

from the acquired data. Therefore it is crucial that the images recovered from the data have

high fidelity, high dynamic range, high sensitivity, and high resolution. These features of the

images help the astronomer study details of the astrophysical phenomenon captured in them.

It is also essential, then, that the imaging process be faithful to the information contained in

the underlying data. This means not only retaining all the features corresponding to astro-

physical phenomena, but also ensuring that artefacts and fake ‘features’ are not introduced

into the image by the imaging process – this would compromise the scientific conclusions
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drawn from the observation.

The dependence on highly accurate imaging methods is only expected to get stronger as

more and more data are collected with next-generation interferometers. For instance, it is

widely expected that the SKA would, in fact, not deliver raw data to astronomers, instead

performing the imaging step at an early stage and directly providing high-fidelity images as the

final ‘product’. This would be done to address the issue of handling and storing the massive

amounts of data expected to be acquired by the array. As more advanced interferometers and

faster electronics enter regular use, the field of radio astronomy is expected to witness not

only significant scientific progress but also a plethora of computational challenges.

2.4.1 State of the art: CLEAN and friends

Radio-interferometric imaging got a big boost forward by the development of a simple but

effective imaging method called CLEAN . It was designed and proposed by Högbom [1974] to

recover point-like radio sources, and quickly became the definitive imaging method for all

science efforts in the field. CLEAN has been developed further by various contributions over

the years [Schwab, 1984, Bhatnagar and Cornwell, 2004, Cornwell, 2008], each extending its

use cases to handle more complicated data and imaging constraints, and to recover images of

sources with more varied and complicated structure.

At its core, CLEAN is a greedy algorithm. This algorithm assumes that the measured visibilities,

once filtered through an inverse Fourier transform, are the result of the convolution of the

underlying original image with the point spread function (PSF) of the interferometer, corrupted

by additive noise – this result is termed the ‘dirty image’ (and hence the term ‘CLEAN’ to obtain

the original image from this dirty image). Methods that aim to recover the underlying original

image from the dirty image by reversing the effects of the convolution of the PSF of the

receiving system are hence referred to as deconvolution methods – this is not limited to CLEAN

and its modified versions.

In its most basic form, CLEAN runs directly in the image plane as follows: it computes the ‘dirty

image’ and ‘dirty beam’ by applying the inverse Fourier transform on the measured visibilities

and uv coverage respectively, Then it identifies the pixel with maximum intensity in the dirty

image and subtracts a scaled version of the PSF of the interferometer centred at that pixel.

It notes the position of the pixel and intensity value of the removed component by adding a

scaled discrete delta function in a ‘model’ – this model eventually results in the cleaned image

in the end. CLEAN thus successively removes peaks from the dirty image until no significant

structure remains. The resulting leftover image is called the ‘residual image’. The model at

this stage contains many discrete delta functions at locations where CLEAN claims to have

detected point-like sources. The delta functions in the model are convolved with the ‘CLEAN ’

beam – a version of the PSF without any sidelobes. This is usually a Gaussian-like function.

Finally, CLEAN adds the residual image to the convolved model, resulting in the final output,

the so-called ‘restored image’.
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Seen through the lens of our matrix formulation of the various components of the mea-

surement model, CLEAN attempts a non-linear deconvolution by iteratively performing the

following steps: (i) predicting ‘model’ visibilities (Φx), computing ‘residual’ visibilities by sub-

tracting model from measured visibilities (y −Φx) and gridding them onto a discrete Fourier

grid (G†(y −Φx)), (ii) forming the ‘dirty’ residual image by applying the inverse Fourier trans-

form on the gridded visibilities (Z
†
F

†
G†(y −Φx) =Φ†(y −Φx)), and eventually (iii) selecting

the peak of the residual image as a model component.

A notable assumption in Högbom-CLEAN is that the original image is a sum of isolated point

sources whose amplitudes are constant across the observing bandwidth. Compact emissions

can then be easily accounted for and subtracted from visibilities forming model components,

since the energy is assumed to be concentrated at the isolated point sources: this is an implicit

assumption of sparsity in the image domain.

Running CLEAN over an arbitrary but sufficiently high number of iterations usually results

in satisfactory image reconstruction. CLEAN depends on other arbitrary parameters as well,

to reach the desired solution, e.g., the factor by which PSF components are scaled before

being subtracted from the dirty image. The choice of parameters heavily affects the running

time and the effectiveness of Högbom-CLEAN, and many improvements have been proposed

to alleviate this. A significant change was proposed by Clark [1980], who introduced major

and minor cycles in the algorithm. Several minor cycles identify the PSF components to be

removed from the dirty image, by only using a small patch of the PSF, followed by a major cycle

in which the image is Fourier transformed to the uv plane where the actual subtraction with

the full PSF takes place. This speeds up the algorithm because the later step of convolution

in image space is replaced by a multiplication in Fourier space. Another popular variant,

Cotton-Schwab-CLEAN (CS-CLEAN), performs the major cycle subtractions directly on the

degridded, continuous visibilities, improving the final image quality by reducing aliasing

effects [Schwab, 1984].

Even though CLEAN was introduced more than forty years ago, it remains the standard image

reconstruction algorithm employed by radio astronomers today. Several other versions of

CLEAN have been developed, each with specific modifications to account for more complex

radio sources and more antenna-related effects or to extend the algorithm for more wide-band

imaging. A ‘multi-scale’ method (MS-CLEAN ) improves sparsity in a multi-scale decomposition,

thus leading to a better reconstruction of images that contain extended sources in addition

to point sources; though this performs better than Högbom-CLEAN, it is influenced by the

choice of the basis profiles and scales [Cornwell, 2008]. Yet another modified CLEAN version,

using ‘adaptive scale pixel’ decomposition, called ASP-CLEAN was developed to eliminate this

influence by adaptively choosing scales [Bhatnagar and Cornwell, 2004]. MS-CLEAN has also

been extended to wide-band imaging with the development of the MS-MFS-CLEAN (multi-scale

multi-frequency CLEAN) algorithm. Bhatnagar et al. [2013] provide a summary of different

developments in CLEAN-based deconvolution algorithms.

21



Chapter 2. Radio-interferometric imaging

Most radio interferometers operating today use a CLEAN variant in their data processing

pipeline. For example, the NRAO-run VLA uses CS-CLEAN and MS-CLEAN to produce images

through their in-house software framework called CASA (Common Astronomy Software).

Similiarly, the Low Frequency Array (LOFAR), run by the Netherlands Institute for Radio

Astronomy (ASTRON), develops and uses the ‘AWimager’ which implements CLEAN with

modifications and preprocessing for LOFAR-specific data. The major issues with the continued

use of CLEAN, however, are that (i) it requires manual oversight for the different tunable

parameters as well as defining patches in the image domain to guide the algorithm, (ii) it is

unlikely to scale well to the big data regime for next-generation telescopes, and (iii) there

are no guarantees on the stability of CLEAN as an algorithm, meaning that it may or may not

converge to a meaningful solution – although it most often does provide a reasonable solution

after an arbitrary but sufficiently high number of iterations.

In a bid to provide more robust, automated and reproducible deconvolution, several novel

techniques have been proposed lately that claim to have image reconstruction performance

similar to or better than that achieved by the classical CLEAN-based algorithms [Wiaux et al.,

2009a, Li et al., 2011, Carrillo et al., 2012, 2014, Garsden et al., 2015, Dabbech et al., 2015,

Ferrari et al., 2015, Onose et al., 2016]. The main draw of these new imaging methods is that

they require little manual intervention and examination, and many of them provide proof

of convergence, thus guaranteeing that a stable solution would be reached at the end of

the deconvolution process. Additionally, they employ convex optimization algorithms that

can potentially be implemented in a parallelizable fashion, thus rendering these imaging

methods scalable to big data levels. The common thread across these newly proposed imaging

methods is the notion of a sparse representation of the underlying signal, and the iterative

reconstruction algorithms to exploit this sparsity. A discussion of these imaging methods

would, therefore, benefit from a segue at this point into an overview of the concepts of sparsity

and reconstruction algorithms, in particular, in light of a recent theory on acquiring and

reconstructing such sparse signals – compressed sensing.
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3 Compressed sensing and convex opti-
mization

3.1 Compressed sensing

Compressed sensing (CS) theory has been developed under the assumption that many nat-

urally occurring signals are sparse (or more generally, compressible) in some basis [Candès

et al., 2006b, Donoho, 2006a]. Traditional sampling and data acquisition techniques use the

Nyquist-Shannon theorem that requires the sampling rate to be at least twice the maximum

frequency present in the signal. With the assumption of sparsity of the signal, CS theory claims

that a very small number of measurements are enough for accurate reconstruction, condition

to restrictions on how the measurements are taken. ‘Accurate’ reconstruction is taken to be

equivalent to having an arbitrarily small probability for not fully recovering the signal [Candès

and Wakin, 2008]. CS theory offers both acquisition and reconstruction techniques for such

signals.

Data acquired by large radio interferometric arrays are typically many times larger than the

size of any image one would reconstruct from the data, so radio interferometric imaging does

not directly fall under the regime of CS theory. However, dimensionality reduction methods

applied on acquired data can lead to low-sized data. Additionally, the signals underlying the

data captured by radio interferometers can be naturally sparse in different bases, e.g. in the

spatial domain, due to having discrete point sources in the sky, or in wavelet bases, among

others. The measurement of these signals in a noisy environment can then be put in the

familiar framework of CS by defining the inverse problem as given by equation (2.8), thus

paving the way for CS-based reconstruction methods. Signal recovery in the CS framework can

be achieved by solving global minimization problems, making use of the sparsity assumption

as a regularizer in convex optimization algorithms.

Parts of this chapter have been published by Carrillo et al. [2015].
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3.1.1 Theoretical background

We start by defining the concept of sparsity. A vector α ∈ Cd is k-sparse if it has at most k

non-zero elements. α is compressible if the remaining d −k entries of α are non-zero but

negligible entries. A signal x ∈ CN has a k-sparse representation if there exists a basis (or

dictionary) Ψ ∈CN×d so that x =Ψα, where α is k-sparse.

In the following sections, we shall also be using the concept of the ‘�p -norm’, denoted by ‖ · ‖p .

The �p -norm, for 1 ≤ p <∞, of a vector v ∈CN is defined as

‖v‖p =
(

N∑
i=1

|vi|p
)1/p

for p ∈ [1,∞), (3.1)

where vi are the elements of v . The �p -norms we shall be using in this thesis are –

the �1-norm, also known as the taxicab norm – the sum of the magnitudes of vi, and

the �2-norm, also known as the Euclidean norm – the ‘usual’ distance of v from the origin.

The sparsity of a vector can be expressed through a pseudo-norm, akin to the �p -norms. The

�0-‘norm’ of the vector v , given by ‖v‖0, is simply the total number of its non-zero elements,

vi �= 0. The quotation marks around the word ‘norm’ indicate that ‖ · ‖0 is, in fact, not a true

�p -norm (e.g., ‖av‖0 �= |a|‖v‖0 for a scalar a). We simply abuse the notation here for simplicity

because lim
p→0

‖v‖p
p = ‖v‖0. So, a k-sparse vector v can be equivalently expressed as ‖v‖0 ≤ k.

Now, given a measurement matrix Φ ∈ CM×N that senses/samples the signal x ∈ CN to give

an M-dimensional measurement vector y ∈ CM (possibly affected by some additive noise

n ∈CM ), we probe the relevance of CS theory in the measurement model.

The theory of compressed sensing comes into play with this inverse problem in two ways.

Firstly, it proposes the surprising possibility that, for this particular class of k-sparse sig-

nals, the Nyquist-Shannon sampling rate need not be reached in order to ensure accurate

reconstruction of the signal. Secondly, it proposes techniques to perform this accurate signal

reconstruction.

The first claim of needing far fewer measurements than that dictated by the Nyquist-Shannon

sampling theorem implies that a value of M 
 N is a sufficient number of non-adaptive,

linear measurements [Candès et al., 2006b, Donoho, 2006a, Candès and Romberg, 2007, Tropp

et al., 2010]. The fact that fewer measurements than unknowns are available defines the

ill-posed nature of the inverse problem. It is clear that infinitely many solutions exist for the

underdetermined linear system underlying the ill-posed inverse problem. CS theory urges

the use of the sparsity of the signal representation to drastically limit the number of possible

solutions. Although in principle this could be strictly applied by forcing solutions (given by α̂)

that satisfy ‖α‖0 ≤ k, it is more feasible to force the condition min
α∈CN

‖α‖0, since the exact value
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of k is rarely known beforehand. Applying these restrictions, we could then solve the inverse

problem by finding a vector α̂ that satisfies the following �0-minimization problem:

min
α∈CN

‖α‖0 subject to y =ΦΨα. (3.2)

This minimization problem, however, is NP-complete [Mallat and Zhang, 1993, Natarajan,

1995], and therefore computationally very demanding. One way to get around this is to use

greedy algorithms to solve the problem. This family of algorithms includes matching pursuit

(MP) and its derivatives, like orthogonal matching pursuit (OMP, Tropp and Gilbert [2007]),

compressive sampling matching pursuit (CoSaMP, Needell and Tropp [2009]), preprojected

OMP [Flinth and Kutyniok, 2017], gradient pursuit [Blumensath and Davies, 2008a] etc. Alter-

native methods that have been proposed to find a solution for equation (3.2) include iterative

thresholding methods [Kingsbury, 2001, Herrity et al., 2006, Blumensath and Davies, 2008b]).

More general descriptions of iterative thresholding have been proposed by Figueiredo and

Nowak [2003], Figueiredo et al. [2007b] albeit not for the minimization problem as posed in

equation (3.2). Each of these methods has its own merits and demerits, either in terms of its

computational complexity, or its stability and convergence, or its robustness to perturbations

in measurements. We focus on a different approach to equation (3.2), as described in detail in

the next section.

3.1.2 �1-minimization

Another class of methods to handle the NP-completeness of �0-minimization is to use a

convex relaxation of the problem, replacing the �0-norm by the �1-norm. This results in an

�1-minimization problem (basis pursuit, BP) of the form min
α∈CN

‖α‖1 subject to y =ΦΨα. In the

presence of measurement noise, this becomes the basis pursuit denoising problem (BPDN),

given by

min
α∈CN

‖α‖1 subject to ‖y −ΦΨα‖2 ≤ ε, (3.3)

where ε > 0 is an upper bound on the �2-norm of the residual noise y −ΦΨα. The �1-

minimization form is a convex optimization problem, which is computationally feasible

and for which many standard algorithms exist [Daubechies et al., 2004, Combettes and Pes-

quet, 2007, Figueiredo et al., 2007b, Candès et al., 2008, Beck and Teboulle, 2009]. We limit

ourselves to �1-minimization methods in further discussions in this thesis. The only caveat

here is that the solution to the �1-minimization problem may not necessarily be the solution

one would have obtained for the �0-minimization problem. We can, however, prove that

�1-minimization favours sparse solutions in general. Fig. 3.1 presents a visual intuition on why

this is the case. The unique solution to the �1-minimization problem can be seen to coincide

with the sparsest solution in that space. Fornasier and Rauhut [2011] provide a more thorough

mathematical treatment of this conjecture, with proofs. In this section we briefly analyze the

utility of �1-minimization as a viable method to recover the sparsest solution, given the CS

context for signal recovery.
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Figure 3.1 – �1-minimization favours the sparsest solution within the affine space of the
solutions of y =Φx , as shown here for R2. Note that the �1- and �2-balls shown here are the
smallest such balls that meet the affine space of the solutions, and the �2-minimizer can be
seen to reach a non-sparse solution.

3.1.3 Mutual incoherence

Along with the requirement that the signal x have a sparse representation to be able to

be recovered accurately through �1-minimization, CS theory relies on another relationship

between the measurement matrix Φ and the sparsity basis Ψ, named mutual incoherence.

Coherence between Φ and Ψ is defined as follows:

μ(Φ,Ψ) =
�

N max
1≤i , j≤N

|〈Φi ,Ψ j 〉|, (3.4)

where 〈·, ·〉 denotes the inner product. The mutual coherence essentially measures the cor-

relation between the measurement vectors and the sparsity basis vectors in Φ and Ψ (i.e.,

Φi are rows of Φ and Ψ j are columns of Ψ). It ranges from a value μ = 1 for incoherent Φ

and Ψ, to μ = �
N for maximally correlated Φ and Ψ. Incoherence brings to light the idea

that signals that have a sparse representation in Ψ must be ‘spread out’ in the measurement

domain. This means that, contrary to the signal x itself, the sensing waveforms would ideally

have a dense representation in Ψ. An example can be the case where the signal is completely

spread out in the time domain, but represented as a spike in the frequency domain. High

mutual incoherence is necessary for CS theory because it implies that it is possible to exactly

recover the underlying signal with overwhelming probability [Candès et al., 2006a, Candès

and Romberg, 2007], provided a minimum number of random measurements are taken. This

26



3.1. Compressed sensing

minimum number depends on the characteristics of the measurement matrix Φ. For instance,

for uniformly random measurements, it suffices to take M ≥ Cμ2(Φ,Ψ)K log(N ) measure-

ments (for some positive constant C ) to be able to recover the signal x ∈CN with a K -sparse

representation. The noteworthy feature here is that the measurements needed to accurately

recover the signal are random and non-adaptive, i.e., we need no prior information on the

structure of the sparsity. Although it seems surprising at first glance, this follows from the mu-

tual incoherence between Φ and Ψ, which ensures that relevant information about the signal

is spread out, which means that any M measurements would suffice. This set of randomly

chosen M measurements will lead to no information loss, and in fact, the higher the mutual

incoherence μ(Φ,Ψ), the fewer the samples needed to guarantee accurate signal recovery.

