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a b s t r a c t 

We consider optimal information acquisition for the control of linear discrete-time random systems 

with noisy observations and apply the findings to the problem of dynamically implementing emissions- 

reduction targets. The optimal policy, which is provided in closed form, depends on a single composite 

parameter which determines the criticality of the system. For subcritical systems, it is optimal to per- 

form “noise leveling,” that is, to reduce the variance of the state uncertainty to an optimal level and keep 

it constant by a steady feed of information updates. For critical systems, the optimal policy is “noise 

attenuation,” that is, to substantially decrease the variance once and never acquire information there- 

after. Finally for supercritical systems, information acquisition is never in the best interest of the decision 

maker. In each case, an explicit expression of the value function is obtained. The criticality of the sys- 

tem, and therefore the tradeoff between spending resources on the control or on information to improve 

the control, is influenced by a “policy parameter” which determines the importance a decision maker 

places on uncertainty reduction. The dependence of the system performance on the policy parameter is 

illustrated using a practical climate-control problem where a regulator imposes state-contingent taxes to 

probabilistically attain emissions targets. 

© 2018 The Authors. Published by Elsevier B.V. 
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1. Introduction 

The effective control of a stochastic system critically depends

on sufficient information about its state. The optimal acquisition

of state information balances the expected increase of the decision

maker’s value with the cost of the signal that is being acquired.

The quality of the state information determines the precision with

which, at any given point in time, the decision maker can condi-

tion the choice of the best available action on the actual system

behavior. For example, when trying to implement greenhouse-gas
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mission-reduction targets a regulator can set taxes or quotas. The

arget for such stock pollutants are usually expressed in terms of

ggregate emissions that should stay within a carbon budget. The

atter is almost linearly related to the projected increase in average

emperature ( IPCC, 2014 ). Hence, while it is possible to steer aggre-

ate emissions in expectation to a given target by dynamically set-

ing carbon prices, the probability of the actual state being close to

he target hinges on the quality of the acquired information about

he emissions level. In this paper, we provide a closed-form solu-

ion to the combined control and information-acquisition problem

or linear systems and quadratic costs with one-dimensional state.

he application to emissions control is then discussed based on

n established model by Hoel and Karp (2002) using recent global

missions data and targets ( IEA, 2015 ). 

The importance of combining the optimal control of a system

ith the estimation of its state was first recognized for engineer-

ng applications ( Meier, 1965 ). Upon investigation, it was quickly

ealized that the estimation and optimization problems can be de-

oupled, in both discrete time ( Striebel, 1965 ) and continuous time

 Wonham, 1968 ), resulting in a “separation principle” ( Davis, 1977;

leming & Rishel, 1975 ). Yet, in virtually all of the extant work,

he precision of the information about the state is taken as given.
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hat is, the decision maker remains unconcerned with the problem

f acquiring an appropriate amount of information. 1 Here we con-

ider the linear-quadratic control problem with costly information

f varying precision as an archetypical case which can be solved

ompletely. We show that the separation principle applies and that

he best information-acquisition policy achieves an optimal noise

evel over and above the system noise. 2 The optimal information-

cquisition policy is implemented by a threshold policy that at any

ime depends on the current variance of the decision maker’s be-

iefs about the state of the system. The precise nature of this policy

an be fully characterized by a “discriminant” of the problem. 

In practice, a decision maker’s incentives to acquire informa-

ion involve more complex considerations than what is contained

n the initially formulated combined control and information-

cquisition problem. For example, it may be desirable to maxi-

ize the probability of the system’s state to be close to a speci-

ed target state at a given date. For this, the decision maker can

une a “policy parameter” which describes the tradeoff between

he control problem (referred to as system-stabilization problem )

nd the uncertainty-reduction problem (referred to as information-

cquisition problem ). The policy parameter modulates therefore the

ecision maker’s information-acquisition effort. Our analysis ad-

resses the comparative statics of the problem with respect to the

olicy parameter, thus illustrating the structural insights that can

e obtained from a closed-form solution to the decision problem. 

.1. Literature 

Blackwell (1951) showed that information is generally benefi-

ial to decision makers and that more informative sources of in-

ormation are of (weakly) greater value. Conversely, a pure in-

rease in uncertainty about the state by adding noise to an in-

ormation source corresponds to a “garbling” and therefore must

weakly) decrease the information value ( DeGroot, 1962 ). The find-

ng carries over to a Bayesian setting ( Kihlstrom, 1984 ), and the

ecision maker’s value for state observations with Gaussian noise

s decreasing in the variance of those information sources. While

here is a fairly rich work on the value of information in a

quasi-)static setting ( LaValle, 1968; Lawrence, 1999 ), the litera-

ure on the sequential acquisition of information, after a promis-

ng start, experienced a long hiatus. 3 The seminal contribution

y Wald (1947) provides a general approach to the information-

cquisition problem, and then concentrates effort s on examin-

ng distributionally robust experimentation to improve a statisti-

al decision function. Building on pieces of that initial framework,

oscarini and Smith (2001) perform an interesting analysis of

nonrobust) information acquisition in continuous time, by control-

ing the diffusion of a Brownian motion through the continuous ac-

uisition of a somewhat peculiar, specially adapted sampling pro-

ess so as to inform a binary decision. McCardle (1984) considers

nformation acquisition in a discrete-time dynamic setting, where a

rm gathers information to reduce uncertainty about a technology-

doption decision. The latter leads to an optimal stopping prob-

em, where at an upper belief threshold the firm decides to adopt

he technology (and stop information acquisition), at a lower be-
1 A notable exception is the dynamic sensor-selection problem introduced by 

thans (1972b) which, from an engineering standpoint, amounts to scheduling the 

est camera view onto the state. Due to the combinatorial nature of this problem, 

t leads only to an algorithmic solution without much structural insight; see also 

ection 1.1 . 
2 The findings can be interpreted in terms of signal-to-noise ratios, but they ap- 

ear most naturally in terms of the additionally tolerated observational noise. 
3 There is significant work on the exploration-versus-exploitation tradeoff, inher- 

nt in the multi-armed bandit problem, but here information acquisition is mixed 

ith reward-oriented actions and they are difficult to disentangle; see Gittins, 

lazebrook, and Weber (2011) for details. 

g  

i  

(

f

T

I

a

p

p

ief threshold to reject the technology (and stop information ac-

uisition), and otherwise to continue gathering information. The

nderlying problem of optimally stopping in a Markovian setting

ith costly information about an imperfectly observable state was

iscussed by Monahan (1980) , and results about the convexity of

olicy regions are summarized by Lovejoy (1987) . Similarly, Moore

nd Whinston (1986, 1987) discuss sequential information acqui-

ition, followed by a final action. 4 By contrast, we are concerned

ere with problems where control interventions and information

cquisition coexist from period to period. For example, in oper-

tions management, costly information about demand can help

mprove inventory-management decisions ( DeCroix & Mookerjee,

997 ). In a newsvendor setting with independent and identically

istributed consumers, Milgrom and Roberts (1988) find that it is

est to either survey none or all of them, i.e., to acquire either no

r full information; the reason for this is a convexity in the value

f additional information. In contrast to this, Fu and Zhu (2010) ,

y using forecast-aggregation techniques, obtain a concave infor-

ation value which generically leads to the optimality of interme-

iate levels of information acquisition. In a linear-quadratic setting,

ansal and Ba ̧s ar (1989) take an information-theoretic approach

eparating the measurement (or communications) task from the

ontrol task, in an iterative discrete-time framework. The authors

onsider a similar setting in continuous time ( Ba ̧s ar & Bansal,

994 ); see also Yüksel and Ba ̧s ar (2013 , Ch. 11) for a summary

f this decentralized encoder-decoder approach with ample addi-

ional references. Sims (2003) limits the flow of information by

mposing a bound on the Shannon channel capacity, which then

akes the amount of information collected over time subject to

ptimization. Provided the channel capacity is not too low, the best

olicy approaches an optimal signal-to-noise ratio in the long run,

hus closing in on a stationary variance of the state given a sta-

ionary variance in the observational noise. Here we also consider

 linear-quadratic problem setup, yet instead of imposing an ex-

genous limit on the information flow, we allow for a linear cost

f the precision of the state observation. 

The standard linear-quadratic Gaussian (LQG) optimal control

roblem consists in choosing the input for a linear system so as to

aximize the expectation of a quadratic functional which depends

n the realized trajectories of the state, the output, and the control

 Anderson & Moore, 1971; Athans, 1972a ). The linear-quadratic

etup appears naturally in many managerial and policy-relevant

ontexts, such as inventory control ( Holt, Modigliani, Muth, &

imon, 1960; West, 1986 ), error-correction mechanisms ( Salmon,

982 ), production smoothing and scheduling ( Gallego, 1990;

aish, 1994 ), dynamic oligopoly ( Kydland, 1975; Fudenberg and

irole, 1986 ), monetary and fiscal policy ( Benigno & Woodford,

004; Pindyck & Roberts, 1974 ), forecasting of economic equilib-

ia ( Townsend, 1983 ), nonlinear pricing with learning ( Bonatti,

011 ), and dynamic regulation ( Auray, Mariotti, & Moizeau, 2011;

riedman, 1981 ), to just name a few. The optimal value of the

bjective depends on the quality of the state observations. The

orresponding linear-quadratic combined estimation and control 

roblem was solved by Kalman (1960) , resembling results by

hiele (1880) (see Lauritzen, 1981 ). Athans (1972b) provides an al-

orithm for optimally switching among a finite number of sensors

n continuous time, effectively solving an offline sensor-selection
4 Applications in healthcare also have this feature, where a sequence of tests 

“screening” actions) may be followed by a treatment; this is complicated by the 

act that the disease progression or population characteristics may be nonstationary. 

sodikov and Yakovlev (1991) examine aperiodic cancer screening, while Maillart, 

vy, Ransom, and Diehl (2008) use a hidden Markov-chain approach. The latter is 

lso used by Cipriano and Weber (2018) to determine when and how much sam- 

ling is needed before the decision to discontinue a public health screening for a 

opulation with declining hepatitis C prevalence. 
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problem within a Hamiltonian framework. At any given time,

the selected sensor serves as the best-matched observational

element of a Kalman filter compared to all the available informa-

tion sources. The optimal sensor selection thus reflects the best

tradeoff between information and the costly signal. The structural

insights of this and subsequent related work in discrete time (e.g.,

by Gupta, Chung, Hassibi, & Murray, 2006 and Krishnamurthy,

2002 ) are quite limited because no closed-form solutions to the

embedded dynamic programs or two-point boundary problems are

available and ad hoc numerical methods are employed. In contrast

to this, by focusing on one-dimensional systems and a natural

structure of the available continuum of information sources we

provide a complete closed-form solution to the combined linear-

quadratic stochastic control and information-acquisition problem.

Despite the linear-quadratic setup, the underlying optimization

problems are nonlinear, driven by the nonlinearity of the Bayesian

information update. Lindset, Lund, and Matsen (2009) examine

a continuous-time finite-horizon version of the LQG problem

with quadratic information-acquisition cost but do not provide an

analytical solution. Their main structural insight is somewhat un-

surprising: towards the end of the horizon it is best to acquire the

least amount of information, since clearly the remaining time to

act on it is very limited. In our discrete-time infinite-horizon set-

ting, information acquisition may be persistent, effectively keeping

the variance of the state estimate at an optimal steady-state level,

after a finite time. 

1.2. Outline 

The remainder of this paper is organized as follows.

Section 2 introduces the decision problem, consisting of a discrete-

time LQG control problem with the option for the decision maker

to acquire information in each period. This problem is then

reduced to an equivalent decision problem with only half as

many parameters. Section 3 provides a complete solution to the

reduced-form decision problem, effectively decoupling the control

problem and the information-acquisition problem. A mapping of

the reduced-form solution to the solution of the original problem

is given, as well as a detailed discussion of how the solution

can be tuned using a “policy parameter” to achieve secondary

policy objectives such as maximizing the probability of goal

attainment. Section 4 applies the model to the global emissions-

control problem, highlighting the need for information acquisition.

Section 5 concludes. 

2. Model 

Given the real constants A and B , with AB 2 > 0, consider a noisy

linear system, 

˜ x t+1 = A ̃

 x t + Bu t + ˜ ε t , (1)

where ˜ x t (with realizations x t ∈ X ) denotes the state, u t ∈ U the

control input, and ˜ ε t a zero-mean independent and identically dis-

tributed (i.i.d.) Gaussian noise term with positive variance N̄ , at

the discrete time instants t ∈ T = { 0 , 1 , 2 , . . . } . We assume that the

state space X and the control set U are unconstrained, so X =
U = R . The initial state ˜ x 0 follows a normal distribution with given

mean x̄ 0 and positive variance N̄ 0 , independent of the ˜ ε t . The tu-

ple ( ̄x 0 , N̄ 0 ) characterizes the decision maker’s prior belief about

the state of the system at t = 0 . 5 

Remark 1. The linear system is invariant with respect to transla-

tions in the state space. In applications it often represents the de-

viation of a system state x ′ from a deterministic target state x̄ ′ , so

x t ≡ x ′ t − x̄ ′ . 
5 A summary of notation is provided in Appendix B . 

t  

{  

t

At each time t ∈ T , the decision maker observes the output z t 
f the system which follows a linear law of motion, 

˜ 
 t+1 = C ̃  x t + ( ̃  ηt / v t ) , (2)

here C is a given positive constant, ˜ ηt denotes a zero-mean

.i.d. Gaussian noise term with positive variance M , and v t ∈ V =
 + is a control input which describes the quality of the acquired

tate information in terms of its precision ( v 2 t /M). A value of v t =
 means that no new information about the state is observed

t time t + 1 . In accordance with the decision maker’s prior be-

ief about x 0 , an initial observation z 0 can be defined, without

oss of generality, as the realization of a normal distribution with

ean C ̄x 0 and variance M 0 = C 2 N̄ 0 . 

emark 2. In contrast to engineering systems, where the output

s typically assumed to be a simultaneous reflection of the present

tate ( Kailath, 1980 ), social systems naturally carry an observation

elay. For example, a corporation issues a report usually for the

ast period, not the current period. Hence, for t ≥ 1 the observation

f the system output z t includes a waiting period and thus depends

n the previous state x t−1 . 

.1. Belief propagation 

Based on the system dynamics in Eq. (1) and the output char-

cteristics in Eq. (2) , the decision maker uses the observations z t 
o update his belief about the state ˜ x t . The linearity of the system

mplies that the decision maker’s posterior belief, conditional on

he applied controls u t−1 and v t−1 in the previous period and the

urrent realization of z t , is normally distributed with mean ˆ x t and

ariance ˆ V t . 

roposition 1. Let ( ̂  x 0 , ̂  V 0 ) = ( ̄x 0 , N̄ 0 ) . Then for any t ≥ 1,

he decision maker’s belief conditional on the history H t =
 (z 1 , . . . , z t ) , (u 0 , . . . , u t−1 ) , (v 0 , . . . , v t−1 ) } is normally distributed

ith mean ˆ x t and variance ˆ V t , such that 

ˆ 
 t = A ̂

 x t−1 + Bu t−1 + 

AC v 2 t−1 
ˆ V t−1 

M + C 2 v 2 
t−1 

ˆ V t−1 

(z t − C ̂  x t−1 ) , (3)

ˆ 
 t = N̄ + A 

2 

(
1 − C 2 v 2 t−1 

ˆ V t−1 

M + C 2 v 2 
t−1 

ˆ V t−1 

)
ˆ V t−1 . (4)

henever v t−1 = 0 , the update ( ̂  x t , ̂  V t ) is affine in ( ̂  x t−1 , ̂  V t−1 , u t−1 ) . 

