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Abstract 63 

 East Coast fever (ECF) is a fatal sickness affecting cattle populations of eastern, central, 64 

and southern Africa. The disease is transmitted by the tick Rhipicephalus appendiculatus, and 65 

caused by the protozoan Theileria parva parva, which invades host lymphocytes and promotes 66 

their clonal expansion. Importantly, indigenous cattle show tolerance to infection in ECF-67 

endemically stable areas. Here, the putative genetic bases underlying ECF-tolerance were 68 

investigated using molecular data and epidemiological information from 823 indigenous cattle 69 

from Uganda. Vector distribution and host infection risk were estimated over the study area and 70 

subsequently tested as triggers of local adaptation by means of landscape genomics analysis. We 71 

identified 41 and seven candidate adaptive loci for tick resistance and infection tolerance, 72 

respectively. Among the genes associated with the candidate adaptive loci are PRKG1 and SLA2. 73 

PRKG1 was already described as associated with tick resistance in indigenous South African 74 

cattle, due to its role into inflammatory response. SLA2 is part of the regulatory pathways 75 

involved into lymphocytes’ proliferation. Additionally, local ancestry analysis suggested the 76 

zebuine origin of the genomic region candidate for tick resistance. 77 

Author summary 78 

 The tick-borne parasite Theileria parva parva infects cattle populations of eastern, central 79 

and southern Africa, by causing a highly fatal pathology called “East Coast fever”. The disease is 80 

especially severe for the exotic breeds imported to Africa, as well as outside the endemic areas of 81 

East Africa. In these regions, indigenous cattle populations can survive to infection, and this 82 
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tolerance might result from unique adaptations evolved to fight the disease. We investigated this 83 

hypothesis by using a method named “landscape genomics”, with which we compared the genetic 84 

characteristics of indigenous Ugandan cattle coming from areas at different infection risk, and 85 

located genomic sites potentially attributable to tolerance. In particular, the method pinpointed 86 

two genes, one (PRKG1) involved into inflammatory response and potentially affecting East 87 

Coast fever vector attachment, the other (SLA2) involved into lymphocytes proliferation, a 88 

process activated by T. parva parva infection. Our findings can orientate future research on the 89 

genetic basis of East Coast fever-tolerance, and derive from a general method that can be applied 90 

to investigate adaptation in analogous host-vector-parasite systems. Characterization of the 91 

genetic factors underlying East Coast-fever-tolerance represents an essential step towards 92 

enhancing sustainability and productivity of local agroecosystems. 93 

Introduction 94 

 East Coast fever (ECF) is an endemic vector-borne disease affecting cattle populations of 95 

eastern and central Africa. ECF etiological agent is the protozoan emo-parasite protozoan 96 

Theileria parva Theiler, 1904, vectored by the hard-bodied tick vector Rhipicephalus 97 

appendiculatus Neumann, 1901. The disease is reported to cause morbidity in indigenous 98 

populations and high mortality rates among exotic breeds and crossbreds, thus undermining the 99 

livestock sector development in the affected countries [1–3]. 100 

 Cape buffalo (Syncerus caffer Sparrman, 1779) is T. parva native host, being its wild and 101 

asymptomatic reservoir [4]. A primordial contact between buffalo-derived T. parva and domestic 102 
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bovines is likely to have occurred ~4.500 years before present (YBP) [5]. However, it is hard to 103 

define if the host jump affected taurine- or indicine-like cattle first, since no consensus can easily 104 

be reached to define who among Bos taurus and B. indicus migrated into ECF endemic regions 105 

first [6–8]. Indeed, African taurine cattle might have reached eastern Africa sometime between 106 

~8,000 and 1,500 YBP [7,8], and the most ancient zebuine colonization wave is estimated to have 107 

occurred between ~4,000-2,000 YBP from the Asian continent, as suggested by the first certain 108 

archaeological record dated 1,750 YBP [6]. Once T. parva spread to domestic populations, 109 

coevolution between the parasite and the new hosts likely led to the divergence between buffalo- 110 

(T. parva lawracei) and cattle-specific (T. parva parva) parasite strains [9,10], and to the 111 

appearance of infection-tolerant indigenous herds [11,12]. 112 

 Most likely, ECF-tolerance appeared (and is only observable) in areas where environmental 113 

conditions guaranteed a constant coexistence between the vector, the parasite and the domestic 114 

host. Such a particular situation, together with the evolution of some sort of “innate resistance” 115 

[13], plausibly prompted the establishment of an epidemiological state referred to as endemic 116 

stability, a condition where hosts become parasite reservoirs with negligible clinical symptoms 117 

[14]. However, no clear indication for a genetic control has been provided for ECF-tolerance so 118 

far [12], despite host genetic factors were identified for tolerance to tropical theileriosis [15] (a 119 

disease caused by the closely related T. annulata), and tick resistance [16]. 120 

 Here, we propose an integrated approach based on ecological modelling and landscape 121 

genomics to explore the putative adaptive component sustaining ECF-endemic stability. 122 

Furthermore, given the existence of host populations showing differential susceptibility to ECF 123 
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[13,14,17], we will refer to ECF-tolerance as a potential case of local adaptation [18]. Since 124 

endemically stable areas are currently inhabited by the indigenous zebu and the zebu x African B. 125 

taurus crosses sanga and zenga [8,19], two basic hypotheses can be associated to the origin of 126 

local adaptation to ECF: (i) at first adaptation appeared in local African B. taurus populations and 127 

was then introgressed into zebu and derived sanga and zenga crossbreds; alternatively, (ii) it 128 

appeared in B. indicus, and then either evolved independently in zebuine populations of eastern 129 

Africa, or was imported from the Indian continent, where similar selective pressures are recorded 130 

[20,21].  131 

 Specific regions in the South-West [14] and in the East [17] of current Uganda are reported 132 

to be ECF-endemically stable, thus making this country a candidate for investigating local 133 

adaptation to ECF. Moreover, indigenous Ugandan cattle populations are proven to be connected 134 

by high rates of gene flow [22], and a strong spatially varying selection is expected on their 135 

genomes because of regional climatic differences shaping ECF epidemiology over the country 136 

