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ABSTRACT 

The flow in the draft tube cone of Francis turbines operated at partial discharge is a complex 
hydrodynamic phenomenon where an incoming steady axisymmetric swirling flow evolves into a 
three-dimensional unsteady flow field with precessing helical vortex (also called vortex rope) and 
associated pressure fluctuations. 

The paper addresses the following fundamental question: is it possible to compute the 
circumferentially averaged flow field induced by the precessing vortex rope by using an 
axisymmetric turbulent swirling flow model? In other words, instead of averaging the measured or 
computed 3D velocity and pressure fields we would like to solve directly the circumferentially 
averaged governing equations. As a result, one could use a 2D axi-symmetric model instead of the 
full 3D flow simulation, with huge savings in both computing time and resources. In order to 
answer this question we first compute the axisymmetric turbulent swirling flow using available 
solvers in commercial codes for the Reynolds Averaged Navier-Stokes (RANS) equations in 
cylindrical coordinates with vanishing circumferential derivatives. Second, we modify the above 
solver by introducing a stagnant region model (SRM), essentially enforcing a unidirectional 
circumferentially averaged meridian flow as suggested by the experimental data. Numerical results 
obtained with both models are compared against measured axial and circumferential velocity 
profiles, as well as for the vortex rope location. 

Although the circumferentially averaged flow field cannot capture the unsteadiness of the 3D 
flow, it can be reliably used for further stability analysis, as well as for assessing and optimizing 
various techniques to stabilize the flow. In particular, the methodology presented and validated in 
this paper is particularly useful in optimizing the blade design in order to reduce the stagnant region 
extent, thus mitigating the vortex rope and extending the operating range for Francis turbines. 
 
KEY WORD: draft tube, vortex rope, turbulent axisymmetric flow, stagnant region model 
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INTRODUCTION 

In Francis turbines operated at partial discharge, the swirling flow downstream the runner 
becomes unstable inside the draft tube cone, with the development of a precessing helical vortex 
(also called vortex rope) and associated severe pressure fluctuations. This phenomenon is now well 
understood and its cause is directly related to the absolute instability of the swirling flow ingested 
by the turbine’s draft tube [13]. This conclusion was confirmed in [11], where a stability analysis 
was performed on an analytical representation of the measured axial and circumferential velocity 
profiles downstream a Francis runner. 

Numerical simulations of the precessing vortex rope have reached the level of accuracy where 
the main features of the phenomenon (e.g. vortex rope shape, precession frequency, pressure 
fluctuation) are accurately described [9, 10, 4]. However, such 3D unsteady turbulent flow 
computations are very expensive in terms of both computing time and resources. As a result, more 
computationally tractable techniques are required for performance evaluation and design 
optimization purposes. 

The counter-measures for the rotating vortex rope currently used in practice are most often 
addressing the effects of the severe flow instability rather than the cause. A novel method for 
swirling flow control has been introduced in [12], where a water jet is injected from the runner 
crown tip, and its effectiveness has been proven through 3D unsteady numerical simulation. 
However, the optimization of the jet parameters (velocity and discharge) requires a far less 
expensive numerical analysis methodology in order to be used in design practice.  

The main goal of this paper is to develop a methodology for analyzing the swirling flows with 
helical vortex breakdown by using an axisymmetrical swirling flow model. Obviously, the axial 
symmetry hypothesis is a major simplification having the main benefit of dramatically reducing the 
computational cost. On the other hand, it introduces important limitations as far as the three-
dimensionality and unsteadiness of the flow are concerned. Essentially, an axisymmetric flow 
solver provides a circumferentially averaged velocity and pressure fields, to be further used as a 
base flow for linear or non-linear stability analysis. However, this axisymmetric flow field provides 
a good indicator for the vortex breakdown occurrence and development through the extent of the 
central quasi-stagnant region, although the unsteady velocity and pressure fluctuations cannot be 
recovered. 

Usually when employing a simplified flow model one has to check that the model assumptions 
are met by the actual flow. In our case, although we are dealing with a swirling flow in an 
axisymmetrical geometry (the draft tube cone) the inherent flow instability leads to a fully three-
dimensional unsteady flow field with precessing vortex rope when the Francis hydraulic turbine is 
operated at partial discharge. As a result, the flow axial symmetry assumption is obviously violated. 
One can only conjecture that an axisymmetrical flow model can represent the circumferentially 
averaged three-dimensional unsteady flow. It is this conjecture we investigate in the present paper. 
In other words, instead of circumferentially averaging the 3D unsteady computation results we 
would like to perform the circumferentially average on the governing equations in cylindrical 
coordinates, thus solving a 2D problem in a meridian half plane. The results obtained with an 
axisymmetrical turbulent swirling flow model are compared and validated with Laser Doppler 
Velocimetry measurements for axial and circumferential velocity profiles, as well as with Particle 
Image Velocimetry investigations of the vortex rope shape. 