The updated state estimate ˆ x t in Eq. (3) corresponds to the

redicted state based on the evolution of the previous state es-

imate ˆ x t−1 in Eq. (1) and a correction term that is proportional

o the difference between the actual output observation z t and

he predicted output observation C ̂  x t−1 in Eq. (2) . The variance is

ounded from below by the variance of the system noise ( ̄N ), and

ts (nonlinear) adjustment in Eq. (4) is increasing in the variance of

he measurement noise ( M/ v 2 t−1 ). For any given information qual-

ty v t , Eqs. (3) and (4) present a version of discrete-time Kalman

ltering ( Kalman, 1960 ) with delayed state observation. For per-

ect observation quality (i.e., when v t → ∞ ), the system variance

emains at its minimum value, N̄ . 

emark 3. The law of motion (3) for the estimated mean ˆ x t at

ime t can be rewritten in terms of the realization ω t−1 of a stan-

ard normal distribution at time t − 1 , 

ˆ 
 t = A ̂

 x t−1 + Bu t−1 + 

AC v t−1 ̂
 V t−1 √ 

M + C 2 v 2 
t−1 

ˆ V t−1 

ω t−1 , ( 3 

′ )

or all t ≥ 1. Based on ( 3 ′ ) and (4) the decision maker can

herefore also condition his belief updates on the history ˆ H t =
 (ω 0 , . . . , ω t−1 ) , (u 0 , . . . , u t−1 ) , (v 0 , . . . , v t−1 ) } instead of H t . This
ransformation effectively normalizes the output variance to one. 
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7 The transformed state-variance tuple ( ̂ x ′ t , ̂  V ′ t ) = ( ̂ x t /λ, ̂  V t /λ2 ) has been replaced 
.2. Decision problem 

The decision maker’s goal is to steer the estimated state ˆ x t of

he system in Eq. (3) (or alternatively, Eq. (3 ′ ) ) towards a target

nd at the same time reduce the uncertainty about target achieve-

ent in form of the state variance ˆ V t in Eq. (4) as much as pos-

ible. The tradeoff between these primary objectives is described

y weights for the cost of the estimated state deviation and vari-

nce in the objective function. 6 The decision maker disposes of

 ‘standard’ system control u t to regulate the uncertain state in

he linear system in Eq. (1) and a ‘nonstandard’ information con-

rol v t to regulate the information acquisition about the state in

q. (2) . The tradeoff between target achievement and uncertainty

eduction determines the amount of resources used for the sys-

em control and the information control, respectively. Overall, the

ecision maker needs to find control trajectories u = (u 0 , u 1 , u 2 . . . )

nd v = (v 0 , v 1 , v 2 , . . . ) to solve the infinite-horizon optimal control

roblem 

ˆ K ( ̄x 0 , ̄N 0 ) 

= inf 

∞ ∑ 

t=0 

βt 
E 

[
p 2 ̂  x 2 t + p 1 ̂  x t + p 0 + q ̂  V t + γ u 

2 
t + δv 2 t 

∣∣x̄ 0 , N̄ 0 

]
, 

s.t. ˆ x t+1 = A ̂

 x t + Bu t + 

AC v t ̂  V t √ 

M + C 2 v 2 t 
ˆ V t 

ω t , ˆ x 0 = x̄ 0 , 

ˆ V t+1 = N̄ + A 

2 

(
1 − C 2 v 2 t 

ˆ V t 

M + C 2 v 2 t 
ˆ V t 

)
ˆ V t , ˆ V 0 = N̄ 0 , 

(u t , v t ) ∈ U × V, t ∈ T , 
(P) 

here ( ̄x 0 , N̄ 0 ) describes the decision maker’s prior belief about

he distribution of the state at time t = 0 , and β ∈ (0, 1) is a given

iscount factor. The cost parameters p 0 , p 1 , p 2 , q , γ , δ are as-

umed positive, except for p 0 and p 1 which may take nonpositive

alues. Given a target state x̄ ′ = −p 1 / (2 p 2 ) as in Remark 1 and

p 0 = p 2 
1 
/ (4 p 2 ) , the objective function in (P) penalizes the target

eviation: p 2 ̂  x 2 t + p 1 ̂  x t + p 0 = p 2 
(

ˆ x t − x̄ ′ 
)2 

; without loss of general-

ty, the constant p 0 can be set to zero. 

emark 4. The problem (P) is more general than the standard

inear-quadratic Gaussian (LQG) optimal control problem with in-

ormation acquisition of the form 

∞ 

 

t=0 

βt 
E 

[
p 2 ̃  x 2 t + p 1 ̃  x t + γ u 

2 
t + δv 2 t 

∣∣H 0 

]
−→ min , 

ubject to (1) and (2) , where we have set H 0 � 

ˆ H 0 � { ̄x 0 , N 0 } . In

he extant literature on the discrete-time LQG problem, informa-

ion acquisition cannot be actively controlled, so v t ≡ const . By the

aw of iterated expectations, 

 

[
E 

[
˜ x 2 t 

∣∣ ˆ H t 

]∣∣H 0 

]
= E 

[
E 

[
( ̂  x t + ( ̃  x t − ˆ x t )) 

2 
∣∣ ˆ H t 

]∣∣H 0 

]
= E 

[
E 

[
ˆ x 2 t + 2( ̃  x t − ˆ x t ) + ( ̃  x t − ˆ x t ) 

2 
∣∣ ˆ H t 

]∣∣H 0 

]
= E 

[
ˆ x 2 t + 

ˆ V t 

∣∣x̄ 0 , N̄ 0 

]
, 

or all t ∈ T , where by construction ˆ x t = E [ ̃ x t | ̂  H t ] and 

ˆ V t =
 [ ( ̃  x t − ˆ x t ) 

2 
∣∣ ˆ H t ] ; see Section 2.1 . Thus, the above LQG problem

merges as a special case of the decision problem (P) for q = p . 
2 

6 The choice of the weight influences the characteristics of the solution, and can 

herefore be viewed as a policy problem; see Section 3.4 for details. 

b

(

(√
U

.3. Parameter reduction 

The decision problem (P) depends on the 12-dimensional pa-

ameter vector 

� (A, B, C, p 0 , p 1 , p 2 , q, M, N̄ , β, γ , δ) . 

hile in a given practical situation each of these parameters can

e directly interpreted, it turns out that half of them are not

eeded to fully characterize an optimal solution. 

roposition 2. For any given initial belief ( ̄x 0 , N̄ 0 ) , the decision prob-

em (P) is equivalent to the reduced-form decision problem 

7 

ˆ K ( ̄x 0 , N̄ 0 ) = 

p 0 
1 − β

+ (p 2 + q ) λ2 

×
(

inf 

∞ ∑ 

t=0 

βt 
E 

[(
1 − r 

)
ˆ x 2 t + s ̂  x t + r ̂  V t + u 

2 
t + v 2 t 

∣∣x̄ ′ 0 , N 

′ 
0 

])
, 

s.t. ˆ x t+1 = a ̂  x t + bu t + 

a v t ̂  V t √ 

1 + v 2 t 
ˆ V t 

ω t , ˆ x 0 = x̄ ′ 0 , 

ˆ V t+1 = N + a 2 
(

1 − v 2 t 
ˆ V t 

1 + v 2 t 
ˆ V t 

)
ˆ V t , ˆ V 0 = N 

′ 
0 , 

(u t , v t ) ∈ U × V, t ∈ T , 

( P ′ ) 

ith a � A , b � B 
√ 

(p 2 + q ) /γ , r � q/ (p 2 + q ) , s � p 1 / [(p 2 + q ) λ] ,

nd N � N̄ /λ2 , where λ2 � 

√ 

δM/ (p 2 + q ) /C. The reduced-form ini-

ial belief ( ̄x ′ 
0 
, N 

′ 
0 
) is such that x̄ ′ 

0 
� x̄ 0 /λ and N 

′ 
0 

� N̄ 0 /λ
2 . 

The solution to the reduced-form decision problem ( P ′ ) merely

equires the 6-dimensional reduced parameter vector 

′ � (a, b, r, s, N, β) . 

s in the original decision problem (P) , the solution to ( P ′ ) does

ot depend on p 0 . The ‘policy parameter’ r ∈ (0, 1) determines the

elative weight that is being put on minimizing the state deviation

s opposed to minimizing the state variance; see Section 3.4 for

etails. 

emark 5. If the decision maker wants to stabilize the estimated

ean of the random state ˜ x t around a non-zero target x̄ ′ instead

f the origin, then a translation of the form ˆ x t = ˆ x ′ t − x̄ ′ leads to

recisely the reduced-form problem ( P ′ ); the variance of the trans-

ated state remains unchanged; see also Remark 1 . 

Since the reduced-form problem contains all generically impor-

ant information about the original problem, without any loss of

enerality one can restrict attention to analyzing the properties of

 P ′ ) instead of the original problem (P) . The mapping of the origi-

al parameter vector θ to the reduced-form parameter vector θ ′ is

rovided in Proposition 2 . 

. Optimal system-stabilization and information-acquisition 

olicies 

For any given initial belief ( ̄x 0 , N 0 ) about the Gaussian dis-

ribution of the initial state ˜ x 0 , an optimal solution (v ∗, u ∗) =
((u ∗t ) t∈T , (v ∗t ) t∈T ) to the (reduced-form) decision problem ( P ′ ) at-

ains by Proposition 2 the optimal cost ˆ K ( ̄x 0 , N 0 ) in (P) . If we set 

(x, y ) � 

1 

(p 2 + q ) λ2 

(
ˆ K (λx, λ2 y ) − p 0 

1 − β

)
, 
y the original notation, ( ̂ x t , ̂  V t ) . Similarly, the transformed control, (u ′ t , v ′ t ) = 

 

√ 

γ ′ u t , 
√ 

δ′ v t ) , where (γ ′ , δ′ ) � (γ , δ) (p 2 + q ) −1 λ−2 , has been replaced again by 

u t , v t ) . The control sets U and V in the original problem are transformed to U ′ = 

 

γ ′ U and V ′ = 

√ 

δ′ V in the reduced-form problem. Given our assumptions, it is 

 = U ′ = R and V = V ′ = R + . 
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for all (x, y ) ∈ X × Y with Y � R + , then by the dynamic-

programming principle ( Bellman, 1954 ); in particular, Bertsekas

and Shreve (1978/1996 , Proposition 9.12), the optimal cost K sat-

isfies the Bellman equation 

8 

K(x, y ) = min 

(u, v ) ∈U×V 
{ (1 − r) x 2 + sx + ry + u 

2 + v 2 

+ β E [ K( ̃  x ′ , y ′ ) | x, y ] } , 
s.t. ˜ x ′ = ax + bu + 

a v y ˜ ω √ 

1 + v 2 y 
, 

y ′ = N + a 2 
(

1 − v 2 y 
1 + v 2 y 

)
y, 

( P ′′ )

for all (x, y ) ∈ X × Y, where the random variable ˜ ω follows a stan-

dard normal distribution. We first establish that the optimal cost K

is separable, which allows us to decompose the problem ( P ′ ′ ) into

a stabilization problem (which yields the system control u ∗) and

an information-acquisition problem (which yields the information

control v ∗). The key idea for the separation is to first assume and

then verify a quadratic cost K 1 for the stabilization portion, as in

the standard linear-quadratic control problem without information

acquisition. This induces additive separability of the optimization

problems and restricts the impact of the nonlinearity (in the belief-

propagation with respect to the precision v ) to the cost K 2 of in-

formation acquisition. 

Proposition 3. The Bellman equation ( P ′ ′ ) is additively separable,

i.e., 9 

K(x, y ) ≡ K 1 (x ) + K 2 (y ) , 

with 

K 1 (x ) � min 

u ∈U 

{
(1 − r) x 2 + sx 

+ u 

2 + β
[
P (ax + bu ) 2 + Q(ax + bu ) + R 

]}
, (SS)
8 If, without any loss of generality, we choose λ, p 0 so (p 2 + q ) λ2 = 1 and p 0 = 

s 2 / (4(1 − r)) , then the objective function in problem ( P ′ ) becomes 

ˆ K ( ̄x 0 , N 0 ) = inf 

∞ ∑ 

t=0 

βt 
E 

[
g( ̂ x t , ̂  V t , u t , v t ) 

∣∣x̄ 0 , N 0 ], 
where x̄ = −s/ (2(1 − r)) is a target state (as noted after the formulation of the orig- 

inal decision problem (P) ), so that 

g( ̂ x t , ̂  V t , u t , v t ) � (1 − r) 
(

ˆ x t − x̄ 
)2 + r ̂ V t + u 2 t + v 2 t 

is a (stationary) per-period cost function, defined for all ( ̂ x t , ̂  V t , u t , v t ) ∈ X × Y × U ×
V . Importantly, the per-period cost is nonnegative on its domain, irrespective of the 

sample path (ω 0 , ω 1 , . . . ) . Hence, in the terminology of Strauch (1966) who con- 

sidered the maximization of a discounted sum of nonpositive per-period rewards, 

problem ( P ′ ) is a “negative dynamic programming problem.” Thus, by Bertsekas 

and Shreve (1978/1996 , Proposition 9.12), (taken from Schäl, 1975 , Theorem 5.2.2) 

a stationary state-feedback policy (μ, ν) : X × Y → U × V is optimal (i.e., it solves 

problem ( P ′ )) if and only if the Bellman equation (P ′ ′ ) is satisfied, for (u, v ) = 

(μ, ν)(x, y ) . Alternately, given any ε > 0 (e.g., ε = α∗ − N; see Section 3.2 ), there 

exists an information control v t = ̂

 v ε with some finite constant 0 ≤ ˆ v ε < ∞ such 

that ˆ V t ≤ N + ε for all t ≥ 0, resulting in a total discounted cost of ˆ v 2 ε / (1 − β) . 

For this constant information-acquisition policy and a standard stabilizing control 

u t = μ(x t ) with μ( ·) as in Eq. (6) below, the resulting total cost Ǩ ε ( ̄x 0 , N 0 ) remains 

finite and constitutes an upper bound for the optimal cost ˆ K ( ̄x 0 , N 0 ) . It is therefore 

possible to restrict attention to the compact subset Ū × V̄ ε of controls, so the per- 

period cost remains uniformly bounded, in the sense that 0 ≤ g( ̂ x t , ̂  V t , u t , v t ) ≤ m ε , 

for all (u t , v t ) ∈ Ū × V̄ ε , i.e., on any “reasonably controlled” state trajectory ( ̂ x t , ̂  V t ) 

starting at ( ̄x 0 , N 0 ) , where m ε � Ǩ ε ( ̄x 0 , N 0 ) . Then Theorem 4.2.3 and part (a) of 

Proposition 4.3.1 in Hernández-Lerma and Lasserre (1996) together imply that the 

optimal cost ˆ K ( ̄x 0 , N 0 ) can be obtained as unique pointwise solution to the Bellman 

equation in ( P ′ ′ ). 
9 The functional forms of K 1 (see Proposition 4 ) and K 2 (see Lemma 2, Corollary 1, 

Corollary 3 , and Corollary 4 ) are specified below; see also Proposition 9 . 
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p  
iven appropriate values of P, Q, R ∈ R , and 

 2 (y ) � min 

v ∈V 

{
ry + v 2 + β

[
P a 2 v 2 y 2 

1 + v 2 y 
+ K 2 (y ′ ) 

∣∣
y ′ = N+ a 2 

(
1 − v 2 y 

1+ v 2 y 

)
y 

]}
(IA)

or all states (x, y ) ∈ X × Y . 

Problem (SS) is called the system-stabilization problem , while

roblem (IA) is referred to as the information-acquisition problem .

he solutions of these two problems, which together amount to

he solution of the (reduced-form) decision problem ( P ′ ), are now

iscussed in turn. 

.1. System-stabilization problem 

As a function of the current state x ∈ X , an optimal stabiliz-

ng policy u ∗ = μ(x ) can be found as the unique solution to the

uadratic minimization problem on the right-hand side of the Bell-

an equation (SS) . 

roposition 4 (System stabilization) . 

(i) The unique solution to (SS) is K 1 (x ) = P x 2 + Qx + R, for all x ∈ X ,

where P > 0 > R and 

P � 

a 2 + (1 −r) b 2 −1 /β+ 

√ 

(a 2 + (1 −r) b 2 −1 /β) 2 + 4(1 −r) b 2 /β

2 b 2 
,

Q � 

(P b 2 + 1 /β) s 

P b 2 − a + 1 /β
, 

R � − β

1 − β

(Q/ 2) 2 b 2 

P b 2 + 1 /β
. 

(5)

ii) The optimal system control u ∗ = μ(x ) is given by 

μ(x ) = − b 

P b 2 + 1 /β

(
P a x + 

Q 

2 

)
, (6)

for all x ∈ X . 

The optimal stabilizing policy in Eq. (6) implements an affine

tate-feedback law. While the coefficient P is independent of both

he precision cost δ for acquired information and the output vari-

nce M , the coefficients Q and R depend on the product δM

hrough s (see Proposition 2 ). Thus, the optimal design of the

tate feedback in Proposition 4 takes into account the character-

stics of the information-acquisition technology, including obser-

ation noise, as specified in the original problem (P) . Because of

he separability of the decision problem ( P ′ ) in (SS) and (IA) in

roposition 3 , the optimal information-acquisition policy will im-

lement a state feedback that only takes into account the variance

f the state estimate. The benefit of information acquisition for the

tate feedback therefore comes not from changing the design of

he feedback law for the system stabilization but from providing a

ore reliable input (i.e., a better state estimate) for the state feed-

ack. 

emark 6. As is well known for linear-quadratic dynamic opti-

ization problems, the optimal policy in Eq. (6) satisfies the “cer-

ainty equivalence principle” ( Simon, 1956; Theil, 1957 ), in the

ense that the state-feedback law is entirely independent of the

tochasticity of the problem; see also Bertsekas (1995) . 

