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Learning Augmented Joint-Space Task-Oriented
Dynamical Systems: A Linear Parameter Varying

and Synergetic Control Approach
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Abstract—In this paper, we propose an asymptotically stable
joint-space dynamical system (DS) that captures desired be-
haviors in joint-space while converging towards a task-space
attractor in both position and orientation. To encode joint-space
behaviors while meeting the stability criteria, we propose a
DS constructed as a Linear Parameter Varying (LPV) system
combining different behavior synergies and provide a method
for learning these synergy matrices from demonstrations. Specif-
ically, we use dimensionality reduction to find a low-dimensional
embedding space for modulating joint synergies, and then esti-
mate the parameters of the corresponding synergies by solving
a convex semi-definite optimization problem that minimizes the
joint velocity prediction error from the demonstrations. Our
proposed approach is empirically validated on a variety of
motions that reach a target in position and orientation, while
following a desired joint-space behavior.

Index Terms—Motion Control, Learning from Demonstration,
Kinematics, Gaussian Mixture Models, Joint-Space Control

I. INTRODUCTION

ROBOT motion planning in joint-space has long been a
major field of study [1]. For manipulation problems with

an objective defined in task-space, we can often find a myriad
of joint-space trajectories to achieve the same task-space
goal. In many cases, however, certain joint-space trajectories
are favored over others; for example, when we expect the
robot to follow a desired joint-space behavior or “style”, as
illustrated in Fig. 1. In this paper, we will explore the problem
of learning a preferred joint-space behavior from previously
demonstrated trajectories while still accomplishing a task-
space goal, through the Learning from Demonstrations (LfD)
paradigm [2], [3]. Most LfD approaches learn motions either
in joint space [4], [5] or in task space [6], [7] via probabilistic
models. To ensure that the learnt models reach the desired
task-space target, Dynamical System (DS) formulations have
been used to ensure stability and convergence [8], [9].
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Fig. 1: Two robot motions in joint-space accomplishing similar behavior
in task-space (pouring chips in a bowl). The left example avoids a known
obstacle in its workspace, while the right one does not.

In many cases, however, one may want to specify a joint-
space behavior that the physical robot should follow while
simultaneously reaching a task-space objective. For example,
learned joint-space behaviors are helpful in playing ping-
pong [10], grasping [11], and avoiding self-collisions of bi-
manual manipulators [12]. For a visual example of a task-
space problem in which joint behavior is essential, see Fig.1.
Moreover, learning a motion in joint space allows us to avoid
inverse kinematic (IK) approximations. Task-space motion
generators learned from demonstrations all rely on projecting
the desired task-space velocity into joint-space via Jacobian
Pseudo-Inverse IK approximations and variants thereof [1].
When the main focus is on executing a specific task-space
behavior, regardless of a joint-space constraint, this approach
is sufficient [13], [14]. However, for other applications, such
an approach yields significant problems [15]. Mainly, when the
Jacobian matrix cannot be inverted (i.e. when the robot is near
a singularity) its behavior becomes erratic, requiring layers
of additional engineering to generate smooth trajectories and
ensure the desired task-space behavior. This encapsulates the
main source of inaccuracies in tasks that require fast dynamical
motions, such as catching/reaching for moving objects [16],
[17].

Finally, by learning a behavior in joint-space we can in-
herently reach a task-space target, not only in the Cartesian
3-D space R3, but also in the space of orientations SO(3).
Planning or learning the rotational component of motion is a
challenging problem. Representing an orientation as a vector in
Euclidean space may lead to inaccurate and unstable motions,
due to its directional nature and vulnerability to singularities.
Several works have proposed tailor-made learning approaches
that consider the non-Euclidean geometry of the SO(3) space
to generate rotational motion [18] [19] [20]. These approaches,
however, require an explicit coupling between position and
orientation, that might cause discontinuities in the resulting
motion. Such coupling is not necessary if the motion is
encoded in joint-space.

Several approaches have tackled the problem of learning
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joint-space behaviors with task-space objectives. [21] notably
attempted to address this problem by learning separate motion
policies in task space and the null space of the Jacobian (which
would not affect task-space position), and driving the robot
with a weighted sum of the two. However, this approach does
not seek convergence to the desired task-space target and is
still reliant on computing the pseudo-inverse Jacobian. [11]
and [12] expand on this approach by projecting task-space
constraints into joint space using IK, and then learning a
joint-space policy that incorporates both task and joint space
constraints, but this similarly relies on IK approximations and
does not ensure convergence to an attractor. [22] proposed
an approach with similar properties to our desiderata, where
two concurrent DS, one in task-space and one in joint-space,
are modulated by enforcing kinematic coherence constraints
to avoid singularities. The resulting DS avoids singularities
through generalization of the pseudo-inverse approximations.
However, because the two DS have their own unique attrac-
tors, the non-linear interaction between them imposed by the
kinematic constraints does not ensure that the combined DS
has a unique attractor. This gives rise to spurious attractors or
cycles, and thus requires careful tuning to avoid them.