This seeming indifference to the number of measurements can be hardened to also include

robustness to small perturbations in the measurements, but this adds additional requirements

on the measurement matrix Φ, which shall be briefly touched on in the following section.

3.1.4 The NSP and RIP

As mentioned at the beginning of section 3.1, the guarantees of accurate reconstruction

provided by CS theory are condition to properties of (i) the signal to be reconstructed, and

(ii) the sensing matrix used to probe the signal. As part of the second set of requirements, we

discuss two properties of the sensing/measurement operator Φ, viz., the Null Space Property

(NSP) and the Restricted Isometry Property (RIP). These properties, if satisfied by Φ, guarantee

stable recovery of the signal x from the measurements y [Candès et al., 2006a].

The NSP is essential to guarantee exact signal recovery through �1-minimization; Φ satisfies

the NSP of order k with constant γ ∈ (0,1) if

‖ηT ‖1 ≤ γ‖ηT c‖1 (3.5)

for all sets T ⊂ {1, . . . , N }, |T | ≤ k and for all η ∈ Null(Φ). Here ηT is obtained by setting entries

of η to zero for indices which are not in T . T c is the complement of T . Put differently, the

NSP means that no k-sparse signals are contained in the null space of the operator Φ. It can

then be shown that for a k-sparse signal x the reconstruction achieved using �1-minimization

is exact, and for a more general x , the reconstruction error is bounded (Theorem 1 and its

proof by Fornasier and Rauhut [2011, pp. 199]). Conversely, if �1-minimization can recover

all k-sparse solutions, then Φ can be shown to necessarily satisfy the NSP of order k [Cohen

et al., 2009]. This shows the equivalence of the NSP and recovering sparse signals through

�1-minimization.

The RIP, on the other hand, provides guarantees in the more general case – it characterizes

stable signal recovery in the presence of noise, and ensures that two different k-sparse signals

remain well separated even after the application of the measurement operator. Φ satisfies the
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RIP of order k with constant δ ∈ (0,1) if

(1−δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1+δ)‖x‖2
2 (3.6)

for all k-sparse signals x . The RIP is a stronger condition than the NSP, and in fact implies the

NSP (Lemma 2 and its proof by Fornasier and Rauhut [2011, pp. 200]).

In our case with the requirement for the measurement operator to satisfy the RIP of order

2k, it is worth noting that an operator Φ satisfying the RIP of order 2k is in fact the Johnson-

Lindenstrauss embedding1 for the case where x would be the difference between two k-

sparse signals [Krahmer and Ward, 2011]. The fact that the RIP also implies robustness to

measurement noise has been proven [Candès et al., 2006a], and bounds on the reconstruction

error have also been deduced [Foucart and Rauhut, 2013]. These results have also been

extended beyond exactly sparse signals to include noisy measurements of compressible

signals [Candès et al., 2006b].

While it is difficult to verify using deterministic methods whether a given matrix satisfies

the RIP [Rauhut, 2011, Bandeira et al., 2013], the major results in CS theory were proven

using random matrices [Candès et al., 2006a,b]. Gaussian and Bernoulli random matrices

satisfy the RIP with very high probability, provided a minimum number of measurements,

M ≥ C K log(N /K ), are taken [Fornasier and Rauhut, 2011]. This shows that the minimum

required measurements are linear in the sparsity K (up to a log factor), which has been proven

to be optimal [Donoho, 2006b]. However, these completely random matrices are, as shown

later in section 4.4.2, computationally inefficient. Some structured random matrices, like

partial Fourier matrices, satisfy the RIP while remaining computationally feasible; preliminary

studies on using random matrices are also presented in section 4.4.2.

3.1.5 Analysis-based problem

Now, given that our linear measurement operator Φ satisfies the NSP – or the RIP – we can

recover the signal x with the following non-linear reconstruction method: Limiting ourselves

to only sparse representations of the signal x in Ψ, while maintaining reasonable fidelity with

the measurement vector y , the solution to the inverse problem in equation (2.8) can be found

by solving the so-called ‘synthesis-based’ problem given by

min
α∈CN

‖α‖1 subject to ‖y −ΦΨα‖2 ≤ ε. (3.7)

The problem formulation here is identical to the BPDN formulation of equation (3.3). The

signal x̂ can then be ‘synthesized’ from the solution α̂ of equation (3.7) through applying

x̂ =Ψα̂.

Alternatively, the signal x̂ can be directly recovered by solving the ‘analysis-based’ prob-

1The Johnson-Lindenstrauss embedding is described in more detail in section 4.3.2.
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lem [Elad et al., 2007] given by

min
x∈CN

‖Ψ†x‖1 subject to ‖y −Φx‖2 ≤ ε. (3.8)

We shall be using the analysis-based problem definition from here on, especially when refer-

ring to radio-interferometric imaging algorithms in the coming sections. Using equation (3.8)

as the starting point has other advantages as well, e.g., when redundant dictionaries are used

for the bases, the dimension of the problem does not increase as we solve for x and not α.

The synthesis-based formulation has been used extensively with redundant dictionaries in

the recent past, particularly in the image processing literature [Elad, 2010, Elad et al., 2010,

Bruckstein et al., 2009]. In addition to the aforementioned advantage regarding dictionary

sizes, analysis-based problems can more generally also exploit the idea of ‘cosparsity’ as

a generative model [Nam et al., 2013, Giryes et al., 2014] and modifications in CS theory

proposing an extended version of RIP called ‘Dictionary-RIP’ to enable the use of redundant

dictionaries [Candès et al., 2011]. Convex optimization algorithms have been used successfully

in solving problems such as equation (3.8) [Elad et al., 2010, Carrillo et al., 2014, Onose et al.,

2016].

In equations (3.7) and (3.8), ε> 0 is the allowed tolerance on the disparity between the actual

measurements and those generated by a guess at the underlying signal x . In the general

case this tolerance is actually a negative log-likelihood term given by n†Cn
−1n, where Cn

is the covariance matrix of the noise n. Under the assumption that n has independent,

identically distributed (i.i.d.) Gaussian random elements, this log-likelihood term simplifies

to ‖n‖2
2/σ2

n . For reasonably high degrees of freedom – corresponding, in this setting, to

high dimensional noise vectors – a χ2 distribution exhibits concentration of measure, thus

providing a sharp upper bound that is directly computable from the mean. In our simulations

for image reconstruction we compute this upper bound as two standard deviations beyond the

mean, which includes a large percentile of the distribution. If the assumption of i.i.d. Gaussian

entries of the noise fails to hold true, then determining ε is not a direct analytical computation

since the noise energy no longer follows a χ2 distribution. Note that transforming visibilities

to have i.i.d. Gaussian noise statistics is a typical effect of the so-called ‘natural’ weighting

procedure that is commonly performed in state-of-the-art radio-interferometric imaging

CLEAN-based approaches.

3.2 Convex optimization

Convex optimization (or convex minimization) deals with convex functions and constraints,

and forms a class of computationally efficient, mathematically sound algorithms that are

well-suited to solve convex problems. One major advantage of convex optimization problems

is that any local minimum found by an algorithm must necessarily be a global minimum

for the problem space. This follows from the definition of convexity of the functions and of

the sets over which the functions are minimized. Algorithms to solve simple convex opti-
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mization problems have been designed since as early as the 1950s, and are, by now, a very

familiar component in any numerical solver or toolkit. Examples include the class of sub-

gradient methods [Shor and Zhurbenko, 1971, Lemaréchal et al., 1995] and interior-point

methods [Karmarkar, 1984, Nesterov and Nemirovskii, 1994]. Here we briefly discuss another

class of methods that are suitable for convex optimization in more complex cases, containing

several concurrent conditions. These methods work by splitting the whole problem into

simpler individual convex sub-problems, and are aptly named proximal splitting methods.

3.2.1 Proximal splitting methods

Proximal splitting methods solve optimization problems of the (unconstrained) form

min
x∈RN

f1(x)+ f2(x)+ ...+ fn(x), (3.9)

where each fi (x) : RN → (−∞,∞) is a proper lower semi-continuous convex function. The

constrained formulation of the problem can be re-expressed in an unconstrained form by

introducing indicator functions. The indicator function χC of a convex constraint set C is a

proper lower semi-continuous function defined as

χC (x) =
{

0 : x ∈C ,

+∞ : x ∉C .
(3.10)

The re-expressed unconstrained formulation then simply uses fi (x) =χCi (x) for some convex

constraint set Ci .

Proximal splitting aims to process the whole minimization problem by handling different

functions fi (x) individually, which can then be minimized separately. Each fi (x) is dealt with

in the algorithm through its ‘proximity’ operator prox fi
(x), defined as

prox fi
(x) = argmin

z∈RN

fi (z)+ 1

2
‖x − z‖2

2. (3.11)

This simplifies to a projection operator on Ci in the case fi (x) =χCi (x). Indeed, the proximity

operator can be seen as a general extension of the usual projection operator. Thus, the inverse

problem noted in the forward model presented in equation (2.8) and reformulated as the

analysis-based problem in equation (3.8) can then be solved with proximal splitting methods,

using the indicator function of the convex constraint set as one of the functions fi (x).

Proximal splitting methods have been very successful in convex optimization due to their

readily parallelizable structure and their handling of complex problems by splitting them into

smaller, easier functions. Many of the most commonly used algorithms in convex optimization

today – forward-backward, Douglas-Rachford, iterative thresholding, etc. – can be shown to

be special cases derived from proximal algorithms. A detailed treatment of proximal splitting

methods can be found in the comprehensive overview by Combettes and Pesquet [2011].
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3.3. Relevant radio-interferometric imaging methods

3.3 Relevant radio-interferometric imaging methods

Thanks to the prevalence of computationally feasible algorithms to solve the inverse problem

in equation (3.8) through convex optimization methods, we are now at a point where recover-

ing an underlying image from given measurements corresponding to an incomplete coverage

of the Fourier plane is not only possible but reasonably robust. As mentioned in section 2.4.1,

many sparse recovery methods have been proposed in recent years for radio-interferometric

imaging. In this thesis, we shall limit ourselves to two methods in particular, namely the

alternating direction method of multipliers (ADMM, Boyd [2010], Yang and Zhang [2011]), and

the primal-dual forward-backward (PDFB, Onose et al. [2016]) method. ADMM and PDFB are

coupled with the ‘sparsity averaging re-weighted analysis’ algorithm (SARA), first proposed

by Carrillo et al. [2012] and further developed in subsequent work [Carrillo et al., 2013, 2014].

SARA proposes to use, as a regularizer in the optimization problem, the assumption of average

signal sparsity over representations in multiple wavelet bases instead of just one basis (as is

the case in the other sparse recovery algorithms in radio interferometry). It has been shown to

outperform other existing reconstruction algorithms – a comparison for the case of discrete

visibilities was performed by Carrillo et al. [2012]. SARA uses average sparsity as a structured

sparsity prior for compressed sensing to deal with recovery of the signal, and stems partially

from work that was originally published by Wiaux et al. [2009a,b] and McEwen and Wiaux

[2011]; relevant work was also published by Wenger et al. [2010] and Hardy [2013].

3.3.1 The SARA algorithm

SARA is motivated by the fact that radio astronomical images often contain complex structures,

ranging from multiple point sources or compact smooth structures, all the way to large

extended sources covering significant portions of the image. It can be seen that these different

image features are sparse in different domains, for instance in the image domain, in the

gradient magnitude, and in certain wavelet bases. The concurrence of these features in a given

image leads Carrillo et al. [2012] to claim that promoting a simultaneous, average sparsity over

different bases would lead to a better-modelled optimization problem, and consequently, a

more accurate recovery of the underlying image. To this effect, different orthonormal bases Ψi

are concatenated to form a dictionary Ψ= 1�
q [Ψ1,Ψ2, ...,Ψq ] ∈RN×D , where D = qN . The Ψi s

chosen for radio astronomical images contains nine different orthonormal bases: the Dirac

basis and the first eight Daubechies wavelet bases. We note here that images can obviously

not be sparse in multiple bases simultaneously, unless the bases are completely coherent (this

has already been illustrated in section 3.1.3). The way to promote sparsity of different features

in different bases in the same image is through a compromise – by computing the average

sparsity over these bases and favouring representations that reach a high average value, which

often implies a reasonable degree of sparsity in each basis Ψi . The assumption is that for a

given pair of bases, the average sparsity of a signal is expected to be above some lower bound,

and that the SARA prior will promote solutions that satisfy/exceed such lower bounds for all

such pairs of bases.
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Re-weighted analysis in SARA refers back to the analysis-based problem formulation given

in equation (3.8). The �1-norm substituting for a sparsity prior, ‖Ψ†x‖1, is modified to form

a weighted �1 term ‖WΨ†x‖1. The weights given by the diagonal matrix W ∈ RD×D are the

reciprocal values of the elements of x̂ (with minor adjustments to ensure stability for divide-by-

zero errors). In iterative recovery algorithms, the weights are updated after a pre-defined, fixed

number of iterations of the recovery algorithm, using the current guess of the solution. We can

see that applying weights in this manner enables the re-weighted �1-norm to approximate the

�0-‘norm’ more closely, making this a more appropriate sparsity prior. Indeed this was the

motivation behind re-weighted �1-minimization as a potential recovery algorithm as proposed

by Candès et al. [2008]. The SARA algorithm takes a similar approach, and solves a sequence

of weighted �1-minimization problems to arrive at the final solution. The weights used in a

given minimization problem are computed from the solution of the preceding problem. Both

SARA and the reweighted �1-minimization by Candès et al. [2008] are iteratively reweighted

algorithms that can be seen in the light of the general framework of Majorization-Minimization

(MM) methods [Hunter and Lange, 2004]. An unconstrained formulation of the analysis-based

problem has also been treated by Figueiredo et al. [2007a] using the MM framework, and the

reweighting method from SARA can be shown to be equivalent to applying their MM algorithm

using a nonconvex �p -‘norm’ regularizer with 0 < p < 1. SARA also employs an additional

constraint on the underlying image, that it contain only non-negative real values. This follows

from the observation that the image represents an intensity distribution.

Image reconstruction from simulated discrete visibilities using SARA was reported to provide

better results than several other sparse recovery algorithms [Carrillo et al., 2012]. This was

further developed by Carrillo et al. [2014] to use simulated continuous visibilities; SARA in

combination with proximal splitting methods, notably the simultaneous direction method

of multipliers (SDMM, Setzer et al. [2010])2 was then proposed as a general algorithm for

radio-interferometric imaging, and was released as part of a software package called PURIFY .

3.3.2 ADMM and PDFB

We focus here on solving the inverse problem presented in equation (2.8) through the analysis-

based formulation as in equation (3.8), using the sparsity prior as described in section 3.3.1 but

without re-weighting. We also employ the additional constraint that the image contain only

non-negative real values, as with SARA. Employing the proximal splitting method described

in section 3.2.1 is very apt here, as it renders the optimization problem tractable, with easily

solvable subproblems. The full minimization can thus be written as a sum of functions in the

form of equation (3.9), giving

min
x

f1(x)+ f2(Ψ†x)+ f3(Φx), (3.12)

2Afonso et al. [2010] independently proposed an equivalent algorithm, named ‘split augmented Lagrangian
shrinkage algorithm’ (SALSA), developed further to solve constrained problem formulations (C-SALSA, Afonso et al.
[2011]), both based on ADMM.
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3.3. Relevant radio-interferometric imaging methods

where the constraints appear here through their indicator functions. So, the applied con-

straints are in the following form:

f1(v ) =χC1 (v ), C1 =RN
+ , (real and non-negative)

f2(v ) = ‖v‖1, (sparse in Ψ)

f3(v ) =χC3 (v ), C3 = v ∈CM : ‖y −v‖2 ≤ ε. (data fidelity) (3.13)

where v can be a vector in image, sparsity, or data space depending on the fi in question.

In addition to SDMM that we use for preliminary tests and simulations on small-scale data,

the two methods that we employ to solve this minimization problem are based on algorithms

proposed by Carrillo et al. [2015] and Onose et al. [2016]. The first method is a proximal linear

version of ADMM. It is applied to solve equation (3.12) by using a function g = f1 + f2 to get

around the ADMM limitation of using two functions only. One advantage of using ADMM over

the previously mentioned SDMM is that it avoids solving a linear system at each iteration

of the algorithm, potentially saving expensive computations. ADMM can be implemented

with a parallel structure, thus enabling scalability for big data. A detailed description of the

proximal linear ADMM algorithm, along with image reconstruction results on simulated and

real telescope data were presented by Carrillo et al. [2015], Onose et al. [2016].

The second method, proposed by Onose et al. [2016], is the ‘primal-dual forward-backward’

(PDFB) method. Primal-dual methods concurrently solve the original optimization problem at

hand – the primal form – and an alternative, dual formulation of the same problem [Komodakis

and Pesquet, 2015]. This brings many computational advantages, since full proximal splitting

can be achieved (without resorting to bunching up functions together to achieve a partial

splitting of the original problem as is the case with ADMM). PDFB continues with the fully

split optimization problem with a forward-backward structure. The advantage of PDFB is the

readily parallelizable algorithm structure, and the potential to extend it by using different

subiterative schemes, e.g. stochastic gradients in the forward step, and the backward step

using a proximity operator which approximates a projection. Implementation details and

convergence proofs of PDFB are presented by Onose et al. [2016], along with its application to

radio-interferometric imaging.

Several other methods have been proposed for radio-interferometric imaging in recent years,

covering a wide variety of algorithmic and theoretical contributions that we shall not be

discussing in detail here, like the undecimated multiscale method by Starck et al. [2007], Li

et al. [2011], the distributed data transfer-based method by Ferrari et al. [2014], the Bayesian

interference-based multi-frequency synthesis method of RESOLVE [Junklewitz et al., 2015], and

the analysis-by-synthesis greedy algorithm of MORESANE [Dabbech et al., 2015].
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3.3.3 CLEAN revisited

The inner working of CLEAN can now be seen through the perspective of convex optimization.

