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ABSTRACT
In real-time control of electric grids using multiple software agents,
the control performance depends on (1) the proper functioning
of the software agents, i.e., absence of software faults, and (2) the
behavior of software agents in the presence of non-ideal communi-
cation networks such as message losses and delays. To evaluate the
control performance of such systems, we propose T-RECS, a vir-
tual commissioning tool. T-RECS enables testing the performance
of software-based control in-silico (before the actual deployment
of software agents in the grid), saving both time and money. De-
velopers can run the binaries of their software agents in T-RECS
where these binaries exchange real messages by using an emulated
network and simulated models of the electric grid and resources.
Consequently, the control of an entire microgrid can be tested on a
standard computer. In this paper, we �rst describe the design and
the open-source implementation of T-RECS. Second, we measure
its CPU and memory usage and show that our implementation can
accommodate eight software agents on a standard laptop computer.
Third, we validate the simulated grid used in T-RECS by replaying
data collected from experiments performed in a real low-voltage
microgrid. We �nd that the average error is 0.037% and the 99th
percentile of the error is less than 0.1%. Finally, we present some
typical use-cases of T-RECS such as performance evaluation (1) un-
der extreme grid conditions and (2) with non-ideal communication
networks. The former, i.e., performance evaluation under extreme
grid conditions, is di�cult to test in the �eld due to safety concerns.

CCS CONCEPTS
• Networks→ Network performance analysis; • Computing
methodologies → Real-time simulation; • Software and its
engineering → Empirical software validation;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
e-Energy ’18, June 12–15, 2018, Karlsruhe, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5767-8/18/06. . . $15.00
https://doi.org/10.1145/3208903.3208928

KEYWORDS
virtual commissioning, real-time systems, software-based control,
electric grids, network delay, software crash
ACM Reference Format:
Jagdish Prasad Achara, Maaz Mohiuddin, Wajeb Saab, Roman Rudnik, Jean-
Yves Le Boudec, and Lorenzo Reyes-Chamorro. 2018. T-RECS: A Virtual
Commissioning Tool for Software-Based Control of Electric Grids – Design,
Validation, and Operation. In e-Energy ’18: The Nineth International Confer-
ence on Future Energy Systems, June 12–15, 2018, Karlsruhe, Germany. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3208903.3208928

1 INTRODUCTION
In this paper, we consider real-time software-based systems for
control of electric grids. Such systems have the core of their control
logic in software that is executed by multiple agents [1–4]. These
agents are typically distributed all over the grid and communicate
using a communication network. They usually either control other
lower-level agents or directly control di�erent resources such as a
battery, a super-capacitor, or an array of solar panels. The rate of
control varies depending on the system but for real-time systems,
such as [1], it is typically sub-second.

1.1 Problem
As developers of these systems need to test their software agents
before the actual deployment in the �eld, various testbeds [5–11] are
proposed in the literature. For real-time software-based systems,
the testing mainly consists of (1) the correct implementation of
their distributed control logic and (2) the reliable communication
among software agents. We �nd, however, that these testbeds are
not appropriate for such testing.

First, current testbeds cannot test the �nal executables of soft-
ware agents that are going to be deployed in the �eld. Instead
these testbeds require either modeling of the control logic or the
development of the control system in their testbed. Second, for
simulating the electric grid, these testbeds use physical equipments
or hardware-in-the-loop, e.g., OPAL-RT eMEGAsim simulator or
real-time digital simulator. This incurs a high cost and imposes
serious limitations on the ease of use of such testbeds. Moreover,
physical equipment cannot be used to study the grid in extreme
conditions as this could cause potential damage.

To summarize, the main requirements of such a testbed are: (1)
ability to use existing software agents with minimal modi�cations,
(2) avoid use of physical equipment, (3) allow for inducing non-
ideal communication and software. A testbed that satis�es these
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properties can be used by developers of software agents to design,
test, and commission the agents before actual deployment in the
�eld. As such tests can be performed entirely in-silico, we term
such a testbed as a virtual commissioning tool.

1.2 Proposed Virtual Commissioning Tool
We propose a virtual commissioning tool, called T-RECS, for de-
velopers of multi-agent software-based control of electric grids.
A preliminary version of T-RECS was presented in short in [12].
The design of T-RECS is divided into four layers: (1) physical layer,
(2) sensing and actuation layer, (3) communication layer and (4)
control layer.

The �rst and second layers in T-RECS are simulated in software.
The physical grid in the �rst layer is modeled using the three-phase
nodal-admittance matrix (Y-matrix) representation. The evolution
of the grid is tracked through complex voltage phasors at each bus.
These phasors are obtained by performing a load �ow whenever
there is a change in the grid state. Electric resources in the �rst
layer, such as battery, load, and photo-voltaic (PV) panels, are also
simulated using state-of-the-art models, e.g., a battery model pro-
posed in [13]. Sensors at the second layer are modeled in such a
way that they can read the state of the grid from the simulated grid
in layer one and then, can send this state to a software agent.

The third layer, i.e., communication network layer, is emulated
using the Mininet framework [14]. This enables real packets to
be exchanged between software agents, and we can easily study
the e�ect of communication bandwidth, losses, and delays on the
control performance. For the fourth layer, T-RECS provides users
with virtual containers where software agents can be run without
any modi�cations. Therefore, using T-RECS, we can verify whether
the �nal executables of software agents are free from software bugs
and if they correctly implement the control logic. The use of virtual
containers also gives us the possibility to simulate the crashes of
agents or other software-related issues, hence enables developers
to quickly investigate their e�ect on the control performance.

As described in Section 3, these four layers form the basic archi-
tecture of almost all multi-agent software-based control systems for
electric grids. As T-RECS applies to all control systems that adhere
to this architecture, it can be used seamlessly with a wide-range of
control systems [1–4].

