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Abstract

We present an efficient nodal discontinuous Galerkin method for approximating nearly
incompressible flows using the Boltzmann equations. The equations are discretized with
Hermite polynomials in velocity space yielding a first order conservation law. A stabi-
lized unsplit perfectly matching layer (PML) formulation is introduced for the resulting
nonlinear flow equations. The proposed PML equations exponentially absorb the dif-
ference between the nonlinear fluctuation and the prescribed mean flow. We introduce
semi-analytic time discretization methods to improve the time step restrictions in small
relaxation times. We also introduce a multirate semi-analytic Adams-Bashforth method
which preserves efficiency in stiff regimes. Accuracy and performance of the method are
tested using distinct cases including isothermal vortex, flow around square cylinder, and
wall mounted square cylinder test cases.

Keywords: Perfectly matching layer, Semi-analytic, Multirate, Boltzmann equation,
Discontinuous Galerkin, GPU

1. Introduction

The Boltzmann equations, based on kinetic theory, describe fluids at the microscopic
level. It has been shown that the Boltzmann equations recover the Navier-Stokes equa-
tions in the low Mach limit [1, 2]. The Boltzmann equations are also used in describing
rarefied flows [3]. The main difficulty encountered in studying the equations is the com-
plex non-linear integral nature of the collision term, which is often replaced with statis-
tical or relaxation models. In this work we adopt the Bhatnaggar-Gross-Krook (BGK)
[4] single rate relaxation approximation.

Lattice Boltzmann methods (LBM) are widely used to discretize the simplified Boltz-
mann equations. The classical LBM is a first order, explicit, upwind finite difference
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scheme for the discrete Boltzmann equation where the continuous velocity space is re-
duced a finite number of velocities [5]. Although the LBM has several advantages includ-
ing simplicity, easy parallelization, and relatively low floating point operations per lattice
node, it is limited to structured meshes, suffers instabilities at high Reynolds numbers,
and is difficult to accurately enforce boundary conditions. Several approaches have been
proposed to address these limitations through replacing the lattice with finite volume
[6, 7], finite element [8] and discontinuous Galerkin [9, 10, 11] methods.

The time discretization of the Boltzmann equations in stiff regimes presents a com-
putational challenge. In the small relaxation time regime, the time-scale of the collision
operator dominates the transport of particles and forces the numerical methods to op-
erate with small time discretization steps. Fully implicit time integration techniques are
limited for most applications because of the cost of inversion of the nonlinear collision
operator. Semi-analytic or exponential time discretization methods allow us to overcome
this problem. Semi-analytic methods [12, 13] are special numerical time discretization
schemes in which the traditional linear system solves for implicit schemes are replaced
with computing an action of a matrix exponential. These methods have also been devel-
oped for the discrete non-homogeneous [14] and homogeneous [15] Boltzmann equations.

Implicit-Explicit (IMEX) methods are also popular schemes to relax the time step
restriction in stiff ODEs such as the discrete Boltzmann equations [16]. We refer to
[17] for a survey of semi-analytic and implicit-explicit techniques for discrete velocity
Boltzmann equations. In this study, we explore the performance of time discretization
methods by employing semi-analytic and low-storage IMEX methods for the Boltzmann
equations, which fully exploit the specific structure of the non-linear collision operator.

Accurate representation of the underlying domain geometry or complex flow field
often requires the use of unstructured grids clustered at some specific locations. If a
classical explicit scheme is used, varying length and time scales in the model intro-
duce Courant-Friedrichs-Lewy (CFL) type time step restriction, which must be enforced
globally. Multirate time discretizations address this restriction by using different time
steps for each grid partition, using only local CFL stability conditions. A coherent flux
transport between the partitions preserves the order of accuracy and the stability of
the method. Due to their inherent efficiency, various multirate methods have been de-
veloped based on Runge-Kutta [18, 19, 20] and multistep [21, 22] schemes for purely
hyperbolic equations. For the Boltzmann equations, time-scales of the collision operator
may dominate the advective scales depending on the flow regime and local grid resolu-
tion. This phenomenon makes the classical multirate methods as the problem becomes
globally stiff limiting the number of possible multirate partitions. In this study, we ex-
tend the semi-analytic Adams-Bashforth approach to multirate time discretization which
preserves efficiency and accuracy in stiff regimes.

Perfectly matching layers (PML) were first introduced by Berenger [23] for the Maxwell
equations and is one of the preferred techniques for the computation of wave problems
in open domains. PMLs rely on the fact that absorbing material zones surrounding the
computational domain are theoretically non-reflecting, irrespective of the frequency and
angle of outgoing multi-dimensional linear waves. Due to its simplicity and performance,
PMLs are used extensively for modelling many physical phenomena such as the linearized
Euler equations [24, 25], wave equations [26, 27, 28], Schrödinger equations [29], Boltz-
mann equations [30, 31], nonlinear Euler equations, and Navier-Stokes equations [32, 33].
In the original PML formulation [23], the field variables are split into nonphysical com-
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ponents to incorporate the mathematical formulation for the desired absorption. This
approach is therefore referred to as split-field PML. It has been shown that the classi-
cal split model is dynamically stable but only weakly well-posed [34, 35]. As a result
unsplit formulations, based on the causal frequency dependent PML (referred to as con-
volutional PML or C-PML), have been proposed and analyzed [36, 28, 37]. However,
C-PML also manifests slowly growing instabilities especially in anisotropic media [38]
and loses its absorption capability at low frequencies [39]. The so-called M-PML method
was proposed in [39]. This method is a multiaxial version of the classical split-field PML
formulation but it uses a more general coordinate stretching with anisotropic damping.
M-PML has been shown to be more stable and efficient than classical PML in the long
term simulation of wave propagation in elastic and anisotropic media yet it has similar
reflection properties with increased efficiency when compared with C-PML. [40, 41].

In this study, the Boltzmann equations under the BGK relaxation approximation are
discretized in velocity space using Galerkin approach with Hermite polynomials [42, 43].
A nodal discontinuous Galerkin method is used for the resulting first order system in
terms of Hermite polynomial coefficients. We propose an M-PML formulation for the
resulting DG method and demonstrate its accuracy in truncated domains. We also
introduced single and multirate semi-analytic time discretization methods to increase
the performance of temporal integration in stiff regimes. The remainder of this paper
is structured as follows: Section 2 introduces the derivation of the continuous Boltz-
mann equations, the design of perfectly matching layers, and the discontinuous Galerkin
discretization for the resulting first order system. Section 3 is devoted to time discretiza-
tion strategies including semi-analytic, implicit-explicit and multirate methods. Section
4 briefly describes the implementation of the numerical scheme leveraging GPU accel-
eration. Finally, in Section 5 we show numerical results which validate the formulation
and demonstrate the applicability and performance of the approach, before giving some
concluding remarks in Section 6.

2. Formulation

In this section we begin by describing the Galerkin-Boltzmann equations. We then
explain our proposed unsplit M-PML formulation for the discrete system. Finally, we
detail the high-order nodal DG discretization and definitions of the resulting discrete
operators.

2.1. Galerkin-Boltzmann Equations
The Boltzmann equations describe the time evolution of a phase-space distribution

function, f(x,v, t) which is a function of the spatial variable x, microscopic particle
velocity v, and time t. Neglecting external particle acceleration and under the BGK
single-rate relaxation approximation [4], the continuous Boltzmann-BGK equation reads

∂f

∂t
+ v · ∇xf =

(feq − f)

τ
, (1)

where τ is the relaxation time and feq is the equilibrium phase space density which
attains the macroscopic density, ρ, through the Maxwell velocity distribution as follows,

feq =
ρ

2πRT
exp

(
− (v − u)

2

2RT

)
,
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where R, T , and u are the gas constant, temperature, and macroscopic vector velocity
field, respectively.

Following the work of Tölke et. al. [43] the velocity field v is approximated by
a discrete set of Hermite polynomials in the velocity space. The order of the poly-
nomials needs to be sufficiently large to recover macroscopic flow properties which are
the moments of the phase space distribution function. To model isothermal and nearly
incompressible flows, second or higher order Hermite polynomials are required. The
application of Galerkin formalism and analytic integration of the weak form of (1) in
velocity space leads to the following first order semi-discrete PDE

∂q

∂t
= Ax

∂q

∂x
+Ay

∂q

∂y
+N (q), (2)

where q = q(x, t) is the vector of Hermite coefficients to be solved, Ax, and Ay are
matrices giving the directional coefficients, and N is the non-linear collision term.

For the remainder of this paper, we assume a spatial of dimension two for sim-
plicity but note that generalization to the third dimension is straightforward. In two
dimensions, x = [x, y] and we assume a second order velocity approximation so that
q(x, t) = [q1(x, y, t), . . . , q6(x, y, t)]T , Ax, Ay, and N are given by

Ax = −
√
RT



0 1 0 0 0 0

1 0 0 0
√

2 0
0 0 0 1 0 0
0 0 1 0 0 0

0
√

2 0 0 0 0
0 0 0 0 0 0

 , Ay = −
√
RT



0 0 1 0 0 0
0 0 0 1 0 0

1 0 0 0 0
√

2
0 1 0 0 0 0
0 0 0 0 0 0

0 0
√

2 0 0 0



N = −1

τ

(
0 0 0

(
q4 − q2q3

q1

) (
q5 − q2

2

q1
√

2

) (
q6 − q2

3

q1
√

2

) )T
, (3)

where c =
√
RT represents the speed of sound of the fluid. This particular form of the

system has a symmetric advection operator coupled with a nonlinear collision source
term.

