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Abstract—In this paper, we revisit an efficient algorithm for
noisy group testing in which each item is decoded separately
(Malyutov and Mateev, 1980), and develop novel performance
guarantees via an information-theoretic framework for general
noise models. For the noiseless and symmetric noise models, we
find that the asymptotic number of tests required for vanishing
error probability is within a factor log 2 ≈ 0.7 of the information-
theoretic optimum at low sparsity levels, and that when a small
fraction of incorrectly-decoded items is allowed, this guarantee
extends to all sublinear sparsity levels. In many scaling regimes,
these are the best known theoretical guarantees for any noisy
group testing algorithm.

I. INTRODUCTION

In this paper, we consider the group testing problem [1], in
which one seeks to determine a small subset S of “defective”
items within a larger set of items {1, . . . , p} based on a number
of tests. In the noiseless setting, each test takes the form

Y =
∨
i∈S

Xi, (1)

where the test vector X = (X1, . . . , Xp) ∈ {0, 1}p indicates
which items are included in the test, and Y is the resulting
observation. That is, the output indicates whether at least
one defective item was included in the test. One wishes to
minimize the total number of tests n while still ensuring the
reliable recovery of S.

We let the defective set S be uniform on the
(
p
k

)
subsets

of {1, . . . , p} of cardinality k. For convenience, we will
sometimes equivalently refer to a vector β ∈ {0, 1}p whose
j-th entry indicates whether or not item j is defective:

βj = 1{j ∈ S}. (2)

We consider i.i.d. Bernoulli testing, where each item is placed
in a given test independently with probability ν

k for some
constant ν > 0. The vector of n observations is denoted
by Y ∈ {0, 1}n, and the corresponding measurement matrix
(each row of which contains a single measurement vector
X = (X1, . . . , Xp)) is denoted by X ∈ {0, 1}n×p.

Generalizing (1), we consider a broad class of noisy group
testing models. Denoting the i-th entry of Y by Y (i) and the
i-th row of X by X(i), the measurement model is given by

(Y (i)|X(i)) ∼ PY |N(S,X(i)), (3)

where N(S,X(i)) =
∑p
j=1 1{j ∈ S ∩ X

(i)
j = 1} denotes

the number of defective items in the test. That is, we consider

arbitrary noise distributions PY |N for which Y (i) depends on
X(i) only through N(S,X(i)), with conditional independence
among the tests i = 1, . . . , n. For each item j = 1, . . . , p, the
j-th column of X is written as Xj ∈ {0, 1}n.

While most of our results will be written in terms of general
noise models of the form (3), we also pay particular attention
to two specific models: The noiseless model in (1), and the
symmetric noise model with parameter ρ > 0:

Y =
( ∨
i∈S

Xi

)
⊕ Z, (4)

where Z ∼ Bernoulli(ρ), and ⊕ denotes modulo-2 addition.
Given X and Y, a decoder forms an estimate Ŝ of S,

or equivalently, an estimate β̂ of β. We consider two related
performance measures. In the case of exact recovery, the error
probability is given by

Pe := P[Ŝ 6= S], (5)

and is taken over the realizations of S, X, and Y (the decoder
is assumed to be deterministic). In addition, we consider a less
stringent performance criterion in which we allow for up to
dpos ∈ {0, . . . , p−k−1} false positives and dneg ∈ {0, . . . , k−
1} false negatives, yielding an error probability of

Pe(dpos, dneg) := P
[
|Ŝ\S| > dpos ∪ |S\Ŝ| > dneg

]
. (6)

A. Separate Decoding of Items

In this paper, we study a decoding method introduced in
an early work of Malyutov and Mateev [5] (see also [6], [7]),
which we refer to as separate decoding of items. Specifically,
we adopt this terminology to mean any decoding scheme in
which β̂j is only a function of Xj and Y, i.e.,

β̂j = φj(Xj ,Y), j = 1, . . . , p (7)

for some functions {φj}pj=1. All of our results will choose
φj not depending on j; more specifically, following [5], each
decoder is of the following form for some γ > 0:1

φj(Xj ,Y) = 1

{ n∑
i=1

log
PY |Xj ,βj

(Y (i)|X(i)
j , 1)

PY (Y (i))
> γ

}
, (8)