Besides satisfying the requirements of a virtual commissioning
tool listed earlier, T-RECS is designed to support real-time control
systems. This entails fast updates of the simulated physical layer to
re�ect the changes in the grid and the electric resources, due to sub-
second rate of control. This is possible due to our implementation
of a fast, recent algorithm for solving the load-�ow problem [15].

1.3 Contributions
Our main contribution is the design and implementation of T-RECS,
the �rst virtual-commissioning tool for software-based control of
electric grids. T-RECS is implemented entirely in software and there-
fore reduces the barrier to study software-based control of electric
grids. We also make our implementation publicly available1. It is
worth noting that the contribution of this paper is the integration
of several existing concepts such as Mininet [14], fast load-�ow
1https://smartgrid.ep�.ch/?q=t-recs

[15], and resource models, to obtain a usable and high-performing
tool. This is particularly challenging in terms of interoperability
between layers due to the heterogeneity of each layer. The detailed
contributions are below:

(1) We identify the various layers of a multi-agent software-
based control system. Not only does this enable us to design
T-RECS and make it generic to support a wide-range of
control systems for electric grids, but also this paves way for
users of control systems from other domains to design their
own virtual commissioning tools.

(2) We present the detailed design of T-RECS and make our
Python-based open-source implementation publicly avail-
able. To the best of our knowledge, T-RECS is the �rst virtual
commissioning tool that enables studying the performance of
real-time software-based control systems, entirely in-silico.

(3) We implement a fast load-�ow algorithm [15] and validate
its results by comparing with measurements from a real
low-voltage microgrid. We �nd that average error is 0.037%
and the 99th percentile of the error is less than 0.1%. This
successful validation con�rms that T-RECS can be used to
replicate results of experiments in real electric grids, thus
supporting reproducible research.

(4) We evaluate the CPU and memory usage of T-RECS, in or-
der to show that it can easily support control systems with
multiple software-agents in a standard computer.

(5) We present various use-case scenarios where T-RECS can
show its value. We study the behavior of control software
in extreme conditions of a grid, which is di�cult and costly
to perform in a real grid. Also, we study the e�ects of non-
ideal communication networks on the control performance.
Through these studies, we show that T-RECS can be used
throughout the development of software agents, i.e., their
design, test, and commission.

The structure of this paper is as follows. In Section 2, we compare
T-RECS with the state of the art. We detail the design of T-RECS
in Section 3. In Section 4, we present results from validation of
T-RECS’ grid model. In Section 5, we evaluate the performance of
T-RECS. In Section 6, we present two use-case scenarios of T-RECS,
taking COMMELEC [1] control system as an example. In Section 7,
we conclude our work and gives future perspectives.

2 RELATEDWORK
Table 1 presents a comparative summary of requiremetnts (speci�ed
in Section 1) that are satis�ed by proposed testbed T-RECS and other
existing testbeds. We see that none of the existing testbed satis�ed
all the three requirements of a testbed for software-based control
of electric grids. Below we individually disucss the advantages and
limitations of each testbed, and compare it with T-RECS.

A testbed for decentralized control of active distribution net-
works is proposed in [7]. It consists of three main layers. The �rst
layer performs the real-time simulation of physical power system
elements in the OPAL-RT eMEGAsim simulator. The second layer
requires the development of the multi-agent control system in the
Java Agent Development Framework (JADE). Finally, the third layer
models and simulates the communication network with OPNET
Modeler. T-RECS also has these three layers, but they are managed
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Table 1: Comparative summary of requirements (speci�ed
in Section 1) satis�ed by T-RECS and other existing testbeds
for software-based control of electric grids.

Testbed Allows for
inducing
non-ideal

communication
and software?

Able to use
existing software

agents with
minimal

modi�cations?

Avoids the use of
physical

equipments?

[5] 7 3 7

[6] 7 3 7

[7, 8] 7 7 7

[9] 7 3 3

[10, 11] 7 7 3

T-RECS 3 3 3

di�erently. The �rst layer, i.e., simulation of physical power system
elements, is done in T-RECS using software models instead of using
the OPAL-RT eMEGAsim simulator. This has both an advantage
and a drawback. The advantage is that T-RECS is inexpensive, scal-
able, portable, and easily distributable as it does not require the
physical equipment (OPAL-RT eMEGAsim simulator). The draw-
back is that T-RECS cannot study the e�ect of system transients or
switching harmonics on the control software. This is because, in
T-RECS, the software models of both the physical grid and electric
resources aremodeled in the phasor domain. The second layer in [7],
i.e., running multi-agent control software, is managed in T-RECS
by using software containers provided by the Mininet framework.
These containers can directly run existing or developed executa-
bles of software agents hence, as opposed to [7], T-RECS permits
testing these �nal agent executables. Finally, the third layer, i.e.,
communication network layer, is emulated in the software using
the Mininet framework. As the emulation of communication net-
works exchanges real packets, T-RECS enables easy and accurate
study of the e�ects of di�erent network bandwidths, losses, and
delays in the communication network on the control performance.

Another testbed is proposed in [9]. Like T-RECS, this testbed is
completely software-de�ned and does not involve physical equip-
ment. However, it is not possible to test the e�ects of network/ com-
munication technologies on the performance of software agents.
This is because the communication network is neither simulated
nor emulated. As today’s distributed software-based control sys-
tems heavily rely on communication among di�erent agents, the
communication network is the main source of unexpected behavior
of such agents, and not being able to measure it is a limitation of this
testbed. Furthermore, as opposed to T-RECS, this testbed does not
provide users with software containers, hence executables of multi-
ple software agents cannot be directly run and tested with it. For
example, in [9], the authors implemented their energy management
software in one of the components of the testbed itself.