In essence, CLEAN follows a ‘matching pursuit’ approach [Mallat and Zhang, 1993, Lannes

et al., 1997]. The deconvolution process is non-linear, iteratively reconstructing the image

one pixel at a time. Sparsity in the image domain is automatically promoted by CLEAN due to

this pixelwise reconstruction and the underlying assumption of the sky being composed of a

finite number of point sources. Alternatively, a gradient descent method can also explain the

inner workings of CLEAN. The norm of residual visibilities (‖y −Φx‖2) is minimized through a

gradient descent regularized by an implicit sparsity prior on the recovered image.3

Flipping the interpretation around in the context of the proximal splitting-based convex

optimization algorithms that we use in this work, ADMM and PDFB can be grossly seen as

‘meta-CLEAN’ image recovery methods, which run CLEAN-like iterations – in parallel – in

multiple data, image, and sparsity spaces. These similar workings in multiple spaces can be

seen in particular for PDFB, where we can identify specific portions of the algorithm which

have clear correspondence with CLEAN subroutines described in section 2.4.1. A CLEAN

major cycle, for instance, performs the same operations as the forward gradient step in PDFB

which nudges the solution in the opposite direction of the gradient of the residual norm

in data space. Similarly, the CLEAN minor cycles use a ‘loop gain’ to scale PSFs and choose

significant components, whereas PDFB employs soft-thresholding in its proximal step to

remove insignificant components across the image. Finally, the implicit sparsity constraint in

CLEAN that is realized by placing delta functions in the model is introduced as an explicit prior

in the minimization problem for PDFB. Onose et al. [2016] provide a thorough treatment of

this idea, along with a more nuanced analogy of PDFB with CLEAN.

3This can also be seen as minimizing the residual norm using the Landweber algorithm [Landweber, 1951].
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4 Big data and dimensionality reduc-
tion

The term ‘big data’ has entrenched itself into the everyday vocabulary of scientists, engineers,

statisticians, policy planners, and most data professionals around the world today. It refers

to very large, complex data sets that defy traditional data processing techniques, thereby

necessitating new and innovative methods to perform analysis and information retrieval on

the data. This is succinctly defined in the so-called ‘3Vs’ model, which defines big data as

high-volume, high-velocity and high-variety information that requires specific technology and

methods for analysis [De Mauro et al., 2016]. Big data has triggered a flurry of development in

a wide variety of fields, from HPC services, storage and data handling to analytics, machine

learning, and general purpose computing paradigms. These developments have touched a

spectrum of research areas, including traditional computer science, but also physics, genomics,

economics, healthcare, environmental science, and a host of other unrelated areas.

4.1 Motivation

Many massive scientific endeavours are underway in today’s big data era. In the field of

particle physics, the largest particle accelerator in the world, the LHC (Large Hadron Collider),

operated by CERN (the European organization for nuclear research), handles a staggering

30 petabytes of data annually, after discarding more than 99.9% of the collision events occur-

ring in the LHC [Brumfiel, 2011]. Other fields have also seen sharp spikes in the scale of data

being analyzed, like the complete documentation of the human genome with the genome

project [Hood and Galas, 2003], and more recently, the human brain project; Radio interfer-

ometry is also experiencing a change of scale, especially in the context of next-generation

telescopes like the VLA and the upcoming SKA. As mentioned in chapter 1, the SKA is expected

to collect data at an extremely high rate of 5 terabits per second [Broekema et al., 2015]. In

radio interferometry, the main motivation for collecting such large amounts of data is to

achieve higher sensitivity, i.e., to be able to detect faint radio sources which may otherwise be

overwhelmed in noisy measurements. This is why radio interferometers typically acquire data

Parts of this chapter have been published by Kartik et al. [2015] and Carrillo et al. [2015].
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Figure 4.1 – The SNR and reconstruction time evolution of a modified version of ADMM for
increasing data sizes using simulated data with 40 dB SNR. The x and y axes are in log10 scale.
This modified ADMM algorithm [Carrillo et al., 2015] can be seen to scale well with data size.

of size hundreds of times larger than the desired image size.

We see a clear trend of large amounts of data playing a crucial role in achieving scientific

goals, but this is also tightly coupled with reduction methods to intelligently select small

portions of these data in order to realistically be able to store, study and process them. In radio

interferometry, in addition to the limitations on the handling of large data, the motivation

to devise dimensionality reduction methods comes from the observation that increasing

data sizes leads to a disproportionately large increase in running times for many image

reconstruction methods. In Fig. 4.1 we see the effects of increasing data size on both the image

reconstruction quality and the running time of the ADMM algorithm. Starting from simulated

data (with low noise levels), we reconstructed images using a non-parallelized version of

ADMM. The results shown here were obtained from reconstructing images using data of

varying sizes, ranging from 10% of the image size to 10 times the image size. On increasing the

data size, we see a general increase in the quality of the corresponding reconstructed images.

This is expected, as more data allows the reconstruction algorithm to capture better detail

of the features in the underlying image. An interesting observation, however, is the effect of

increasing data size on the algorithm running time. The time taken for image reconstruction

increases with data size, which implies that indefinitely making more data available – while

attractive as an option to gather more information – may not be feasible since it entails a huge

cost in recovering this information. This cost may either be mitigated through more scalable

image reconstruction algorithms [Carrillo et al., 2015, Onose et al., 2016, 2017] or through

dimensionality reduction methods.

4.2 Handling big data

With the advent of the big data era, much effort has been put into research techniques to

deliver us from the curse of dimensionality by reducing data size without losing information.
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In general, these data handling techniques can be divided in two groups:

• Feature selection: re-representing the original data by a smaller set of ‘features’ or global

characteristic vectors.

• Dimensionality reduction: recombining the original data set to exploit any redundancy

present, and forming a new, smaller set of variables that contain the same information

as the original data.

Dimensionality reduction has been a topic of study for a long time in different disciplines

like statistics, bioinformatics, and meteorology, which deal with large number of samples

over long time periods. In fact, the classical principle component analysis (PCA, also known

as the Karhunen-Loève transform) used for data reduction dates back to 1901, developed

by statisticians to handle large time series data [Pearson, 1901]. PCA can be understood as

finding a set of new basis vectors for the original data so that they can be re-represented in

this basis using much fewer data dimensions, while only incurring a very low error. In a mean-

square error sense, PCA is the optimal linear dimensionality reduction method. However,

though it is based on the sound assumption of maximizing the retention of the variance of the

original data, the technique involves intensive computations involving covariance matrices

of the same size as the data, and are therefore not suitable in today’s big data regime with

data sizes of the order of many million dimensions. There are several extensions to PCA

that have been developed over the years (kernel PCA [Schölkopf et al., 1998], probabilistic

PCA [Tipping and Bishop, 1999], etc.), but we have not studied these methods in the context of

radio-interferometric imaging as the data dimensions we aim to handle preclude any possible

extensive computational effort.

The computational challenge with radio-interferometric imaging is demonstrated in Fig. 4.2,

which illustrates two separate effects related to big data sizes and image reconstruction quality.

Overall, with increasing data size we see an increase in the time taken for an iterative image

reconstruction algorithm to converge to a solution – this increase is directly proportional

to the data size used for reconstruction (we use a non-parallelized version of SDMM for the

experiment here, in contrast to the case shown in Fig. 4.1). We performed image reconstruction

from sets of simulated data with varying noise levels and, interestingly, we notice that the

increase in the time taken for image reconstruction is much more drastic for data with very

low noise levels, as compared to noisier data. This implies that under a high-sensitivity,

high-accuracy regime, large data sets incur a more significant time penalty due to the more

stringent convergence criteria for iterative imaging algorithms. This effect of increasing image

reconstruction time was confirmed as part of preliminary studies for dimensionality reduction

techniques undertaken by Kartik et al. [2015].

Dimensionality reduction would play a critical role in such low-noise situations where collect-

ing more data is essential for science objectives, but where, at the same time, we would like to

avoid impractical image reconstruction due to the behaviour shown in Fig. 4.2. In section 4.4,
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Figure 4.2 – Time taken by an SDMM-based image reconstruction algorithm, shown here for
increasing data sizes on independent simulated data with different noise levels. The x and y
axes are in log10 scale.

we describe studies on different dimensionality reduction techniques that were undertaken in

the context of radio-interferometric imaging with big data.

4.3 Dimensionality reduction approaches

Data dimensionality reduction is a non-trivial problem because we need to balance a few

antagonistic qualities of the reduction process. On the one hand, we would like to preserve

all information available in the original full-sized data set. On the other hand, we would like

to minimize the number of data points, in order to have reasonable timeframes for image

reconstruction. Fewer data points also imply a lower computational load in terms of memory

and storage, which is one of the main goals of data dimensionality reduction. The challenge is

to find a good balance between these two opposing ‘requirements’, while staying competitive

in terms of implementation and application.

We have tried to devise several dimensionality reduction methods of varying complexity within

the context of radio-interferometric imaging. This was done partly to comprehensively cover

different approaches to this non-trivial problem and partly as sanity checks for the correctness

of the solutions that subsequent imaging algorithms would recover. In the following sections

of this chapter, we shall briefly describe several of these attempts, and place them in the more

general context of data reduction as used in a variety of computing and signal processing

tasks.
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4.3.1 Random projections and ‘sketching’

Projecting higher-dimensional data into a lower-dimensional subspace is a classical linear

reduction method. The popular PCA is essentially a projection into a lower-dimensional

subspace spanned by the new basis vectors we choose, as mentioned in section 4.2. Another

projection method, independent component analysis (ICA, Roberts and Everson [2001]), can

be seen as a more general version of PCA, replacing the PCA requirement of uncorrelated

data dimensions by independent dimensions. Fodor [2002] presents an overview of standard

dimensionality reduction techniques in statistics, signal processing and machine learning,

including PCA, ICA and other methods like factor analysis and projection pursuit. A common

thread in these standard reduction methods is that the projection is performed through

deterministic basis vectors, chosen on a case-by-case basis. While this type of projection

method works well, in principle, for the particular situation and a given fixed data set, it is

not well-suited for very large data dimensions due to computational limitations. Moreover,

finding a new set of basis vectors every time a different projection needs to be performed is

also computationally cumbersome.

Projections using random matrices, or ‘sketches’, address most of these issues and, surpris-

ingly, continue to guarantee high levels of information retention, at least in terms of signal

recovery errors. Random projection methods have been deployed very successfully to reduce

data dimensionality in a wide variety of cases, and their success is mainly owed to the ease of

construction of the projection matrices and the computational ease of applying the projec-

tion. Random projections were introduced by Kaski [1998] as a pre-processing step before a

clustering algorithm on text documents. It was proposed as a more suitable alternative to PCA

due to the ‘large’ data dimension (6000) that PCA could not handle.

Random projections use a matrix with column entries pulled from an independent and identi-

cally distributed (i.i.d.) random variable. The surprising observation that low-dimensional

data obtained after random projections are able to reasonably represent the underlying signal

can be explained as follows: If we denote the random projection matrix by Rp ∈CML×M , we

can see that it reduces the dimension of a data vector y ∈CM to a lower value ML through a

simple application Rp y . This reduced-dimensional data can be rewritten as
∑

i yiRpi , where

yi and Rpi are the i th element of y and i th column of R respectively. We can then see that

while the basis vectors of the original data y were obviously the orthonormal unit vectors of

CM , each of those unit dimensions are replaced in the reduced data by the columns of R. This

means that the closer to orthonormal the columns of R, the more similar the data vectors

before and after dimensionality reduction. As Rp contains random elements, if the original

dimension M is high enough, randomly choosing directions would result in vectors that are

reasonably close to being orthonormal, and therefore act as a basis (up to a good approxi-

mation). It is this combination of a high enough starting dimension coupled with random

projection that allows similarity between vectors to be preserved through a dimensionality

reduction. A more detailed description of this intuition, along with related mathematical

background, is presented by Kaski [1998]. This concept of preserving ‘similarities’ is central to
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other dimensionality reduction methods as well, and we shall revisit it in a more formal sense

in the following section as part of the discussion on the Johnson-Lindenstrauss lemma.

4.3.2 Johnson-Lindenstrauss embedding

Recent work in the literature drawing parallels between dimensionality reduction and com-

pressed sensing [Baraniuk et al., 2008, Krahmer and Ward, 2011] can be traced back to the

seminal work on the Johnson-Lindenstrauss (JL) lemma [Johnson and Lindenstrauss, 1984].

The JL lemma claims that we can find an embedding of any n points in high-dimensional

Euclidean space to a low-dimensional subspace with O (ε2 logn) dimensions. The JL lemma

has been widely used as a tool for dimensionality reduction in many fields, owing to its applica-

bility with most Gaussian or orthogonal random projections. It essentially provides conditions

that the distance, or degree of ‘similarity’, between two points that are in a high-dimensional

Euclidean space continues to be respected in the low-dimensional subspace under a JL embed-

ding. So, given points x1, x2, ..., xn ∈CN , the JL lemma states that an embedding e : CN →CML

exists that maps them to a lower-dimensional subspace such that

(1−ε)‖x i −x j‖2
2 ≤ ‖e(x i )−e(x j )‖2

2 ≤ (1+ε)‖x i −x j‖2
2. (4.1)

Considering the set of differences D = x i −x j and a linear embedding e that is equivalent to

applying a matrix E ∈CML×N , equation (4.1) can be re-expressed as

(1−ε)‖d‖2
2 ≤ ‖Ed‖2

2 ≤ (1+ε)‖d‖2
2 ∀d ∈ D. (4.2)

We cannot help but note the similarity between the formulation of the JL lemma as given

here in equation (4.2) and the definition of the RIP in equation (3.6). Indeed, it has been

shown that matrices satisfying equation (4.2) also satisfy the RIP (of the appropriate order).

Baraniuk et al. [2008] provide a proof of this equivalence for random matrices. These results,

therefore, indicate that the JL lemma implies the RIP. The connection between the JL lemma

and compressed sensing is established through this equivalence, and provides a perspective

for dimensionality reduction methods that would satisfy the CS theory requirements.

4.4 Dimensionality reduction of radio-interferometric data

The convex optimization algorithms mentioned in section 3.2 that are employed for radio-

interferometric imaging amount to a non-linear iterative reconstruction involving repeated

application of the measurement basis Φ, the sparsity basis Ψ, and their adjoint operators

(Yang and Zhang [2011], Carrillo et al. [2014] provide more detailed overviews of these algo-

rithms). This means that the recovery methods that lead to a solution of equation (3.8) heavily

rely on fast implementations of Φ and Ψ. In the context of our imaging techniques for the

analysis-based approach with a predefined concatenation of bases Ψ whose dimensional-
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ity is proportional to the image size, we can see that as the data size increases, so does the

memory and computing requirement to manipulate and perform operations with Φ, whose

dimensionality is proportional to data size.

As mentioned in section 3.1.2, a fast and scalable implementation of the measurement opera-

tor Φ is critical for the viability of convex optimization-based image recovery methods. The

complexity of applying Φ (=GFZ) in the optimization algorithm can increase rapidly with in-

creasing data size. Given an image of N pixels, and M visibilities obtained with a non-uniform

Fourier transform involving an interpolation kernel of size k ×k, the asymptotic complexity

of applying Φ is seen to be O (Mk2 +N log N ), since it is the complexity of matrix operations

involving the matrix G with M rows of k2 non-zero entries, added with the complexity of an

N -sized FFT. As seen from the complexity, this image recovery solution is very demanding for

large values of M , both in terms of computing time and memory.

Dimensionality reduction of radio-interferometric data is therefore particularly essential for

enabling these imaging methods to continue working in a big data regime. The desirability of

dimensionality reduction springs from its ability to (i) reduce the data size, thereby decreasing

memory requirements, (ii) keep the measurement operator fast, thus reducing the computing

time, (iii) preserve compressed sensing properties (notably the NSP, RIP) of the measurement

operator (to the extent that these properties are satisfied for Φ as given in equation (2.10)) to

guarantee accurate signal reconstruction, and (iv) preserve the i.i.d. Gaussian properties of

the original measurement noise, in order to facilitate an easy computation of the data fidelity

in our convex optimization algorithms through an �2-norm. In the setting of the discretized

radio-interferometric measurement equation as given by equation (2.8), we understand di-

mensionality reduction as the process of linearly mapping the higher-dimensional visibilities

vector y ∈CM to a lower-dimensional vector y ′ ∈CML such that ML 
 M . As touched upon in

section 4.3.1, this is typically achieved by applying an ‘embedding’ operator R ∈CML×M , so

that y ′ =Ry is of dimension ML . Applying such an embedding operator to equations (2.10)

and (2.8), we obtain the full measurement operator

Φ′ =RΦ, (4.3)

and the reduced inverse problem

y ′ =RΦx +Rn. (4.4)

The choice of R is critical as it affects not just the distortion of the visibilities y but also

the properties of Φ that originally led to guaranteed image recovery through compressed

sensing-based reconstruction methods. Additionally, R modifies the original noise vector n.

In our setting for radio-interferometric imaging, n is assumed to be uncorrelated, having i.i.d.

zero-mean Gaussian components with a variance given by σn . This assumption brings some

advantages to the convex optimization problem formulation, especially related to the ease

of maximizing data fidelity as discussed in section 3.1.5. After applying a general embedding

41



Chapter 4. Big data and dimensionality reduction

operator R, the ‘embedded’ noise n′ =Rn has a covariance matrix

Cn′ = E
[

n′(n′)†
]
=σ2

nRR
†, (4.5)

where E denotes the expected value. Cn′ is not necessarily diagonal; i.e., the embedded noise

n′ is, in general, correlated.