In this work, we seek to devise an augmented Joint-
space Task-oriented Dynamical System (JT-DS) that not only
incorporates task-space attractors, but also avoids the problems
generated by pseudo-inverse approximations. To approximate
this DS, we further propose an algorithm to learn a set of
behavior synergies, each of which corresponds to a different
stable behavior in joint space, and modulate the use of
these synergies throughout joint-space using a learned Linear
Parameter Varying (LPV) system. We determine the schedul-
ing parameters for the LPV by finding a lower-dimensional
embedding of the joint space, which accounts for the variation
in the demonstrated motions. We then learn a policy in
embedding space for combining our behavior synergies to
accurately reconstruct the demonstrated trajectories. Hence,
our dynamical system:

1) computes a motion in joint-space that provably and
asymptotically converges to a task-space target.

2) is formulated such that joint-space behaviors can be
learned from demonstrations as synergies.

3) can transit through kinematic singularities.

The most similar approach to our proposed DS is the Jaco-
bian transpose (JT) control method [23] . The JT control is an
IK method that yields a dynamical system in joint space which
converges stably over time to a desired end-effector target,
without the need for pseudo-inverse computations. It shares
some of our approach’s advantages: fast computation and
provable task-space stability. However, despite some previous
work designing velocity adjustments by hand [24], this is,
to the best of our knowledge the first work to employ a JT
system to learn behaviors from demonstrations. Furthermore,
by formulating our LPV system on a latent embedding (via
dimensionality reduction schemes), we are able to discover
meaningful local behavior synergy regions, while being robust
to outliers, noise and redundancies that might arise from raw
demonstrations. This leads to a compelling improvement in

generalization of the demonstrated behavior, as opposed to
learning the LPV system solely in joint space.

This paper is organized as follows. Section II formalizes
the problem. The proposed dynamical system is introduced in
Section III. In Section IV, a probabilistic model is introduced
to approximate the parameters of the dynamical system. In
addition, a convex optimization problem is formalized to
estimate these parameters. In Section V we provide a thorough
validation of our proposed DS and learning approach. We
finalize with a discussion in Section VI.

II. PROBLEM STATEMENT

Consider a robotic system with d task-space dimensions
and m degrees of freedom. The system is directed via a
joint-position or joint-velocity controller. We are further pro-
vided with a set of N demonstrated joint-space trajectories
D = {{qt,n, q̇t,n}t=1,...,Tn}n=1,...,N , where Tn is the number
of the sample points of the nth demonstration. We refer to the
system’s joint-space position as q =

[
q1 . . . qm

]T ∈ Rm,
and to its task-space target as x ∈ Rd.1 The kinematics of the
robot are assumed to be known, hence, the robot’s forward
kinematics are indicated by x = H(q) and its Jacobian is
J(q) = dx

dq ∈ Rd×m. We wish to formulate a DS q̇ = f(q)
which satisfies the following two criteria:

(I) The DS must be asymptotically stable2 with respect to
a fixed task-space target x∗. This can be expressed by
ensuring that the following Lyapunov function

V (q) = (H(q)− x∗)T (H(q)− x∗) (1)

is stable; i.e. V̇ (q) < 0 ∀q ∈ Q and V (q) = 0 ∀q ∈ Q∗
where Q∗ = {q|H(q) = x∗ ∧ q ∈ Q} and Q = {q|q /∈
Q∗, J(q) is full rank}. V (·) can be thought of as a metric
for the task-space distance-to-go.

(II) The DS should encapsulate the desired joint-space behav-
iors such that the following metric is minimized

etotal =
1

NTn

N∑
n=1

Tn∑
t=0

‖q̇d;t,n − f(qt,n)‖ (2)

where q̇d are the “true” velocities from the demonstra-
tions, and f(·) is the motion generation policy.

The error metric (2) is advantageous in that it mimics the
magnitude and direction of the demonstrated motions. This
makes the reproduced motion visually most similar to the
human definition of “joint motion style” [25].

1For pure position targets we consider d = 3, for position and orientation
d = 9, where the first 3 dimensions correspond to Cartesian position and the
remaining 6 correspond to the first and second columns of a rotation matrix
R ∈ SO(3).

2Unless otherwise specified, “stability” in this paper always refers to
asymptotic stability within the workspace of the robot (in the regions where
the Jacobian is full rank), and as such assumes no joint limits. We make no
claim to proving global asymptotic stability, which is in fact impossible to
achieve in a joint-constrained kinematic system.
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Fig. 2: Illustration of our task-space and proposed joint-space Lyapunov
function. On the left we show the task-space error we are trying to min-
imize, represented by a potential function for a 2-DOF robot with target
x∗ = [2, 2]T . On the right we show the corresponding Lyapunov function
in joint space defined in (1). The colors on each plot correspond to each
other. One can see how the error, and consequently the attractive regions in
task-space, have been warped into attractive regions in joint-space.