The system (2) recovers the Navier-Stokes equations for low Mach number, nearly
incompressible flows with kinematic viscosity, ν = τRT . Macroscopic flow properties are
computed using the moment of the distribution function as follows,

ρ = q1, ρu =
√
RTq2, ρv =

√
RTq3.

Similarly, components of deviatoric stress tensor is given by

σ11 = −RT
(√

2q5 −
q2
2

q1

)
, σ22 = −RT

(√
2q6 −

q2
3

q1

)
, σ12 = −RT

(
q4 −

q2q3

q1

)
.

Finally, the pressure is recovered through equation of state for ideal gases p = ρRT .
In the Galerkin-Boltzmann system of (2), physical quantities can be connected to the

unknown numerical parameters through choosing the reference Mach number, Ma, a free
parameter that determines the compressibility of the fluid, and Reynolds number Re,
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a parameter which determines the ratio of inertial effects to viscous dissipation. These
parameters are connected to the physical quantities via the relations

Ma =
Ur
c
, Re =

UrLr
ν

, (4)

where Ur and Lr are characteristic velocity and length, respectively. The value of τ
follows directly via τ = ν/RT from the choice of Ma and Re.

2.2. An Unsplit Perfectly Matched Layer for the Galerkin-Boltzmann Equations

The perfectly matched layer (PML) method requires introducing a finite width ab-
sorbing layer, called the PML, which surrounds the physical domain of interest so that
waves leaving the domain and entering the PML are damped out. Suppose that the
interface between the physical domain and the absorbing layer is aligned with the x axis
and is located at x = 0 such that x < 0 and x > 0 correspond the physical domain and
PML medium, respectively. The main idea of the PML approach is to construct a wave
equation that admits a plane wave solution

q = C exp

(
i (k · x− wt)− kx

ω
s(x)

)
,

where C is the polarization vector, k = [kx, ky] is the wave vector, and sx(x) is monotonic
positive scalar function. The additional exponential term, exp(−kxω s

x(x)) leads to an
exponentially decaying wave amplitude in the increasing x direction. Thus, the classical
PML approach can be considered as an analytic continuation of PML medium in complex
space having the following transformation

x→ x+
i

ω

∫ x

σx(r) dr,

where sx(x) =
∫ x

σx(r) dr and σx is referred to as the damping profile, which is selected
to be zero at interface between the physical domain and PML, and smoothly increasing
through PML medium to avoid reflections. This transformation results in a new spatial
differentiation operator in PML region

∂

∂x̂
→ 1

1 + σx

iw

∂

∂x
, (5)

where 1 + σx

iw is called the coordinate stretching factor. If σx = 0 in the PML region, the
transformation in (5) is reduced to simply the original physical coordinates.

Applying a Fourier transform in time, the Galerkin-Boltzmann equation given in (2)
can be represented in the frequency domain as

iωq̂ = Ax
∂q̂

∂x
+Ay

∂q̂

∂y
+ N̂ (q), (6)

where the hats are used to denote the time Fourier transformed fields. The PML equa-
tions are constructed by replacing the x derivative operator via (5) with an analogous
replacement for the y derivative operator,

iωq̂ =
Ax

1 + σx

iω

∂q̂

∂x
+

Ay
1 + σy

iω

∂q̂

∂y
+ N̂ (q).

5



Re-writing slightly, we obtain

iωq̂ =

(
Ax −

Axσ
x

iω + σx

)
∂q̂

∂x
+

(
Ay −

Ayσ
y

iω + σy

)
∂q̂

∂y
+ N̂ (q). (7)

Next, we define two new variables in PML medium, i.e.,

q̂x =
1

iω + σx
Ax

∂q̂

∂x
, q̂y =

1

iω + σy
Ay

∂q̂

∂y
, (8)

and insert them into (7). The PML equations in the frequency domain then take the
following form,

iωq̂ = Ax
∂q̂

∂x
− σxq̂x +Ay

∂q̂

∂y
− σyq̂y + N̂ (q). (9)

Finally, we apply the inverse Fourier transform to both (9) and (8) and transform
back to the physical time domain which yields the unsplit equations

∂q
∂t = Ax

∂q

∂x
− σxqx +Ay

∂q

∂y
− σyqy +N (q), (10)

∂qx

∂t = −σxqx +Ax
∂q

∂x
, (11)

∂qy

∂t = −σyqy +Ay
∂q

∂y
. (12)

To avoid reflections, the damping profile is set to be zero at the interface of the
physical domain and the PML, and smoothly increased across the PML width. In the
corner regions, the damping profiles are taken as the superposition of the intersecting
PML media. In the selection of PML profiles, we follow the M-PML formulation [39] to
increase the damping performance and long term stability. M-PML introduces additional
damping in the orthogonal directions as follows

σx = σ̂x(x) + αxσ̂y(y),

σy = σ̂y(y) + αyσ̂x(x),
(13)

where σ̂x and σ̂y are the classical damping profiles for the regions having normal vectors
parallel to x and y, respectively, and αx and αy are constants that can be tuned for stabil-
ity. With these multiaxial profiles, the M-PML applies additional damping the direction
orthogonal to the usual PML dampening profile, which helps to damp shear waves gener-
ated in the PML region due to the relaxation term. One of the important advantages of
using the unsplit PML formulation is that the nonlinear terms are not split in the PML.
This allows us to directly implement the semi-analytic temporal discretizations, detailed
in Section 3, without any additional modifications.

2.3. Nodal Discontinuous Galerkin Spatial Discretization

We assume that the domain Ω ∈ R2 is well approximated by a computational domain,
Ωh, which is partitioned into K non-overlapping triangular elements, Ee, e = 1, . . . ,K,
such that,

Ωh =

K⋃
e=1

Ee.
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Two elements, Ee+ and Ee− are neighbours if they have a common face, that is ∂Ee− ∩
∂Ee+ 6= ∅, where ∂Ee is the element boundary. We use n = (nx, ny) to denote the unit
outward normal vector of ∂E .

We denote the approximation to q, qx, and qy on element Ee as qe, qx,e, and qy,e,
respectively. The local trace values of qe along ∂Ee are denoted as q− and the corre-
sponding neighboring trace values are denoted using q+, omitting the e superscript when
it is clear which element has the local trace. We define {{q}} and [[q]] to be the average
and jump of qe along the the trace ∂Ee, i.e.,

{{q}} =
q+ + q−

2
, [[q]] = q+ − q−. (14)

Each element of triangulation Ωh is an affine mapping of the reference bi-unit trian-
gular element, Ê = {−1 ≤ r, s, r + s ≤ 1} under the map, Φe, given by

(x, y) = Φe (r, s) , (x, y) ∈ Ee, (r, s) ∈ Ê .

The Jacobian of this mapping can be written

Ge =

[
xer xes
yer yes

]
,

and we denote its determinant as Je = detGe. We also define the surface scaling factor
Jef as the determinant of the Jacobian Ge restricted to the face, ∂Eef .

Let Ee be an element. We select the finite element space V eN to be PN (Ee), the
space of polynomial functions of degree N on this element. For a choice of basis, we use
Np = |V en | Lagrange polynomials interpolating at the Warp & Blend nodes [44] mapped

to the element Ee, which we denote {φei}
Np
i=1.

We selected the unsplit PML equation for q i.e., (10) in order to describe the spatial
discretization of the equation system, because this equation includes all terms for the
discretization of the PML equations and recovers the physical domain equations, (2) for
vanishing σx and σy. Multiplying (10) by a test function v ∈ V eN , integrating over the
element Ee, and performing integration by parts twice, we arrive to the following strong
variational form to be solved,∫

Ee
v
∂qe

∂t
=

∫
Ee
v

(
Ax

∂qe

∂x
+Ay

∂qe

∂y
− σxqx,e − σyqy,e

)
+

∫
∂Ee

φF
(
q∗ − q−

)
+

∫
Ee
φN (qe).