1Here and subsequently, the function log(·) has base e, and the correspond-
ing information quantities are in units of nats.
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Figure 1: Asymptotic thresholds on the number of tests required for vanishing error probability in (Left) the noiseless setting,
and (Right) the symmetric noise setting with ρ = 0.11. The blue curves correspond to separate decoding of items, with exact
recovery (Exact), Θ(k) false positives only (False pos), Θ(k) false negatives only (False neg), or both Θ(k) false positives
and Θ(k) false negatives (False pos/neg). The “practical joint exact” curve is DD [2] or LP [3] in the noiseless case, and the
“best previous practical” curve is NCOMP [4] in the noisy case.

where PY is the unconditional distribution of a given ob-
servation, and PY |Xj ,βj

(·|·, 1) is the conditional distribution
given βj = 1 and the value of Xj . This can be interpreted
as the Neyman-Pearson test for binary hypothesis testing with
hypotheses H0 : βj = 0 and H1 : βj = 1.

Malyutov and Mateev [5] showed that when k = O(1) and
the decoder (8) is used with suitably-chosen γ, one can achieve
exact recovery with vanishing error probability provided that

n ≥ log p

I1
(1 + o(1)), (9)

where the single-item mutual information I1 is defined as
follows, with implicit conditioning on item 1 being defective:

I1 := I(X1;Y ). (10)

As noted in [7], in the noiseless setting with ν = ln 2 we
have I1 = (log 2)2

k (1 + o(1)) as k → ∞, and in this case, (9)
matches the optimal information-theoretic threshold [8], [9]
up to a factor of log 2 ≈ 0.7. Characterizations of the mutual
information I1 for other noise models were given in [10].

In this paper, we move beyond the highly sparse regime k =
O(1), and give theoretical guarantees for separate decoding
of items for sublinear scalings of the form k = Θ(pθ), where
θ ∈ (0, 1). As with joint decoding [8], [11], this regime comes
with significant challenges, with additional requirements of n
arising from concentration inequalities and often dominating
(9). In addition, we show that far fewer tests may be needed
under the partial recovery criterion in (6).

B. Other Related Work and Our Results

Figure 1 plots the asymptotic number of tests for achieving
Pe → 0 or Pe(dpos, dneg) → 0 under Bernoulli testing
with ν = log 2, including existing bounds and our novel
contributions. In this figure, the number of allowed false

positives and/or false negatives (if any) is always assumed
to be Θ(k), with an arbitrarily small implied constant.

The information-theoretic limits of group testing for k =
O(1) have long been well-understood in the Russian litera-
ture [5], [12], and have recently become increasingly well-
understood for k = Θ(pθ) [8], [9], [13], [14]. The information-
theoretic joint decoding results in Figure 1 come from the
recent works [8], [9], [11]. Note that the flat line at the top
is not only sufficient for partial recovery, but also necessary,
i.e., it is the exact information-theoretic threshold.

When it comes to practical algorithms in the regime k =
Θ(pθ), near-optimal theoretical guarantees are known in the
noiseless setting [2], [15], but the constant factors in the noisy
setting are far from the information-theoretic limits [4], [16]–
[19]. To our knowledge, the best known existing bounds are
those of the Noisy Combinatorial Orthogonal Matching Pursuit
(NCOMP) algorithm [4].

We make the following observations regarding Figure 1:

• In the noiseless case, our asymptotic bounds are within a
factor log 2 of the optimal threshold for joint decoding
as θ → 0, are reasonable for all θ ∈ (0, 1) with
improvements when false positives or false negatives are
allowed, and are within a factor log 2 of the optimal
joint decoding threshold for all θ when both are allowed.
Moreover, with exact recovery and θ ∈ (0, 0.0398), we
strictly improve on the best known bound for any efficient
algorithm under Bernoulli testing.

• For the symmetric noise model, the general behavior is
similar, but we significantly outperform the best known
previous bound (NCOMP [4]) for all θ ∈ (0, 1). Once
again, when both false positives and false negatives are
allowed, we are within a factor log 2 of the optimal
threshold for joint decoding.



II. ACHIEVABILITY RESULTS WITH EXACT RECOVERY

In this section, we develop the theoretical results for exact
recovery leading to the asymptotic bounds for the noiseless
and noisy settings in shown Figure 1. To do this, we first
establish non-asymptotic bounds on the error probability, then
present the tools for performing an asymptotic analysis, and
finally give the details of the applications to specific models.