 

AXISYMMETRIC SWIRLING FLOW MODEL 

 In order to perform an axisymmetric flow simulation, an equivalent axisymmetric 
computational domain must be considered. Given the three-dimensional geometry of the actual 
draft tube investigated in the FLINDT project [1], where only the cone is geometrically 
axisymmetric, we have considered the domain shown in Figure 1 with the wall radius computed as 
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the equivalent hydraulic radius where the cross-section shape is no longer circular. The upstream 
part of the domain (shaded) corresponds to the actual draft tube cone, while the downstream part 
corresponds to the elbow, up to the pier. 

All lengths are made dimensionless with respect to the turbine throat radius throatR , and the 

coordinate system origin is chosen such that the throat dimensionless abscissa is equal to unity. The 
inlet section for the computational domain is located just downstream the runner blade trailing edge. 
The actual draft tube cone region is shown in detail in Figure 1, and it corresponds to the domain 

used in [10] for 3D unsteady flow simulation with vortex rope. The cone length is throat3R , and the 

cone half-angle is 8.5o . Two survey sections where the axial and circumferential velocity profiles 
were measured using Laser Doppler Velocimetry [1, 4] are also shown in Figure 1, further denoted 
in this paper as S1 and S2. The computational domain is discretized with 90,000 quadrilateral cells, 
using a boundary layer mesh near the wall. 
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Figure 1. Computational domain in a meridian half plane. 

The circumferentially averaged velocity components and turbulence quantities correspond to 
the data from [10], Figure 2, for a partial discharge operating point / 0.692optQ Q = . The meridian 

velocity component is defined as 2 2
m z rV V V= + , and the absolute/relative flow angles are 

( )arctan /mV Vθα =  and ( )arctan /
m

V r Vθβ = Ω −   , respectively, with , ,z rV V Vθ  the axial, radial 

and circumferential velocity components, Ω  the runner angular velocity. The velocity is made 

dimensionless with respect to 2gH , where H  is the turbine head. The increase in both meridian 

and circumferential velocity components near the band, Figure 2, is caused by the secondary flow in 
the blade channel, at part load, with the development of a so-called interblade vortex [2]. 

The inlet swirl number, 
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inlet

inlet inlet

d / dmSw rV S R V Sθ

   
≡ ⋅ ⋅   
   
∫ ∫V n V n , (1) 

has a rather large value, 0.64Sw = , and as a result one should expect vortex breakdown to occur 
further downstream into the turbine discharge cone.  

On the outlet section we use the radial equilibrium condition which relates the radial pressure 
gradient with the circumferential velocity,  

2
p V

r r

θρ∂
=

∂
. (2) 
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Figure 2. Velocity profile and flow angle on the inlet section of the computational domain from 

Figure 1, with curvilinear coordinate running from crown to band. 

 
The governing equations for axisymmetric swirling flow of an incompressible fluid are: 

• Continuity equation (divergence free velocity field), 

0z r rV V V

z r r

∂ ∂
∇ ⋅ ≡ + + =

∂ ∂
V , (3) 

• Axial momentum equation, 

( ) ( )
1 1

1 1 1
2

z
z z r z

T z T z r

V
rV V rV V

t r z r r

p V V V
r r

z r z z r r r z

µ µ µ µ

ρ ρ ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂

   ∂ ∂ + ∂ ∂ + ∂ ∂ 
− + + +    ∂ ∂ ∂ ∂ ∂ ∂    

, (4) 

• Radial momentum equation, 

( ) ( )

2

2

1 1

1 1 1
2 2

r
z r r r

T r z T r T r
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   ∂ ∂ + ∂ ∂ ∂ + ∂ + 
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, (5) 

• Circumferential momentum equation, 
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3
2
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   ∂ + ∂ ∂ + ∂  
− + +     ∂ ∂ ∂ ∂     

. (6) 

Obviously, the radial equilibrium condition (2) follows from the radial momentum equation (5) 
for vanishing radial velocity. The effective dynamic viscosity is written as the sum of the molecular, 
µ, and the so-called “turbulent” viscosity, µT,  the second one being computed using various 
turbulence models. The above axisymmetric swirling flow model, which is implemented in the 
FLUENT 6.3 code, is used for the present computations together with the realizable k-ε (RKE) 
turbulence model. The term “realizable” means that the model satisfies certain mathematical 
constraints on the Reynolds stresses, consistent with the physics of the flow. When compared with 
the standard k-ε and RNG k-ε models, the RKE model is predicting more accurately the spreading 
rate of both planar and round jets. It is also likely to provide superior performance for flow 
involving rotation, boundary layers under strong adverse pressure gradients, separation and 
recirculation [8]. 