(15)

where F = nxAx + nyAy is the flux matrix in the direction of the element normal
vector n and qe∗ is a trace state defined using an upwind numerical flux function, which
depends on the local and neighboring traces values along ∂Ee. The upwind flux is can
be formulated by diagonalizing the operator F as F = RΛR−1. Because the transport
terms of the Galerkin-Boltzmann equations are purely hyperbolic, the diagonal matrix,
Λ has only real entries of 0, 0,±c,±c

√
3. Splitting the eigenvalues that have positive

signs Λ+ and negative signs Λ−, the upwind flux can then be written as,

Fq∗ = R
(
Λ+R−1q− + Λ−R−1q+

)
.
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To evaluate the integrals involving σ or the nonlinear term N (qe) in (15), we use a
sufficiently high-order cubature rule to reduce aliasing errors. The cubature-based inte-
gration using an interpolation operator which interpolates the solution field to cubature
nodes on each element. We select a nodal set of Nc cubature nodes with coordinates
(rci , s

c
i ) for i = 1, . . . , Nc on the reference element Ê , and associated weights, wci , for

i = 1, . . . , Nc. We then define a set of cubature nodes (xe,ci , ye,ci ) for i = 1, . . . , Nc on
each element Ee to be the cubature nodes on the reference element mapped to Ee via Φe.
The interpolation operator, Ie can then be defined as follows

Ieij = φei (x
e,c
j , ye,cj ),

for j = 1, . . . , Nc and i = 1, . . . , Np. We also define on each element, we define mass,
surface mass, and stiffness operators as follows

Me
ij =

∫
Ee
φejφ

e
i , M

ef
ij =

∫
∂Ee

φejφ
e
i ,

(Sex)ij =

∫
Ee
φej
∂φei
∂x

, (Sey)ij =

∫
Ee
φej
∂φei
∂y

,

respectively. Then, selecting the test function to be a basis function, i.e. v = φi and
writing the nodal values of qe, qx,e, and qy,e as qei , qx,ei , and qy,ei , respectively, for
i = 1, . . . , Np we obtain that (15) can be written

Me
ij

∂qej
∂t

=Ax(Sex)ijq
e
j +Ay(Sex)ijq

e
j − JeIekiwkσxkIekjq

x,e
j − J

eIekiwkσ
y
kI

e
kjq

y,e
j

+Mef
ij (F

(
q∗ − q−

)
)j + JeIekiwkN (Iekjqej),

(16)

where we have made use of Einstein repeated index summation notation for j = 1, . . . , Np,
k = 1, . . . , Nc, and f = 1, . . . , Nf where Nf is the number of faces per element. Here σxk
and σyk are the PML damping profiles evaluated at the cubature point (xe,ck , ye,ck ). Upon
multiplying (16) by (Me)−1, we define the differentiation, lift, and cubature projection
operators as

Dex = (Me)−1Sex, Dey = (Me)−1Sey ,
Lef = (Me)−1Mef , Pe = (Me)−1(Ie)Tdiag(w),

respectively, where diag(w) is a diagonal matrix with entries wi for i = 1, . . . , Nc, we can
write (16) as

∂qei
∂t

=Ax(Dex)ijq
e
j +Ay(Dey)ijq

e
j − JePeikσxkIekjq

x,e
j − J

ePeikσ
y
kI

e
kjq

y,e
j

+ Lefij (F
(
q∗ − q−

)
)j + JePeikN (Iekjqej),

(17)

Finally, since we assume all elements are images under an affine mapping of the
reference element Ê , the nodal DG spatial discretization (17) can be expressed simply in
terms of reference differentiation matrices Dr and Ds, lift matrices Lf , interpolation I,
and projection P defined on the reference element Ê through the geometric factors of Φe
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via

Dex = rexDr + sexDs,
Dey = reyDr + seyDs,

Lef =
Jef

Je
Lf ,

Ie = I,

Pe =
1

Je
P,

where rex, r
e
y, s

e
x, and sey are defined via

(Ge)−1 =

[
rex rey
sex sey

]
.

Using these reference operators we write in the semi-discrete scheme (17) as

∂qei
∂t

=Aer(Dr)ijqej +Aes(Ds)ijqej − PikσxkIkjq
x,e
j − Pikσ

y
kIkjq

y,e
j

+
Jef

Je
Lfij(F

(
q∗ − q−

)
)j + PikN (Ikjqej),

(18)

where

Aer = rexAx + reyAy,

Aes = sexAx + seyAy.

The operators present in (18) describes all the actions required to solve our PML
formulation in the full system (10)-(12). Repeating the procedure above, we obtain the
semi discrete forms of (11) and (12) as

∂qx,ei
∂t

=rexAx(Dr)ijqej + sexAx(Ds)ijqej

− PikσxkIkjq
x,e
j +

Jef

Je
Lfij(nxAx

(
q∗ − q−

)
)j , (19)

∂qy,ei
∂t

=reyAy(Dr)ijqej + seyAy(Ds)ijqej

− PikσykIkjq
y,e
j +

Jef

Je
Lfij(nyAy

(
q∗ − q−

)
)j . (20)

For the vanishing σx and σy, (18) also gives all the required operators for the semi-
discrete form of the system in the non-PML region. In the next section, we cover the
semi-analytic and implicit-explicit time discretizations using the semi-discrete equation
(18).

3. Time Discretization

The nonlinear collision term in the Galerkin Boltzmann equation becomes stiff in the
limit of small relaxation times (τ << 1) which introduces a severe time step restriction if
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a fully explicit time integrator is used. In this section, we discuss two different temporal
integration methods for the Boltzmann equation in stiff regimes: a semi-analytic time
discretization method, also called exponential time discretization, and a low storage
implicit-explicit Runge-Kutta method.

Assembling the semi-discrete system in (18)-(20) on each element Ee into a global
system, we arrive to the following problem,

dq

dt
= L(q) + N(q), (21)

where q denotes assembled global vector of degrees of freedom, L collects all the linear
terms, and N includes the relaxation terms. We also use N and L for stiff and non-stiff
terms depending on the coefficient τ .

Due to the special structure of the nonlinear term, stiffness affects only the last three
equations of the system. The time step restriction for the first three equations is thus
always the advective time scale and it is independent of the τ term. We split the equation
system 21 in two parts in a way that last three equations advanced with the specific time
integration methods for stiff problems and first three equations always integrated with
explicit time stepper that semi-analytic or implicit-explicit method reduce in the limiting
case, 1/τ → 0.

To derive a semi-analytic explicit time discretization, we note that from the form of
the nonlinear term in (3) we can write (21) as

dq

dt
= −Λq + L(q) + Ñ(q) (22)

where Λ = diag
(
0, 0, 0, 1

τ ,
1
τ ,

1
τ

)
and Ñ(q) =

(
0, 0, 0, q2q3τq1

,
q2
2

τq1
√

2
,

q2
3

τq1
√

2

)T
. Note that

Ñ(q) now does not depend on q4, q5, nor q6. Finally, we define F(q) = L(q) + Ñ(q)
to simplify the notation in the derivation of semi-analytic time discretization methods.
With these modifications, we obtain

dq

dt
= −Λq + F(q). (23)

Multiplying (23) by eΛt and integrating from tn to tn+1, we obtain the following Voltera
integral equation,

q(tn+1) = q(tn)e−Λ(tn+1−tn) +

∫ t

tn

eΛ(θ−tn+1)F (q (θ) , θ) dθ. (24)

Note that since the first three rows of Λ are zero, the first three equations of (24) are
simply the first three equations of (21) integrated in time.

The derived formula is exact and we use it to derive semi-analytic time integration
methods. To simplify the notation in the following sections, we denote the numerical
approximation to q(tn) by qn and we shorten F((q (tn) , tn) to Fn. We denote the ith

history field of q and F at given discrete time level tn−i by qn−i and Fn−i, respectively.
Similarly, we use qn,i and Fn,i denote the corresponding states at the same intermediate
stage times.
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3.1. Semi-analytic Multistep Methods

In this section, we present formal derivation of semi-analytic Adams-Bashforth (SAAB)
methods and we extend the idea to multirate semi-analytic Adams-Bashforth methods
(MRSAAB) with different level difference between the groups.

We start with the basic structure of a linear multistep method, which is the polynomial
extrapolation of the integration function given in (24) from the arbitrary order s with
an extrapolation function, Ps(θ). This leads to a scheme of the form,

q(tn+1) = qne
−Λ(tn+1−tn) +

∫ tn+1

tn

eΛ(θ−tn+1)Ps(θ)dθ, (25)

where Ps(θ) is extrapolated from s sampling points of F (q(θ), θ). In addition, the
following property holds,

Ps(tn−i) = F (q(tn−i), tn−i) , (26)

for i = 0, . . . , (s − 1). To construct Ps, we use the classical Lagrange interpolating
polynomials as,

lj(t) =

s−1∏
i=0,i6=j

t− tn−i
tn−j − tn−i

,

After rewriting the second term of the (25) in terms of Lagrange interpolating polynomials
we obtain, ∫ tn+1

tn

Ps(θ)dθ =

∫ tn+1

tn

eΛ(θ−tn+1)Fn−ili(θ)dθ, (27)

for i = 0, . . . , (s − 1). Selecting a uniform step size of ∆t so that tn+1 = tn + ∆t, we
arrive at the multistep semi-analytic Adams-Bashforth method

q(tn+1) = qne
−Λ∆t + ∆t

s∑
i=0

ãiFn−i,

where ãi are coefficients that can be computed analytically using,

ãi∆t =

∫ tn+∆t

tn

eΛ(θ−tn+1)li(θ)dθ,

=

∫ ∆t

0

eΛ(θ−∆t)li(θ − tn)dθ, (28)

for i = 0, . . . , (s− 1). Note that from the definition of li in (27) and the assumption of a
uniform time step size, li(θ − tn) can be expressed in terms of ∆t and θ only.