[11]. These requirements are all likely to have promoted local adaptation to the disease [23], even 137 

over short time scales (i.e. from thousands of years to few decades), as observed for other plant 138 

and animal species [24–26]. 139 

 To test our approach, we exploited genomic data from indigenous Ugandan cattle and 140 

spatial information on parasite and vector occurrence. First, we modelled ECF-vector potential 141 

distribution and infection risk in cattle to define the spatially varying selective pressure over the 142 

host genomes. Then, we searched for Single Nucleotide Polymorphisms (SNPs) potentially 143 

involved into local adaptation to ECF through genotype-environment association (GEA) analysis, 144 
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and we annotated candidate genes. Finally, we studied the ancestral origin of the identified 145 

genomic regions by means of local ancestry analysis to shed light on the possible evolutionary 146 

origins of local adaptation to ECF. 147 

Materials and Methods 148 

Ecological modelling  149 

 R. appendiculatus occurrence probability (ΨR) and T. parva parva infection risk in cattle (γ) 150 

were modelled and used as environmental predictors into landscape genomics models. 151 

Geographical variability in both ΨR and γ was assumed to describe the spatially heterogeneous 152 

selective pressure on cattle genomes. Further, S. caffer occurrence probability (ΨS) was estimated 153 

and used in combination with ΨR to model γ, as the geographical proximity between Cape 154 

buffaloes and cattle herds constitutes a factor for explaining ECF incidence. The following three 155 

sections will describe data and methods used to estimate ΨR, ΨS, and γ. 156 

Raster data. Bioclimatic variables (BIO) referring to the time span between 1960 and 1990 were 157 

collected from the WorldClim database (v.1.4. release3) [27] at a spatial resolution of 30 arc-158 

seconds and in the un-projected latitude/longitude coordinate reference system (WGS84 datum). 159 

Altitude information was collected from the SRTM 90m Digital Elevation Database (v.4.1) [28], 160 

which provides tiles covering Earth’s land surface in the WGS84 datum, at 90 m resolution at the 161 

equator. Altitude was used to compute terrain slope through the function terrain implemented 162 

in the R package raster [29]. The ten-year (2001-2010) averaged Normalized Difference 163 
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Vegetation Index (NDVI) was derived for 72 ten-day annual periods from the “eMODIS 164 

products” (S1 Text) [30], in the WGS84 datum, and at a resolution of 250 m at the equator. A 165 

raster file describing cattle density (number of animals/km2) was acquired from the Livestock 166 

Geo-Wiki database [31], in the WGS84 datum, at a resolution of 1 km2 at the equator. A raster 167 

file describing each pixel distance from the nearest water source was obtained with the function 168 

distance within the R package raster. The “Land and Water Area” dataset  from the 169 

Gridded Population of the World collection (GPV v.4) [32] was used to define water bodies in 170 

Uganda at a resolution of 30 arc-seconds with WGS84 datum. 171 

 All raster files were transposed into Africa Albers Equal Area Conic projection to guarantee 172 

a constant pixel size and meet the main assumption of the statistical technique used to model ΨR 173 

and ΨS, i.e. that each pixel presents the same probability to be randomly sampled in order to 174 

detect the species occurrence [33]. Raster files were standardised to the same resolution (~0.85 175 

km2), origin, and extent. To avoid the inclusion of potentially misleading background locations 176 

while characterizing the occurrence probability of terrestrial species, inland water surfaces were 177 

masked prior to ΨR and ΨS estimation [34]. Quantum GIS (v.2.16.2) [35] and the R package 178 

raster were used for raster files manipulation. 179 

Species distribution models. The R package Maxlike [36] was used to model ΨR and ΨS over 180 

Uganda. Maxlike is able to estimate species occurrence probability (Ψ) from presence-only 181 

data, by maximizing the likelihood of occurrences under the logit-linear model [33]:  182 

�� � ��

����
� � �� � �	
��     (1) 183 
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where Ψx denotes the species occurrence probability in the x pixel of the landscape, β0 the model 184 

intercept (i.e. the expected prevalence across the study area), β the vector of slope parameters, 185 

and z(x) the vector of environmental variables for x. Occurrence probability in x is derived from 186 

the inverse logit: 187 


� � ���������

�����������
       (2) 188 

 Fifty-one and 61 spatial records of R. appendiculatus and S. caffer (Figs 1A and 1B) were 189 

obtained from a tick occurrence database previously collected [37], and the Global Biodiversity 190 

Information Facility [38], respectively.  191 

 The most relevant environmental variables affecting tick and Cape buffalo distributions 192 

were identified from the literature. Specifically, the BIO variables representing 193 

temperature/precipitation interaction in the most extreme periods of the year were used to model 194 

R. appendiculatus occurrence (Table 1 and S1 Fig.) [39,40], while altitude, terrain slope, NDVI, 195 

distance to water sources (Wd), and annual precipitation (BIO12) were used to model the Cape 196 

buffalo distribution [41–43]. A Maxlike regression analysis was applied to individuate the 197 

NDVI values best predicting the available S. caffer occurrences, and the period April 6-15 was 198 

retained for subsequent analyses (S2 Fig.). No variable depicting the top-down regulatory effect 199 

of predators on buffalo populations was considered, as bottom-up ecological mechanisms (like 200 

quantity and quality of food resources) are argued to play the main role in determining large 201 

herbivores distribution [44]. 202 

 203 
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Table 1. Predictors for R. appendiculatus distribution model. 204 

Bioclim variable Definition 

BIO8 Mean temperaturea of the wettest three months (quarter) of the year 

BIO9 Mean temperature of the driest quarter 

BIO10 Mean temperature of the warmest quarter 

BIO11 Mean temperature of the coldest quarter 

BIO16 Precipitationb of the wettest quarter  

BIO17 Precipitation of the driest quarter 

BIO18 Precipitation of the warmest quarter 

BIO19 Precipitation of the coldest quarter 
aTemperature was transformed from dC° to C° prior analyses. bPrecipitation is expressed in 205 

millimetres. 206 

 207 

 Collinearity was checked prior to analyses by computing pairwise absolute correlations (|r|) 208 

between variables, which were considered collinear when |r| exceeded the suggested threshold of 209 

0.7 [45]. High collinearity was found among BIO variables, which were then subjected to 210 

principal components analysis (PCA) to obtain orthogonal predictors for ΨR. 211 

 Obtained components were tested into univariate and multivariate R. appendiculatus 212 

distribution models. Particularly, components explaining up to 95% of the original variance [46] 213 

were individuated and tested with different combinations into multivariate models, leading to a 214 

total of twelve candidate R. appendiculatus distribution models. Conversely, all the combinations 215 

of environmental variables were tested into univariate up to penta-variate Cape buffalo 216 

distribution models, resulting in a total of 31 candidate models for predicting S. caffer potential 217 

distribution. 218 

 In both cases, Bayesian Information Criterion (BIC) was used to select the best models 219 
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[47]. Bring’s standardization [48,49] was applied on predictors before parameters’ estimate, and 220 

the delta method was implemented to compute the 95% confidence intervals around the fitted ΨRx 221 

and ΨSx. 222 

Infection risk model. In the context of the European Project NextGen (http://nextgen.epfl.ch), 223 

