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Abstract

A
ccomplishment of many interactive tasks hinges on the compliance of hu-

mans. Humans demonstrate an impressive capability of complying their

behavior and more particularly their motions with the environment in everyday

life. In humans, compliance emerges from different facets. For example, many

daily activities involve reaching for grabbing tasks, where compliance appears

in a form of coordination. Humans comply their hands’ motions with each other

and with that of the object not only to establish a stable contact and to control

the impact force but also to overcome sensorimotor imprecisions. Even though

compliance has been studied from different aspects in humans, it is primarily re-

lated to impedance control in robotics. In this thesis, we leverage the properties

of autonomous dynamical systems (DS) for immediate re-planning and intro-

duce active complaint motion generators for controlling robots in three different

scenarios, where compliance does not necessarily mean impedance and hence it

is not directly related to control in the force/velocity domain.

In the first part of the thesis, we propose an active compliant strategy for

catching objects in flight, which is less sensitive to the timely control of the

interception. The soft catching strategy consists in having the robot following the

object for a short period of time. This leaves more time for the fingers to close on

the object at the interception and offers more robustness than a “hard” catching

method in which the hand waits for the object at the chosen interception point.

We show theoretically that the resulting DS will intercept the object at the

intercept point, at the right time with the desired velocity direction. Stability

and convergence of the approach are assessed through Lyapunov stability theory.

In the second part, we propose a unified compliant control architecture for

coordinately reaching for grabbing a moving object by a multi-arm robotic sys-

tem. Due to the complexity of the task and of the system, each arm complies not

only with the object’s motion but also with the motion of other arms, in both

task and joint spaces. At the task-space level, we propose a unified dynamical

system that endows the multi-arm system with both synchronous and asyn-

chronous behaviors and with the capability of smoothly transitioning between

the two modes. At the joint space level, the compliance between the arms is

achieved by introducing a centralized inverse kinematics (IK) solver under self-

collision avoidance constraints; formulated as a quadratic programming problem
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(QP) and solved in real-time.

In the last part, we propose a compliant dynamical system for stably tran-

sitioning from free motions to contacts. In this part, by modulating the robot’s

velocity in three regions, we show theoretically and empirically that the robot

can (I) stably touch the contact surface (II) at a desired location, and (III) leave

the surface or stop on the surface at a desired point.

Keywords: Compliant dynamical system, Coordinated motion planning, Multi-

arm Control, Fast motion planning.
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Résumé

L
accomplissement de nombreuses tâches interactives dépend de la com-

pliance des humains. Les humains font preuve d’une capacité à adapter

leurs comportements et plus particulièrement leurs mouvements à leur envi-

ronnement. Chez l’humain, la conformité émerge de différents points de vue.

Par exemple, de nombreuses activités quotidiennes impliquent la saisie d’objets,

où la conformité apparâıt sous forme de coordination. Les humains coordon-

nent les mouvements de leurs mains avec celui de l’objet, non seulement pour

établir un contact stable et contrôler la force d’impact, mais aussi pour sur-

monter les imprécisions sensorimotrices. Même si la conformité a été étudiée

sous différents aspects chez l’homme, elle est principalement liée au contrôle

d’impédance en robotique. Dans cette thèse, nous utilisons les propriétés des

systèmes dynamiques autonomes et introduisons des architectures de contrôle

pour contrôler les robots dans trois scénarios différents, où la conformité ne sig-

nifie pas nécessairement impédance et n’est donc pas directement liée au contrôle

en force ou impédance.

Dans la première partie de la thèse, nous proposons une stratégie de con-

trôle conforme pour la capture d’objets en vol qui est moins sensible au temps

d’interception. La stratégie de capture “soft” consiste à suivre le mouvement de

l’objet pendant une courte durée, laissant plus de temps aux doigts pour se fer-

mer sur l’objet avant interception. Cela offre plus de robustesse qu’une méthode

de capture “hard” dans laquelle la main attend l’objet au point d’interception

choisi. Nous montrons théoriquement que le système dynamique proposé inter-

ceptera l’objet au point d’interception, au bon moment avec la direction de la

vitesse désirée. La stabilité et la convergence de l’approche sont évaluées par la

théorie de stabilité de Lyapunov.

Dans la deuxième partie, nous proposons une architecture de contrôle con-

forme unifiée permettant à un système robotisé multi-bras d’approcher et saisir

de façon coordonnée un objet en mouvement. En raison de la complexité de la

tâche et du système, chaque bras se conforme non seulement au mouvement de

l’objet, mais aussi aux mouvements des autres bras, dans l’espace de travail et

dans l’espace articulaire. Au niveau de l’espace de travail, nous proposons un

système dynamique unifié qui fournit au système multi-bras à la fois des com-

portements synchrones et asynchrones et une capacité de transition en douceur
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entre les deux modes. Au niveau de l’espace articulaire, la compliance entre les

bras est obtenue en introduisant un résolveur de cinématique inverse centralisé

sous contraintes d’évitement d’auto-collision; formulé comme un problème de

programmation quadratique (QP) et résolu en temps réel.

Dans la dernière partie, nous proposons un système dynamique compliant

permettant une transition stable de mouvements libres à des mouvements en

contact avec une surface. Dans cette partie, en modulant la vitesse du robot

en trois régions, nous montrons théoriquement et empiriquement que le robot

peut: (I) toucher de manière stable la surface de contact, (II) au point désiré,

(III) quitter la surface ou s’arrêter sur la surface à un point désiré.

Mots Clés: Système dynamique conforme, Planification de mouvement coor-

donnée, Contrôle multi-bras, Planification de mouvement rapide.
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Chapter 1

Introduction

“No matter what you look at, if

you look at it closely enough, you

are involved in the entire

universe”

Micheal Faraday

1791 – 1867

1.1 Motivation

Even though robot sales have significantly increased since 2003, the sales are

dominated by industries with standardized production lines, e.g., automotive

and electronics industries with, respectively, 38% and 25% of the total sales

in 2015 (Economist, 2017a,b; IFR, 2016). The applications in these factories

mostly involve moving the manipulators with high speed on predefined paths.

Hence, the factories’ environments need to be accurately controlled so that even

blindfolded robotic systems can reliably perform repetitive task descriptions;

Figure 1.1a. These applications are consequently very sensitive to uncertainties

in that any unforeseen circumstances might result in a total shutdown of the

production lines.

Whereas, human workers demonstrate an impressive capability of complying

with the environment’s states (Figure 1.1b), hence, they are capable of manip-

ulating objects in dynamically changing environments. By complying with the

states of the environment, humans are able to adapt their motions with the

changes caused by perturbations and uncertainties. In this way, unlike tradi-

tional robots, humans accomplish tasks by determining the desired behavior, on

the fly, based on the observations of the current state of the environment.

Even though humans are not perfect and are slower and less powerful than

robotic systems, collaborations between human operators and robotic systems

improve the productivity of both sides (Economist, 2013). Thus, hybrid pro-

duction lines, where the robots work together with humans, are commonly con-

sidered as the future of automation (Economist, 2017c); Figure 1.1c. In such

production lines, robotic systems that exhibit the same level of compliance and

human-like reactivity and adaptivity are essential.
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1 Introduction

(a) c©Telegraph (b) c©Independent (c) c©BMW Group

Figure 1.1: Examples of different types of production lines. 1.1a and 1.1b illustrate
examples of fully-automated versus fully-manual tasks in a car manufacturer, respec-
tively. In 1.1c, an example of hybrid production line, where a seamless collaboration
between humans and robots is essential, is shown.

Generally, compliance relates to the circumstances whereby a person acts in

accordance with a wish or a command (Billard, 2017). Hence, compliance can be

interpreted in different ways. For example, many activities in industry involve

reaching for objects on a conveyor belt, where compliance appears as a form

of coordination. Humans need to comply with the state of the object such that

their hand motions are coordinated with that of the object, to not only establish

a stable contact and control the force of impact but also to grab the object at

a desired location. If the object is too big or too heavy, human workers have to

use both hands, where both hands should be in compliance and coordination

with the object, as well as with each other.

Even though compliance has been studied from different aspects in humans1,

in robotics, it is primarily related to the behavior of systems in contact (Brock

et al., 2008). Broadly, compliance in robotics can be categorized in two levels,

passive and active (Wang et al., 1998; Albu-Schäffer et al., 2007). In the passive,

a compliant behavior emerges from the inherent elasticity of mechanical link-

ages/joints. However, in the active compliance, the controller of the actuators

imitates the behavior of a spring, i.e., impedance control.

Our main goal in this thesis is to devise actively compliant motion generators

for controlling robots in scenarios where (i) there is no mechanical compliance

or it is negligible, in comparison with the interaction forces, and (ii) the impact

lasts less than a millisecond, leaving no time for the sensors to measure it or

for the robots to properly react to it; hence, impedance controllers are either

insufficient or practically inapplicable. In this thesis, we explain how compliance

can be provided through active control of the arm motions at the kinematic level,

i.e., the state level2. By defining compliant motion generators, the robots are

able to adapt, sufficiently in advance, their motions with respect to the state of

the environment. This leaves more time for re-adjustments and compensating for

sensory-motor noise. To this end, we use the idea of Dynamical Systems (DSs)

for immediate re-planning and introduce motion generators that are coupled

1i.e., Mechanical, cognitive and social (Billard, 2017) .
2In this thesis, state refers to the position, velocity and acceleration in either joint or task

spaces.
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1.2 Problem Statement and Approach

with the state of the environment that can be the position/velocity of moving

or fixed objects or other robots.

1.2 Problem Statement and Approach

Our ultimate goal in this thesis is to accomplish interactive tasks where

defining compliance in the traditional force/velocity domain is, otherwise, either

insufficient or inapplicable. Hence, we study compliance in the motion domain,

where the motion of a robot actively complies with the state of the environment.

We study compliance in three different exemplary tasks, where the accomplish-

ment of the task hinges on the robot’s compliance with (i) the state of a moving

object, (ii) the state of a moving object and other robots, and (iii) the state of

a fixed surface.

In the first part of the thesis, we address compliance in the scenario of

catching objects in flight. The compliant-catching strategy consists of having

the robot move with the object for a short period of time before grabbing it. In

this scenario, compliance appears as a form of softness. This leaves more time for

the fingers to close on the object at the interception and offers more robustness

than the “hard” catching method, in which the hand stops at the interception

point.

In the second part of the thesis, we address compliance in the scenario of

reaching a moving object by a multi-arm robotic system. In this scenario, com-

pliance needs to be addressed at two sub-levels, specifically at the arm and the

object levels. At the arm level, the motion of each arm must comply with the

motion of the other arms in both: the task and joint spaces, so that any collision

can be avoided. At the object level, the resultant motion of the arms must com-

ply with that of the object, such that the object is simultaneously intercepted

by all the arms. In this scenario, compliance appears as a form of coordination.

In the third part of the thesis, we address compliance in non-contact/contact

transition scenarios. Compliant transition consists of adjusting the velocity of

the robot at the impact, so that it does not bounce on the surface. In this

scenario, compliance appears as a from of modulation. The approaches devised

in this thesis can be broadly categorized in the dynamical-system-based motion

generators, described in detail in Section 1.2.1.

1.2.1 Dynamical systems

Close your eyes and ask your colleague to place an apple in front of you.

Try grabbing it in one shot. Obviously you were not successful as you do not

know its precise position. Open your eyes, locate the apple’s position and close

them again. Try reaching the apple while your colleague is re-locating it. Note,

you cannot accomplish the task as the apple’s state is dynamically changing

3
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while your perceived information is not. However, if you see the apple, you can

undoubtedly grab it.

Perceiving the states of the environments is necessary for identifying the

task’s goals and achieving them in dynamically changing environments. How-

ever, there is a gap between high-level task goals and low-level robot’s motions.

Robots, in general, are made of electrical motors that do not understand any-

thing except voltage and ampere. Hence, we need to translate the task’s goals

into commands interpretable by the joint controllers.

In user-friendly robotic systems, human operators are not required to write

down complicated time/space functions to exactly translate the goals into joint-

level motions. Whereas, the system must be able to generate them based on the

high-level goals, e.g., the states of the initial, target or even obstacles. Motion-

planning and trajectory-planning approaches are the main means for convert-

ing high-level task specifications into low-level joint-level movements. During

the last four decades of automation, many different architectures have been

proposed for specifying the detailed motion of robotic systems; e.g., potential-

field (Khatib, 1986), randomly exploring random trees (LaValle and Kuffner Jr,

2000), polynomial (Craig, 1989), optimal control (Constantinescu and Croft,

2000; Bäuml et al., 2010) and dynamical systems (Khansari-Zadeh and Billard,

2011; Schaal et al., 2000). A more comprehensive review of these methods is

provided in Section 2.1.

Dynamical systems have been successful in modeling human motions (Bul-

lock and Grossberg, 1988; Diedrichsen and Dowling, 2009; Schöner and Kelso,

1988) and in generating robot motions (Katoh and Mori, 1984; Hollerbach, 1984;

Schaal et al., 2000; Brady, 1982) for decades. The main benefit of using DSs

can be summarized in the immediate re-planning property, i.e., the ability of

countering perturbations in real-time. Dynamical systems do not generate the

entire path at once rather the next action, based on the current observations,

e.g., the time, states of the system, environment or measured forces. Hence, the

desired behavior of the system is calculated instantaneously, based on the cur-

rent measurements. Consequently, perturbations are, indirectly, compensated

by considering their effects on the calculation of the next action of the robot.

Moreover, if a dynamical system is defined properly, one can ensure its conver-

gence to an attractor or a goal, regardless of the robot’s initial configurations,

i.e., asymptotical stability.

For the aforementioned reasons, throughout the thesis, we exploit dynamical-

system-based control laws in order to generate the robots’ motions. To achieve

the desired level of compliant behavior, the dynamical systems are coupled with

the states of the environments, specifically the state of the object in the first

scenario, the state of the object and the other robots in the second scenario, and

the distance between the robot and the contact surface in the third scenario.
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1.3 Main Contributions and Thesis Outline

This thesis is composed of a number of chapters that are structured in ac-

cordance with the three main scenarios outlined in the previous section. Brief

overviews of each chapter, as well as the corresponding contributions, are out-

lined as follows:

Chapter 2- Background and Related Work

In this chapter, we comprehensively review the state-of-art approaches for

single/multi-arm motion planning, with the main emphasis on the afore-

mentioned scenarios, is presented in this chapter.

Chapter 3 - Softly Intercepting a moving object with a robotic arm

Figure 1.2: Schematic of catching
softly (compliantly) a ball. The arm
meets the object at the intercept point
and moves with it for a short period of
time while slowly reduces its velocity.
See Chapter 3 for more information.

This chapter presents our work on softly

catching flying-objects. In order to

successfully softly catch an object , the

arm must intercept the object on time,

at the right place, and with a specific

velocity aligned with that of the object;

see Figure 1.2. The first part of this

chapter presents our control law that

is formulated as a Linear Parameter

Varying (LPV) based dynamical system

for generating the soft catching motion.

Furthermore, with the purpose of max-

imizing the softness at the interception

subject to the kinematic constraints

of the robot, a closed-loop optimal-control problem is suggested. Then, we

present our probabilistic approach for estimating the parameters of the LPV

system that use Gaussian Mixture Models (GMM), to account for the inherent

stochasticity of the training data-points. In this scenario, as catching is an

extremely rapid action, the training data-set should be a representative of the

fastest kinematically feasible motions of the robot. As it would be difficult to

have these provided by a human expert, as kinesthetic teaching would not make

it possible to move the arm at its maximal speed, we present our algorithm for

generating the training data-set.

We theoretically prove that the generated soft catching motion, and con-

sequently the end-effector, intercept the object’s trajectory at the desired

intercept point with the desired velocity aligned with that of the object. The

performance of our proposed method is validated in a real-world experiment

with KUKA LBR IIWA (7 degrees-of-freedom arm robot) mounted with a 16

DOF Allegro hand.
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Chapter 4 - Coordinated Multi-Arm Motion Planning

This chapter presents our work on coordinated multi-arm motion planning for

reaching a moving object. In order to successfully reach and intercept an object

with a multi-arm system, the compliance in two sub-levels needs to be addressed.

First, each arm should comply with the motion of the other arms in both the

joint and task spaces, as the robots should avoid self-collisions at all times.

Second, the resultant motion of the robots should comply with the object’s

motion so that they reach and simultaneously intercept it at the desired points.

Moreover, a multi-arm system could provide not only synchronous behaviors,

as the one mentioned previously, but also asynchronous behaviors, where each

robot follows its own goal-oriented tasks, specifically independent point-to-point

reaching motions.

Figure 1.3: Schematic of tran-
sition between Synchronous and
Asynchronous behaviors. See Chap-
ter 4 for more information.

The first part of this chapter presents our

unified control architecture that generates

two types of behaviors: (i) multi-arm asyn-

chronous task-space behaviors, where each

robot has its own target and (ii) multi-arm

synchronous task-space behaviors, where the

robots’ tasks are to reach, with all the arms,

for a moving object; see Figure 1.3. To pro-

vide a smooth transition between these be-

haviors, a notion of synchronization alloca-

tion is introduced. Given the motion of the

object and the joint workspace of the multi-

arm system, each arm is continuously allo-

cated to a desired behavior. While allocated

to the synchronous behavior, the robots are

taken over by a virtual object based dynamical system, expressed as a LPV sys-

tem. The motion of the virtual object is coupled with the motions of the robots

and the real object. While allocated to the asynchronous behavior, the robots are

controlled by independent target-oriented dynamical systems. In the proposed

unified architecture, both behaviors are encoded in a single dynamical system.

In the second part of the chapter, compliance in the joint-space is provided

by introducing a centralized inverse kinematics (IK) solver under self-collision

avoidance constraints; formulated as a quadratic program (QP) problem subject

to linear equality and inequality constraints which can be solved in real-time.

We show theoretically that the proposed architecture is capable of generating

both behaviors, and the system remains stable during transitions. Moreover, we

show that the overall closed-loop system, including the IK solver, is passive. We

validate the framework on two dual-arm robotic systems. The results demon-

strate that the control architecture can adapt the motion of each arm within

milliseconds, even when the motion of the object is fast and not accurately

predictable.
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Chapter 5 - Stable Non-contact/Contact Transitions

Figure 1.4: Schematic of a stable con-
tact with a surface in an interactive task.
The robot gets into the contact at the de-
sired location such that the impact hap-
pens only one time and the robot remains
in the contact with the surface after the
impact. Moreover, the robot should be able
to leave the surface at a desired departure
point. See Chapter 5 for more information.

In this chapter, we present our work

on controlling robotic manipulators

during non-contact/contact transi-

tions. Unlike in Chapter 3, in this

chapter, we study scenarios where the

impact forces can be strong. Hence,

controlling for a smooth transition

from free motion to contact is crucial

as incurring a strong force of impact

might lead to unstable contact with

the robot bouncing on the surface,

i.e., chattering. In order to success-

fully establish a stable contact with a

rigid surface, the robot should touch

the surface with zero, or near to zero,

velocity such that the post-contact

velocity, in the normal direction to the surface, is zero, i.e., the robot remains

in contact with the surface. Accordingly, in this thesis, we call a contact stable

if the impact occurs only one time and the robot remains in contact with the

surface after the impact. In this chapter, we present our strategy in which

the robot adapts its motion before entering into the contact, i.e., its speed

is modulated to align with the surface. The robot then slides on the surface

while controlling the velocity against the surface. We exploit the properties

of autonomous dynamical systems to enable on-line controlling of the robot,

and we exploit local modulations of DS to control the smooth transitions upon

contact.

We show theoretically and empirically that by using the modulation framework,

the robot can (i) stably touch the contact surface (ii) at a desired location, and

finally (iii) leave the surface or stop on the surface at a desired point. We validate

the performance of the framework with a set of simulations and in a real-world

experiments with KUKA LBR IIWA.

Chapter 6 - Conclusion

In the final chapter, we summarize our technical achievements, our con-

tributions and their limitations. We further discuss the possible research

directions and future works.

Appendices

In order to improve the readability of the main text and not overload it

with mathematical equations, we collect the proofs of theorems in the Ap-
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pendices. In the main text of the thesis, we will refer to them when they are

used.

1.4 Publications and Source Codes

Most of the material of this thesis was published in peer-reviewed confer-

ences and journals. Large portions of the materials presented in Chapter 3 were

published in (Mirrazavi Salehian et al., 2016a). The contents of Chapter 4, multi-

arm motion-planning architectures, were published in (Mirrazavi Salehian et al.,

2016b, 2017b,a). The contents of Chapter 5 are currently under submission. Fur-

thermore, the videos of the robot experiments and the codes, which were recored

and developed during the last four years and reported in this thesis, are available

on-line in the following tables:

Table 1.1: The implementation toolboxes which are provided by the authors are
available in the following links.

https://github.com/epfl-lasa
https://github.com/sinamr66

Table 1.2: The links of the videos of the robot experiments.
All the videos are also available on LASA’s You-tube channel at
https://www.youtube.com/channel/UCqnvGUfdlr94mddDQamEBGA/videos.

Chapter 3
http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 3/Main.mp4

http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 3/Systematic Assessment.mp4

Chapter 4
http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 4/Main 1.mp4
http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 4/Main 2.mp4

http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 4/Systematic Assessment.mp4

Chapter 5
http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 5/Main.mp4

http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 5/Systematic Assessment.mp4
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Chapter 2

Background

“The one who does not know, but

knows that he doesn’t know,

will be successful.”

Ibn-e Yamin

circa 1285 – 1368

A fundamental problem with robotic systems is planning their motions from

the initial state till the target state while satisfying some path/trajectory con-

straints, e.g., avoiding obstacles. Hence, motion-planning has been an active re-

search topic for decades and a vast variety of algorithms/approaches have been

proposed for tackling different aspects of this problem, e.g., obstacle avoidance,

kinematics/dynamics constraints, sensory noises or differential constraints. In

this section, we first provide an overview of motion planning methods in Section

2.1. Then, we comprehensively review the existing approaches that address the

challenges of (i) catching objects in flights in Section 2.2, (ii) multi-arm manip-

ulations in Section 2.3 and (iii) non-contact/contact transitions is provided in

Section 2.4.

2.1 Motion Planning: Overview and Historical

Perspective

Motion planning is one of the first problems that has been addressed in

robotics (Paul, 1971, 1972). Motion planning is primarily defined as a problem

of finding a collision-free path for robotic systems, from an initial to a goal

configuration among a collection of static obstacles; it has attracted considerable

attention in the last four decades (Kavraki and LaValle, 2008)1. Assuming the

1 Path planning is mainly concerned with finding a collision-free path regardless of its
feasibility. Whereas, Kinodynamic planning approaches consider the kinematic/dynamic con-
straints of the robots as well (Elbanhawi and Simic, 2014).
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obstacles are static and their shapes and locations are known, a motion-planning

problem can be formulated as a geometrical problem: finding a continuous path

in the free space such that the robot reaches the final target for a given initial

configuration (Udupa, 1977; Lozano-Perez, 1983). However, these approaches

are impractical as calculating the free/obstacle spaces is computationally hard

(Reif, 1979).