Since e−Λt = diag(1, 1, 1, e−
t
τ , e−

t
τ , e−

t
τ ), the first three components of (3.1) contain

no exponential terms and the coefficients ãi simply reduce to the coefficients of the
classical Adams-Bashforth methods, which we denote ai. The coefficients for the last
three equations are modified to include integration with the exponential factor e−

t
τ . For
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s = 3, these semi-analytic coefficients can be written

ã0 = γ−3

[(
−1− 5

2
γ − 3γ2

)
− eγ

(
−1− 3

2
γ − γ2

)]
,

ã1 = γ−3
[(

2 + 4γ + 3γ2
)
− eγ (2 + 2γ)

]
,

ã2 = γ−3

[(
−1− 3

2
γ − γ2

)
− eγ

(
−1− 1

2
γ

)]
.

(29)

where γ = −∆t
τ .

In the formal limiting case, 1
τ → 0, the SAAB coefficients become the classical third

order Adams-Bashforth coefficients, i.e. lim ∆t
τ →0 ãi = ai, where a0 = 23/12, a1 =

−16/12, and a2 = 5/12. Semi-analytic schemes with arbitrary order have been derived
elsewhere [12], but we include an explicit expression and derivation in preparation for a
multirate version that allows elements to make different time steps. Although we discuss
multirate time stepping methods in detail below, we include here a brief overview in order
to include the necessary multirate SAAB coefficients in this section for completeness. We
obtain the coefficients required to perform a fractional time-step in the SAAB method
by setting tn+1 = tn+∆t/2 in (27) and repeating the process in (3.1)-(28) to obtain that
the multirate semi-analytic coefficients can be written as,

b̃i∆t =

∫ ∆t/2

0

eΛ(θ−∆t/2)li(θ − tn)dθ. (30)

For the order s = 3 method gives the MRSAAB coefficients required for a fractional step
of ∆t/2 to be either the classical multirate Adams-Bashforth coefficients, i.e. b0 = 17/24,
b1 = −7/24, and b2 = 1/12, or the modified coefficients,

b̃0 = γ−3

[(
−1− 2γ − 15

8
γ2

)
− e

γ
2

(
−1− 3

2
γ − γ2

)]
,

b̃1 = γ−3

[(
2 + 3γ +

5

4
γ2

)
− e

γ
2 (2 + 2γ)

]
,

b̃2 = γ−3

[(
−1− 1γ − 3

8
γ2

)
− e

γ
2

(
−1− 1

2
γ

)]
,

(31)

Adams-Bashforth methods are not self starting and need s initial history fields to start
extrapolation. Although both MRSAAB and SAAB histories can be computed with a
self-starting time discretization methods, we also present the first and second order SAAB
and MRSAAB coefficients which can be used to initialize the time-stepping method and
prevent additional algorithmic complexity in start-up. For s = 1 the coefficients can be
obtained by a similar procedure described above to obtain

ã0 = γ−1 [eγ − 1] , b̃0 = γ−1
[
e
γ
2 − 1

]
, (32)

with classical Adams-Bashforth coefficients being a0 = 1 and b0 = 1/2. Then, for the
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second order s = 2 methods,

ã0 = γ−2 [(−1− 2γ)− eγ (−1− γ)] ,

ã1 = γ−2 [(1 + γ) + eγ ] ,

b̃0 = γ−2

[(
−1− 3

2
γ

)
− e

γ
2 (−1− γ)

]
,

b̃1 = γ−2

[(
1 +

1

2
γ

)
− e

γ
2

]
,

(33)

and the single rate and multirate classical AB coefficients are a0 = 3/2, a1 = −1/2 and
b0 = 5/8, b1 = −1/8, respectively. It is worthwhile to mention that exponential and non-
exponential integrated parts of the Galerkin-Boltzmann equation are consistent in time
when all coefficients converge to a classical multirate or a single rate Adams-Bashforth
methods in the non-stiff limit.

3.2. Semi-analytic Runge-Kutta Methods

Runge-Kutta methods can be constructed analogously to multistep methods. Let
us begin by integrating the equation (24) from t = tn to some intermediate time level
t = tn + ∆ti which leads to a variation-of-constants formula,

qni = qne
−Λ∆ti +

∫ ∆ti

0

eΛ(θ−∆ti)F (q(tn + θ), tn + θ) dθ.

For general one-step methods, the internal and the final stages are approximated in the
following way,

qni = qne
−Λ∆ti + ∆t

s−1∑
j=0

ãijF (q(tn + ∆tj), tn + ∆tj) = qne
−Λ∆ti + ∆t

s−1∑
j=0

ãijFnj ,

qn+1 = qne
−Λ∆t + ∆t

s−1∑
i=0

b̃iF (q(tn + ∆ti), tn + ∆ti) = qne
−Λ∆t + ∆t

s∑
j=0

b̃iFni,

where s is the number of stages, ã and b̃ are the semi analytic Runge-Kutta (SARK)
method coefficients computed using exponential functions or some approximation of ex-
ponential functions. We assume that all methods satisfy ∆t1 = c1∆t = 0 leading to
eΛ∆t1 = I for consistency reasons. Similar to the derivation of the semi-analytic Adams-
Bashforth methods above, a semi-analytic method reduces to the base Runge-Kutta
method in the limit 1

τ → 0 which makes exponential and non-exponential parts of the
integrated equation consistent. We also assume that base Runge-Kutta method satisfies,

s−1∑
j=0

bj = 1,

s−1∑
j=0

aij = ci. (34)

The semi-analytic Runge-Kutta time discretization satisfies an analogous constraint,

s−1∑
j=0

b̃j = γ−1 (eγ − 1) ,

s−1∑
j=0

ãij =
1

ci
γ−1 (eciγ − 1) , (35)
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Table 1: Butcher tableaus for the classical third-order and adapted (b) method, based on RK2a, with
coefficients

(a)

0

1
2

1
2

1 −1 2

1
6

2
3

1
6

(b)

0

1
3

1
3

3
4 − 3

16
15
16

1
6

3
10

8
15

for i = 0, . . . , (s − 1). We introduce a class of third order SARK schemes by modifying
the base method coefficients. The internal stages are computed using following relation,

ãij =
1

ci
γ−1

(
eciγ−1

)
aij ,

which directly satisfies (35) if the base method satisfies (34). The final update stage
is then computed using Lagrange interpolation of the function values at internal stages
assuming the non-repeating internal stage time levels as given below,

qn+1 = qne
−Λ∆t + ∆t

s−1∑
j=0

(∫ ∆t

0

eΛ(θ−∆t)li(θ − tn)dθ

)
Fn,i, (36)

where li are again the Lagrange interpolating polynomials, this time constructed as
interpolating at the intermediate stage times, i.e.

li(t) =

s−1∏
j=0,i6=j

t− tn − cj∆t
∆t(ci − cj)

, (37)

for i = 0, . . . , (s − 1). If we start with the classical third-order RK method with the
Butcher tableau given in Table 1(a), the coefficients of the SARK method are

ã10 = γ−1
[
−1 + e

γ
2

]
,

ã20 = γ−1 [1− eγ ] ,

ã21 = γ−1 [−2 + 2eγ ] ,

b̃0 = γ−3
[
−4− γ − eγ

(
−4 + 3γ − γ2

)]
,

b̃1 = γ−3 [8 + 4γ − eγ (8− 4γ)] ,

b̃2 = γ−3
[
−4− 3γ − γ2 − eγ (−4 + γ)

]
.

(38)

This SARK method reproduces the results for the third-order exponential RK scheme
reported in [12] with more straightforward derivation. By following the same procedure,
we construct a third-order SARK method with better truncation errors by using the base
RK method where its Butcher tableau given in Table 1(b). The coefficients of the SARK
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scheme used in this study are given below,

ã10 = γ−1
[
−1 + e

γ
3

]
,

ã20 =
1

4
γ−1

[
1− e

3γ
4

]
,

ã21 =
1

4
γ−1

[
−5 + 5e

3γ
4

]
,

b̃0 = γ−3
[
−24− 11γ − 2γ2 − eγ

(
−24 + 13γ − 3γ2

)]
,

b̃1 =
36

5
γ−3

[
2 +

5

4
γ +

1

4
γ2 − eγ

(
2− 3

4
γ

)]
,

b̃2 =
16

5
γ−3

[
−2− 5

3
γ − 2γ2 − eγ

(
−2 +

1

3
γ

)]
.

(39)

All semi-analytic time stepping coefficients include a terms similar to

f(z) =
exp(z)− 1

z
,

or some high-order polynomial variant of this expression. The accuracy of SARK and
SAAB methods depend strongly on the accurate computation of this function. For
small z, direct computation of such expressions can encounter large cancellation errors.
Therefore, in the small z limit a Taylor series approximation can be better option. On
the other hand, Taylor series approximation is inaccurate if z is large. To obtain a more
robust approach we compute the coefficients using a complex contour integral [13]. For
example, the evaluation of f(z) is done by integrating over the contour Γ in the complex
plane enclosing z as follows

f(z) =
1

2πi

∫
Γ

f(θ)

θ − z
dθ.

In our numerical tests, we take Γ as the unit circle sampled with 64 equally spaced points.
Due to symmetry, integration only requires 32 points on the upper plane. We compute
function values at these points and we take the mean of the real part of function values.
Using 32 points on half plane gives full accuracy of coefficients (in 14 digits) independent
of the magnitude of z [13].