587 blood samples from Ugandan indigenous cattle were tested for the presence/absence of T. 224 

parva parva p104 antigen DNA sequence [11]. Samples were collected and georeferenced in 225 

correspondence of 203 farms distributed over a grid of 51 cells covering the whole Uganda, with 226 

an average of 12 (±4 s.d.) animals/cell, and three (±1 s.d.) animals/farm (Fig 1C).  227 

 ECF epidemiology is complex and determined by both biotic and abiotic factors [2]. 228 

Particularly, R. appendiculatus occurrence (ΨR) [1,50–52], cattle density (Cd) [3,53], potential 229 

proximity with S. caffer (ΨS) and the maximal temperature in the warmest month of the year 230 

(BIO5) were considered to predict γ. BIO5 was used to account for the possible limiting effect of 231 

high temperatures on the parasite development into the tick [54]. Predictors’ values were 232 

obtained at the geographical position of each animal (i.e. locations of the farms), checked for the 233 

presence of collinearity (as done for the species distribution models) and outliers (S3 Fig.), and 234 

subsequently standardized following Bring’s procedure prior to parameters’ estimation.  235 

 Infection risk for any i-th animal was modelled using a binary mixed-effects logistic 236 

regression, where ΨR, BIO5, Cd, and ΨR were specified as fixed effects, and random intercepts 237 

were estimated for each farm to account for the possible influence of local environmental 238 

conditions and management practices (e.g. differential use of acaricides), as well as unmeasured 239 

biological features (e.g. breed- or individual-specific response to tick burden) [13]. Since 240 
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geographical position of samples was recorded at the farm-level, all the animals coming from a 241 

given farm were characterized by equal environmental values. Thus, the model can be written as: 242 

�� � �	


���	

� � � �� � ��	� � �	
��    (3) 243 

��	~N�0, �
�� �       (4) 244 

where γij represents T. parva parva infection risk for the i-th animal in the j-th farm, β0 is the 245 

population intercept [55], β0+b0j is the j-th farm random intercept, β the vector of slope 246 

parameters, and z(j) the vector containing the predictors’ values as derived from the pixel where 247 

the j-th farm is located, equal for all the animals in j. In this way, animals in j are expected with 248 

the same predicted γ, so that infection risk in the j-th farm can be calculated using the population 249 

model from the previous equation: 250 

�	 � �������
�

���������
�
       (5) 251 

 Estimates of the parameters were obtained through the Maximum Likelihood criterion 252 

using the glmer function included in the R package lme4 [56]. 253 

Landscape genomics 254 

Molecular datasets. The NextGen project genotyped 813 georeferenced indigenous cattle from 255 

Uganda using the medium-density BovineSNP50 BeadChip (54,596 SNPs; Illumina Inc., San 256 

Diego, CA, USA). Landscape genomics analyses were carried out on this set of animals, which 257 

will be referred to as the “landscape genomics dataset” (LGD). Samples were collected according 258 

to the spatial scheme represented in Fig 1C, and encompassed 503 of the individuals tested for T. 259 
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parva parva infection. Quality control (QC) procedures were carried out with the software PLINK 260 

v.1.7 [57]. LGD was limited to autosomal chromosomes and pruned for minor allele frequency 261 

(MAF) <0.01, genotype call rates <0.95, and individual call rate <0.9. Pairwise genome-wide 262 

identity-by-descent (IBD) values were estimated, and one individual per pair showing IBD>0.5 263 

was excluded from analyses to reduce the risk of spurious associations due to unreported kinship 264 

[58]. To avoid excluding too many individuals from nearby areas, spatial positions of the 265 

highlighted pairs were considered prior to removal. 266 

 Population genetic structure of Ugandan cattle was studied on the landscape genomics 267 

dataset merged with molecular data from other European taurine, African taurine, zebuine and 268 

sanga populations retrieved from various sources and for different geographical areas worldwide 269 

(S1 Table). This extended dataset will be referred to as the “population structure dataset” (PSD). 270 

PLINK was used to prune PSD for linkage disequilibrium (LD) >0.1 with sliding windows of 50 271 

SNPs and step size of 10 SNPs (option --indep-pairwise 50 10 0.1), and to filter for 272 

the QC thresholds previously reported. 273 

Population structure analysis. PSD was analysed with ADMIXTURE v.1.3.0 [59] for a dual 274 

purpose. Firstly, to provide genotype-environment association tests with population structure 275 

predictors in order to reduce the risk of false positive detections [60,61]. To this aim, we decided 276 

to use membership coefficients for the four-cluster solution (K=4), as this was reported to be the 277 

best partition based on the ADMIXTURE cross-validation index for the same set of Ugandan 278 

individuals undergoing landscape genomics in the present study [22]. Due to strong collinearity 279 

(|r|>0.7) [45] among the membership coefficients of two ancestral components, a PCA was 280 
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performed trough the R function prcomp to obtain synthetic and orthogonal population structure 281 

predictors. Secondly, to identify the main gene pools present in Uganda in the context of a 282 

worldwide-extended dataset, and therefore guide selection of proper reference populations for 283 

local ancestry analysis. 284 

Genotype-environment associations. We used the software SAMβADA v.0.5.3 [22,62] to test for 285 

associations between cattle genotypes and ΨR and γ at sampling locations. Given diploid species 286 

and biallelic markers, SAMβADA runs three models per locus, one for each possible genotype. 287 

Each model estimates the probability πi for the i-th individual to carry a given genotype, as a 288 

function of the considered environmental and population structure variables:  289 

�� � �	

���	
� � �� � �	
��     (6) 290 

and thus: 291 

�
 � �������	�

���������	�
       (7) 292 

 Genotype-environment association tests were carried out through a likelihood-ratio test 293 

comparing a null and an alternative model for each genotype [22]. Particularly, null models 294 

comprised the population structure predictors alone, while alternative ones included population 295 

structure predictors plus either ΨR or γ. A genotype was considered significantly associated with 296 