.2. Information-acquisition problem 

For any given prior variance y , an optimal information-

cquisition policy v ∗ = ν(y ) solves the nonlinear minimization

roblem on the right-hand side of the Bellman equation (IA) and
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11 For any increasing sequence (y n ) ∞ ⊂ Y with y n → ∞ , as n → ∞ , the monotonic 
hus determines the optimal information-acquisition cost K 2 ( y ).

he problem of solving this recursive relation can be simplified

y thinking of the optimization in terms of varying the posterior

ariance y ′ in ( P ′ ′ ) instead of varying the information control v . For

ny y ∈ Y, there is a one-to-one relationship between the (nonneg-

tive) information control and the posterior variance, 

 

2 = 

N + a 2 y − y ′ 
y (y ′ − N) 

= 

a 2 

y ′ − N 

− 1 

y 
∈ R + , (7)

nd consequently the decision maker’s posterior variance y ′ is re-

tricted to a bounded interval, 

 

′ ∈ (N, N + a 2 y ] . 

he posterior variance N , corresponding to noiseless observation of

he system output, cannot be attained at finite cost, so that an op-

imal solution must lie strictly inside (a compact subset of) the fea-

ible interval. With this in mind, the information-acquisition prob-

em (IA) can be rewritten in the form 

 2 (y ) = ry − 1 

y 
+ βP (N + a 2 y ) 

+ min 

y ′ ∈ (N,N+ a 2 y ] 

{
a 2 

y ′ − N 

+ β
[
K 2 

(
y ′ 
)

− P y ′ 
]}

, ( IA 

′ ) 

or any y ∈ Y . To solve the Bellman equation ( IA 

′ ) one needs to dis-

inguish the case of information acquisition, where v > 0 (or equiv-

lently, y ′ ∈ (N, N + a 2 y ) ) and the case of no information acquisi-

ion, where v = 0 (and thus y ′ = N + a 2 y ). Only in the second case

oes y ′ actually depend on y , since the minimand in ( IA 

′ ) is inde-

endent of y . In other words, the posterior variance depends on the

rior variance only if no information is acquired. Conversely, if in-

ormation is in fact acquired, then the decision maker selects the

mount of information so as to reach a target posterior variance,

hereby this chosen target does not depend on the current vari-

nce. 10 

emark 7. The additive separability of the information control in

q. (7) with respect to y and y ′ is critical for our relatively sim-

le solution to the information-acquisition problem. In particular,

he cost-separability in ( IA 

′ ) does not extend to cases where the

nformation-acquisition cost is not affine in v 2 . It also does not

eneralize to the multi-dimensional case of a vector-valued source

with scalar information control) where (suboptimal) results may

e obtained by restricting attention to specific classes of state feed-

ack (e.g., linear). 

.2.1. Threshold optimality 

Consider as target variance α∗ a solution to the minimiza-

ion problem in ( IA 

′ ). Given a continuously differentiable optimal

ost K 2 ( ·), the first- (and second-) order necessary optimality con-

itions of the minimization problem yield the ( y -) conditional target

ariance , 

(y ) = sup A y , (8)

or all y ∈ Y, where the ( y -) conditional cost-improvement set, 

 y � 

{
y ′ ∈ (N, N + a 2 y ] : − a 2 

(y ′ − N) 2 
+ β[ K 

′ 
2 (y ′ ) − P ] < 0 

}
, (9) 

s the set of all posterior variances with negative cost gradient, i.e.,

hose posterior variances which may be improved upon with the

elp of a larger conditional target variance. Because K 2 is contin-

ously differentiable, its derivative K 

′ 
2 

is bounded on any compact

ubinterval of (N, N + a 2 y ] , so that A y must be nonempty. Thus,
10 This is similar to the ( s , S )-policy in inventory control ( Arrow, Harris, & 

arschak, 1951; Scarf, 1960 ). 

s

α

e

he conditional target variance in Eq. (8) is well-defined. Further-

ore, if α(y ) = N + a 2 y, then by Eq. (7) no information acquisition

s optimal, i.e., 

(y ) = N + a 2 y ⇔ v ∗ = ν(y ) = 0 . 

ecause for any ˆ y , y ∈ Y with ˆ y > y it is A y ⊂ A ˆ y , necessarily also 

ˆ 
 > y ⇒ α( ̂  y ) ≥ α(y ) , 

hat is, the y -conditional target variance is nondecreasing in the

rior variance y . For y → ∞ , one obtains the ( unconditional ) cost-

mprovement set A as the union of the A y for all y ∈ Y, 

 � 

⋃ 

y ∈Y 
A y = 

{
y ′ ∈ (N, ∞ ) : − a 2 

(y ′ − N) 2 
+ β[ K 

′ 
2 (y ′ ) − P ] < 0 

}
. 

(10) 

he corresponding ( unconditional ) target variance is defined as the

imit of the y -conditional target variance for y → ∞ , 11 

∗ � lim 

y →∞ 

α(y ) = sup A . (11)

he target variance always exists as an element of ( N , ∞ ]. 12 If α∗ is

nite, then necessarily α(y ) = α∗ for all y ≥ (α∗ − N) /a 2 . Provided

he minimization problem in ( IA 

′ ) is convex (to be established be-

ow), one further obtains that α(y ) = N + a 2 y for y < (α∗ − N) /a 2 ,

hence 

(y ) = min { α∗, N + a 2 y } , 
or all y ∈ Y . Corresponding to the y -conditional variance thresh-

ld, by Eq. (7) one can derive an equivalent information-acquisition

olicy of the form 

(y ) = 

√ 

a 2 

α(y ) − N 

− 1 

y 
, y > 0 , 

nd ν(0) = 0 . The last relation defines a “( y ∗, α∗)-threshold policy,”

elative to the target variance α∗ and the variance threshold 

 

∗ � 

α∗ − N 

a 2 
< ∞ , 

hich can be written in the form 

(y ) = 

√ [
a 2 

α∗ − N 

− 1 

y 

]
+ 

= 

√ [ 
1 

y ∗
− 1 

y 

] 
+ 
, y ∈ Y, (12)

here ν(0) � lim y → 0 + ν(y ) = 0 , by continuous completion. If α∗ =
 , then y ∗ = ∞ , and for any finite y it is therefore best to not

cquire information, so ν(y ) = 0 for all y ∈ Y . Note that the situ-

tion with infinite variance threshold is already contained as lim-

ting case in Eq. (12) ; the latter can therefore be used as a gen-

ral representation for the (optimal) information-acquisition policy,

ncluding the case where there is no information collection at all

for y ∗ = ∞ ). 

roposition 5. Provided that A is convex, the ( y ∗, α∗) -threshold pol-

cy in Eq. (12) is optimal. 

In what follows, we first describe the “autonomous” behavior of

he variance when no information is collected. We then focus on

he basic shapes of the optimal cost K 2 based on whether y ∗ = ∞
zero information acquisition) or y ∗ < ∞ (positive information ac-

uisition). Then we establish the convexity of A and the optimal

ariance threshold (or equivalently, the optimal target variance),

epending on the problem parameters. 
n =1 

equence (α(y n )) ∞ n =1 converges towards the smallest upper bound, lim n →∞ α(y n ) = 

∗ = sup A = lim n →∞ ( sup A y n ) ; see, e.g., Rudin (1976 , Theorem 3.14 ) . 
12 For details on the (affine) extension of the real numbers, R̄ = [ −∞ , + ∞ ] , see, 

.g., Aubin (1977 , Section 1.3 ) . 
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3.2.2. Autonomous variance trajectory 

When the decision maker acquires no information, then the

posterior variance y ′ = N + a 2 y at the end of any given period is

determined recursively by the prior variance y at the beginning of

that period. Thus, using the geometric-series formula, after n > 0

periods without information acquisition the system variance be-

comes 

y (n ) = 

{
N + ny, if a = 1 , 

ȳ + a 2 n (y − ȳ ) , otherwise, 
(13)

where (for a � = 1) we set 13 

ȳ � 

N 

1 − a 2 
. (14)

The stability properties of the system variance depend on the mag-

nitude of a . 

Lemma 1. Let y ∈ Y be a given prior variance at a certain time t ≥ 0,

and assume that there is no (further) information acquisition. (i) For

a < 1, the variance ȳ > N is a globally asymptotically stable steady

state, which is approached monotonically at the exponential rate

ln (1/ a 2 ) : lim n →∞ 

y (n ) = ȳ . (ii) For a ≥ 1, the system variance diverges

monotonically: y ( n ) ↑∞ as n → ∞ , at the exponential rate ln ( a 2 )

for a > 1, or linearly for a = 1 . 

The preceding result establishes an important dichotomy for

the autonomous behavior of the variance, in terms of the parame-

ter a , namely whether the system is expanding ( a ≥ 1) or contract-

ing ( a < 1). The noise of a contracting system, if left alone, is such

that its variance converges towards the steady state ȳ in Eq. (14) ,

which is increasing in a . By contrast, the noise of an expanding

system keeps on increasing. When left alone, i.e., without informa-

tion acquisition, its variance becomes eventually larger than any

finite bound. 

3.2.3. Optimal cost without information acquisition 

Since the law of motion for the variance in problem ( P ′ ′ ) be-

comes affine when no information is collected, the corresponding

cost of the information-acquisition problem ( IA 

′ ) can be obtained

in closed form. 14 

Lemma 2. Let a < 1 / 
√ 

β . If after reaching the variance y , no fur-

ther information is collected, then the optimal cost in the information-

acquisition problem ( IA 

′ ) is 15 

K 2 (y ) = 

r 

1 − βa 2 

(
βN 

1 − β
+ y 

)
. (15)

The “no-information cost” is positively affine in the prior vari-

ance y and in the variance N of the system noise. It is also linearly

increasing in the policy parameter r , as well as increasing in the

system parameter a and the discount factor β ∈ (0, 1). For any ad-

missible parameters, this cost stays finite. 

3.2.4. Optimal cost with information acquisition 

At any prior variance y , for which information acquisition is op-

timal, the envelope theorem (see, e.g., Dixit, 1990 ) applied to ( IA 

′ )
yields 

K 

′ 
2 (y ) = r + βP a 2 + 

1 

y 2 
> 0 , (16)
13 The constant ȳ takes on negative values if (and only if) a > 1; it can therefore 

be interpreted as a system variance only if a < 1. For a derivation of Eq. (13) , see 

the proof of Lemma 1 . 
14 No information collection may be optimal only if a < 1 / 

√ 

β, which is therefore 

included in Lemma 2 ; for details see Proposition 9 below. 
15 In the proof of Lemma 2 , we use the implicit assumption that no information 

acquisition is optimal in a (one-sided) neighborhood of y . 

K . 

 

f

E

mplying that the optimal information-acquisition cost increases

n y . This in turn means that if it is optimal to acquire informa-

ion for a given prior variance y , then it is also optimal to acquire

nformation for any prior variance that exceeds y . 

emma 3. If there is a variance threshold y ∗ > N such that informa-

ion acquisition is optimal for y ≥ y ∗, then the optimal cost in the

nformation-acquisition problem ( IA 

′ ) is 

 2 (y ) = k 0 + k 1 y − 1 

y 
, y ≥ y ∗, 

here k 0 and k 1 are nonnegative constants. 

The optimal cost with information acquisition is increasing and

oncave in the prior variance y ; the constants k 0 , k 1 are specified

n Eq. (38) of Appendix A . 

.2.5. Information acquisition for expanding systems ( a ≥ 1) 

Let a ≥ 1. Given information acquisition, by substituting K 2 from

emma 3 into the definition of the cost-improvement set A in

q. (10) the target variance α∗ in Eq. (11) becomes 

∗ = sup 

{
y ′ > N : 

β

(y ′ ) 2 −
a 2 

(y ′ − N) 2 
− � < 0 

}
. (17)

here � � β((1 − βa 2 ) P − r) acts as a “discriminant” of the

nformation-acquisition problem. As is shown below (see

roposition 9 ), whenever �≥ 0 no information collection is opti-

al (i.e., α∗ = ∞ ). For �< 0, the target variance becomes finite

nd we therefore consider the corresponding ( y ∗, α∗)-threshold

olicy in Eq. (12) with y ∗ = (α∗ − N) /a 2 . 

emma 4. For an expanding system (a ≥ 1 ), the cost-improvement set

 is convex. 

The condition that a ≥ 1 in the preceding result is tight in the

ense that for any a < 1, there exists a discount factor β ∈ (0, 1) and

 prior variance y ∈ Y, both large enough, so that the convexity of

he minimand in ( IA 

′ ) is violated. 

roposition 6. (i) If �< 0, then the (y ∗1 , α
∗
1 ) -threshold policy ν( ·)

s optimal, where y ∗
1 

� (α∗
1 

− N) /a 2 is the unique optimal variance

hreshold, and the optimal target variance α∗
1 

is the unique solution

f 16 

β

(α∗
1 
) 2 

− a 2 

(α∗
1 

− N) 2 
= �. (18)

ii) If �≥ 0, then no information acquisition is optimal, i.e., y ∗
1 

= α∗
1 

=
 and ν( y ) ≡ 0 . 

If the time- t variance y t exceeds the variance threshold y ∗
1 
,

hen it is optimal to set v ∗t = ν(y t ) to reduce the variance to α∗
1 

.

hereafter, the decision maker acquires a constant amount of infor-

ation in each period t + n, by setting v ∗t+ n = ν(α∗
1 
) , resulting in

 t+ n = α∗
1 

for all n > 0. Note that in the special case where y t = y ∗
1 
,

hen—even though y t+1 is larger than y t —information acquisition

s positive, since otherwise the time- (t + 1) variance would exceed

he target variance (because in that case y t+1 = N + a 2 y t > α∗
1 

). 

orollary 1. For y ≥ y ∗1 , the optimal information-acquisition cost is 

 2 (y ) = 

(
r + βP a 2 

)
y − 1 

y 
+ 

1 

1 − β

(
βP N − �α∗

1 + 

a 2 

α∗
1 

− N 

− β

α∗
1 

)
(19)
16 As solution to a quartic equation, the value of α∗
1 can be obtained in closed 

orm; see, e.g., Shmakov (2011) and the references therein. In Appendix A , 

q. (51) provides an explicit expression using Cardan’s formula. 
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Fig. 1. Optimal variance trajectories for an expanding system. 
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or y < y ∗1 , the optimal information-acquisition cost is 17 

 2 (y ) = r 

n ∗−1 ∑ 

n =0 

βn y (n ) + βn ∗ K 2 (y (n ∗) ) , (20)

here y ( n ) , for n > 0, is given in Eq. (13) , y (0) � y ≥ y (n ∗) , and 

 

∗ � inf { n > 0 : y (n ) > y ∗1 } 

= 

{ � (y ∗1 − N) /y � , if a = 1 , ⌈ 
1 

ln (a 2 ) 
ln 

(
(1 −a 2 ) y ∗1 −N 

(1 −a 2 ) y −N 

)⌉ 
, otherwise. 

Despite the fact that the cost is convex in v , the threshold pol-

cy is such that it is optimal for the decision maker to decrease

he system variance directly to the target variance. Thus, even if y

s very large, a full decrease of the variance to α∗
1 

in a single

eriod is better than multiple partial decreases. The intuition for

his is that first, the information-acquisition cost is in fact linear

n the precision v 2 of the observed signal. Second, the reduction

n variance has not only the advantage of avoiding large future

nformation-acquisition costs, it also decreases the cost of variance

or the system, as implied by the policy parameter r . The policy

arameter needs to be sufficiently large (see Proposition 11 below)

or the discriminant � to become negative, which in turn is neces-

ary and sufficient for the control of expanding systems to benefit

rom information acquisition (according to the threshold policy in
17 The β-discounted partial sum of variances can be written more simply as fol- 

ows: 

 

∗−1 ∑ 

n =0 

βn y (n ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

(
1 −βn ∗

1 −β

)
y + 

Nβ
(1 −β) 2 

[
(1 − βn ∗ ) − (1 − β) n ∗βn ∗

]
, if a = 1 , (

1 −βn ∗

1 −β

)
ȳ + n ∗( y − ȳ ) , if a = 1 / 

√ 

β, (
1 −βn ∗

1 −β

)
ȳ + 

(
1 −(βa 2 ) n 

∗

1 −βa 2 

)
( y − ȳ ) , otherwise. 

s  

m  

c

 

t  

A
t

roposition 6 ) to be optimal. The choice of r becomes irrelevant

hen a is sufficiently large relative to the discount factor (so that

here is always net present growth of the system in future peri-

ds). 

orollary 2. If a ≥ 1 / 
√ 

β, then the (y ∗
1 
, α∗

1 
) -threshold policy is opti-

al. 

Fig. 1 shows a typical variance trajectory. Starting at y > y ∗1 , one

an directly reduce the system variance to α∗
1 ; thereafter the vari-

nce is kept at α∗
1 

. On the other hand, with an initial value y < y ∗
1 
,

here is no information acquisition until the variance surpasses y ∗
1 
.

he variance is kept at α∗
1 by acquiring information of precision

(v ∗) 2 = 

a 2 

α∗
1 
−N − 1 

α∗
1 

in each subsequent period. 

.2.6. Information acquisition for contracting systems ( a < 1) 

Let a < 1. As noted in Section 3.2.3 , the variance of a contracting

ystem tends towards a steady state ȳ > N, in the absence of infor-

ation acquisition. The optimal information-acquisition policy de-

ends on whether the (unconditional) target variance α∗ lies above

r below ȳ . The reason for this comes from difference in direction

f the autonomous variance movement after the optimal target has

een attained. While for α∗ < ȳ , the variance grows without infor-

ation, it shrinks autonomously when α∗ > ȳ . Hence, in the for-

er situation, noise leveling is optimal (just as it is for expanding

ystems), whereas in the latter situation it is best to perform at

ost a one-time noise attenuation, and then let the variance de-

rease (towards the steady state) on its own. 