An alternative paradigm is sampling-based algorithms that do not require

the exact geometric representation of the spaces. Sampling-based approaches

exploit the idea of randomly sampling the configuration space (C-space) (El-

banhawi and Simic, 2014). Extensive surveys on sampling-based methods are

provided in (Elbanhawi and Simic, 2014; Al-Bluwi et al., 2012; Lindemann and

LaValle, 2005; Tsianos et al., 2007). Early approaches include the Random-

ized Potential Planner (RPP) (Barraquand and Latombe, 1991; Carpin and

Pillonetto, 2003) that uses random walks to escape local minimums. In the

same line, the Probabilistic Roadmap Method (PRM) (Amato and Wu, 1996;

Kavraki et al., 1996; Švestka and Overmars, 1997) was proposed, as a prob-

abilistic complete algorithm2 (Hsu et al., 2006) for generating a probabilistic

roadmap. In the learning phase, the configuration space is randomly sampled

and the collision-free nodes are connected via a local-motion planner. Then, in

the query phase, the initial and the target configurations are defined and con-

nected to the roadmap. The learning and query phases are unified in the Rapidly

exploring Random Trees (RRT) algorithm (LaValle, 1998), where the tree is in-

crementally grown from the initial to the target configurations by randomly

sampling the space. Other notable sampling-based algorithms are Expansive

Space Trees (EST) (Hsu et al., 1997), Sampling-based Roadmap of Trees (SRT)

(Plaku et al., 2005) and Adriande’s Clew (Ahuactzin et al., 1998). In general,

the sampling-based algorithms are not complete algorithms. In other words,

finding a solution either depends on a given sufficient runtime or is not guaran-

teed (Elbanhawi and Simic, 2014; Kavraki and LaValle, 2008). Combinatorial

algorithms address this shortcoming for a narrow class of problems. Combinato-

rial approaches find paths through the continuous configuration space without

resorting to an approximation, which implies their completeness (LaValle, 2006).

Early approaches, which have been widely used in industrialized scenar-

ios, addressed the problem of moving the arm between user-specified states3 by

manually moving the manipulator on the desired trajectory, and then saving the

corresponding joints’ angles in a memory unit. However, this requires a large

number of closely spaced points and the execution speed is considerably slow

(Castain and Paul, 1984). An alternative approach uses polynomials to provide

interpolated points between user-specified states at either the joint space (Cas-

tain and Paul, 1984; Lin et al., 1983) or the task space (Paul, 1979; Taylor,

2 Probabilistically completeness means that the probability of producing a solution ap-
proaches 1 as more time is spent.

3Namely the initial, the final and possible intermediate states.
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1979; Hong and Slotine, 1995). Polynomials enable the user to specify not only

the desired positions but also velocities and accelerations. As the path gener-

ated by a polynomial is continuous and smooth, there is no need to bring the

manipulator to rest at each of the intermediate points. Furthermore, a smaller

storage space is required as only the coefficients of the polynomial are needed

to be stored off-line. The use of polynomial-based motion-planning approaches

is not limited to the early works. For example, (Chu et al., 2017) proposed a

polynomial-based motion generator for maneuvering a multi-arm robotic system

that avoids collisions in a known environment.

In all the aforementioned methods, the obstacles are assumed to be static

or their motions are predictable. However, this is a very restrictive assumption

in the real-world scenarios. Hence, to accomplish these scenarios, some form of

feedback is necessary. Integrating feedback in the continuous state-space requires

defining a navigation function (LaValle, 2006). Given the current state of the

robot and a navigation function, a motion planner determines the next desired

action. As the main challenge is defining a proper navigation function, a wide

range of methods have been proposed for computing these functions.

By filling the robot’s workspace with an artificial, attractive/repulsive velocity-

field around the goal and obstacles, respectively, (Khatib, 1986) introduces the

potential-field-based motion generator. Mathematical elegance and simplicity

are the main features of this method. But, this approach has inherent prob-

lems, specifically, getting stuck in local minima, no passage between narrow

spaces, oscillations in the presence of obstacles or in narrow passages (Koren

and Borenstein, 1991). Since then, different approaches have been proposed to

address these shortcomings. (Ge and Cui, 2000) propose a repulsive potential

function to avoid local minima in a scenario where the goal and the obstacles are

near each other. The local minima caused by the symmetrically aligned robot-

obstacle-goal is addressed in (Lee et al., 2012). By defining virtual obstacles,

(Chengqing et al., 2000) reshapes non-convex obstacles to convex ones. Poten-

tial fields with respect to the robot’s kinematic constraints are discussed in (Lau

et al., 2015). The other types of local minimums are avoided by employing har-

monic potential-fields (Rimon and Koditschek, 1992; Koditschek and Rimon,

1990; Barraquand et al., 1991). In order to avoid oscillations, (Ren et al., 2006)

added the Hessian matrix to the force field. However, due to the computation

cost, the utility of the potential functions remains limited to low-dimension state

spaces.

Navigation function can be constructed by concatenating local potential

functions by sequencing a set of overlapping funnels (Choi and Latombe, 1991;

Burridge et al., 1999; Conner et al., 2006). Based on the state, a corresponding

potential function guides the robot to the next funnel. However, as mentioned in

the previous paragraph, this method has not been applied to high-dimensional

state spaces, e.g., manipulation task (Caccavale and Uchiyama, 2008). By as-

suming that the uncertainties in the dynamics of the system are bounded, (Ma-
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jumdar and Tedrake, 2017) recently proposed a two-phase (off-line and on-line)

method for maneuvering a small airplane while avoiding obstacles. The off-line

phase consists of constructing a library of different funnels within which the

state is guaranteed to remain. Then, in the on-line phase, to find a collision-free

funnel, this library is augmented with the real-time feedback from the location

of the obstacles .

By taking into account the task objectives and the kinematic/dynamic lim-

itations of the robot, Model Predictive Control (MPC) can address the short-

coming of the mentioned methods (Fox et al., 1997; Brock and Khatib, 1999;

Ögren and Leonard, 2005; Svenstrup et al., 2010; Schultz and Mombaur, 2010).

MPC, also called Receding Horizon Control (RHC), exploits the benefits of both

feed-forward and feedback controls by computing the best action with respect

to the known events within a time horizon. If the prediction horizon lasts till the

end of the motion, MPC can be formulated as a optimal control problem; which

can be used for optimizing the motion duration (Smeets and Brenner, 1995;

Shin and McKay, 1985) or actuator efforts (Chettibi et al., 2004). Compared to

the Control Lyapunov Function (CLF) framework, a stability-orientated con-

trol approach, MPC is primarily a performance-oriented local-control approach

(Primbs et al., 1999; Ögren and Leonard, 2005)4. Moreover, the performance of

MPC based architectures depends on the availability of the robot’s and envi-

ronment’s dynamics. Another main challenge is its computational complexity.

MPC requires that a constrained optimization problem be solved at each time

step.

2.1.1 Dynamical systems: overview

Unlike MPC, dynamical systems compute the next action of the robot by

considering only its current state in a closed-form solution. Hence, they are

computationally more efficient and can be used in fast and adaptive applications.

As DSs are formulated as a set of autonomous or non-autonomous differential

equitations, they can technically approximate a large set of movement primitives

that can be very simple motions, such as reaching to a fixed target (Khansari-

Zadeh and Billard, 2011), or more complex tasks such as flipping a pancake

(Kormushev et al., 2010), peeling a zucchini (Figueroa and Billard, 2017) or

playing table tennis (Paraschos et al., 2013).

DSs are widely used in modeling, not only for the motion of robotic systems

but also human motions, e.g., for reaching fixed (Bullock and Grossberg, 1988;

Berret et al., 2011) or moving (Lee et al., 1983; Dessing et al., 2002; Peper

et al., 1994) targets. As an example, in the catching scenario, the prospective

architecture suggests that the hand motions are continuously updated till the

4It is worth mentioning that, stability and convergence of MPC-based algorithms have
been addressed in the recent years (Faulwasser and Findeisen, 2016; Alessandretti et al., 2013;
Mayne et al., 2000).
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interception, based on the continuous sensory inputs, specifically, the distance

to the object (Peper et al., 1994) and the object’s velocity (Carnahan and Mc-

Fadyen, 1996; Smeets and Brenner, 1995).

A wide variety of architectures have been proposed for dynamical systems.

Neural networks (NN) and its variant are proposed for modeling discrete, rhyth-

mic, and reaching behaviors (Pearlmutter, 1988; Sudareshan and Condarcure,

1998; Lukoševičius and Jaeger, 2009; Pearlmutter, 2008). (Reinhart and Steil,

2011) proposed a recurrent network that integrates the forward and inverse

model of a robot. Despite the capability of neural networks to approximate very

complex motions, the stability of the neural-network-based dynamical systems

are studied for only one (Lemme et al., 2014; Neumann et al., 2013) or two

(Garcia-Lopez et al., 2017) hidden-layer networks. Moreover, training a neural

network requires solving a non-convex problem, i.e., it is typically computation-

ally expensive and the performance is sensitive to the initialization.

The Dynamic Movement Primitives (DMP) approach (Ijspeert et al., 2002;

Schaal, 2006) provides an accurate and globally stable non-linear approximation

of a set of demonstrations. DMP consists of two parts, a linear globally stable DS

and a non-linear regression part. Two parts are coupled through a phase variable

which is strictly decreasing to zero and controls the influence of the non-linear

part over the linear part. Hence, even though DMP is not non-autonomous, it is

inherently time-dependent, as the phase variable distorts the temporal pattern

of the dynamic.

In contrast to non-autonomous DSs, autonomous dynamical systems are de-

fined and act on the state of the system and the environment. Formulating

autonomous DSs as a non-linear combination of linear models enables the use

of many tools from the linear-systems theory for analysis and control. Two

well-known formulations of these types DSs are Gaussian Mixture Regression

(Gribovskaya et al., 2010; Calinon et al., 2007; Lee and Nakamura, 2007) and

the Hidden Semi-Markov model (Calinon et al., 2011).5 By adding constraints

on each of these linear systems, (Khansari-Zadeh and Billard, 2011) propose a

globally stable autonomous DS. This is further extended/improved to accom-

plish hitting tasks (Khansari-Zadeh et al., 2012; Kronander et al., 2011) and

catching tasks (Kim et al., 2010, 2014). (Shukla and Billard, 2012b) propose

a multi-attractor dynamical system that is based on the formulation of Sup-

port Vector Regression (SVR). Given the initial state of the system, the authors

show that the generated motion is locally asymptotically stable to the attrac-

tors within a finite region of attraction. (Hersch et al., 2008; Hersch and Billard,

2008) integrate two DSs, which act simultaneously on joint and task spaces, to

control the motion of humanoids. By modulating the generated motion of DSs,

(Khansari-Zadeh and Billard, 2012) propose an obstacle-avoidance controller for

5It is worth noting that encoding demonstrated motions by using these tools were proposed
before the introduction of DSs (Yang et al., 1997; Tso and Liu, 1996). Extensive surveys on
learning from demonstrations are available in (Hussein et al., 2017; Billard et al., 2016).
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avoiding convex shaped objects. This is further extended in (Kronander et al.,

2015) and (Sommer et al., 2017) for locally reshaping an existing stable DS with

internal and external signals, respectively.

In recent years, various new formulations for constructing/approximating au-

tonomous DSs have been proposed. (Blocher et al., 2017) exploits the contraction

theory and propose GMR-based dynamical system that contracts to a reference

trajectory. The framework proposed by (Lemme et al., 2014, 2013) improves the

re-reproducibility of the data-driven models by relaxing the quadratic condition

of the Lyapunov function. (Neumann and Steil, 2015; Perrin and Schlehuber-

Caissier, 2016) propose a diffeomorphic transformation for approximating global

asymptotic stability DSs. Given a demonstration and a reference globally asymp-

totically stable DS, the authors compute a diffeomorphic transformation that

maps the reference DS onto the demonstration. (Umlauft et al., 2017) propose

a Gaussian-process state-space model and use a data-driven Lyapunov function

to stabilize it.

In this section, we have provided an overview of motion planning approaches.

However, given the variety of the approaches, comprehensively reviewing all of

these methods is beyond the scope of this thesis. In the following sections, we

will exclusively review the exiting approaches for accomplishing the scenarios

mentioned in Section 1.2.

2.2 Soft Catching a Moving Object

The problem of catching fast-flight objects has attracted a lot of attention

during the last three decades, starting with the early works of (Lin et al., 1989)

and (Hove and Slotine, 1991). To successfully catch an object, the arm must be

at a specific place in time. The complexity of the problem increases significantly

if the object must be caught softly. In this case, the arm must intercept the object

on time, at the right place, and with a specific velocity. Planning a fast motion

with equality point constraints, such as in catching or hitting a flying object,

has been extensively studied in the literature. Fitting a polynomial trajectory

with different orders6 to predetermined points –initial, intercept and stop– is

proposed and used in (Hong and Slotine, 1995; Lippiello et al., 2013; Lippiello

and Ruggiero, 2012b,a; Senoo et al., 2006; Namiki and Ishikawa, 2003; Zhang

and Buehler, 1994; Buttazzo et al., 1994; Frese et al., 2001; Riley and Atkeson,

2002; Kober et al., 2012; Nishiwaki et al., 1997; Bätz et al., 2010; Uchiyama

et al., 2012; Cigliano et al., 2015; Murakami et al., 2015). Similarly, (Frank

et al., 2008) and (Lin and Chiu, 2008; Smith and Christensen, 2007) define a

sigmoid and linear bang-bang function between the initial and the final points,

respectively. Even though these methods are computationally efficient and can

meet the terminal constraints, they utilize time as an explicit variable. As a

6Including zeroth and first.
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result, they are highly sensitive to an imprecise estimate of the catching position

and time, and would require a complete re-planning as a new desired intercept

point is provided. Besides, there is no guarantee that the generated trajectory

can be tracked by the robot.

Optimal control or calculus of variation can address some of these issues, see

(Bäuml et al., 2010; Bäuml et al., 2011; Hujic et al., 1998; Croft et al., 1995;

Lampariello et al., 2011), by taking into account the terminal constraints and

the kinematic limitations of the robot. However, these are iterative procedures

with no guarantee to converge in a small enough number of time steps to ensure

extremely fast reactivity. Also, the convergence is highly dependent on the initial

guess.

Imitation learning is also applicable to this problem, see (Park et al., 2009;

Kim et al., 2014; Schaal et al., 1996; Hamon, 2011). By using machine learning

techniques, one can construct an expert’s set of demonstrations and use this to

model the requested dynamics of motion. If human demonstrations are provided

directly, through kinesthetic teaching, this ensures that the motions are kine-

matically feasible (Kim et al., 2014). However, the demonstrations can never be

exhaustive and extrapolation is prone to error.

Recently, (Senoo et al., 2016; Koike et al., 2016; Senoo et al., 2017) proposed

an impedance controller for achieving softness in the catching scenario. For

reducing the impact at the interception, the proposed controller drives back the

robot with respect to the measured/estimated impact force. However, due to

the real-world constraints (e.g., the bandwidth of force sensors and actuators)

this approach has been verified by a set of simulations.

In Chapter 3, we leverage the properties of autonomous DSs for immediate

re-planning and tailored a dynamical system which can intercept the object at

the desired point with the desired velocity aligned with that of the object. The

DS is expressed as a Linear Parameter Varying (LPV) system subject to stability

constraints. We show theoretically and empirically that by using the proposed

dynamical system, an object can be softly caught at the desired intercept point.

2.3 Multi Arm Coordination at Task and Joint

Spaces

The use of multi-arm system allows for manipulation of heavy or large ob-

jects. As introduced in Section 1.2, we select the task of reaching a moving object

by a multi-arm robotic system. To accomplish this task, each arm should move

in coordination with the rest of the other robotic arms such that any collision

is avoided in both joint and end-effector levels. Moreover, the resultant motion

of the arms must be coordinated with that of the object so that the object is

intercepted at the desired location by all the arms.
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Although coordinating multiple robotic arms for object manipulation has

been extensively studied in robotics literature, most effort has primarily fo-

cused on devising strategies for coordinated manipulation of static objects that

are partially or fully grasped by the multi-arm system. (Vahrenkamp et al.,

2012, 2010) proposed a RRT-based algorithm to generate collision free motions

to grasp a not-moving object with a humanoid robot. Given its search-based

strategy, this approach can guarantee feasible grasps by both arms while satis-

fying the self-collision avoidance constraints. However, due to its computational

complexity and the fact that it cannot guarantee simultaneous interception of

the object by all the arms, it becomes inadequate when trying to reach for a

moving object. (Chung and Slotine, 2009) proposed a contraction based control

algorithm for synchronizing multi robotic arms with an external agent. How-

ever, the kinematic feasibility of the intercept point has not been addressed.

Extensive surveys on coordination strategies for multi robotic arm systems are

presented in (Wimböck et al., 2012; Wimböck and Ott, 2012a; Smith et al.,

2012; Caccavale and Uchiyama, 2016).

In de-centralized control architectures, the robots are controlled separately

by their own local controllers (Liu and Arimoto, 1998; Sun and Mills, 2002). In

early approaches, the coordination between a dual-arm system is achieved by

categorizing them into two categories; namely a master and a slave. The motion

of the master robot is assumed known whereas the slave robot must follow the

master’s motion while satisfying the closed-chain geometrical constraints (Luh

and Zheng, 1987). Similarly, (Gams et al., 2015) proposed a control architecture

to perform a task of lifting an unknown object with a dual-arm system, where

the slave arm is synchronized with the master arm through a coupling guided by

position and velocity feedback errors. Although computationally efficient, this

strategy assumes a fixed master-slave relationship, which, when dealing with

moving objects, may adversely affect performance if the arms need to switch

responsibility to perform the task on-line. In (Bai and Wen, 2010), by using a

velocity feedback and force feed-forward strategy, a de-centralized controller is

proposed for transporting a flexible payload at a constants speed with multiple

arms. In this approach master/slave roles are not assigned. This approach is

limited when trying to reach for a moving object with an unpredictable motion.

Centralized controller strategies can address some of the issues that arise

from de-centralized control (Aghili, 2013; Suda et al., 2003; Wang et al., 2015).

These strategies consider the robots and the manipulated object as a closed

kinematic chain. In this line, (Wimböck and Ott, 2012b) proposed an impedance

control architecture for dual-arm manipulation, where the two end-effectors and

a virtual frame, which is a function of the end-effectors’ poses, are coupled

via spatial springs. (Zhu, 2005) proposed a motion synchronization controller

to coordinate the end-effectors of two robots when they are rigidly or flexibly

holding an object without payload. (Likar et al., 2013) proposed a velocity level

motion synchronization algorithm for controlling a cooperative dual-arm system.
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2.3 Multi Arm Coordination at Task and Joint Spaces

They introduced an augmented kinematic chain which is a representation of two

arms and the object. The corresponding Jacobian is calculated to control the

augmented kinematic chain by solving the inverse kinematics problem at the

velocity level.

By exploiting advantages of centralized and de-centralized impedance control

strategies, (Caccavale et al., 2008) proposed a control architecture to achieve a

desired impedance at both the object and the end-effector levels. Similarly, (Chi-

acchio and Chiaverini, 1998) proposed a two-level control architecture. Initially,

the desired task variables are transformed into the corresponding joint-space

motions by solving a centralized inverse kinematic problem. Then, the desired

joint motions are fed to a decentralized joint-space controller. The main advan-

tage of the decentralized control architectures is their computation cost. This

is, in particular, important in a scenario where a lot of robots are engaged. In

this case, as the computations are done locally, there is no need for a centralized

large computer cluster.

All previously mentioned works assume that the object is firmly attached to

the robots and modeled via a virtual object frame or by closing the kinematic

chain. In chapter 4.4, we exploit the idea of the virtual object to coordinate

the motion of the robots with each other and further with the real object.

The motion of each arm and the virtual object are generated by using the

proposed dynamical systems. The control architecture can generate two types

of behaviors: (i) multi-arm asynchronous task-space behaviors, where each robot

has its own target and (ii) multi-arm synchronous task-space behaviors, where

the robots’ task is to simultaneously reach-for a moving object and smooth

transition between these two behavior. By using Lyapunov theorem, we show

that by using the proposed centralized dynamical system, the goals of both

behaviors can be achieved. Then, we report the successful implementation of

the proposed architecture on two different robotic platforms.

2.3.1 Multi-Arm Self-Collision Avoidance

Self-collision avoidance is one of the main challenges in multi-arm manipu-

lations. In general, the approaches for solving collision avoidance for manipu-

lation or locomotion in humanoids can be categorized into two types: (i) plan-

ning methods which generate feasible collision-free trajectories in a known en-

vironment (Gharbi et al., 2009; Vahrenkamp et al., 2012; Escande et al., 2007;

Vahrenkamp et al., 2010; Escande et al., 2014; Chrètien et al., 2016) and (ii)

reactive approaches which solve collision-avoidance through the IK problem on-

line (Ge and Cui, 2000; Santis et al., 2007; Sugiura et al., 2007; Fang et al.,

2015; Wrede et al., 2013; Steil et al., 2014).

As reviewed in Section 2.1, planning approaches are, in general, computa-

tionally expensive. In the reaching a moving object scenario, the robots must
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be able to react quickly to external perturbations. Hence, solving for collision

avoidance must take less than 1 − 2ms which is far less than the typical com-

putation times for the state of the art planning methods; e.g., ≈ 700ms→≈ 1s

(Kanehiro et al., 2012; Orthey and Stasse, 2013) or 2715ms on a single thread

CPU7 (Chrètien et al., 2016). It is worth to note that by designing a field-

programmable gate array (FPGA), (Murray et al., 2016) could achieve dynamic

adaptation at < 1ms. However, this approach requires a prior knowledge of the

robot/environment configurations.

On the other hand, reactive approaches are computationally efficient. In

(Santis et al., 2007; Sugiura et al., 2007), by determining the minimum distance

between the robots’ segments, repulsion forces are computed and used to gener-

ate self-collision avoidance motions. (Fang et al., 2015) proposed a hierarchical-

based algorithm to determined the segments in-danger and solve the IK problem

such that the distance between these segments increases. However, as mentioned

in Section 2.1, the main shortcoming of these approaches is their sensitivity to

the local minimums. Moreover, potential-field approaches suffer from providing

no passages between closely spaced obstacles (Ge and Cui, 2000).