3.3. Low-Storage Implicit-Explicit Time Discretization

In order to to avoid the time step restriction in the stiff regime 1
τ >> 1, we have

adapted a low-storage implicit explicit (LSIMEX) Runge-Kutta method to the Galerkin-
Boltzmann system. Because implicit explicit Runge-Kutta schemes are well documented
in the literature (see [45]), we only provide a short description of its efficient application
to Galerkin-Boltzmann system. For the ODE system (21), an LSIMEX scheme is

qex =

{
q if i = 1,

q +
(
ãi,i−1 − b̃i−1

)
∆tqim + (ai,i−1 − bi−1) ∆tqex else,

(40)

qim = N (qex + ãi,i∆tN(qim)) , (41)

qex = L(qex + ãi,i∆tqim, tn + ci∆t), (42)

q = q + b̃i∆tqim + bi∆tqex, (43)
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where i = 1 . . . s, s is the stage number. Here qex and qim denote the explicit and
implicit parts of the right hand side of (21) at each stage, and ã and b̃ are the coefficients
of implicit scheme while a,b, and c are the explicit scheme coefficients. The Butcher
tableau for a class of LSIMEX schemes can be found in [46]. We use the third order
method presented in [46] in the numerical tests presented below.

In each stage, the LSIMEX formulation consists of two update steps through (40) and
(43). Equation (42) requires one explicit function evaluation per stage. An important
part of this implementation comes from the efficient implicit solve stage given in (41).
Since the first three entries of the nonlinear collision term N(q) are zero, q1, q2 and q3

remain constant when solving for qim in (41). Furthermore, the remaining three entries
of N(q) are linear in q4, q5 and q6 which allows to us to solve for the entries of qim
without matrix inversion or iterative procedure and reduces the operation to a local
node-wise update.

3.4. Multirate Time Integration

Explicit time stepping techniques offer numerous computational advantages but their
stability is only guaranteed under the Courant-Friedrichs-Lewy (CFL) condition which
imposes a limit on maximal time step size. Global stability is then determined by the
element having the smallest mesh size. This can result in an increased computational
expense, especially in realistic flow problems requiring wide spread of element sizes.

In most of the realistic flow applications, unstructured meshes are refined around
some specific regions to accurately capture the topology of the geometry or complex
physical phenomena. Due to the varying resolution and physics of the problem, the CFL
stabilty condition is not generally constant in space and time. Ignoring the non-linear
relaxation term fo rthe moment, the Galerkin-Boltzmann equations have the following
wave-transport time step restriction

∆t ≤ min
e
C

he

N2λmax
, (44)

where he a the characteristic length of the element, Ee, λmax =
√

3RT is the maximum
wave speed for the Galerkin Boltzmann system in element Ee, and C is the CFL number
which depends on the stability region of the time discretization scheme. Besides the
advective time step restriction, the relaxation time, τ is also an important parameter in
designing the time discretization scheme. For the small relaxation times, the Boltzmann
equations becomes very stiff. The stiff term, 1/τ is of the order of Re/Ma2 which is
independent of the mesh resolution and polynomial order of approximation. For weakly
incompressible and high Reynolds number flows, the time step size required to explicitly
step the relaxation term becomes very restricted. On the other hand, semi-analytic time
discretization avoids stiffness through analytic integration of some stiff linear terms and
recovers the efficiency using only the advective time scale independent of the flow regime.

The key idea of multirate methods is to achieve a reduced computational expense per
time step by partitioning the mesh into groups wherein we advance time using a locally
stable time step choice. To construct the semi-analytic multirate groups, we first compute
the stable time step of each element using (44). The global minimum and maximum time
step sizes are denoted by ∆tmin and ∆tmax, respectively. As noted above, for the sake
of simplicity we follow an approach similar to [18], i.e., we assume that the successive
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multirate groups have the time step ratio of 2. Then, selecting a reference time step, ∆tr
as the power of two of ∆tmin, the maximum exponent of the multirate groups is defined
as,

l∗ = log2

∆tr
∆tmin

, (45)

which gives Nl = l∗ + 1 groups. We partition the mesh into multirate groups so that
elements in the same group have stable time steps in the range [2l∆tmin, 2

l+1∆tmin]. We
call l the level of the multirate group.

We also introduced Nl−1 buffer groups to connect the bulk groups. Because elements
are weakly connected with their immediate neighbors in DG spatial discretization, we
select buffer groups to be the single element layer along the interface of groups of levels
l and l+ 1. We store the element numbers in the buffer region for each level and update
only the trace values when required for the efficient implementation.

We adopt the fastest-first approach [47] which requires the integration starting from
smallest levels i.e., groups with smaller time step sizes. Integration of these levels requires
the trace values of one level larger groups at buffer region which is not available and must
be interpolated to the sub-step levels. We summarize our implementation of MRSAAB
in Table 2 for a sample multirate system with Nl = 3. In the table, R, U and T denote
all the required computations i.e., evaluation of the right hand side of (21), time step
update and trace update, respectively. We assume that all history is known for all levels
at the beginning of stage 0 and t = 0 at this synchronization level.

Table 2: Illustration of MRSAAB algorithm for Nl = 3 in terms the operations performed in each stage
where R is the right hand side evaluation, U is the temporal update, and T is the trace update operation.

l = 0 l = 1 l = 2
Stage R U T R U T R U T

0 X X × X × X X × ×
1 X X × × X × × × X
2 X X × X × X × × ×
3 X X × × X × × X ×

In the first stage, all the levels compute the RHS contributions first. Then, level-0 is
updated to the time level ∆tmin using the SAAB coefficients given in (29). Subsequently,
required trace values at the buffer region of level 1 are extrapolated to the time level ∆tmin

using ∆t = 2∆tmin and the half step coefficients listed in (31) to evolve level 0 in the
next stage. In the second stage, level 0 computes the RHS using the extrapolated trace
values between level-0 and level-1 bulk groups. Then, level-0 and level-1 are updated to
2∆tmin with their stable time step sizes. The stage ends with the trace update of level-2
for ∆t = 4∆tmin and half step coefficients that will be used to evolve level-1. Next stage
starts with RHS evaluation of level-0 and level-1 and continues with advancing level-0
to 3∆tmin and extrapolating the trace values of level-1 to the same time level. The
final stage brings all levels to the same time with RHS evaluation level-0 and update
operations for all levels.
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4. GPU Implementation

In this section, we give a brief overview of the implementation used in the numer-
ical tests below, conducted using Graphics Processing Unit (GPU) acceleration. The
Galerkin-Boltzmann solver described here has been implemented in C/C++ using the
Open Concurrent Compute Abstraction (OCCA) API and OKL kernel language [48].
OCCA is an abstracted programming model designed to encapsulate native languages
for parallel devices such as CUDA, OpenCL, Threads, and OpenMP. OCCA thus offers
flexibility in choosing hardware architectures and programming models at run-time by
allowing customized implementations of algorithms for several computing devices with a
single code. Parallelization on distributed multi-GPU/CPU platforms is achieved using
MPI. The source code was compiled using the GNU GCC 5.2.0 and the Nvidia CUDA
V8.0.61 NVCC compilers. All the tests presented in the next section were run on a
Nvidia Tesla P100 GPU paired with a Xeon E5-2680v4 processor.

The solution process consists of four major computational kernels: (1) evaluation of
volume integrals, (2) evaluation of surface integrals, (3) cubature-based integration of
the non-linear relaxation contributions, and (4) time-step updates. We refer to each of
these processes as the volume, surface, cubature, and update kernels, respectively. In all
the kernel implementations, the work load is partitioned in such a way that each thread
in a thread block performs computations related to a single node while a thread-block
processes multiple elements.

• Volume Kernel: The volume integral terms in the semi-discrete form given in (18)
are computed in this kernel. The kernel first loads the solution fields from global
device memory and loads these fields to shared memory arrays of size Np. Two
differentiation matrices are re-used within the kernel taking advantage of L1 or L2
caches depending on the size of matrices. Each thread computes the derivative at a
single node by calculating the inner product of a row of each differentiation matrix
with the nodal element solution vectors stored in the shared memory. Resulting
values and all other necessary data i.e., geometric factors and the Jacobian of local
to global transformation, are stored in register memory. This kernel requests Np
threads per element per thread block to perform all required computations.

• Surface Kernel: The surface kernel computes the contributions of the surface
integral term in (18). The structure of the surface kernel is similar to the structure
of the volume kernel. The kernel loads the trace data of an element and all its
neighbors to registers, computes numerical flux and scales the result with geomet-
ric data. Results are then stored in the shared memory array of the size of the
total number of face nodes i.e., Nf × Nfp, where Nf is the number of faces per
element and Nfp is the number of nodes along each element face. The computed
surface fluxes are then lifted to the interpolation nodes by performing matrix-vector
multiplication analogously to the volume kernel differentiation action. The surface
kernel requires max(Nf×Nfp, Np) threads per element per thread block to perform
all computations.