III. AUGMENTED JOINT-SPACE TASK-ORIENTED
DYNAMICAL SYSTEM

To achieve the two criteria presented in (1) and (2), we
propose the following DS, which we refer to as the augmented
Joint-space Task-oriented DS (JT-DS):

q̇ = f(q) = −A(q)JT (q)(H(q)− x∗) (3)

where A(q) ∈ Rm×m is constructed using the LPV sys-

tem paradigm [26], [16]. A(q) =
K∑
k=1

θk(·)Ak is a linear

combination of time-invariant linear matrices Ak ∈ Rm×m,
each of which encodes a “local joint-space behavior synergy”
that shapes the motion in joint-space. Specifically, the “local
synergy matrices” Ak are joint-space transformations that bias
the resulting motion to use particular joints. By modulating
each local synergy in time as well as space through the
activation functions θk(·) we can generate the desired non-
linear joint-space behaviors. Note that in the LPV paradigm
θk(·) can be a function of time t, “joint-posture” q, an external
signal d(t) or a lower-dimensional representation of the joint
posture φ(q). Because we seek a time-invariant controller and
know that “joint-postures” can be accurately represented in a
lower-dimensional space, in this work we chose to parametrize
θk(·) with φ(q).

Before proving that (3) satisfies all of the criteria, one can
intuitively understand the control law as follows: (H(q) −
x∗) denotes the task-space error wrt. the target3. We derive
the task-space velocity of a proportional controller minimizing
that error by multiplying by −1. Then, by multiplying this
task-space velocity by the transposed Jacobian JT (q), it is
transformed into a joint-space velocity vector correlated with
the error (similar to Jacobian transpose control [23], [27]), see
Fig. 2. The positive definite matrix A(q) warps the resulting
joint-space velocity; Fig. 3 illustrates the effects of A(q) on
the generated motion. Thus the controller can be thought of
as a proportional controller in joint space. Lastly, we refer to
A(q) as the joint augmentation matrix as it augments the
outputted joint velocities.

3If the target defines an orientation, this is the Euclidean distance between
the two 9-dimensional position-and-orientation vectors.

Proposition 1: The DS in (3) accomplishes criteria (I) if
∀k ∈ {1, . . . ,K} the following constraints are met.{

Ak � 0, θk(·) ≥ 0 (4)

Proof: See Appendix A. �
Criterion (II) (i.e. encoding specific joint-space behaviors)

is achieved by embedding the desired joint-space behavior in
the matrices Ak(q) ∀k ∈ {1, . . . ,K}. We describe in the
next section an approach to automatically learn the number
of matrices K, their values and their corresponding activation
functions θk(·) from demonstrated data.

IV. LEARNING JOINT-SPACE TASK-ORIENTED
DYNAMICAL SYSTEMS IN SYNERGY SPACE

The behavior of the JT-DS algorithm can be best understood
through the lens of synergy control [28]. In robotic synergy
control, a robot’s movements can be decomposed into a small
number of synergies: principal components of the joint-space
that are sufficient to accurately recreate the desired robotic
behaviors. In our case, the synergies are represented by the
matrices A1, A2, . . . , Ak, and A(q) represents the resulting
motion constructed from a superposition of different synergies
(through (3)).

A central question arises: how do we modulate the synergies
in different regions to yield our desired behavior? First, we
assume that our desired behavior can be efficiently described4

using a sub-manifold of the joint-space, called the embed-
ding space. We would like to define the robot’s policy in
embedding space such that in different regions of the space,
we will prioritize different synergies. We are thus left with
three problems: (I) finding an underlying synergy-space Z in
which the behavior can be accurately controlled (defined by a
mapping φ : Q→ Z), (II) finding a policy for modulating the
synergies in different regions of the synergy space (defined by
θk(φ(q)) ∀k ∈ {1, . . . ,K}), and (III) finding parameters for
the synergies themselves (defined by Ak ∀k ∈ {1, . . . ,K}).
Our choice of parameters must also obey the constraints laid
out in (4). We thus propose the following 3-step learning
procedure:

(I) We first construct our embedding, which provides us
a lower-dimensional manifold through which to control
the robot, by projecting the demonstration data (i.e.
collections of joint positions q ∈ Rm) into a lower-
dimensional embedding φ(q) ∈ Rp≤m. In Section V we
evaluated Principal Component Analysis (PCA) [29] or
Kernel PCA (KPCA) with RBF kernel [30].

(II) We then jointly estimate the optimal number K of “local
synergy regions” and the parameters of the scalar func-
tions that determine the activation parameters θk(φ(q))
for weighting these synergies, by fitting a Gaussian
Mixture Model (GMM) on the projected joint positions
φ(q) seen in the demonstrations.