The magnitude of the target variance depends on the magni-

ude of the discriminant �, 18 and we denote by ˆ � the subcritical
18 The dependence of α∗ on � is monotonic: �1 < �2 implies that A| �=�1 
⊂

| �=�2 
, which yields α∗| �=�1 

≤ α∗| �=�2 
. Moreover, it is straightforward to show 

hat for any α0 ∈ ( N , ∞ ], there exists a finite �0 ≤ 0 such that α∗| �=�0 
= α0 . 
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Fig. 2. Variance trajectories for a contracting system (with y ∗ > ȳ ). 
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discriminant threshold , such that α∗| 
�= ̂ �

= ȳ . The next results es-

tablish the optimal information-acquisition policies for “subcritical

systems” (where � < 

ˆ �) and “critical systems” (where ˆ � ≤ � <

0 ), respectively. 

Subcritical Systems ( � < 

ˆ �). In expanding systems, informa-

tion collection always leads to noise leveling, and information col-

lection takes place if the discriminant � is below the critical value

of zero. In contracting systems, noise leveling is obtained if the dis-

criminant lies below the subcritical discriminant threshold, 

ˆ � � −1 − βa 2 

(a ̄y ) 2 
, (< 0) (21)

which, consistent with Eq. (17) applied to the case where a < 1, is

such that α∗| 
�= ̂ �

= ȳ . 

Lemma 5. For a contracting system (a < 1 ), the ȳ -conditional cost-

improvement set A ȳ is convex. 

If the target variance α∗ lies in (N, ̄y ] , then after reaching it, the

variance will again increase (towards ȳ ), thus producing a noise-

leveling policy akin to the optimal information-collection policy for

expanding systems. 

Proposition 7. If � < 

ˆ �, then the (y ∗
2 
, α∗

2 
) -threshold policy ν( ·) is

optimal, where y ∗
2 

� (α∗
2 

− N) /a 2 ∈ (N, ̄y ] is the unique optimal vari-

ance threshold, and the optimal target variance α∗
2 < ȳ is the unique

solution of 

β

(α∗
2 
) 2 

− a 2 

(α∗
2 

− N) 2 
= �. (22)

The intuition for the optimality of the (y ∗2 , α
∗
2 ) -threshold policy

is simple. By construction, the target variance of a subcritical sys-

tem lies in A ȳ . Since this target variance is in fact unconditional, by

Eq. (10) the ȳ -conditional cost-improvement set A ȳ must be equal

to the unconditional cost-improvement set A , which is therefore
lso convex. The optimality of the threshold policy is then obtained

s a consequence of Proposition 5 at the outset of Section 3.2 . Note

lso that Eq. (22) justifies ex post the application of Eq. (17) in the

ase of subcritical systems to obtain the subcritical discriminant

hreshold in Eq. (21) . 

orollary 3. For a subcritical system ( � < 

ˆ �), the information-

cquisition cost K 2 ( y ) of the (y ∗
2 
, α∗

2 
) -threshold policy is provided by

q. (19) for y ≥ y ∗
2 

(with α∗
1 

replaced by α∗
2 

), and by Eq. (20) for

 < y ∗2 . 

The optimal information-acquisition cost for noise-leveling poli-

ies is always given by Eqs. (19) and (20) , for both expanding and

ubcritical contracting systems. 

Critical Systems ( ̂  � ≤ � < 0 ). When the target variance α∗
3 ex-

eeds the steady state ȳ of a contracting system, information can

e collected at most once. The reason is that the variance thresh-

ld y ∗3 to trigger information acquisition can never be reached

gain, once the target variance has been reached. 

roposition 8. If ˆ � ≤ � < 0 , then the (y ∗
3 
, α∗

3 
) -threshold policy ν( ·)

s optimal, where y ∗
3 

� (α∗
3 

− N) /a 2 = 

√ 

(1 − βa 2 ) / (−�a 2 ) is the

nique variance threshold, and the optimal target variance α∗
3 ≥ ȳ is

iven by 

∗
3 = N + a 

√ 

1 − βa 2 

(−�) 
. (23)

Fig. 2 depicts a typical variance trajectory under the noise-

ttenuation policy in Proposition 8 . Starting at y ≥ y ∗
3 
, the deci-

ion maker acquires information to achieve the target variance
∗
3 

. Thereafter, as in the case without information acquisition

when y < y ∗
3 
), the variance converges autonomously to ȳ . As be-

ore, the optimal threshold policy implies the optimal information-

cquisition cost for the decision maker. 
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orollary 4. Let ˆ � ≤ � < 0 . For y ≥ y ∗3 , the optimal information-

cquisition cost is 

 2 (y ) = 

(
r + βP a 2 

)
y − 1 

y 
+ 

1 

1 − βa 2 

(
βrN 

1 − β
− �(α∗

3 − N) 

)

+ 

a 2 

α∗
3 

− N 

. (24) 

or y < y ∗
3 
, the optimal information-acquisition cost is 

 2 (y ) = 

r 

1 − βa 2 

(
y + 

βN 

1 − β

)
. (25)

In the remainder of this section, we first summarize the solu-

ion to the joint system-stabilization and information-acquisition

roblem, and then discuss the choice of the policy parameter r

ith respect to the reduced problem ( P ′ ′ ) and the original decision

roblem (P) . 

.3. Optimal synthesis: noise leveling vs. noise attenuation 

When presented with an infinite-horizon optimal control prob-

em (P) in its general form, given a parameter vector θ =
(A, B, C, p 0 , p 1 , p 2 , q, M, N̄ , β, γ , δ) , the first step towards its solu-

ion is to find the reduced parameter vector θ ′ = (a, b, r, s, N, β) ,

sing the transformations in Proposition 2 , for the equivalent

educed-form decision problem ( P ′ ′ ). The reduced-form decision

roblem can be decomposed into a system-stabilization problem

SS) and an information-acquisition problem (IA) , which can be 

olved separately. The former yields the optimal system control u ∗t 
nd the latter the optimal information control v ∗t , for all t ≥ 0. 

roposition 9. (i) The system-stabilization problem leads to the

ptimal state-feedback law μ( x ) in Eq. (6) , valid for any (trans-

ormed) state x ∈ X , so that u ∗t = μ(x t ) for all t ≥ 0, where the initial

tate x 0 is given. (ii) The solution to the information-acquisition prob-

em (IA) consists of a feedback law ν( y ) for the (transformed) vari-

nce y ∈ Y, so that v ∗t = ν(y t ) , for all t ≥ 0, where the initial vari-

nce y 0 is given. The optimal information-acquisition policy is always

 ( y ∗, α∗) -threshold policy described by Eq. (12) , which can be found

s follows: 19 

1. Determine whether the system is expanding (a ≥ 1 ) or contract-

ing (a < 1 ), and compute the discriminant for the information-

acquisition problem, � � β((1 − βa 2 ) P − r) , where P is given in

Eq. (5) . 

2. If the system is expanding, then the (y ∗1 , α
∗
1 ) -threshold policy is

optimal, as specified in Proposition 6 . (For �≥ 0, the optimal pol-

icy amounts to no information collection.) 

3. If the system is contracting, then determine the criticality of the

system by comparing the � to the subcritical discriminant thresh-

old ˆ � � −(1 − βa 2 ) / (a ̄y ) 2 , where ȳ � N/ (1 − a 2 ) . 

(3a.) If � < 

ˆ �, then the (y ∗
2 
, α∗

2 
) -threshold policy ν( ·) is optimal, as

specified in Proposition 7 . 

(3b.) If ˆ � ≤ � < 0 , then the (y ∗
3 
, α∗

3 
) -threshold policy ν( ·) is opti-

mal, as specified in Proposition 6 . 

(3c.) If �≥ 0, then no information acquisition is optimal,

so ν( y ) ≡ 0 . 

Fig. 3 shows the three regimes for the optimal information-

cquisition policy in ( r , a )-space. The intercept at a = 1 / 
√ 

β is

onsistent with Corollary 2 . Note also that all the curves � = 

ˆ �,

= 0 , and a = 1 intersect at the same point, ( ̄r , 1) , where r̄ is
19 We refer to the information-acquisition policy under 2. and 3a. as noise leveling , 

nd to the information-acquisition policy under 3b. as noise attenuation . A closed- 

orm solution to the quartic Eqs. (18) and (22) , needed for determining the optimal 

hresholds of the noise-leveling policies, is provided in Appendix A . 

t  

fi  

o  
mplicitly determined by a zero discriminant at a = 1 , i.e., by the

ondition �| (r,a )=( ̄r , 1) = 0 . 

Equipped with the optimal state-variance feedback law (μ, ν) :

 × Y → U × V for the reduced-form decision problem ( P ′ ′ ), given

ny initial value ( x 0 , y 0 ), the optimal feedback law ( ̂  μ, ̂  ν) for the

riginal problem (P) is obtained by setting 

( ̂  μ( ̂  x ) , ̂  ν( ̂  V )) � 

( 

μ( ̂  x /λ) √ 

γ ′ , 
ν( ̂  V /λ2 ) √ 

δ′ 

) 

, (26)

or all ( ̂  x , ̂  V ) ∈ X × Y, where λ � 

4 
√ 

δM/ (p 2 + q ) / 
√ 

C > 0 is a scal-

ng factor and γ ′ , δ′ are as in footnote 7. The state-variance feed-

ack law ( ̂  μ, ̂  ν) solves (P) for any given initial value ( ̂  x 0 , ̂  V 0 ) =
( ̄x 0 , N̄ 0 ) . The optimal cost function 

ˆ K for (P) is found via an affine

ransformation of the reduced cost K = K 1 + K 2 as in Proposition 2 ,

o 

ˆ 
 ( ̂  x , ̂  V ) = 

p 0 
1 − β

+ (p 2 + q ) λ2 ·
(
K 1 ( ̂  x /λ) + K 2 ( ̂  V /λ2 ) 

)
, (27)

or all ( ̂  x , ̂  V ) ∈ X × Y, where K 1 ( ·) is specified in Proposition 4 and

 2 ( ·) is given in Corollary 1 (for expanding systems),

orollary 3 (for subcritical systems), Corollary 4 (for critical

ystems), and Lemma 2 (for supercritical systems, with �≥ 0). 

.4. Choosing the policy parameter 

For a given parameter vector θ in the original decision problem

P) , the parameter q > 0 describes the marginal cost of the state

ariance ˆ V t at time t . When transforming (P) to its reduced form

 P ′ ) using Proposition 2 , all components of the reduced parameter

ector θ ′ , with the exception of the system parameter a and the

iscount factor β , depend on q = p 2 r/ (1 − r) , or equivalently, on

he “policy parameter” r = q/ (p 2 + q ) ∈ (0 , 1) . 

emark 8. To be clear, both q and r are policy parameters, the

ormer in the original decision problem (P) and the latter in the

quivalent reduced-form problem ( P ′ ′ ). For a given value of p 2 , the

elation between q ∈ (0, ∞ ) and r ∈ (0, 1) is one-to-one. The analy-

is of the comparative statics in the reduced policy parameter r is

ore convenient than in q because one obtains multiplicative sep-

rability (e.g., p 2 + q = (1 − r) −1 p 2 ). On the other hand, any opti-

al value for r implies a unique optimal value for q as well. 

Let ˆ θ ′ be the reduced parameter vector θ ′ with the compo-

ents a , r , β deleted. Then, as a function of r it is 

ˆ ′ (r) = (b, s, N) = 

(
(1 − r) −1 / 2 b 0 , (1 − r) 3 / 4 s 0 , (1 − r) −1 / 2 n 0 

)
, 

here ˆ θ ′ 
0 = (b 0 , s 0 , n 0 ) � (B 

√ 

p 2 /γ , p 1 / (p 2 λ0 ) , N̄ /λ2 
0 ) is the re-

uced parameter vector for r → 0 + , with λ2 
0 

� 

√ 

δM/p 2 /C. We

ow examine the impact of r on the optimal feedback law in

q. (26) and on the optimal cost in Eq. (27) . The latter can be writ-

en in the form 

ˆ 
 ( ̂  x , ̂  V ) = 

p 0 
1 − β

+ 

ˆ K 1 ( ̂  x ) + 

ˆ K 2 ( ̂  V ) , 

or all ( ̂  x , ̂  V ) ∈ X × Y, where ˆ K 1 ( ̂  x ) � ( 
p 2 λ

2 

1 −r ) K 1 ( ̂  x /λ) and 

ˆ K 2 ( ̂  V ) �
( 

p 2 λ
2 

1 −r ) K 2 ( ̂  V /λ2 ) . 

.4.1. Impact of r on system-stabilization policy 

To understand the impact of the policy parameter on the op-

imal policy and the behavior of the regulated system in (P) we

rst examine how r affects the components P , Q , R of the

ptimal system-stabilization policy in Proposition 4 . By setting

(P 0 , Q 0 , R 0 ) � (P, Q, R ) | r→ 0 + , one obtains 

(P, Q, R ) = 

(
(1 − r) P 0 , (1 − r) 3 / 4 Q 0 , (1 − r) 1 / 2 R 0 

)
. 
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Fig. 3. Regimes of the optimal information-acquisition policy in ( r , a )-space. 
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This dependence on r of the state feedback in the reduced problem

compensates for the scaling required to obtain the solution of the

original problem. 

Proposition 10. The optimal state-feedback law for (P) is of the

form 

20 

ˆ μ( ̂  x ) = − (b 0 / 
√ 

γ ′ 
0 
) 

P 0 b 
2 
0 

+ 1 /β

(
P 0 a 

(
ˆ x 

λ0 

)
+ 

Q 0 

2 

)
, (28)

for all ˆ x ∈ X . It remains unaffected by the choice of the policy param-

eter r (and q), i.e., d μ( ̂  x ) /d r ≡ 0 . 

The invariance of the optimal system-stabilization policy with

respect to r implies that the monetary expenditure for reaching the

target state, i.e., the pure control cost ( γ (u ∗t ) 
2 with u ∗t = ˆ μ( ̂  x t ) ) is

independent of the policy parameter. Thus, the system stabilization

cost in the overall objective function decreases linearly in r . 

Corollary 5. The optimal system-stabilization cost for (P) is ˆ K 1 ( ̂  x ) ≡
p 2 
[
P 0 ̂  x 2 + λ0 Q 0 ̂  x + λ2 

0 
R 0 
]
. 

The state-feedback law in Eq. (28) is nonlinear and its absolute

value generically nonmonotonic in p 2 . 

3.4.2. Impact of r on information-acquisition policy 

As noted in Section 3.3 , depending on the value of the discrim-

inant � = (1 − r)�0 − rβ, where �0 � �| r→ 0 + = (1 − βa 2 ) βP 0 ,

the optimal information-acquisition policy for (P) is to acquire

no information at all ( �≥ 0), to perform noise attenuation ( ̂  � ≤
� < 0 ), or to perform noise leveling ( � < 

ˆ �). Both the dis-

criminant � and the subcritical discriminant threshold 

ˆ � = (1 −
20 P 0 = (2 b 2 0 ) 
−1 

(
a 2 + b 2 0 − 1 /β + 

√ 

(a 2 + b 2 
0 

− 1 /β) 2 + 4 b 2 
0 
/β
)
, Q 0 = ( P 0 b 

2 
0 − a + 1 / 

β) −1 (P 0 b 
2 
0 + 1 /β) s 0 , and R 0 = −(β/ (1 − β)) 

(
P 0 b 

2 
0 + 1 /β

)−1 
(Q 0 / 2) 2 b 2 0 ; moreover, 

γ ′ 
0 = γ / (p 2 λ2 

0 ) , and ˆ θ ′ 
0 = (b 0 , s 0 , n 0 ) with λ0 as introduced earlier. 

p  

a

P  

d  

a

) ̂  �0 , with 

ˆ �0 � 

ˆ �| r→ 0 + = −(1 − βa 2 ) / (a 2 ȳ 2 
0 
) (and ȳ 0 as given in

roposition 11 below), depend on the policy parameter r . 

roposition 11. The optimal variance-feedback law for (P) is of the

orm 

ˆ ( ̂  V ) = λ2 
0 

√ 

p 2 
δ

[
1 

ˆ V 

∗(r) 
− 1 

ˆ V 

]
+ 
, (29)

here ˆ V ∗(r) � λ2 y ∗(r) = λ2 
0 
(1 − r ) 1 / 2 y ∗(r ) is the variance threshold

nd 

 

∗(r) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∞ , if 0 < r ≤ r , ( ‘no information acquisition’ ) 
y ∗1 (r) , if r < r < 1 and a ≥ 1 , ( ‘noise leveling’ ) 
y ∗2 (r) , if ˆ r < r < 1 and a < 1 , ( ‘noise leveling’ ) 
y ∗3 (r) , if r < r ≤ ˆ r and a < 1 , ( ‘noise attenuation’ )

(30)

s the corresponding threshold for ( P ′ ′ ), with the critical values 

 � 

�0 

β + | �0 | = 

(1 − βa 2 ) P 0 
1 + | 1 − βa 2 | P 0 , 

nd 

ˆ 
 � 

�0 − ˆ �0 

β + | �0 − ˆ �0 | 
= 

(1 − βa 2 )(P 0 + (a ̄y 0 ) 
−2 ) 

1 + | 1 − βa 2 | (P 0 + (a ̄y 0 ) −2 ) 
, 

or the policy parameter r ∈ (0, 1), with ȳ 0 � ȳ | r→ 0 + = N 0 / (1 − a 2 )

or a < 1 . 