ΨR and/or γ if the resulting p-value associated with the likelihood-ratio test statistic (D) was lower 297 

than the nominal significance threshold of 0.05 after Benjamini-Hochberg (BH) correction for 298 

multiple testing (H0: D=0, αBH=0.05; S2 and S3 Text). The R function p.adjust was used to 299 

perform p-values corrections, and predictors were centred prior to analysis to ease estimation of 300 
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model parameters. 301 

Gene annotation. Global linkage disequilibrium (LD) decay was estimated using SNeP v.1.11 302 

[63] to define LD extent around marker loci. A window of ±25 kbp (r2
≈0.2) was then selected 303 

around those SNPs associated with ΨR and/or γ to annotate genes in the Ensembl database release 304 

87 [64]. Annotated genes were investigated for known biological function according to the 305 

literature, and candidate genes identified based on their pertinence with ECF local adaptation. 306 

Local ancestry 307 

Molecular dataset. Target population for local ancestry analysis comprised 102 indigenous 308 

Ugandan cattle individuals collected during the NextGen sampling campaign (two animals 309 

sampled per cell; Fig 1C), and genotyped with the BovineHD BeadChip (777,961 SNPs; Illumina 310 

Inc., San Diego, CA, USA). Reference populations (see Results section) were selected in 311 

coherence with the major Ugandan gene pools identified by the ADMIXTURE analysis (S4 Text). 312 

Target and reference populations were pooled in a “local ancestry dataset” (LAD). Only 313 

autosomal SNPs passing the same filtering parameters applied to LGD were retained for analysis. 314 

PCADMIX analysis. Local ancestry investigation allows to assign the ancestral origin of a 315 

chromosomal region (window) given two or more reference populations, and have been used to 316 

infer the admixture history of closely related groups [65], identify signals of adaptive 317 

introgression [66], and highlight target regions of recent selection [67]. Here, PCADMIX v.1.0 318 

[68] was used to infer local genomic ancestry of the Ugandan samples. Given the SNPs density 319 

present in LAD (i.e. one SNP every ~3.4 kbp, on average), we used 20 SNPs per window to 320 
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obtain a window size comparable to the optimal one suggested in [68]. 321 

Beta regression analysis. Genomic windows hosting SNPs in linkage with the candidate genes 322 

for local adaptation were identified and their ancestry proportions computed per sampling cell 323 

(Fig 1C). Average ΨR and γ per cell values (hereafter ΨRc and γc, respectively) were derived using 324 

the zonal.stats function included in the R package spatialEco [69]. In order to test for 325 

significant associations between ancestry proportions and ΨRc and γc, a beta regression analysis 326 

was performed using the R package betareg [70], according to the model:  327 

�� � �	

���	
� � �� � ���
       (8) 328 

��~Β
�
 ,  �       (9) 329 

Where ai is the ancestry proportion observed in cell i, which is assumed to derive from a beta 330 

distribution B(μi, �) with mean μi=E(ai) and precision parameter �, xi is either average ΨR or γ in 331 

cell i, β0 and β1 are intercept and regression coefficient, respectively. Expected ancestry 332 

proportion in i was calculated through the inverse logit: 333 

�
 � �������	

���������	
       (10) 334 

 Ancestry proportions were transformed prior to analysis [71], and the Maximum Likelihood 335 

criterion was used to estimate model parameters. 336 

Ethics Statement  337 

 The NextGen sampling campaign was carried out during years 2011 and 2012, before 338 
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Directive 2010/63/EU came into force (i.e., 1 January 2013). Thus, all experimental procedures 339 

were compliant with the former EU Directive 86/609/EEC, according to which no approval from 340 

dedicated animal welfare/ethics committee was needed for this study. The permission to carry out 341 

the study was obtained from the Uganda National Council for Science and Technology (UNCST) 342 

reference number NS 325 [11]. The permission to carry out the sampling at each farm was 343 

obtained directly from the owners. 344 

Results 345 

Ecological modelling 346 

Species distribution models. The first three principal components (PC1, PC2, and PC3) 347 

accounted for more than 95% of the variance among the BIO predictors, and were subsequently 348 

tested into multivariate Maxlike models to estimate ΨR. Particularly, PC1 (61%) was mainly 349 

correlated with BIO variables linked to temperature (BIO8, BIO9, BIO10 and BIO11), PC2 (19%) 350 

with precipitation (BIO16, BIO17, BIO18 and BIO19), and PC3 (15%) with both temperature and 351 

precipitation (BIO19 and BIO8) (Table 1 and S5 Fig.). The model employing PC1, PC2, and PC3 352 

was selected based on the BIC metric (S6 Fig.), with PC1 and PC2 showing a significant positive 353 

effect on the tick distribution, and PC3 a significant negative effect (Table 2) (H0: βi=0, α=0.05). 354 

The model predicts low habitat suitability in the regions North of the Lakes Kwania, Kyoga and 355 

Kojwere (0<ΨR<0.1), and favourable ecological conditions around Lake Victoria (0.4<ΨR<1) and 356 

South-West of Lake Albert (0.4<ΨR<0.8), these latter separated by a corridor of lower suitability 357 

(0<ΨR<0.3) (Fig 2A and S7 Fig.). 358 
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Table 2. Maxlike results for R. appendiculatus distribution model.  359 

Coefficient Estimate SE p-value ORa ORlow
b ORup

c 

β0 −2.905 0.561 2.24E−07*** 0.055 0.018 0.164 

PC1 0.796 0.303 8.56E−03** 2.217 1.224 4.014 

PC2 0.822 0.37 2.62E−02* 2.275 1.102 4.698 

PC3 −1.799 0.629 4.27E−03** 0.165 0.048 0.568 
Point estimates (Estimate) of the standardized regression coefficients (Coefficient) are 360 

reported on the logit scale together with their standard errors (SE), p-values and the 361 

associated odds ratios (OR). A significant effect is reported with *** when the p-value (p) 362 

associated to a regression coefficient is ≤0.001; ** when 0.001<p<0.01; * when 363 

0.01<p<0.05; . when 0.01<p<0.1. 364 
aOdds ratios associated to regression coefficients express the expected change in the ratio 365 

ΨR/(1−ΨR), for a one standard deviation increase of the concerned predictor, holding all the 366 

other predictors fixed at a constant value. bOdds ratio 95% confidence interval (CI), lower 367 

bound. cOdds ratio 95% CI, upper bound. 368 

 369 

 No excessive collinearity was recorded among the predictors for ΨS. The best model 370 

according to the BIC metric included: altitude, annual precipitation, average NDVI and distance 371 

from the nearest water source (Table 3 and S8 Fig.). The model predicts the highest habitat 372 

suitability (0.2<ΨS<0.8) in the near proximity of the water bodies (especially along the White 373 