A. Additional Notation
We define some further notation in addition to that in the

introduction. Our analysis will apply for any given choice of
the defective set S, due to the symmetry of the observation
model (3) and the i.i.d. test matrix X. Hence, throughout this
section we will focus on the specific set S = {1, . . . , k}. In
particular, we assume that item 1 is defective, and we define
PY |X1

accordingly:

PY |X1
(y|x1) = PY |X1,β1

(y|x1, 1). (11)

Hence, the summation in (8) can be written as

ın1 (Xj ,Y) :=

n∑
i=1

ı1(X
(i)
j , Y (i)), (12)

where
ı1(x1, y) := log

PY |X1
(y|x1)

PY (y)
. (13)

Following the terminology of the channel coding literature
[20]–[22], we refer to this quantity as the information den-
sity. Denoting the distribution of a single entry of X by
PX ∼ Bernoulli

(
ν
k

)
, we find that the average of (13) with

respect to (X1, Y ) ∼ PX × PY |X1
is the mutual information

I1 in (10). With the above distributions in place, we define
PnX(x1) =

∏n
i=1 PX(x

(i)
1 ), PnY (y) =

∏n
i=1 PY (y(i)), and

PnY |X1
(y|x1) =

∏n
i=1 PY |X1

(y(i)|x(i)1 ).
When we specialize our results to the noiseless and sym-

metric noise models, we will choose

ν = νsymm :=

{
unique value such that

(
1− ν

k

)k
=

1

2

}
(14)

= (log 2)(1 + o(1)). (15)

For k →∞ (as we consider), there is essentially no difference
between setting ν = νsymm or ν = log 2, but we found the
former to be slightly more convenient mathematically.

B. Initial Non-Asymptotic Bound
The following theorem provides an initial non-asymptotic

upper bound on the error probability for general models. The
result is proved using simple thresholding techniques that
appeared in early studies of channel coding [23], [24], and
have also been applied previously in the context of group
testing [5], [8], [11].

Theorem 1. (Non-asymptotic, exact recovery) For a general
group testing model with with Bernoulli

(
ν
k

)
testing and sep-

arate decoding of items according to (8), we have

Pe ≤ kP[ın1 (X1,Y) ≤ γ] + (p− k)e−γ , (16)

where (X1,Y) ∼ PnX(x1)PnY |X1
(y|x1), and γ is as in (8).

Proof. For the exact recovery criterion, correct decoding re-
quires the k defective items to pass the threshold test, and the
p− k non-defective items to fail the threshold test. Hence, by
the union bound, we have

Pe ≤ kP[ın1 (X1,Y) ≤ γ] + (p− k)P[ın1 (X1,Y) > γ], (17)

where (X1,Y,X1) ∼ PnX(x1)PnY |X1
(y|x1)PnX(x1), i.e., X1

is an independent copy of X1 (recall that the columns of X
are i.i.d.). We bound the second term by writing

P[ın1 (X1,Y) > γ]

=
∑
x1,y

PnX(x1)PnY (y)1

{
log

PnY |X1
(y|x1)

PnY (y)
> γ

}
(18)

≤
∑
x1,y

PnX(x1)PnY |X(y|x1)e−γ (19)

= e−γ , (20)

where (18) follows from the preceding joint distribution and
the definition of ın1 , and (20) bounds PnY (y) according to the
event in the indicator function, and then bounds the indicator
function by one. Combining (17) and (20) completes the proof.

C. Asymptotic Analysis

In order to apply Theorem 1, we need to characterize the
probability appearing in the first term. The idea is to exploit
the fact that ın1 (X1,Y) is an i.i.d. sum, and hence concentrates
around its mean. While the following corollary is essentially
a simple rewriting of Theorem 1, it makes the application
of such concentration bounds more transparent Here and
subsequently, asymptotic notation such as→, o(·), O(·) is with
respect to p→∞, and we assume that k →∞ with k = o(p).

Theorem 2. (Asymptotic bound, exact recovery) Under the
setup of Theorem 1, suppose that the information density
satisfies a concentration inequality of the following form:

P[ın1 (X1,Y) ≤ nI1(1− δ2)] ≤ ψn(δ2) (21)

for some function ψn(δ2). Moreover, suppose that the follow-
ing conditions hold for some δ1 → 0 and δ2 > 0:

n ≥
log
(

1
δ1

(p− k)
)

I1(1− δ2)
(22)

k · ψn(δ2)→ 0. (23)

Then Pe → 0 under the decoder in (8) with γ = log p−k
δ1

.