The dependence of the feedback law in Eq. (29) on the policy

arameter r varies with the regime of the optimal information-

cquisition policy. 

roposition 12. The optimal information-acquisition policy ˆ ν( ̂  V ) is

ecreasing in r for noise leveling and increasing in r for noise attenu-

tion, and otherwise constant (zero). 
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The piecewise monotonic behavior of information acquisition

ith respect to the policy parameter means that maximal one-time

nformation acquisition (with respect to r ) occurs for contracting

ystems when the decision maker achieves noise leveling by just

oing noise attenuation. 

orollary 6. The optimal variance-feedback law ˆ ν( ̂  V ) is maximal for

 = max { 0 , r , ̂  r } . 
The overall information-acquisition cost is not necessarily

onotonic in the policy parameter. 

emma 6. The change of the optimal information-acquisition cost

ith respect to the policy parameter is 

d ̂  K 2 ( ̂  V ) /dr 

ˆ K 2 ( ̂  V ) 
= 

[
1 + ε2 (y ) 

2(1 − r) 
+ 

∂ K 2 (y ) /∂ r 

K 2 (y ) 

]∣∣∣∣
y = ̂ V /λ2 

(31) 

here ε2 (y ) � yK 

′ 
2 (y ) /K 2 (y ) ≥ 0 is the cost elasticity with respect to

he variance. 

For large values of r , the first term in Eq. (31) dominates the

econd term: increasing the decision maker’s attention on variance

eduction also increases the overall cost of information acquisition.

.4.3. Implications for the choice of r 

The policy parameter r (or q ) can be used to accomplish addi-

ional objectives in the decision problem (P) . One can think of a

ocial planner who by choosing r can adapt the optimal policy and

ost. 21 For example, given the tradeoff between speed of target at-

ainment and accuracy, it can play an important role in the cred-

ble achievement of timed policy goals, such as the reduction tar-

ets implied by the Intended Nationally Determined Contributions

INDC) from individual nations at the 2015 Climate Conference in

aris (COP21), discussed in the next section. There we show that

n intermediate value of the policy r can maximize the probability

f reaching a given target at a fixed finite time horizon. 

. Application: dynamic emissions control and measurement 

As an application of the model, consider the problem of dy-

amic pollution control using closed-loop taxation ( Hoel & Karp,

002 ). Without a price for carbon, i.e., under business-as-usual

BAU) conditions, a representative firm’s random emissions level

t time t ≥ 0 is ē + 

˜ θt , where ē > 0 denotes the stationary BAU

missions level and 

˜ θt is an i.i.d. zero-mean normal random vari-

ble with homoscedastic variance σ 2 > 0. Given a time- t pollu-

ion tax τ t ≥ 0 and a quadratic abatement cost c( ̄e + θt − e t ) 
2 / 2 for

mission levels below the realized BAU emissions level ē + θt at

ime t (where the marginal abatement cost c > 0 is constant), the

rm’s total cost of emissions becomes 

C (e t ) = 

c( ̄e + θt − e t ) 2 + τt e t . 

2 

21 Selecting r so as to minimize the decision maker’s cost may seem to perfectly 

lign the social planner’s and the decision maker’s objectives, but in fact gives 

ise to an “ostrich bias” because an optimal r renders the lowest cost easiest to 

chieve, i.e., the one that perhaps ignores most of the difficulty. It also ignores 

ide-benefits such as the one discussed in Section 4 . A somewhat more aggres- 

ive and robust approach the social planner could take, quite different from align- 

ng objectives with the decision maker, would be to maximize the competitive ratio 

(r) � inf ˆ r ∈ (0 , 1) 

{
K̄ ∗( ̂ r ) / ̄K (u ∗(r) , v ∗(r) , ̂ r ) 

}
∈ [0 , 1] (see, e.g., Goel, Myerson, & Weber, 

009 ), so the solution performs reasonably well for any r , and the policy param- 

ter may therefore allowed to be ex-ante random with unknown distribution. For 

 given initial condition, we mean by K̄ ∗(r) > 0 the optimal cost given r (assumed 

ositive) and by K̄ (u ∗(r) , v ∗(r) , ̂ r ) the (generally sub optimal) cost, given the objec- 

ive function with policy parameter ˆ r , evaluated for a policy that is optimal for the 

olicy parameter r . Given p 0 = 0 , this analysis can be carried out for the reduced 

ost in the reduced-form decision problem ( P ′ ′ ). 

t

w  

t  
he representative firm’s optimal emissions level e t minimizes its

otal cost of emissions, so 

 t = ē + θt − (τt /c) , (32)

or all t ≥ 0. For simplicity, let us denote the regulator’s control

ariable by u t � τ t / c . The regulator’s goal is to reduce the current

andom emissions stock S 0 to a stationary target level S̄ ( < S 0 ) in

he long run. In other words, the regulatory problem is to steer the

andom excess pollution stock ˜ s t � S t − S̄ to zero, where S t denotes

he random pollution stock at time t ≥ 0. The excess pollution stock

volves according to 

˜ 
 t+1 = A ̃

 s t + B ̃

 e t = A ̃

 s t − Bu t + B ̄e + ˜ ε t , t ∈ T , 
here ˜ ε t � B ̃  θt . The system coefficient A ∈ (0, 1) is such that with-

ut further emissions the excess pollution stock would decrease

xponentially at the rate ln (1/ A ), which is the fastest trajectory to-

ards the target state. The control coefficient B = 1 indicates that

ll considered emissions are atmospheric. 

The decision maker, referred to here as “policy maker,” mini-

izes the sum of the expected abatement cost and the expectation

f the (excess) environmental damage, D ( ̃ s t ) � d ̃  s 2 t / 2 , where d > 0,

olving the problem 

min 

u 

∞ ∑ 

t=0 

βt 
E 

[
c( ̄e + 

˜ θt − e t ) 2 

2 

+ 

d ̃  s 2 t 

2 

∣∣∣∣s̄ 0 , N̄ 0 

]
, 

s.t. ˜ s t+1 = A ̃

 s t − Bu t + B ̄e + ˜ ε t , t ∈ T , 
(33) 

here s̄ 0 , N 0 denote the mean and the variance of the excess pol-

ution stock at time t = 0 , respectively, and where β ∈ (0, 1) is a

iven discount factor. Let ˜ x t � κ − ˜ s t be the global emissions abate-

ent (including the “natural” abatement level S̄ ), where κ = 

B ̄e 
1 −A 

is

he BAU emissions steady state under zero taxes. Using a positive

ffine transformation of the objective function and substituting the

rms’ optimal emissions level e t , the regulator’s decision problem

s equivalent to 

min 

u 

∞ ∑ 

t=0 

βt 
E 

[
d ̃  x 2 t 

2 

− dκ ˜ x t + 

cu 

2 
t 

2 

∣∣∣∣x̄ 0 , N̄ 0 

]
, 

s.t. ˜ x t+1 = A ̃

 x t + Bu t + ˜ ε t , t ∈ T , 
(34) 

here ˜ ε t ∼ N (0 , N̄ ) i.i.d., and ˜ x 0 ∼ N ( ̄x 0 , N̄ 0 ) , with x̄ 0 � κ − s̄ 0 . 

Information about the uncertain time- t stock of the pollutant,

 t , can be acquired at a cost. Because of the affine relationship

etween the pollution stock and the global emissions abatement,

his is equivalent to obtaining an informative signal about ˜ x . Thus,

hrough a costly pollution-stock measurement the policy maker re-

eives a signal ˜ z t+1 = ˜ x t + ( ̃  ηt+1 / v t ) , where ˜ ηt+1 is (without loss of

enerality) normally distributed with mean 0 and variance M > 0.

his implies that the signal is unbiased and of precision v 2 t /M. As

n earlier sections, the cost of acquiring the informative signal is

ssumed to be linear in its precision. As in Section 2.2 , the reg-

lator’s emissions-control problem with information acquisition is

herefore 

ˆ K ( ̄x 0 , ̄N 0 ) 

= min 

(u, v ) 

∞ ∑ 

t=0 

βt 
E 

[
d ̂  x 2 t 

2 

− dκ ˆ x t + q ̂  V t + 

cu 

2 
t 

2 

+ δv 2 t 

∣∣∣∣x̄ 0 , N̄ 0 

]
, 

s.t. ˆ x t+1 = A ̂

 x t + Bu t + 

AC v t ̂  V t √ 

M + C 2 v 2 t 
ˆ V t 

ω t , ˆ x 0 = x̄ 0 , 

ˆ V t+1 = N̄ + A 

2 

(
1 − C 2 v 2 t 

ˆ V t 

M + C 2 v 2 t 
ˆ V t 

)
ˆ V t , ˆ V 0 = N̄ 0 , 

(u t , v t ) ∈ U × V, t ∈ T , 

here ( ̄x 0 , N̄ 0 ) describes the decision maker’s prior belief about

he distribution of the state at time t = 0 . Thus, the problem has
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Table 1 

Parameters for the global dynamic emissions-control and measurement problem. 

Symbol Value Unit Source 

A 0.97 – ( IPCC, 2014 ) 

B 1 – (Atmospheric emissions) 

C 0.75 – (Model) 

p 0 0 $ (Model) 

p 1 −3,986.4 × 10 9 ( = −dκ) $ /(GtCO 2 ) (Model) 

p 2 1.65 × 10 9 ( = d/ 2 ) $ /(GtCO 2 ) 
2 (Model) 

q policy parameter ( = p 2 r/ (1 − r) > 0 ) – (Model) 

M 2.25 × 10 4 (GtCO 2 ) 
2 (Estimated) 

N̄ 0 = N̄ 12.96 ( = B 2 σ 2 ) (GtCO 2 ) 
2 (Model) 

β 0.9524 – ( Arrow et al., 2004 ) 

γ 15.15 × 10 9 ( = c/ 2 ) $ /(GtCO 2 ) 
2 (Model) 

δ 5 × 10 6 $ (Estimated) 

c 30.3 × 10 9 $ /(GtCO 2 ) 
2 ( Weber & Neuhoff, 2010 ) 

d 3.3 × 10 9 $ /(GtCO 2 ) 
2 ( Weber & Neuhoff, 2010 ) 

ē 36.23 GtCO 2 ( IEA, 2015; IPCC, 2014; Weber & Neuhoff, 2010 ) 

S 0 820 GtCO 2 ( IPCC, 2014 ) 

S̄ 1080 GtCO 2 ( IEA, 2015; IPCC, 2014 ) 

x̄ 0 1468 ( = κ − (S 0 − S̄ ) ) GtCO 2 (Model) 

κ 1208 ( = B ̄e / (1 − A ) ) GtCO 2 ( IEA, 2015; IPCC, 2014; Weber & Neuhoff, 2010 ) 

σ 3.6 GtCO 2 ( IPCC, 2014 ) 
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t 2  
been rewritten in the form of the general decision problem (P) ,

with parameter vector θ = (A, B, C, p 0 , p 1 , p 2 , q, M, N̄ , β, γ , δ) ,

where (p 0 , p 1 , p 2 ) = (0 , −dκ, d/ 2) , γ = c/ 2 , and N̄ = B 2 σ 2 . 

4.1. Model identification 

The Intergovernmental Panel on Climate Change ( IPCC, 2014 )

estimates that cumulative anthropogenic carbon-dioxide (CO 2 )

emissions into the atmosphere between 1750 and 2011 were

2040 ± 310 metric gigatons (GtCO 2 ). About half of the cumulative

emissions occurred over the last 40 years of this period, and 40%

of the cumulative emissions have remained in the atmosphere

by 2011. 22 In simulation models with horizon up to the end of

the 21st century, the temperature increase depends almost lin-

early on cumulative emissions (ibid., p. 9). Based on these es-

timates, the International Energy Agency notes that for the ex-

pected average temperature increase, compared with preindustrial

(1870-)levels, to stay below 2 degrees Celsius with probability

of 50%, the remaining “carbon budget” would allow for approx-

imately 10 0 0 ± 150 GtCO 2 of additional emissions from the year

2014 onwards ( IEA, 2015 , p. 18; numbers slightly rounded for con-

venience). 

To estimate the system coefficient A , we use the IPCC (2014 ,

p. 4) CO 2 emissions data ˆ e τ from τ0 = 1750 to τ1 = 2010 for the

linear system 

ˆ S τ+1 = A ̂

 S τ + B ̂ e τ for B = 1 (atmospheric emissions)

and τ ∈ { τ 0 , τ 1 }. The annual carbon-dioxide outputs sum to the

IPCC cumulative emissions estimate of about 2040 GtCO 2 . For A =
0 . 97 , the atmospheric carbon-dioxide stock ˆ S τ1 

at the end of the

observation period corresponds to 40% of the cumulative emis-

sions estimate (i.e., S 0 = 

ˆ S τ1 
= 820 GtCO 2 ), consistent with IPCC’s

40% atmospheric persistence estimate. With the aid of the simu-

lated emissions data by the IEA (2015 , p. 39) we find that the tar-

get emissions stock level, which exhausts the 2 °C global-warming

carbon budget in the year 2040, is S̄ = 1080 GtCO 2 . The selected

discount factor of β = 0 . 9524 corresponds to an annual “social rate

of interest on consumption” of 5% ( Arrow et al., 2004 ). 

To determine the BAU emissions level ē , note first that about

11% of the global energy-related emissions (about 90% of the total

carbon-dioxide output) was subject to emissions-trading schemes

at an average price of about p = $ 7/tCO (IEA 2015, p. 23). On
2 

22 Absorption takes place via storage in plants and soils; oceans have absorbed 

about 30% of total emissions (ibid., p. 4). 

i

t

G

he other hand, 13% of energy-related emissions receive consump-

ion subsidies. Using the marginal cost estimate c = 30 . 3 × 10 9 

 ×( GtCO 2 ) 
−2 by Weber and Neuhoff (2010) , we separate the non-

nergy related and the non-priced emissions (assuming both as in-

lastic), so 

¯
 = ( 5 + (89%) × 31 + (11%) × 31 ) GtCO 2 + (p/c) ≈ 36 . 23 GtCO 2 

here the current effect of carbon pricing, p/c = (7 / 30 . 3) GtCO 2 ≈
 . 23 GtCO 2 , is almost negligible, leading to a current emissions

eduction of less than 1%. For our analysis, we neglect the time

rend, consistent with the relative stagnation of energy-related

arbon-dioxide emissions forecasts in the INDC scenario ( IEA, 2015 ,

. 62). 23 With this, we obtain the BAU emissions steady state un-

er zero taxes ( κ = 1208 GtCO 2 ). As in the IPCC emissions esti-

ates ( IPCC, 2014 , p. 5) we assume a 10% noise level in the emis-

ions, corresponding to a standard deviation of the macroeconomic

ncertainty of σ = 3 . 6 GtCO 2 . 

In 2011, the atmospheric concentration of CO 2 is estimated at

30 ± 90 parts per million (ppm), corresponding to a coefficient

f variation of about 20%. Given a quasi-linear relationship be-

ween atmospheric CO 2 concentration and cumulative emissions,

or the cumulative excess emission to be observable at 15% via the

oncentration (at 20% standard deviation), the observation coeffi-

ient is C = 15 / 20 = 0 . 75 . Therefore the observed signal z t of the

lobal emissions abatement ˜ x t must be in the order of 10 3 GtCO 2 . 
24 

s a result, M ≈ (0.15 × 10 0 0) 2 (GtCO 2 ) 
2 . Assuming, for simplicity,

hat atmospheric concentration estimates are based on measure-

ents by the NOAA Mauna Loa, Hawai’i, observatory alone and

hat the annual operating budget for a comparable weather sta-

ion is $ 5 million, the use of m such (spatially i.i.d.) measurements

ncreases the cost linearly and decreases the observational vari-

nce M proportionally; the information-acquisition cost becomes

= $ 5 × 10 6 , where m = v 2 t denotes the employed number of ob-

ervatories with i.i.d. measurements; see Table 1 . 