All the mentioned methods depend on computing minimum distances be-

tween the robotic arms to detect/avoid collisions. However, as shown in (Escande

et al., 2014), the minimum distance between robotic arms can introduce non-

linear and non-convex constraints to the optimization problem (Ratliff et al.,

2015). This, in fact, is the main reason that the planning algorithms are com-

putationally expensive and the reactive methods might not compute the global

optimum. The approaches based on signed distance fields can address these

shortcomings where the distances to the obstacles are encoded as continuous

costs in local trajectory optimization frameworks; by either providing explicit

cost gradients (Ratliff et al., 2009; Zucker et al., 2013) or through derivative-

free stochastic optimization methods (Kalakrishnan et al., 2011). However, this

approach is sensitive to the shape of the segments and fails to successfully com-

pute the feasible motion when there are many local minimums. On the same

track, by representing the robots’ workspace via Riemannian metrics and their

gradient, (Ratliff et al., 2015) provided a motion optimization framework which

can be solved in ≈ 500ms.

In chapter 4.5, we focus on providing coordination/compliance at the joint

level by solving the self-collision avoidance problem efficiently (<2 ms). To this

end, a centralized inverse kinematic solver, which is formulated as a convex

Quadratic Programming (QP) problem with respect to the linear inequity and

equality constraints, is proposed. We show that the proposed IK solver can, not

only, be solved in less than 2ms, but also, it is passive; i.e., the entire control

architecture is accordingly passive and stable.

7However, the computation time can be improved significantly to 54ms by implementing
it on GPU.
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2.4 Non-contact/Contact Motion Control

As establishing a stable contact with an environment is the first step to-

ward accomplishing interactive tasks, in the robotic/control literatures, differ-

ent control architectures have been proposed for handling a physical contact.

One approach is to regulate the contact force by decomposing the force and mo-

tion controllers; i.e., Hybrid Force/position controller (Raibert and Craig, 1981;

Khatib, 1987; Mistry and Righetti, 2012; Lin et al., 2017; Liu and Arimoto,

1998; Whitcomb et al., 1997; Jinno et al., 1995). In this approach, the position

and force controllers simultaneously govern the robot along unconstrained and

constrained directions, respectively. While the robot is in the free motion phase,

the position controller leads the robot in all the directions. Once, the robot

touches a surface, the force controller takes the lead on the constrained direc-

tions. Although a precise contact force can be achieved, stabilizing the forces

at contact is not possible as the impact lasts less than a millisecond, leaving

no time for the robot to react to the impact force. Moreover, if the contact

is unstable, where the robot bounces on the surface, a large impact force and

switching between position/forces controllers leads to chattering.

Indirect force control architectures address the problem of switching between

controllers by ensuring the desired contact force through a compliant behavior of

the end-effector (Bonitz and Hsia, 1996; Hogan, 1985; Seraji and Colbaugh, 1997;

Roveda et al., 2016; Leidner et al., 2016; Ficuciello et al., 2015). Compliance

can emerge from two different facets; i.e., passive or active. While the former

is restricted to a special set of actuators or surface materials, the latter is,

instead, achieved through the motion control. Although, these architectures have

implicitly addressed the issue of stability at impact by eliminating the need of

switching, there is no guarantee that the robot remains in the contact after the

impact.

The difficulties linked to achieving a stable contact has attracted atten-

tion in the last two decades. Early approaches addressed the stable contact

problem with position/force hybrid control architectures. (Mills and Lokhorst,

1993; Mills, 1990; Tarn et al., 1996; Heck et al., 2015) proposed a hybrid con-

trol architecture in which a stable contact can be ultimately established after

a finite number of iterations (bouncing). On the same track, (Pagilla and Yu,

2000, 2001a; Tomizuka, 1997) proposed three control laws for the three mo-

tion phases. Once the first impact is occurred, the controller in the transition

phase is activated which, asymptotically, reduces the normal velocity to zero.

In (Youcef-Toumi and Gutz, 1989), an integral force compensation with a ve-

locity feedback controller is proposed for force tracking and rejecting the effect

of impacts, where the force regulation is activated as soon as the force sen-

sor detects the impact. (Roveda et al., 2016) proposed a two-layer controller

which consists of an impedance and an admittance controllers. The parameters
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of the latter are calculated by solving a Linear Quadratic Regulator problem

to minimize the force overshooting. In (Lee et al., 2003; Jin et al., 2005), a hy-

brid impedance(admittance)/time-delayed controller is proposed to absorb the

impact force where the control input becomes zero if the contact force is not

sensed. By artificially saturating the feedback sensors and modeling the con-

tact surface via a passive mass-spring system, a controller for a 2-DOFs planar

robotic arm is proposed to limit the impact force in (Liang et al., 2007). (Tor-

nambe, 1999) shows that the classical PD feedback control law can be effectively

used for mechanical systems subject to inequality constraints. By assuming the

contact surface is a passive mass-spring system, (Dupree et al., 2008) developed

an adaptive control architecture to pushes the system to a desired set while

the dynamics of neither the robot nor the environment is precisely known. The

proposed controller in (Brogliato et al., 1997) guarantees stabilization of the

manipulator on the contact surface after a finite times of bouncing on it. Even

though in the mentioned works, it can be proved that the robot’s motion and

the contact is asymptotically/ultimately stable, there is no guarantee that the

robot remains in the contact after the first impact.

By approximating the contact surface with a passive spring system and di-

viding the state space into five regions, (Martino and Broucke, 2014) uses the

feedback force to propose piecewise affine controllers for each region such that a

stable impact is achieved for linear one dimensional systems. However, in (Mar-

tino and Broucke, 2014) the stable impact is achieved if the environment and

the tool can be precisely modeled via a spring system and the bandwidth of the

position and force sensors and the communication delays are infinite and zero,

respectively.

In Chapter 5, we leverage the properties of Dynamical Systems (DS) for

immediate re-planning and their inherent robustness to real-time perturbations

and propose an active compliant control strategy for stably contacting a surface

with a robotic arm. In Chapter 3 and Chapter 4, we proposed dynamical systems

to intercept a moving object with zero relative velocity by single or multi robotic

arms, respectively. Those proposed DSs are particularly tailored for the reaching

and compliantly intercepting moving objects. In Chapter 5, as the transition is

a local behavior, we propose a strategy consisting of locally modulating the

motion of the robot once it is close to the surface such that its velocity aligns

with the contact surface so that the stable contact can be established. The

proposed architecture can be integrated into existing DS-based motion control

approaches, where they represent the nominal arm behavior.

We show theoretically and empirically that by using the proposed modula-

tion framework, the impact happens once and the robot remains in contact after

the impact.
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Chapter 3

Softly Intercepting a
moving object with a

robotic arm

”It is not enough to be in the right

place at the right time. You

should also have an open mind at

the right time.”

Paul Erdos

1913 – 1996

3.1 Introduction

In this chapter, we tackle the problem of coordinating a robotic arm with

a moving object such that it can compliantly intercept the object at a de-

sired position. As stated before, to highlight the challenges of the problem, we

are, in particular, interested in catching flying objects as the flight and more

importantly the impact durations are extremely short, leaving less than a few

milliseconds for the hands to close on the object to such that it is tightly secured

in the grip.

By coordinating the motion of the arm with that of the object, we introduce

a soft (compliant) catching strategy which is less sensitive to timely control of

the interception. The soft catching strategy consists of having the robot move

with the object for a short period of time (Figure 3.1). This leaves not only

more time for the fingers to close on the object but also reduces the chance

of failure due to imprecise control of the time and position at which the hand

intercepts the object. The soft catching strategy we propose here assumes that

the arm-hand-object system has no mechanical compliance or that the inherent

mechanical compliance of the system is negligible in comparison to the strength

of the impact forces. Compliance is then provided through active control of the

arm motion.

To successfully catch an object softly, the arm must intercept the object on

time, at the right place, and with a specific velocity. Planning a trajectory that

satisfies the above three constraints in time, position and velocity can be done

using standard optimal control approaches. This is however time consuming and

cannot be performed within the few milliseconds at our disposal. We leverage

the properties of autonomous dynamical systems for immediate re-planning of
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3 Softly Intercepting a moving object with a robotic arm

Figure 3.1: Schematic of the soft catching strategy. The arm starts from an initial
point and moves to the intercept point, where it meets the object. It then continues its
motion aligning its trajectory with that of the object and slowly reducing its velocity,
while the fingers close on the object.

motion and devise a control law which provides the robot with a kinematically

feasible motion which intercepts the object at the desired position and with a

velocity aligned with that of the object.

This chapter starts by introducing our control law formulated as a (Linear

Parameter Varying) LPV based dynamical system to generate soft catching

motion in Section 3.3. There, we theoretically show how coupling the motion

of the robot with that of the object results in a dynamical system which can

intercept the object at the desired position with a desired velocity aligned with

the object’s velocity. Moreover, with the purpose of maximizing the softness at

the interception subject to the kinematics constraints of the robot, a closed loop

optimal control problem is suggested.

In Section 3.4, we introduce our approach for approximating the parameters

of LPV systems by using Gaussian Mixture Models (GMM), which inherently re-

sults in the normalized scheduling parameters. Hand-tuning GMM’s parameters

is tedious and time consuming. Hence. we use the Learning from Demonstra-

tions (LfD) framework as it has emerged as an tool to efficiently estimate the

open parameters of controller laws by transferring skills to robots. Apart from

the model, the LfD framework is base on two other technical components; i.e.,

(i) the optimization algorithm and (ii) the demonstrations (training data-set).

To address the former, in Section 3.4.1, we propose an optimization algo-

rithm to estimate the parameters of the model from the demonstrations. Here,

we compare our method with Stable Estimator of Dynamical systems (SEDS)

(Khansari-Zadeh and Billard, 2011) and show that the performances and the

computation cost of the proposed method is significantly better.

Since catching is an extremely rapid action, the training data-set should be
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a representative of the fastest feasible motion of the robot. It would be difficult

to have this provided by a human expert as kinesthetic teaching would not make

it possible to move the arm at its maximal speed. Hence, in Section 3.4.2 we

propose an algorithm which constructs the training data-set by solving a closed

loop optimal control problem which maximizes the robot’s velocity at each step.

The performance of the proposed method is systematically evaluated in a

real-world experiment with KUKA LBR IIWA (7 degree of freedom arm robot)

in Section 3.5 where, we choose three objects with different stiffness. The objects

are almost impossible to catch with the hard catching approach (Kim et al.,

2014) as they bounce out of the hand instantaneously, see accompanying video

here: https://youtu.be/FxvVJzb61js.

Large portions of this chapter correspond to the following publication, where

the stability and the convergence proofs were developed collaboratively with

Mahdi Khoramshahi, currently a PhD student at LASA.

• Mirrazavi Salehian, S. S., Khoramshahi, M. and Billard, A. (2016) A Dy-

namical System Approach for Catching Softly a Flying Object: Theory

and Experiment. in IEEE Transactions on Robotics, Vol. 32, No. 2, pp.

462-471, April 2016.

3.2 The Control Framework

In order to achieve stable and soft interception of a moving object with a

robotic arm, two main problems need to be solved simultaneously: (i) computing

the feasible intercept point and (ii) planning coordinated motion of the arm such

that it intercepts the object at the desired position and with desired velocity.

An overview of the proposed framework is illustrated in Figure 3.2.

As seen on the illustration, sub-component (A) predicts the future object’s

trajectory and then determines the feasible intercept point from this prediction.

It uses an estimate of the reachable workspace of the robotic arm (learned off-

line prior to experiment) and an on-line step in which it continuously measures

the object’s position from a visual tracking system. Sub-component (B) uses the

intercept points predicted from (A) and the current robot’s state to generate the

desired end-effector position. The desired end-effector motion is converted into

the desired joint motion in sub-component (C) and then it is sent to the robotic

arm. A detailed description of each of these sub-components are presented in

Section 3.2.1, Section 3.3 and Section 3.5, respectively.
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3 Softly Intercepting a moving object with a robotic arm

Figure 3.2: Block diagram for robotic intercepting an object in flight.

3.2.1 Object Trajectory and Intercept Point

Prediction

The feasible intercept point (ξO(T ∗)) is estimated by a simplified version of

catching point prediction algorithm proposed in (Kim et al., 2014). Given the

predicted trajectory of the object, this algorithm assesses the kinematics feasibil-

ity of the predicted trajectory to reach. The reachable workspace of each robot

is modeled via a probabilistic classification model p(ξO; θW ) ∀j ∈ {1, . . . ,Kr},
namely a Gaussian Mixture Model as follows:

p(ξO; θW ) =

Kw∑
l=1

πlN (ξO|µl,Σl) (3.2.1)

where πl, µl,Σl correspond to the prior, mean and covariance matrix of

the l = {1 . . .Kw} Gaussian functions, respectively, estimated by using the

Expectation-Maximization algorithm (Bishop, 2007). In order to generate the

training dataset, all possible postures of the robot are simulated by systemati-

cally testing all possible displacements of its joints. δ is the minimum likelihood

threshold and it is determined such that the likelihood of 99% of the training

points is higher than the threshold δ. If p(ξO; θW ) exceeds it, ξO is classified as

a feasible configuration.

3.3 The Compliant Dynamical System for

Softly Intercepting Moving Object

Dynamical systems are popular and powerful methods for autonomously gen-

erating stable and robust motions according to training data-points (Khansari-

Zadeh and Billard, 2011). DSs are applicable for various robotic manipulations

which need an accurate and fast re-computing of motions. Formulating DSs as

LPV systems allows modeling a wide class of non-linear systems and the use

of many tools from the linear systems theory for analysis and control (Emedi
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and Karimi, 2015). LPV systems can be thought of as a weighted combination

of linear models, each valid at a specific operating point. We consider a class of

continuous-time LPV systems given by the following model:

ξ̈(t) = A1(θ(t))ξ(t) + A2(θ(t))ξ̇(t) + u(t)

y(t) = Cg

[
ξ(t) ξ̇(t)

]T (3.3.1)

Where ξ(t) ∈ RD is the state of the dynamical system. u(t) is the control in-

put vector. y(t) is the plant output vector. θ ∈ RK×1 are the vector of scheduling

parameters1;

θ =
[
θ1 . . . θk

]T
(3.3.2)

. Ai(.) : RK → RD×D ∀i ∈ {1, 2} are the affine dependences of the state-

space matrices on the scheduling parameter and the state vectors:

A1(θ) =

K∑
k=1

θkAk1 Ak1 ∈ RD×D

A2(θ) =

K∑
k=1

θkAk2 Ak2 ∈ RD×D
θk ∈ R1×1 (3.3.3)

As we discussed in Section 3.1, soft catching can be achieved as a combination

of tracking and reaching motions. To achieve this, the following control input

vector u(t) is proposed.

u(t) =γ(t)ξ̈O −A1(θ)γ(t)ξO −A2(θ)(γ(t)ξ̇O + γ̇(t)ξO)

+ 2γ̇(t)ξ̇O + γ̈(t)ξO
(3.3.4)

Where the state of the object is denoted by ξO. 0 < γ(t) < 1 is called

softness and it is a continuous and continuously differentiable parameter. The

origin is located on the desired intercept point and must be reached at time T ∗;

i.e., ξO(T ∗) =
[
0 . . . 0

]T
. To ensure smooth tracking of the object’s motion,

the combination of the position, velocity and acceleration of the object with

the affine dependences is chosen as the control law. By substituting (3.3.4) and

1The scheduling parameters can be a function of time (t), states of the system (ξ(t)) or
external signals d(t), i.e., θ(t, ξ(t), d(t)). In the rest of this chapter, the arguments of θ are
dropped for simplicity.

25



3 Softly Intercepting a moving object with a robotic arm

(3.3.3) into (3.3.1), we have:

ξ̈(t) = γ(t)ξ̈O(t) + 2γ̇(t)ξ̇O(t) + γ̈(t)ξO(t)

+ A1(θ)(ξ(t)− γ(t)ξO(t)) + A2(θ)(ξ̇(t)− (γ(t)ξ̇O(t) + γ̇(t)ξO(t)))

y(t) = Cg

[
ξ(t) ξ̇(t)

]T (3.3.5)

Theorem 1. The dynamical system given by (3.3.5) asymptotically converges

to
[
γ(t)ξO γ(t)ξ̇O + γ̇(t)ξO

]T
; i.e.

lim
t→∞

‖ξ(t)− γ(t)ξO(t)‖ = 0 (3.3.6)

lim
t→∞

‖ξ̇(t)− (γ(t)ξ̇O(t) + γ̇(t)ξO(t))‖ = 0 (3.3.7)

if (3.3.5) meets the following constraints:

 0 I

Ak2 Ak1

T P + P

 0 I

Ak2 Ak1

 ≺ 0

0 ≺ P, PT = P

0 ≤ θk ≤ 1,

K∑
k=1

θk = 1

∀k ∈ {1, . . . ,K} (3.3.8)

where ≺ 0 refers to negative definiteness of a matrix.

Proof : see Appendix A.1.

If we assume that γ(t) is constant, (3.3.5) is a combination of two motions;

i.e., reaching and tracking. In this equation, setting γ = 0 yields a reaching

dynamical system; i.e., lim
t→∞

[
ξ(t) ξ̇(t)

]
=
[
ξO(T ∗) 01×D

]T
. Hence, the posi-

tion constraint is satisfied. However, the time and velocity constraints are not

satisfied. Setting γ = 1 results in a tracking motion with an error decreasing

asymptotically according to:

ξ̈(t)− ξ̈O(t) = A1(θ)(ξ(t)− ξO(t)) + A2(θ)(ξ̇(t)− ξ̇O(t)) (3.3.9)

By varying the value of the gamma parameter, one can ensure that the robot

reaches the object not only with the right velocity, but also at the right time

and location. This is summarized in the following Proposition:

Proposition 1. The dynamical system given by (3.3.5) reaches the desired in-
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Table 3.1: Pseudo-code for the optimal control formulation for maximizing the soft-
ness of catching.

Do for each step i
γ̈[i+ 1] =argmax

γ̈
(γ[i+ 1])

subject to:
0 < γ[i+ 1] < 1 (Alg-1-1)
−Υ ≤ γ̈[i+ 1] ≤ Υ (Alg-1-2)
γ̇[i+ 1] = γ̇[i] + γ̈[i+ 1]∆t (Alg-1-3)
γ[i+ 1] = γ[i] + γ̇[i+ 1]∆t (Alg-1-4)

ξ̈[i+ 1] is calculated from (3.3.5) (Alg-1-5)

−J(q[i])q̇max ≤ ξ̇[i+ 1] ≤ J(q[i])q̇max (Alg-1-6)

−J̇(q[i])q̇max − J(q[i])q̈max ≤ ξ̈[i+ 1] ≤ J̇(q[i])q̇max + J(q[i])q̈max (Alg-1-7)
δ ≤ p(ξ[i+ 1]; θW ) (Alg-1-8)

tercept point (ξO(T ∗)) asymptotically with a velocity aligned with that of the

object, ξ̇(T ∗) ≈ γξ̇O(T ∗).2

Proof : The intercept point is located on the object’s trajectory and, as

mentioned before, it is the origin. Hence, γξO(T ∗) =
[
0 . . . 0

]T
and γξO

crosses ξO at the desired intercept point. Since the arm is ensured to reach

asymptotically γξO, it is ensured to intercept the object at the desired inter-

cept point (Theorem 1). Moreover, the arm’s velocity will be a velocity vector

proportional to that of the object, i.e., ξ̇(T ∗) ≈ γξ̇O(T ∗). �

On one hand, by increasing the value of γ, the end-effector’s velocity at the

intercept point gets closer to the object’s velocity; i.e., more softness in catching.

On the other hand, the generated trajectory may get kinematically infeasible

for the robot to track. In order to generate a kinematically feasible trajectory

with maximum softness in catching, we propose a closed loop optimal control

which is formulated in Table 3.1. The goal is to maximize the softness (γ(t))

while ensuring that the trajectory is kinematically feasible for a robot to track.

This introduces a constrained optimization problem at each step which can be

formulated as a non-linear Programming (NLP) problem.

In Table 3.1, ≤ corresponds to the component-wise inequality. Υ is a large

positive number. ∆t is the time step. q[i] is the joint configuration which is

corresponding to the end-effector position and orientation ξ[i]; i.e., ξ[i] = F(q[i])

where F is the robot forward kinematic function. (Alg-1-1) satisfies the velocity

constraint in a soft catching motion. (Alg-1-6) and (Alg-1-7) guarantee that

the velocity and acceleration of the generated motion are kinematically feasible

for the robot. The feasibility of the generated motion at the position level is

guaranteed by (Alg-1-8), where the workspace of the robot is modeled through

a probabilistic representation of the feasible postures (3.2.1).

2We assume that the dynamical system (3.3.5) is fast enough to converge to the acceptable

neighbourhood of the desired trajectory γ
[
ξO ξ̇O

]T
before the catching time; i.e., ‖ξ(T ∗)−

γξO(T ∗)‖ ≤ ε and ‖ξ̇(T ∗)− γξ̇O(T ∗)− γ̇ξO(T ∗)‖ ≤ ε, where ε is a small positive number.
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Figure 3.3: The behavior of 1-D forced dynamical system subject to the value of
γ and γ̇. γ̇ = 0 in (a). (b) and (c) show the behavior of the 1-D system when γ̇ is
constant and time-varying, respectively. (d) and (e) show the corresponding value of
γ in (b) and (c), respectively. In (c), the virtual workspace constraint is satisfied as
Table 3.1 is used to optimize the value of γ.
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Example: Consider (3.3.5) as the following 1-D dynamical system with one

scheduling parameter.

{
A2 = −12

A1 = −36
⇒ ξ̈ = −12ξ̇ − 36ξ + u(t) (3.3.10)

This is a critically damped system which asymptotically converges to zero

from an arbitrary initial condition (ξ(0) = 2, ξ̇(0) = 0). Let’s assume the

following dynamic model for the object.

ξ̈O(0) = 0.1 ξ̇O(0) = 1 ξO(0) = −3 (3.3.11)

The solutions of (3.3.5) for this example are illustrated in Figure 3.3 for

different values of γ and γ̇. It shows that for all the values of γ, γ̇ and γ̈,

the generated trajectories join the object’s trajectory on time at the origin.

Moreover, by increasing the value of γ, the end-effector’s velocity is getting

closer to the object velocity: compare the black line with the purple line in

Figure 3.3a. Figure 3.3c shows an example of use of Table 3.1 to generate a

feasible trajectory where there is a geometrical constraints on the motion of the

dynamical system.

In order to use the LPV dynamical system (3.3.1) to successfully catch a

flying object softly, the scheduling parameters must be accurately and precisely

modeled. Next, we propose a GMR based second order dynamical system and

reformulate it to model the unforced3 LPV dynamical system (3.3.1).

3.4 Approximating The Parameters of

LPV-Based Dynamical Systems

One typical choice is to approximate LPV systems by using linear regres-

sion models. The most popular approaches to perform this approximation use

polynomial or periodic functions (Bamieh and Giarre, 2002). In this section,

we introduce a probabilistic approach for approximating the parameters of the

LPV based dynamical systems from a training data-set using Gaussian Mixture

Regression (GMR). Approximating LPV systems via a GMR inherently results

in a normalized scheduling parameters; i.e., 0 < θk ≤ 1,
∑K
k=1 θ

k = 1. Having

normalized parameters is advantageous for two reasons. First, it bounds the

search space. Second, the parameters can be approximated independent of the

stability constraints.