4.4.1 State of the art: visibility averaging

The standard dimensionality reduction method used in radio interferometry today is visibility

averaging. Averaging is performed either over time, approximating several measurements on

an elliptical track of a baseline by one data point, or over spectral channels at a given time

for a given baseline, or both. It is a very simple and effective approach to reduce data size, as

illustrated here in its matrix form as

Ravg = 1

T

⎡
⎢⎢⎢⎢⎣

1 · · · 1 0 · · · · · · · · · · · · 0

0 · · · 0 1 · · · 1 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · · · · · · · · · · · 0 1 · · · 1

⎤
⎥⎥⎥⎥⎦ , (4.6)

where T is the number of measurements over which the averaging is performed.

Visibility averaging is widely used thanks to its scalability and ease of use. However, averaging

also leads to several issues in the imaging methods that follow [Bridle and Schwab, 1999].

The first issue is the ‘misuse’ of dimensionality reduction as it is performed currently. Radio

interferometry data are averaged with the goal of reducing their size, but once the averaged

data are obtained, subsequent imaging methods use the original measurement operator Φ and

not the appropriate, combined measurement operator Φ′ =RavgΦ, thus completely ignoring

the presence of Ravg in the measurement model. This mismodelling effectively treats the

averaged data as if they were the obtained measurements, and this has a detrimental effect

on the quality of the reconstructed image. On the other hand, in the case of appropriately

handling Ravg in the measurement model, averaging over a small number of visibilities can

be seen as a convolution in uv space with a boxcar function of appropriate width (and then

sampling at the mid-point), which corresponds, in image space, to multiplication of the image

with sinc-like tapering window. This tapering window is different for different baselines,

and results in artefacts in the image recovered from such averaged data. An immediately

apparent effect of averaging is also the disappearance of the highest frequency component

of the data. There are proposals found in the literature to mitigate the adverse effects of

averaging [Offringa et al., 2012, Parsons et al., 2016, Atemkeng et al., 2016], but the proposals

have tradeoffs, some resulting in lower dynamic range, and others resulting in mismatched

processing with calibration procedures. Additionally, averaging has limits on how low the

reduced data vector size can be, as it depends on the conditions of data acquisition, namely,

the total number of points available either on a track in the uv plane, or across spectral
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channels. We discuss the dimensionality reduction performance of Ravg in greater detail in

chapter 6 which addresses image reconstruction using real telescope data.

Noting the various side-effects linked with the state of the art averaging method, we aim to

find a more appropriate dimensionality reduction method that would minimize artefacts in

the recovered image, while providing a robust, computationally efficient implementation. In

the next sections and chapters, we focus on our search of alternate dimensionality reduction

methods and evaluate their effectiveness using simulated and real data.

4.4.2 Preliminary studies on dimensionality reduction

The attractive nature of random projections [Achlioptas, 2003] leads us to attempt dimen-

sionality reduction of interferometric data with specific constructions of matrices based on

different random distributions. In this section we show results for images reconstructed from

simulated data of varying sizes, with their dimensionality reduced using different random

projection methods: (i) a Gaussian random projection, (ii) a subsampled Hadamard transform,

and (iii) a very sparse modified Bernoulli random projection.

The theoretically ideal random projection – from a compressed sensing perspective – would

be provided by a Gaussian random matrix. For a Gaussian random matrix RG , the full mea-

surement operator Φ′ =RGΦ becomes a Gaussian operator, and would thus continue to retain

the original NSP satisfied by Φ, thus guaranteeing accurate signal recovery (see section 3.1).

Also thanks to RG , elements of the embedded noise n′ would, on average over realizations in

C, follow an i.i.d. Gaussian distribution even if the original noise were not i.i.d. Gaussian [Kar-

tik et al., 2015]. As described in section 3.1.5, a decorrelated i.i.d. Gaussian noise vector

greatly simplifies the convex optimization problem formulation by allowing an analytically

computable upper bound on the data fidelity term based on (embedded) noise statistics.

We indeed see the advantages of such an embedding on simulations performed using SDMM for

image reconstruction. We simulated data using a 128×128-pixel test image of the HII region of

the M31 galaxy (Fig. 4.3). Complex visibilities were generated using synthetic, incomplete uv

coverages generated with random variable density sampling profiles. These profiles attempt to

mimic telescope sampling patterns by imposing denser sampling at lower spatial frequencies

(corresponding to shorter baselines) and sparser sampling at higher spatial frequencies (from

fewer, longer baselines) – this is also illustrated in Fig. 4.3. We used a Gaussian profile for the

sampling pattern in our experiments, and removed the (u, v) point (0,0) to follow standard

practice in radio interferometry.1 We generated visibility sets of varying sizes, ranging from

image size to 10 times larger. Each set of visibilities was corrupted by adding Gaussian noise,

1Data at this location are a result of auto-correlation and are dominated by noise. Ignoring this (u, v) point
leads to absence of total flux information, which is why radio astronomers separately use single-dish telescopes to
measure this component.
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Figure 4.3 – Left: M31 test image (log10 scale) used in simulations. A 128×128-pixel image is
used in the simulations here. Higher resolution images are used for experiments described in
chapter 5. Right: Test uv coverage with a variable density sampling profile, showing sparser
sampling with increasing spatial frequency.

giving a signal-to-noise ratio (SNR) of 40 dB for each visibility set. We define the ‘input’ SNR as

SNRi = 20log10
‖y 0‖2

‖n‖2
(4.7)

with y 0 = Φx being the true visibilities vector before adding the noise vector n. To test

Gaussian random projections, data of different sizes were embedded to image size using

different Gaussian random matrices, and reconstruction was then performed with SDMM

using these image-sized data. For comparison without any dimensionality reduction, the

original data was also used directly to reconstruct images using SDMM. Image reconstruction

quality was also measured with an ‘output’ SNR value,

SNRx̂ = 20log10
‖x‖2

‖x − x̂‖2
, (4.8)

where x̂ is the reconstructed image while x is the ‘ground truth’ image available to us.

We see from Fig. 4.4 that images reconstructed from lower-dimensional data obtained using

an N ×M-sized Gaussian random matrix (red curve) follow the SNR values of images recon-

structed from the full data set without any size reduction (black curve). This is especially true

when starting from high-dimensional visibility vectors (e.g., M = 10N ), where the random

projection has more initial information to use. The discrepancy between the reconstruction

qualities is wider for lower starting data sizes because of unavailability of more information for

the random projection to be effective. We see that, in general, starting with more data in hand

leads to higher output SNR values, reaching the point where we can claim denoising effects

even after reducing the data dimensionality down by a factor 10 – the output SNR reaches

≈45 dB for an input SNR of 40 dB.

While Gaussian random matrices are effective as a dimensionality reduction method in terms

of maintaining high SNR for reconstructed images, this quality comes at a computational

cost [Kartik et al., 2015]. The main issue is that we lose the fast application of the original

measurement operator Φ. The combined measurement operator Φ′ is no longer sparse and
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Figure 4.4 – SNR of reconstructed images obtained from different dimensionality reduction
methods on the same simulated data. The initial data size ranges from M = N to M = 10N .
Gaussian random projections always resulted in N -sized data; ‘Gridding’ always resulted in
4N -sized data, from which images were reconstructed using SDMM. The x and y axes are in
log10 scale.

cannot be applied as a sequence of fast submodules. The asymptotic complexity of applying

Φ′ can be seen to be O (ML N ) since applying the Gaussian random matrix leads to a fully

dense matrix of size ML ×N . As ML is typically some proportion p of the image size N , the

asymptotic complexity for the Gaussian random matrix is then O (pN 2). In a big-data regime,

next-generation radio interferometers like the SKA will produce gigapixel images, giving us

values of N ≈ 109, whereas data sizes can range up to M ≈ 1000N ≈ 1012. In this context, the

asymptotic complexity O (pN 2) for Gaussian random matrices is clearly much worse than the

original asymptotic value which was dominated by O (Mk2), since M 
 N 2. This takes a heavy

toll on the image reconstruction algorithms which repeatedly apply Φ′ and its adjoint, and

the time taken for algorithm convergence is prohibitively high, rendering Gaussian random

projections impractical.

The alternative in this case would be to apply the Gaussian random matrix separately, without

creating a combined measurement operator Φ′. However, this defeats the purpose of dimen-

sionality reduction, since the subsequent imaging algorithm would then involve repeated

computations in the higher dimension M , which is precisely what we would like to avoid.

Thus, the Gaussian random matrix approach is computationally infeasible independent of

how we approach its application.

Several other random projections have been shown in the signal processing literature to

be effective at preserving distances in a lower-dimensional space. For instance, a ‘spread-
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spectrum’ like operator R=MFD±1, where D±1 is a diagonal random sign matrix with entries

±1, F the discrete Fourier transform operator, and M an ML ×N random selection matrix

which embeds the data vector to the final size ML . The spread-spectrum technique was shown

by Wiaux et al. [2009b] to be optimal in a compressed sensing context, as it makes the sensing

and sparsity basis maximally incoherent, leading to guaranteed signal recovery. Carrillo et al.

[2013] used the SARA prior on simulated data with random Gaussian and spread-spectrum

acquisition schemes to show improved signal recovery compared to other priors. We note

also that the spread-spectrum technique is similar to the subsampled randomized Hadamard

transform (SRHT, Krahmer and Ward [2011], Tropp [2011]) and the random convolution

technique for CS proposed by Romberg [2009]. The SRHT is proposed as the embedding

R = SHWD±1, where HW ∈ RN×N is the Walsh-Hadamard transform and S ∈ RML×N is a

uniformly random subsampling operator to reduce vectors to the final size ML .

As in the case of Gaussian random projections, these embeddings suffer from the same crip-

pling effect of leading to a dense matrix resulting in prohibitively high image reconstruction

time, or needing to perform a multi-step measurement operation which involves repeated

computations in the high dimension, which is undesirable. We therefore turned our attention

to very sparse random projections involving Bernoulli ensembles and related embeddings.

Section 4.3.1 provides the intuition behind why sparse random projections would continue to

provide good approximations of higher-dimensional subspaces (on expectation). In addition,

sparse projections have a great advantage in low computing times for the application of the

operators and, consequently, practical image reconstruction algorithms. However, when

looked at through a compressed sensing perspective, these combined measurement opera-

tors Φ′ =RΦ lack the properties required by CS theory to provide accurate signal recovery.

Moreover, it is non-trivial to directly prove if Φ′ in these cases indeed satisfies the RIP [Ban-

deira et al., 2013], therefore throwing into doubt the feasibility of using the CS-based image

reconstruction methods outlined in section 3.3.1 and 3.3.2.

We ran simulations with settings identical to the tests described earlier in this section for

Gaussian random projections, which confirmed these suspicions. We implemented the spe-

cific ‘very sparse random projection’ proposed by Li et al. [2006], which uses a random matrix

with entries in {−1,0,1} and claims to provide a speed-up over the classical sparse random

projection proposed by Achlioptas [2003]. The reconstruction quality using very sparse ran-

dom projections is far worse than any other dimensionality reduction method. This may be

attributed to the fact that the specific random matrices used in our tests did not fit in the CS

regime, namely the RIP/NSP, and consequently, �1-minimization algorithms were ill-suited to

recover the images from data embedded through these matrices. Output SNR values of images

reconstructed from low dimensional data obtained using very sparse random projections

remained below 25 dB for all initial data sizes, and have been omitted in Fig. 4.4 to enable us

to clearly compare the distinct performance profiles of the other dimensionality reduction

methods.

We also compared these ‘new’ data embedding techniques with a standard method of reducing
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dimensionality in radio interferometry: ‘gridding’ continuous visibilities to the discrete Fourier

grid. Our version of gridding was based on the classical gridding operation performed as part

of the standard CLEAN imaging process, and we implemented an efficient application of the

gridding operator by employing a precomputed matrix for the embedding, as described by Sul-

livan et al. [2012]. As Fig. 4.4 shows, gridding (blue curve) works very well when compared to

both the Gaussian random projection method as well as to images reconstructed without any

dimensionality reduction. We continued to investigate gridding as a viable embedding, and

developed our own extended version of gridding which includes weighting and subsampling

steps, with very encouraging performance. More details on our implementation and related

results are described in chapter 5.
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5 A Fourier model for dimensionality
reduction

5.1 CS-friendly dimensionality reduction

Our attempts at approaching dimensionality reduction from a compressed sensing perspective

lead us to consider the NSP and the RIP of the full measurement operator. With the exception

of random matrices, constructing fast matrices satisfying the RIP is known to be non-trivial –

although there have been recent attempts towards addressing this challenge [Nelson et al.,

2014]. Also, verifying the RIP for deterministic matrices is NP-hard, as shown by Bandeira

et al. [2013]. So the idea is to devise an embedding operator that reduces the dimensionality

of the measurements while preserving the NSP of the original measurement operator, thus

maintaining the same compressed sensing-based guarantees on recovering the image.

We note that many state-of-the-art imaging techniques in radio interferometry include a

‘gridding’-like subroutine, mapping continuous visibilities to the discrete Fourier grid with an

operator similar to R=Φ† [Dabbech et al., 2015, Li et al., 2011]. Typically, this is a gridding to

the discrete Fourier grid through G†, or a mapping back to image space through Φ†. Gridding

has been studied and developed further by Sullivan et al. [2012] with the introduction of the

‘Fast Holographic Deconvolution’ technique; this technique leverages the lossless information

property [Tegmark, 1997] that is being used to reduce Cosmic Microwave Background data,

and introduces the Holographic Mapping function H=G†G. H models the mapping between

a continuous visibility and the corresponding equivalent in the gridded, ‘holographic’ map

without having to go through separate interpolation and gridding steps – which are the most

time consuming parts of standard imaging techniques. A pre-computed holographic matrix

H is stored before image reconstruction starts, and therefore provides a way to quicken the

imaging process. Additionally, the compact support of the interpolation kernel present in

each row of the matrix G ensures that H remains sparse, so its repeated application is also not

a hindrance to the imaging technique.

We build on these developments and propose a modified gridding-based dimensionality

This chapter contains work published by Kartik et al. [2017a,b].
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reduction method that closely follows the state-of-the-art data preprocessing, while result-

ing in reasonable image reconstruction quality from gridded data. In this chapter we see

that gridding is an appropriate technique to reduce data dimensionality while maintaining

information content, and with the use of a holographic mapping it can be incorporated in

imaging techniques without incurring a large cost in terms of image reconstruction time.

Another major contribution presented here takes an entirely different approach, resulting in

a post-gridding reduction technique that introduces an additional step to achieve reducing

dimensionality to much lower sizes than with our gridding-based method. This is presented

in the next section.

5.1.1 Singular vector space embedding

Optimal dimensionality reduction model

An ideal dimensionality reduction method would result in a final data dimension as small as

possible while simultaneously guaranteeing accurate image reconstruction by retaining the

NSP of the original measurement operator Φ. The null space of Φ arises from the incomplete

Fourier coverage that forms all visibilities. Taking inspiration from PCA-based representations

(which are known to retain most of the information in the original data, as mentioned in

section 4.2), we observe the singular value decomposition (SVD) of Φ given by

Φ=UΣV†, (5.1)

where U ∈ CM×M , V ∈ CN×N are unitary matrices and Σ ∈ CM×N is a rectangular diagonal

matrix containing the singular values of Φ. Here we note that the existence of the null space of

Φ implies that some singular values are necessarily zero. In fact, the singular values Σi occupy

a continuous spectrum of values, with large values corresponding to Fourier grid points with

contribution to multiple interpolation kernels present in G, and gradually decreasing to the

minimum value of zero corresponding to Fourier grid points with no such contribution, thus

leading to an incomplete uv coverage. We can see that retaining the non-zero singular values

of Φ effectively retains the orthogonal complement of the null space of Φ. Following this, we

rewrite the SVD as

Φ=U0Σ0V0
†, (5.2)

whereU0 ∈CM×N0 , Σ0 ∈CN0×N0 andV0 ∈CN×N0 are truncated versions ofU, Σby only retaining

columns (rows for V) corresponding to non-zero singular values of Φ. Clearly, the number of

non-zero singular values is N0 ≤ min(N , M) since Σ ∈CM×N .

An optimal dimensionality reduction operator to be applied on Φwould then be an embedding

on its left singular vectors that correspond to non-zero singular values, since the column space

of Φ is retained through these left singular vectors and thus no information is lost. This
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embedding is given by:

Rsing−o =U0
†

=Σ−1
0 V0

†Φ†. (5.3)

We note that this is a mapping onto the range space of Φ. The full measurement operator

therefore reads as a weighted subsampling in the right singular vector basis:

Φ′
sing−o =Σ0V0

†. (5.4)

The corresponding ‘embedded’ noise U0
†n has a covariance matrix

Cn′ =σ2
nU0

†U0

=σ2
nI. (5.5)

This follows from equation (4.5), since columns of U are orthonormal by definition. The noise

thus remains fully decorrelated after dimensionality reduction, which allows us to continue

using an �2-norm as the data fidelity term in the minimization algorithm, as explained in

section 3.1.5.

Put differently, the ideal dimensionality reduction involves a gridding-like operation per-

formed in radio interferometry to obtain the dirty image (shown here by Φ†), followed by an

embedding on to the right singular vectors of Φ corresponding to non-zero singular values,

and finally followed by a weighting operation with the inverse of the non-zero singular values

of Φ.

In theory, therefore, the ideal dimensionality reduction Rsing−o reduces data to a dimension

N0 ≤ N . It ensures that the full measurement operator Φ′
sing−o preserves the null space of Φ,

therefore retaining any original NSP of Φ. It also induces a decorrelated noise in the reduced

dimension, thus enabling the minimization algorithm to use an �2-norm of the noise for the

data fidelity term. In reality, however, this operator Rsing−o is difficult to implement since

the SVD is computationally expensive, with an asymptotic complexity of O (N 3) [Golub and

van Loan, 1996]. Additionally, since Rsing−o may not have a guaranteed fast implementation,

applying it iteratively in our minimization algorithms would also be prohibitively expensive.