.2. Practical considerations 

To limit global warming to 2 °C with probability 50% by 2040,

he remaining emissions budget of about 1,0 0 0 GtCO must not
23 The simple model in this paper incorporates neither economic growth dynam- 

cs, nor innovation and substitution of traditional energy sources by renewables, 

hus implicitly assuming that one effect cancels the other. 
24 For example, x̄ 0 = κ − (S 0 − S̄ ) = 1468 GtCO 2 , so E [ ̃ z 0 ] = (3 / 4) E [ ̃ x 0 ] = 1101 

tCO 2 . 
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Fig. 4. Uncertain state evolution for (a) r = 0 . 1 and (b) r = 0 . 9 , with an uncertain initial value ˜ x 0 . 
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e spent before the end of this horizon ( IPCC, 2014 ). The param-

ter values in Section 4.1 were chosen as if the global emissions-

ontrol and measurement problem was formulated in infinite hori-

on. Naturally, because of the many uncertainties regarding the

istant future (see Fig. 4 ), it is unreasonable to expect the infinite-

orizon solution of the decision problem (P) to be of great use

ven after, say, 10 to 20 years. Yet, it is always possible to re-

olve the problem in the future, leading to a receding-horizon

olicy (see, e.g., Bemporad & Morari, 1999; Weber, 1997 ). 25 To

eed the IPCC recommendations, the decision maker can use the

olicy parameter r (or q ) to maximize the probability of being

n the target interval with cumulative emissions (since 1750) of

040 ± 150 GtCO 2 . In our model (which takes into account atmo-

pheric self-cleansing), this corresponds to S T ∈ [1025, 1135] GtCO 2 ,

here T = 2040 − 2011 (with 2011 as the starting date). Thus, as

entioned in Section 3.4.3 , the policy maker may select a policy-

arameter value r = r ∗ (or equivalently, q ∗ = p 2 r 
∗/ (1 − r ∗) ) so the

stimated global emissions abatement ˆ x T , at t = T , lies in some in-

erval. For example, to achieve global carbon-abatement goals, a

ecision maker may set the policy parameter to maximize the like-

ihood that E T [ S T ] (which is a random variable at time zero) lies in

he interval [ S T , S̄ T ] , by solving 26 

 

∗ ∈ arg max 
r∈ [0 , 1] 

P (E T [ S T ] ∈ [ S T , S̄ T ]) = arg max 
r∈ [0 , 1] 

P ( ̂  x T ∈ [ x T , ̄x T ]) , 

here x T � κ − ( ̄S T − S̄ ) and x̄ T � κ − ( S T − S̄ ) are the correspond-

ng thresholds in the state space. Note that conditional on the

nformation at time t = 0 , the distribution of the random vari-

ble ˆ x T is Gaussian with mean E 0 [ ̂ x T ] (computed using iter-

ted expectations, and using the optimal state-feedback law in

roposition 10 ) and deterministic variance ˆ V T (computed using the

ptimal variance-feedback law in Proposition 11 ). Fig. 5 shows the

arget-achievement probability as a function of r ∈ (0, 1) for a given

nterval [ x T , ̄x T ] of time- T values of ˆ x T with an interior maximum at
25 In response to significant outside shocks to the state, e.g., the recent forest fires 

n Canada, which can be in the order of several GtCO 2 ( Lamberty, Peckham, Ahl, 

 Gower, 2007 ), it is possible to resolve the decision problem with an updated 

shifted) belief distribution (amounting to a translated value of the initial state). 
26 For optimization purposes, we allow for values in the compact closure [0, 1] of 

he domain of r . 

�  

t  

I  

c

7

 

∗ ≈ 0.38. The solution of the climate-control problem (formulated

s decision problem (P) ) further yields that for values of the pol-

cy parameter r below r ≈ 0.2438, it is best to not acquire any in-

ormation. With a subcritical system (when r ≥ ˆ r ≈ 0 . 2440 ), noise

eveling is optimal. Specifically, for r = 0 . 4 , one obtains a station-

ry information-acquisition policy, equivalent to using about m =
0 0 0 uncorrelated measurement stations ( v ∗ ≈ 31 . 83 ), suggesting

 worldwide annual information-acquisition cost of about $5 bil-

ion. 27 In terms of taxation, the model finds an optimal carbon tax

f slightly exceeding $10 0 0/tCO 2 ( u ∗ ≈ 35.75). While this is signif-

cantly higher than extant predictions of actual year-2040 carbon

rices of about $140/tCO 2 ( IEA, 2015 , p. 33), it also indicates an up-

er bound for what reasonable carbon prices might eventually look

ike, in the absence of political considerations. At such elevated

arbon prices, the attainment of current IPCC thresholds poses no

ifficulty. By virtue of the separation principle (see Section 1 ) a

onstrained solution, with limits on the emissions price, can be

btained by capping the system-stabilization control, without any

ffect on the optimal information-acquisition policy. 

. Conclusion 

The closed-form solution to the decision problem (P) in

roposition 9 was obtained by considering an equivalent reduced-

orm decision problem ( P ′ ′ ) with only half as many parameters. In

ine with the separation principle of stochastic control, the solu-

ion to the system-stabilization and information-acquisition sub-

roblems (SS) and (IA) can be obtained separately. The optimal

ystem-stabilization policy satisfies the certainty-equivalence prin-

iple, and it consists of an affine state feedback. The solution to

he highly nonlinear information-acquisition problem is a thresh-

ld policy, the nature of which is completely characterized by the

alue of the discriminant � (see Section 3.2.5 or Proposition 9 ). For

≥ 0, it is optimal to not acquire any information, i.e., the variance

hreshold is infinite. For �< 0, information acquisition is optimal.

n particular, for contracting systems (which have a natural steady
27 Given a world population of about 7 billion, the cost for determining the carbon 

oncentration would therefore amount to about one measurement station for every 

 million people. 
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Fig. 5. Target-achievement probability for [ x T , ̄x T ] = [ 1172 , 1180 ] GtCO 2 as a function of r . 
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state), when � is sufficiently small, the decision maker should pur-

sue “noise leveling,” that is, to acquire a large amount of informa-

tion so as to decrease uncertainty to an optimal variance level. The

latter is then held constant by acquiring only small amounts of in-

formation in subsequent periods. For intermediate (negative) val-

ues of � (“critical systems”), the variance steady-state lies below

the target variance, so that beyond a one-time “noise attenuation”

upon reaching the variance threshold, no further informational ac-

tion by the decision maker is required. Lastly, for expanding sys-

tems and negative values of �, noise leveling is always optimal.

Overall, the best information-acquisition policy is reminiscent of

the ( s , S )-threshold policy in inventory control: upon reaching a

critical level of uncertainty, the decision maker orders enough in-

formation to reach and maintain (or autonomously improve upon)

an optimal noise level. The particularity of this solution is that the

variance threshold y ∗ (corresponding to the reordering point s ) and

the variance target α∗ (corresponding to the order-up-to level S )

are related by a one-period autonomous variance evolution (see

Section 3.2.2 ), i.e., y (1) 
∣∣

y = α∗ = y ∗. This produces the optimality of

noise-leveling for all “subcritical” systems. 

The decision maker can use the policy parameter q in (P) , or

equivalently r in ( P ′ ′ ) to “color” the intervention, without losing

optimality. While the system-stabilization policy is invariant with

respect to the weight on the variance in the objective function,

the information-acquisition policy tends to increase in the policy

parameter. As illustrated by the application of our results to the

dynamic emissions-control problem in Section 4 , the policy pa-

rameter can help the decision maker (e.g., a regulator) to pursue

secondary objectives, such as maximizing the probability of being

close to an intermediary target state. In a policy setting, the opti-

mal information-acquisition policy may provide a justification for

information acquisition (in terms of noise leveling or noise attenu-

ation) or no information acquisition. It therefore limits the required

amount of information from above and from below, thus possibly

forestalling an “analysis paralysis” 28 caused by a perceived need to

gather more and more information before starting to implement a

costly stabilization policy. On the other hand, it can also provide
28 The phenomenon dates back at least to Aesop’s fable of the “Fox and the Cat.”
he justification for substantial expenditures on information, espe-

ially when initial uncertainty is high. 

ppendix A. Proofs 

roof of Proposition 1. Consider an instant at time period t ≥ 0,

ust after the decision maker has determined the controls u t and

 t , but the realization of ˜ z t+1 has not yet been observed. Condi-

ioning on (H t , u t , v t ) , one obtains the expected values of next pe-

iod’s state and system output: 

E [ ̃  x t+1 |H t , u t , v t ] = A ̂

 x t + Bu t , 

E [ ̃ z t+1 |H t , u t , v t ] = C ̂  x t . 

s alluded to in Remark 1 , consider now the deviation of the

tate from its current expected value, ˜ ϕ t = ˜ x t − ˆ x t , which follows a

ero-mean normal distribution with variance ˆ V t . Correspondingly,

he random next-period deviations, ˜ ξt+1 and 

˜ ζt+1 , conditional on

H t , u t , v t } , follow the same law of motion as the original system

n Eqs. (1) and (2) , 

˜ ξt+1 � 

˜ x t+1 − E [ ̃  x t+1 |H t , u t , v t ] = A ̃  ϕ t + ˜ ε t+1 , 

˜ ζt+1 � 

˜ z t+1 − E [ ̃ z t+1 |H t , u t , v t ] = C ̃  ϕ t + ( ̃  ηt+1 / v t ) . 

he random vector ( ̃  ξt+1 , 
˜ ζt+1 ) follows therefore a joint two-

imensional normal distribution with zero mean and (conditional)

ovariance matrix 

= 

[
N̄ + A 

2 ˆ V t AC ̂  V t 

AC ̂  V t C 2 ˆ V t + M/ v 2 t 

]
. 

ence, conditional on {H t , u t , v t , ζt+1 } , the time- (t + 1) state devi-

tion 

˜ ξt+1 , is normally distributed with mean 

AC ̂ V t ζt+1 

C 2 ˆ V t + M/ v 2 t 

and vari-

nce N̄ + A 

2 (1 − C 2 ˆ V t 
C 2 ˆ V t + M/ v 2 t 

) ̂  V t . The time- (t + 1) update for the state

nd variance of the system, conditional on (H t , u t , v t , z t+1 ) , is

herefore 

ˆ x t+1 = A ̂

 x t + Bu t + 

ACv 2 t 
ˆ V t 

M + C 2 v 2 t 
ˆ V t 

(
z t+1 − C ̂  x t 

)
, 

ˆ V t+1 = N̄ + A 

2 

(
1 − C 2 v 2 t 

ˆ V t 

M + C 2 v 2 ˆ V t 

)
ˆ V t , 
t 
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29 The solution of the Bellman equation is unique; see also footnote 8 . 
here we have used the fact that ζt+1 = z t+1 − C ̂  x t . �

roof of Proposition 2. Using a positive scaling factor λ, consider

he decision problem (P) in the transformed state variable ˆ x ′ = 

ˆ x 
λ

nd the transformed variance ˆ V ′ = 

ˆ V /λ2 , so 

ˆ K ( ̄x 0 , N̄ 0 ) = 

p 0 
1 − β

+ inf 

∞ ∑ 

t=0 

βt 
E 

[
p 2 λ

2 ( ̂  x ′ t ) 2 + p 1 λ ˆ x ′ t + qλ2 ˆ V 

′ 
t + γ u 

2 
t + δv 2 t 

∣∣ ˆ H t 

]
, 

s.t. ˆ x ′ t+1 = A ̂

 x ′ t + 

B 

λ
u t + 

λACv t ̂  V 

′ 
t √ 

M + λ2 C 2 v 2 t 
ˆ V 

′ 
t 

ω t , ˆ x ′ 0 = 

x̄ 0 
λ

, 

ˆ V 

′ 
t+1 = 

N 

λ2 
+ A 

2 

(
1 − λ2 C 2 v 2 t 

ˆ V 

′ 
t 

M + λ2 C 2 v 2 t 
ˆ V 

′ 
t 

)
ˆ V 

′ 
t , 

ˆ V 

′ 
0 = 

N̄ 0 

λ2 
. 

e normalize the cost parameters, dividing them by (p 2 + q ) λ2 ,

hence 

ˆ K ( ̄x 0 , N̄ 0 ) = 

p 0 
1 − β

+ (p 2 + q ) λ2 ×
( 

inf 

∞ ∑ 

t=0 

βt 
E 

[
(1 − r)( ̂  x ′ t ) 2 + 

s.t. ˆ x ′ t+1 = A ̂

 x ′ t + 

B 

λ
u t + 

A√ 

M

ˆ V 

′ 
t+1 = 

N 

λ2 
+ A 

2 

(
1 −

M 

′

ith r = 

q 

p 2 + q 
, s = 

p 1 
(p 2 + q ) λ , γ ′ = 

γ
(p 2 + q ) λ2 , δ′ = 

δ
(p 2 + q ) λ2 , and

 

′ = 

M 

λ2 C 2 
. Setting (u ′ t ) 2 = γ ′ u 2 t and (v ′ t ) 2 = δ′ v 2 t then yields 

ˆ K ( ̄x 0 , N̄ 0 ) = 

p 0 
1 − β

+ (p 2 + q ) λ2 ×
( 

inf 

∞ ∑ 

t=0 

βt 
E 

[
(1 − r)( ̂  x ′ t ) 2 + 

s.t. ˆ x ′ t+1 = A ̂

 x ′ t + 

B 

λ
√ 

γ ′ u 

′ 
t +

ˆ V 

′ 
t+1 = 

N 

λ2 
+ A 

2 

(
1 −

δ′ M

hus, by choosing λ such that 

2 = 

√ 

δM 

(p 2 + q ) C 2 
, 

ne obtains δ′ M 

′ = 1 ; moreover, the transformed decision problem

35) becomes 

ˆ K ( ̄x 0 , N̄ 0 ) = 

p 0 
1 − β

+ (p 2 + q ) λ2 ×
( 

inf 

∞ ∑ 

t=0 

βt 
E 

[
(1 − r)( ̂  x ′ t ) 2 + 

s.t. ˆ x ′ t+1 = A ̂

 x ′ t + 

B 

λ
√ 

γ ′ u 

′ 
t +

ˆ V 

′ 
t+1 = 

N 

λ2 
+ A 

2 

(
1 − (

1 +
he result is then obtained by carefully converting the problem

arameters. �

roof of Proposition 3. If K 1 (x ) = P x 2 + Qx + R, then by virtue of

he first constraint in ( P ′ ′ ) it is 

 

[
K 1 ( ̃  x ′ ) 

∣∣x, y 
]

= P 

[
(ax + b ′ u ) 2 + 

a 2 v 2 y 2 

1 + v 2 y 

]
+ Q(ax + b ′ u ) + R. 

oreover, the minimization problem with respect to (u, v ) in the

ellman equation ( P ′ ′ ) decomposes into the two given Bellman
 r ̂  V 

′ 
t + γ ′ u 

2 
t + δ′ v 2 t 

∣∣ ˆ H t 

]) 

, 

 

 

 

2 
t 

ˆ V 

′ 
t 

ω t , ˆ x ′ 0 = 

x̄ 0 
λ

, 

 

 

 

ˆ V 

′ 
t 

)
ˆ V 

′ 
t , 

ˆ V 

′ 
0 = 

N̄ 0 

λ2 
, 

 r ̂  V 

′ 
t + (u 

′ 
t ) 

2 + (v ′ t ) 2 
∣∣ ˆ H t 

]) 

, 

A v ′ t ̂  V 

′ 
t 

 M 

′ + (v ′ t ) 2 ˆ V 

′ 
t 

ω t , ˆ x ′ 0 = 

x̄ 0 
λ

, 

 

2 ˆ V 

′ 
t 

(v ′ t ) 2 ˆ V 

′ 
t 

)
ˆ V 

′ 
t , 

ˆ V 

′ 
0 = 

N̄ 0 

λ2 
. 

(35) 

 r ̂  V 

′ 
t + (u 

′ 
t ) 

2 + (v ′ t ) 2 
∣∣ ˆ H t 

]) 

, 

A v ′ t ̂  V 

′ 
t 

+ (v ′ t ) 2 ˆ V 

′ 
t 

ω t , ˆ x ′ 0 = 

x̄ 0 
λ

, 

ˆ 
 

′ 
t 

 

2 ˆ V t 

)
ˆ V 

′ 
t , 

ˆ V 

′ 
0 = 

N̄ 0 

λ2 
. 

quations, (SS) and (IA) . It remains to be shown that the first of

hese admits a quadratic solution for K 1 . 
29 The first-order condi-

ion for the minimization on the right-hand side yields that the

ptimal control u ∗ must be a linear function of x , which in turn

mplies that the cost K 1 can be written as a polynomial with a

egree of at most two, so K 1 (x ) = P x 2 + Qx + R can be made con-

istent with the solution to the first Bellman equation as claimed,

hich concludes our proof. �

roof of Proposition 4. Suppose that the optimal cost function K

n problem ( P ′ ′ ) is separable as in Proposition 3 , with K 1 (x ) =
 x 2 + Qx + R, for all x ∈ X . Then 

 [ K( ̃  x ′ , y ′ )] = E [ K 1 ( ̃  x ′ )] + K 2 (y ′ ) = E [ P ( ̃  x ′ ) 2 + Q ̃

 x ′ + R ] + K 2 (y ′ ) 

= P (ax + bu ) 2 + Q(ax + bu ) + R + P 
a 2 v 2 y 2 

1 + v 2 y 
+ K 2 (y ′ ) .

ubstituting the last expression in the Bellman equation of ( P ′ ′ )
ields 

(x, y ) = min 

(u, v ) 

{
(1 − r) x 2 + sx + ry + u 

2 + v 2 

+ β

(
P · (ax + bu ) 2 + Q · (ax + bu ) + R + P 

a 2 v 2 y 2 

1 + v 2 y 
+ K 2 (y ′ ) 

)}

.t. y ′ = N + a 2 y − a 2 v 2 y 2 

1 + v 2 y 
. 
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30 The minimization on the right-hand side of ( IA ′ ) is with respect to the posterior 

variance y ′ . The extra terms relating to the given prior variance y are included to 

be able to apply the envelope theorem to the entire right-hand side of ( IA ′ ), as will 

become clear below. 
The problem is separable in the system control u and the informa-

tion control v . Minimization with respect to u , 

P x 2 + Qx + R = min 

u 
{ (1 − r) x 2 + sx + u 

2 + βP · (ax + bu ) 2 

+ βQ · (ax + bu ) + βR } , 
yields the optimal system control, 

u 

∗ = −β(2 P abx + Qb) 

2(1 + βP b 2 ) 
. 