Nile in the North-West, the south-eastern coasts of Lake Édouard, and the northern coasts of 374 

Lake George), and in small areas near the Katonga Game Reserve (S9 Fig.). 375 

Table 3. Maxlike results for S. caffer distribution model. 376 

Coefficient Estimate SE p-value ORa ORlow
b ORup

c 

β0 −9.130 0.790 6.46E−31*** 0.000 0.000 0.001 
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Altitude −1.095 0.293 1.90E−04*** 0.335 0.188 0.594 

BIO12 −0.800 0.180 9.03E−06*** 0.449 0.316 0.639 

NDVI 2.862 0.329 3.38E−18*** 17.499 9.181 33.343 

Wd −1.996 0.434 4.23E−06*** 0.136 0.058 0.318 
Point estimates (Estimate) of the standardized regression coefficients (Coefficient) are 377 

reported on the logit scale together with their standard errors (SE), p-values and the 378 

associated odds ratios (OR). Significant regression coefficients are highlighted with *** 379 

when their p-values (p) are ≤0.001; ** when 0.001<p≤0.01; * when 0.01<p≤0.05; . when 380 

0.05<p≤0.1. 381 
aOdds ratios associated to regression coefficients express the expected change in the ratio 382 

ΨS/(1−ΨS), for a one standard deviation increase of the concerned predictor, holding all the 383 

other predictors fixed at a constant value. bOdds ratio 95% confidence interval (CI), lower 384 

bound. cOdds ratio 95% CI, upper bound. 385 

 386 

Infection risk model. Following outliers inspection, ΨR, Cd and ΨS were transformed on the 387 

log10 scale to reduce the observed skewness in the distributions (S3 Fig.). No excessive 388 

collinearity was observed among the model predictors (|r|<0.7). All the explanatory variables 389 

except for Cd showed a significant effect (H0: βi=0, α=0.05) on infection risk. Particularly, BIO5 390 

and ΨR showed a negative association with γ, while ΨS resulted positively associated (Table 4). 391 

Overall, northern regions of Uganda present a low probability of infection (0.1<γ<0.3). A similar 392 

range is observed southwards, in the region comprised between Lake Kyoga, Lake Victoria, Lake 393 

Albert and the eastern borders with Kenya. South-westwards, infection probability increases 394 

following a positive gradient from �≈0.30 to �≈0.70 in the most southern districts (Fig 2B). 395 

 396 
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Table 4. T. parva parva infection risk model results. 397 

Coefficient Estimate SE p-value ORa ORlow
b ORup

c 

β0
d −1.128 0.115 1.21E−22*** 0.324 0.258 0.406 

log10(ΨR) −0.219 0.105 3.72E−02* 0.803 0.654 0.987 

BIO5 −0.432 0.104 3.18E−05*** 0.649 0.529 0.796 

log10(Cd) 0.015 0.105 8.86E−01 1.015 0.826 1.247 
log10(ΨS) 0.246 0.111 2.67E−02* 1.279 1.029 1.590 

Point estimates (Estimate) of the standardized regression coefficients (Coefficient) are 398 

reported on the logit scale together with their standard errors (SE), p-values and the 399 

associated odds ratios (OR). Significant regression coefficients are highlighted with *** 400 

when their p-values (p) are ≤0.001; ** when 0.001<p≤0.01; * when 0.01<p≤0.05; . when 401 

0.05<p≤0.1. 402 
aOdds ratios associated to regression coefficients express the expected change in the ratio 403 

γ/(1−γ), for a one standard deviation increase of the concerned predictor, holding all the 404 

other predictors fixed at a constant value. bOdds ratio 95% confidence interval (CI), lower 405 

bound. cOdds ratio 95% CI, upper bound. dPopulation intercept. 406 

Landscape genomics 407 

Population structure analysis. After pruning for MAF, LD, genotype and individual call rates, 408 

PSD counted 12,925 SNPs and 1,355 individuals, among which 743 from Uganda, 131 European 409 

taurine, 158 African taurine, 195 sanga from outside Uganda, and 128 zebu cattle. 410 

 Sanga and zebuine ancestries were the most represented in Uganda. Particularly, on average 411 

the sanga component constituted 76% (±13%) of the individual ancestries, whereas the zebuine 412 

counted 18% (±13%), with more than half of the individuals showing a zebuine proportion 413 

>20%. Further, ~3% of African and European taurine genomic ancestry components was also 414 

observed. Genomic components showed spatial structure, the zebuine gene pool being more 415 
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present in the North-East of the country, and the sanga in central and south-western Uganda (S10 416 

Fig.) [22]. The African taurine ancestry component was detectable as background signal 417 

especially in the North-West and South-West, whereas European introgression was mostly 418 

observed in the South-West. 419 

 The first three principal components (PC1, PC2 and PC3, respectively) explained almost the 420 

totality of the variance within ADMIXTURE Q-scores for K=4; PC1 split the dataset between sanga 421 

and zebu gene pools, and PC2 and PC3 identified the European and African taurine components, 422 

respectively. Thus, these three PCs were used as population structure predictors to account for 423 

population structure within LGD in the landscape genomics models. 424 

Genotype-environment associations. After QC, LGD counted 40,886 markers and 743 animals 425 

(the same in PSD) from 199 farms (4±1 samples/farm), over 51 cells (15±5 samples/cell). 426 

 Sixty-three genotypes across 41 putative adaptive loci resulted significantly associated with 427 

ΨR (Fig 3A, S2 Table, and S11-S12 Figs). Eight genotypes across seven loci resulted 428 

significantly associated with γ (Fig 3B, S3 Table, and S11-S12 Figs). 429 

Gene annotation. Among the 41 loci significantly associated with ΨR, 18 presented at least one 430 

annotated gene in the Ensembl database in close proximity (Table 5A and S12 Fig.). Locus BTA-431 

113604-no-rs (hereafter BTA-113604) is located ~12.5 kbp apart from the Protein kinase, cGMP-432 

dependent, type I (PRKG1) gene on chromosome 26. PRKG1 was already proposed as a 433 

candidate gene for tick resistance in South African Nguni cattle [72]. 434 

 Six out of the seven loci significantly associated with γ presented at least one annotated 435 

gene within the selected window size (Table 5B and S12 Fig.). Two SNPs (ARS-BFGL-NGS-436 
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110102 and ARS-BFGL-NGS-24867, hereafter ARS-110102 and ARS-24867, respectively) were 437 

proximal to the Src-like-adaptor 2 (SLA2) gene on chromosome 13. SLA2 human orthologue 438 

encodes the Src-like-adaptor 2, a member of the SLAP protein family which regulates the T and 439 