For the sake of completeness, in the following, we present our approach for

3In this thesis, we call the LPV dynamical system (3.3.1) “unforced” if u(t) = 0.
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3 Softly Intercepting a moving object with a robotic arm

approximating both first and second-order dynamical systems. To estimate an

unforced first-order LPV dynamical system with Gaussian Mixture Model, the

mean (µk) and the covariance matrix (Σk) of a Gaussian kth are defined by:

µk =

[
µkξ
µk
ξ̇

]
Σk =

[
Σkξ Σk

ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

]
(3.4.1)

A representation of an unforced first order LPV system with GMM is for-

mulated as:

ξ̇ =

K∑
k=1

hk(ξ)Akξ + bk (3.4.2)

where



Ak = Σk
ξ̇ξ

(Σkξ )−1

bk = µk
ξ̇
−Akµkξ

hk(ξ) =
P k(k)P k(ξ|k)
K∑
i=1

P k(i)P i(ξ|i)

(3.4.3)

In this formulation, P k(k) = πk is the prior probability of each Gaussian

component and P (ξ|k) = N (ξ|µk,Σk) denotes the conditional probability dis-

tribution function (pdf) corresponding to the kth Gaussian function. Hence,

0 < hk(ξ) ≤ 1 is a continuous and continuously differentiable function.

To estimate an unforced second-order LPV dynamical system with Gaussian

mixture model, the parameters of the DS become the priors (πk), the means (µk)

and the covariance matrices (Σk) of the k ∈ {1, ...,K} Gaussian function. The

mean and the covariance matrix of a Gaussian kth are defined by:

µk =


µkξ
µk
ξ̇

µk
ξ̇

µk
ξ̈

 Σk =


Σkξ Σk

ξξ̇
Σk
ξξ̇

Σk
ξξ̈

Σk
ξ̇ξ

Σk
ξ̇

Σk
ξ̇

Σk
ξ̇ξ̈

Σk
ξ̇ξ

Σk
ξ̇

Σk
ξ̇

Σk
ξ̇ξ̈

Σk
ξ̈ξ

Σk
ξ̈ξ̇

Σk
ξ̈ξ̇

Σk
ξ̈

 (3.4.4)

A representation of an unforced second order LPV system (3.3.1) with GMM

is formulated as:

[
ξ̇

ξ̈

]
=

K∑
k=1

hk(ξ, ξ̇)

([
0 I

Ak
1 Ak

2

][
ξ

ξ̇

]
+

[
0

bk

])
(3.4.5)
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where



 0 I

Ak
1 Ak

2

 =

Σk
ξ̇ξ

Σk
ξ̇

Σk
ξ̈ξ

Σk
ξ̈ξ̇

Σkξ Σk
ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

−1

bk = µk
ξ̈
−Ak2µkξ̇ −A

k
1µ

k
ξ

hk(ξ, ξ̇) =
P k(k)P k([ξ ξ̇]T |k)
K∑
i=1

P i(i)P i([ξ ξ̇]T |i)

(3.4.6)

In this formulation, P k(k) = πk is the prior probability of each Gaussian

component and P k([ξ ξ̇]T |k) = N ([ξ ξ̇]T |[µkξ µkξ̇ ]T ,

[
Σkξ Σk

ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

]
) denotes the con-

ditional probability distribution function (pdf) corresponding to the kth Gaus-

sian function. By expanding (3.4.5), (3.4.5) is equivalent to the unforced LPV

dynamical system (3.3.1) if bk = 0 ∀k ∈ {1, . . . ,K}; i.e.

ξ̈ =

K∑
k=1

hk(ξ(t), ξ̇(t))Ak1ξ(t) +

K∑
k=1

hk(ξ(t), ξ̇(t))Ak2 ξ̇(t) (3.4.7)

3.4.1 Learning First and Second Order

Asymptotically Stable Models

Consider a data set of training data-points {ξm, ξ̇m, ξ̈m}Mm=1 that denotes ex-

amples of kinematically and dynamically feasible trajectories of the end-effector

where M is the number of data-points. Based on this data-set, one can learn

either a first order or a second order dynamical system by approximating the

mapping from {ξm} to {ξ̇m} or from {ξm, ξ̇m} to {ξ̈m}, respectively. In order to

estimate the parameters of a stable first order dynamical system given in the

form by (3.4.2), we propose the following learning algorithms which uses Mean

Square Error as a means to quantify the accuracy of the estimation:

min
θ
C(θ) =

M∑
m=1

‖ξ̇m − ξ̇‖2 (3.4.8)

subject to :


AkTP + PAk ≺ 0

0 ≺ P, PT = P

bk = 0,


0 ≺ Σk

0 < πk ≤ 1
K∑
k=1

πk = 1

(3.4.9)
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3 Softly Intercepting a moving object with a robotic arm

for ∀k ∈ {1, . . . ,K} . C(Θ) is the cost function and Θ is the GMM parame-

ters. ξ̇ is computed directly from (3.4.2).

Similarly, to estimate the parameters of a stable second order DS given in

the form by (3.4.5), the following learning algorithm is proposed:

min
θ
C(θ) =

M∑
m=1

‖ξ̈m − ξ̈‖2 (3.4.10)

subject to :

 0 I

Ak
1 Ak

2

T P + P

 0 I

Ak
1 Ak

2


︸ ︷︷ ︸

Ak

≺ 0

0 ≺ P, PT = P

bk = 0,


0 ≺ Σk

0 < πk ≤ 1
K∑
k=1

πk = 1

(3.4.11)

for ∀k ∈ {1, . . . ,K} . C(Θ) is the cost function and Θ is the GMM parame-

ters. M is the number of the training data-points. ξ̈ is computed directly from

(3.4.5).

The group of constrains on the left-hand-side of (3.4.11) or (3.4.9) ensures

asymptotic stability, while the group of constraints on the right-hand-side follows

from the definition of the Gaussian Mixture Models.

Our algorithm, introduced in Table 3.2, solves the NLP problems (3.4.8) and

(3.4.10) in two steps. In the first step, we use the Expectation-Maximization

(EM) algorithm to only find the parameters of the scheduling functions; i.e.,

{πk, µkξ , Σkξ} ∀k ∈ {1, . . . ,K} for a first order and {πk, µkξ , µkξ̇ , Σkξ , Σk
ξ̇
, Σk

ξ̇ξ
} ∀k ∈

{1, . . . ,K} for a second order DS. In the second step, Ak, P, ∀k ∈ {1, . . . ,K}
are simultaneously estimated. Due to the product between Ak and P , the prob-

lem (3.4.9) or (3.4.11) is not convex. There are several approaches to solve this

problem. The easiest way is to assume that P is a known matrix by guessing it in

advance. As a result, (3.4.9) or (3.4.11) are converted to a convex optimization.

Even though this approach is computationally fast, it is very conservative as the

solution depends very much on this guess. The other approach simultaneously

estimates both Ak and P . Despite the fact that this approach is non-convex,

based on our experience, it usually results in a better local minimum than the

first approach. Hence, all the simulations are done by using this approach.

Algorithm 3.2 is implemented in Matlab. The initialization of the EM is done

by K-means algorithm. We use Yalmip (Löfberg, 2004) interface and Penlab

(Fiala et al., 2013) solver to solve the optimization step of the algorithm. The

source code of the learning algorithm is available on-line and can downloaded

from

https://github.com/sinamr66/SESODS lib.

32

https://github.com/sinamr66/SESODS_lib


3.4 Approximating The Parameters of LPV-Based Dynamical
Systems

Table 3.2: Learning GMM based LPV dynamical systems. For sake of clarity,
we separately explain the learning algorithms for first and second order systems
in 3.2a and 3.2b, respectively. The learning algorithm can be easily extended to
higher orders. The source code of the learning algorithm is available on-line at here:
https://github.com/sinamr66/SESODS lib.

(a) Learning algorithm for LPV based first order DSs

Inputs: K, {ξm, ξ̇m}Mm=1

Output: Θ = {πk, µk,Σk} ∀k = {1, . . . ,K}

1- Initialization step:
1-1- Run EM over {ξm}Mm=1 to find an estimate of

{πk, µkξ , Σkξ} ∀k = {1, . . . ,K}.
1-2- Initialize the scheduling functions

hk(ξ) = Pk(k)Pk(ξ|k)
K∑
i=1

P i(i)P i(ξ|i)

2- Optimization step:
Solve:

min
Ak,P

C(θ) =
∑M
m=1 ‖ξ̇m − ξ̇‖2 ∀k ∈ {1, . . . ,K}

s.t.:
(Ak)TP + P (Ak) ≺ 0
0 ≺ P, PT = P

where :

ξ̇ =
K∑
k=1

hk(ξ)Akξ

(b) Learning algorithm for LPV based second order DSs

Inputs: K, {ξm, ξ̇m, ξ̈m}Mm=1

Output: Θ = {πk, µk,Σk} ∀k = {1, . . . ,K}

1- Initialization step:

1-1- Run EM over {ξm, ξ̇m}Mm=1 to find an estimate of
{πk, µkξ , µkξ̇ , Σkξ , Σk

ξ̇
, Σk

ξξ̇
} ∀k = {1, . . . ,K}.

1-2- Initialize the scheduling functions

hk(ξ, ξ̇) = Pk(k)Pk([ξ ξ̇]T |k)
K∑
i=1

P i(i)P i([ξ ξ̇]T |i)

2- Optimization step:
Solve:

min
Ak,P

C(θ) =
∑M
m=1 ‖ξ̈m − ξ̈‖2 ∀k ∈ {1, . . . ,K}

s.t.: [
0 I

Ak
1 Ak

2

]T
P + P

[
0 I

Ak
1 Ak

2

]
︸ ︷︷ ︸

Ak

≺ 0

0 ≺ P, PT = P
where :[

ξ̇

ξ̈

]
=

K∑
k=1

hk(ξ, ξ̇)

[
0 I

Ak
1 Ak

2

] [
ξ

ξ̇

]
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3.4.1.1 Performance evaluation

The performance of Algorithm 3.2 is assessed by two sets of simulations.

The first set of simulations is designed to qualitative and qualitatively assess the

performance of Algorithm 3.2a in learning a stable first order dynamical system

on a data set illustrated in Figure 3.4. Here, we compare the performance of

Algorithm 3.2a with SEDS (Khansari-Zadeh and Billard, 2011). In the second

set of simulations, the performance of Algorithm 3.2b is evaluated against a

library of human handwriting motions (Khansari-Zadeh and Billard, 2011) for

approximating a second order dynamical system.

The first set of simulations

The data set illustrated in Figure 3.4 consists of three different motions

and each motion is demonstrated 20 times. The first set of motions (Figure

3.4a) contains non-linearities near the target position. The second set of motions

(Figure 3.4b) encapsulate steep changes. The third set of motions (Figure 3.4c)

is a combination of cyclic and straight line motions. Each data-set is randomly

separated into a training and a testing data sets; i.e., the blue lines are the

training data set and the red lines are the testing data set.

The results of SEDS and Algorithm 3.2a are preliminary qualitatively com-

pared for different numbers of the Gaussian components; see Figure 3.5. In

general, as it is illustrated, both algorithms are capable of encoding the general

shape of demonstrated motions. However, each algorithm has it own advantages

and disadvantages. Ours is advantageous in encoding more local non-linearity

in a DS. It is clearly visible in Figure 3.5a and Figure 3.5c where the motion of

the DS at the neighborhood of the target point is adapted to the non-linearities

of the demonstrations. Even though, this feature is useful in approximating very

non-linear dynamics, it can also result in jerky motions. For instant, as can be

seen in Figure 3.5a, encoding the non-linearities of the demonstrations comes

with the cost of jerky mentions.

In the next step, Algorithm 3.2a is systematically compared with SEDS in

terms of computation cost and the optimality of the parameters. The training

and testing data sets are illustrated in Figure 3.4a. The performance metric for

the optimality of the parameters is

ė =
1

M

M∑
m=1

∥∥∥∥1− ξ̇T ξ̇m

‖ξ̇‖‖ξ̇m‖

∥∥∥∥ (3.4.12)

, which calculates the differences between the directions of ξ̇ and ξ̇m. Figure

3.6a compares the optimality of the parameters of the Algorithm 3.2a and SEDS,

where the number of the Gaussian components is 10 and both algorithms are

run 25 times. Clearly the performance of Algorithm 3.2a is significantly better

than SEDS. Another advantage of the proposed algorithm is its computational

cost. The computation costs of both algorithms are systematically compared.

The results are illustrated in Figure 3.6b and Figure 3.6c.
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Figure 3.4: Illustration of the data-set. There are 20 demonstration pairs in each class
and approximately half of them are the test data and the other half are the training
data points. The training and testing data-sets are indicated by blue and red lines,
respectively.
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(a) The first set of motions. For K = 4 and K = 18 , SEDS fails to encode the
non-linear motions near the target and approximate them with a straight line. As it
is highlighted by a box, Algorithm 3.2a results in a jerky motions for K = 18.
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(b) The second set of motions. Both algorithms could encode the steep changes in the
demonstrations.
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(c) The third set of motions. For K = 4 and K = 11 , SEDS fails to encode the
straight line motions near the target as the cyclic motions are dominating.

Figure 3.5: A qualitative comparison between the results of the SEDS algorithm and
Algorithm 3.2a to estimate a first order stable dynamical system.
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Figure 3.6: In Figure 3.6a, the results of the cross validation are illustrated. Figure
3.6c illustrates the training time where the number of the components varies from 1
to 25. In Figure 3.6b, the number of the Gaussian components is 10.
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Table 3.3: Performance of Algorithm 3.2b in learning 11 human handwriting motions
(Khansari-Zadeh and Billard, 2011).

Average/Range of ė
Average/range of Number
of the Gaussian components

Average/range
of Training Time (Sec)

15.94 [6.85− 22.35] 2.8182 [1− 6] 78.91 [7.46− 244.11]

The second set of simulations

In the second set, the performance of Algorithm 3.2b is evaluated against

a library of human handwriting motions (Khansari-Zadeh and Billard, 2011)

for approximating a second order dynamical system. Figure 3.7 shows the qual-

itative results of the estimated motions. In all the experiments, we ran the

initialization several times, and we illustrate the result from the best trial. The

quantitative results of the proposed method is represented in Table 3.3.

3.4.2 Constructing the training data-set for the soft

catching scenario

In the previous section, we present an algorithm to approximate the param-

eters of the LPV based DSs using a set of demonstrations. In this section, we

seek to construct the training data-set {ξm, ξ̇m, ξ̈m} that encompass examples

of kinematically and dynamically feasible trajectories of the end-effector to the

intercept point. Moreover, as catching is an extremely rapid action, the training

data-set should be a representative of the fastest feasible motions of the robot.

As it would be difficult to have these provided by a human expert, as kines-

thetic teaching would not make it possible to move the arm at its maximal

speed, we opt for generating the desired demonstrations through an off-line op-

timal control problem; i.e., Algorithm 3.4. The algorithm consists of two main

steps. In step 1, the initial rI and the final rD positions of the end-effector are

chosen inside the workspace of the robot. In step 2, the end effector is moved

with maximum acceptable velocity and acceleration along a straight line from

the initial position to a set of intercept points rD located in its workspace. Since

the maximum feasible velocity and acceleration of the end-effector depend on

the joint configuration, these need to be calculated at every step. To relax the

constraints of the optimization problem, (Alg-2-4) is defined as an inequality

constraint. (Alg-2-1) and (Alg-2-2) guarantee the feasibility of the motion in

the velocity and acceleration levels, respectively. Note that, this algorithm does

not minimize the motion duration, but the generated motion is the fastest at

each step time. In Algorithm 3.4, q, q̇max, q̈max ∈ Rm are the joint configura-

tion, the maximum acceptable joint velocity and acceleration, respectively. ξm

is the end-effector’s state. F : Rm → RD is a known forward kinematic function

for the robot. J(q) ∈ RD×m is the Jacobian matrix. ε is a small positive number.

The constructed data-set is illustrated in Figure 3.8.
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Table 3.4: Pseudo-code for generating the fastest kinematically feasible demonstra-
tions.

Step 1: Initialization
Set i = 1 and define a fixed initial end-effector position rI .

ξm[i] = rI , ξ̇m[i] = [0], ξ̈m[i] = [0]
q[i] = F−1(rI), q̇[i] = [0], q̈[i] = [0]
Randomly define an attractor (rD) inside the workspace of the robot.
Step 2: Trajectory planning
While ‖rD − ξm[i]‖ ≥ ε

q̈[i+ 1] =argmax
q̈

(‖q̇[i+ 1]‖)

subject to:
− q̈max ≤ q̈[i+ 1] ≤ q̈max (Alg-2-1)
− q̇max ≤ q̇[i+ 1] ≤ q̇max (Alg-2-2)
q̇[i+ 1] = q̇[i] + ∆tq̈[i+ 1] (Alg-2-3)

‖ rD−ξm[i]
‖rD−ξm[i]‖ −

J(q[i])q̇
‖J(q[i])q̇‖‖ ≤ ε (Alg-2-4)

Calculate the next joint configuration:
q̇[i+ 1] = q̇[i] + ∆tq̈[i+ 1].
q[i+ 1] = q[i] + ∆tq̇[i+ 1].
ξm[i+ 1] = F(q[i+ 1]).

ξ̇m[i+ 1] = J(q[i+ 1])q̇[i+ 1].

ξ̈m[i+ 1] = J̇(q[i+ 1])q̇[i+ 1] + J(q[i+ 1])q̈[i+ 1].
i = i+ 1.

End
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Figure 3.8: The data-set contains 67 demonstrations. The initial point is fixed to the
robot’s candle position.
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3 Softly Intercepting a moving object with a robotic arm

Figure 3.9: Top view illustration of the set-up. The operator stands in-front of the
robot and throws the object. The motion of the flying object is captured by 18 cameras.

3.5 Soft Catching In Flight Objects:

Experimental Results

The performance of the proposed framework is evaluated on a real platform,

7 DOF robot arm, KUKA LBR IIWA mounted with a 16 DOF Allegro hand. The

output of the dynamical system (3.3.5) is converted into the 7-DOF joints state

using the velocity based control without joint velocity integration (Nakanishi

et al., 2005b). In order to avoid high torques, the resultant joint angels are

filtered by a critically damped filter. The robot is controlled in the joint position

level at a rate of 500 Hz. As the joint position controller of the robot is a

high gain perfect tracking controller and to avoid unexpected noises and delays

in measuring the joint position of the robot, (3.3.5) runs in closed-loop via

computing the current end-effector position by using the filtered resultant joint

angels; see Figure 3.2. A top-view sketch of the set-up is illustrated in Figure

3.9.
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The Initial end effector position

The desired intercept point

Figure 3.10: The final intercept points in the soft catching experiments. The initial
position of the palm is

[
−0.05 0.00 1.134

]
m. For clarity of the illustration, only

seven examples of the soft catching motions and the object trajectories are shown.
The object trajectories are plotted from the first points till the stop points. The first
point is the first object position which is used for predicting the feasible intercept
position. The experimental results verifies that the catching motion intercepts the
object at the desired point with the desired velocity.

In order to coordinate the motions of all joints –the arm and the fingers

joints–, the coupled dynamical system (CDS) model (Shukla and Billard, 2012a)

is utilized to generate the fingers motion. This approach consists of coupling

two different dynamical systems; i.e., the end-effector motion and the fingers

motion. The motion of the end-effector is generated independently from the

fingers states, while the fingers motion is a function of the state of the end-

effector and the object. The metric of the coupling is the distance between the

end-effector and the object (‖ξ − ξ0‖). As a result, the fingers close when the

object gets inside the hand and they reopen when the object moves away.

We choose three objects with different stiffness; a very stiff small plastic

ball, a stiff fabric brick and a semi-stiff toy. The objects are almost impossible

to catch with the hard catching approach (Kim et al., 2014) as they bounce out

of the hand instantaneously, see the video https://youtu.be/FxvVJzb61js. The

position of the objects are captured by the Optitrack motion capture system

from Natural point at 240 Hz. Since the control loop is faster than the capturing

system, the predicted position of the object is used as the object position in

(3.3.5).

To validate the algorithm, the experiment was repeated 20 times for each

object. The objects were thrown by a human operator. Data of the experimental

results are summarized in Table 3.5. The initial position of the object is ran-

domly changed. As the plastic ball and the brick are stiffer than the toy, a softer

interception is required for accomplishing the catching. Hence, the experimenter
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Figure 3.11: The position of the end-effector generated by the dynamical system
(3.3.5). The illustrated object trajectory is the predicted trajectory of the uncaught
object. This trajectory is illustrated from the first point till the stop point. The initial
value of γ is 0.2 and Algorithm 1 maximizes it with respect to the kinematic constraints
of the robot. As expected, the output of (3.3.5) softly intercepts the objects trajectory
at the desired intercept position. In order to stop the robot, the velocity of the robot
is linearly reduced during the post-interception period (0.3s).
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3.5 Soft Catching In Flight Objects: Experimental Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.12: The brick is thrown. In (a), the object trajectory prediction algorithm
is being initialized. (b) is approximately the first point. (e) is the interception. One
can stop the robot the robot in (g) as the fingers are closed. But it might damage the
robot. A corresponding video is available at https://youtu.be/l9UFsRAM XM
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3 Softly Intercepting a moving object with a robotic arm

Table 3.5: The details of the soft catching experiments. All the positions are in respect
to the base of the robot. The throwing positions are randomly chosen. The robot does
not move till the first intercept point is calculated. As the first 0.4m of the throwing
in x direction is used to initialize the object prediction trajectory (Kim and Billard,
2012). Time of the flight is the duration of the object flight from the first point till the
intercept position. Softness is the softness of the object interception. All the object are
thrown 20 times and are caught by the hard (Kim et al., 2014) and our soft catching
algorithms.