4Given some original space A and some behavior policy πA(a) in A, we
say that an embedding φ(·) and embedding space B : {b = φ(a)|a ∈ A}
“efficiently describe” πA if there exists some policy πB(b) in B such that
we can deterministically reconstruct πA(a) given πB(φ(a))



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2018

0 0.2 0.4 0.6 0.8 1

Time [scaled]

-2

0

2
V
el
o
ci
ty

[r
a
d

s
e
c
]

Hip Positions

0 0.2 0.4 0.6 0.8 1

Time [scaled]

-2

0

2

V
el
o
ci
ty

[r
a
d

s
e
c
]

Knee Positions

0 0.2 0.4 0.6 0.8 1

Time [scaled]

-2

0

2

V
el
o
ci
ty

[r
a
d

s
e
c
]

Wrist Positions

-0.5 0 0.5 1

X [m]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Y
[m

]

Motion 1 Motion 2 Motion 3 Target

Fig. 3: Three example 3-DOF motions (A, B, C), each with a different
constant joint augmentation matrix A(q) (emphasizing the hip, knee, and
ankle respectively), A: A(q) = diag(5, 1, 1), B: A(q) = diag(1, 5, 1), and
C: A(q) = diag(1, 1, 5). On the left, the task-space traces of each motion.
On the right, the time-scaled joint positions of each joint. Each motion tends to
use its “primary” joint most and uses the other available joints to compensate
for what the primary joint cannot do.

(III) Once the local synergy regions have been found (de-
scribed by each of the Gaussian distributions θk(φ(q))),
we compute the corresponding joint synergy matrices
Ak ∀k ∈ {1, . . . ,K} for each region by formulating a
convex optimization problem that finds the optimal set of
Ak’s that minimize the overall velocity error with respect
to the demonstrations (2).

A. Embedding Joint Configurations in Low-Dim. Space

The search for a lower-dimensional embedding of the joint
space stems from the desire to identify a simplified coordinate
system in which each principal component corresponds to an
important source of variation in the demonstrated trajectories,
and which is thus suitable for parameterizing the demonstrated
behavior. Motor control studies have postulated that human
arm motions like reaching or following straight/curved line
trajectories, rather than utilizing the full joint space |q|, are
the result of compromising between planning a straight line
in the task space and a straight line in the joint space [31],
[32]. This suggests that human arm motion in general tends
to move on a plane, and thus can be represented in such a
lower-dimensional space.

In this work, we assume that configurations that are nearby
in joint-space should exhibit similar behaviors, and thus it
is natural that we choose a low-dimensional embedding that
preserves the variance in our demonstrations. To this end, we
construct a single global embedding φ(q) by training dimen-
sionality reduction techniques on the demonstrated trajecto-
ries. The learned embedding φ(·) maps a joint configuration
q ∈ Rm into a lower-dimensional configuration z ∈ Rp,
where p < m. For example, if the shoulder and arm joints
are coupled throughout the motion, and φ(q) were a matrix
multiplication (i.e. φ(q) = Ap × q for Ap ∈ Rp×m), it could
map the “shoulder” and “arm” components of q into a single
“shoulder-arm” component in φ(q).

B. Discovering Local Behavior Synergies

The next step is identifying the regions of space in which
to activate different synergies. Given the set of projected joint

position trajectories D = {{φ(qt,n)}t=1,...,Tn}n=1,...,N where
φ(qt,n) is the lower-dimensional embedding of qt,n, t is the
time-step and N is the number of demonstrations, we seek
to learn a set of regions of distinct local synergies, each
defined by their corresponding activation function θk(φ(q)).
Moreover, we would like for θk(φ(q)) to have the following
properties: (i) θk(φ(·)) > 0 and (ii)

∑K
k=1 θ

′
k(φ(q)) = 1. Such

activation functions, also known as scheduling parameters
for LPV systems, have been modeled in previous work as
probability distributions [16], [17]. Intuitively, we search for
a probabilistic model that “explains” the variance in the
demonstrated trajectories, and treat each cluster as expressing
a local behavior, which the synergy will then approximate.
In this work, we adopt this approach and use a GMM to
estimate the joint distribution over the projected joint posi-
tions5, p(φ(q)) =

∑K
k=1 πkN (φ(q);µk,Σk), where πk are the

prior probabilities and {µk,Σk} are the mean and covariance
matrices that parametrize the k-th multivariate Gaussian distri-
bution. Each distribution represents a local region of projected
joint positions φ(q), and will be used to construct the activation
functions θk of the kth synergy matrix. We define θk(φ(q)) as
p(k|φ(q)):

θk(φ(q)) =
πkN (φ(q);µk,Σk)∑K
k=1 πkN (φ(q);µk,Σk)

(5)

which is the probability of the projected joint-position φ(q)
belonging to the k-th local synergy region. Therefore, each
synergy region is associated with a Gaussian component of
the GMM, cumulatively describing all the synergy regions
of the dynamical system. We use the standard Expectation
Maximization (EM) training algorithm to estimate the param-
eters of the GMM [33]. We follow a model selection approach
described in Section V to find the optimal K.

