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ABSTRACT

We present an innovative process to fabricate nsegmebased bioresorbable microelectromechanicésys(MEMS)
by ion beam etching. This process enables thedatiion of thin biodegradable water-soluble passieetronic components
with minimal exposure to aqueous media, in a sinpblgsical vapor deposition, photolithography ang eiching sequence.
We demonstrate the design, fabrication and chaiaaten of frequency-selective magnesium RF mi@senators in air
and in water and compare the results to valuesraatdrom both analytical model and FEM. Such resors can be used as
selectively-addressable RF power receivers foresimtbable wireless implantable medical devices.
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INTRODUCTION

Transient electronic devices show high potential aoly for electronic waste reduction, but alsothe field of
bioresorbable medical implants, for applicationstsas intensive care monitoring and localized dialjvery following a
surgical procedure. Once their aim is achievedjri@ants naturally degrade and are eliminatedheyltody, thus avoiding
adverse long-term effects or the need for a sesningery for removal [1,2]. Among biodegradable wa@uble metals,
magnesium (Mg) shows excellent biocompatibility &ndlready used in transient electronic devicesidls Mg fabrication
methods have been reported in literature, includiagetching of thick Mg foils [2,3] and evaporatiof thin Mg structures
through stencils [1]. The method reported here ists i@ optimizing ion beam etching (IBE) to falaie magnesium micro-
resonators with a robust fabrication process thathérmore reduces exposure to aqueous media, witihe need to
fabricate and use fragile stencils.

MICRORESONATORS FABRICATION AND CHARACTERIZATION

Figure 1 shows details of the process flow, whiohsists of one physical vapor deposition, one ghbbtgraphy, and
one dry etching step. First a 2 pm thick Mg filmdisposited by thermal evaporation (P=2.2 mbar, B&3 on a 550 pm
thick float glass substrate. Second, a photolitAply step is performed. After a 10 min dehydrastep on a hotplate at
120°C, a 2 um thick layer of AZ9260 is spin coabedtop of the Mg film. Patterns are exposed byditaser writing at a
dose of 150 mJ/chmResist is developed (AZ400K;8/1:3.5) and a 2 min reflow on a hotplate at 12@8@erformed to
smoothen the resist profile and avoid re-depositonthe resist sidewalls during the subsequent $B&p. The IBE is
performed with a sample tilt of -10° and an etdie & 100 nm/min. The photoresist is removed in@oe after a 1 min ©
plasma step. The wafer is finally rinsed in IPA asied with N. For the characterization in water a 5 um parylene
passivation layer is subsequently coated on taheoMg resonators.

Fabricated Mg structures consist in spiral spligriresonators (S-SRRs) (Fig. 2a) [4]. Such geoswtenable
maximizing the capacitance and thus minimize tis®mance frequency for a given size of the resonalile keeping the
geometry on a single layer. Figure 2a shows a &ygabricated micro-resonator. Figure 2b shows sé&sictures aiming to
validate 4 um resolution and 0.5 aspect-ratio. &SRBre characterized by measuring the change rifriisted power when
the resonator is placed 300 pm above a coplanaeguede (CPW) (Fig. 3). For the characterizationwater, the CPW is
protected by a 5 um Mylar film. Figure 4 shows tesonance frequencies of different S-SRR devicedriand in water. As
shown in Table 1, the measured values agree wtilthé simulated resonance frequencigsd(fid quality-factors (Q). The
time for a 2 um thick resonator to be fully dissain DI water is 75 minutes. Transfer to a biodeigble substrate will be
implemented adopting a similar strategy as in [f&f. In conclusion, we successfully fabricated bswrbable frequency-
selective Mg micro-resonators using a new and rofalsication process based on IBE. This work isignificant step
towards the fabrication of biodegradable microweegonators for thermal therapy and triggered delepse [6].
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Process description

Cross-section

Substrate: float glass
Thickness: 550 um
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Figure 2: Fabricated Mg microstructures. (a) Typlica
spiral split-ring resonator with a close-up viewtbe gap
between each turn of the coil. Scale bars are 100 (b)

Figure 1: Process flow for the fabrication of Mg
microstructures by IBE avoiding exposure to aqueous

media. Circles, square and lines demonstrating 4 um retgmiu
and 0.5 aspect ratio. Scale bar is 20 pm.
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Table 1: Comparison of measured and simulated
resonance frequencies and quality-factors for the
SRRs geometries in air.

Figure 3: S-SRR characterization setup. (a) Thaiset
consists of a signal generator (1), a coplanar waude

(2), a S-SRR (3), a power detector (4) and a lock-i -
amplifier (5). (b) Schematic cross section viewtlod FEM Analytical
characterization setup. The S-SRR is placed 30@yen (COMSOL) model ([4])
the coplanar waveguide. The center of the resonitor fo Q fo Q fo Q

Measured
value

aligned vertically with the side of the waveguideorder [GHZ] [GHZ] [GHZz]

to maximize perpendicular magnetic field. Insetsvsh A | 331 16| 341 26| 341 27

top-view photographs of the coplanar waveguide With B|311 15| 314 24| 312 26
C 2.77 16 2.77 18 2.78 15

resonator on top of it. Scale baris 1.