One important issue to be addressed is the effect of neglecting the actual precessing rope when 
computing directly the circumferentially averaged flow. Both experimental data [7, 2, 6] and 
theoretical models [5] suggest that when a vortex breakdown occurs a quasi-stagnation region is 
developed near the axis. This stagnant region must be understood as the average of the highly 
fluctuating flow field inside the vortex rope. As a result, we have enforced a stagnation condition on 
top of the FLUENT axisymmetric flow solver whenever a negative (i.e. upstream oriented) axial 
velocity occurs. The actual implementation of the above Stagnant Region Model (SRM), is done via 
the User Defined Function presented in the Appendix. 

 

 NUMERICAL RESULTS AND VALIDATION 

The numerical computations are performed for the case study investigated in the FLINDT 
project, where experimental data are available for validation [4, 10], with the computational domain 
and boundary conditions presented in the previous section. 

The plain axisymmetric turbulent swirling flow model produces a central recirculation, with 
the main flow occupying an annular section up to the wall. The axial and circumferential velocity 
profiles in the survey sections S1 and S2 are shown with dashed lines in Figures 3 and 4, 
respectively. The axial velocity in section S1 displays a backflow in the central region, which leads 
to an overestimation of the velocity on the mean flow side of the strong shear flow region. The 
radial location of the shear flow region is also shifted toward larger radii, but the shift is no larger 
than 0.1 dimensionless. The circumferential velocity in section S1 agrees well with measured data, 
with the same observation that the shear flow region is predicted at larger radii. As far as the 
comparison in section S2 is concerned, Figure 4, one should keep in mind that for the real draft tube 
this section is quite close to the elbow, where the axial-symmetry assumption is obviously no longer 
valid for the wall shape. The large backflow region shown in the axial velocity profile (dashed line) 
is in disagreement with the experimental data. 

When the Stagnant Region Model (SRM) is activated, the agreement with experimental data is 
improved, as shown with solid lines in Figures 3 and 4. The axial velocity profile in survey section 
S1, Figure 3, shows that the radial extent of the shear flow region decreases and it is closer to the 
experiment. The overestimation of the axial velocity in the main flow at the boundary of the shear 
flow is reduced, and overall the axisymmetric flow computation with SRM agrees better with the 
experiment. The same conclusion holds for the circumferential velocity, where the computation 
correctly captures the evolution outside the central region. The prediction is improved in the survey 
section S2 as well, given the inherent limitation due to the actual three-dimensional shape of the 
draft tube. 
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Figure 3. Axial and circumferential velocity profiles on the upstream survey section S1. 
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Figure 4. Axial and circumferential velocity profiles on the downstream survey section S2. 

 
A further assessment of the axisymmetric swirling flow model is presented in Figure 5, where 

the streamline pattern in a meridian half-plane is shown for the velocity field computed without (left 
half-plane) and with (right half-plane) the SRM. Experimental data extracted from PIV 
investigations [4, 3] provide the vortex rope locus in a meridian half plane, as shown with circles in 
Figure 5. When the SRM is not activated the central region contains closed streamlines with 
backflow near the axis. Within this recirculation zone there is a region with small (or vanishing) 
meridian velocity, shaded in the left-hand half-plane in Fig. 5. One can see that this region with 
vanishing meridian velocity corresponds quite well to the location of the vortex rope. When using 
the SRM, the results shown in the right-hand meridian half-plane from Fig. 5 provide a well defined 
central stagnant region (shaded in red) with the vortex rope located right on the boundary with the 
main stream. This result is also supported by the PIV investigation of the velocity field in the 
straight draft tube of a pump-turbine [6]. 
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Figure 5. Streamline pattern and the location of the vortex rope. Numerical results for axisymmetric 
turbulent flow model without SRM (left half-plane) and with SRM (right half-plane). 

  
If viscosity were neglected, then the corresponding steady axisymmetric Euler equations 

reduce to the Bragg-Hawthorne equation for the streamfunction ψ  [5]. This equation contains two 
generating functions deriving from the Kelvin’s and Bernoulli’s theorems. According to Kelvin’s 
theorem, the circulation function should remain constant around a particular streamsurface 

constantψ = , thus we have ( )rV Cθ ψ= . According to Bernoulli’s theorem, the total specific 

energy, or the total pressure, should also remain constant on a streamsurface, i.e. 
2/ / 2 ( )p V Eρ ψ+ = . 