Anothermulti-agent testbed for power systems is proposed in [5].
This testbed is composed of a power-system simulator, computa-
tional platforms, and a data-communication infrastructure. As the
testbed uses real hardware (computation platforms and commu-
nication infrastructure), it is neither inexpensive, portable, easily

deployable, nor scalable. According to the authors of [5], these limi-
tations can be removed if the computation platforms can somehow
be virtualized or be placed in software containers and if the commu-
nications infrastructure can be emulated in the software. However,
as noted in Section 3, this exercise poses several challenges due
to the heterogeneity of the di�erent components. In T-RECS, we
divided the control framework into four manageable layers. This
allows us to emulate the network infrastructure (as network layer)
and run di�erent agents in multiple software containers (as control
layer). Thus, we overcome the limitations of [5].

A real-time testbed for operation, control and cyber-security of
power systems is proposed in [6]. It targets the testing of low-level
power-system control mechanisms, such as system monitoring
and fault detection. However, as opposed to T-RECS, this testbed
is not software-de�ned and consists of many hardware devices
such as the real-time digital simulator, the programmable logic
controller, NI-PXI controller, and the Ethernet network. Although
hardware-in-the-loop might have some bene�ts, it is not necessary
if we target a testbed for the evaluation of e�ects of software and
communication non-idealities on the control performance using
software agents. This is the reason T-RECS is designed completely
in software and has all the bene�ts of a pure software solution.
Additionally, we �nd that these hardware devices, used in [6], run
modi�ed software (as compared to what runs in the real grid) or run
software speci�cally developed for testbed purposes. This means
that the testbed in [6] cannot test and validate the real software
that is going to be deployed in the grid. On the contrary, T-RECS
runs unmodi�ed executables of software agents, hence a T-RECS
user can easily �gure out the runtime behavior and bugs of these
software agents. Moreover, T-RECS support reproducible research.

In [8], the authors developed an agent-based testbed simulator
for power grid modeling and control. They model the agents of the
grid, instead of running the real agents in the testbed. As modeling
of software agents puts an additional burden on the testbed user and
can test only the correctness of the logic, it is not enough to assess
the correctness of software agents. The proposed testbed is hybrid:
a part of the testbed is in the software, but other parts require the
presence of some minimal hardware and actual I/O signals. Ac-
cording to the authors, the hardware-in-the-loop is a complicated
architecture and is therefore, not well suited for testing and validat-
ing the software-based multi-agent control systems that extensively
rely on computational and communication technologies.

To investigate the e�ects of cyber-contingency on power system
operations, a co-simulation model, based on information �ow, is
proposed in [10]. The authors model the network contingencies at a
low level, e.g., delayed, disordered, dropped, and distorted informa-
tion �ows. The authors claim that these low-level parameters are
easier to model than high-level network parameters such as DoS,
CLO, and MITM. In contrast to this work, where they simulate the
communication network with these low-level parameters, T-RECS
emulates the communication network by using Mininet, which
enables us to study the e�ects of di�erent network bandwidths,
losses, and delays corresponding to multiple real-world scenar-
ios. As message exchanges are emulated in T-RECS, it accurately
captures the real-time properties of the control protocol. Another
important distinction of this work with T-RECS is that, in [10],
the decision-making layer, i.e., software agents, is also simulated,
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Figure 1: Architecture of a real-time software-based control
system for electric grids

whereas T-RECS can run the real software agents without requiring
the development of models of software agents.

To run software agents, Mosaik [11] uses process-based software
containers, based on SimPy (a discrete event simulation platform).
However, it has two drawbacks. First, it does not model or emu-
late the communication network between di�erent agents, thus it
cannot be used to study the e�ect of non-ideal communication net-
works on the software-based control systems. Second, the control
agents need to be re-written using Mosaik API, whereas T-RECS
does not su�er from these limitations.

Next we discuss our choices for selecting di�erent software so-
lutions for T-RECS layers. To simulate the physical grid in the
phasor domain, we use the three-phase load-�ow algorithm pro-
posed in [15]. We do not use the Newton-Raphson (NR) method for
our load-�ow computations, because the computation time of the
chosen algorithm is faster than the load-�ow implementation using
NR method (see Section 5). With regard to modeling of electric
resources, we use existing state-of-the-art models, e.g., the battery
model proposed in [13]. Moreover, T-RECS is designed such that
users can plug-in new models of electric resources as/if needed.

Apart from the testbeds designed for control of electric systems,
there exists a vast amount of literature on modeling or simulating
the electric resources and grid. Authors in [16–18] propose models
for the most common resources such as loads, converters, batteries,
solar panels, and electric vehicles, whereas the grid is simulated
in phasor domain in [16, 17, 19]. With regard to modeling electric
resources, T-RECS provides users with some state-of-the-art mod-
els but lets users plug in new models as needed. To simulate the
electric grid in the phasor domain, we do not use PyPower [19]
as it supports only single-phase load �ow. Also, the grid model
provided by GridLAB-D [16] is not appropriate because (1) it ne-
glects phase-to-ground coupling capacitance, (2) it cannot take as
input the new power setpoint at sub-second level on a given node,
and (3) the input to the grid model are physical parameters of lines
such as type and length of wires instead of a Y-matrix. In T-RECS,
to simulate the grid, we use the three-phase load �ow algorithm
proposed in [15].