The small ball
Stiffness Too stiff

Throwing position (m)
[
−1.68± 0.14 ,−0.07± 0.02 , 1.18± 0.06

]
First point (m)

[
−1.29± 0.14 ,−0.03± 0.03 , 1.30± 0.05

]
Time of flight (s) 0.32± 0.03
Softness (γ) 0.67± 0.06
Soft catching success rate %70
Hard catching success rate %0.0

The brick
Stiffness stiff

Throwing position (m)
[
−1.84± 0.07 −0.05± 0.02 1.11± 0.04

]
First point (m)

[
−1.46± 0.07 −0.01± 0.03 1.25± 0.030

]
Time of flight (s) 0.33± 0.02
Softness (γ) 0.66± 0.04
Soft catching success rate %70
Hard catching success rate %0.0

The toy
Stiffness semi-stiff

Throwing position (m)
[
−1.52± 0.62 −0.02± 0.07 1.14± 0.27

]
First point (m)

[
−1.14± 0.62 0.03± 0.07 1.22± 0.39

]
Time of flight (s) 0.32± 0.00
Softness (γ) 0.50± 0.02
Soft catching success rate %75
Hard catching success rate %5.0
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3.5 Soft Catching In Flight Objects: Experimental Results

(a) −0.447s (b) −0.300s (c) −0.260s

(d) −0.193s (e) −0.077s (f) 0.0 s

Figure 3.13: Snapshots of the finger motions. The object is intercepted in (d) and
caught in (f). It is important to note that the closure time for fingers varies with the
incoming object speed.

placed himself farther away from the robot than when throwing the toy. First,

the prediction of the object’s trajectory requires some time and uses almost all

of the first 0.4 meter of the object flight in x. In addition, to ensure that the

object travels at a reasonable speed, leaving enough time for the robot to travel

to the desired position, a distance between the robot and the initial position of

the object should be no more than 1.5m which approximatively results in 0.33s

flight time. Due to imperfect prediction of the object’s trajectory, the feasible

intercept point needs to be updated and redefined during the catching. The new

feasible intercept point is chosen in the vicinity of the previous one to minimize

the convergence time and improve the success rate of catching. The feasible

intercept point is updated approximately 29 times during the flight time. The

intercept points are illustrated in Figure 3.10. In this figure, the origin is the

position of the base of the robot. As the right hand of the Allegro hand is used,

the experimenter threw the objects mostly to the right side of the robot.

The initial values of γ and γ̇ in (3.3.5) are set to 0.2 and 0, respectively.

COBYLA algorithm (Powell, 1994) of Nlopt library (Johnson, 2015) is used for

solving the closed loop optimal control, where the maximum optimization time

is set 0.001s . An example of the desired robot trajectory and the unperturbed

object predicted trajectory are shown in Figure 3.11. As expected, the end-
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3 Softly Intercepting a moving object with a robotic arm

effector converges to the object at the intercept point and continues to track

the object’s predicted trajectory. The snapshots of the real robot experiments

are shown in Figure 3.12 and Figure 3.13. As the closure time of the hand is

approximatively 0.1s, one can immediately stop the robot when the hand is

closed on the object. However, this may damage the robot. Hence, we reduce

the end-effector velocity in 0.3s to avoid high torques.

The overall success rate of the soft catching reached %71.6, see Table 3.5.

To compare and to assess the improvements, the experiments were repeated

with the similar initial conditions for the hard catching scenario. The overall

success rate was very low and did not exceed %1.6. Visual inspection of the

data and video confirmed that this poor result for the hard catching scenario

was essentially due to the fact that the objects bounce out of the hand. The

causes of failure for the soft catching strategy can be categorized into three

different categories.

i) The main cause of the failure is due to the inability of generating an

accurate joint-level motion corresponding to the desired end-effector trajectory;

the toy (3 out of 5), the brick (3 out of 6) and for the plastic ball (2 out of

6). As the motion is too fast, the end-effector does not accurately track the

desired motion. The tracking error between the desired and the actual end-

effector positions is approximately
[
0.03± 0.02 0.01± 0.01 0.02± 0.01

]T
m.

This error results in situations where the object is hit by the thumb or undesired

parts of the hand and bounces away.

ii) As the Allegro hand has only four fingers, there is a space between the

fingers and the palm at the grasp configuration. The small plastic ball can

escape the grasp using this space, (2 out of 6). For the other objects, this issue

is negligible as there are big enough to be caught with four fingers.

iii) To track the object, all the markers must be visible to the cameras. In four

cases, the brick (3 out of 6) and the plastic ball (1 out of 6), the tracking started

very late, for lack of visible markers. As a result, the robot was not able to reach

the desired intercept point on time and interception occurred at an undesired

point. In these cases, the side of the hand hit the object or the interception

was not soft enough. As the intercept point is approximately updated 29 times

during flight, the first prediction of the object trajectory plays a main role in

defining the intercept point. If the initial prediction of the object’s trajectory

is very inaccurate, the updated intercept points will be far from each other.

As a result, (3.3.5) does not converge to the latest desired trajectory on time.

This was the case for trials using the toy (2 out of 5). Finally, in one trial with

the plastic ball (1 out of 6), the first point is too close to the robot and the

trajectory prediction does not work. In this case, the object hits and bounces

away. However, the robots tried to reach the bounced object.
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3.6 Conclusion and Discussion

In this chapter, we proposed a framework to compliantly intercept a moving

object with a robotic arm where the mass of the object is very small in compar-

ison to that of the arm and the force at the impact was negligible in comparison

to the robot’s natural inertia. Two important constraints need to be satisfied in

the compliant interception; namely reaching the object’s trajectory at the right

place with a velocity aligned with that of the object. The motion should be fast

enough to intercept the object on time. This, of course, depends on having ap-

propriate hardware. If provided with a robot that can travel fast enough within

the required time, then, our algorithm ensures that the robot will intercept the

object on time, at the desired point with the desired velocity direction.

Proof of asymptotic stability was done by using Lyapunov stability theorem.

Specifically, we showed that our LPV based dynamical system asymptotically

converges to the object trajectory and intercept it exactly at the desired point.

In order to improve the softness of catching, we proposed a closed loop optimal

control problem to maximize the value of the softness subject to the kinematic

constraints of the robot. Furthermore, a new GMM based method is proposed

for accurately approximating and modeling the parameters of LPV systems.

Approximating the parameters of the LPV systems via a GMM based model has

its own advantages and disadvantage. Using GMM is advantageous in that it can

accurately model the training data points. Moreover, the scheduling parameters

are of class C∞ and the transitions between the scheduling parameters are

smooth. However, as the proposed learning algorithm is not convex; i.e., the

performance of the learned dynamical system depends on the initialization.

Proposition 1 shows that the system governed by (3.3.5) converges asymp-

totically to the object trajectory and intercepts it at the desired point. As there

is no constraint on the magnitude of the eigenvalues (|λAij |) of Aij ∀(j, i) ∈
{(1, 1), . . . , (1,K), (2, 1), . . . , (2,K)}, there is no guarantee that (3.3.5) is fast

enough to converge to γξO on time. To successfully intercepts an object, the arm

should arrive in a neighborhood of the desired trajectory γ
[
ξO ξ̇O

]T
before the

catching time; i.e., ‖ξ(T ∗)−γξO(T ∗)‖ ≤ ε and ‖ξ̇(T ∗)−γξ̇O(T ∗)−γ̇ξO(T ∗)‖ ≤ ε,
where ε is a small positive number. As a simple example, consider a case in which

the workspace of the robot is a sphere of a diameter of 100cm and the minimum

flight time for the object is 0.3s with ε =1cm and assume (3.3.5) is a critically

damped system, then |λAij | must be approximately greater than 22. In practice,

22 < |λAij | is not only very conservative constraint but also may result in a

dynamical system which generates kinematically infeasible motions. To address

this challenge, a potential direction would be extracting the desired intercept

posture subject to the dynamic constraints of the robot and the success rate of

the intercept posture.

Throughout the proofs, we assume that the desired intercept point is a fixed
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3 Softly Intercepting a moving object with a robotic arm

attractor. In practice, due to the imperfect prediction of the object trajectory,

the feasible intercept postures need to be updated all the time. However, it usu-

ally does not affect the convergence of the system as the new feasible intercept

point is chosen in the vicinity of the previous ones; i.e., the convergence duration

is too small. Besides, thanks to the second order LPV dynamical system, the

updating does not cause discontinuity at the velocity profile.

In this chapter, the desired intercept point is defined as a point on the

predicted trajectory of the object which is kinematically reachable for the robot.

Nevertheless, one is not restricted to use this criterion to select the intercept

point. For example, this point can be selected such that the time of the flight4 is

maximized. The other criterion can be the manipulability of the intercept point.

As the sole knowledge of the object is its location, any inaccuracies in mea-

suring the object’s position would deteriorate the performance of the controller.

As discussed in Section 3.5, to track the object, all the markers must be visible

to the cameras. However, the object’s tracking is obscured when the object is

very close to the end-effector and the fingers are about to close on it. At this

time, the accurate estimation of the interception is not possible. One way to

address this problem is through integrating force or tactile feedback into the

motion generators.

In the next chapter, we extend this method for a multi-arm scenario where

each robot must comply with the motion of the object and with the motion of

the other arms, so that all arms intercept the object simultaneously.

4As mentioned before, the time of the flight is defined as the duration of the object flight
from the first point till the intercept point.
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Chapter 4

Coordinated Multi-Arm
Motion Planning

”Of all the things I’ve done, the

most vital is coordinating those

who work with me and aiming

their efforts at a certain goal.”

Walt Disney

1901 – 1966

4.1 Introduction

Humans have a remarkable way of controlling their hands’ movements in

everyday life. The use of both hands allows for highly complex manipulation

of heavy or bulky objects. Accomplishing these tasks with one arm is mostly

impossible, mainly because a single arm has a limited workspace. Moreover, the

dexterity and flexibility required for accomplishing such tasks are beyond single

arm’s capabilities.

This is also true for robotic systems. A dual, or by extension multi, arms

robotic system extends the workspace of a single robotic arm such that complex

manipulations of heavy or large objects would be feasible. One can envision a

plethora of applications in smart-factories or smart-buildings, that would benefit

from such strategies. Examples include, grabbing, catching, carrying, lifting and

manipulating a object traveling on a cart or a running conveyor belt, carried

by humans or even lying towards the multi-arm robot system; Figure 4.1b. To

accomplish these applications, unlike the soft catching scenario presented in

Chapter 3, we breakdown compliance into two sub-levels. In the first level, each

arm must comply with the motion of the other arms in both task and joint

spaces. In the second level, the resultant motion of the arms must comply with

the object’s motion.

The first level of compliance imposes that the robots move in coordination

with each other. This is necessary not only to ensure that the arms simultane-

ously intercept the object, but also to avoid collisions between their end-effectors

and the rest of the arms while they adapt to the moving object’s motion. The

second level of compliance imposes position and velocity constraints at the ob-

ject’s interception. Position constraints ensure that the planned motion of each
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4 Coordinated Multi-Arm Motion Planning

robot’s end-effector is coordinated with the feasible reaching positions of the

object. Whereas the velocity constraints allow readjustments of the hand, palm

and fingers posture while there are uncertainties in the hand orientation and

position.

Handling multiple constraints simultaneously is a problem that could be

addressed by using standard optimal control approaches. These, however, are

time consuming and will not converge within a few milliseconds, which is the

expected reaction time necessary for all arms to rapidly and simultaneously

reach and adapt to the moving object.

Interestingly, a multi-arm system could provide not only synchronous be-

haviors, as the ones mentioned above, but also asynchronous behaviors, where

each robot follows its own goal-oriented task (Figure 4.1a). These tasks can be

considered as typical examples of co-worker scenarios for the industry 4.0 (Her-

mann et al., 2016), where, based on the tasks’ requirements, each robot should

be able to behave synchronously and asynchronously. More importantly, it must

be able to smoothly transition between them.

In this chapter, we offered a unified control architecture for compliantly

reaching for grabbing a moving object by a multi-arm robotic system. The

approach consists of a virtual object based-DS control law that generates au-

tonomous motions for a multi-arm robot system. Our approach can generate

two types of behaviors: (i) multi-arm asynchronous task-space behaviors, where

each robot has its own target or desired motion (Figure 4.1a) and (ii) multi-arm

synchronous task-space behaviors, where the robots’ task is to comply with each

other’s motions to simultaneously reach-for a moving object (Figure 4.1b). To

provide a smooth transitioning between these two behaviors, we introduce the

notion of synchronization allocation. Given the motion of the object and the

joint workspace of the multi-arm system, each arm is being continuously allo-

cated to a desired behavior. While being allocated to the synchronous behavior,

control of the robots is taken over by the virtual object-DS. By this, we unify

two levels of compliance into one level; namely the virtual object must comply

with the motion of the object. While allocated to the asynchronous behavior,

the robots are controlled independently, each with their own goal-directed stable

DS. Both behaviors are encoded in a single dynamical system which is expressed

as a Linear Parameter Varying (LPV) system subject to stability constraints,

that ensure convergence to the object or targets.

Further, we provide compliance in the joint-space by introducing a central-

ized inverse kinematics (IK) solver under self-collision avoidance (SCA) con-

straints; formulated as a quadratic program (QP) and solved in real-time. These

SCA constraints are introduced as linear inequality constraints in the optimiza-

tion problem in the form of a continuous “SCA Boundary function” and its

gradient.

Note that the work presented in this chapter was published in three papers

with Nadia Figueroa, currently PhD student at LASA. This chapter reports
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(a) Asynchronous Multi-Arm Task-Space Behavior.

(b) Synchronous Multi-Arm Task-Space Behavior.

Figure 4.1: Illustration of Multi-arm Task-Space Coordination. (a) Asynchronous
task-space behavior, where each robot has its own target and is endowed with an inde-
pendent stable DS to generate desired motions; (b) Synchronous task-space behavior,
where the robots coordinate with each other to simultaneously reach-for a moving
object.

solely on the parts that were developed and implemented by myself. The con-

struction of the self-collision avoidance data-set, which was developed collabo-

ratively and implemented by me, and learning approximating SCA boundary

function, which was solely developed and implemented by Nadia Figueroa, are

not reported in this thesis. Moreover, the real-world experiments were developed

and conducted collaboratively.

Related work for this chapter is reviewed in Section 2.3. This chapter is

structured as follows. Section 4.2 formalizes the problem. In Section 4.4, we

present the multi-arm-DS, including a formalization and convergence proof of

the LPV based DS. Section 4.5 introduces the centralized inverse kinematic

solver which can handle SCA constraints. The proposed method is then validated

with a dual-arm platform for several coordination and reaching scenarios in

Section 4.6. Discussions is presented in Section 4.7.

This chapter corresponds to the following publications:
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Figure 4.2: Self-Collision Avoidance (SCA) in Joint-Space for both task-space be-
haviors.

• Mirrazavi Salehian, S. S., Figueroa, N. and Billard, A. (2017) A Unified

Framework for Coordinated Multi-Arm Motion Planning. The Interna-

tional Journal of Robotics Research: 2018..

• Mirrazavi Salehian, S. S., Figueroa, N. and Billard, A. (2017) Dynamical

System-based Motion Planning for Multi-Arm Systems: Reaching for mov-

ing objects. In Proceedings of International Joint Conference on Artificial

Intelligence 2017, Melbourne, Australia.

• Mirrazavi Salehian, S. S., Figueroa, N. and Billard, A. (2016) Coordinated

multi-arm motion planning: Reaching for moving objects in the face of

uncertainty. In Proceedings of Robotics: Science and Systems XVI , Arbor,

Michigan, .

4.2 Problem Statement

The main objectives of this chapter is to design a controller which drives the

multiple robot system such that

Objective 1: While the robots are allocated to asynchronous behavior, each of

them should be able to reach the independent targets.

Objective 2: While the robots are allocated to synchronous behavior, the robots

must simultaneously intercept the object at the desired locations.

Objective 3: The robots should be able to seamlessly transition from asyn-

chronous to synchronous behaviors and vise versa.
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4.2 Problem Statement

Figure 4.3: Block diagram for coordinated multi-arm motion planning for reaching a
large moving object. WhereNR represents the total number of robot arms. T represents
the motion prediction duration. Same as the previous chapter, in this chapter, we
assume that the low-level controller of the robot is a perfect tracking controller.

Objective 4: All the while, any collision between two arms must be avoided.

In this chapter, a known model of the dynamics of the object or its motion is

not assumed. The sole knowledge about the object is its coupled feasible reaching

points, which are the preferred reaching positions and orientations on the object,

specified by the user (see Figure 4.4).

In order to achieve the mentioned objectives, while the target object is in

motion, several problems need to be solved simultaneously: (i) prediction of

the object’s trajectory; (ii) computing intercept points for each arm and (iii)

planning coordinated motion of the robotic arms towards their corresponding

intercept points.

An overview of the proposed framework is illustrated in Figure 4.3. As seen

on the illustration, sub-component “Grabbing Point Estimation” computes the

intercept point. It uses an estimate of the reachable workspace of the multi-
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4 Coordinated Multi-Arm Motion Planning

Table 4.1: Nomenclature

Variable Domain Definition
ε ∈ R>0 A small positive number.
k ∈ R>0 A large constant positive number.
k ∈ R>0 A constant positive number.
δj ∈ R>0 Minimum likelihood threshold of jth robot’s workspace .
δ ∈ R>0 Minimum joint likelihood threshold.
T ∗ ∈ R>0 Time when the object is kinematically reachable
NR ∈ N Number of the available robot arms.
τci ∈ R(0,1) Synchronization parameter of ith robot.
γ ∈ R(0,1) Coordination parameter.
dn ∈ N Dimension of the states of the virtual/real

object or one robot.
dN ∈ N Dimension of the states of all the robots in total.
dsi ∈ N Number of scheduling parameters of ith robot.
dqi ∈ N Number of the joints of ith robot.
dQ ∈ N Number of the joints of all the robots.
dci ∈ N Number of the scheduling parameters of ith robot.

qi ∈ Rdqi Joint angles of ith robot.
qij ∈ R Angle of jth joint of ith robot.

f(qij) ∈ R3 Cartesian position of jth joint of ith robot with respect to the world frame.

ξRj ∈ Rdn Position of the jth end-effector.

ξVj ∈ Rdn Position of jth reaching point on the virtual object.

ξV ∈ Rdn Position of the virtual object
ξO ∈ Rdn Position of the real object.
ξOj ∈ Rdn jth feasible reaching point on the real object.
jξ ∈ Rdn ξ in the reference frame of jth robot base.
θW Set of GMM parameters of NR workspace models
xV ∈ R2dn States of the virtual object’s dynamical system.
xRj ∈ R2dn States of jth end-effector .

xdj ∈ R2dn States of the static target of the asynchronous behavior of jth robot.

θi ∈ Rdsi Scheduling parameters for pos./orient. dynamics.
Ai(.) ∈ R2dn×2dn Affine dependent state-space matrices for.
Γ(.) ∈ R Self-collision boundary.

arm system (learned off-line prior to experiment) and an on-line step in which

it continuously measures the object’s pose from a visual tracking system. Sub-

component “Centralized Motion Generator” uses the predicted intercept points

and the current end-effector poses to generate the desired end-effector poses of

the NR-robot multi-arm system. It is based on a centralized controller that ex-

ploits a forward model of the virtual object’s motion. A detailed description of

each of these sub-components is presented in the following sections. For simplic-

ity and practicality, we summarize the most relevant notation used throughout

this chapter in Table 4.1 and illustrate them in Figure 4.4. The control flow of

the entire framework is illustrated in Figure 4.3.
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4.3 Object Trajectory and Intercept Point Prediction

4.3 Object Trajectory and Intercept Point

Prediction

If the motion of the object is predictable, for fulfilling the goal of synchronous

behavior, one can use a model-based prediction approach (Kim and Billard,

2012) and find feasible intercept postures by extending a single-robot arm feasi-

ble posture extraction algorithm (such as (Kim et al., 2014)) to NR-robot arms.

In this case, a simple point-to-point motion can be devised to intercept the ob-

ject. As we assume that the motion of the object is not accurately predictable

(e.g when carried by a blind-folded human operator as in the experiments); us-

ing a model-based approach would be impractical and limiting. Instead, once

the object starts moving towards the robots, a linear model predicts its progress

ahead of time and determines a point along its trajectory where the object will

become reachable by all robotic arms. We call this point the feasible intercept

point.

To find the feasible intercept point, the reachable workspace of each robot is

modeled via a probabilistic classification model pj(
jξOi ; θWj ) ∀j ∈ {1, . . . , NR},

namely a Gaussian Mixture Model as introduced in Section 3.2.1:

pj(
jξOi ; θWj ) =

Kw
j∑

l=1

πljN (jξOi |µlj ,Σlj) (4.3.1)

where πlj , µlj ,Σlj correspond to the prior, mean and covariance matrix of

the l = {1 . . .Kw
j } Gaussian functions, respectively, estimated by using the

Expectation-Maximization algorithm (Bishop, 2007). In order to generate the

training dataset, all possible postures of each robot are simulated by testing all

possible displacements of their joints. If pj(
jξOi ) > δj , where δj is the minimum

likelihood threshold and it is determined such that the likelihood of 99% of the

training points is higher than it, then jξOi , i.e., the i-th reaching position on

the object (sub-script) in the j-th robot’s reference frame (left super-script),

is classified as a feasible position for the j-th robot to reach. As the reachable

workspaces of each robot are statistically independent from each other, the joint

distribution of all workspaces can be calculated by computing the product of

distributions, as follows:

p({1ξO1 , . . . ,NRξONR}; ΘW ) =

NR∏
j=1

pj(
jξOj ; θWj ) (4.3.2)

where ΘW = {θW1 , . . . , θWNR} is the set of parameters for all robot workspaces

and {1ξO1 , . . . ,NRξONR} are the reaching positions in each robot’s reference frame.

55



4 Coordinated Multi-Arm Motion Planning

The minimum joint likelihood threshold is δ =
∏NR
j=1 δj . if

∃T ∗ : δ < p(1ξO1 (T ∗), . . . ,NRξONR(T ∗); Θ), (4.3.3)

the object at T ∗ (ξO(T ∗) = 1
NR

NR∑
j=1

ξOj (T ∗)) is classified as the feasible intercept

point. If more than one point on the predicted trajectory is classified as the

feasible intercept point, we select the closest one, in Euclidean space position, to

the robots’ end-effectors.

4.4 Dual-Behavior Coordinated Motion

Generator

Once the feasible intercept point is found, the motion of i-th robot’s end-

effector ∀i ∈ {1, . . . , NR}, is generated by following a Linear Parameter Vary-

ing (LPV) dynamical system (DS), composed of both synchronous and asyn-

chronous behaviors, and coupled to the motion of the virtual object (ξV ) (see

Figure 4.5) as follows:

ẋRi = τ̇ci
(
xVi − xdi

)
+ τci ẋ

V
i + Ai

(
θi(x

R
i )
) (
xRi − xdi − τci(xVi − xdi )

)
(4.4.1)

, where xRi (t) =
[
ξRi ξ̇Ri

]T
∈ R2dn and xVi (t) =

[
ξVi ξ̇Vi

]T
∈ R2dn are

the states of the ith end-effector and virtual object, respectively.1 The state of

the virtual object is used to guide the robots for the synchronous behavior.

In the case of the asynchronous behavior, each i-th robot has its own static

target, denoted as xdi =
[
ξdi 0

]
∈ R2dn . 0 ≤ τci ≤ 1 is the synchronization

allocation parameter and is of class C1. θi(x
R
i ) ∈ Rdsi×1 ∀i ∈ {1, . . . NR} is a

vector of scheduling parameters; θi(x
R
i ) =

[
θi1(xRi ) . . . θidsi (x

R
i )
]T

and for

simplicity of the notations, its argument is dropped in the rest of the chapter.