C. Estimating the Synergy Matrices

Given the parameters of θk(φ(q)) ∀k ∈ {k = 1, . . . ,K},
one can construct A(q) as a linear combination of local Ak
synergy matrices as follows:

A(q) =

∑K
k=1AkπkN (φ(q);µk,Σk)∑K
k=1 πkN (φ(q);µk,Σk)

. (6)

Notice the resemblance of (6) to the Nadaraya-Watson kernel
estimator [34], [35]6 with a Gaussian pdf as its kernel function.
Hence (6) can be considered a type of kernel estimator,
with the key distinction that the weighting functions θk(φ(q))
are not determined by individual points (as in the original
Nadaraya-Watson kernel estimator) but by the components of
a GMM, similar to the weighting functions derived in Gaussian
Mixture Regression (GMR).

Intuitively, each “synergy region” is defined by a Gaussian
distribution in the lower-dimensional space. The closer the

5It must be noted that, although we present GMM as the approach to
estimate the activation parameters, alternative algorithms can be used.

6The Nadaraya-Watson kernel estimator is used to estimate an unknown
regressive function m(x) = E{Y |X}, which takes the general form of
m̂(x) =

∑n
i=1 yiK(x,xi)∑n
i=1 K(x,xi)

where K(x, xi) is a kernel function denoting the
distance or similarity of xi to the given location x. [34], [35]
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robot is to a region, the more that region’s synergy (Ak)
influences the robot’s current joint-space motions. Finding
the appropriate synergy matrices Ak to accurately reproduce
the observed demonstrations can be reduced to a semidefi-
nite program with the goal of minimizing (2). The resulting
optimization minimizes the mean squared joint velocity error
from (2), resulting in a convex semidefinite optimization with
a quadratic objective, as follows:

min
A1,...,AK

N∑
n=1

Tn∑
t=0

‖q̇d;t,n − f(qt,n)‖

subject to
0 ≺ Ak, ∀k ∈ {1, . . . ,K}.

(7)

where f(qt,n) is calculated by (3) with (6), and x∗n is defined
as the endpoint of the nth demonstrated trajectory. This opti-
mization is always feasible; the only constraint is that the Aks
be independently PSD.

V. EXPERIMENTAL VALIDATION

A. JT-DS Learning Performance Evaluation

To evaluate the proposed JT-DS learning algorithm we
collected kinesthetic demonstrations on a 7-DOF KUKA LWR
4+ robot arm, for 7 different tasks (see Table I and Fig.
5) which require mimicking the demonstrated joint-space
behavior while reaching for a single target in task space:
• (1-2) Forward/Backward reaching: We guide the robot in

forward and backward reaching motions towards a specific
target in task-space with joint-space trajectories mimicking
forehand/backhand strokes as shown in Fig. 4a.

• (3-5) Pouring motions: We guide the robot to emulate
pouring motions with three different environmental con-
straints, leading to different joint-space trajectories. The first
is without an obstacle in the workspace. The second is
with an obstacle in the upper hemisphere of the workspace,
where the human is seen folding the elbow and lowering the
shoulder of the robot arm to avoid the obstacle. The third
instance is with an obstacle in the lower hemisphere, and
now the human raises the shoulder to avoid it.

• (6) Footstep-like motion: We demonstrate a footstep motion
which begins with a straight leg, moving through a singu-
larity, and finally bringing the knee up.

• (7) Singularity motions: Movement was constrained to the
boundary of the workspace by fixing qi = 0 ∀i ∈ {3, . . . , 7},
the second joint was fixed to q2 ∈ {10◦, 20◦, . . . , 100◦}, and
only the first joint was moved by a human. This restricted
the motion to a series of arcs of different radii along the
robot’s motion boundary.

The recordings are collected at a rate of 500 Hz. However, our
learning approach does not require such a dense representation
of the trajectories, hence we down-sample them to 25 Hz. By
performing our evaluation on all these datasets, we seek to:

(I) Verify that the learned behavior synergies are mimick-
ing the demonstrated joint-space behaviors and gener-
alize them to new initial joint configurations.

(II) Analyze the role of dimensionality reduction in our
proposed approach and further find the method which

yields the best trade-off between accuracy and model
complexity; i.e. the least number of dimensions p to
represent our activation function θ(φ(q)) and the least
number of local behavior synergies K.

We thus evaluate three learning approaches with different
dimensionality reduction algorithms: (1) None, (2) PCA and
(3) K-PCA with RBF kernel. We perform 10-fold cross-
validation on all datasets, for each learning approach, with
a training/testing ratio of 60%. To evaluate performance, we
take the square root of the MSE defined in (2), which we refer
to as the joint-velocity RMSE.

Performing such cross-validation in our case is not trivial,
as our A(q) formulation has several hyper-parameters: the di-
mensionality p of our lower-dimensional embedding φ(q) and
the number of local behavior synergies K. Moreover, when
using K-PCA (with RBF kernel k(q, q′) = exp(− ||q−q

′||2
2σ2 ))

we must also find the optimal width σ. Thus, for each fold and
each learning approach we find the optimal hyper-parameters
p, K and σ (when applicable), as follows:

(I) p for PCA: We choose p such that the projection is
capable of explaining 95% of the variance in the data.