3 T-RECS DESIGN
Figure 1 shows the architecture of a typical real-time software-
based control system for electric grids. The grid in this example

Physical 
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layer 

Sensing and 
Actuator layer 

Control layer Software Agents 

measurements 
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Sensors	 Actuators	

Routers  
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setpoints 

control 
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A1 A0 

A2 A3 

B1 B2 B3 
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Figure 2: Layers in an real-time software-based control sys-
tem and their respective elements.

comprises 4 buses, B0 � B3. Bus B0 is the slack bus, and buses B1,
B2 and B3 have a generator (a producing resource), a battery (a
prosuming resource) and load (a consuming resource), respectively.
The control of the grid and the resources is performed by software
agents A0 �A3. Software agent A0 senses the state of the grid (volt-
age/power at the buses, current at each line) through sensors such
as voltage/current sensors or phasor measurement units (PMUs).
Software agents A1 �A3 read the state of the respective resources,
namely, generator, battery and load, through a sensor interface
provided by the resource. For example, agent A3 reads the internal
state of a load, such as current temperature (for a thermal load),
through the on-board thermostat installed on the load. The sensed
quantities are exchanged as measurements among the software
agents.

In order to control the resources, the software agents perform
computations and send out setpoints, thereby keeping the grid in
the desired state. The setpoints are implemented by the actuator
interfaces at the resources. For example, a setpoint for changing
the power injected by a battery is implemented by the converter
on the battery, i.e., the actuator. In Figure 1, the software agents
A1 � A3 control the respective resources by sending setpoints to
them, whereas A0 sends setpoints only to other software agents.

Taking a �rst step towards translating such an control system in
silico, we divide the various components into layers as shown in
Figure 2. The various layers are:

(1) Physical layer— consists of the electric grid and the resources
(load, battery, generators).

(2) Sensing and actuation layer — consists of sensors that read
the state of the physical layer and of actuators that alter the
state of the physical layer.

(3) Network layer — represents the communication infrastruc-
ture among software agents, sensors, and actuators.

(4) Control layer — comprises the software agents (A0�A4) that
use themeasurements from sensors to perform computations
and output setpoints for the actuators.

Figure 3 shows the overview of T-RECS design. The physical
layer, and the sensing and actuation layer are simulated using state-
of-the-art models of the grid and electric resources, respectively.
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Figure 3: Design of T-RECS.

To this end, T-RECS requires the grid topology, the resource types
and their parameters as input. The details of the design of physical
layer and actuation layer are described in Sections 3.1 and 3.2,
respectively.

The network layer is emulated inMininet [14], which uses virtual
switches and hosts to simulate the switches and routers in the
network. For this layer, T-RECS takes as input the topology of the
communication network, the bandwidths, the losses, and delays of
di�erent links. The detailed design of the network layer is presented
in Section 3.3.

The control layer is built through unmodi�ed software agents
that are run in Linux containers [20] provided by Mininet. The
detailed design of the control layer is presented in Section 3.4.

In line with the requirements of a virtual commissioning tool
listed in Section 1, the layers of T-RECS are built in software, thus
making it feasible to study all elements of real-time control of the
grid within a computer.

3.1 Physical Layer
The two components of the physical layer are the grid, and the
resources.

3.1.1 Grid. The grid is represented as a set of complex voltage
phasors at each bus. To this end, the grid is modeled by its nodal-
admittance matrix. We use a three-phase model in order to be able
to simulate distribution networks that are often unbalanced. For
example, the grid model for the control system in Figure 1 will take
as input the grid topology (connection between the buses and the
line parameters) and computes the nodal-admittance matrix. The
frequency of the grid is taken as an input and can change during
the execution, e.g., could be dictated by the slack bus (B0) or the
generator on bus B1.

For each change of voltage or power at a bus, the grid model
performs a three-phase load �ow to obtain the voltage at all the
buses and the current in all the lines of the grid. As the speed
of the load-�ow computation dictates the responsiveness of the
grid-model, we chose to implement the method proposed in [15]; it
boasts a signi�cant decrease in computation timewhen compared to

classic Newton-Raphson method. In Section 5.2, we study how the
computation time of the load-�ow evaluation varies with di�erent
sizes of the grid.

As the load-�ow analysis is a light-weight representation of the
grid, it provides the steady-state information of the grid without
considering system transient processes. We make this trade-o�
in order to be able to simulate the grid in-silico. In Section 4, we
compare results from the load-�ow analysis of the grid-model to
those obtained from a real grid and show that the average error is
0.037% and the 99th percentile of the error is less than 0.1%.

3.1.2 Resources. The resources in T-RECS are simulated using
existing models of electrical resources. Broadly, there are two types
of resources, controllable and uncontrollable. For example, in Figure
1, the battery is a controllable resource, as its output power can be
modulated through setpoints, whereas the load could be an example
of an uncontrollable resource (assuming it cannot be curtailed).

In our open-source implementation, we make four resource mod-
els available: battery, uncontrollable photo-voltaic (PV) panel, un-
controllable load, and a controllable �ex-house. The battery is mod-
eled using the two-time constant model described in [13]. The
uncontrollable load and PV source are simulated by replaying a
time-stamped trace of the power injections. The �ex-house model
captures the heat dynamics of buildings and is used to simulate
controllable thermal loads, as described in [21]. The change in the
output of a resource is re�ected as a change in the state of the bus
on which the resource is placed.

The open-source implementation of T-RECS enables us an addi-
tion of new resource models. Each resource model performs three
tasks. First, the resource periodically updates its state according to
the resource dynamics. For example, the battery updates its state-of-
charge (SoC) based on the time-elapsed and output power. Second,
when it receives a request from a sensor, it responds with its in-
ternal state. Lastly, when it receives a request from an actuator, it
changes the output power and the power at the corresponding bus
in the grid model.