Proof. Setting γ = log p−k
δ1

in Theorem 1, we obtain

Pe ≤ kP
[
ın1 (X1,Y) ≤ log

p− k
δ1

]
+ δ1, (24)

By the condition in (22), the probability in (24) is upper
bounded by P[ın1 (X1,Y) ≤ nI1(1 − δ2)], which in turn is
upper bounded by ψn(δ2) by (21). We therefore have from
(24) that Pe ≤ kψn(δ2) + δ1, and hence the theorem follows
from the assumption δ1 → 0 along with (23).



D. Concentration Bounds

In order to apply Theorem 2 to specific models, we need
to characterize the concentration of ın1 (X1,Y) and attain an
explicit expression for ψn(δ2) therein. The following lemma
brings us one step closer to attaining explicit expressions,
giving a general concentration result based on Bernstein’s
inequality [25, Ch. 2].

Lemma 1. (Concentration via Bernstein’s inequality) Defining

cmean := kE[ı(X1, Y )] = kI1 (25)
cvar := kVar[ı(X1, Y )] (26)

cmax := max
x1,y

∣∣ı(x1, y)
∣∣, (27)

we have for any δ2 > 0 that

P
[∣∣ın1 (X1,Y)− nI1

∣∣ ≤ nδ2]
≤ 2 exp

( − 1
2 ·

n
k · c

2
meanδ

2
2

cvar + 1
3cmeancmaxδ2

)
(28)

We will use Lemma 1 to establish the results shown for the
symmetric noise model in Figure 1 (Right). While we could
also use Lemma 1 for the noiseless model, it turns out that
we can in fact do better via the following.

Lemma 2. (Concentration for noiseless model) Under the
noiseless model with ν = νsymm (cf., (14)), we have for any
δ2 ∈ (0, 1) that

P[ın1 (X1,Y) ≤ nI1(1− δ2)] ≤ exp

(
− n(log 2)2

k

×
(

(1− δ2) log(1− δ2) + δ2

)
(1 + o(1))

)
(29)

as p→∞ and k →∞ simultaneously.

The proofs of the preceding lemmas can be found in the full
version [26], and are based on Bernstein’s inequality (Lemma
1) and the multiplicative Chernoff bound (Lemma 2).

E. Applications to Specific Models

Noiseless model: For the noiseless group testing model (cf.,
(1)), we immediately obtain the following from Theorem 2
and Lemma 2.

Corollary 1. (Noiseless, exact recovery) For the noiseless
group testing problem with ν = νsymm (cf., (14)) and
k = Θ(pθ) for some θ ∈ (0, 1), we can achieve Pe → 0
with separate decoding of items provided that

n ≥ min
δ2>0

max

{
k log p

(log 2)2(1− δ2)
,

k log k

(log 2)2
(
(1− δ2) log(1− δ2) + δ2

)}(1 + η) (30)

for some η > 0.

Proof. It is known that I1 = (log 2)2

k (1+o(1)) [10], and hence
the first term in (30) follows from (22) with δ1 → 0 sufficiently

slowly. Moreover, by equating ψn(δ2) with the right-hand side
of (29) and performing simple rearranging, we find that the
second term in (30) follows from (23).

Symmetric noise model: For the symmetric noisy model (cf.,
(1)), we make use of Lemma 1, with the constants cmean, cvar
and cmax therein characterized in the following. Here H2 is
the binary entropy function in nats.

Lemma 3. (Bernstein parameters for symmetric noise) Under
the symmetric noise model with a fixed parameter ρ ∈

(
0, 12
)

(not depending on p) and ν = νsymm (cf., (14)), we have

kE[ı(X1, Y )] = (log 2)
(

log 2−H2(ρ)
)
(1 + o(1)) (31)

kVar[ı(X1, Y )] ≤ (log 2)

(
(1− ρ) log2

(
2(1− ρ)

)
+ ρ log2(2ρ)

)
(1 + o(1)) (32)

max
x1,y

∣∣ı(x1, y)
∣∣ = log

1

2ρ
(33)

as p→∞ and k →∞ simultaneously.