(II) p and σ for K-PCA: The interaction of these two
parameters plays a major roll in the resulting projection
obtained from K-PCA. Hence, we do a grid search
on a log-spaced range of σrange = [σmin : σmax]
values, where σmin = 1

κ
√
2

max
i∈M,j∈M

{||qi − qj ||2} and

σmax = 2κ√
2

max
i∈M,j∈M

{||qi − qj ||2} for κ = cte. This

yields a feasible range for σ that is guided by the
pairwise Euclidean distances between all points in the
dataset. Moreover, K-PCA is not limited to providing
a p � m, in fact it can generate p ≤ M . This is a
nuisance as in our datasets M ≈ 1000. To alleviate this
we truncate σrange by computing the explained vari-
ance of the eigenvectors in feature space for different
values of σ ∈ σrange. We then remove σ values from
σrange whose number of optimal eigenvectors p > m
and resample it. By doing this procedure, we can ensure
that for all values in truncated σ̄range we will obtain
p ≤ m. We then choose σopt by running 10-fold cross-
validation for all σ ∈ σ̄range.

(III) K for GMM: We choose the optimal number of compo-
nents K, by evaluating and selecting the best resulting
model using the Bayesian Information Criterion (BIC)
[36]. Typically, one chooses the optimal K manually,
by visually identifying the point at which the BIC curve
produced from Krange stops changing or plateaus. To
automate this process, we devised an approach which
selects the optimal K as the one which yields the
highest inflection point on the second order derivative
of the BIC curve.

Once these optimal hyper-parameters are estimated for each
fold, we solve for the convex optimization problem in order
to find our synergy matrices A’s which best minimize the
objective function (7). We then select the initial joint configu-
ration q0 and target in task-space x∗ from each training/testing
dataset, simulate the joint-space trajectories {q̇1, . . . , ˙qT }, with
our learned A(q), and compute the joint-velocity RMSE
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(a) Forward/Backward Reaching (1-2).

(b) Pouring Motions (3-4)

(c) Pouring Motion (5) and Foot-step (6).

Fig. 5: Demonstrated Joint-Space Behaviors with
Task-Space Targets.

Behavior Dataset Dim. Red. Approach
Optimal Parameters — Joint Velocity RMSE [rad/s]

Optimal p Optimal K RMSE Train RMSE Test

(1) Forward Reaching
None 7 5 ± (2.90) 0.234 ± (0.027) 0.633 ± (0.458)

(N = 10,M = 1424)
PCA 3.1 ± (0.316) 3.8 ± (1.549) 0.247 ± (0.017) 0.484 ± (0.263)

K-PCA (σopt = 5.111) 3 ± (0) 3.5 ± (1.204) 0.2532 ± (0.019) 0.385 ± (0.098)

(2) Backward Reaching
None 7 5.8 ± (2.097) 0.281 ± (0.015) 0.647 ± (0.354)

(N = 11,M = 1223)
PCA 4.4 ± (0.516) 6 ± (3.091) 0.282 ± (0.044) 0.466 ± (0.102)

K-PCA (σopt = 6.238) 3.5 ± (0.5) 3.1 ± (0.3) 0.319 ± (0.025) 0.482 ± (0.114)

(3) Pouring - Free
None 7 4.6 ± (1.897) 0.181 ± (0.019) 1.099 ± (1.140)

(N = 9,M = 1032)
PCA 2.6 ± (0.5164) 4 ± (1.054) 0.186 ± (0.026) 0.419 ± (0.119)

K-PCA (σopt = 3.92) 2 3.5 ± (0.5) 0.183 ± (0.0204) 0.397 ± (0.105)

(4) Pouring - Obstacle 1
None 7 7 ± (2.357) 0.296 ± (0.029) 0.984 ± (0.55)

(N = 11,M = 1232)
PCA 3.9 ± (0.316) 3.6 ± (0.699) 0.321 ± (0.028) 0.402 ± (0.0587)

K-PCA (σopt = 7.695) 3 3.2 ± (0.4) 0.311 ± (0.011) 0.388 ± (0.040)

(5) Pouring - Obstacle 2
None 7 4.1 ± (1.7288) 0.1242 ± (0.0169) 1.0907 ± (1.0686)

(N = 7,M = 1406)
PCA 2.8 ± 0.4216 3.6 ± (1.8974) 0.1345 ± (0.0218) 0.693 ± (1.0541)

K-PCA (σopt = 2.86) 3.4 ± (0.4899) 3.1 ± (0.3) 0.1345 ± (0.0182) 0.4028 ± (0.1377)

(6) Foot Step
None 7 4.2 ± (1.4757) 0.1396 ± (0.0252) 1.0697 ± (0.6574)

(N = 8,M = 1058)
PCA 1 3.1 ± (0.3162) 0.1494 ± (0.0143) 0.2578 ± (0.0795)

K-PCA (σopt = 1.513) 2 3 0.1557 ± (0.0116) 0.2271 ± (0.0466)