• Cubature Kernel: The nonlinear relaxation term and all σ terms in the semi-
discrete form (18) are evaluated using an appropriately high-order cubature rule
in the cubature kernel. Because σx and σy are constant in time, we store these
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variables at cubature integration nodes in global device memory in order to prevent
unnecessary interpolation operations. The first operation in this kernel is to copy
the elemental field variables, qx, qy and q from global memory to shared memory
using Np threads. These shared memory variables are interpolated to the cubature
integration points using the interpolation matrix, I and Nc threads. Then, non-
linear term and PML terms are computed on cubature node values and stored on
the shared memory arrays of size, Nc each. Finally, the cubature kernel performs
one more matrix-vector multiplication action for each field to project the results
to the interpolation nodes using the operator, P and Np threads. To perform all
computations, the cubature kernel requests a total of Nc threads per element per
thread block.

• Update Kernel: The update kernel performs time integration updates, which
involves global vector operations using the right hand side vectors and necessary
amount of solution history depending on the time discretization method and its
order. Np threads per element per thread block are requested by this kernel.

Performance of the kernels is highly dependent on the processor architecture, memory
usage, and tuning parameters. Here, only the basic performance improvement techniques
such as coalescing, loop unrolling and multiple elements per thread block are used. It is
possible to use more advance optimization strategies such as utilizing hardware dependent
padding, matrix blocking etc., but the study of these is out of the scope of this study.
Because, all time stepping techniques studied here use similar kernels with the same level
of optimization, we believe that performance results presented in the next section are
independent from the implementation details of computing kernels.

5. Numerical Tests

In this section, we demonstrate the convergence properties, accuracy, and performance
of the developed flow solver on distinct PML and non-PML numerical test cases including
Couette flow, isothermal vortex problem, and flow around a square cylinder and wall
mounted square cylinder.

5.1. Unsteady Couette Flow

As a first computational test we consider shear flow between two parallel plates. The
horizontal velocity of the upper plate is specified by u = (U, 0) and a stationary wall
boundary condition is enforced at the bottom plate. Periodic flow boundary conditions
are enforced at left- and right-hand side of the channel. The Reynolds number, Re of
the Couette flow is given by Re = UL/ν where L is the length of the square channel
and ν = τRT is the kinematic viscosity. The analytic solution of the u velocity in the
incompressible Navier-Stokes equations is given by

u = U
y

L
+

∞∑
n=1

2U (−1)
n

λnL
e−νλ

2
nt sin (λny) ,

where λn = nπ
L .
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We derived an analogous Couette flow solution for the Galerkin-Boltzmann equation
(the details are listed in the Appendix) which is given in component-wise form as follows,

q2(y, t) =
U√
RTL

y +
1√
RT

∞∑
n=1

2(−1)nU

λnL
sin(λny)eσnt,

q4(y, t) =
1

RT

∞∑
n=1

2(−1)nUσn
λ2
nL

,

q5(y, t) =
U2

√
2RTL2

y2 +

∞∑
n=0

cn sin(λny)e−
t
τ +

1√
2RT

∞∑
n=1

2(−1)nU2

λnL2(σnτ + 1)
sin(λny)eσnt

+
1√

2RT

∞∑
n=1

∞∑
m=1

4(−1)nU2

λnλmL2(σnτ + σmτ + 1)
sin(λny) sin(λmy)e(σn+σm)t,

where q1 = 1, q3 = q6 = 0, cn are coefficients chosen to satisfy the initial condition for
q5, and σn = − 1

2τ + 1
2τ

√
1− 4τ2RTλ2

n, assuming 1 ≥ 4τ2RTλ2
n.

We form an exact solution of the Boltzmann equations from the first 10 modes in the
expansions above and solve this problem with the additional initial condition q5(y, 0) = 0
with Ma= 0.1, U = 1m/s, L = 1m, and ν = 10−2 m2/s. Figure 1 shows the computed
L∞ norm of the numerical error for the x component of velocity at the final time T = 1.5s.
We begin with an unstructured mesh of K = 16 elements and carry out a convergence
study with successive uniform mesh refinements and polynomial degree enrichment. The
figure demonstrates an hN+1 spectral convergence in the numerical error for reference
low storage explicit Runge-Kutta (LSERK) and low storage implicit-explicit (LSIMEX)
as well as developed semi-analytic Adams-Bashforth (SAAB) and semi-analytic Runge-
Kutta (SARK) time integration methods.

5.1.1. Isothermal Vortex Advection

As a second validation test, we solve an isothermal vortex problem to show the efficacy
of our proposed PML formulation. The two-dimensional Euler equations support an
advecting vortex solution of the following form [33],

ρ(x, t) = ρr(r)

u(x, t) = U0 − ur(r) sin θ

v(x, t) = V0 − ur(r) cos θ

where (U0, V0) is the constant advective velocity, ur is the given radial velocity, and
r =

√
(x− U0t)2 + (y − V0t)2. The radial velocity, density and pressure distribution

satisfy the conservation of momentum in the following form,

dpr
dr

= ρr
ur(r)

2

r
.

Considering the isothermal flow satisfying pr = ρrRT , density and velocity are related
as,

dpr
ρr

=
1

RT

ur(r)
2

r
. (46)
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Figure 1: Spatial accuracy test for the unsteady Boltzmann analogy of a Couette flow test problem using
L∞ relative errors for x-velocity on successively refined triangular elements. Error plots with reference
convergence rate lines are shown for LSERK (top left), SAAB (top right), SARK (bottom left), IMEX
(bottom right).

We consider a radial velocity distribution in the form of

ur(r) =
Umax

b
re

1
2

(
1− r2

b2

)
, (47)

where Umax is the maximum velocity at r = b. Density is obtained by integrating (46)
from infinity to r as,

ln
ρr
ρ∞

= −U
2
max

2RT
e

1
2

(
1− r2

b2

)
. (48)

Equations (48) and (47) are used to initialize the solution with parameters U0 = 0.5,
V0 = 0 and b = 0.2. The computational domain is set to be the bi-unit square including
a surrounding PML domain of width w, i.e. [−1 − w, 1 + w]2. The domain discretized
with uniform unstructured triangular elements with characteristic length, h = 0.1.
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(a) t = 0 (b) t = 1.5

(c) t = 2.3 (d) t = 3.3

Figure 2: Isothermal vortex propagation test for Re = 1000 and N = 5 on the domain [−1.5×1.5]2 with
w = 0.5 PML width. Contours show the y-velocity from −0.25 to 0.25 with the increment of 0.0125
excluding the zero level.

Unless stated explicitly otherwise, the PML absorption coefficient is taken to be

σ̂x = σmax

∣∣∣∣x− x0

w

∣∣∣∣α , (49)

where x0 = ±1 is the location of interface between physical domain and the PML region.
σ̂y is computed using an analogous expression.

Figure 2 shows the v−velocity contours of a numerical solution at time t = 0, 1.5, 2.3
and 3.3, respectively, for Umax = 0.5U0 and PML width w = 0.5. The solution is obtained
for N = 5 and Reynolds number Re = 1000 to preserve the vortex strength at PML and
physical domain interface. In the PML region, we select maximum damping coefficient,
σmax = 20, a fourth-order profile, α = 4, and multidimensional coefficients αx = αy = 0.1
for this particular numerical solution. The vortex preserves symmetry while entering the
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Figure 3: Isothermal vortex propagation test for N = 3. Reflection error relative to Umax on the v-
velocity component is computed at (0.9, 0.0) (a) for various Re numbers (b) for various PML widths
with Umax = 0.5U0,Re = 1000 and (c) for various vortex strengths with w = 0.5, Re = 1000.

absorbing layer, indicating minimal reflections at the interface. Also, absorption of the
vortex in the PML region can be clearly observed in Figure 2.

Figure 3 (a) shows the maximum difference between the numerical solution and a
reference solution obtained using computational domain which is large enough so that
reflections of initial pressure waves do not pollute the solution in the domain of interest.
Reflection error is computed at the point, (0.9, 0.0) for N = 3 and for various Reynolds
numbers as a function of time. The relative error begins quite small and peaks around
10−3 for high Reynolds numbers. The relative error decreases with Reynolds number due
to weaker vortex strengths with increasing viscous dissipation. To further investigate the
maximum reflection error, Figure 3 (b-c) show the difference between PML and reference
solutions in v-velocity component for Re = 1000 in relation to the PML widths and vortex
strengths as a function of time. For the fixed vortex strength of Umax = 0.5U0, relative
reflection error decreases with the increase of the PML width and decreases in time, as
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expected. In the test case illustrating the effect of the vortex strength on the relative
reflection error, a background uniform flow is taken as U0 = 0.5 and the maximum
velocity of the vortex is increased from Umax = 0.25U0 to Umax = 1.0U0. Although
the error increases with the strength of vortex, hence the non-linearity in the system
equation, the relative error of less than 1% is achieved for PML width w = 0.5.

5.2. Flow Around Square Cylinder

In our next test we study the accuracy of the Galerkin-Boltzmann approximation and
the performance of PML formulation through solving vortex shedding behind a square
cylinder test problem. The uniform incoming flow has a Mach number Ma= U∞/a∞ =
0.2 where U∞ and a∞ denote the velocity of uniform flow and the speed of sound,
respectively. For the present computations, Reynolds number Re = U∞d/v∞ is taken as
150, where d is the characteristic length of the domain and v∞ is the reference kinematic
viscosity.