Ai(.) : Rdsi×1 → R2dn×2dn is the affine dependence of state-space matrices on

the scheduling parameter and the state vectors:

Ai(θi) =

dsi∑
k=1

θikAik Aik ∈ R2dn×2dn θik ∈ R1×1 (4.4.2)

Like Chapter 3, the parameters of the LPV system is approximated via

GMM models from kinematically feasible demonstrations presented in Section

3.4.2. The advantage of this technique is that it inherently results in normalized

1The motion generator is fully observable.
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4.4 Dual-Behavior Coordinated Motion Generator

Figure 4.4: An illustration of the variables for NR = 2. The reachable areas are
feasible areas for grasping the object. Except for 2ξO2 and 1ξO1, the variables are
expressed in the reference frame located on the desired intercept point; i.e., ξO(T ∗) =[
0 . . . 0

]T
.

scheduling parameters; i.e., 0 < θik ≤ 1,
∑dsi
k=1 θik = 1, ∀i ∈ {1, . . . , NR}, refer

to Section 3.4 for further details on this approximation approach.

Theorem 2. The dynamical systems given by (4.4.1) asymptotically converge

to τcix
V
i + (1− τci)xdi ; i.e

lim
t→∞

‖xRi (t)− τci(t)xVi (t) + (τci(t)− 1)xdi ‖ = 0 (4.4.3)

if there are PRi , Q
R
i such that:


0 ≺ PRi 0 ≺ QRi
PRi Aik +Aik

TPRi ≺ −QRi
0 ≤ θik

∀k ∈ {1, . . . , dsi} (4.4.4)

Moreover, by taking τ̇ci(x
V
i − xdi ) + τci ẋ

V
i −Ai(θi(x

R
i ))(xdi + τci(x

V
i − xdi ))

as the input and xRi (t) as the output of the dynamical system (4.4.1), (4.4.1) is

passive if (4.4.4) is satisfied.
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4 Coordinated Multi-Arm Motion Planning

Proof : see Appendix B.1 and B.2.

In (4.4.1), τci determines the level of synchronization between the ith robot

and the virtual object, see Figure 4.5. Assuming that τci is constant and (4.4.4)

is satisfied, when τci = 0, (4.4.1) yields an asynchronous DS for reaching towards

individual targets:

ẋRi = Ai(θi)(x
R
i − xdi )︸ ︷︷ ︸

Reaching individual target (xdi )

→
{

limt→∞ ‖xRi − xdi ‖ = 0
(4.4.5)

Similarly, when τci = 1, (4.4.1) results in a perfect tracking DS of the ith

reaching point on the virtual object:

ẋRi = ẋVi + Ai(θi)(x
R
i − xVi )︸ ︷︷ ︸

Tracking ith reaching
position on the virtual object

→

 limt→∞ ‖xRi − xVi ‖ = 0

limt→∞ ‖ẋRi − ẋVi ‖ = 0 (4.4.6)

To smoothly transition between these behaviors, one could calculate τci ∀i ∈
{1, . . . , NR} with a continuous logistic function. However, we propose the fol-

lowing DS which varies τci ∀i ∈ {1, . . . , NR} such that τci → 1 when the object

moves towards the robots and τci → 0 when it moves away:

τ̇ci(t) =
τci(1− τci)G(ξO(t), ξ̇O(t))

k

τci(0) = ε ,∀i ∈ {1, . . . , NR}

G(.) = − ξ̇
O(t)

T
(ξO(t)− ξO(T ∗))

ε+ ‖ξO(t)− ξO(T ∗)‖2

(4.4.7)

Where, 0 < ε << 1 is a small positive value. k ∈ R>0 is a positive con-

stant that controls for the steepness of the increase or decrease of the pa-

rameter.2 As the initial value of τci is positive and less than 1, (4.4.7) is a

bounded dynamical system between (0, 1). M(.) is a function that coordinates

the robots with the virtual object, such that if the real object moves toward

the workspaces, the robots perform the synchronous behavior, otherwise they

fall back to the asynchronous behavior. The main advantage of the proposed

criterion is its adaptability. sgn(τ̇ci) changes with respect to the direction of the

object’s motion; when the object approaches the robots, sgn(τ̇ci) → (+), oth-

erwise, sgn(τ̇ci) → (−). Consequently, if the object moves towards the robots,

they are synchronized with the virtual object. Otherwise, they perform the asyn-

chronous behavior.

To appropriately consider the effects of the synchronization parameters on

the motion of the virtual object, and consequently of the robots, the following

2 0� k as having only two behaviors is desirable.
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4.4 Dual-Behavior Coordinated Motion Generator

Figure 4.5: An illustration of the variables in (4.4.1). The colors of the variables
and the arrows are corresponding; i.e., red represents the arm , green represents the
virtual object and blue represents the independent target. The black arrows illustrates
(xRi − xdi − τci(xVi − xdi )). The dashed lines are used to show how the resultant vector
is calculated.

DS is proposed to generate the motion of the virtual object.

ẋV (t) =
1

1 +
NR∑
i=1

τci

(
γẋO + γ̇xO +AV

(
xV − γxO

)
+

NR∑
i=1

Ui

)
(4.4.8)

Where, xV (t) =
[
ξV (t) ξ̇V (t)

]
is the state of the virtual object. 0 < γ < 1

is the coordination parameter and is of class C1. Ui is the interaction effect of

the motion of the ith end-effector on the virtual object, based on (4.4.1) and

(4.4.8):

Ui = ẋRi −Ai (θi)
(
xRi − xdi − τci(xVi − xdi )

)
− τ̇ci

(
xVi − xdi

)
(4.4.9)

By substituting, (4.4.1) and (4.4.9) into (4.4.8), we have:

ẋV (t) =
1

1 +
NR∑
i=1

τci

(
γẋO + γ̇xO +AV (xV − γxO) +

NR∑
i=1

(τci ẋ
V
i )

)
(4.4.10)
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Theorem 3. The dynamical system given by (4.4.10) asymptotically converges

to
[
γ(t)ξO(t) γ(t)ξ̇O(t) + γ̇(t)ξO(t)

]T
i.e.

lim
t→∞

‖ξV (t)− γ(t)ξO(t)‖ = 0

lim
t→∞

‖ξ̇V (t)− (γ(t)ξ̇O(t) + γ̇(t)ξO(t))‖ = 0
(4.4.11)

if there are PV , QV such that:
0 ≺ PV

0 ≺ QV

PVAV +AV
T
PV ≺ −QV

(4.4.12)

Moreover, by taking γẋO + γ̇xO −AV γxO as the input and xV as the output of

the dynamical system (4.4.10), (4.4.10) is passive if (4.4.12) is satisfied.

Proof: see Appendix B.3, B.4.

Remark 1. if τci = 1 , based on (4.4.6) and (4.4.11), the robots asymptotically

converge to the reaching points on the object; i.e:

lim
t→∞

‖ξRi (t)− γ(t)ξOi (t)‖ = 0

lim
t→∞

‖ξ̇Ri (t)− (γ(t)ξ̇Oi (t) + γ̇i(t)ξ
O
i (t))‖ = 0

if τci = 1 (4.4.13)

If τci = 1 and (γ(t) = γ̇(t) = 0), (4.4.10) generates asymptotically stable

motions towards the predicted intercept point: i.e., coordination between the

robots is preserved, but the coordination between the robots and the object

is lost. If τci = 1 and (γ(t) = 1, γ̇(t) = 0), (4.4.10) generates asymptotically

stable motions towards the real object, even though its motion is not accurately

predicted: i.e., perfect coordination with the object.3 However, in this case, there

is no guarantee that the virtual object intercepts the real object inside the

workspace of the robots; i.e., because of the robots’ kinematics constraints, they

can not comply with the object’s motion any more. Thus, one can vary the

values of the coordination parameter between [0, 1], such that γ = 1 at the

vicinity of the desired intercept time as proposed in (Mirrazavi Salehian et al.,

2016b):

γ̇ =
1− γ

‖ξO(t)− ξO(T ∗)‖+ ε
=

1− γ
‖ξO(t)‖+ ε

, γ(0) = 0 (4.4.14)

. (4.4.14) improves the robustness of the multi-arm reaching motion in face of

3We assume that the dynamical system (4.4.10) is fast enough to converge to an acceptable

neighborhood around the desired trajectory γ
[
ξO(t) ξ̇O(t)

]T
before T ∗; i.e., ‖ξV (T ∗) −

γξO(T ∗)‖ ≤ ε
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4.5 Centralized Inverse Kinematic Solver

inaccuracies in the object’s motion prediction, as it ensures that when the object

is close enough to the feasible reaching positions, the virtual object converges

to the real object and perfectly tracks it; i.e., γ(T ∗) = 1. Hence, the robots can

simultaneously track the desired reaching points on the object in a coordinated

manner. The proposed algorithm can only guarantee collision-avoidance between

end-effectors, via the virtual object, for synchronous behaviors. In the following

section we present a centralized inverse kinematics solver, that addresses self-

collision avoidance at all times.

4.5 Centralized Inverse Kinematic Solver

To avoid collisions between the joints of the arms, the IK solver must con-

sider not only the kinematic constraints of each robot, but also self-collision con-

straints. Given that the robots’ bases are fixed wrt. each other, we can explore

the joint workspace of the robots, in order to model the regions that may lead

to collision. Since the space of joint configurations is continuous, the regions

of collisions can be approximated by building a continuous map of the feasi-

ble (safe) and infeasible (collided) configurations. Assuming that the infeasible

regions can be bounded through a continuous and continuously differentiable

function Γ(qij) : Rdqi+dqj → R, where qij = [qi, qj ]T ∈ Rdqi+dqj are the joint

angles of the ith and jth robots, respectively. We define Γ(x) such that:

Collided configurations: Γ(qij) < 1

Boundary configurations: Γ(qij) = 1

Free configurations: Γ(qij) > 1

(4.5.1)

A data-driven approach for building Γ(qij) is proposed in (Mirrazavi Salehian

et al., 2017a). (4.5.1) provides constraints that must be taken into account when

solving the inverse kinematics (IK) problem. We propose the following quadratic

program to solve the IK:

argmin
q̇

q̇TW q̇

2︸ ︷︷ ︸
Minimize expenditure

Subject to:

(4.5.2a)

J(q)q̇ = ξ̇R︸ ︷︷ ︸
Satisfy the desired end-effector motion

(4.5.2b)
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θ̇− ≤ q̇ ≤ θ̇+︸ ︷︷ ︸
Satisfy the kinematic constraints

(4.5.2c)

−∇Γij(qij)T q̇ij ≤ log(Γij(qij)− 1)

∀(i, j) ∈ {(1, 2), (1, 3), . . . , (NR − 1, NR)}︸ ︷︷ ︸
Do not penetrate the collision boundary

(4.5.2d)

Where, q = [q1, . . . , qNR ]T ∈ Rdq , dq =
NR∑
i=1

dqi .
4 W is a block diagonal

matrix of positive definite matrices. J = diag(J1, . . . , JNR) is the block diagonal

matrix of the Jacobian matrices. ξ̇R =
[
ξ̇R1 . . . ξ̇RNR

]T
∈ Rdn , dn = NRdn

is the desired velocity given by (4.4.1). θ̇i =
[
θ̇i1 . . . θ̇iNR

]
∀i ∈ {−,+}

and θ̇+
i ∈ Rm and θ̇−i ∈ Rm are conservative lower and upper bounds of the

joint limits, respectively. To integrate the joint limits into the velocity level

constraints, (Xia and Wang, 2000) propose the following equation.

θ̇−i := max

(
µ(q−i − qi), q̇

−
i

)
θ̇+
i := min

(
µ(q+

i − qi), q̇
+
i

) (4.5.3)

With q−i , q
+
i , q

−
i , q̇

− as the conservative lower and upper bounds on the

joints’ positions and velocities. The intensify coefficients, 0 < µp, determine the

magnitude of decelerations and are defined such that the feasible region of θ̇

generated by the joint angle limits’ projections is not smaller than the real one

made by the joint velocity limits. Hence, (Xia and Wang, 2000) proposes to

select them not smaller than max{ q̇
+
i −q̇

−
i

q+
i −q

−
i

}.
While the robots are far from the boundary configurations, the value of

log(Γij(qij) − 1) is positive which relaxes the inequality constraints; i.e., the

robots accurately follow the desired end-effector trajectory. When they are near

the boundary configurations, the value of log(Γij(qij)−1) is negative. Therefore,

constraint (4.5.2d) forces the joint angles to move away from the boundary as

they approach it. Since satisfying the collision avoidance and the kinematic

constraints is of higher priority than following the desired end-effector motion,

in practice, we give higher penalty to (4.5.2c) and (4.5.2d), than to (4.5.2b).

In a particular case, when the robots are initiated inside of the boundary (i.e.,

Γij(.) < 1), log(Γij(.) − 1) is not defined. In this case, we replace log(Γ(.) − 1)

4For example, NR = 2, q = q12. Based on the experience, due to hardware limitations, it is
not possible to construct a data set of collision boundaries for more than two 7-DOF KUKA
arms at once; e.g., for 3 arms, the size of the data set approximately is (3∗7∗3)×10003 while
it is (3 ∗ 7 ∗ 2)× 10002 for 2 arms.
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with a large negative number which pushes the robots outward towards the

boundary.

Equation (4.5.2) is a convex quadratic programming (QP) problem with

equality and inequality constraints, hence, there is no closed form solution for

it. As the solutions to such linear optimization are solver-dependent, in terms

of computation cost, we compare three approaches to solve (4.5.2). The first

approach formulates (4.5.2) as a system of piecewise-linear equations and uses

a DS-based approach to solve them (Xia and Wang, 2000; Zhang et al., 2004;

Zhang, 2005). The second approach uses Nlopt, a standard non-linear program-

ming solver (Johnson, 2015). The third approach uses a solver specifically de-

signed for constrained convex problems. The solver, which is called CVXGEN

and introduced in (Mattingley and Boyd, 2012), generates C codes, tailored for

the specific formulation of (4.5.2). As the second and third approaches are ready

to use interfaces, in the rest of this chapter we introduce the first approach.5

Lemma 1. Linear quadratic programming (4.5.2) is equivalent to the following

system of piecewise-linear equations.

PΩ(u− (Mu+ b))− u = 0 (4.5.4)

Moreover, the following dynamical system is asymptotically stable to u∗,

where u∗ ∈ Rdu is the solution of (4.5.4) .

u̇ = (I +MT )(PΩ(u− (Mu+ b))− u) (4.5.5)

where

M =

 W −J(q)T −∇Γ(q)

J(q) 0 0

∇Γ(q)T 0 0

 (4.5.6a)

b =

 0

−ξ̇R

− log(Γ(q)− 1)

 (4.5.6b)

. u =
[
q̇ η ν

]T
∈ Rdu ; du = dq + dn + 1. As 0 � W , M is also posi-

tive semi-definite. η ∈ RdN and ν ∈ R are the dual decision vectors. PΩ(h) =

5The formulation of the Lyapunov stability proof is inspired from (Xia and Wang, 2000;
Zhang et al., 2004; Zhang, 2005).
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[
PΩ(h1) . . . PΩ(hdu)

]
is the element-wise Ω− projection operator defined as

PΩ(hi) =


u−i hi < u−i
hi u−i ≤ hi ≤ u

+
i

u+
i u+

i < hi

∀i ∈ {1, . . . , du} (4.5.7)

. u+ and u− are the bounds of the primal-dual decision vector u defined as

u− =

 θ̇−

−∞
0

 u+ =

 θ̇+

+∞
+∞

 (4.5.8)

and Ω = {u ∈ Rdu |u− ≤ u ≤ u+}.

Proof : Refer to (Zhang, 2005) and (Xia and Wang, 2000).

Theorem 4. By taking u and (I + MT )PΩ(u − (Mu + b)) as the output and

the input of the system (4.5.5), respectively, (4.5.5) is passive.

Proof : See Appendix B.5.

Remark 2. Theorems 2, 3 and 4 show that all the proposed dynamical systems

are passive. Hence, if the robots and the low level torque controllers are passive,

the proposed framework for coordinated Multi-Arm system is passive and stable

as it is a feedback system of passive elements.

4.6 Empirical Validation

The performance of the proposed framework is evaluated on two different

real dual-arm platforms. On the first platform, the compliance (in the form

of coordination) between the arms and the object is evaluated. The second

experimental set up is designed to evaluate the performance of dual-behavior

and the self-collision avoidance. The top view of the set-up is illustrated in

Figure 4.6.

4.6.1 First experimental set-up

The proposed framework is implemented on a real dual-arm platform, con-

sisting of two 7 DOF robotic arms, namely a KUKA LWR 4+ and a KUKA

IIWA mounted with a 4 DOF Barrett hand and a 16 DOF Allegro hand. The

distance between the base of the two robots is
[
0.25 1.5 −0.1

]T
m. As the

synchronized behavior is the only desired behavior in this section, the value of
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Figure 4.6: Top view illustration of the set-up. The motion of the object is recorded
by 12 cameras. The distance between the arms is changed based on the size of the
object. More information is available in Table 4.2.

synchronization parameters in (4.4.1) are manually set to one. Moreover, given

the distance between the robots, there is a maximum of 30cm intersection be-

tween the robots’ workspaces; i.e., the arms are ensured to not collide. Hence,

instead of centralized IK solver presented in Section 4.5, independent velocity

based control method without joint velocity integration IK solver (Nakanishi

et al., 2005a) is used to convert the desired end-effector motion into the 7-DOF

joints state. In order to avoid high torques, the resulting joint angles are filtered

by a critically damped filter. The robot is controlled at a rate of 500 Hz. The

fingers are controlled with joint position controllers. All the hardware involved

(e.g., arms and hands) are connected to and controlled by one 3.4-GHz i7 PC.

The position of the feasible reaching points of the objects are captured by an

Optitrack motion capture system from Natural point at 240 Hz. Since the con-

trol loop is faster than the motion capture system, the predicted position of the

object is used as the object position in (4.4.8), when the current position of the

object is not available.

Our empirical validation is divided into three parts that demonstrate the

controller’s ability: (i) compliance within the multi-arm systems; (ii) compliance

between the two arms’ motions and a large moving object so as to reach and

grab it, while introducing unpredictability in the object’s motion (by having

the object be carried by a blindfolded human) and (iii) rapidly adapt bi-manual

motions to intercept a flying object, without using a pre-defined model of the
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(a) (b)

(c) (d)

Figure 4.7: Snapshots of the video illustrating coordination of the arms in free space.
Both arms are manually assigned to the synchronized behavior and as the object is
outside the workspace of the robots, the coordination parameter γ is close to 0. The
human operator perturbs one of the arms, which leads the other arm to move in
synchrony following the motion of the virtual object attached to the two end-effectors.

object’s dynamics. A corresponding video is available on-line: https://youtu.

be/UfucwRGa7k8

4.6.1.1 compliance capabilities

The first scenario is designed to illustrate the compliance capabilities of

the arms with each other and with the object. We initially show arm-to-arm

compliance capabilities by keeping the real object outside of the workspace of the

robots, this will force the coordination parameter γ to be 0, favoring arm-to-arm

coordination. As the human operator perturbs one of the robot arms, the virtual

object is perturbed as well, resulting in a stable synchronous motion of the other

unperturbed arm (Figure 4.7). Since we offer a centralized controller based on

the virtual object’s motion, there is no master/slave arm; thus, when any of the

robots are perturbed, the others will synchronize their motions accordingly.

We then present the compliance on the second sub-level; i.e., between the

arms and the object which moves inside the workspace of the robots. The object

is a large box (60 × 60 × 40cm) held by a human operator. Two points on the

edges of the box are specified as the feasible reaching points. When the box is

inside the joint workspace of the robots, the operator changes the orientation and

the position of the box to show the compliance capabilities between the robots

and the object (Figure 4.8). Due to (4.4.8), the motion of the arms compliantly

track the object and successfully comply with the motions of others.
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(a) (b)

(c)

Figure 4.8: Snapshots of the coordination capabilities between the arms and a mov-
ing/rotating object. The real object is inside the workspace of the robots; hence, the
coordination parameter γ is close to 1 and the arms-to-object coordination is favored.
The bottom figures show the real-time visualization of the robots, and the virtual
(green) and real object (blue).
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(a) (b)

(c)

Figure 4.9: Snapshots of the robots’ motion when reaching for a moving object,
carried by a blindfolded operator. (a) Onset of object trajectory’s prediction. (c) Arms
have intercepted the object and the fingers have closed on the object.

4.6.1.2 Reaching to Grab a Large Moving Object

In this second scenario, we use the same object as before. Yet, now a blind-

folded operator holds the box while walking towards the robots. Once the end-

effectors are less than 2 cm away from the feasible reaching points, finger closures

of the hands are triggered and the box is successfully grabbed from the human.

As can be seen in Figure 4.9, the operator is blindfolded to achieve unpredictable

trajectories and avoid the natural reactions of the humans to help the robots.

When the human operator carrying the box is approaching the robots, the vir-

tual object converges to the box and follows it until the desired interception

points are reached. The fingers close and the box is grabbed from the human.

An example of the desired robot trajectory and the box trajectory are shown

in Figure 4.10. As expected, the end-effectors converge to the box and continue

to track its motion. The initial value of γ in (4.4.8) is set to 0. While the box

is approaching the robots, γ starts increasing and finally reaches γ = 1 when

the object is in the workspace of the robots. Hence, (4.4.8) generates asymp-

totically stable motions towards the real object instead of the intercept point.

Consequently, the prediction of the intercept point does not play a vital role in

grabbing the box.
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Figure 4.10: Different examples of the position of the end-effectors generated by
the dynamical system (4.4.8). Only the trajectories along y axis is presented. The
illustrated object trajectory is the predicted trajectory of the uncaught object. The
prediction of the box’s trajectory requires some data to be initialized and uses almost
all of the first 0.2 meter of the object in x. As expected, the outputs of (4.4.8) first
converges to desired intercept position, since γ is a small value, then it softly intercepts
the object’s trajectory and follow the object’s motion. The robots are stopped if the
object is not moving or the fingers are closed.
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4.6.1.3 Reaching for Fast Flying Objects

The third scenario is designed to show the capability of the proposed con-

troller in generating fast motions, where a rod (150 × 1cm) is thrown to the

robots from 2.5m away, resulting in approx. 0.56s flying time. The distance be-

tween the base of the two robots is reduced to
[
0.25 1.26 −0.1

]T
m. The first

0.4m of the object trajectory initializes the trajectory prediction algorithm. Due

to inaccurate prediction of the object trajectory, the feasible intercept points

need to be updated and redefined during the reach. The new feasible intercept

point is chosen in the vicinity of the previous one to minimize the convergence

time. As the motion of the object is fast and the predicted reaching points are

not accurate, the initial values of γ in (4.4.14) is set to 0.5. This decreases the

convergence duration of the robots to the real object. Snapshots of the real

robot experiments are shown in Figure 4.11. Visual inspection of the data and

video confirmed that the robots coordinately follow the motion of the object

and intercept it at the vicinity of the predicted feasible intercept point.