This renders the optimal reduction method impractical. We propose to get around this

limitation by building an approximate version Rsing of Rsing−o that can be readily computed

and applied.

Approximate Fourier reduction model

In finding a valid approximation of the ideal dimensionality reduction given by equation (5.3),

we attempt to approximate the unitary matrix V. We can note that V is in fact the eigenbasis of

Φ†Φ, since it contains the right singular vectors of Φ as defined in Section 5.1.1. To understand
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the eigenbasis of Φ†Φ, we probe its structure, expanding it to its constituent operators as

defined in equation (2.10). This gives us

Φ†Φ= (GFZ)†(GFZ)

= (Z
†
F

†
)(G†G)(FZ). (5.6)

The central term in equation (5.6) is the holographic map H=G†G, comprising individual

elements (G†G)i j that denote the simultaneous contributions of different interpolation kernels

that would map continuous visibilities onto the pixel (i , j ) on the discrete Fourier grid. Since

each visibility is obtained by integrating a small region of the uv plane, the interpolation

kernels have compact support (e.g., the 8×8 Kaiser-Bessel kernels used to calculate the non-

uniform Fourier transform in our simulations). Thus, the simultaneous contributions of

different interpolation kernels are largely limited to small areas of overlapping support, and

consequently limited to having significant contribution only for pixels (i , j ) where i , j are

of similar value. In other words, the largest values of G†G are on and immediately around

its diagonal. This is also seen through numerical results as shown in Fig. 5.1, where the

illustrations for G†G can be seen to be extremely close to a diagonal matrix. It should be noted

that here we implicitly assume that there are no DDEs and that the antenna array is coplanar

(w = 0). If these assumptions become invalid, the interpolation kernels present as rows of

G can no longer be simply represented with compact support, and G†G no longer remains

overwhelmingly diagonal.

Now we prepend and append F†F to equation (5.6) – the crucial observation being that F is

an image-sized Fourier transform as opposed to the oversampled Fourier transform F. F can

then be expressed as F=Z†FZ. equation (5.6) can then be rewritten as

Φ†Φ=F†
[

(FZ
†
F

†
)(G†G)(FZF†)

]
F. (5.7)

We note that the term FZ
†
F

† =Z†FZZ
†
F

†
as a whole performs a convolution with the inverse

Fourier transform of ZZ
†
. Since ZZ

†
is – within limits of the scaling introduced in Z by DR

(see Section 2.3) – a partially distorted version of a two-dimensional pulse function of width

equal to half of the field of view of the observations, its inverse Fourier transform is given by a

sinc function with non-zero values at integer-indices, and a two-pixel wide main lobe. The

convolution with such a sinc function, when performed on G†G, results in a ‘smearing’ of

its diagonal character, with more non-zero values now appearing at off-diagonal locations.

This smearing effect is compounded since FZ
†
F

†
occurs as a pre- and post-operation on G†G.

However, the smearing does not radically affect the diagonal character since the main lobe

of the sinc function has a small width. Numerical results seen in Fig. 5.1 show that FΦ†ΦF†

indeed regains much of the diagonal character from G†G, remaining close to a fully diagonal

matrix. The ringing effect observed around the diagonal may be attributed to the side lobes of

the sinc function.
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Figure 5.1 – Numerical results (shown here in log10 scale) illustrating correlation of noise in
the reduced dimension through varying degrees of ‘diagonality’ of the initial noise covariance
matrix. Left: G†G, for reduction through Rgrid; Centre: Φ†Φ, for reduction through Rdirt; Right:

FΦ†ΦF†, for reduction through Rsing. Top row: Gaussian random coverage. Bottom row:
SKA-like coverage.

As a quantitative measure of the diagonal character of the matrices shown in Fig. 5.1, we define,

for a matrix C, the ratio βC = ‖Diagband(C)‖F /‖C‖F , where Diagband(C) is a band diagonal

matrix formed from a thin band around the main diagonal of C given by Diag(C), and ‖ ·‖F is

the Frobenius norm. Numerical results using test uv coverages included in this work show

the following typical values: βG†G ≈ 0.95, βΦ†Φ ≈ 0.50, and βFΦ†ΦF† ≈ 0.90, illustrating that the

overwhelming majority of significant elements of the matrix FΦ†ΦF† are on and around the

diagonal – in a thin band corresponding to 2% of the matrix size.

We thus see that Φ†Φ≈F†[Diag(FΦ†ΦF†)]F, which is very close to the eigendecomposition

of Φ†Φ given by Φ†Φ=VΣ2V†. This motivates the approximation of

V† ≈F and Σ2 ≈ Diag(FΦ†ΦF†). (5.8)

The approximation of the eigenbasis of Φ†Φ by the orthogonal columns of the discrete Fourier

transform operator immediately renders our ideal dimensionality reduction operator feasible.

The computationally expensive SVD of Φ no longer needs to be explicitly calculated, as the

discrete Fourier transform operator is known without any knowledge of Φ. Moreover, fast

implementations of F exist in the form of the FFT algorithm. V0 is then given by SF, S

being a subsampling matrix to select the dimensions corresponding to the N0 ≤ N non-zero

singular values present in Σ, thus producing a dimensionality reduction below image size.

The diagonal matrix Σ is obtained by simply computing the square root of Diag(FΦ†ΦF†). A
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similar selection of N0 dimensions leads to Σ0 =SΣ, thus giving the approximation

V0
† ≈SF and Σ2

0 ≈S Diag(FΦ†ΦF†). (5.9)

This leads us to propose a Fourier model of the dimensionality reduction operator consisting

of mapping gridded visibilities back to image space, i.e., computing a dirty image, and then

performing a weighted subsampled discrete Fourier transform, given by

Rsing =Σ−1
0 SFΦ† ∈CN0×M . (5.10)

The full measurement operator is then given by

Φ′
sing =Σ−1

0 SFΦ†Φ ∈CN0×N , (5.11)

where Φ is given by equation (2.10). Finally, the full measurement operator is tangible, and is

suitably fast for repeated application in minimization algorithms.

Here we review the properties of our Fourier dimensionality reduction. Φ′
sing being an approx-

imation of Φ′
sing−o, we assume that it approximately preserves the null space of Φ. We have

also seen that FΦ†ΦF† is largely diagonal – this diagonal character is maintained as long as the

interpolation/de-gridding kernels used to compute the continuous visibilities have compact

support. This in turn implies that the covariance matrix σ2
nRsingRsing

† of the embedded noise

is largely diagonal as well. The weighting by Σ−1
0 explicitly normalizes all the diagonal values

of the noise covariance matrix to the original noise variance σ2
n . Φ′

sing also achieves the same

dimensionality reduction to N0 as Φ′
sing−o. Crucially, it exhibits a fast implementation since its

constituent operators are diagonal, sparse and Fourier matrices. A summary of properties of

Φ′
sing−o and Φ′

sing is shown in Table 5.1.

We extend the idea of approximating the initial noise covariance matrix to a further degree

by assuming FΦ†ΦF† ∝ I without explicit computation of FΦ†ΦF†, thus leading to R=FΦ†.

This variant of our approach is also investigated in our simulations.

5.1.2 Gridding-based dimensionality reductions

Embedding visibilities to the dirty image

Embedding visibilities to the dirty image is a standard way to reduce dimensionality, and is

performed in many image reconstruction methods in radio interferometry, essentially through

an image-based deconvolution with appropriate weighting. Setting it in the terminology

presented here, it amounts to using an embedding operator R=Φ†. The corresponding noise

is highly correlated, and this can be seen from the covariance matrix Φ†Φ shown in Fig. 5.1,

which contains significant off-diagonal elements.

In order to be able to use this dimensionality reduction in our minimization problem formula-
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tion (equation (3.1.5)), the embedded noise would need to have i.i.d. Gaussian entries. This is

achieved by assuming, as done previously, an approximation of the noise covariance matrix

by its diagonal

W2 = Diag(Φ†Φ). (5.12)

W is invertible since Φ†Φ (applied to a point source image) is the dirty beam and hence

typically non-zero along its main diagonal – this also implies that there is no potential for

further subsampling based on zero values. We subsequently apply a weighting W−1 to obtain

the dimension embedding operator

Rdirt =W−1Φ† ∈CN×M . (5.13)

The full measurement operator is therefore given as

Φ′
dirt =W−1Φ†Φ ∈CN×N . (5.14)

It preserves the null space of Φ, thus retaining any original NSP. Indeed the SVD or eigen-

decomposition of Φ†Φ reads as Φ†Φ =VΣ2V†. Applying Rdirt is also fast as the individual

suboperators in Φ have fast implementations. However, the embedded noise covariance

matrix σ2
nRdirtRdirt

† is far from diagonal, as seen in Fig. 5.1, though with diagonal entries all

equal to the original noise variance σ2
n . For completeness in our comparison of results, we

extend our approximation of the initial noise covariance matrix by nevertheless assuming

Φ†Φ∝ I, resulting in the variant of Rdirt given by R=Φ†.

Gridding visibilities

Our proposed gridding-based dimensionality reduction relies on the routinely performed step

of gridding continuous visibilities to discrete Fourier points to reduce the data dimension

to the size of the oversampled discrete Fourier grid. Gridding can be seen as applying the

embedding R=G† to continuous visibilities. As noted earlier in Section 5.1.1, in the general

case with DDEs and non-coplanar antenna arrays, the corresponding noise covariance matrix

σ2
nG

†G is non-diagonal, but under our initial assumptions of calibration error-free data and

w = 0, we note that the noise covariance matrix is largely diagonal. This is also seen in Fig. 5.1

in the form of a highly diagonal structure of G†G computed on simulated data.

The first step of our proposed modification appears as follows: an approximate i.i.d. Gaussian

nature of the embedded noise is ensured by weighting the embedding operator with W
−1

,

where

W
2 = Diag(G†G). (5.15)

More precisely, this weighting W
−1

simply normalizes all the diagonal values of the noise

covariance matrix to the original noise variance σ2
n .

Here we note a natural further dimensionality reduction by discarding those discrete Fourier
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Table 5.1 – Summary of the different dimensionality reduction methods with their advantages
and disadvantages with respect to compressed sensing-based imaging.

Properties of Φ′ =RΦ (Full meas. operator) R=Rsing−o R=Rsing R=Rdirt R=Rgrid

Approximate null space preservation Yes Yes Yes Yes

Fast implementation No Yes Yes Yes

Largely diagonal noise covariance matrix Yes Yes No Yes

Final dimension N0 ≤ N N0 ≤ N N N ≤ 4N

grid points that are not covered by any interpolation kernel support over the uv plane. As

contributions of the different interpolation kernels over a given discrete Fourier grid point cor-

respond to individual columns of the matrix G, discrete grid points that are not thus covered

manifest as all-zero columns of G and consequently, zeros on the diagonal of G†G. A subsam-

pling operator S can then be applied to the embedding operator to only select dimensions

corresponding to non-zero diagonal values of G†G. A similar selection of dimensions on W

gives W0 of size N below the dimension of the oversampled discrete Fourier grid, thus leading

to the dimensionality reduction operator

Rgrid =W
−1
0 SG† ∈CN×M . (5.16)

We see that the full measurement operator

Φ′
grid =W

−1
0 SG†Φ ∈CN×N (5.17)

preserves the null space of Φ, following from Null(Φ) ⊆ Null(G†Φ) ⊆ Null(Φ†Φ), thus retaining

any original NSP. The diagonal dominated nature of σ2
nRgridRgrid

† has already been shown,

which leads to an appropriate modelling of the noise. Also, applying Rgrid is fast owing to the

sparsity of G†.

Note that in the context of this dimensionality reduction with Rgrid, the weighting matrix W
−1
0 ,

in fact designed for optimal weighting of the embedded visibilities, also operates as uniform

weighting. Indeed, the diagonal values of G†G are a measure of the density of continuous

visibilities at each discrete grid point.

As with Rsing, we also introduce and test a variant of our proposed reduction method Rgrid.

We approximate the initial noise covariance matrix in this case by assuming G†G∝ I, leading

to the dimensionality reduction R=G†. This variant is included in comparisons of reconstruc-

tion quality.
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5.1.3 Feature comparison

A comparison of the different proposed dimensionality reduction methods Rsing, Rdirt and

Rgrid is shown in Table 5.1. We note in the listing that Rsing provides a good combination of the

desired final dimension, the guarantees for compressed sensing-based imaging to reconstruct

images, and a largely diagonal noise covariance matrix that enables us to embed this technique

in the convex optimization algorithm we employ for imaging. Rdirt embeds the data to image

size while maintaining any original NSP of Φ, and has a fast implementation; however, it fails

to appropriately model the noise and is therefore less suitable for the minimization problem

which requires i.i.d. Gaussian embedded noise to enable a simple �2-norm data fidelity term.

Rgrid continues to maintain the NSP of Φ and the i.i.d. Gaussian properties of the noise, which

are essential for image reconstruction using our convex optimization algorithms. However, the

data reduction is limited to a size N ≤ o2N for an oversampling factor of o in each dimension.

As mentioned in Sections 5.1.1 and 5.1.2, for each of Rsing, Rdirt and Rgrid, an attempt is also

made to further approximate the initial noise covariance matrix by the identity matrix in

order to render the application of the respective dimensionality reduction methods even

faster. equations (5.10), (5.13) and (5.16) are then simplified to R=FΦ†, R=Φ† and R=G†

respectively. However, this approximation is seen to be inappropriate, leading to poorer

modelling of the noise and consequently lowering image reconstruction quality. Rsing, Rdirt,

Rgrid and their respective variants are used to reduce dimensionality before performing image

reconstruction in different settings and with varying data sizes.

Another feature for comparing the different reduction methods was introduced in section 4.4.2

in the context of random projections like the Gaussian random matrix. It is related to the

fast implementation of the dimensionality reduction, which is already included in Table 5.1,

and focuses on the speed of any preprocessing steps needed to arrive at Φ′. In the case

of our proposed reduction methods, the sub-operators of Φ′ are all seen to be fast, and

any computations in the higher dimension M are avoided. There is, however, a one-time

cost in the form of a pre-computation in M dimensions to obtain the holographic matrix

H. We propose to also eliminate this one-time cost in the preprocessing stage by leveraging

the block-separable structure of the measurement operator Φ′. The full M-dimensional

data vector may be divided in smaller-sized blocks, and each block could then undergo

dimensionality reduction separately, with the associated pre-computations also performed

in the lower dimension. As this proposed modification is more readily apparent in the case

of real data acquisition where incoming data can be split in blocks as and when they are

received, we describe our method in greater detail in section 6.1, along with its mathematical

underpinnings.

5.1.4 Further reduction by thresholding

As a conservative dimensionality reduction method, Rsing would embed to a final data size

N0 ≈ N under the assumption that there are very few zero-valued singular values of Φ, within
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limits of numerical precision, and all corresponding singular vectors are thus necessary to

retain the information content of Φ. Similarly, Rgrid embeds to a size N ≈ o2N under the

assumption of having contributions to the continuous visibilities from most discrete Fourier

grid points. However, further dimensionality reduction may be obtained in both cases by a

thresholding strategy.

We first consider the Fourier dimensionality reduction model based onRsing. The approach de-

scribed below to further reduce the final embedding dimension consists of discarding the data

dimensions associated with singular values Σi below a threshold, rather than conservatively

discarding those equal to zero only – this is made possible due to the fact that the singular

values occupy a range of values going down to zero, as discussed in Section 5.1.1. In other

words, through such a thresholding operation, we will attempt a low-rank approximation of

the original singular value matrix Σ, and consequently reduce our final data dimension to the

corresponding low-rank. For the sake of the simplicity of this argument, we consider Rsing to

be equal to Rsing−o. From equation (5.4), we see that the full measurement operator Φ′
sing−o

reads as a weighted subsampling in the orthonormal basis V†, with the weights given by the

singular values of Φ. From equation (5.5), the noise covariance matrix reads as σ2
nI. In order

to safely discard a given singular value Σi for the dimension i without losing information, its

effect on the corresponding embedded visibility y ′
i would need to be negligible relative to the

embedded noise level σn :

|y ′
i | < γσn , with γ=O (1). (5.18)

In general, one has |y ′
i | ≤Σi‖x‖2, which is saturated only in the case where x is fully aligned

with the right singular vector Vi . This means that the condition

Σi‖x‖2 < γσn (5.19)

is sufficient to ensure the requirement imposed by equation (5.18) to disregard dimension

i . In other words, the data dimension i can be discarded with no adverse effect on signal

reconstruction if the corresponding singular value, computed as given in equation (5.9), is

below a noise-based threshold:

Σi < γσn

‖x‖2
. (5.20)

Secondly, we consider the gridding-based dimensionality reduction Rgrid. The approach to

further reducing the final embedding dimension will again consist of discarding the data

dimensions associated with the weights Wi below a threshold, rather than conservatively

discarding those equal to zero only. A bound similar to equation (5.20) can be deduced as

follows for thresholding out data dimensions. Again, for the sake of this very argument only,

the full measurement operator Φ′
grid in equation (5.17) can be approximated as weighted

subsampling in the Fourier basis, with weights W computed from equation (5.15). The noise

covariance matrix exhibits diagonal values all equal to the original noise variance σ2
n . The

same reasoning as for Rsing now applies and the data dimension i can be discarded with no

adverse effect on signal reconstruction if the corresponding weight is below the following
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noise-based threshold:

Wi < γσn

‖x‖2
. (5.21)

The threshold computation in equations (5.20) and (5.21) needs knowledge of ‖x‖2, which is

a priori not available from interferometric data. One would naturally want to estimate ‖x‖2

from the dirty image. This is supported by recent work showing that x can be bounded by the

dirty image in the �2 sense [Wijnholds and van der Veen, 2011, Sardarabadi et al., 2016].