(7) Singularity Motions
None 7 6.4 ± (1.5055) 0.048 ± (0.0158) 0.2365 ± (0.0768)

(N = 10,M = 1467)
PCA 1.9 ± (0.3162) 5.7 ± (1.6364) 0.0503 ± (0.0153) 0.1802 ± (0.0748)

K-PCA (σopt = 1.769) 3.9 ± (0.3) 5.2 ± (2.1817) 0.0593 ± (0.0122) 0.1276 ± (0.0591)

TABLE I: Performance Comparison of Learning Approach with different Dim. Red. Schemes. We present the mean(std)
for the optimal p, K and joint-velocity RMSE on training and testing set, found for every learning scheme over 10 runs.
M =

∑N
n=1 Tn.

.

(a) Execution of Pour Obstacle 2 learned through JT-DS. (b) Execution of Pour Obstacle 2 learned through SEDS.

Fig. 6: Snapshots of the robot experiments. A corresponding video is available on-line [https://youtu.be/mv9u5DgIEtw].

between these simulations and the training/testing trajectories,
as reported in Table I.

As can be seen, for all datasets there is a significant
increase in performance on the testing sets when using either
dimensionality reduction (DR) approaches. This suggests that
using DR to encode our activation functions θk in a lower-
dimensional space φ(q) yields better generalization capabil-
ities than encoding the behaviors in using the original q.
This is most notable for the three pouring motions, where
the joint-velocity RMSE testing error for a JT-DS model
learned without DR is an order of magnitude higher than
with DR. Such an error indicates that the demonstrated joint-
behavior was over-fitted on the training set, which is also
exhibited in the higher number of K needed to represent
the motion without DR. For all datasets, the DR methods
provided p < m/2, either comparable or less number of local
behaviors synergies K and better RMSE errors on testing
sets as opposed to no DR. By finding a lower-dimensional
manifold to represent the joint trajectories, we are getting rid
of outliers, noise and redundancies that might arise from the
raw joint demonstrations. Hence, through DR we are capable
of robustly extracting the local behavior synergies from raw
demonstrations.

Both PCA and K-PCA yield comparable results, with K-
PCA providing a slight improvement on some datasets. This
suggests that perhaps a linear DR method might be sufficient
for such tasks. However, if we seek to maximize accuracy
a non-linear DR method should be employed. One of the
drawbacks of K-PCA is its computational complexity for out-
of-sample evaluations, which involves computing the kernel
function between the new data-point and all the samples
M . This is, however, not so taxing for our method as our

Fig. 7: Execution of problematic joint-space behaviors learned through JT-DS:
(left) Foot step-like motion and (right) Singularity motions.
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Fig. 8: End-effector trajectories for the footstep motion in Cartesian space.
The JT-DS motion moves smoothly closely resembles the demonstrated
trajectories. On the other hand, the SEDS-based Cartesian motion generator
(whose values here are simulated because they can not physically executable)
quickly becomes unstable, as evidenced by the dotted paths starting on the
left side and abruptly disappearing.

datasets range in M ≈ 1000 and in previous work [37]
we have experimentally found that evaluating < 3000 RBF
kernel computations (on a 3.4-GHz i7 PC with 8GB RAM))
in a control-loop with 2ms rate is feasible. If one requires
extremely fast computation; i.e. a control-loop rate of < 2ms
then PCA should be used as opposed to K-PCA.
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Implementation Details: The learning pipeline is imple-
mented in MATLAB. We used the Matlab Toolbox for Di-
mensionality Reduction [38] for implementations of PCA, K-
PCA and its out-of-sample extension. The YALMIP frame-
work [39] was used to solve the definite convex optimization
problem. Source code for the entire learning pipeline and
simulated behavior on multi-DOF robot arms can be found in:

https://github.com/epfl-lasa/JT-DS-Learning
For execution of the learnt JT-DS models on a real 7-DOF the
KUKA LWR 4+ robot arm, we provide the following code in
C++: https://github.com/epfl-lasa/JT-DS-lib
The robot is controlled on the joint position level (linearly
interpolating from joint velocities computed from JT-DS) at
a rate of 500 Hz. The resultant joint angles are filtered by a
critically damped filter to avoid high torques.

B. JT-DS Execution Performance Evaluation

We now seek to elucidate the distinctive properties of our
JT-DS model by comparing its performance to a DS-based
Cartesian motion generator + IK solver approach for behaviors
(5-7). For the Cartesian motion generator we use the SEDS
(Stable Estimator of Dynamical Systems) approach [8] which
learns an asymptotically stable DS in Cartesian space from
demonstrations. We then generate joint trajectories through a
damped least square IK solver. From hereon we refer to this
approach as SEDS+IK.