B cell-mediated immune response [73]. Given T. parva parva known ability to promote the 440 

proliferation of T and B cells [74,75], we considered SLA2 as a second candidate gene for ECF 441 

local adaptation. 442 

 443 
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Table 5. Gene annotation for the loci significantly associated with ΨR (A) and γ (B). 444 

A 
     

SNP ID Genotype(s) Chr. Position Annotated gene Biological function 

ARS-BFGL-NGS-110339  AA, AC 1 111,495,891 Uncharacterized - 

Hapmap34409-
BES7_Contig244_858  

AA 1 120,149,924 Glycogenin-1 (GYG1) Energy metabolism and 
angiogenesis [76] 

Hapmap34056-
BES2_Contig421_810  

AG, GG 1 138,178,130 DnaJ heat shock protein 
family (Hsp40) member 
C13 (DNAJC13) 

Heat shock proteins [77] 

ARS-BFGL-NGS-32909  CC, AC 5 67,846,632 5'-nucleotidase domain 
containing 3 (NT5DC3) 

UP-regulated genes for 
iron content in Nelore 
cattle [78] 

    Uncharacterized - 

ARS-BFGL-NGS-37845 AG, AA 5 48,633,731 Methionine sulfoxide 
reductase B3 (MSRB3) 

Affect ear floppiness and 
morphology in dogs [79]  
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BTA-46975-no-rs  CG, GG 5 68,220,538 Thioredoxin reductase 1. 
cytoplasmic (TXNRD1) 

Milk production and 
oocyte developmental 
competence in cattle 
[80,81] 

Hapmap51626-BTA-73514  AA, AG 5 48,834,486 Inner nuclear membrane 
protein Man1 (LEMD3) 

Height in pigs and cattle 
[82] 

UA-IFASA-6140  AG, AA 7 102,472,846 ST8 alpha-N-acetyl-
neuraminide alpha-2.8-
sialyltransferase 4 
(ST8SIA4) 

Metabolism of milk 
glycoconjugates in 
mammals [83] 

BTB-00292673  AA 7 4,953,801 Phosphodiesterase 4C 
(PDE4C) 

Fertility [84] 

    Member RAS oncogene 
family (RAB3A) 

Calcium exocytosis in 
neurons [85] 

    MPV17 mitochondrial 
inner membrane protein 
like 2 (MPV17L2) 

Immune system [86] 

Hapmap31116-BTA-
143121  

AA 8 7,597,3285 Epoxide hydrolase 2 
(EPHX2) 

In vitro maturation. 
fertilization and culture on 
bovine embryos [87] 

    L-gulonolactone oxidase 
(GULO) 

Involved into vitamin C 
production in pigs [88] 
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ARS-BFGL-NGS-104610  AG 11 104,293,559 Surfeit 6 (SURF6) Housekeeping gene [89] 

    Mediator complex subunit 
22 (MED22) 

Gestation length in Nelore 
cattle [90]  

    Ribosomal protein L7a 
(RPL7A) 

Oocyte developmental 
competence in cattle [80] 

    Uncharacterized - 

    Small nucleolar RNA 
(SNORD24) 

May act as methylation 
guide for RNA targets 
[91] 

    Small nucleolar RNA 
(SNORD36) 

2'-O-ribose methylation 
guide [92]  

    Small nucleolar RNA 
(snR47) 

2'-O-methylation of large 
and small subunit rRNA 
[93] 

    Small nucleolar RNA 
(SNORD24) 

As above 

    Small nucleolar RNA 
(SNORD36) 

As above 
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BTB-00839408  AG. AA 22 18,978,658 Metabotropic glutamate 
receptor 7 precursor 
(GRM7) 

Might be related to 
parasite resistance [94] 

ARS-BFGL-NGS-39898 GG 22 1,319,636 Novel gene - 

ARS-BFGL-BAC-31319 AA 23 4,847,028 3-hydroxymethyl-3-
methylglutaryl-CoA lyase 
like 1 (HMGCLL1) 

Involved into ketogenesis 
[95] 

Hapmap51155-BTA-11643  AA 24 38,086,180 DLG associated protein 1 
(DLGAP1) 

Role in neurological 
development and 
behavioral disorders [96] 

Hapmap57868-rs29020458 AA 24 22,746,291 Dystrobrevin alpha 
(DTNA) 

Formation and stability of 
synapses [97] 

    U6 spliceosomal RNA 
(U6) 

Participate into 
spliceosome formation 
[98] 

BTA-113604-no-rs AA 26 8,356,096 Protein kinase. cGMP-
dependent. type I 
(PRKG1) 

Tick resistance in South 
African Nguni cattle [72] 

ARS-BFGL-NGS-18933 GG 29 34,650,967 Opioid binding 
protein/cell adhesion 
molecule like (OPCML) 

Role in opioid receptor 
function in humans [99] 

B      
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BTB-01298953  AA 4 54,930,726 Protein phosphatase 1 
regulatory subunit 3A 
(PPP1R3A) 

Glycogen synthesis in 
humans and mice [100] 

BTA-33234-no-rs  GG 13 66,291,997 DLG associated protein 4 
(DLGAP4) 

Neuronal membrane 
protein [101] 

    Myosin light chain 9 
(MYL9) 

May participate in 
regulation of muscle 
contraction [102] 

ARS-BFGL-NGS-112656  AA 13 66,336,246 Myosin light chain 9 
(MYL9) 

As above 

    TGFB induced factor 
homeobox 2 (TGIF2) 

Transcriptional repressor 
[103] 

ARS-BFGL-NGS-110102  GG 13 66,370,867 TGFB induced factor 
homeobox 2 (TGIF2) 

As above 

    TGIF2-C20orf24 
readthrough 
(C13H20orf24 alias RIP5) 

May promote apoptosis in 
humans [104] 

    Src-like-adaptor 2 (SLA2) Downregulation of T and 
B cell-mediated responses 
[73] 

ARS-BFGL-NGS-24867  AA 13 66,395,465 Src-like-adaptor 2 (SLA2) As above 
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    NDRG family member 3 
(NDRG3) 

Linked to prostate cancer 
cells growth [105] 

Hapmap39482-BTA-36746  CC, AC 15 40,279,014 TEA domain transcription 
factor 1 (TEAD1) 