5.1.5 Reduced computational requirements

Current radio-interferometric imaging techniques involve processing in the data space (of

dimension M) and a lower dimensional sparsity space (of dimension N or N ). For CLEAN-

based algorithms this can be seen in the move between ‘major’ cycles in the data dimension

M , ‘minor’ cycles with gridded visibilities of dimension N , and the image space of dimension

N with an implicit sparsity assumption. For convex optimization-based algorithms like the

one used in this work, this is typically seen in the concurrent computation of a data fidelity

term with vectors of dimension M , and a sparsity prior of lower dimension N .

The goal of dimensionality reduction as described here is to reduce the computational load

of imaging methods for next-generation radio interferometers where M is very large, on the

order of 1010. The proposed dimensionality reduction method using Rsing reduces data size

by significant amounts to N0 ≤ N 
 M , and these lower-dimensional data cause a smaller

memory footprint in imaging pipelines. The existence of fast sub-operator implementations

and a low-sized full measurement operator translate to faster computations per iteration of the

convex optimization algorithms. The properties of the full measurement operator Φ′ as listed

in Table. 5.1 are good indicators of the computational savings afforded by Rsing as compared to

other reduction methods. The applicability of the proposed dimensionality reduction method

using Rsing has the advantage of resulting in a reduced data dimension that is independent of

the initial data size (this is also true for Rdirt and Rgrid, which results in reduced data sizes of

N and N respectively).

The initial set-up of the imaging method shall indeed be affected by an increase in the initial

dimension – in particular, the pre-computation of the holographic matrix and the appropriate

weights to be used in the imaging algorithm. However, these pre-computations have a one-

time cost, and subsequent imaging is unaffected, depending only on the embedded data and

thus using fewer resources in terms of memory and computing time.
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Figure 5.2 – The test images in log10 scale, clockwise from top left: M31 (256×256 pixels), a
simulated galaxy cluster (512×512 pixels) and Cygnus A (477×1025 pixels).

5.2 Simulations and results

5.2.1 Simulation settings

The effectiveness of the proposed dimensionality reduction method was demonstrated through

simulations. Image quality comparisons were made between reconstructions through the

dimensionality reduction methodsRsing, Rdirt andRgrid, and their respective variantsR=FΦ†,

R=Φ† and R=G†. In a first setting, a conservative dimensionality reduction was performed

for each case – Rsing accounting for dimensions corresponding to all non-zero singular values

of Φ, and Rgrid accounting for dimensions corresponding to all discrete Fourier grid points

that have non-zero contribution to the continuous visibilities through interpolation kernels.

The final data dimension after reduction in this setting was seen to be N0 ≈ N for Rsing, N0 = N

for Rdirt, and N ≈ 4N for Rgrid.

Simulations were performed on different test images chosen for their varied characteristics:

(i) the classic ‘M31’ image has a compact structure showing an HII region of the M31 galaxy

(256× 256 pixels); (ii) an image of a galaxy cluster (512× 512 pixels) simulated using the

‘FARADAY’ tool (courtesy M. Murgia and F. Govoni [Murgia et al., 2004]), has high dynamic

range by design; (iii) a partial image of the Cygnus A radio galaxy (477×1025 pixels) includes a

strong central core, two strong jets and lobes of diffuse structure with bright hotspots. These

test images are shown in Fig. 5.2.

Two categories of uv coverages were used to simulate telescope measurements. One with

synthetic coverages with a random Gaussian sampling profile with missing frequency regions,

and another with more realistic SKA-like coverages generated with a simulated telescope
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Figure 5.3 – Illustration of simulated uv coverages over normalized frequency axes [−π,π].
Left: Random Gaussian density profile with the uv plane increasingly sparsely covered at
higher frequencies (approximately 3,000,000 uv points); Right: Profile generated with SKA-like
baselines, with partial ellipses simulating dense coverage at lower frequencies and sparser
coverage at higher frequencies. A telescope configuration of 254 antennas was used to obtain
approximately 650,000 uv points.

configuration of 254 antennas (Fig. 5.3), using the ‘MEQTREES’ tool1 [Noordam and Smirnov,

2010] that uses the ‘CASACORE’ software suite.2 The SKA-like coverages correspond to observa-

tion times ranging from 30 minutes to 8 hours, depending on the image and the initial data

dimension. The frequencies were normalized to lie in the interval [−π,π]. The (0,0) compo-

nent of the uv plane was not included in generating visibilities, as explained in section 4.4.2.

For each coverage, complex visibilities were generated over the continuous uv plane using the

measurement model described in equation (2.8), and these were perturbed with complex addi-

tive white Gaussian noise, resulting in an input signal-to-noise ratio (SNR) of 30 dB. The input

SNR was defined as SNRi = 20log10(‖Φx‖2/‖n‖2) as given in section 4.4.2. The continuous

visibilities dimension was varied over a wide range, in multiples of image size, from 10 to 100.

This corresponds to an approximate range of 650,000 to 26 million visibilities over different

test images. Continuous visibilities were generated with a non-uniform oversampled Fourier

transform (2× oversampling in each image dimension) using 8×8 Kaiser-Bessel interpolation

kernels as described and implemented by Fessler and Sutton [2003]. �1-minimization was

performed using the SARA algorithm implemented in PURIFY. SARA regularizes the inverse

problem by imposing ‘average sparsity’ of the signal over a set of bases, as explained in sec-

tion 3.3.1. The resulting minimization problem was solved using an ADMM-based proximal

splitting method – Carrillo et al. [2012, 2014] provide further details on SARA; Carrillo et al.

[2015], Onose et al. [2016] present implementation details of the ADMM-based minimizer.

Additionally, a more aggressive dimensionality reduction was performed for Rsing and Rgrid by

only retaining dimensions corresponding to significant values of embedded data, as described

in Section 5.1.4. This led to a final data dimension size of N0 
 N and N 
 4N respectively.

1MEQTREES is available at http://meqtrees.net/.
2CASACORE is available at https://github.com/casacore.
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Image reconstruction was performed for SKA-like coverages using these further reduced data.

As a comparison baseline, images were also recovered using the complete visibilities set. This

corresponds to the trivial ‘embedding’ R= I. Finally, the reconstruction was compared with

model images obtained using the Multiscale CLEAN (MS-CLEAN) algorithm [Cornwell, 2008]

as provided in the ‘WSCLEAN’ software program3 [Offringa et al., 2014]. MS-CLEAN was run

on continuous visibilities simulated from SKA-like uv coverages. The synthetic Gaussian-

profile uv coverages were generated on the fly during simulations, and since WSCLEAN takes

measurement sets as input, MS-CLEAN was not run on data simulated using these coverages.

We used SNR and dynamic range (DR) of the reconstructed image as measures of image quality,

and compared these values across different methods in our simulations. ‘Reconstruction SNR’

is defined in equation (4.8). We define ‘Reconstruction DR’ as

DRx̂ =
�

N‖Φ‖2 max(x̂)

‖Φ†(y −Φx̂)‖2
, (5.22)

where x is the underlying test image measured through the operator Φ (with spectral norm

‖Φ‖) to give visibilities y , and x̂ is the reconstructed image. For the methods Rsing, Rdirt, Rgrid

and their respective variants, the DR was computed using the corresponding measurement

operators as given in equations (5.11), (5.14) and (5.17), along with the respective embedded

visibilities. For MS-CLEAN, the DR is computed by using the peak of the model image instead

of the restored image.

Since reconstruction results from MS-CLEAN are either in the form of a restored image con-

taining added residual, or a model image containing extended components, direct SNR and

DR computations are not readily apparent and no longer remain a valid way to compare

reconstruction performance between CLEAN and the proposed compressed sensing-based

imaging methods. Therefore, the MS-CLEAN reconstructions are presented here as model

images (without being convolved with the beam and adding the residual) for visual compar-

ison with the other methods described in this work. Additionally, we note that MS-CLEAN

model images contain prominent negative-valued components – this does not have a physical

representation for an intensity distribution, but is crucial for MS-CLEAN to produce ‘restored’

images after convolution of the model image with the CLEAN beam.

5.2.2 Image reconstruction results

Accounting for all non-zero singular values

Image reconstruction performance of the different methods over varying simulation settings

is discussed here for each test image. Graphs showing SNR and DR comparisons over the two

types of coverage are shown in Figs. 5.4 and 5.5 respectively. For the SKA-like coverages, a

visual comparison is also made between the methods R= I, Rsing, Rdirt, Rgrid, and MS-CLEAN

3WSCLEAN is available at https://sourceforge.net/projects/wsclean.
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(run on the full data set) by showing the reconstructed, error and residual images in log10 scale.

These visual comparisons for the three test images are shown in Figs. 5.6, 5.7 and 5.8.

The reconstructed images shown for MS-CLEAN are obtained by cropping from a 3-4 times

larger model image output by WSCLEAN. For all test images, MS-CLEAN was run with a uniform

weighting scheme, set to iterate down to an automatically calculated threshold of two standard

deviations of the noise, and with a major loop gain of 0.8. The model image in each case

was renormalized to have a maximum pixel value matching that of the MS-CLEAN model. It

may be noted that this does not change the overall visual appearance of the reconstruction

and error images as shown in Figs. 5.6, 5.7 and 5.8. The log10 scale was used to highlight the

smallest variations and structures, which inadvertently emphasizes the low-valued artefacts in

MS-CLEAN output models; a linear scale would render these artefacts visually indistinguishable

from the background.

Uniformly weighted dirty residual images were generated using WSCLEAN for each output

model from the different image recovery methods. Absolute Jy/beam residual values were

plotted on a log10 scale, highlighting small variations in structure. The comparatively signifi-

cant structure seen in the residual images for R= I, Rsing, Rdirt and Rgrid may be due to the

absence of negative-valued model components, which are present in the model generated by

MS-CLEAN and are compensated for during the computation of the dirty image by WSCLEAN.

The M31 test image is reconstructed accurately for all the imaging methods. Reconstruction

with the complete visibilities set reaches 40 dB for Gaussian random coverages and 28 dB for

SKA-like coverages at data sizes of 100N . Fig. 5.4a shows that Rsing and Rgrid perform equally

well over Gaussian random coverages, reaching output SNRs of around 40 dB. Over SKA-like

coverages, Rgrid results in output SNRs noticeably higher than Rsing for most data sizes, e.g.,

around 25 dB for data sizes of 75−100N as shown in Fig. 5.5a. When comparing DR over

Gaussian random coverages, images reconstructed after applying Rsing reach 1.6×104, Rgrid

reaches 1.5×104 and the complete visibilities set leads to a DR of 1.3×104. The corresponding

values over SKA-like coverages are 7.2×105, 6.5×105 and 6.3×105 respectively. Fig. 5.6 shows

a visual comparison of images reconstructed over SKA-like coverages that confirms this trend,

where Rgrid results in the lowest error among all methods.

The computation time of the ADMM-based algorithm used for image reconstruction shows

a clear advantage of using Rsing, which takes ≈1.5 seconds per iteration as opposed to ≈18

seconds per iteration without dimensionality reduction, when using all M = 100N visibilities.

MS-CLEAN output model images of size 1024×1024 pixels were cropped to 256×256 pixels.

Image deconvolution took 4 major iterations, and the output model shown In Fig. 5.6 contains

8458 components.

The galaxy cluster test image was chosen for its high dynamic range, and simulations show

that Rsing results in much better reconstruction than all other methods, both in terms of DR

and SNR. As seen in Fig. 5.4b, the SNR from Rsing on Gaussian random coverages is more than

2 dB higher than the complete visibilities set, on average, reaching consistently up to 45 dB
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Figure 5.4 – Image reconstruction from visibilities using Gaussian random coverage: compari-
son of different dimensionality reduction methods. Left: SNR; Right: DR, for the recovered
image over a range of initial continuous visibilities. Top row: M31 image, initial data size
varies from 650,000 to 6.5 million visibilities. Middle row: Galaxy cluster image, initial data size
varies from 2.6 million to 26 million visibilities. Bottom row: Cygnus A image, initial data size
varies from 4.8 million to 24 million visibilities. Error bar lengths correspond to one standard
deviation around the mean over ∼15 simulations.
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Figure 5.5 – Image reconstruction from visibilities using SKA-like coverages: comparison of
different dimensionality reduction methods. Left: SNR; Right: DR, for the recovered image
over a range of initial continuous visibilities. (a): M31 image, initial data size varies from
650,000 to 6.5 million visibilities. (b): Galaxy cluster image, initial data size varies from 2.6
million to 26 million visibilities. (c): Cygnus A image, initial data size varies from 4.8 million
to 24 million visibilities. Error bar lengths correspond to one standard deviation around the
mean over ∼15 simulations.
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Figure 5.6 – Visual comparison of reconstruction results for the M31 test image with M =
100N . From left to right: reconstructed, error and residual images in log10 scale. First four
rows from top to bottom: reconstruction performed with all visibilities, ‘reduced’ visibilities
after performing dimensionality reduction with Rsing, Rdirt, and Rgrid respectively. Last row:
reconstruction using MS-CLEAN with a uniform weighting scheme.
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and outperforming all other dimensionality reduction methods. Over SKA-like coverages,

the image reconstruction trend as shown in Fig. 5.5b is similar, with Rsing providing output

SNRs reaching almost 30 dB while Rgrid usually has SNRs 2 dB below this value. The DR

curves confirm this trend, and high DR values of 2.8×107 are reached with Rsing over SKA-like

coverages. In comparison, Rgrid and the complete visibilities set reach 2.5×107 and 2.6×107

respectively. The DR values are comparatively low for Gaussian random coverages, but the

relative improvement is maintained. The respective values are 1.9×105, 1.8×105 and 1.7×105.

A visual comparison in Fig. 5.7 highlights the sharper structure of the bright sources and detail

in the reconstructed image corresponding to Rsing when compared to the other methods.

Fig. 5.7 also shows very low values over the residual images in general across the methods, but

an extremely sensitive scale is set to forcibly show the structure present in the residual.

The actual residual image values are close to the numerical precision for these computations.

Reconstruction using M = 50N visibilities took ≈12 seconds per iteration without dimensional-

ity reduction, whereas it only took ≈1.8 seconds per iteration usingRsing. Image deconvolution

with MS-CLEAN took 6 major iterations, and the model shown in Fig. 5.7 contains 30649 com-

ponents. Output model images of size 2048×2048 pixels were cropped to 512×512 pixels.

The reconstruction is closer to the other methods, and the residual image contains only minor

structure. Some high-flux regions are visible in the error image that were not appropriately

modelled in the reconstruction.

The Cygnus A image was chosen for the varied structure present in the different parts of the

image. Fig. 5.4c shows output SNR for reconstruction with Rsing marginally higher than that

with the complete visibilities set over Gaussian random coverages, at 36.3 dB and 35.7 dB

respectively. Rgrid leads to 35.2 dB output SNR. Over SKA-like coverages, Rsing performs better

than the complete visibilities set over low data sizes, but the difference is made up for larger

data sizes and the output SNRs reach comparable values, at 24 dB and 23.8 dB respectively,

as seen in Fig. 5.5c. DR values are clearly highest when using the complete visibilities set.

Over Gaussian random coverages, it reaches up to 3.8×104 whereas both Rsing and Rgrid show

similar trends across data sizes, reaching up to 3.4×104. Over SKA-like coverages, the DR

values are 1.7×106, 1.5×106 and 1.4×106 respectively.

The error images reflect the trend seen in Figs. 5.4c and 5.5c. Rgrid has higher errors, and the

complete visibilities set also fails to recover all the diffuse structure in the two lobes. The

recovered images show that Rsing is able to faithfully recover the diffuse structure as well

as the bright point-like sources present in the image. The computation time per iteration

for reconstruction using M = 10N visibilities was ≈20 seconds when imaging without prior

dimensionality reduction, which decreased to ≈7.5 seconds per iteration using Rsing. MS-

CLEAN output model images of size 1431×3075 pixels were cropped to 477×1025 pixels. The

model image shown in Fig. 5.8 contains 21507 components and took 5 major iterations. The

reconstruction shows smooth regions instead of the details of the diffuse structure present in

the test image. The error image illustrates missing features with details of the test image that

were not captured by the model.
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Figure 5.7 – Visual comparison of reconstruction results for the ‘Galaxy cluster’ test image
with M = 50N . From left to right: reconstructed, error and residual images in log10 scale.
From top to bottom: reconstruction performed with all visibilities using ADMM, and ‘reduced’
visibilities after performing dimensionality reduction with Rsing, Rdirt, and Rgrid respectively.
Last row: reconstruction using MS-CLEAN with a uniform weighting scheme.
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Figure 5.8 – Visual comparison of reconstruction results for the ‘Cygnus A’ test image with
M = 10N . From left to right: reconstructed, error and residual images in log10 scale. From
top to bottom: reconstruction performed with all visibilities using ADMM, and ‘reduced’
visibilities after performing dimensionality reduction with Rsing, Rdirt, and Rgrid respectively.
Last row: reconstruction using MS-CLEAN with a uniform weighting scheme.

The higher SNR achieved in some cases after dimensionality reduction with Rsing or Rgrid, as

compared to R = I, is a secondary effect – of the approximated embedding to the singular

vectors of the measurement operator Φ in the case of Rsing and of an effective ‘averaging’

over neighbouring uv points in the case of Rgrid. It may be attributed to the retention of

signal information through the null space of Φ while effectively reducing noise content. It

must be noted here, however, that this is a by-product of the design of Rsing and Rgrid. The

extent of this apparent denoising depends on the type of image and the actual coverage under

consideration, as seen in Figs. 5.4 and 5.5. In all cases, the reconstruction from Rsing is seen to

be at least as accurate as that from the complete visibilities set.