1) Following Desired Joint and Task-Based Behaviors:
We compare tracking capabilities of our JT-DS method with
those of SEDS+IK for behaviors (5) and (6). In Fig. 6a and
6b we can qualitatively see the difference between these two
approaches for behavior (5). The JT-DS algorithm mimicked
the joint-space behavior of the demonstration (e.g. folding the
elbow, raising the shoulder), successfully avoiding the obsta-
cle while still converging to the desired Cartesian position.
Meanwhile, SEDS+IK only learned the demonstrated behavior
in task-space; it is incapable of constraining motion in joint-
space. This ultimately led to one of its joints colliding with
the obstacle. It should be noted that the JT-DS motion did not
follow the demonstrations in task-space very closely (as ex-
pected), but did ultimately converge to its target position. For
the foot-step behavior (6) JT-DS followed the demonstrations
closely, while SEDS became unstable in the singularity (Fig.
7 and 8). This demonstrates the JT-DS algorithm’s ability to
move cleanly in and out of singularities.

2) Transiting through singular configurations: One of the
main advantages of the proposed DS is its ability to generate
accurate paths in classical singular configurations. To evaluate
this we generated behavior (7); i.e. joint-trajectories that transit
entirely within a classic kinematic singularity. Fig. 9 shows
the demonstrated motions and the motion generated by JT-
DS (3). The algorithm never requires the pseudo-inverse of the
Jacobian matrix, so the generated motion perfectly follows the
demonstrations throughout the workspace boundary. In Fig. 7
we show the learnt singular motion successfully executed on
the real robot.

Fig. 9: The experiment generated K = 3 Gaussian components. As the
first joint is the only joint which was not fixed during the demonstration,
the learned augmentation matrices had only one nonzero entry Ak(1, 1) 6=
0 ∀k ∈ {1, 2, 3}. In (a), the end-effector positions for the demonstrations
and executed motions are plotted in Cartesian space. The JT-DS trajectory
was generated closed-loop, while the SEDS trajectory was generated open-
loop (otherwise it would be unstable).

VI. DISCUSSION

In this paper, we have presented a dynamical system in
joint space that is provably asymptotically stable in task
space to a fixed target while replicating demonstrated joint-
space behaviors. The desired motions are fast to compute, and
smoothly handle singularities by avoiding the pseudo-inverse
Jacobian. We showed the system’s ability to learn different
joint-space behaviors on a robotic platform.

One of the most important points when validating a learn-
ing from demonstration method is to evaluate the system’s
behavior away from demonstrations. When the current joint
configuration is far from any of the local synergy regions,
computing the activation parameters θk(·) becomes numeri-
cally infeasible (all the Gaussians in (6) → 0), and so we

default to A = 1
K

K∑
k=1

Ak, which still guarantees that the robot

moves towards the target.
Since we learn a lower-dimensional embedding space Z :=
{φ(q) | q ∈ Q}, which we suggest provides a better represen-
tation for the learned joint behaviors, a careful reader might
wonder: why not define a motion policy πZ directly in Z-space
and then map the learned policy back out into joint space using
the inverse embedding φ−1(z)? The answer is that we would
lose any guarantee of stability with respect to a target attractor
x∗t . By construction, φ maps from a joint-position vector of
size d to a low-dimensional vector of size u < d. Thus the
inverse φ−1 must be of less than full rank, so the resulting
A matrix (derived as in (3)) will also be of less than full
rank, and thus no longer positive definite. This means that our
controller no longer provably converges to the attractor (since
our convergence proof no longer holds). Intuitively, this is
because any policy defined in a lower-dimensional space than
the actuation space will forfeit certain degrees of freedom, and
thus may not be able to span the configuration space. Instead,
we use the embedding space to modulate synergies defined in
joint space, which we can guarantee will be positive definite
and lead us to convergence to the target.

Finally, we are currently working on improving the perfor-
mance of the proposed DS, by learning its parameters wrt.
the kinematic constraints. In this way, we can ensure that the
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performance of the DS is kinematically feasible for the robot
to follow.

APPENDIX A
PROVING STABILITY OF THE DYNAMICAL SYSTEM

JT-DS (3) is asymptotically stable with respect to the Lyapunov candidate

V (q) =
1

2
(H(q)− x∗)T (H(q)− x∗)

That is, 0 ≺ V (q), ∀q 6= q∗ and V (q∗) = 0, where q∗ is any joint
configuration such that H(q∗) = x∗. The derivative of V wrt. time is:

dV (q)

dt
= (H(q)− x∗)T J(q)q̇

= −(H(q)− x∗)T J(q)A(q)JT (q)(H(q)− x∗)

= −(H(q)− x∗)T J(q)
K∑

k=1

θk(φ(q))︸ ︷︷ ︸
>0

Ak︸︷︷︸
�0

JT (q)(H(q)− x∗) ≤ 0

(8)

When J(q) is full-rank, the above inequality can be tightened to dV (q)
dt

< 0.
Therefore, as q = q∗ is the largest invariance in Rm, JT-DS (3) is
stable with respect to a task-space attractor; i.e. lim

t→∞
‖H(q) − x∗‖ = 0,

and asymptotically stable for all regions in which the end-effector is fully
manipulable (J(q) is full rank).
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