Using this control (which implements an affine state-feedback

law), one therefore obtains the optimal cost K 1 as a quadratic func-

tion of x . The values of P , Q , R are obtained by comparing the cor-

responding coefficients for x 2 , x 1 , and x 0 , so necessarily 

P = 1 − r + 

βa 2 P 

1 + βb 2 P 
, 

Q = s + 

βaQ 

1 + βb 2 P 
, 

R = βR − β2 b 2 P 2 / 4 

1 + βb 2 P 
. 

The preceding system of nonlinear equations has a unique solution

for ( P , Q , R ), which is provided in Eq. (5) . Minimizing the separable

cost with respect to the information control v gives 

K 2 (y ) = min 

v ≥0 

{
(ry + v 2 ) + β

(
P 

a 2 v 2 y 2 

1 + v 2 y 
+ K 2 (y ′ ) 

)}
, 

s.t. y ′ = N + a 2 y − a 2 v 2 y 2 

1 + v 2 y 
. 

The solution to the preceding problem depends solely on y , not

on x . Hence, the optimal cost K in problem ( P ′ ′ ) is indeed separable

in x and y . �

Proof of Proposition 5. Let A be convex. We distinguish two

cases, depending on whether the target variance α∗ is infinite or

finite. 

Case 1: α∗ is infinite. Since by Eq. (11) the target variance is

α∗ = ∞ , the convex cost-improvment set must be of the form A =
(N, ∞ ] . Moreover, the variance threshold is y ∗ = ∞ . The corre-

sponding ( ∞ , ∞ )-threshold policy in Eq. (12) is equivalent to the

information-acquisition policy ν( y ) ≡ 0, i.e., no information acqui-

sition for any prior variance y ∈ Y . This policy is optimal, because

by the definition of the cost-improvement set A , the cost in the

information-acquisition problem ( IA 

′ ) is strictly decreasing in the

posterior variance y ′ in ( N , ∞ ). Thus, for any finite prior vari-

ance y ∈ Y, the optimal solution to ( IA 

′ ) is ν(y ) = 0 . 

Case 2: α∗ is finite. Given that α∗ < ∞ , by the convexity of A ,

it is necessarily A = (N, α∗) . As in Case 1, the optimum of the

information-acquisition problem ( IA 

′ ) is attained at the poste-

rior variance y ′ = N + a 2 y if y < y ∗ = (α∗ − N) /a 2 = y ∗, and at the

posterior variance y ′ = α∗ if y ≥ y ∗. Therefore the information-

acquisition policy ν( y ), defined by the ( y ∗, α∗)-threshold policy in

Eq. (12) must be optimal for all y ∈ Y . 

Both cases together establish the optimality of the threshold

policy. �

Proof of Lemma 1. Without information acquisition, using the

recursion y ′ = N + a 2 y, the variance after n ≥ 1 periods starting

from y becomes, using the geometric-series formula, 

y (n ) = N 

n −1 ∑ 

k =0 

a 2 k + a 2 n y = N 

1 − a 2 n 

1 − a 2 
+ a 2 n y = ȳ + a 2 n ( y − ȳ ) , (36)

provided that a � = 1. For a = 1 , it is y (n ) = N + ny . (i) For a < 1,

y (2 n ) − ȳ = a 2 n (y − ȳ ) → 0 as n → ∞ , which implies global asymp-

totic stability for all y ∈ Y . More specifically, since | y (n ) − ȳ |
| y − ȳ | · exp [ −n ln (1 /a 2 )] , for all n ≥ 1, the convergence is ex-

onential with rate ln (1/ a 2 ); the convergence is also monotonic.

ii) For a ≥ 1, it is y ′ − y ≥ N > 0 , so the variance increases mono-

onically beyond any given bound B̄ > 0 in at most � ̄B /N� periods,

.e., y ( n ) ↑∞ as n → ∞ . For a = 1 , the increase is linear. For a > 0,

he increase is by Eq. (36) exponential, 

 

(n ) = 

(
y + 

N 

a 2 − 1 

)
exp [ n ln a 2 ] − N 

a 2 − 1 

, n > 0 , 

t the rate ln ( a 2 ), which completes our proof. �

roof of Lemma 2. Without information collection at the prior

ariance y , i.e., when ν(y ) = 0 , the optimal posterior variance in

he information-acquisition problem ( IA 

′ ) is y ′ = N + a 2 y, and the

ellman equation takes on the form 

 2 (y ) = ry + βK 2 (N + a 2 y ) . (37)

sing the affine ansatz K̄ 2 (y ) ≡ k̄ 0 + ̄k 1 y, for suitable con-

tants k̄ 0 , ̄k 1 , Eq. (37) becomes 

¯
 0 + ̄k 1 y = ry + β

(
k̄ 0 + ̄k 1 (N + a 2 y ) 

)
= β( ̄k 0 + ̄k 1 N) + (r + ̄k 1 βa 2 ) y. 

his relation needs to hold in a (either one-sided or two-sided)

eighborhood of y , which implies—by comparing the coefficients

or the different powers of y —that 

¯
 0 = 

r 

1 − βa 2 
· βN 

1 − β
and k̄ 1 = 

r 

1 − βa 2 
, 

hus establishing Eq. (15) , completing the proof. �

roof of Lemma 3. Provided there is a variance threshold y ∗ such

hat information acquisition is optimal for y ≥ y ∗, integration of the

xpression for the gradient of K 2 in (16) , from y ∗ to y , yields 

 2 (y ) = K 2 (y ∗) + 

(
r + βP a 2 

)
(y − y ∗) + 

(
1 

y ∗
− 1 

y 

)
= k 0 + k 1 y − 1 

y 
, y ≥ y ∗, 

here 

 0 � K 2 (y ∗) −
(
r + βP a 2 

)
y ∗ + 

1 

y ∗
and k 1 � r + βP a 2 (38)

re constants. Since necessarily K 2 ( y ) ≥ 0 for all y ≥ y ∗, the constant

 0 must be nonnegative. The constant k 1 is nonnegative because

he reduced parameter vector θ ′ ≥ 0 by assumption. �

roof of Lemma 4. For any given y , the Lagrangian for the con-

trained minimization in ( IA 

′ ) is 30 

 (y ′ , λ; y ) = ry − 1 

y 
+ βP (N + a 2 y ) + 

a 2 

y ′ − N 

+ β
[
K 2 (y ′ ) − P y ′ 

]
− λ(N + a 2 y − y ′ ) , 

here λ≥ 0 denotes the shadow price associated with the con-

traint that y ′ cannot exceed the posterior variance N + a 2 y , which

s attained without information acquisition. Because the minimand

iverges to + ∞ when y ′ tends to N (from the right), y ′ = N can

ever be optimal, so that y ′ > N is automatically satisfied. The rel-

vant first-order necessary optimality condition is 

a 2 

(y ′ − N) 2 
+ β

[
K 

′ 
2 (y ′ ) − P 

]
+ λ = 0 , (39)
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ith complementary-slackness condition 

(N + a 2 y − y ′ ) = 0 . (40)

et (y ′ , λ) = (ν(y ) , � (y )) be a solution to the system (39) and (40) .

pplying the envelope theorem to the right-hand side of ( IA 

′ )
ives 

K 

′ 
2 (y ) = 

∂L (y ′ , λ; y ) 

∂y 

∣∣∣∣
(y ′ ,λ)=(ν(y ) ,� (y )) 

= r + 

1 

y 2 
+ βP a 2 − a 2 � (y ) . 

ubstituting the last relation into Eq. (39) then yields 

a 2 

(y ′ − N) 2 
+ β

[
(y ′ ) −2 − a 2 � (y ′ ) 

]
− � + λ = 0 . (41)

here � = β(P (1 − βa 2 ) − r) , as defined in the text. The left-hand

ide of the last equation is increasing in y ′ if the corresponding

radient is positive, i.e., 

 

(
a 2 

(y ′ − N) 3 
− β

(y ′ ) 3 

)
− βa 2 � ′ (y ′ ) > 0 . (42)

ince � ′ ( y ′ ) ≤ 0 almost everywhere (provided the remaining terms

re positive; see Remark 9 below), the last inequality holds as long

s 

a 2 

β
> 

(
1 − N 

y ′ 
)3 

, 

hich—in turn—is true for all y ′ ∈ (N, N + a 2 y ] if and only if 

a 2 

β
> 

(
1 − N 

N + a 2 y 

)3 

= 

(
a 2 y 

N + a 2 y 

)3 

. 

he term on the right-hand side of the last equation is increasing

n y and tends to 1 as y → ∞ , so the inequality holds for all y ∈ Y
f and only if 

 

2 > β. 

inally, the preceding inequality holds for all β ∈ (0, 1) if and only

f 

 ≥ 1 . 

y the definition of the y -conditional cost-improvement set A y in

q. (9) , the last condition therefore guarantees that for all ˆ y ′ ∈ A y : 

 < y ′ < 

ˆ y ′ ⇒ y ′ ∈ A y . 

his implies that A y = (N, α(y )) , where α( y ) is the y -conditional

arget variance in Eq. (8) . By taking the limit for y → ∞ , one there-

ore obtains that the unconditional cost-improvement set is convex

nd of the form A = (N, α∗) , which completes the proof. �

emark 9. The following monotonicity property of a convex opti-

ization problem is used in the proof of Lemma 4 : Let φ : R → R

e a twice differentiable, strictly convex function and α ∈ R a given

onstant. Then the problem 

min 

∈ (−∞ ,α] 
φ(ξ ) 

as a nonnegative Lagrange multiplier, λ(α) = max { 0 , −φ′ (α) } ,
hich is nonincreasing in α. The proof of this auxiliary result fol-

ows directly from the Kuhn-Tucker conditions in the standard La-

rangian framework. 

roof of Proposition 6. (i) Using the Lagrangian framework estab-

ished in the Proof of Lemma 4 , consider (y ′ , λ) = (ν(y ) , � (y ))

s a solution to the necessary optimality conditions in

qs. (40) and (41) , where necessarily � ( y ) ≥ 0. If � ( y ) > 0, then the

omplementary-slackness condition (40) requires that y ′ = N + a 2 y,
hich implies ν(y ) = 0 , i.e., no information collection is under-

aken. If � (y ) = 0 , then the optimal solution α∗
1 = y ′ does not

epend on y and satisfies 
 

 

 

β

(α∗
1 
) 2 

− a 2 

(α∗
1 

− N) 2 
= � + βa 2 � (α∗

1 ) , 

α∗
1 ≤ N + a 2 y. 

(43) 

or a ≥ 1, Lemma 4 together with Proposition 5 implies that α∗
1 
, as

nique solution to Eq. (18) , is an optimal target variance. The left-

and side of Eq. (18) is monotonic (by Lemma 4 ), and for y ′ → ∞ : 

β

(y ′ ) 2 −
a 2 

(y ′ − N) 2 
↑ 0 . 

s a result, the condition �< 0 is necessary and sufficient to en-

ure that target variance α∗
1 is finite , and the (y ∗1 , α

∗
1 ) -threshold

olicy is by Proposition 5 optimal, where y ∗
1 

= (α∗
1 

− N) /a 2 is the

ptimal threshold. Note that because a ≥ 1, it is α∗
1 

> y ∗
1 
, so � (α∗

1 
) =

 holds necessarily. (ii) In part (i), it was established that �< 0 is

 necessary and sufficient condition for α∗
1 < ∞ . Thus, for �≥ 0,

oth the target variance α∗
1 

and the associated variance thresh-

ld y ∗
1 

become infinite, so the ( ∞ , ∞ )-threshold policy is optimal:

ith ν( y ) ≡ 0, no information acquisition takes place. �

roof of Corollary 1. By Proposition 6 the (y ∗
1 
, α∗

1 
) -threshold pol-

cy is optimal for the information-acquisition problem ( IA 

′ ). Thus,

or y ≥ y ∗1 , the optimal cost is of the form given by Lemma 3 (and

ts proof), so 

 2 (y ) = k 0 + 

(
r + βP a 2 

)
y − 1 

y 
, (44)

here k 0 is a nonnegative constant. Since α∗
1 ≥ y ∗1 , the cost K 2 (α

∗
1 )

s of the same form, 

 2 (α
∗
1 ) = k 0 + 

(
r + βP a 2 

)
α∗

1 −
1 

α∗
1 

. (45)

n the other hand, the target variance also solves the Bellman

quation in ( IA 

′ ), whence 

 2 (α
∗
1 ) = βP N + 

(
r + βP a 2 

)
α∗

1 −
1 

α∗
1 

+ 

a 2 

α∗
1 

− N 

−βP α∗
1 +βK 2 (α

∗
1 ) . 

(46) 

qs. (45) and (46) together yield that 

 0 = 

1 

1 − β

(
βP N − �α∗

1 + 

a 2 

α∗
1 

− N 

− β

α∗
1 

)
, 

hich in conjunction with Eq. (44) establishes the optimal

nformation-acquisition cost in Eq. (19) , for all y ≥ y ∗
1 
. 

For y < y ∗1 , the decision maker does not collect information, and

he solution to the minimization problem in ( IA 

′ ) is y ′ = N + a 2 y .

he optimal information-acquisition cost therefore simplifies to 

 2 (y ) = ry + βK 2 (N + a 2 y ) . (47)

y Eq. (13) in Section 3.2.2 , after n periods without informa-

ion collection the variance y autonomously evolves to y ( n ) > y ,

nd y ( n ) ↑∞ as n → ∞ by virtue of Lemma 1 . Thus, the minimum

umber of periods required to exceed the variance threshold is fi-

ite (see the proof of Lemma 1 for details), 

 

∗ � inf { n > 0 : y (n ) > y ∗1 } ≤
⌈ 

y ∗1 
N 

⌉ 
. 

y a straightforward recursion, the optimal information-acquisition

ost therefore takes on the form in Eq. (20) , which completes our

roof. �

roof of Corollary 2. This result follows from Proposition 6 (i),

ince for a ≥ 1 / 
√ 

β, the discriminant �< 0. �
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31 In particular, lim r→ 1 − μ(x ) = μ(0) , for all x ∈ X . That is, if the decision maker 

cares only about uncertainty reduction, not about target achievement, then the 

feedback gain in the reduced-form problem ( P ′ ′ ) is constant. 
Proof of Lemma 5. If β < a 2 < 1, then A (and therefore in particu-

lar also A ȳ ) is convex, by the proof of Lemma 4 . To obtain the result

for the case where a 2 < β , one can use an approach analogous to

the proof of Lemma 4 . The left-hand side of Eq. (42) , 

2 

(
a 2 

(y ′ − N) 3 
− β

(y ′ ) 3 

)
− βa 2 � ′ (y ′ ) > 0 , 

given that � ′ is nonpositive as before (by Remark 9 ), is positive if 

y ′ < N/ (1 − χ) , 

where χ� ( a 2 / β) 1/3 , provided that χ < 1. Hence, for a 2 < β , the y -

conditional cost-improvement set A y is convex for all 

N + a 2 y < 

N 

1 − a 2 
< 

N 

1 − χ
, 

since a 2 < χ . The preceding inequality is equivalent to y < ȳ , which

completes the proof. �

Proof of Proposition 7. By Lemma 5 , the cost-improvement set A ȳ 

is convex, where ȳ = N/ (1 − a 2 ) < ∞ is by virtue of Lemma 1 the

exponentially stable steady state for the variance, in the absence

of information acquisition. The result now follows in a way that

is analogous to the proof of Proposition 6 , provided the discrimi-

nant � is subcritical, to ensure that α∗
2 

∈ A ȳ : 

ˆ � � 

β

ȳ 2 
− a 2 

( ̄y − N) 2 
≥ �. 

Using the definition of ȳ , one obtains that ˆ � = −(1 − βa 2 ) / (a ̄y ) 2 

( < 0). �

Proof of Corollary 3. The proof of this result is analogous to the

proof of Corollary 1 . �

Proof of Proposition 8. Let a ∈ (0, 1). By the construction in the

main text, for critical systems with 

ˆ � ≤ � < 0 , the (finite, un-

conditional) target variance must exceed the finite steady state ȳ

at least weakly. Therefore, once the target variance y ′ = α∗
3 

has

been attained, there cannot be any further information acquisi-

tion. By Lemma 2 the optimal information-acquisition cost for vari-

ances after attaining the target variance must be affine, so the

information-acquisition problem ( IA 

′ ) becomes a Bellman equation

of the form 

K 2 (y ) = βP N + (r + βP N) y − 1 

y 

+ min 

y ′ ∈ (N,N+ a 2 y ] 

{
a 2 

y ′ − N 

− βP y ′ + 

βr 

1 − βa 2 

(
βN 

1 − β
+ y 

)}
. 