We solve the problem on a rectangular internal domain [−5.4, 9.4] × [−5.4, 5.4] sur-
rounded by a PML region of constant width w in all directions. The square cylinder is
located at (0.0, 0.0) with a unit edge length. The computational domain is discretized
with K = 25, 000 unstructured triangular elements with increased resolution near the
square cylinder to resolve the boundary layer.

Figure 4 shows the instantaneous pressure contours for N = 3 and w = 1.6 at
different solution times. For this test, the PML parameters are selected similar to the
vortex propagation test, i.e. σmax = 20, α = 4 and αx = αy = 0.1. Figure 4 (a)-(c)
clearly demonstrate that initial transient pressure waves are damped out efficiently in
the PML region without any noticeable reflections between PML interface and domain
boundaries. Figure 4 (d) shows a snapshot of pressure field after vortex shedding starts
and the shear waves dominate the flow. The PML region also performs well in this
regime where no visible reflections are observed in the pressure field for this long time
simulation.

Figure 5 gives two snapshots of the vorticity contours for Re = 150, N = 5 and the
same PML settings as in the previous test. Absorption of the nonlinear vortices by the
PML is clearly seen in the Figure 5 (a) for zero angle of attack. To demonstrate stability
and effectiveness of the present PML formulation for different mean flow directions, the
same problem is solved for an angle attack of 30 (deg). As seen in Figure 5 (b), the PML
absorbs the incoming vortices almost completely. For this test, the damping efficiency of
the PML is shown in 6 in terms of density fluctuations, |ρ/ρ∞ − 1| for both zero and 30
(deg) angle of attack problems on the probes located in three different locations. For zero
angle of attack case, probe 1, probe 2, and probe 3 are located at (9.0, 0.0), (10.0, 0.0),
and (10.5, 0.0), respectively. Similarly, probes are located at (9.0, 5.0), (10.0, 6.0) and
(10.5, 6.5) in incidence angle of 30 (deg). The density field reaches almost the mean
flow value towards the end of the PML region with very small oscillations for both tests,
indicating the exponential damping of the PML formulation.

In Figure 7, y-velocity and pressure are shown at a point (9.0, 0.0) on the outflow side
of the computational domain for Re = 150 andN = 3. Also, the reference solution is plot-
ted in symbols. The reference solution is obtained on a very large computational domain
to ensure that any reflected waves do not pollute the solution in the probe location. The
instability mechanism that triggers vortex shedding is extremely sensitive to infinitesimal
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(a) t = 1.1 (b) t = 1.8

(c) t = 2.1 (d) t = 100

Figure 4: Flow around square cylinder test problem for Re = 150, N = 3 on the domain of [−7, 11] ×
[−7, 7] with a PML region of width, w = 1.6. Contours show the pressure field from 22.5 to 25.5 with
the increment of 0.125.

noise [49]. Because changes in the mesh resolution, blockage, upstream/downstream ex-
tent, time step size etc. change the onset time, it is difficult to obtain the same shedding
profile between reference and PML solutions. In the figure, we present the results after
fully periodic pattern is observed in the v-velocity at the probe location from t = 0 to
t = 50. A very good agreement in the time history of the periodically shed vortices is
observed both in y-velocity and pressure.

As a final PML accuracy test, we compare the PML solution with the large domain
solution in terms of physical parameters of vortes shedding namely Strouhal number, St,
drag coefficient, Cd, and lift coefficient, Cl. The Strouhal number is given as St = fd/U∞
where f is the frequency of shedding computed via a spectral analysis of lift coefficient
history sampled over t = 100 to t = 300. Cd and Cl are computed using total force on
acting on the cylinder surface, Γ,

Ft =

∫
Γ

(−σ · n + np) dΓ.

where pressure p is recovered from the equation of state and σ is the stress tensor with
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Figure 5: Flow around square cylinder test problem for Re = 150, N = 5 on the domain of [−7, 11] ×
[−7, 7] with a PML region of width, w = 1.6. Contours show the vorticity field from −5.0 to 5.0 with
the increment of 0.25 excluding the zero level.

components,

σ11 = −RT
(√

2q5 −
q2
2

q1

)
, σ22 = −RT

(√
2q6 −

q2
3

q1

)
,

σ12 = σ21 = −RT
(
q4 −

q2q3

q1

)
.

Then, Cd and Cl are computed as follows,

Cd =
Ft · i

1
2ρ∞U∞d

, Cl =
Ft · j

1
2ρ∞U∞d

,

where i and j are the unit normal vectors in the x and y directions, respectively. In Table
3, we show the results for various PML widths and PML strengths with corresponding
relative errors computed according to reference solution. Increasing the PML width for
fixed a PML strength of σmax = 20 decreases the error in the Strouhal number St where
the result is obtained to be contain around 1% error for the smallest PML width. On the
other hand, increasing the PML damping strength does not effect the St number where
very accurate results obtained for w = 3.2 for various σ values. Increasing PML width
improves the solution in Cd and Cl. However, using a more aggressive PML damping
on fixed PML width increases the error due to the need of resolving higher gradients
and higher damping near the PML interface. Table 3 also shows that the damping
performance of our PML formulation is not strongly dependent on the PML width and
strength and less than 2% error is achieved even with small PML widths.

5.3. Wall Mounted Fence Problem

In this test, the efficiency of the MRSAAB time stepping method on different flow
conditions is studied through solving a two-dimensional wall mounted square cylinder
test problem. We select a geometric configuration with a fixed aspect ratio , i.e. ratio
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Figure 6: Flow around square cylinder test problem for Re = 150, N = 5 on the domain [−7, 11]× [−7, 7]
with a PML region of width w = 1.6. Density fluctuation history for different probe locations for (a)
zero angle of attack and (b) 30 (deg) angle of attack.

of cylinder height to cylinder width, is 5. We select Ma= U∞/a∞ and Re = U∞d/v∞
where U∞, a∞, v∞ and d are velocity of the uniform flow, speed of sound, kinematic
viscosity, and cylinder height as the characteristic length, respectively.

The speedup in overall runtime that can be achieve with a multirate time stepping
method strongly depends on the distribution of the characteristic stable time step sizes
among the elements of the mesh. The gap between the minimum and the maximum
stable time steps, as well as the number of elements present in each multirate group, has
a significant influence on the computational efficiency. To show the performance of the
proposed MRSAAB time discretization method for the different flow configurations in
Galerkin-Boltzmann formulation, we fix the mesh and its element organization strategy
for this test problem. The computational domain is chosen to be [−5.0, 5.0] × [0, 5.0]
with a surrounding PML region of width w = 1.0. The domain is discretized with
50336 unstructured triangular elements. To resolve the complex flow structure accurately,
resolution is concentrated around the cylinder and in the wake region. The maximum
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Figure 7: Flow around square cylinder test problem for Re = 150, N = 3 on the domain of [−7, 11] ×
[−7, 7] with a PML region of width, w = 3.2. Time history of (a) y-velocity and (b) pressure for the
PML solution (solid line) and the reference solution (circle).

Table 3: Square cylinder test problem for Re = 150, Ma= 0.2 and N = 3. Accuracy of PML formulation
in terms of physical averaged quantities, St, Cd and Cl.

PML Parameter St % Cd % Cl %

w = 1.6 0.155 1.113 1.462 1.358 0.400 0.688
w = 2.4 0.154 0.462 1.453 0.755 0.399 0.540
w = 3.2 0.153 0.069 1.448 0.416 0.398 0.305

σmax = 100 0.153 0.069 1.451 0.590 0.399 0.448
σmax = 200 0.153 0.069 1.454 0.812 0.400 0.564

Reference Solution 0.153 - 1.442 - 0.398 -

element length is 5 times the minimum characteristic element length. The mesh structure
used in all tests is plotted in Figure 8. Figure 5 gives the instantaneous vorticity contours
at time t = 20 and t = 25 for Re = 1000, Ma= 0.05, approximation order N = 5, and
with the same PML settings with used with the square cylinder test problem above.

Table 4 shows the number of groups and the number of elements each group for the
MRSAAB and the standard MRAB time discretization approaches. As noted earlier,
the stiff parameter 1

τ depends only on the Re and Ma numbers and scales as Re/Ma2.
Consequently, if a fully explicit time discretization is employed in the stiff regime 1

τ >> 1
the maximal time step size will be restricted in all elements of the mesh. In this case,
a multirate partitioning will not create multiple levels. In contrast, the time step size
of MRSAAB discretization is determined solely by the time scale of the wave transport
operator and a multirate partitioning strategy will successfully create multirate levels,
independent of the flow conditions.

Figure 10 shows the speedups achieved with MRSAAB and MRAB time discretiza-
tions for various flow configurations. The effective speedup values are computed taking
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Figure 8: Flow around wall mounted fence test problem. Discretization of the domain in the size of
[−5.0, 5.0] × [0.0, 5.0] with a PML region of width, w = 1.0 into a mesh consisting of 50553 triangular
elements. Elements are clustered around the fence and the wake side and uniform element size is used
in the PML.

Table 4: Number of groups and element numbers in each group for the MRSAAB and MRAB time
discretizations for the wall mounted cylinder problem.