3.2 Sensing and Actuation Layer
The sensors and actuators are simulated as application program-
ming interfaces (APIs) that act as an interface between the physical
layer and the control layer. There are two types of APIs, the grid
API and the resource API. The grid API provides methods to get
the state of the grid and set the power at each bus (except slack bus)
in the grid. The state of the grid consists of voltage phasors and
active/reactive power at each bus, and line currents. The resource
API provides functions for reading and changing the state of the
resource model, such as power injected by a battery. These APIs
can be used to create speci�c sensors and actuators, as required by
the user’s con�guration.

In the current release, T-RECS provides an implementation a
simulator of a real-time state estimator that periodically calls the
grid API to get the state of the grid and then, periodically sends the
state of the grid in a given format to a list of agents speci�ed by
the user. We also have implementation of an actuator that alters
the state of the battery resource used in the experiments in Section
4 and Section 6.
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In Figure 1, the sensor that sends data to software agent A0 is
an example of a use case of such a sensor. The streamed messages
are sent as real packets via the network layer.

3.3 Network Layer
The network layer in T-RECS is emulated using virtual switches,
routers and hosts provided by Mininet [14]. The main advantages
of using emulated network as opposed to simulated network done
by other works are: (1) real messages are exchanged in Mininet
in contrast with discrete-event simulation of messages, (2) e�ect
of bandwidth-limitations can be accurately studied because real
switches are emulated, and (3) newly developed network protocols
can be easily studied without any modi�cation to the protocol
implementation.

The switches are realized by Open vSwitch [22], a programmable
multi-layer switch that can be used to accurately emulate practically
any L2 and/or L3 network topology. It can also be interfaced with
a software-de�ned networking controller to emulate a large-scale
managed network used in sub-station automation networks.

Using the rich set of tools from the Linux tra�c-control suite
tc-netem [23], we impose bandwidth and delay restrictions on
the links to replicate a real-life network topology. Additionally, T-
RECS enables us to use message-loss pro�les provided by tc-netem
and by queuing disciplines to capture the real-life network more
accurately. This facilitates studying the performance of the control
system in non-ideal network conditions, a requirement of such a
virtual commissioning tool.

The end-hosts of the network are Linux containers that (provided
by Mininet) are used to run the software agents in the control layer.
The network topology and the link con�gurations are taken as an
input.

3.4 Control Layer
The control layer is identical to the real world. T-RECS takes the
executables of the software agents as input and executes them in
the software containers provided by Mininet. Just as in an actual
deployment, the unmodi�ed executables receive messages from
sensors, perform computations, and send setpoints to actuators. For
the example of Figure 1, the control layer is realized by executing
software agents A0 � A4, one in each host, with each one receiv-
ing real measurements from sensors and sending real setpoints to
actuators, just as they would run in the �eld. In this way, T-RECS
recreates an environment in which the software agents can be ex-
ecuted and tested without modifying their code, as envisioned in
our requirements for such a tool.

Although our current implementation runs on a single computer,
it is straight-forward to extend to run on a cluster of many comput-
ers for very high-scalability. A single computer in a cluster could
host several software agents, and the communication links between
them can be modi�ed to re�ect the real-life network using the same
set of tools from the Linux tra�c-control suite.

Note that, although the focus of this paper is only control sys-
tems for electric grids, the layering scheme described above can be
applied to other domains. Consider the example of a self-driving
car [24]. The physical layer comprises the dynamics of the car and
the dynamics of the environment it runs in, both of which are

Figure 4: Test setup for validation. All elements used in the
experiments are shown in solid points.

governed by laws of classic mechanics. The sensing and actuation
layer sensors include the speedometer for the current speed, and
the actuator includes a PID controller that maintains the speed at a
given setpoint. The control layer includes the software agents that
detect objects, perform obstacle-avoidance, navigation, etc. In fact,
the same design philosophy used in T-RECS can be used to design
low-cost, in-silico, virtual-commissioning systems for multi-agent
software-based control systems in other domains.

4 VALIDATION
In this section, we validate the T-RECS grid-model described in
Section 3.1.1. Recall that the T-RECS grid model performs load-�ow
computation and updates the state of the grid whenever there is
a power injection or absorption at a bus. Thus, this section aims
to quantify the error committed by the load-�ow solver of T-RECS
grid model as compared to the measured state of the grid.

Figure 4 shows the topology of DESL-LCA2 microgrid at EPFL.
This microgrid is used in the experiments described below. It con-
sists of 13 buses, labeled B01-B13, and reproduces, in real scale, the
topology de�ned by the CigrÃľ Task Force C6.04.02. The resources
used in our experiments are shown in solid points in Figure 4 and
consists of a 24 kW controllable load on bus B03, a 20 kW, 25 kWh
controllable battery on bus B05, and an uncontrollable PV generator
of 13 kWp on bus B09. The microgrid is monitored in real-time us-
ing phasor measurement units (PMUs), a phasor data concentrator
(PDC), and a real-time state estimator (RTSE) [25]. From RTSE, we
obtain the timestamped traces of voltage and current phasors at
each bus, with one measurement every 20 ms.

The traces are collected during experimental validation of a real-
time control framework, called COMMELEC [26]. COMMELEC is
a real-time framework that controls the given resources in real-
time using explicit power setpoints and software agents [1]. The
software agents for the resources, called as resource agents, are
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Figure 5: Voltage at the battery bus (B05) obtained frommea-
surements and from grid-model.

co-located with the respective resources and communicate with a
centrally located grid agent. The grid agent receives the state of
di�erent resrouces from their respective resource agents and sends
them setpoints in order to implement a given policy.

We validate the T-RECS grid-model under two di�erent scenarios,
with two separate policies from [26]: grid-security and real-time
dispatchability. In grid-security, the grid agent maintains the grid
in a feasible state, i.e., respects the ampacity limits of all the lines,
voltage limits of all the buses, and the constraints of all the resources,
in a grid with uncertainty in power prosumption due to the load
and the PV. In real-time dispatchability, the grid agent tracks an
external dispatch signal while maintaining the grid in a feasible
state.