4.6.1.4 Systematic Assessment

The success rates of our experiments are measured by defining a Boolean

metric; i.e., success or failure. A trial is classified as a success if the robot in-

tercepts the object at the desired point within less than 2cm error. The success

rate is 85% in the box scenario and 37.5% in the rod scenario. Failures are due

to either inaccuracies in the measurement of the object’s state or the IK solver.

To track the object, all the markers must be visible to the cameras. In the box

scenario, the object’s tracking was obscured partly when the object was covered

by the robotic arms or the operator. In the rod scenario, the vision system looses

track of the markers approx. 55% of the time. This happens, for example, when

the rod rotates rapidly.

Failures caused by the IK solver are mostly observed in the flying rod sce-

nario, where the inability to accurately calculate joint-level motions correspond-

ing to the desired end-effectors’ trajectories results in errors in the robots’ mo-

tions. In over 40 trials, the tracking error between the desired and the actual

end-effector position at the intercept point is approximately 1.42± 1.92cm. The

large variance in the error indicates the implemented IK Solvers sensitivity to

the robot’s joints configuration.

To systematically assess the robustness of the algorithm to unmeasured ob-

ject positions, a set of simulations was designed to reach for a moving ball.

The ball diameter is 1.2m. The simulation is repeated 130 times in total for

two different object velocities; i.e., fast and slow motions. To assess the effects

of the unmeasured object positions on the interception error, the desired and

the real end-effectors’ states are assumed equal. Results from this evaluation

indicate that the interception error is directly correlated to the percentage of

unmeasured object points and consequently, the velocity of the moving object
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(a) The object flight duration is 0.39s.

(b) The object flight duration is 0.48s.

Figure 4.11: Snapshots of the arms reaching for a fast moving object. The object
is specified by a blue square. The arms move in same direction (a) or in opposite
directions (b) to keep the coordination between the arms and with the object. In order
to not damage the robot’s hands, the robot hands do not close on the object when the
hands intercept the object.
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Figure 4.12: The interception error is the average of the minimum distance between
the ball and the end-effectors. The throwing positions are randomly chosen within

the range of
[
−3.5± 0.1 −1.0± 0.1 −0.0± 0.1

]T
m. The initial ball speeds for fast

and slow motions are randomly chosen within range of 8.94 ± 0.173m
s

and 1.63 ±
0.173m

s
, respectively. We only consider trials when the ball passes through the robots

workspaces. The measurement noise is simulated with pseudo-random values within
the range of ±0.02m. The cut-off success/failure assessment is illustrated by the back
dashed line.

(see Figure 4.12). Thus, the faster the object, the more sensitive the system is

to the tracking inaccuracies.

4.6.2 Second experimental set-up

The proposed framework is implemented on a dual-arm platform, consisting of

two 7 DOF KUKA IIWA robotic arms mounted with a 2 finger Robotiq gripper

and a 16 DOF Allegro hand. The robots are controlled via Fast Research Inter-

face (FRI) at the joint impedance mode. The fingers are controlled with joint

angle position controllers in two states: Open, Close. All the hardware involved

(e.g., arms and hands) are controlled by one 3.4-GHz i7 PC.6 The position of the

feasible reaching points of the objects are captured by an Optitrack motion cap-

ture system from Natural point at 240 Hz. As the outputs of the vision system

are noisy, a Savitzky-Golay filter is used to smooth the position of the object

and estimate velocity and acceleration from these position measurements.

The empirical validation is divided into two parts which demonstrate the

controller’s capabilities in estimation of the desired behavior and accordingly

adaptation of the two arms’ motions; i.e., move asynchronously or synchronously.

A corresponding video is available on-line: https://youtu.be/LxAWvU2locU.

Moreover, the performance of the framework is systematically assessed in

three different levels to show: (i) the success rate of coordinately reaching for a

6Due to implementation constraints, one of the arms is connect to another PC. Apart from
this connection, no computation is done on the other PC.
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moving object, (ii) performance of IK solvers and (iii) sensitivity of the frame-

work to noise. A corresponding video of the systematically assessment is avail-

able on-line at https://youtu.be/S5fvr wZ W0.

4.6.2.1 Dual Behavior Capabilities.

The first scenario is designed to illustrate the dual-behavior capabilities of

the arms. The asynchronous behavior of each robot is to reach a fixed target

(see Figure 4.13) or follow the hands of operator 1 who stands between the

arms (see Figure 4.14). The synchronized behavior is to coordinately reach an

object brought by an operator. The visual inspection of the data shows that

when the operator moves the object toward the robots, based on (4.4.7), the

value of τci ∀i ∈ {1, 2} smoothly increases to one. Hence, a smooth transition

from the unsynchronized behavior to the synchronized behavior is achieved; see

Figure 4.13 and Figure 4.14. As there is no full coordination between the arms

while the value of τci ∀i ∈ {1, 2} is less than one, perturbing one arm does not

affect the motion of other arm, see Figure 4.14(a),(b),(c),(d). While the arms are

allocated to the synchronized behavior, due to (4.4.14), the arms successfully

comply with the each other’s and the object’s motions and intercept the object

at the desired points, see Figure 4.14(g),(h).

4.6.2.2 Systematic assessment

Coordination and Adaptation Assessment.

To systematically assess the performance of the proposed framework. We de-

sign a handover scenario, where an operator holds an object and moves toward

the arms and hand overs the object to the robots. The robots’ hands are trig-

gered to close when the distance between the arms and the object is less than

1cm. The success rates of our experiments are measured by defining a Boolean

metric; i.e., success or failure. A trial is classified as a success if the robot in-

tercepts the object at the desired point within less than 1cm error. Three car

parts are chosen with different sizes and shapes to validate the algorithm, i.e.,

a bumper, a fender and a front panel, see Figure 4.15. The reaching orienta-

tion for each robot is specified by the operator with respect to the orientation

of the hands. The experiments were repeated 20 times for each object. The ob-

jects were moved and handed-over by the operator from random initial positions

with different orientations. The snapshots of the experiments are shown in Fig-

ure 4.16 and an example of the motion of the arms and the object is shown in

Figure 4.17. The variation of the intercept points are illustrated in Figure 4.18.

Data of the experimental results are summarized in Table 4.2. In this table,

the first point is the position the object when, for the first time, the feasible

intercept point is determined. Motion duration is the duration of the objects’
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.13: Snapshots of the video illustrating the dual behavior capabilities. The
target of synchronous and asynchronous behaviors are highlighted in (a) by the green
square and the blue circles, respectively. Initially, the robots are allocated to the asyn-
chronous behavior. Hence, the robots move toward the asynchronous targets in (b) and
(c). In (d), γci ≈ 1 ∀i ∈ {1, 2} as the operator moves the object toward the arms; i.e.,
the synchronous behavior. Consequently, the robots comply with the object’s motion
and simultaneously reach and intercept it at the desired reaching points.
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(a) τc1 = τc2 ≈ 0.1. (b) τc1 = τc2 ≈ 0.

(c) τc1 = τc2 ≈ 0.7. (d) τc1 = τc2 ≈ 0.85.

(e) τc1 = τc2 ≈ 1. (f) τc1 = τc2 ≈ 1.

(g) τc1 = τc2 ≈ 1. (h) τc1 = τc2 ≈ 1.

Figure 4.14: Snapshots of the video illustrating of dual behavior capabilities. The
asynchronous behavior is to follow the hands of the operator 1 who is inside of the
robot workspaces. When the operator 2 moves the object away from or toward the
arms, the synchronization parameter smoothly goes to 0 and 1, respectively.
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(a) The bumper. (b) The fender.

(c) The front panel.

Figure 4.15: The car parts which are used for the systematic assessment of the
framework.

motions from the first point till the intercept position. The bases distances is

the distance between the robots’ bases.

The overall success rate of the experiment is 86.7%7. Failures are mostly due

to inaccuracies in the measurement of the object’s state. To find the position of

the reaching areas and the orientation of the object, all the five markers must

be visible to the cameras. The objects’ tracking markers were occluded partly

when the objects were covered by the robotic arms or the operator. In 5 out of

8 cases, one or two out of the five markers were not detected accurately when

the object was close to the robots, hence either the robots converged to a wrong

position or the synchronization parameters were changing undesirably. These

two cases can be detected easily. In the first case, the hands are closed where

there is no object. In the second case, the robots rapidly move back and forth;

i.e., chattering between synchronous and asynchronous behaviors. In 2 out of 8

cases, the robots started moving very late as the object’s predicted motion was

completely wrong. In this case, the object was inside of the robots’ workspaces

when the robots started moving. As the motions of the objects was not extremely

fast, the IK solver was able to accurately generate the joint space trajectory and

only in 1 out of 8 cases it failed to track the desired end-effectors’ motions. In

this case, the operator suddenly changed the object’s orientation when it was

about to be intercepted by the robots. Hence, the reaching points on the object

became kinematically infeasible for the robots to reach.

To systematically study the performance of the IK solvers and sensitivity

of the framework to unmeasured object positions, two sets of simulations were

designed to reach for a moving box. The size of the box is same as the size of the

7The cases which the operator moved outside of the robots’ worksapces are excluded.
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(a)

(b)

(c)

Figure 4.16: Snapshots from systematically assessment experiment. The objects are
a bumper, a front panel and a fender in (a), (b) and (c), respectively. The robots are
stopped when the hand and the gripper are closed. A corresponding video is available
at https://youtu.be/S5fvr wZ W0.
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Table 4.2: The details of the systematically assessment experiments. All the positions
are expressed with respect to the base of the KUKA IIWA 7 robot. The starting
positions are randomly chosen by the operator. The robots do not move till the first
intercept point is calculated. We call the position of the object at this time the first
point.

Bumper
Weight 2.2
Material Plastic
The bases distance [0.2 − 1.4 0.1]
Initial position (m) [−3.6± 0.2 − 0.9± 0.4 0.6± 0.2]
First point (m) [−2.4± 0.3 − 1.0± 0.2 0.7± 0.1]
Duration (s) 3.4± 1.6
Success rate 85%

Front panel
Weight 2.9
Material Metallic
The bases distance [0.2 − 1.4 0.1]
Initial position (m) [−4.1± 0.3 − 0.9± 0.2 0.4± 0.2]
First point (m) [−2.7± 0.4 − 0.8± 0.3 0.6± 0.1]
Duration (s) 3.2± 1.3
Success rate 85%

Fender
Weight 2.4
Material Metallic
The bases distance [0.0 − 1.3 0.1]
Initial position (m) [−3.8± 0.5 − 0.7± 0.3 0.6± 0.1]
First point (m) [−2.7± 0.4 − 0.7± 0.2 0.7± 0.1]
Duration (s) 2.3± 1.2
Success rate 90%

bumper. In both scenarios, the object is moving toward the robots on a straight

line. The simulations are conducted in the kuka-rviz environment.

IK Solver Performance.

In the first set of simulations, the performance of the three solvers of (4.5.2)

(CVXgen, Nlopt and the dynamical system (4.5.5)) are assessed in terms of com-

putation time and the smoothness of the generated joint motions. The initial

velocity of the object is fixed but the initial position is randomly chosen within

the range of
[
−3.5± 0.05 −0.45± 0.05 0.8± 0.05

]
m . The simulation is re-

peated 5 times for each solver which results in more than 5×35000 data points.

The termination tolerance of the solvers is set to 10−4. The computation time

of each solver is illustrated in Figure 4.19a. As it was expected, CVXgen is the

fastest solver and it takes about 0.000358s for it to solve (4.5.2) in average. The

performance of the our implementation of (4.5.5) takes approximately 0.00092s

to solve (4.5.2). As initialization of the dynamical system (4.5.5) plays impor-

tant role in the convergence duration, the standard deviation of the computation
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Figure 4.17: The position of the end-effector, the virtual object generated by (4.4.1)
and (4.4.10), respectively. These trajectories are illustrated from the first point till the
stop point. As expected, both arms intercept the reaching positions on the object at
the same time. In order to avoid any internal forces, the robots are stopped once the
fingers are closed on the object.

time of (4.5.5) is much higher than other two approaches. The smoothness of

the trajectory L is assessed by S = std(L̇)

mean(L̇)
, where a smaller value of it indicates

a smoother motion. As it is shown in Figure 4.19b, the result of (4.5.5) is much

smoother than the other methods. It was expected as (4.5.5) calculates the de-

sired motion at the acceleration level. Hence, the output of (4.5.5) can directly

be transmitted to the robots, but the outputs of either Nlpot or CVXgen need

to be filtered. As the computation power was the main criterion for choosing

the IK solver for us, we mostly used CVXGEN during the experiments.

Sensitivity to noise.

In the second set of simulations, the robustness of the framework to noise and

unmeasured object position is assessed. The simulation is repeated 165 times in

total for three different object velocities; i.e., 0.25ms , 1.25ms and 3.75ms . Results

from this evaluation indicate that the interception error is directly correlated

to the percentage of unmeasured object points and the velocity of the moving

object (see Figure 4.20). Thus, the faster the object, the more sensitive the

system is to the inaccuracies.
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Figure 4.18: Spatial Variation of final intercept points. For clarity, only ten runs (i.e.,
trajectories) of the objects’ and robots’ motions are shown. For each run, a different
object trajectory and final intercept points were observed. Experimental results verified
that the robots intercept the object in synchrony.

4.7 Conclusion and Discussion

In this chapter, we extend our previous formulation (introduced in Chapter

3) of dynamical systems for generating robots’ motions while complying not

only with the motion of a moving object but also with the motion of each other.

If provided with robotic arms that can travel fast enough, our algorithm can

select the most feasible robotic arms to intercept the object in coordination and

with the velocities aligned to (or equal to) that of the object while any collision

between the arms are avoided. For selecting the most feasible robotic arms, we

define a parameter (i.e the synchronization parameter) to assign the robots to

the appropriate behavior; i.e., the asynchronous or synchronous behaviors. The

synchronization parameter varies between zero and one based on the feasibility

criteria.

Similar to Chapter 3, in this chapter, we proved the stability and conver-

gence of the proposed dynamical system based motion generator; i.e., (4.4.1)

and (4.4.10). However, as no constraint is imposed on the magnitude of the

eigenvalues (|λAij |) of Aij ∀(i, j) ∈ {(1, 1), (1, 2), . . . , (NR, dsNR )}, the rate of

convergence may not be fast enough such that (4.4.10) converges to γξO in time.

In two cases, this might cause a failure. In the first case, as the reaching points

are assigned to the corresponding robots based on their Euclidean distance to

the robots’ end-effectors, they might be assigned to different robots during one

trial. In the second case, the robots’ asynchronous targets are far from the syn-

chronous targets. In these cases, most likely the system fails to converge to the

synchronous targets fast enough. To address this challenge, a potential direction
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Figure 4.19: The results of performance of the IK solvers in terms of computation
time and the smoothness of the motion. DS stands for the dynamical system (4.5.5).
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Figure 4.20: The interception error is the average of the minimum distance between
the box and the end-effectors. The initial positions of the box are randomly chosen

within the range of
[
−3.5± 0.1 −0.45.0± 0.1 0.8± 0.1

]T
m. The distance between

the arms and the size of the box are same as the bumper scenario. The simulations
are repeated for each combination of three object’s speeds, three noise powers and
four percentages of unmeasured positions. We only consider trials when the box passes
through the robots workspaces. The measurement noise is simulated with pseudo-
random values within the range of ±0.05, ± 0.005 and ±0.0005m. The results of the
worse case are not illustrated as the robots were not able to follow the object; i.e.,
the worse case is when the percentage of unmeasured position is 85% and the box’s
velocity is 3.75m

s
.
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4.7 Conclusion and Discussion

for future work would be to estimate the parameters of (4.4.1) and (4.4.10) with

respect to the stability and the convergence rate constraints.

To solve the quadratic programming problem, we used three different ap-

proaches. First a dynamical system based approach, Eq.(4.5.5). Second, non-

linear programming solver (Johnson, 2015). The third approach was CVXGEN,

introduced in (Mattingley and Boyd, 2012). Each of these approaches has its

own advantages and disadvantages. Using the first approach is advantageous in

the way that the passivity of the dynamical system can be proven. Hence, the

unified framework stays passive and stable as long as the robots are passive. In

addition, the first approach result in smoother joint motions. The main advan-

tage of the second approach is its interface. Nlopt is very user friendly and it

is possible to test several different solvers, but it is computationally expensive.

The main advantage of the third approach is the computational cost. As it has

been shown in (Mattingley and Boyd, 2012), CVXGEN is computationally very

efficient. The main shortcoming of the third approach is the stability of the

closed loop system which can not be proven; however any unstable behaviors

during the real world evaluations or the simulations has not been seen.

Similar to Chapter 3, throughout the proofs, we assume that the intercept

point is a fixed attractor. However, due to the imperfect prediction of the object

trajectory, the feasible intercept postures need to be iteratively updated. Never-

theless, this does not affect the convergence of the system for two main reasons.

First, when γ < 1 the new feasible intercept point is chosen in the vicinity of the

previous ones; i.e., the convergence rate is much faster than the rate of update.

Second, when the object is reachable, γ = 1, the virtual object converges to the

real object and the position of the intercept point does not affect the conver-

gence. Similarly, we have also assumed that the reaching points on the object

do not change or their changing rates are much less than the convergence rate

of the dynamical systems.

In Chapter 3 and Chapter 4, we introduced compliant control architectures

for actively synchronizing the motion of the robots with a moving object and

with each other at different levels. However, the proposed controllers are tailored

for the reaching and softly intercepting moving objects scenarios; which is a

particular case of non-contact/contact scenarios. In the next chapter, we propose

a general solution for actively controlling the motion of the robots to stably

performing any non-contact/contact scenarios.
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Chapter 5

Stable
non-contact/Contact

Transitions

5.1 Introduction

In this chapter, we consider the problem of controlling the robotic manipu-

lators during non-contact/contact transitions. A wide variety of real-world ma-

nipulation tasks, such as: milling/ polishing/finishing workpieces (Jinno et al.,

1995; Kabir et al., 2017; Pagilla and Yu, 2001b; Khansari et al., 2016), wip-

ing/painting surfaces (Lin et al., 2017; Leidner et al., 2016), peeling or dough

rolling Figueroa et al. (2016) includes interactions between a tool and an envi-

ronment. For such applications, the complete scenario can be categorized into

three regions: (i) Moving in free motion space and approaching the contact

surface; i.e., Free motion region. (ii) Establishing contact with the surface; i.e.,

Transition region. (iii) Maintaining contact with the surface while moving in the

other directions; i.e., Contact region; see Figure 5.1. We call a contact stable if

the impact happens only once and the robot remains in contact with the surface

after the impact.

Realizing a stable contact is particularly challenging as the impact leaves in-

finitesimal time for the robot to react properly to the impact force. It is however

necessary to control for a stable contact to avoid that the robot bounces on the

surface and damages itself or the environment.

The complexity of the problem increases importantly if the arm and the

surface do not dissipate impact energy; i.e perfectly elastic impact. In this case,

to successfully establish a contact with a rigid surface, the robot should touch

the surface with zero velocity so that the post-contact velocity in the normal

direction is zero. Nevertheless, the impacts in real-world scenarios are mainly

inelastic, where, based on Newtons’s law, the post-contact velocity of an object

is a constant fraction of the pre-contact velocity (Jia et al., 2013).1 In this case,

touching the surface with zero, or near to zero, velocity results in a zero post-

contact velocity in the normal direction; i.e., the robot remains in contact with

the surface after the impact (Pagilla and Yu, 2001a, 2000).

Previously, in Chapter 3 and Chapter 4, we introduced actively complaint

1It is worth mentioning that Newton’s model is one of the simplest mathematical model
which describes an impact. In recent years, Possition’s and the energy hypotheses are proposed
to address shortcomings of Newton’s model. However, if the object is passive, and the surface
has no velocity, the post-contact velocity is always equal or less than the pre-contact velocity.
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5 Stable non-contact/Contact Transitions

(a) Scenario 1.

(b) Scenario 2.

Figure 5.1: Schematic of three subtasks of an interactive application while the sur-
face’s location is uncertain. The arm starts approaching the surface at the free motion
region. Once it is close enough to the surface, it regulates its velocity to establish
a stable contact at the desired contact point (xc). Then while sliding on the surface,
based on the scenario requirements, it either leaves the surface (Figure 5.1a) or reaches
the target on the surface (Figure 5.1b) at desired departure (xl) or stop (xs) locations,
respectively.

control architectures for intercepting a moving object at the desired position

with zero relative velocity by single or multi-arm system. However, the proposed

controllers were particularly designed for accomplishing the specific tasks. In this

chapter, as the transition is a local behavior and to comply with the velocity

constraints, we propose a strategy consisting of locally modulating the motion

of the robot once it is close to the surface such that the robot’s velocity is

aligned with the contact surface so that a stable contact can be established. The

proposed architecture can be integrated into existing DS-based motion control

approaches, where they represent the nominal arm behavior. The idea of locally

modulating dynamical systems is not novel and it has been previously used in

(Khansari-Zadeh and Billard, 2012) and (Kronander et al., 2015) for modulating

first order DSs. In this contribution, we use this idea to modulate the motion of

a robot such that:

Objective 1 : If the robot contacts the surface, the impact happens only once
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5.2 Problem Statement

and the robot remains in contact after the impact.

Moreover, we show that the proposed controller is capable of modulating the

robot’s motion such that:

Objective 2 : The robot contacts the surface at a specific point (xc).

Objective 3 : If the robot is in contact with the surface, it slides on the surface

and either

(a) leaves the surface at a specific departure location (xl), see

Figure 5.1a, or

(b) stops at a specific stop location (xs) on the surface, see Figure

5.1b.

This chapter is began by formalizing our assumptions and problem formula-

tion in Section 5.2. Then in Section 5.3, we develop our compliance modulation

function. Performance of the approach is evaluated on real world robot experi-

ments in Section 5.4. This chapter concludes with a discussion in Section 5.5.

This chapter corresponds to the following publication:

• Mirrazavi Salehian, S. S. and Billard, A. A dynamical system based Ap-

proach for controlling robotic manipulators during non-contact/contact

transitions, 2018. (Submitted).

5.2 Problem Statement

Suppose the contact surface is non-penetrable, passive and planar. Moreover,

a continuous function (Γ(x) = NTx), which conveys a notation of distance to

the surface is available; where N is the unit normal vector to the surface. x

denotes the position of the robot’s end-effector. By definition, the origin of the

coordinate frame is on the surface and the surface corresponds to the plane of

equation NTx = 0. Based on this definition, one can categorize the task space

into two regions; the free motion region when 0 < NTx and the contact region

when NTx = 0.

We consider the following continuous-time system. As we need to control

both position and velocity, the DS must be a function of both of them and the

output defines the desired acceleration of the robot.