The proof is based on directly analyzing the information
density, and can be found in [26]. From this lemma, we
immediately obtain the following.

Corollary 2. (Symmetric noise, exact recovery) For noisy
group testing with ρ ∈

(
0, 12
)

(not depending on p), ν =
νsymm, and k = Θ(pθ) for some θ ∈ (0, 1), we can achieve
Pe → 0 with separate decoding of items provided that

n ≥ min
δ2>0

max

{
k log p

(log 2)(log 2−H2(ρ))(1− δ2)
,

(k log k) ·
(
cvar + 1

3cmeancmaxδ2
)

1
2 · c2meanδ

2
2

}
(1 + η) (34)

for some η > 0, where cmean, cvar, and cmax are respectively
given by the right-hand sides of (31)–(33).

Other noise models: While we specifically applied Lemma
1 to the symmetric noise model, it can also be applied more
generally, yielding an analogous result for any model in which
the quantities cmean, cvar, and cmax in (25)–(27) behave as
Θ(1). In particular, for any such model and any fixed ν > 0,
in the limit as θ → 0, it suffices to have

n ≥ log p

I1
(1 + η) =

k log p

cmean
(1 + η), (35)

for arbitrarily small η > 0. In contrast, for θ strictly greater
than zero, the conditions on n resulting from Bernstein’s
inequality may dominate (35), similarly to Corollary 2.

III. OUTLINE OF EXTENSIONS TO PARTIAL RECOVERY

Due to space constraints, we provide only an outline of
the extension of the preceding analysis to partial recovery,
where false positives and/or false negatives are allowed. The
full details can be found in [26].



The main tool we need is the following, whose proof is in
fact implicit in our analysis for the exact recovery criterion.

Lemma 4. (Auxiliary result for partial recovery) For any
group testing model of the form (3), under the decoder in
(8) with threshold γ > 0, we have the following:

(i) For any j /∈ S, the probability of passing the threshold
test is upper bounded by e−γ .

(ii) Suppose that the information density satisfies a concen-
tration inequality of the form (21) for some function ψn(δ2),
and that the number of tests satisfies n ≥ γ

I1(1−δ2) . Then for
any j ∈ S, the probability of failing the threshold test is upper
bounded by ψn(δ2).

Letting Npos and Nneg denote the number of false positives
and false negatives, we note that the analysis of exact recovery
shows that E[Npos] and E[Nneg] behave as o(1), from which
Markov’s inequality implies that the probability of any false
positives or negatives vanishes. Instead, when Θ(k) false
positives are allowed, we simply show that E[Npos] = o(k),
and use Markov’s inequality to conclude that the probability of
having Θ(k) false positives tends to zero. The same argument
is used when Θ(k) false negatives are allowed.

Using the the first part of Lemma 4, we find that obtaining
E[Npos] = o(k) instead of the stricter E[Npos] = o(1)
amounts to replacing log p−k

δ1
by log p−k

kδ1
in (22). Moreover,

using the second part of Lemma 4, we find that obtaining
E[Nneg] = o(k) instead of the stricter E[Nneg] = o(1)
amounts to replacing the requirement k · ψn(δ2) → 0 by
ψn(δ2)→ 0 in (23).

Consequently, with false positives we can replace k log p
by k log p

k in the first terms of (30) and (34), and with false
negatives, we can remove the second terms therein. Generally,
when both false positives and false negatives are allowed, we
have the following simple corollary.

Corollary 3. (General noise models, partial recovery) For
any group testing model such that the quantities cmean, cvar,
and cmax in (25)–(27) behave as Θ(1), we can achieve
Pe(dpos, dneg) → 0 with separate decoding provided that
dpos = Θ(k), dneg = Θ(k), and

n ≥
log p

k

I1
(1 + η) =

k log p
k

cmean
(1 + η) (36)

for some η > 0.

Hence, while we only obtained the threshold on the right-
hand side of (36) in the limit θ → 0 under exact recovery (see
(35)), when we allow a small fraction of false positives and
false negatives, this extends to all sublinear sparsity levels. We
again refer to the examples in Figure 1, where we are within
a factor log 2 of the optimal information-theoretic threshold.

To our knowledge, these partial recovery guarantees are the
best known for any practical group testing algorithm for all
θ ∈ (0, 1), in both the noiseless and symmetric noise settings.
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