In order to quantify the error between the measurements from
the experiments and the output of the load-�ow solver in T-RECS,
we use measured voltage and power traces from the two exper-
iments as follows. At every 20 ms timestamp, we use the power
injections at all the buses and give them as input to the grid-model
along with the voltage magnitude at the slack bus as input to the
grid-model. The grid-model performs the load-�ow computation
and returns the voltage at each bus. At each bus, we compare this
voltage against the voltage obtained from the measurement traces
at the same timestamp.

For the two scenarios mentioned earlier, Figure 5 shows the volt-
age at the battery bus (B05) obtained from the measurements and
from the grid model during a three-minute window. We see that
the voltage from the grid model closely follows the measurements.
However, we note that the error is relatively higher in the second
scenario of real-time dispatchability. This is because the instan-
taneous grid parameters (resistance, reactance, and susceptance

Figure 6: Empirical CDF of the relative error in voltage at all
the buses.

Figure 7: CPU and memory usage of T-RECS, on a laptop
with 3.7 GB RAM and a 2.67GHz Intel Core i7 processor, as
a function of number of software agents. CPU usage in per-
centage is cumulative of all four CPUs of the i7 processor.

of lines) are a function of temperature and frequency of line. The
voltage error depends on the di�erence between the instantaneous
grid parameters of real grid and the static grid parameters used
by T-RECS. The impact of this di�erence in parameters is higher
for higher voltage amplitudes. This error is unavoidable because it
is hard to estimate the instantaneous grid parameters, but we see
below that it is < 0.1%.

Figure 6 shows the empirical cumulative-distribution function
(CDF) of the error between the voltage measured by PMUs at each
bus and the voltage obtained by load-�ow from the grid-model. The
CDF is computed using the entire data from the experiments that
amounts to 750,000 data points. We see that the average value of
the relative error is 0.037% and its value at 99%-ile is 0.093%. Thus,
we conclude that error committed by the grid-model is negligible.

5 PERFORMANCE EVALUATION
In this section, we do two performance studies of our T-RECS imple-
mentation. First, in Section 5.1, we evaluate the CPU and memory
usage of T-RECS as a function of number of software agents in
the control system. The goal of this performance evaluation is to
show that T-RECS can easily accommodate several software agents
on a standard laptop computer. Then, in Section 5.2, we study the
execution time of the load-�ow computations by the grid-model
for three benchmark grids of di�erent sizes. The aim of this study
is to show that due to its ability to quickly update the state of the
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grid, T-RECS is suitable for real-time control systems for electric
grids that have sub-second rate of control.

All experiments are performed on a Lenovo T400 laptop with 3.7
GB RAM and 2.67GHz Intel Core i7 processor. The operating system
is 64-bit Ubuntu 16.04 LTS and the Intel virtualization technology
is enabled.

5.1 CPU and Memory Usage
We use the COMMELEC control system with the CIGRÉ benchmark
low-voltage microgrid with 13 buses [27], same as used in Section
4. Recall from Section 4, that the COMMELEC control system has
as software agents, a grid agent (GA) that control one or more
resource agent (RA). Moreover, each resource agent is attached to
one controlled resource. For example, if COMMELEC controls two
resources, then it has to run three software agents: one GA and two
RAs corresponding to the two resources.

To better interpret our performance results, it is important to
highlight that the COMMELEC control system is run at the pace
of 100 ms, i.e., RAs send state of their controlled resources every
100 ms to the GA and GA sends power setpoints to RAs every
100 ms. This has two implications for T-RECS: (1) there is a heavy
load of messages to emulate for T-RECS communication layer, and
(2) frequent computations of load �ow in T-RECS grid module.
Additionally, as COMMELEC GA runs at 100 ms pace and requires
the state of the grid every 20 ms as input, T-RECS sensor module
sends this information to GA every 20 ms.

We run multiple experiments with di�erent numbers of COMM-
ELEC software agents (and corresponding controllable resources)
and record the CPU and memory usage of T-RECS in each case.
The CPU usage reported below is cumulative of all four CPUs of
the i7 processor and is solely of T-RECS processes.

When T-RECS is not running, the CPU usage is 1.5% and the
memory usage is 563 MB. Fig. 7 shows how the CPU and memory
usage scales with the number of software agents or controllable
resources. We �nd that the CPU usage of T-RECS starts o� at 44.1%
in case of 2 software agents and increases linearly with a rate of 6%
per additional software agent or controllable resource. Moreover,
the memory footprint of T-RECS is close to 200 MB with 2 software
agents and increases at a rate of around 55 MB per additional
resource or software agent.

The initial high CPU usage can be explained by the start of all
the T-RECS’s components (such as load-�ow engine in the grid-
module, the sensor module, the network virtualization used by
Mininet, etc.). Also, the increase in the CPU usage with the number
of software agents is linear, as expected. This is because, with an
additional software agent, the burden of T-RECS increases linearly
in the following three directions. First, it needs to run one additional
resource model of the resource managed by the new software agent.
Second, the number of load-�ow computations in the grid engine
increases linearly with the number of resource model because the
number of updates send to the grid module increases by one. Finally,
the communication network emulation layer needs to emulate a
�xed number of more packets.