Method Re Ma Nl # Elements in groups

MRSAAB - - 5 8396, 13926, 11926, 10893, 5412

MRAB

200 0.05 1 50553
200 0.1 2 8396, 42157
200 0.2 3 8396, 13926, 28231
100 0.1 3 8396, 13926, 28231
1000 0.1 1 50553

the ratio of solution times of MRSAAB and MRAB schemes to the corresponding LSERK
scheme. All the time stepping methods are advanced with their maximum time step sizes
and LSERK uses roughly 3 times larger CFL numbers due to its larger stability region.
Figure 10(a) gives the speedups for Re = 200 and Ma numbers from 0.05 to 0.2. In
this regime, the time step size restricted by the advective time scale where around a 3
fold speedup of the MRSAAB scheme originates from building several multirate groups.
For the Mach number Ma= 0.05 the MRAB scheme creates only one multirate group
resulting in only a 1.2× speedup. Increasing the Mach number, and hence decreasing the
value of the stiff term, results in the MRAB scheme becoming more efficient as it creates
2 or 3 groups, gaining 2.7 fold speedups. Similarly, the effect of varying the Reynolds
number Re for a fixed Mach Ma= 0.1 on the performance multirate time steppers is
given in Figure 10 (b). When the time step size is restricted by the advective time scale
i.e., Re < 500, the MRSAAB method gives around a 3 fold relative speedup. For higher
Reynolds numbers, the stiffness resulting from larger 1/τ factors also increases which
makes the pure explicit schemes inefficient. The MRSAAB method reaches around a 9
fold speedup in this regime. In contrast, using a fully explicit multirate approaches loses
its efficiency and the solution process is accelerated only 1.2 times for Re > 500.

Figure 11 illustrates the breakdown of the normalized runtimes for different time
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(a)

(b)

Figure 9: Flow around wall mounted square cylinder test problem for Re = 1000, Ma = 0.05, N = 3 on
the domain [−5, 5] × [0, 5] with a PML region of width w = 1.0. The contours show the vorticity field
from −5.0 to 5.0 with the increment of 0.2 excluding the zero level for (a) t = 20 and (b) t = 25. Only
a part of the domain is shown.

discretization methods for orders N = 1 . . . 6. For Re = 1000 and Ma = 0.05, the
Boltzmann equations become stiff and MRSAAB method results in considerably lower
runtimes as given in 11(a). In this regime, the multirate method without semi-analytic
integration is not effective due to lack of sufficient grouping where even SARK scheme
outperforms MRAB. The LSIMEX method produces slightly longer runtimes in all or-
ders compared to the SARK method due to additional operations and data movement.
The fully explicit scheme gives the highest computational times as expected. Figure 11
presents the same results for Re = 200 and Ma = 0.2. The Boltzmann equations are
not as stiff in this regime and the MRAB scheme creates 3 groups for N = 5. The
MRSAAB scheme gives the smallest run times but this time MRAB outperforms SARK
and LSIMEX schemes for all orders. For these two different flow regimes, the MRSAAB
method is the fastest method and its performance is independent of the flow regime.

6. Conclusion

We presented a high-order nodal discontinuous Galerkin method for the Boltzmann
equations discretized with Hermite polynomials in velocity space, and used it to simulate
nearly incompressible flows. We also introduced a stabilized unsplit perfectly matching
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Figure 10: Multirate speedups for the flow around wall mounted square cylinder test problem on the
domain of [−5, 5] × [0, 5] with a PML region of width, w = 1.0. Effect of (a) various Ma numbers for
Re = 200 and (b) various Re numbers for Ma = 0.1 on the performance of the MRSAAB and MRAB
time steppers. Speedups are computed relative to the LSERK time stepping scheme.
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Figure 11: Multirate speedups for the flow around a wall mounted square cylinder test problem on the
domain [−5, 5] × [0, 5] with a PML region of width w = 1.0. Normalized runtimes for (top) Ma = 0.05
and Re = 1000 (bottom) Ma = 0.2 and Re = 200. Runtimes are normalized according to the runtime
of the LSERK method at N = 6.

layer (PML) formulation for the resulting nonlinear flow equations. The equations are
advanced in time with developed semi-analytic and multirate schemes. Numerical tests
show that the proposed M-PML formulation exponentially damps the difference between
the nonlinear fluctuation and a prescribed mean flow. Because of the non-linearity in the
equations, the absorbing layers are not formally perfectly matched with the governing
equations, in contrast to their linear counterparts. However, numerical examples give
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satisfactory results even in the severely truncated domains. We tested the performance
of developed semi-analytic time integration in terms of accuracy and efficiency and com-
pared the performance with implicit-explicit and fully explicit Runge-Kutta methods.
Numerical result indicate that the performance of the multirate semi-analytic method
combined with the Galerkin-Boltzmann equations is very promising for modeling physi-
cally relevant flow problems requiring spatially and temporally varying scales.
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Appendix: Derivation of Couette Flow for Galerkin-Boltzmann Equations

To derive an analogous Couette flow solution for the Galerkin-Boltzmann equation,
we start from a shear flow assumption i.e., we assume that that q = q(y, t). Simplifying
Equation 2, we obtain

∂q̃

∂t
= Ay

∂q̃

∂y
+N (q).

We further assume uniform density, namely q1 = 1, and horizontal flow q3 = q6 = 0 to
obtain the following system,

∂q2

∂t
= −

√
RT

∂q4

∂y
,

∂q4

∂t
= −

√
RT

∂q2

∂y
− 1

τ
q4,

∂q5

∂t
= −1

τ

(
q5 −

q2
2√
2

)
.

We are interested in the y-velocity profiles of this shear flow and therefore focus our
attention on obtaining a q2 which solves this system. To begin, we note that the first two
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equations correspond to the telegrapher’s equation. We eliminate q4 by differentiating
the first equation in respect to t. Substituting the second equation, we obtain

∂2q2

∂t2
= RT

∂2q2

∂y2
− 1

τ

∂q2

∂t
.

This equation admits the trivial solutions q2 = 1 and q2 = y which are sufficient to
satisfy the shear boundary conditions u|y=0 = 0 and u|y=L = U . We find additional
general solutions to this equation by finding solutions that satisfy homogeneous boundary
conditions. These solutions can be found by assuming the separable form

qn2 = sin (λny) eσnt,

where λn = nπ
L and σn satisfies σ2

n = −RTλ2
n − 1

τ σn. Hence,

σn = − 1

2τ
±
√

1

4τ2
−RTλ2

n,

= − 1

2τ
± 1

2τ

√
1− 4τ2RTλ2

n.

Assuming that τ2RTλ2
n is small, we can use a small parameter estimate to write

σn = − 1

2τ
±
(

1

2τ
− τRTλ2

n +O(τ3R2T 2λ4
n)

)
.

Therefore, to select the branch that best approximates the incompressible Navier-Stokes
shear mode, we take the positive branch, i.e.,

σn = − 1

2τ
+

1

2τ

√
1− 4RTλ2

nτ
2.

so that

σn = −τRTλ2
n +O(τ3R2T 2λ4

n),

= −νλ2
n +O

(
ν3

a2
λ4
n

)
,

by the definition of fluid viscosity ν and the speed of sound a. We note that the relative
discrepancy between the incompressible Navier-Stokes and Galerkin-Boltzmann shear
mode is

εn :=
σn + νλ2

n

νλ2
n

= O
(
ν2

a2
λ2
n

)
.

Thus, we know a priori that the decay rates of linear shear for these flow models diverge
for sufficiently high-order modes. On the other hand, the decay rates will agree well for
shear flows with low viscosity, large Mach number, and low mode numbers.

Using the equation for q4, we find that each homogeneous solution qn2 has an associated
solution qn4 component,

qn4 =
σn√
RTλn

cos(λny)eσnt.
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Using the homogeneous and non-homogeneous solutions for q2, we write the exact so-
lution of the horizontal momentum of the Galerkin-Boltzmann shear flow as an expan-
sion, which satisfies the initial condition q2(y, 0) = 0 and the shear boundary conditions
q2(0, t) = 0 and q2(L, t) = U√

RT
as follows

q2(y, t) =
U√
RTL

y +
1√
RT

∞∑
n=1

2(−1)nU

λnL
sin(λny)eσnt. (.1)

The associated solution for q4 is written as

q4(y, t) =
1

RT

∞∑
n=1

2(−1)nUσn
λ2
nL

cos(λny)eσnt. (.2)

Finally, once we return to the equation for q5, we find that q5 satisfies

∂q5

∂t
= −1

τ
q5 +

1√
2τ
q2
2 ,

= −1

τ
q5 +

1√
2τ

(
U√
RTL

y +
1√
RT

∞∑
n=1

2(−1)nU

λnL
sin(λny)eσnt

)2

.

This equation is solved using the homogeneous boundary conditions q5(0, t) = 0 and

q5(L, t) = U2
√

2RT
to obtain

q5(y, t) =
U2

√
2RTL2

y2 +

∞∑
n=0

cn sin(λny)e−
t
τ

+
1√

2RT

∞∑
n=1

2(−1)nU2

λnL2(σnτ + 1)
sin(λny)eσnt

+
1√

2RT

∞∑
n=1

∞∑
m=1

4(−1)nU2

λnλmL2(σnτ + σmτ + 1)
sin(λny) sin(λmy)e(σn+σm)t,

where cn are coefficients chosen to satisfy the initial condition for q5.
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