Transcription factor 
promoting apoptosis in 
mammals [106]  

Markers (SNP ID) in linkage disequilibrium with a gene annotated in the Ensembl database are reported together with the 445 

associated genotype(s), chromosome (Chr), physical position in base pairs on the chromosome, as well as name and 446 

biological function of the annotated gene (as found for a reference species). 447 

 448 
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Local ancestry 449 

PCADMIX and Beta regression analyses. Based on the gene pools revealed by ADMIXTURE analysis in 450 

Ugandan indigenous cattle, we performed PCADMIX analysis using one zebuine (Tharparkar; THA) 451 

and one African taurine (Muturu; MUT) reference (S4 Text). After QC, LAD counted 689,339 markers 452 

and 128 individuals (102 Ugandan cattle individuals, 13 THA, and 13 MUT). 453 

 For the genomic window hosting BTA-113604 (i.e. window 13 on chromosome 26; S13 Fig.), 79 454 

out of the 204 haploid individuals targeted showed MUT ancestry, while 125 THA ancestry (S14 Fig.). 455 

For the genomic window hosting ARS-110102 and ARS-24867 (i.e. window 145 on chromosome 13; 456 

S13 Fig.), 63 haploid individuals were assigned to MUT, while 141 to THA (S14 Fig.). 457 

 Tharparkar ancestry at window 13 of chromosome 26 showed a positive and significant 458 

association with ΨRc (H0: βi=0, α=0.05) (Table 6 and Fig 4), while no significant association was found 459 

between the Muturu/Tharparkar ancestries at window 145 of chromosome 13 and γc (S5 Text). 460 

Table 6. Beta regression results. 461 

Coefficient Estimate SE p-value OR ORlow
a ORup

b 

β0 0.144 0.194 4.56E−01 1.155 0.790 1.689 
ΨRc 1.663 0.768 3.04E−02* 5.275 1.171 23.767 

� 2.029 0.346     
Association between the inferred proportion of THA ancestry at window 13 (chromosome 26) 462 

with average R. appendiculatus occurrence probability per sampling cell (ΨRc). Point estimates 463 

(Estimate) of the intercept (β0), the regression coefficient associated to ΨRc and the precision 464 

parameter � are reported on the logit scale together with their standard errors (SE). P-values and 465 

odds ratios (OR) are shown for β0 and ΨRc. Significant regression coefficients are highlighted 466 

with *** when their p-values (p) are ≤0.001; ** when 0.001<p≤0.01; * when 0.01<p≤0.05; . 467 
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when 0.05<p≤0.1. 468 
aOdds ratio 95% confidence interval (CI), lower bound. bOdds ratio 95% CI, upper bound. 469 

Discussion 470 

 East Coast fever represents a major issue for livestock health in sub-Saharan countries [107], with 471 

over one million cattle deceased every year, and an annual economic damage of 168-300 million USD 472 

[2,108]. 473 

 ECF incidence is highly correlated with the geographical distribution of the tick vector R. 474 

appendiculatus, whose occurrence is an essential precondition for T. parva parva infection in cattle [3]. 475 

However, with the present study we show that areas with predicted poor habitat suitability for the tick 476 

can present higher infection rates when compared with regions highly suitable for the tick (Fig 2 and 477 

Table 4). Such observation suggests that T. parva parva occurrence cannot be explained by the sole 478 

presence of its vector. Here, we suggest three possible hypotheses to explain such a counterintuitive 479 

pattern. 480 

 First, environmental temperature may play a pivotal role in defining T. parva parva infection risk 481 

in cattle. Piroplasm development within the tick vector appears to be hindered by temperatures >28°C 482 

persisting even for short time periods (as less as 15 days) [54]. Therefore, areas exceeding this 483 

temperature threshold might present a reduced infection risk due to the low success in parasite 484 

development and transmission. The presence of such a temperature constraint might concur in 485 

explaining the low infection risk predicted in the regions such as North-East of Lake Victoria, where a 486 

highly suitable habitat is predicted for R. appendiculatus, but where temperature can reach 30°C in the 487 

warmest month of the year (January) [27]. Coherently, in the south-western area, environmental 488 
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temperature ranges between ~8-28°C during the whole year [27], and the predicted risk of infection 489 

increases despite the decrease in habitat suitability for the tick. 490 

 Second, the most suitable areas for the vector overlap those regions where the highest levels of 491 

zebuine ancestry were recorded (S10 Fig.). B. indicus is known to be more effective in counteracting 492 

tick infestation than B. taurus [109–112], and is consequently less affected by tick-borne micro-493 

organisms [111], including T. parva parva, whose effects are known to be dose-dependent [107,113]. 494 

The core adaptive response to tick burden was identified as the inflammatory reaction triggered by the 495 

tick bite at the cutaneous level [111], which activates a strong white cells-mediated cutaneous reaction 496 

[114] affecting attachment, salivation, engorgement, and ultimately limiting the inoculation of tick-497 

borne microorganisms [115]. Therefore, the low infection risk observed in the most suitable areas for 498 

R. appendiculatus (e.g. north-eastern districts) might be explained by the coexistence of putative tick-499 

resistant zebuine-like populations [116], along with a sub-optimal environmental niche for the parasite. 500 

Further, we speculate that cattle populations living in regions suitable for T. parva parva development, 501 

but with reduced predicted tick presence (e.g. the southern districts), could have not underwent a tick-502 

specific adaptation, and therefore show higher infection rates. 503 

 Third, the R. appendiculatus distribution model does not explicitly consider anthropogenic 504 

factors like tick-control campaigns on a local and temporal basis. However, adequate tick-control 505 

campaigns are rarely undertaken in Uganda (Ugandan National Drug Authority), and evidence of R. 506 

appendiculatus developing drug resistance has been recorded [117]. 507 

 Despite infections being observed in the northern farms of Uganda, an almost null occurrence of 508 

the ECF-vector is predicted for the same regions (0<ΨR<0.1; Fig 2A). A possible explanation is the 509 

lack of R. appendiculatus records, and the consequent bias in the tick distribution model [37,118]. 510 
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Moreover, predicted infection risk in the North (0<γ<0.3; Fig 2B) may be inflated by the global inverse 511 

relationship between γ and ΨR as estimated by the infection risk model (Table 4), and care is 512 

recommended regarding the infection risk predictions for these areas. 513 

 Here, we suggest that the putative adaptive component sustaining ECF-endemic stability might 514 

be due to a synergic mechanism involving specific adaptations to R. appendiculatus (the vector) and T. 515 

parva parva (the parasite). Specifically, adaptations to tick burden could be found along the Lake 516 