An overarching trend across images, coverages and data sizes is that using an identity matrix to

approximate the initial noise covariance matrix results in consistently poorer reconstruction,

qualified both in values of output SNR and reconstruction DR. This trend supports our under-

standing that appropriate handling and a justified approximation of the noise covariance are

essential for accurate performance of the image reconstruction algorithms used in this work.

69



Chapter 5. A Fourier model for dimensionality reduction

Including noise-dependent thresholding

We investigated a further dimensionality reduction to very small sizes N0 
 N and N 
 4N for

Rsing and Rgrid respectively. We performed image reconstruction using reduced data obtained

through Rsing and Rgrid, and observed the effects of reducing dimensionality to particularly

low values. Fig. 5.9 shows the SNR of reconstructed images from data reduced to sizes ranging

from 4N all the way down to 0.05N , which translates to a final low-dimensional data vector

of approximately 4,000, 13,000 and 25,000 ‘reduced’ visibilities for the M31, galaxy cluster

and Cygnus A images respectively. Reconstruction was performed using initial continuous

visibilities of size 10N , 25N and 50N , simulated over the same SKA-like coverages that were

used for obtaining the results shown in Figs. 5.5, 5.6, 5.7 and 5.8. The point of ‘diminishing

returns’ with respect to reduced data dimension and corresponding SNR can be seen as the

inflection points in Fig. 5.9 where the SNR no longer remains unaffected by discarding further

content.

We find that the dimensionality reduction method Rsing is much more robust to reducing data

size below image size, and that we are able to reduce data from an initial visibilities dimension

of 50N to a final data size of 0.05N while decreasing the SNR by less than 5 dB. The method

Rgrid, however, is seen to be affected adversely from significant dimensionality reduction, and

the reconstruction quality dips strongly with decreasing data size to values much below image

size. A visual comparison of the artefacts introduced in the reconstruction due to an extremely

low data size can be seen in Fig. 5.10 on M31, the galaxy cluster and a zoomed-in portion

of the Cygnus A image, highlighting the robustness of image reconstruction after reducing

dimensionality with Rsing as compared with Rgrid.

The N0 and N values marked in Fig. 5.9 were computed with ‖x‖2 known a priori from the test

images. The marked values correspond to γ= 1 as given in equations (5.20) and (5.21), and

provide an indication of a possible estimation of the appropriate final reduced data size, based

on our noise-dependent thresholding considerations. The results indicate that a threshold

value corresponding to γ> 1 can probably be safely considered for more aggressive reduction

with no significant cost in reconstruction quality.

As mentioned in Section 5.1.4, the prior knowledge of ‖x‖2 required to compute the thresholds

is, in general, not available from interferometric data. It could, however, be approximated by

using the dirty image. In the case of Rsing, simple simulations on the test images with known

x suggested that for the approximations given by equation (5.9), the use of the dirty image

(Φ′
sing)†Rsing y instead of x leads to a discrepancy of a few orders of magnitude in the estimation

of ‖x‖2. This is admittedly a loose bound, and the corresponding threshold was found to be

suboptimal with respect to the discarding of data dimensions. Further investigation is needed

to check for better estimations of ‖x‖2 from the data.
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Figure 5.9 – Evolution of reconstruction quality from data reduced to below image size. (a)
M31; (b) Galaxy cluster; (c) Cygnus A test images. Initial data size ranges from 650,000 to 12
million visibilities, simulated on SKA-like coverages. Continuous visibilities contain 30 dB
additive noise. The analytically computed noise-based threshold marked as ‘*’ shows the
values of N0 and N for γ= 1, which corresponds to the minimum value of N0 or N that ensures
that no discarded data is more significant than noise fluctuation as given by equations (5.20)
and (5.21).
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Figure 5.10 – Visual comparison of image reconstruction after data reduction to 5% of image
size. From left to right: reconstructed, error and residual images in log10 scale. (a) M31, initial
data size = 50N. (b) Galaxy cluster image, initial data size = 50N. (c) Cygnus A (partial zoom on
top right), initial data size = 25N. For each test image, the top row shows reconstruction from
‘reduced’ visibilities after dimensionality reduction with Rsing to 0.05N , and the bottom row
shows reconstruction from ‘reduced’ visibilities after dimensionality reduction with Rgrid to
0.05N .
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5.3 Summary

We revisited the concept of dimensionality reduction of radio-interferometric data from a com-

pressed sensing perspective. The proposed post-gridding linear data embedding approach,

Rsing, consists of projecting the data, assumed to be of size much larger than the image size

M � N , to the space spanned by the N0 left singular vectors of the measurement operator, thus

preserving its null space. In the absence of DDEs and calibration errors, we showed that this

dimensionality reduction approach consists of first mapping gridded visibilities back to image

space, i.e., computing the dirty image, and then performing a weighted subsampled discrete

Fourier transform to obtain the final reduced data vector with dimension below image size.

The Fourier approximation model for the right singular vectors ensures a fast implementation

of the full measurement operator after dimensionality reduction. Rsing also preserves the

i.i.d. Gaussian properties of the original measurement noise thus making it directly suitable

for use with convex optimization algorithms with an �2-norm data fidelity term. The num-

ber of significant singular vectors can be conservatively evaluated by retaining all non-zero

singular values, or for further dimensionality reduction to N0 
 N , by retaining only singular

values above a noise-based threshold, effectively introducing a low-rank approximation of the

original measurement operator. This is in contrast with current gridding-based imaging in

radio interferometry, which reduces data on the oversampled discrete Fourier grid of size N or

to the dirty image of size N . Our proposed version of gridding, Rgrid, is also shown to perform

well down to low sizes of the order of the image size, but is less robust than Rsing when dealing

with extremely low sizes.

We show with realistic data simulated using SKA-like uv coverages and using the SARA convex

optimization method, that reconstruction quality after embedding the data withRsing is at least

as good as with using the complete visibility data set of size M , while being computationally

less expensive, both by having a smaller memory footprint thanks to a reduced data size,

and through lower running time per iteration of the imaging algorithm. It is also similar in

reconstruction quality to results obtained with ‘gridded’ visibilities obtained through Rgrid or

from the dirty image, but again enabling significantly more reduction below image size.

Another contribution from this work is that dimensionality reduction below N can also be

achieved from gridded visibilities by discarding those visibilities below a noise-dependent

threshold. This reduction by thresholding is however significantly less optimal when applied

on gridded visibilities, than on the singular value decomposition. Further work integrating

these methods in the PURIFY software [Carrillo et al., 2014] is foreseen as part of the research

towards scalable HPC-ready algorithms for radio-interferometric imaging. As we currently

assume correctly calibrated data with negligible issues arising from imperfections in data

acquisition, future work will include testing the robustness of the proposed methods to w-term

effects and calibration errors in particular. The next chapter extends the proposed methods

and demonstrates their effectiveness with real data.
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6 Real-world performance of dimen-
sionality reduction

Dimensionality reduction pertaining to radio-interferometric data has traditionally been

performed using time- and frequency-averaging, with averaging bins chosen according to a

combination of factors including the desired data reduction, field of view, ease of applying the

FFT, and relevant science objectives among others. As mentioned in chapter 4, these averaging

methods, however, can only reduce the data size to a limited extent, depending on the number

of time and frequency data-points available respectively as snapshots and channels. Moreover,

this type of averaging introduces ‘smearing’ artefacts in the reconstructed images. Smearing

presents in the image as attenuated off-centre sources. This attenuation in itself may not

always be undesirable, however. For example, a decidedly fortunate effect of smearing is

the attenuation of the global background known as far sidelobe confusion noise (FSCN). In

general, though, averaging-induced artefacts in an image are detrimental to image quality,

since the overall apparent flux is reduced and the point spread function is distorted [Atemkeng

et al., 2016]. The ill-effects of averaging visibilities are known and documented in the literature,

and several approaches to mitigate them through windowing/filtering methods have been

proposed, e.g. by Offringa et al. [2012], Parsons et al. [2016]. Atemkeng et al. [2016] proposed a

baseline-dependent windowing method to minimize smearing artefacts, while continuing to

use an averaging-based method for data size reduction.

In this chapter we show that images reconstructed using our SVD-based method, Rsing, in

combination with the PDFB algorithm proposed in Onose et al. [2016] compare favourably

to images obtained with the ‘classical’ dimensionality reduction of visibility averaging, and

show that Rsing performs equally well or better when compared to images reconstructed

from the full data set of continuous visibilities. We demonstrate the robustness of Rsing down

to very low data sizes in a real data setting, using well-calibrated observations of the radio

galaxy Cygnus A. We additionally present reconstruction results using our modified gridding-

based reduction method, Rgrid, and make comparisons with Rsing in the case of low data size.

The mathematical background and motivation for the proposed methods can be found in

sections 5.1.1 and 5.1.2.

This chapter contains work described by Kartik et al. [2017c].
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6.1 Advanced dimensionality reduction

6.1.1 ‘On-line’ SVD-based dimensionality reduction

As we have noted in section 4.4.2 in the context of Gaussian random projections and in sec-

tion 5.1.3 in discussing the computational efficacy of our proposed dimensionality reduction

operators Rsing and Rgrid, the initial availability of the full data set y ∈CM implies handling

M-dimensional data for the preprocessing step. For instance, applying Rsing would involve

either computing the dirty image from high-dimensional data, or avoiding the higher dimen-

sion by pre-computing Φ†Φ (or more precisely, G†G). This pre-computation, even though it

only needs to be performed once, requires handling M-dimensional structures. This situation,

while remedied from the very beginning of the imaging process by the fast application of the

combined low-dimensional measurement operator Φ′, begs to be avoided in the first place,

as it seems to counteract some of the computational savings that Rsing claims to provide.

However, the block-separable structure of Rsing can be exploited to resolve this issue. The

holographic matrix H = G†G [Sullivan et al., 2012] combines the steps of computing and

gridding visibilities to the discrete Fourier grid into a single, pre-computed mapping. This can

be split into separate blocks Hi, giving

H=G†G=∑
i
Gi

†Gi =
∑

i
Hi ∈Co2N×o2N . (6.1)

The discrete Fourier grid contains o2N points for an oversampling factor of o in each dimen-

sion. We note that the combined measurement operator Φ′
sing given in equation (5.11) can

then be expressed as a sum of separate block-wise operators, giving

Φ′
sing =Σ−1

0 S
∑

i
Φ′

i ∈CN0×N , (6.2)

where

Φ′
i =FΦi

†Φi =FZ
†
F

†
HiFZ ∈CN×N , (6.3)

Φi being blocks of the original measurement operator Φ. We see here that the forward mod-

elling is performed in the lower dimension N0 through block-wise measurement operators also

in the lower dimension N , without ever performing computations in the higher dimension

M as outlined originally in equation (2.10). We can thus apply the combined measurement

operator in blocks Φ′
i, leading to the reduced data vector y ′

i, given by

y ′ =Σ−1
0 S

∑
i

y ′
i ∈CN0 , (6.4)

where

y ′
i =FΦi

† y i ∈CN . (6.5)

So, as each batch of visibilities y i is acquired, we can partially apply our dimensionality

reduction Rsing on-line by taking a Fourier transform of the dirty image obtained from the
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6.1. Advanced dimensionality reduction

batch. This results in an immediate size reduction down to N , the image size – without

intermediate steps in the higher dimension M . These N -sized data can be added sequentially

as each batch of data is processed. As a final step after all visibilities are acquired and reduced,

we can apply the subsampling and weighting through Σ−1
0 S, to obtain the low-dimensional

embedded data that can be fed into imaging algorithms. The data size at this stage would then

be lower than image size.

Calculating Σ−1
0 is crucial as these weights define the importance of the singular values of

the measurement operator Φ, and are key in maintaining the reconstruction quality from

embedded visibilities. As outlined in the above equations, Σ−1
0 and S can be applied at the

end of a two-step reduction process, after reducing batches of data to image size N on-line.

In the particular case of data under ideal acquisition circumstances, and given our prior

knowledge of Φ – which covers the telescope characteristics and the observation details for

a given coverage – we can compute Σ−1
0 and S in advance, and apply them as part of the

block-wise size reduction, thus further reducing data dimensionality to N0 per batch, instead

of N . However, this is not usually the case, and our prior knowledge of Φ may need to be

corrected after accounting for any anomalous antenna measurements and flagging issues.

In this situation, our on-line dimensionality reduction continues to be an attractive option

since Σ−1
0 and S can be computed and applied after all batches of data are acquired, while

still only storing image-sized embedded data after each batch of data is processed. One of

the main advantages of this on-line method of dimensionality reduction is that the full-sized

measurement operator Φ never needs to be created or handled, thus saving computational

resources.

With this scheme of applying the dimensionality reductionRsing to batches of data, we propose

an avenue to handle high-dimensional data as they are acquired. This can potentially be

plugged in as a module in the data processing pipeline, leading to an imaging step with

already reduced data, while guaranteeing that the information content from the original data

is retained.

6.1.2 Gridding-based dimensionality reduction

Rgrid can also be applied on-the-fly to data as they are acquired in batches. We can follow the

argument outlined in equations (6.2)-(6.5), and use the block sub-structure of the holographic

matrix H (as defined in equation (6.1)) in a similar fashion, giving

Φ′
grid =W

−1
0 S

∑
i
Φ′

i ∈CN×N , (6.6)

where

Φ′
i =Gi

†Φi =HiFZ ∈Co2N×N . (6.7)
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In this case, the reduced data vector y ′
i is then given by

y ′ =W
−1
0 S

∑
i

y ′
i ∈CN , (6.8)

where

y ′
i =Gi

† y i ∈Co2N . (6.9)

Data can be acquired in batches, and each batch y i can be immediately embedded to the

oversampled discrete Fourier grid by applying G†
i . This reduces the data dimensionality as a

first step. Further reduction can possibly be applied by subsampling from this reduced data set.

We note from equations (6.7) and (6.9) that the reduction is achieved without ever performing

computations in the higher dimension M as modelled in the original measurement operator

given by equation (2.10). Moreover, as for Rsing, W
−1
0 and S may be computed in advance and

applied to each batch of data, thus reducing data size to N instead of o2N from the beginning,

thus avoiding a two step reduction process.

6.1.3 Visibility averaging

Here we continue from our discussion in section 4.4.1 of the conventional method of reduc-

ing data dimensionality in radio interferometry through time- and frequency-averaging of

continuous visibilities. Time-averaging refers to averaging, across consecutive snapshots, the

visibilities that correspond to the same baseline. Increasing the number of snapshots that

one includes in an averaging bin leads to a bigger reduction in data size but comes at the cost

of a coarser and less accurate coverage of the uv space. Frequency-averaging is performed

across spectral channels, averaging over visibilities corresponding to the same baseline for a

given snapshot. In the case of narrow-bandwidth channels in an averaging bin, the reduced

data may remain a good approximation of the original data, and is indeed a quick and easy

dimensionality reduction method. Time- and frequency-averaging, however, have limitations.

Due to the limited number of snapshots in typical data sets, time-averaging cannot lead to

drastic data dimensionality reduction. As mentioned in section 4.4.1, a major cause of loss of

reconstruction quality, however, is the fact that time- and frequency-averaging are typically

performed without being appropriately modelled in the measurement operator that is ulti-

mately used for image reconstruction. The measurement operator does not take into account

the averaging operation performed, relying only on (now inaccurate) degridding kernels over

the Fourier grid which do not correspond to the ‘reduced’ data. Instead, standard practice is

to continue using the measurement operator Φ instead of Φ′ =RavgΦ in the imaging process.

The side-effects of the averaging can be seen in lower image reconstruction quality. In particu-

lar, the effect of averaging over identical bins in all baselines is seen in reconstructed images in

the form of ‘smearing’. To alleviate the side-effects of the tapering window function on images

described in section 4.4.1, Atemkeng et al. [2016] propose baseline-dependent windowing

functions which minimize smearing, and further suggest that choosing larger time-averaging

bins for shorter baselines (and vice versa) would reduce smearing in the image domain.
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Time- and frequency-averaging cannot be performed indefinitely to reach arbitrarily low data

sizes. The absolute minimum reachable sizes are governed by initial conditions of the data

acquisition, mainly the time intervals between snapshots, the number of channels and the

overall uv coverage. In addition, averaging data to achieve very low data sizes may lead to a

decline in the reconstruction quality – both in itself and with respect to other data reduction

methods. Results of image recovery tests with extremely low-sized data support this conjecture,

and visual comparisons between images recovered using visibilities by applying Rsing, Rgrid

and simple averaging are shown in section 6.2.

Averaging lends itself readily to on-the-fly application. Indeed, on-line batch processing of

acquired data would be the simplest method of data reduction through averaging. The ease of

using batch-wise averaging is, however, tempered by the loss in image reconstruction quality

that accompanies it. This is particularly relevant for averaging aggressively to reach lower

data sizes, as we show through image reconstruction results on real data. In the following

section we can see the effects of averaging on recovered images, particularly in contrast with

the dimensionality reduction methods that we propose, Rsing and Rgrid.

6.2 Image reconstruction results

6.2.1 Data set details

To test and compare the different data reduction methods described in section 6.1, we consider

real data sets of observations of the radio galaxy Cygnus A. The data consist of complex

visibilities acquired as part of wideband observations performed in 2015-2016 by the VLA.