(48)

Provided that y ≥ y ∗3 , the optimal variance target α∗
3 satisfies the

first-order necessary optimality condition, 

− a 2 

(α∗
3 

− N) 2 
= 

�

1 − βa 2 
. (49)

The unique solution of Eq. (49) on the interval ( N , ∞ ) is

equal to the target variance α∗
3 given by Eq. (23) . Corre-

spondingly one obtains the variance threshold y ∗
3 

= (α∗
3 

− N) /a 2 =√ 

(1 − βa 2 ) / (−�a 2 ) . Since the cost-improvement set A = (N, α∗
3 
)

is convex, the optimality of the (y ∗
3 
, α∗

3 
) -threshold policy follows

by virtue of Proposition 5 , which concludes our proof. �

Proof of Corollary 4. For y ≥ y ∗3 , the optimal information-

acquisition cost K 2 ( y ) follows from Eq. (48) in the proof of

Proposition 8 by substituting the expression of the optimal tar-

get variance α∗
3 from Eq. (23) . For y < y ∗3 , because there is no fur-

ther information acquisition, the optimal cost K ( y ) is given by
2 
q. (15) in Lemma 2 . Thus, one obtains Eq. (24) for y ≥ y ∗3 and

q. (25) for y < y ∗3 , respectively. �

roof of Proposition 9. This result follows from Proposition 1 (for

art (i)), and from Props. 6 –8 (for part (ii)). The fact that �≥ 0 im-

lies that ν( y ) ≡ 0 is optimal follows immediately from the discus-

ion in Section 3.2.1 because then the cost-improvement set A =
(N, ∞ ) , so the target variance is infinite, which is equivalent to no

nformation collection. �

roof of Proposition 10. Since P b 2 = P 0 b 
2 
0 (independent of r ) and

 = b 0 (1 − r) 1 / 2 , Proposition 4 implies 

(x ) − μ(0) = − P 0 b 0 ax 

P 0 b 
2 
0 

+ (1 /β) 
(1 − r) 1 / 2 

= (μ0 (x ) − μ0 (0))(1 − r) 1 / 2 , 

here μ0 (x ) � lim r→ 0 + μ(x ) for all x ∈ X and μ0 (0) = μ(0) . 31 By

q. (26) the optimal state-feedback law for the decision problem

P) is of the form 

ˆ ( ̂  x ) = 

μ( ̂  x /λ) √ 

γ ′ = 

μ( ̂  x /λ) √ 

γ ′ 
0 

(1 − r) −1 / 4 , 

or all ˆ x ∈ X , where γ ′ 
0 � γ ′ ∣∣

r→ 0 + = γ / (p 2 λ
2 
0 ) . Hence, 

ˆ ( ̂  x ) − ˆ μ(0) = 

μ0 ( ̂  x /λ) − μ0 (0) √ 

γ ′ 
0 

( 1 − r) 1 / 4 . 

ifferentiation with respect to r yields 

d( ̂  μ( ̂  x ) − ˆ μ(0)) 

dr 
= − (1 − r) −3 / 4 

4 

√ 

γ ′ 
0 

(μ0 ( ̂  x /λ) − μ0 (0)) 

+ 

(1 − r) 1 / 4 

4 

√ 

γ ′ 
0 

μ′ 
0 ( ̂  x /λ) 

λ0 

(1 − r) −5 / 4 

= 

μ0 ( ̂  x /λ) − μ0 (0) 

4 

√ 

γ ′ 
0 

[
( ̂  x /λ) μ′ 

0 ( ̂  x /λ) 

μ0 ( ̂  x /λ) − μ0 (0) 
− 1 

]
×(1 − r) −3 / 4 . 

ince xμ′ 
0 
(x ) / (μ0 (x ) − μ0 (0)) ≡ 1 , we therefore obtain that 

d( ̂  μ( ̂  x ) − ˆ μ(0)) 

dr 
= 0 , 

or all ˆ x ∈ X . On the other hand, 

ˆ (0) = 

μ(0) √ 

γ ′ = − b 0 Q 0 

2 

√ 

γ ′ 
0 
(P 0 b 

2 
0 

+ 1 /β) 
= μ0 (0) , 

ndependent of r . This implies that the feedback law ˆ μ( ̂  x ) is inde-

endent of r (and independent of q ): 

ˆ ( ̂  x ) = − (b 0 / 
√ 

γ ′ 
0 
) 

P 0 b 
2 
0 

+ 1 /β

(
P 0 a 

(
ˆ x 

λ0 

)
+ 

Q 0 

2 

)
, 

or all ˆ x ∈ X . �

roof of Corollary 5. As pointed out in the main text,

(P, Q, R ) = ((1 − r) P 0 , Q 0 (1 − r) 3 / 4 , R 0 (1 − r) 1 / 2 ) , so ˆ K 1 ( ̂  x ) =
(p 2 + q ) λ2 K 1 ( ̂  x /λ) = 

(
p 2 λ

2 

1 −r 

)
K 1 ( ̂  x /λ) , and by Proposition 4 there-

ore 

ˆ 
 1 ( ̂  x ) = 

(
p 2 λ

2 

1 − r 

)
K 1 ( ̂  x /λ) = p 2 λ

2 
0 K 10 ( ̂  x /λ0 ) 

= p 2 
[
P 0 ̂  x 2 + λ0 Q 0 ̂  x + λ2 

0 R 0 

]
, 
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32 As before, we use the fact that λ2 = λ2 
0 (1 − r) 1 / 2 , where λ2 

0 = 

√ 

δM/p 2 /C is in- 

dependent of r . 
33 The expression singles out a root from the solutions of (a cubic resolvent for) 

the quartic equation using Cardan’s formula. All four (generally complex-valued) 

roots are given by (N + 

√ 

L 1 ±
√ 

L 2 − L 3 ) / 2 and (N −
√ 

L 1 ±
√ 

L 2 + L 3 ) / 2 . 
here we have set K 10 (x ) � lim r→ 0 + K 1 (x ) = P 0 x 
2 + Q 0 x + R 0 , for

ll x ∈ X . Note also that 

d ̂  K 1 ( ̂  x ) 

dr 
= 0 , 

or all ˆ x ∈ X . That is, the optimal system-stabilization cost is in-

ariant with respect to r . �

roof of Proposition 11. By Eqs. (12) and (26) the optimal

ariance-feedback law for the decision problem (P) is 

ˆ ( ̂  V ) = 

ν( ̂  V /λ2 ) √ 

δ′ = 

ν( ̂  V /λ2 ) √ 

δ′ 
0 

(1 − r) −1 / 4 = 

λ0 √ 

δ′ 
0 

√ [ 
1 

λ2 y ∗
− 1 

ˆ V 

] 
+ 

= λ2 
0 

√ 

p 2 
δ

[ 
1 

ˆ V 

∗
− 1 

ˆ V 

] 
+ 
, 

here δ′ 
0 � δ′ ∣∣

r→ 0 + = δ/ (p 2 λ
2 
0 ) and 

ˆ V ∗ � λ2 y ∗. The (unreduced)

ariance threshold 

ˆ V ∗ depends on r just as the reduced variance

hreshold y ∗ depends on r , so ˆ V ∗ = 

ˆ V ∗(r) and y ∗ = y ∗(r) . Con-

ider now the discriminant � = β((1 − βa 2 ) P − r) = (1 − r)�0 −
β, where �0 � �| r→ 0 + = (1 − βa 2 ) βP 0 , so that d �/d r = −�0 −
. Since 

lim 

→ 1 −
� = −β < 0 , 

here is always information acquisition, provided that r (or q ) is

arge enough. It is �< 0 if and only if 

 > 

�0 

β + | �0 | = 

(1 − βa 2 ) P 0 
1 + | 1 − βa 2 | P 0 = r . 

The last inequality holds in the interesting case where βa 2 < 1.

t fully characterizes information acquisition for expanding sys-

ems ( a ≥ 1) and leads to noise leveling. For contracting systems

 a < 1), noise attenuation may be optimal when the last inequal-

ty holds. Note first that ˆ � = (1 − r) ̂  �0 , where ˆ �0 � 

ˆ �
∣∣

r→ 0 + =
(1 − βa 2 ) / (a 2 ȳ 2 0 ) . Thus, ˆ � ≤ � is equivalent to (1 − r) ̂  �0 

(1 − r)�0 − rβ, which in turn means that there is noise atten-

ation if and only if r < r ≤ ˆ r , where 

ˆ 
 = 

�0 + (− ˆ �0 ) 

β + | �0 + (− ˆ �0 ) | 
= 

(1 − βa 2 )(P 0 + (a ̄y 0 ) 
−2 ) 

1 + | 1 − βa 2 | (P 0 + (a ̄y 0 ) −2 ) 
. 

n the other hand, noise leveling is optimal for contracting sys-

ems if ˆ r < r < 1 . �

roof of Proposition 12. Differentiation of the threshold

nformation-acquisition policy in Eq. (29) with respect to the

olicy parameter r yields 

d ̂  ν( ̂  V ) 

dr 
= − λ2 

0 

2( ̂  V 

∗) 2 

√ 

p 2 
δ

([
1 

ˆ V 

∗(r) 
− 1 

ˆ V 

]
+ 

)−1 / 2 
d ̂  V 

∗(r) 

dr 

= − a 2 
√ 

p 2 /δ

2( ̂  α∗(r) − n 0 ) 2 

([
1 

ˆ V 

∗(r) 
− 1 

ˆ V 

]
+ 

)−1 / 2 
d ̂  α∗(r) 

dr 
, (50) 

here ˆ α∗(r) � (1 − r ) 1 / 2 α∗(r ) and α∗(r) = N + a 2 y ∗(r) . 

d ̂  K 2 ( ̂  V ) 

dr 
= 

d 

dr 

[(
p

1 

= 

(
p 2 λ

2(1 −

= 

(
p 2 λ

2 

1 − r 

)

Consider first noise-leveling policies. With the substitution ˆ y �
(1 − r) 1 / 2 y ′ the cost-improvement set, transformed to the ˆ y -

omain, becomes 

ˆ 
 (r) = 

{
ˆ y > n 0 : 

β

ˆ y 2 
− a 2 

( ̂  y − n 0 ) 2 
< �0 − rβ

1 − r 

}
. 

ince 0 < r < ̂  r < 1 implies that ˆ A ( ̂ r ) ⊆ ˆ A (r) , the transformed vari-

nce target ˆ α∗(r) = sup 

ˆ A (r) is necessarily (weakly) decreasing in

he policy parameter r . Thus, ˆ α∗(r) = (1 − r ) 1 / 2 α∗(r ) is decreasing

n r , which by Eq. (50) implies that ˆ ν( ̂  V ) is decreasing in r . 

Consider now noise-attenuation policies, relevant for contract-

ng systems ( a < 1), where—by construction—the target variance is 

∗(r) = 

n 0 

(1 − r) 1 / 2 
+ 

a 
√ 

1 − βa 2 

( −�) 1 / 2 
. 

hus, 

d ̂  α∗( ̂  V ) 

dr 
= 

d((1 − r ) 1 / 2 α∗(r )) 

dr 

= −βa 
√ 

1 − βa 2 

2(1 − r) 2 

(
−�0 + 

βr 

1 − r 

)−3 / 2 

= −βa 
√ 

1 − βa 2 

2(1 − r) 1 / 2 
( −�) 

−3 / 2 
< 0 , 

o that, by virtue of Eq. (50) , the information-acquisition pol-

cy ˆ ν( ̂  V ) must be decreasing in r . �

roof of Corollary 6. For expanding systems ( a ≥ 1), by

ropositions 11 and 12 the optimal variance feedback is

argest for r → max { 0 , r } + . For contracting systems ( a < 1), by

ropositions 11 and 12 the optimal variance feedback is largest

or r = ̂  r ( > max {0, r }). �

roof of Lemma 6. The derivative of the optimal information-

cquisition cost with respect to r is 32 

K 2 ( ̂  V /λ2 ) 

]

K 2 ( ̂  V /λ2 ) + 

(
p 2 λ

2 

1 − r 

)( 

K 

′ 
2 ( ̂  V /λ2 ) 

(
ˆ V /λ2 

2(1 − r) 

)
+ 

∂K 2 (y ) 

∂r 

∣∣∣∣
y = ̂ V /λ2 

) 

 2 ( ̂  V /λ2 ) 

(1 − r) 

[
( ̂  V /λ2 ) K 

′ 
2 ( ̂

 V /λ2 ) 

K 2 ( ̂  V /λ2 ) 
+ 1 

]
+ 

∂K 2 (y ) 

∂r 

∣∣∣∣
y = ̂ V /λ2 

) 

. 

ence, the behavior of the information-acquisition cost with re-

pect to the policy parameter r depends on its elasticity, ε2 (y ) �
K 

′ 
2 
(y ) /K 2 (y ) , with respect to the variance. �

olution to the quartic equation 

If 1 { a ≥ 1} �< 0 or � − ˆ � < 0 , i.e., if min { 1 { a ≥1 } �, � − ˆ �} < 0 ,

hen the optimal target variance is 33 

∗ = 

N + 

√ 

L 1 + 

√ 

L 2 − L 3 

2 

∈ 

{
y ′ > N : 

β

(y ′ ) 2 −
a 2 

(y ′ − N) 2 
= �

}
, 

(51) 
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where 

L 1 � 

N 

2 

3 

+ 

2(β − a 2 ) + L 1 / 3 
4 

+ (β − a 2 − �N 

2 ) 2 L −1 / 3 
4 

3�
, 

L 2 � 

2 N 

2 

3 

+ 

4(β − a 2 ) − L 1 / 3 
4 

− (β − a 2 − �N 

2 ) 2 L −1 / 3 
4 

3�
, 

L 3 � 

2 N(β + a 2 ) 

�
√ 

L 1 
, 

L 4 � L 5 + 27�N 

2 a 2 β − 6 

√ 

3 β�L 5 Na, 

L 5 � �3 N 

6 + 3 (β − a 2 )(βa 2 − �2 N 

4 ) 

+3 (a 4 + 7 βa 2 + β2 ) � N 

2 − (β3 − a 6 ) . 

Appendix B. Notation 

Symbol Description Domain/Definition 

A, a System coefficient (original, reduced) R ++ 
B, b Control coefficient (original, reduced) R \{ 0 } 
C Measurement/observation coefficient R ++ 
K(·) Optimal cost, K = K 1 + K 2 K : X × Y → R + 
K 1 (·) Optimal cost for estimated mean ( x ) K 1 : X → R + 
K 2 (·) Optimal cost for estimated variance ( y ) K 2 : Y → R + 
M Variance of the measurement/observation 

noise 

R + 

N Reduced noise variance of the linear 

system ( N = N̄ /λ2 ) 

R + 

N̄ Inherent noise variance of the linear 

system 

R + 

P Optimal quadratic cost coefficient for mean 

cost function 

R + 

Q Optimal linear cost coefficient for mean 

cost function 

R + 

R Optimal constant coefficient for mean cost 

function 

R + 

ˆ V t Estimated variance at time t Y
k 0 Optimal constant coefficient of K 2 (·) R ++ 
k 1 Optimal linear coefficient of K 2 (·) R ++ 
n Period index (to denote t + n, given some 

t) 

N 

p Price (e.g., tax) for carbon emissions R 

p 0 Constant cost coefficient (original) R 

p 1 Linear cost coefficient (original) R 

p 2 Quadratic cost coefficient (original) R ++ 
q Cost coefficient of the estimated variance R ++ 
r Policy parameter (0 , 1) 

s Reduced linear cost coefficient R 

t Discrete time T 
u t System control at time t U
v t Information control at time t V
x Prior estimated mean X
ˆ x t Estimated mean at time t X
y Prior variance Y
y ′ Posterior variance Y
y ∗ Variance threshold (N, ∞ ] 

ȳ Asymptotic variance (steady state), for 

a ∈ (0 , 1) 

(N, ∞ ) 

y (n ) Variance without information at time t + n, 

given y at time t

Y

z t System output R 

α(y ) y -conditional target variance (N, ∞ ] 

α∗ Unconditional target variance (N, ∞ ] 

β Discount factor (0 , 1) 

γ Control-cost coefficient R + 
δ Information-acquisition-cost coefficient R + 
� Discriminant of the information-acquisition 

problem 

R 

ˆ � Subcritical discriminant threshold, 

for a ∈ (0 , 1) 

R −−

˜ ε t Gaussian system noise (i.i.d.) at time t N (0 , ̄N ) 

˜ ηt Gaussian measurement/observation noise 

(i.i.d.) at time t

N (0 , M) 

( continued on next column )
Symbol Description Domain/Definition 

θ, θ ′ Parameter vector (original, reduced) R 
12 , R 6 

λ Scaling factor R ++ 
ˆ μ(·) , μ(·) Optimal system-stabilization policy 

(original, reduced) 

ˆ μ, μ : X → R 

ˆ ν(·) , ν(·) Optimal information-acquisition policy 

(original, reduced) 

ˆ ν, ν : Y → R + 

A y y -conditional cost-improvement set Eq. (9) 

A Unconditional cost-improvement set Eq. (10) 

T Discrete time domain N 

U Domain for system control u R 

V Domain for information control v R + 
X State space R 

Y Variance space R + 
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