000255296 001__ 255296
000255296 005__ 20190317000954.0
000255296 0247_ $$2doi$$a10.1142/S0218202517500580
000255296 02470 $$2DOI$$a10.1142/S0218202517500580
000255296 037__ $$aARTICLE
000255296 245__ $$aAdaptive isogeometric methods with hierarchical splines: Optimality and convergence rates
000255296 260__ $$c2018-06-01
000255296 269__ $$a2018-06-01
000255296 336__ $$aJournal Articles
000255296 520__ $$aWe consider an adaptive isogeometric method (AIGM) based on (truncated) hierarchical B-splines and continue the study of its numerical properties. We prove that our AIGM is optimal in the sense that delivers optimal convergence rates as soon as the solution of the underlying partial differential equation belongs to a suitable approximation class. The main tool we use is the theory of adaptive methods, together with a local upper bound for the residual error indicators based on suitable properties of a well selected quasi-interpolation operator on hierarchical spline spaces.
000255296 536__ $$aEU funding$$c588147
000255296 6531_ $$aIsogeometric analysis
000255296 6531_ $$ahierarchical splines
000255296 6531_ $$aadaptivity
000255296 700__ $$aBuffa, Annalisa

000255296 700__ $$aGiannelli, Carlotta

000255296 773__ $$q2781-2802$$k14$$j27$$tMathematical Models and Methods in Applied Sciences
000255296 8560_ $$fjocelyne.blanc@epfl.ch
000255296 8564_ $$uhttps://infoscience.epfl.ch/record/255296/files/Adaptive%20isogeometric%20methods%20with%20hierarchical%20splines.pdf$$s826875
000255296 8564_ $$uhttps://infoscience.epfl.ch/record/255296/files/Adaptive%20isogeometric%20methods%20with%20hierarchical%20splines.pdf?subformat=pdfa$$s1851370$$xpdfa
000255296 909C0 $$xU13308$$pMNS$$mpablo.antolin@epfl.ch$$0252586
000255296 909CO $$qGLOBAL_SET$$pSB$$particle$$ooai:infoscience.epfl.ch:255296
000255296 960__ $$ajocelyne.blanc@epfl.ch
000255296 961__ $$aalain.borel@epfl.ch
000255296 973__ $$aEPFL$$sPUBLISHED$$rREVIEWED
000255296 980__ $$aARTICLE
000255296 981__ $$aoverwrite