We see that, while running in a modest laptop, T-RECS can
support up to eight software agents (one COMMELEC GA and 7
RAs). To put this in perspective, a typical microgrid is controlled

Benchmark Grid T-RECS Load-Flow [15] Newton-Raphson
CIGRÉ 4-bus 0.75 ± 0.02 23.28 ± 0.39
CIGRÉ 13-bus 1.13 ± 0.02 232.19 ± 1.05
CIGRÉ 34-bus 7.42 ± 0.14 1594.26 ± 5.29

Table 2: Average execution times (in ms) of the the load-
�ow implementation used in T-RECS [15] and the Newton-
Raphson method for three di�erent CIGRÉ benchmark
grids [28] measured at 95% con�dence level.

with one GA and about �ve RAs. Hence, we conclude that a devel-
oper of software-based control systems can easily use T-RECS in a
general-purpose desktop/laptop for virtual commissioning.

5.2 Load-Flow Computation
Recall from Section 3.1.1, that every time the power injected or con-
sumed by a resource changes, a load-�ow computation is triggered
by the grid-model to re�ect the e�ect of the new power injection
or consumption on the other buses in the grid. The time taken by
the load-�ow computation is therefore, the time taken for a given
update to re�ect in the simulated grid of T-RECS. Therefore, it
is important to quantify the execution time of the load-�ow per-
formed by the grid model of our implementation. This importance
is even more prominent in case of real-time control systems with
sub-second rate of control. For example, in COMMELEC, the con-
trol is takes place at a pace of 100 ms. Therefore, the time taken for
the computation and propagation of grid state from T-RECS grid
module to the GA has to be less than 100 ms.

The load-�ow computation algorithm used by T-RECS is de-
scribed in [15]. We compare the time taken by the Python imple-
mentation of this algorithm in T-RECS for three di�erent CIGRÉ
benchmark electric grids [28]. These grids are of di�erent sizes and
consist of 4, 13, and 34 buses, respectively. In our tests, we set the
desired accuracy of load-�ow results as 1e-6 and the maximum
number of iterations are set to 100. To highlight the improvement
in computation time over traditional load-�ow solvers that use
Newton-Raphson method, we have also implemented the load-�ow
computation by using state-of-the-art Newton-Raphson algorithm
in Python. We also run the same test cases with this algorithm.

In Table 2, for the three grids of di�erent sizes, we report the
mean computation time and the con�dence interval for the mean
at 95% con�dence level computed from 100 samples. We see that
the average computation-time of the T-RECS grid-model for grids
of 4, 13 and 34 buses are 0.75 ms, 1.13 ms and 7.4 ms, respectively.
This computation time is well-below the required update time (of
100 ms) for a real-time control system like COMMELEC, thereby
con�rming the real-time capability of T-RECS. We also observe a
sharp decrease in computation when compared to traditional load-
�ow solver that takes 23 ms, 232 ms, and 1.6 seconds for the same
grids, respectively. This a�rms our choice to use the fast, recent
load-�ow algorithm proposed in [15].

6 USE CASE SCENARIOS
In this section, we present two use-case scenarios that highlight the
range of experiments that can be performed using T-RECS. The �rst
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use-case exposes the grid to extreme conditions, with the possibility
of an over-voltage, whereas the second use-case deals with non-
idealities in the communication network. The COMMELEC control
system [1], that was previously discussed in Section 4, is used for
both experiments as its implementation is readily available.

6.1 Extreme Grid Conditions
Recent work [29] has shown that COMMELEC performs poorly in
the presence of large uncertainties, as it aims to maintain the grid
bus voltages within strict ±10% bounds throughout its operation
by preventing worst possible scenario. The authors in [29] intro-
duce dynamic bounds that enable the GA to violate the voltage
constraints for an interval of 500 ms, as allowed by grid standards
[30]. This improves the performance of COMMELEC, allowing for
optimal dispatch plan tracking, frequency support, or any other
higher level functionality that the GA is performing.

Introducing dynamic bounds requires a software patch to the
COMMELEC GA, in addition to tuning certain parameters that vary
depending on the grid. One such parameter, � , a�ects the time of
allowed voltage violations. � is the multiplier of the voltage penalty
function when the voltage is close to violation. The central idea of
this patch [29] is to dynamically increase the cost of the penalty
on voltage violation when the voltage is close to the allowed limits.
A large value of � leads the GA to return to safe voltage-region
quicker. However, during operation, a very large value of � may
cause high oscillations in power setpoints computed by GA and
hence undesired high oscillations in voltage. In the current state of
a�airs, there is no theoretical analysis to decide for an optimal value
of � ; it needs to be tuned for every speci�c grid. In our experiments,
we found that its value typically lies between 10 and 100,000.

Thus, tuning � requires extensive testing that cannot be per-
formed on the real grid, as it involves risk of overvoltages, which
can result in severe �nancial and safety consequences. As T-RECS
runs the actual code of the GA, it is directly applicable for perform-
ing such tests in-silico, while replicating the grid conditions. This
eliminates the risks of performing the same study prematurely on
the actual grid.

We consider a scenario in which the grid consists of a 270kW
array of PV cells, a 120kW battery, and a 40kW electric vehicle (EV)
charging station. The grid is connected to a slack bus, to which
it exports 160kW. An EV suddenly disconnects from the charging
station after some time, driving the power absorbed down from
40kW to 0kW, and creating a voltage-step. The COMMELEC GA is
aware of the possibility of such a disconnection, but due to dynamic
bounds, maintains optimal operation prior to the disconnection,
although the risk of overvoltages is present. The parameter � dic-
tates how strict the GA behaves after the violation occurs, and how
fast it drives the voltage back to safe region.

We use T-RECS to perform this study, by simply applying the
software patch to the GA code, and con�guring � prior to each
run. Figure 8 shows the voltage pro�le at the bus containing the
EV charging station for two values of � . We see that for � = 78,
the violation lasts much longer than 500 ms, whereas the violation
interval for � = 75 is within limits. Table 3 shows more results for
di�erent values of � , as we performed a binary search in order to
�nd the optimal value.