Victoria coasts, where a higher selective pressure linked to R. appendiculatus occurrence is predicted 517 

(Fig 2A). We identified 41 loci across 18 chromosomes significantly associated with ΨR (Fig 3A), with 518 

the majority of putative loci under selection found on the chromosomes 5 (nine loci), 1 (seven loci), 519 

and 15 (three loci). Interestingly, the large genomic region hosting the associated SNPs on chromosome 520 

5 (S2 Table) overlaps a genomic region which has been previously associated with several traits in 521 

tropical cattle, including parasite resistance [119]. Among the genes in LD with the associated markers, 522 

we found PRKG1 on chromosome 26 (Table 5A and S13 Fig.), a gene coding for an important 523 

mediator of vasodilation, and already reported as possibly involved in tick resistance in the South 524 

African Nguni breed (see Table 6 in [72]). Importantly, vasodilatation is a classical feature of the 525 

inflammatory response [120,121], the core mechanisms underlying tick resistance, as discussed before. 526 

None of the remaining annotated genes was easily attributable to adaptation to tick burden (Table 5A). 527 

 A specific adaptive response towards T. parva parva infection may have evolved in south-528 

western Uganda, possibly due to ecological conditions suitable for the parasite survival, and to the 529 

presence of a more tick-susceptible cattle population (S10 Fig.). Theileria parva parva pathogenicity is 530 

linked to its ability to invade host lymphocytes, and promoting their transformation and clonal 531 

expansion through the activation of several host-cell signalling pathways [15,75,122]. Here, we found 532 
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seven markers significantly associated with γ, two of which (ARS-110102 and ARS-24867) included 533 

within SLA2 genic region on chromosome 13 (S13 Fig.). SLA2 is known to be involved with signal 534 

transduction in B and T cells. Further, SLA2 downregulates humoral and cell-mediated immune 535 

responses, by contributing to a correct lymphocytes’ activation and proliferation [73,123,124]. SLA2 536 

antagonistic effect on lymphocytes proliferation would suggest its putative involvement in opposing the 537 

diffusion of T. parva parva in the organism. However, further molecular and immunological 538 

investigation will be required for validating this hypothesis. 539 

 Despite the genetic proximity between Muturu and some tick resistant indigenous B. taurus 540 

breeds of western Africa (i.e. N’Dama) [111,125], local ancestry of the genomic region candidate for 541 

tick resistance was predominantly assigned to Tharparkar (Fig 4, Table 6, and S14 Fig.). This result is 542 

in agreement with the known resistance of zebuine cattle to ticks, and suggests the origin of tick 543 

resistance in eastern Africa either from imported Indian populations or within local zebuine-like 544 

populations after migration from India. Conversely, no easily-interpretable indication was obtained for 545 

the genomic region candidate for tolerance to T. parva parva infection. Indeed, neither Tharparkar nor 546 

Muturu ancestries displayed a significant association with infection risk, while an additional local 547 

ancestry analysis revealed a positive correlation with the European taurine Hereford ancestry when 548 

tested versus Tharparkar (S5 Text). Although surprising, this result would rather point towards a 549 

taurine origin of infection tolerance. However, local ancestry results are inherently reference-dependent 550 

[66], and further analyses with different African taurine and zebuine references will be required to 551 

disentangle the evolutionary origin of the genomic regions under scrutiny. 552 

 Besides the identification of candidate regions for ECF local adaptation, our results revealed 553 

allochthonous introgression from Europe within the local gene pools of Ugandan cattle (S4 Text and 554 

.CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/315184doi: bioRxiv preprint first posted online May. 5, 2018; 

http://dx.doi.org/10.1101/315184
http://creativecommons.org/licenses/by-nd/4.0/


35 

 

S10 Fig.). This finding is consistent with the generalized loss of agro-biodiversity reported worldwide 555 

[8,126], and stresses the importance of monitoring local genetic resources to conserve unique 556 

adaptations, including tolerance to tropical endemic diseases. 557 

 Despite limitations in both epidemiological and species occurrence data, the proposed models 558 

allowed the identification of two candidate genes for ECF-tolerance. In general, the combination of 559 

ecological modelling (e.g. species distribution models) and landscape genomics showed the potential of 560 

revealing candidate genomic regions for local adaptation, and could be considered in any evolutionary 561 

study involving interacting species, like symbiotic relationships (i.e. mutualism, parasitism and 562 

commensalism), and competition. 563 
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Figures 929 

 930 
Fig 1. Occurrence records for species distribution modelling and NextGen sampling 931 

scheme. Spatial records (red crosses) used to estimate R. appendiculatus (A) and S caffer (B) 932 

distributions over Uganda, as derived from [37] and [38], respectively. Farms where cattle have 933 

been sampled to be genotyped and tested for T. parva parva infection are represented with red 934 

circles (C). The grid scheme used to sample farms during the NextGen project is shown on the 935 

background of each map (see main text), together with elevation. 936 
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 937 
Fig 2. Predicted distributions ECF vector and infection risk. (A) R. appendiculatus 938 

occurrence probability (ΨR) as predicted by the selected distribution model. (B) Predicted T. 939 

parva parva infection risk (γ). Colour from blue to red tones corresponds to increasing values of 940 

ΨR and γ. Sampled  farms are represented with circles, and coloured according to ΨR and γ values 941 

estimated at their geographical location. 942 
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 943 
Fig 3. Manhattan plots of the genotype-environment associations. X-axis reports 944 

chromosomal position of the tested SNPs on cattle chromosomes. Y-axis reports the test statistic 945 

p-values (p) for the associations with R. appendiculatus occurrence probability (A), and with T. 946 

parva parva infection risk (B). P-values are displayed for each genotype after the Benjamini-947 

Hochberg (BH) correction, and on the –log10 scale. Nominal significance threshold (αBH=0.05) is 948 

displayed as a red line, and significant p-values are represented in green. 949 
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 950 
Fig 4. Expected zebuine proportion for the genomic region candidate for tick resistance 951 

over the study area. The association inferred through beta regression between Tharparkar 952 

ancestry (THA) and average R. appendiculatus occurrence probability per cell (Table 6) was used 953 

to generalize expected zebuine ancestry over the entire study area. Colour key corresponds to 954 

predicted THA proportion, with increasing values from blue to red tones. Sampled farms are 955 

represented with circles, and coloured according to the predicted THA proportion at their 956 

geographical location.  957 
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