Both circulation and total pressure are plotted dimensionless in Figure 6 versus the normalized 
streamfunction in four sections: inlet, survey S1 and S2, and cone outlet section. The total specific 

energy is made dimensionless by defining the total pressure coefficient ( ) ( )inlet
tot tot tot /

p
c p p gHρ≡ − , 

with inlet
totp   the mass weighted average of the total pressure on the inlet section. Using the 

normalized streamfunction in the abscissa gives the direct indication of the discharge fraction. As 
expected, the viscous dissipation produces decay in both functions as the flow evolves downstream 
from the inlet section to the cone outlet. The plots in Fig. 6 correspond to the flow computed with 
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SRM (streamline pattern in right-hand side of Fig. 5), and clearly show the circulation and specific 
energy content of the main flow. For example, the circulation increases linearly from the crown to 
toward the band, with an excess near the band most likely due to the development of the interblade 
vortex [2]. The specific energy is initially practically constant for more than ¾ of the discharge 
close to the crown, but significantly overshoots the average value for ¼ of the discharge in the band 
neighborhood. These distributions may depend on the runner blade design, but can be considered as 
characteristics of the swirling flow downstream a Francis runner operated at partial discharge. One 
can also observe in Fig. 6 that the specific energy decreases rapidly both near the wall (solid 
boundary) and near the central stagnant region (fluid boundary). In the middle of the main stream 
there is little decay in both circulation and specific energy. 
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Figure 6. Dimensionless circulation function ( )C ψ  (left) and total pressure ( )Eρ ψ , respectively, 
versus the normalized streamfunction. 

  
 CONCLUSIONS 

The main conclusion of the present investigations is that the axisymmetric turbulent swirling 
flow model can be reliably employed to recover the circumferentially averaged flowfield in the case 
of the three-dimensional, unsteady swirling flow with precessing vortex rope encountered in the 
draft tube cone of Francis turbines operated at partial discharge. When adding the Stagnant Region 
Model (SRM) to the axisymmetric swirling flow solver from the FLUENT commercial code the 
numerical results are in very good agreement with the measured axial and circumferential velocity 
profiles, and confirms previous models with respect to the vortex rope location. Moreover, since a 
2D numerical simulation is performed, the computing time and resources are at least two orders of 
magnitude less than a full 3D unsteady flow simulation. As a result, one can use the axisymmetric 
swirling flow model within parametric studies and optimization procedures in order to either adjust 
the blade design or to analyze various approached for mitigating the vortex rope. The elimination of 
the central stagnant region is a good indicator for the success of such approaches. 

Due to its inherent simplifications, the axisymmetric swirling flow model provides a steady 
average flow picture for a highly unsteady phenomenon. As a result, one cannot assess directly the 
level of pressure fluctuations. The presence and extent of the vortex rope can be only indirectly 
inferred. At this point, a stability study of the steady axisymmetric swirling flow could provide a 
better assessment of the helical vortex development. However, the development and extent of the 
central stagnant region could be reduced by optimizing the runner design, thus mitigating the vortex 
rope and extending the operating range of Francis turbines with acceptable pressure fluctuations. 
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By examining the specific energy content of the swirling flow downstream a Francis runner 
operated at partial discharge, we show that there is an important excess near the band, with respect 
to the average value. On the other hand, a specific energy deficit is developed near the band and 
further downstream in the central stagnant region. As a result, a possible flow control approach for 
mitigating the vortex rope should re-direct the excess of specific energy from the cone wall toward 
the central region, thus reducing or eliminating the stagnant region. 
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APPENDIX: USER DEFINED FUNCTION FOR THE STAGNATION REGION MODEL 

(SRM) IMPLEMENTATION IN FLUENT 
 

#include "udf.h" 
DEFINE_EXECUTE_AT_END(stagnation) 

/* 

DEFINE EXECUTE AT END is a general-purpose macro that is executed at the end of an 

iteration in a steady state run, or at the end of a time step in a transient run.  

One can use DEFINE EXECUTE AT END when you want to calculate quantities at these 
particular times. Note that you do not have to specify whether your execute-at-end 

UDF gets executed at the end of a time step or the end of an iteration. This is done 
automatically when selecting the steady or unsteady time method in FLUENT model. 

*/ 
{ 

Domain *domain; 
Thread *thread; 

cell_t  cell; 
real axvel, radvel; 

domain=Get_Domain(1); /* returns the fluid domain pointer */ 
 

thread_loop_c(thread,domain) /* loop over all cells threads in a given domain*/ 

    { 

    begin_c_loop(cell,thread) 

        axvel  = C_U(cell,thread); /* get the axial velocity value */ 
        radvel = C_V(cell,thread); /* get the radial velocity value */ 

        if (axvel < 0.0) /* stagnation condition: reverse meridian velocity */  
           { 

             C_U(cell,thread) = -axvel; 
             C_V(cell,thread) = -radvel; 

             C_W(cell,thread)=0.0; 
           }  

    end_c_loop(cell,thread) 
    } 

   printf("Reverse backflow meridian velocity \n"); 

} 

 