Figure 8: Voltage violations for di�erent values of �

Alpha (� ) Violation time (ms)
75 23004
75.5 22813
75.6 22769
75.8 149
76 132
78 152

Table 3: Voltage violation interval for di�erent values of �

Figure 9: Root-mean-square-error (RMSE) between power at
the slack and the reference signal for two versions of the
COMMELEC GA at di�erent loss rates

Finally, we can use a value of � for which the violations are
within limits, and deploy the dynamic bounds patch on the actual
grid without risk. The results on the actual grid will be very close
to the results obtained in T-RECS, as seen in Section 4.

6.2 Communication Network Non-Idealities
In the second use-case, we highlight the role T-RECS plays in the
co-development of COMMELEC, with a focus on the e�ect of com-
munication network non-idealities. We use the same setup shown
in Figure 4, with a battery, an uncontrollable PV, and a load as
discussed in Section 4.

We use T-RECS �rst to study the e�ect of message losses on the
ability of the COMMELEC GA to track a reference signal at the
slack. To do this, we vary the probability of message loss between 0%
and 20%, and measure the root-mean-square-error (RMSE) between
the power at the slack and the reference signal. The results are
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Figure 10: Tracking experiment of Only-long GA with bind-
ing grid conditions and a 2% loss rate

Figure 11: Tracking experiment of Robust GA with binding
grid conditions and a 2% loss rate

shown in Figure 9, in which we see that the RMSE of the Normal
GA quickly increases.

These results led to the development of an improved version of
the GA, dubbed the Robust GA [31]. The Robust GA instructs the
RAs to send information about the state of their resource, which
is valid for a longer time horizon, in addition to the short-horizon
messages originally sent. The long-term messages serve as an input
to the GA when it does not have the most recent information about
the state of the resources, due to message losses. The short-term
messages are still used when present as they are more accurate.

T-RECS is extensively used in the co-development of the Robust
GA, as it reduces the time required for the software cycle of design,
testing and commissioning. In each iteration of the test, we simply
re-run the T-RECS setup with a new version of the GA executable.
After several iterations of this cycle, we arrive at the desired imple-
mentation of the Robust GA. Figure 9 shows that the Robust GA
maintains a low RMSE even under a 20% loss rate. We arrived at
the implementation of the Robust GA without the need to have it
tested on the real grid. Instead, thanks to the successful validation
of the grid-model of T-RECS, the newly obtained Robust GA can be
con�dently deployed in the real grid, while maintaining the same
behavior as shown in Figure 9.

An alternative version of the Robust GA, in which only long-
term messages were exchanged in order to save on bandwidth, was
initially proposed. This version, Only-long GA, was evaluated in T-
RECS, and showed a similar advantage to the Robust GA. However,
as extensive testing eventually showed, the Only-long GA fails to
track a reference signal when the grid is in binding conditions.

Figures 10, 11 show the results of both the Only-long GA and the
Robust GA, respectively, in an experiment where one of the grid
lines is close to its ampacity limits. We notice that the Only-long
GA, having only long-term information, is very conservative when
it comes to injecting power into this line, and consequently fails to
track the reference signal. The Robust GA, on the other hand, uses

the available short-term messages, and can thus be more aggressive
in following the reference signal, while maintaining grid safety.

7 CONCLUSION AND FUTUREWORK
We present T-RECS, a virtual commissioning tool, that is used for
design, testing, and validation of multi-agent real-time control soft-
ware for electric grids. It enables developers to test the executables
of their software agents without requring any modi�cations to
them. The e�ect of non-ideal communication networks on the con-
trol performance can be studied using T-RECS as real packets are
being exchanged between software agents. This is made possible
by emulating the communication network layer in T-RECS using
Mininet. T-RECS simulates the physical grid using a phasor-domain
load �ow solver, and uses state-of-the-art models to simulate the
electric resources. To the best of our knowledge, T-RECS is the �rst
virtual commissioning tool for real-time software-based control
systems for electric grids.

The main design criteria for T-RECS are the ability to run unmod-
i�ed code, operate in real-time, and study the e�ect of non-ideal
communication network on the control performance, all without
requiring physical equipment. Indeed, T-RECS can be run entirely
on a standard PC or laptop. This makes T-RECS the ideal tool for
reproducible research in the �eld of control of electric grids.

We make available an implementation of T-RECS and validate
the load-�ow solver in T-RECS by running the same experiment
in a real microgrid. We �nd that the tail relative error is less than
0.1% if we compare the results from the two experiments. We show
the capabilities of T-RECS through two use-cases that highlight
its integral role in the development process of COMMELEC (an
in-house control application for electric grids).

We are currently working on the full-stack validation of T-RECS.
Our preliminary work shows exact qualitative match between the
results obtained from T-RECS and the real-world experiments. We
are now working on the quantitative comparison of results from
the T-RECS and the electric grid in [26]. One of main challenges
we are currently encountering is matching the initial conditions
of the various resources in the grid. Furthermore, the validation
study is often delayed due to the unavailability of the grid and
various resources (they require regular maintenance, resulting in
downtime). Indeed, this challenge is a motivation for developing
T-RECS in the �rst place, as it provides a testbed without the issues
that come inherently with hardware.

A key feature we wish to incorporate in T-RECS is virtual time.
Currently, the pace of the experiments in T-RECS is dictated by
the pace of the software agents. For instance, in COMMELEC, the
agents communicate every 100 ms. Thus, in order to visualize the
impact of COMMELEC after one million runs, it would take more
than a day of runtime. With the introduction of virtual time, such
an experiment could be run at a faster speed, reducing the time
needed by a long-term study.
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