The data correspond to observations centred at 6680 MHz (the ‘C’ band), over a narrow

spectral window of 128 MHz acquired over sixty-four 2 MHz wide channels. Measurements

were recorded using the VLA in configuration C, pointing at the phase centre given by RA=
19h 59mn 28.356s (J2000) and DEC=+40◦44′2.07′′.1

Testing dimensionality reduction methods requires high-dimensional data. For the considered

data set, given the relatively small number of data points per channel (≈ 2×105) and the very

narrow spectral window of observations, we decided to collate data from several channels

together to form one single uv coverage, from which the aim is to recover a single image. Col-

lating data from all 64 channels, however, was impractical due to computational limitations on

(i) reconstructing without dimensionality reduction, and (ii) pre-computing the holographic

matrix H to enable application of Rgrid and Rsing. We note here that this issue can be avoided

in the future by applying on-line dimensionality reduction, which would ensure that we never

handle the full data set, instead always taking per-block data as input, leading to manageable

data sizes at each step of the imaging process. Therefore, we chose 10 separate channels

between 6630 MHz and 6720 MHz and concatenated their visibilities together, yielding a uv

1Right Ascension (RA) and Declination (DEC) are equatorial coordinates that define the direction of a source on
the celestial sphere, and function as longitude and latitude equivalents, respectively.
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coverage with about 2×106 data points. Since the spectral slope in the data set was mild

enough to be negligible over the observed bandwidth, we performed single frequency imaging

and did not treat different channels separately as one would for hyperspectral imaging. The

uv points were normalized to the maximum baseline and subsequently scaled to lie within

[−π,π]. An illustration of the uv coverage is shown in Fig. 6.1, with visibilities from three

channels.

6.2.2 Image recovery from VLA data

The VLA data were used to reconstruct 256×256 images with a pixel width of 0.5 arcseconds –

this corresponds to recovering a signal of up to 2.5 times the band-limit of the observations.

The full data set of 2×106 continuous visibilities is thus ≈ 30 times larger than the size of

reconstructed images (≈ 6.5×104). Images were reconstructed from data of varying dimen-

sions, obtained through one of the following methods: (i) full data with no dimensionality

reduction, (ii) simple averaging over time and frequency bins, (iii) dimensionality reduction

by applying Rgrid, and (iv) dimensionality reduction by applying Rsing. In the first two cases,

image recovery was performed using both MS-CLEAN and PDFB algorithms. In the latter two

cases, only PDFB was used.

Fig. 6.2 shows image reconstruction using MS-CLEAN on data of varying sizes, obtained by

time- and frequency-averaging the initial data set. The left column shows restored images,

where the model, smoothed with the CLEAN beam, is added to the residual image. We do not

show the model images as they are not physically realistic. MS-CLEAN was run with Briggs

weighting (robust weighting parameter set to −1) and a major loop gain of 0.8, and took 6

major iterations on the full data set to produce a model image of size 2048×2048 from which

a 256×256 image was cropped. Reducing the full data set to lower sizes corresponding to

4N and N through a simple time-averaging, over 10 and 20 snapshots respectively, led to

increasing artefacts in the reconstructed image. We can see regular structures in the residuals

corresponding to smearing effects in the reconstructed image. A much lower data size of

0.2N was reached by first time-averaging the full data over 30 snapshots and subsequently

frequency-averaging over 10 channels. Running MS-CLEAN on this reduced data led to poor

image quality, and may be attributed to the unrealistic averaging needed to reach low data size.

In the first column of Fig. 6.3, we note that reconstructing images using the PDFB algorithm on

the same reduced data sets produced images of better visual quality. This agrees with results

previously reported on data without dimensionality reduction [Onose et al., 2016, 2017, Kartik

et al., 2017a]. We can nevertheless observe the adverse effects of drastic averaging methods on

PDFB, in the form of artefacts for images reconstructed from very low data sizes, like 0.2N .

We can thus see that averaging has several limitations as a dimensionality reduction method.

The final data sizes that can be achieved using averaging are limited by the initial number of

snapshots and the number of channels in the data set. The time-averaged data offers a uv

coverage that is more incomplete than the original data set and, in addition, the measurement
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6.2. Image reconstruction results

Figure 6.1 – Illustration of VLA uv coverage used in the tests. Visibilities from different channels
are collated to cover the same uv plane. The three colours shown here signify three different
channels. All uv points were normalised to the maximum baseline. The values shown here
are before scaling to lie between [−π,π], to keep individual channel data visually distinct in
spite of the narrow spectral window of the data set. Top: 2-D view, showing the uv coverage;
bottom: 3-D view, highlighting the magnitude of the (complex) visibilities. Higher amplitude
data points are concentrated in lower frequencies at the centre, as expected.
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model is inaccurately approximated due to the omission of the averaging operation Ravg.

Consequently, reconstructed images from both MS-CLEAN and PDFB contain related artefacts.

The low data size of 0.2N ≈ 13000 visibilities is reached by averaging over arbitrarily large bins.

Reducing data size in this manner is not meaningful, however, since the corresponding loss

of information cannot be compensated for by a simple averaging procedure. Averaging is

clearly limited by the need to critically sample the uv plane, and ignoring these hard limits

has severe ill-effects on the reconstruction. Averaging produces reasonable images only if

the final data size is much higher than that shown here. We were able to reconstruct an

image with negligible artefacts with a reduced data size of 7N ≈ 455000 visibilities – obtained

by time-averaging the collated data set over 5 snapshots – which is much higher than the

most conservative reduction performed by Rgrid (4N ) or Rsing (N ). Image reconstruction

from averaged data may also perform better if the correct measurement model were taken

into account, by including the averaging operation Ravg as mentioned in section 6.1.3. The

current work, however, mimics the state-of-the-art averaging method which ignores Ravg at

the expense of inaccurate image recovery.

The second and third columns in Figs. 6.3 and 6.4 show a visual comparison of the recon-

structed and residual images, respectively, from data reduced using the dimensionality reduc-

tion methods Rgrid and Rsing, and then imaged using the PDFB algorithm. The largest data size

that can be achieved after applying Rgrid is 4N , and that for Rsing is N , which is why target

data sizes above these values are shown as blank spaces in the corresponding columns of

Figs. 6.3 and 6.4. On the other hand, both Rgrid and Rsing allow us – by construction – to attain

arbitrarily low data dimensionality by choosing to discard dimensions based either on the

significance of the contribution of interpolation kernels to the discrete Fourier grid points (in

the case of Rgrid) or on the significance of the singular values of the original measurement

operator (in the case of Rsing). We see in Fig. 6.3 that both these dimensionality reduction

methods outperform averaging for the same target data sizes. We note that for final data sizes

of approximately the same order as the image size, i.e., 4N , N ,0.2N , Rgrid performs as well as

Rsing. The robustness of Rsing, however is apparent when data size is aggressively reduced to

as low as 0.05N and 0.02N . At these extremely low sizes, we can see that data reduced using

Rsing continue to retain much of the original features of the image (as can be seen in the side

lobes in particular) whereas Rgrid appears to recover only the overall structure, producing

an overly smooth appearance lacking detail. We note here that the final data size of 0.02N

is achieved by reducing from an initial data size of 30N , which represents a dimensionality

reduction factor of ≈ 1500, i.e., three orders of magnitude.

Residuals shown in Fig. 6.2 were computed with Briggs weighting using MS-CLEAN. Residuals

shown in Fig. 6.4 were computed using the original measurement operator for PDFB. To enable

visual comparison of CLEAN and PDFB residual images across columns of Figs. 6.2 and 6.4,

residual images obtained using PDFB have been scaled by the peak of the point spread function

(PSF).2 Unsurprisingly, we see an increase in residual structures as we decrease the size of the

2PSFmax, the peak of the instrument response to a point source image at the phase centre with a value 1 at the
central pixel and zero otherwise, i.e., PSFmax = maxi(Φ

†Φδ)i, where δ is the point source image.
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data used for image recovery (top to bottom). We note that with Rsing (last column of Fig. 6.4),

we were able to maintain the absence of regular structures down to very low sizes.

An interesting observation is the similarity in the residual images for Rgrid for the data sizes

4N and N . The corresponding reconstructed images are also very similar to each other. This

may be due to the fact that the initial uv coverage was concentrated in the lower frequencies

of the (oversampled) Fourier plane, leaving much of the uv plane empty. Consequently, the

number of effective discrete grid points containing contributions from interpolation kernels

was much lower than 4N (≈ 0.6N in this particular case). Reducing data size from 4N to N ,

therefore, has no effect on the amount of information contained in the ‘reduced’ data since

the discarded dimensions would correspond to discrete grid points with zero contributions

anyway. Thus, the reconstructed images look very similar, and a dip in reconstruction quality

is only seen when the data size is reduced below the number of effective discrete grid points.

Running PDFB on the full set of visibilities took ≈ 2 seconds per iteration. Applying Rgrid or

Rsing reduced the running time of PDFB to ≈ 0.2 seconds per iteration. This may be attributed

to the sparse nature of the constituent operators in Rgrid and Rsing. Additionally, the reduction

in data size potentially entails lower memory usage, but this was not directly quantified in our

tests. We see a clear computational advantage of performing dimensionality reduction on the

initial data set before invoking the imaging algorithm. We also note that the quality of images

recovered from reduced data produced with Rsing and Rgrid is comparable to that obtained

with the complete set of initial visibilities.

6.3 Summary

We have shown the effectiveness of our proposed dimensionality reduction method, Rsing, to

handle the large volumes of data expected to be acquired in next-generation radio interferom-

eters like the SKA. It is based on retaining the original information content of the data, and

leverages the singular value decomposition of the original measurement operator to achieve

this. An alternative reduction method, Rgrid, is closely related to the familiar method of ‘grid-

ding’ continuous visibilities to the discrete Fourier grid, and works well when reducing to data

sizes close to the image size. We have shown through Cygnus A image reconstruction using

VLA data that both Rsing and Rgrid outperform the current standard method of reducing data

dimension through simple time- and frequency-averaging. Rsing is particularly robust down

to extremely low embedded sizes, and is a good candidate for reducing very high-dimensional

data. In our case of reconstructing 256×256 size images from well-calibrated VLA data, a final

data size of up to 2 per cent of the image size was reached with reasonably low loss in image

reconstruction quality. Given our starting data size of 30 times image size (30N ), a final data

size of 2 per cent of image size (0.02N ) represents a dimensionality reduction factor of ≈ 1500,

i.e., more than three orders of magnitude. One can expect significantly higher dimensionality

reduction ratios for SKA data when the initial data sizes could be many orders of magnitude

larger than image size, while the final data size using Rsing would always be lower than image
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size, potentially reaching much lower, depending on uv coverage and other data acquisition

characteristics. In addition to not having the same limitation as averaging methods to reach

very low data sizes, Rsing and Rgrid also produce images with fewer reconstruction artefacts

for a comparable data size. Owing to the modular nature of the constituent operators of

Rsing and Rgrid, we propose a mechanism that enables dimensionality reduction to be applied

on-the-fly on data as they are being acquired. This ensures that data size is reduced from the

very beginning, thus precluding any issues related to storing or processing large amounts of

data in real-time. This could be a possible addition in the data pipelines for the SKA, which

currently estimates handling the massive amounts of data flow to be a serious challenge.

Further work with Rsing is foreseen towards addressing calibration issues, and the suitability

of dimensionality reduction in the presence of large w-terms.
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Figure 6.2 – MS-CLEAN image reconstructions using averaged visibilities. Left column: restored
images in log10 scale. Right column: Briggs weighted residual images in linear scale. Rows
denote final data size achieved after visibility averaging – from top to bottom, 30N ≈ 2000000
visibilities (≡ full data, no averaging), 4N ≈ 260000 visibilities (time-averaging over 10 snap-
shots), N ≈ 65000 visibilities (time-averaging over 20 snapshots), and 0.2N ≈ 13000 visibilities
(time-averaging over 30 snapshots and frequency-averaging over 10 channels). MS-CLEAN was
run with Briggs weighting (robust weighting parameter set to −1).
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7 Conclusions

We have proposed novel dimensionality reduction methods for radio-interferometric data.

These methods are based on analyzing the singular values of the original measurement opera-

tor and a modified visibility gridding, respectively. By embedding the higher-dimensional data

into a lower-dimensional Fourier space which preserves all significant singular values, we are

able to retain all the information present in the original data. Our proposed reduction methods

adhere to principles from compressed sensing, and as a consequence, we are able to reduce

data to very low sizes, well below the size of the images to be reconstructed. The adherence to

compressed sensing theory guarantees accurate recovery of signals, and also allows us to use

convex optimization techniques to reconstruct images from the data. Thanks to recently de-

veloped convex optimization algorithms, the image reconstruction process is computationally

efficient, while being numerically stable with analytically proven convergence.

7.1 Use of dimensionality reduction in next-generation radio inter-

ferometers

Next-generation radio interferometers like the SKA will produce massive amounts of data

at an extremely high rate. Dimensionality reduction is one of the most crucial steps that

need to be taken to enable appropriate handling of this data explosion, while retaining all

information necessary to meet the science goals for these ambitious projects. With our

proposed dimensionality reduction methods, we can guarantee that no relevant data are

discarded, and that images are reconstructed with scalable, parallelizable algorithms that work

across computing nodes in a true HPC setting. The three main advantages of our reduction

methods are:

• Extremely fast embedding, thanks to constituent operators being sparse (the subsam-

pling, weighting operators), fast (the FFT), or precomputed (the holographic mapping).

• Robustness to aggressive data size reduction: our SVD-based method performs very

well even with extremely low data sizes; experiments on pre-calibrated data from the
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VLA have shown that this method can decrease data size by more than three orders

of magnitude while maintaining image reconstruction quality. Our gridding-based

method produces data with size comparable to the image size while maintaining the

information content. It is not as effective for extremely low data sizes, however, and is

more suited for cases where aggressive size reduction is not crucial.

• Modular structure, leading to a possible block-wise application to data on-the-fly. This

can potentially solve issues with data acquisition and buffering for the SKA, by perform-

ing on-line data dimensionality reduction to batches of incoming data, providing an

immediate size reduction and thus circumventing any cumbersome large scale data

handling.

7.2 Next steps and directions

This thesis proposes dimensionality reduction methods and provides the mathematical devel-

opment of these methods that enable their use as fast, scalable operations [Kartik et al., 2017a].

The effectiveness of our proposed methods is demonstrated through extensive image recon-

struction exercises with various settings, with both simulated data of multiple realistic models

and actual observations of a bright radio source, taken with a state-of-the-art interferometer.

Our reconstruction results – as compared to those obtained with other existing dimensionality

reduction methods – show much improved performance and very promising robustness to

drastic size reductions. Kartik et al. [2017c] show image reconstruction results on recent VLA

data which demonstrate that our methods make it possible to reach very low data sizes that

are beyond the reach of state-of-the art averaging methods used in radio interferometry today.

These favourable results are, however, shown under some assumptions made on the data.

One direction to extend the current work is to extend its applicability to cases with fewer such

assumptions. For example, we assume that data made available to us are free of calibration

errors, and we concentrate on the imaging of these data. While this is useful to showcase the

improvements obtained purely in the imaging step, the complete data processing pipeline also

involves a calibration step which cannot be ignored. Incorporating our reduction methods

in a two-step imaging+calibration set-up is a natural extension to achieve this. Our proposal

would need to be upgraded to accept calibration errors – this involves reformulating certain

portions, notably involving the generation of the gridding/degridding operators that move

data from a continuous visibility space to a discrete Fourier space. Using an extended version,

reduced data vectors could be used during both calibration and imaging steps, speeding up

the processes individually. A combined set-up would ideally provide a self-contained solution

for the data processing pipeline, right from raw interferometer data handling, to the final

image ‘products’.

Another real-world issue that has not been addressed in the current work is the presence

of large w-terms and other calibrated DDEs. These need to be taken into account during

gridding and degridding, as they affect the final image obtained. Including this change to the
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proposed methods makes them more appropriate for use with actual interferometer data,

since such data would indeed contain large DDEs and related corrections.

A major advantage of our methods are their modular structure, allowing a blockwise applica-

tion to streams of data. This feature can be exploited to provide on-line reduction of data in

blocks, as they are acquired from the instrument. This on-the-fly method is perfectly suited

for upcoming telescopes where handling, processing and storing all of the incoming data is a

serious challenge. While the modified on-line reduction method has been proposed by Kartik

et al. [2017c] and explained in chapter 6, its implementation remains to be tested on actual

data, to confirm the claimed advantages. One direction for further work in the near future,

therefore, is to benchmark this on-line reduction method.

The current work on dimensionality reduction takes data obtained through a sweeping acquisi-

tion integrated in time, but at a fixed frequency. As a next step, it also needs to be extended for

application to hyperspectral imaging. Embedding visibilities across the frequency dimension

in addition to the fixed uv-plane in a given slice of the data cube is essential in handling the

complete data acquired by telescopes. A more involved application entails imaging transient

sources, which would then necessitate the dimensionality reduction methods to preserve

information not only across the uv-plane at one or several frequencies, but also along a

temporal dimension at each frequency. Extensions to our proposed reduction methods are,

therefore, important to enable its wider use and acceptance in real use cases.

7.3 Closing remarks

Our proposal to perform on-line dimensionality reduction at the same time as data acquisition

harks back to the very essence of compressed sensing, promoting a ‘reduced’ sensing paradigm

over a more traditional process of acquiring large amounts of data first and then reducing it at a

later stage. We have shown that, even in the traditional case of data acquisition followed by data

reduction, our proposed methods work better than the state-of-the-art technique of averaging

data over time and frequency bins – they not only produce better image reconstruction, but

also allow us to reach much lower data sizes. Our work needs to be extended to apply for

more use cases seen commonly in radio interferometry, particularly for hyperspectral imaging

and imaging of transient sources. In addition, including dimensionality reduction in the data

calibration step would be a welcome addition to an otherwise computationally intensive

process. Our data reduction methods are tightly coupled with reconstruction methods as

proposed by CS practice, and this allows us to exploit algorithmic advancements in the field

of convex optimization. We would benefit from a parallel implementation of the reduction

methods, and in combination with scalable, parallel imaging methods, we can lay a reasonable

claim to be ready for the imminent deluge of big data.
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