ẍ = M(x, ẋ)f(x, ẋ, t) (5.2.1)

Where f(x, ẋ, t) represents the nominal dynamical system. We assume that

the nominal DS is asymptotically stable to a fixed target (xt) located above the
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5 Stable non-contact/Contact Transitions

surface; i.e., 0 < NTxt.2

Furthermore, the nominal acceleration is non-zero everywhere except on the

target; i.e., fT (x, ẋ)f(x, ẋ) 6= 0 ∀(x, ẋ) = Rd×d − {xt, 0}.3M(x, ẋ) ∈ Rd×d is

a modulation function which reshapes the nominal DS such that it complies

with the contact surface based on the state of the robot, where we define the

modulation function as follows:

M(x, ẋ) = QΛQ−1

Q =
[
q1 . . . qd

] (5.2.2)

Where qi ∀i ∈ {1, . . . , d} form an orthonormal basis in Rd with q1 pointing

along the normal to the surface; i.e., q1 = N . λλλij(x, ẋ) ∀i, j ∈ {1, . . . , d} are

the entries of Λ, where i is the row number and j is the column number. The

motion direction, tangential and normal to the surface, can be controlled through

the scalar values λλλij ∀i, j ∈ {1, . . . , d}. For example, by setting λλλ1j(x, ẋ) =

0 ∀j ∈ {1, . . . , d}, the acceleration of the robot normal to the surface will be

zero; i.e., NT ẍ = 0. Moreover, by setting λλλii(x, ẋ) = 1, λλλij(x, ẋ) = 0 ∀i, j ∈
{1, . . . , d}, i 6= j, the nominal DS drives the robot in the qi

th direction. We

exploit this property and limit the influence of the modulation function to a

region in a vicinity of the surface; denoted as the transition region.4. Using the

fact that we have at our disposal the function Γ(x) to measure the distance to

the surface, we set the transition region to be all points such that Γ(x) ≤ ρ, ρ ∈
R>0. Outside this region, to avoid undesirable modulations, the modulation

decreases and vanishes exponentially as a function of the distance to the surface.

To modulate locally the dynamics of the DS given by (5.2.1) and (5.2.2), we set

that:

λλλij(x, ẋ) =


λij(x, ẋ) if Γ(x) ≤ ρ

(λij(x, ẋ)− 1) e
ρ−Γ(x)
σ + 1 if i = j ρ < Γ(x)

λij(x, ẋ)e
ρ−Γ(x)
σ if i 6= j ρ < Γ(x)

(5.2.3)

∀i, j ∈ {1, . . . , d} Where 0 < σ defines the speed at which the modulation

vanishes in the free motion region. ρ defines the region of the influence of the

modulation function. If ρ < Γ(x), the robot is far from the contact surface and

Λ = Id×d; i.e., the robot is driven solely by the nominal dynamical system.

Next we show how by defining λij ∀i, j ∈ {1, . . . , d}, a stable contact can be

2It is important to note that asymptotically stability of the nominal DS is only required to
achieve Objective 3 .a. To achieve the other objectives(Objective 1 , Objective 2 and Objective
3 .b) it is not necessary for the nominal DS to be stable.

3If M(x, ẋ) is the control input, this assumption is equivalent to the controllability of
ẍ = M(x, ẋ)f(x, ẋ, t).

4The development of the transition region is partly inspired from the potential field obstacle
avoidance approaches Khatib (1986).
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5.3 Compliant Modulation Systems

achieved. Moreover, we define ρ based on the kinematic constraints of the robot.

First, we consider a perfect elastic impact between the robot and the contact

surface; i.e., the Coefficient Of Restitution (COR)5 (e) is one. Then, we extend

this to a realistic scenario where the impact is inelastic; i.e., 0 ≤ e < 1.

5.3 Compliant Modulation Systems

5.3.1 The elastic impact

Consider a scenario where the impact is perfectly elastic (e = 1). In this

case, the normal velocities6 of the robot before and after the impact are equal

in amplitudes but pointing to opposite directions. Hence, to achieve a stable

contact (Objective 1 ), the normal velocity of the robot at contact must be zero;

i.e.

NT ẋ(t∗) = 0 (5.3.1)

Where, t∗ is the time when the robot enters into contact with the surface.

Theorem 5. For a given initial state {x0, ẋ0 ∈ Rd| 0 < NTx0 ≤ ρ, f(x0, ẋ0) 6=
0}, the motion generated by (5.2.1) and (5.2.2) contacts the surface with zero

normal velocity and satisfies Objective 1, if ∀j ∈ {1, . . . , d}

λ1j(x, ẋ) =
(
−2ωNT ẋ− ω2NTx

)
fj(x, ẋ, t) (5.3.2)

where fj(x, ẋ, t) =
f(x,ẋ,t)T qj

f(x,ẋ,t)T f(x,ẋ,t)
and

|NT ẋ0|
NTx0

≤ ω (5.3.3)

Moreover, the motion generated by (5.2.1) and (5.2.2) contacts the surface at

xc and satisfies Objective 2, if ∀(i, j) ∈ {(2, 1), (2, 2), . . . , (d, d)}

λij(x, ẋ) =
(
−2ωqi

T ẋ− ω2qi
T (x− x∗)

)
fj(x, ẋ) (5.3.4)

Where x∗ = xc.

Proof: see Appendix C.1.

Theorem 5 provides a function to modulate the motion of the robot’s end-

effector such that the stable contact can be established at the desired location.
5COR is defined as the ratio of velocities after and before an impact, taken along the line

of the impact.
6For sake of simplify, in the rest of the paper, we call the velocity normal to the surface,

the normal velocity.
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5 Stable non-contact/Contact Transitions

Figure 5.2: An illustration of the variables in (5.3.10). The value of modulated con-
tact surface (Γ(x)) is depicted by the intensity of the black, where ρ ≤ Γ(x) in the
white areas and Γ(x) < ρ in the rest. The colors of the variables and the arrows are
corresponding.

However, it is important to note that defining the pre-specified contact location

is not necessary for implementing the proposed the modulation framework. For

instance, by defining

λij(x, ẋ) =

{
0 if i 6= j

1 if i = j
∀i ∈ {2, . . . , d} ∀j ∈ {1, . . . , d} (5.3.5)

and λ1j(x, ẋ), ∀j ∈ {1, . . . , d} by (5.3.2), the motion of the nominal DS is

modulated only in the normal direction. Hence, if the robot enters the transition

region, it stably contacts the surface as the normal velocity of the robot is

modulated based on (5.3.2). However, the contact location emerges from the

motion generated by the nominal DS.

If the robot starts its motion outside of the transition region, Eq. (5.2.3)

states that the modulation function is activated if the robot enters it. Hence,

the initial state (NTx0) in Theorem 5 is equivalent to ρ. However, Theorem 5

depends on the robot’s dynamics and is achievable only if the robot can decel-

erate sufficiently rapidly. Hence, the transition region must be set sufficiently

large to meet the robot’s physical limits. This is summarized in the following

proposition:

Proposition 2. For a robot with upper bounds ẋmax and ẍmax on velocity and

acceleration, respectively. Given NTx0 = ρ, we set ρ and ω in (5.2.3) such that

ρ =
3(NT ẋmax)2

|NT ẍmax|
(5.3.6)

ω = | N
T ẍmax

3NT ẋmax
| (5.3.7)

Proof : see Appendix C.2.

Once the robot is in contact with the surface, two interactive scenarios can

be accomplished. In the first scenario, the robot slides on the surface and leaves

it at the specific departure location (xl); see Figure 5.1a. In the second scenario,

the robot slides on the surface till it reaches the desired stop location on the

surfaces (xs); see Figure 5.1b. The latter can be realized by modulating the
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nominal DS and x∗. However, the former can be achieved by modulating the

nominal dynamical system, x∗ and the definition of Γ(x). These are summarized

in the following propositions.

Proposition 3. For a given initial state {x0, ẋ0 ∈ Rd| NTx0 ≤ ρ, f(x0, ẋ0) 6=
0}, the motion generated by the nominal DS (5.2.1) modulated by (5.2.2), where

λij(x, ẋ), ∀(i, j) ∈ {(1, 1), (1, 2), . . . , (d, d)} are defined by (5.3.2) and (5.3.4),

contacts the surfaces at xc and then slides on the surface till it asymptotically

reaches xs (i.e., satisfaction of Objective 3.b) if x∗ in (5.3.4) is such that:

x∗ =

{
xc if 0 < NTx

xs if NTx = 0
(5.3.8)

Where, xs is defined on the surface.

Proof : see Appendix C.3.

Proposition 4. For a given initial state {x0, ẋ0 ∈ Rd| NTx0 ≤ ρ, f(x0, ẋ0) 6=
0}, the motion generated by the nominal DS (5.2.1) modulated by (5.2.2), where

λij(x, ẋ), ∀(i, j) ∈ {(1, 1), (1, 2), . . . , (d, d)} are defined by (5.3.2) and (5.3.4),

contacts the surfaces at xc and then leaves it at xl (i.e., satisfaction of Objective

3.a) if x∗ and Γ(x) in (5.3.4) and (5.2.3), respectively, are defined as follows:

x∗ =

{
xc if 0 < NTx

2xl − xc if NTx = 0
(5.3.9)

Γ(x) = NTx+
(
ρ− (xl − xc)T (xl − x)

)
e−(xl−x)TΣ−1(xl−x) (5.3.10)

Where, xl is defined on the surface and Σ ∈ Rd×d is a positive definite

matrix.

Proof: see Appendix C.4.

Changing x∗ based on (5.3.8) or (5.3.9) does not cause oscillations as (5.3.2)

is not a function of x∗. Hence, changing x∗ does not influence the motion of

the robot in the normal direction to the surface. Σ defines the influence of(
ρ− (xl − xc)T (xl − x)

)
e−(xl−x)TΣ−1(xl−x) over NTx in (5.3.10); see Figure 5.2.

If all entries in Σ are small, its influence will be small and vice-versa.
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Figure 5.3: An intuitive example showing the behavior of the proposed control in
three different regions. Stable contact is achieved by using the proposed modulation
function. Γ(x) is defined based on (5.3.10). The contact is assumed inelastic. ρ = 0.1,
σ = 0.01, ω = 0.1, ν = 0.01 and δẋ = −0.02. As it is illustrated, at the transition
region, the velocity of the robot is reduced based on Theorem 6 such that it satisfies
(5.3.11). Moreover, in the tangential directions, the robot regulates its velocity based on
(5.3.4) and touches the surface exactly at the desired contact point (xc = [−0.3 0]T ).
As it is shown in this example, based on Proposition 4, the robot leaves the surface at

the desired leaving point (xl = [0 0]T ) . f(.) =

[
−1 0
−40 −25

]
ẋ+

[
−1 0
0 −1

]
(x− xt),

where xt = [0.1 − 0.2]T .

5.3.2 The inelastic impact

In an inelastic impact, due to the action of internal friction, the kinetic

energy is not conserved and hence the coefficient of restitution is less than one

; i.e., 0 ≤ e < 1. In this case, we can assume that if the normal velocity of the

robot becomes very small (δẋ), the surface absorbs all the kinetic energy of the

arm; i.e., the end-effector remains in contact after the impact7. Hence, to achieve

Objective 1 , the velocity of the robot must satisfy the following constraint at

impact:

δẋ ≤ NT ẋ(t∗) ≤ 0 (5.3.11)

Theorem 6. Assuming the impact is inelastic. For a given initial state {x0, ẋ0 ∈
Rd| 0 < NTx0 ≤ ρ, f(x0, ẋ0) 6= 0}, the dynamical system (5.2.1) and (5.2.2)

7This assumption is adopted from Pagilla and Yu (2001a).
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Figure 5.4: The modulation function is disabled by setting M(.) = I. Not only
the contact is unstable and the robot bounces on the surface, as the impact force is
enormous, but also the robot does not contact the surface at the desired location.

f(.) =

[
−1 0
−40 −25

]
ẋ+

[
−1 0
0 −1

]
(x− xt), where xt = [0.1 − 0.2]T .

satisfies condition (5.3.11), if λ1j(x, ẋ) =


ω
(
−NT ẋ+ (δẋ + ν)

)
fj(x, ẋ) NT ẋ < δẋ

ω

(
ν

δẋ
NT ẋ− ω(1− NT ẋ

δẋ
)NTx

)
fj(x, ẋ) δẋ ≤ NT ẋ ≤ 0

ω
(
−2NT ẋ− ωNTx

)
fj(x, ẋ) 0 < NT ẋ

(5.3.12)

(5.3.13)

(5.3.14)

where fj(x, ẋ) =
f(x,ẋ,t)T qj

f(x,ẋ,t)T f(x,ẋ,t)
and ω is defined based on (5.3.4) (or its equiv-

alent (5.3.7)) and

δẋ −NT ẋ0

e1 − 1
< ν (5.3.15)

Proof: see Appendix C.5.

As shown in Table 5.1, λ1(x, ẋ) defined by (5.3.12)-(5.3.14) is continuous. The

main advantages of the modulation function proposed for the inelastic impact

over the elastic one, is its ability in handling uncertainties in the surface location:

Proposition 5. Assuming a planar surface with equation NTx = η, whose

orientation is precisely defined through its normal (N) but whose location (η) is

imprecise but bounded with a known upper bound ηηη, i.e., |η| ≤ ηηη < ρ. Moreover,

for a given initial state {x0, ẋ0 ∈ Rd| NT ẋ0 < δẋ < 0, 0 ≤ ηηη < NTx0 ≤ ρ, },
the dynamics of the robot is generated by the nominal DS (5.2.1) modulated

by (5.2.2), where λ1j(x, ẋ), ∀(j) ∈ {1, 2, . . . , d} are defined by (5.3.12). Then,

the velocity of the robot when it impacts the surface is bounded and satisfies

condition (5.3.11), if ν and ω are defined as follows:

ν = −δẋ, ω =
δẋ −NT ẋ0

NTx0 − ηηη
(5.3.16)

Proof: see Appendix C.6.

Proposition 5 hence ensures that the contact is stable and Objective 1 is
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Table 5.1: Value of λ1j(x, ẋ) defined by (5.3.12)-(5.3.14) at the conditions’ boundaries.

lim
NT ẋ→δ−

ẋ

NT ẋ = δẋ lim
NT ẋ→δ+

ẋ

λ1(x, ẋ) ω−1νfj(x, ẋ) (5.3.12) ω−1νfj(x, ẋ) (5.3.13) ω−1νfj(x, ẋ) (5.3.13)
lim

NT ẋ→0−
NT ẋ = 0 lim

NT ẋ→0+

λ1(x, ẋ) −ω−2NT xfj(x, ẋ) (5.3.13) −ω−2NT xfj(x, ẋ) (5.3.13) −ω−2NT xfj(x, ẋ) (5.3.14)

Table 5.2: The details of the systematically assessment. All the positions are with
respect to the robot’s base. The units are defined in the metric system. xc =
[−0.6 0.3 0.0]T and xl = [−0.66 0.31 0.07]T and xs = [−0.65 −0.01 0.07]T . δẋ = −0.1m

s

and ρ = 0.2m. “ Contact ”, “Leaving/ Stopping” errors are the Euclidean distance be-
tween the real and the desired corresponding points.“Pre-contact”and“Pre-transition”
velocities are the velocity of the end-effector in the normal direction about entering
the contact and transition regions, respectively.

Scenario 1

Initial position
[
−0.5± 0.2 − 0.0± 0.4 0.8± 0.1

]
Contact Error 0.0± 0.03
Leaving/Stopping Error 0.0± 0.01
Pre-contact velocity 0.08± 0.06
Pre-transition velocity 2.4± 1.4

Scenario 2

Initial position
[
−0.5± 0.1 − 0.0± 0.3 0.8± 0.1

]
Contact Error 0.0± 2× 10−3

Leaving/Stopping Error 0.0± 4× 10−3

Pre-contact velocity 0.07± 0.01
Pre-transition velocity 2.5± 1.3

satisfied. However, it depends on the fact that the uncertainty on the location

of the surface must remain bounded. Moreover, if the location of the contact

surface is uncertain, the contact location can not be precisely specified.

The performance of the proposed framework is illustrated by a simple in-

tuitive 2-D example in Figure 5.3 and 5.4 , where, in Figure 5.3, by using the

proposed framework, the robot can stably transit to the contact region. Figure

5.4 illustrates an unstable contact where the modulation function is disabled

by setting M(x, ẋ) = I. In this case, as contact velocity is very high, the robot

bounces on the surface.

5.4 Experimental Results

We consider a task of wiping the surface of a fender. The performance of the

proposed framework is evaluated on a real robotic arm platform; i.e., 7 DOF

robotic arm (KUKA IIWA). The robot is controlled in the joint position level at

a rate of 200 Hz. The output of the DS (5.2.1) is converted into the joint state

using the damped least squares inverse kinematic solver. The robot is equipped

with a 6-axis ATI force-torque sensor which is only used for recording forces and

not in the controller.

The surface of the fender is approximated by a plane which is calculated by

capturing the position of three markers on the surface. The positions are cap-

tured by Optitrack motion capture system. The orientation of the end-effector
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is constrained to be normal to the contact surface. The impact is inelastic and

δẋ = −0.1ms .

The empirical validation is divided into three parts. In the first part, we

systematically assess the performance of the controller in performing the two

scenarios illustrated in Figure 5.1a and Figure 5.1b in a known environment.

In the second part, the controller’s abilities in modulating the robot’s motion

in a dynamically chancing environments are assessed. In the third part, the

performance of the controller is assessed in an uncertain environment.

5.4.1 Systematic assessment

Both scenarios were repeated 30 times where the initial state of the robot is

randomly chosen; all the information is summarized in Table 5.2. The location

of the surface is fixed. The snapshots of the motion execution of both scenarios

are shown in Figure 5.5 and 5.6. Visual inspection of video8 confirmed that, in

all the trials, the robot stably touches the surface at xc and accomplishes the

tasks. However, the inspection of data indicates that in three cases the velocity

at impact is higher than 0.1. An example of the motion of the robot is illustrated

in Figure 5.7. As it can be seen, the normal velocity of the robot is reduced to δẊ
in the transition region to ensure a stable contact. In Figure 5.8, the variation

of the robot’s motions is illustrated.

As reported in Table 5.2, the overall position errors at xc, xl and xs are very

small and negligible. This indicates that even though the surface is not exactly

planar in our implementation, our modulation function is capable of accomplish-

ing the desired tasks. The causes of these inaccuracies can be categorized into

three different categories. i) The main cause of this error is the approximation

of the contact surface. In this experiment, we assumed that the contact surface

is a plane. However, the fender’s surface is bumpy. This results in inaccuracies

in the measurement of the distance between the robot and the real surface. ii)

The second cause of error is the inverse kinematic. Even thought the motion

of the robot is not super fast, the IK solver is still unable to generate a very

accurate joint-level motion corresponding to the desired end-effector trajectory.

The kinematic constrains of the robot is the main source of this inability. iii)

The third cause of the error is delays in measuring the joint positions and the

communication channels. As the robot runs in the closed loop, any measuring

delay causes inaccuracies in specifying the desired motion of the robot. In spite

of these, the overall performance of the task execution is satisfying and the robot

was able to wipe the surface successfully in all the trials.

8http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 5/Systematic Assessment.mp4.
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5 Stable non-contact/Contact Transitions

(a) 0.0 s. (b) 2.3 s. (c) 6.7 s.

(d) 7.7 s. (e) 8.7 s. (f) 8.9 s.

Figure 5.5: Snapshots of the motion of the robot while performing Scenario 1, where
the goal of the robot is to stably touch the surface at xc and leave it at xl. In (a),
the initial configuration of the robot, xc and xl are shown. While the robot is at the
transitions region, in (b), the robot’s motion is directed towards xc and its velocity is
modulated such that it stably touches the surface in (c). In (e), the robot reaches xl.
Accordingly, the robot leaves the surface in (f).

5.4.2 Modulation under perturbations

The second part is design to illustrate the capability of the modulation frame-

work in performing Scenario 1 (Figure 5.1a) under perturbations. While the

robot is moving from the initial location, a human operator perturbs either the

robot or the surface. Perturbations on the robot is applied on its end-effector.

Due to the closed loop implementation of (5.2.1), the robot is compliant to the

operator. Hence, by changing the state of the robot, the modulation function

calculates the best next action, in a real-time, with respect to the currant state

of the robot. As it can be seen in the video9 and Figure 5.9, while the robot

is perturbed, the modulation function modifies the motion of the robot such

that Objective 1 , Objective 2 and Objective 3 .a are achieved. We then assess

the performance of the controller in a dynamically changing environment. Once

the robot started moving, the operator changes the fender’s position as well

as its orientation (Figure 5.10). Due to the fact that modulation function is

9http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 5/Main.mp4.
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(a) 0.0 s. (b) 2.3 s. (c) 3.0 s.

(d) 9.17 s. (e) 11.8 s. (f) 20.0 s.

Figure 5.6: Snapshots of the motion of the robot while performing Scenario 2, where
the goal of the robot is to touch the surface at xc and stop on the surface at xs. In
(a), the initial configuration of the robot, xc and xs are shown. While the robot is at
the transitions region, in (b) and (c), the robot’s motion is directed towards xc and its
velocity is modulated such that it stably touches the surface in (d). In (f) the robot
reaches xs.

inherently a linear system, it is computationally efficient. Hence, it can instan-

taneously modify the robot’s motion wrt. the current state of the surface.

5.4.3 Modulation under uncertainties

In the third part, we assess the performance of the controller in an uncertain

environment while performing Scenario 1 (Figure 5.1a). Uncertainties are mod-

eled as a random noise on the location of the surface, where ηηη = 0.15m. As

δẋ = −0.1ms and NTx0 = ρ = 0.2 and NT ẋmax = −4ms , based on (5.3.16),

ν = 0.1 and ω = 78. The experiment was repeated 30 times, see the accompany-

ing video10 and Table 5.3. In all the 30 trials, the impacts were stable. However,

as expected, the robot does not exactly contact the surface at xc. Moreover,

as a force/tactile sensor has not been used, there is no way to realize that a

contact has happened. Hence, in 28 out of 30 cases, the robot does not slide on

surface, after the contact, to reach xl. In other two cases, η was approximately

10http://lasa.epfl.ch/files/Sina Mirrazavi Thesis videos/Chapter 5/Systematic Assessment.mp4.

97

http://lasa.epfl.ch/files/Sina_Mirrazavi_Thesis_videos/Chapter_5/Systematic_Assessment.mp4


5 Stable non-contact/Contact Transitions

Y [m]
X [m]

0.2

0.2

0.4

Z
[m

]

0

0.6

-0.5

0.8

-0.2 -0.6
-0.7-0.4

The Robot’s Motion
The initial Position
x
c

x
l

0 5 10

Time [s]

-5

0

5

N
T
ẋ
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Figure 5.7: The position of the end-effector, generated by (5.2.1), xc and xl(xs) are
shown in the left figures. δẋ = −0.1m

s
. The normal velocity of the robot at the impact

region is illustrated in the bottom right figures.

0. Snapshots of the scenario where η = 0.15 are illustrated in Figure 5.11.

5.5 Conclusion

In this chapter, we proposed an actively compliant control architecture for

establishing an stable contact with a surface. The proposed controller consists of

locally modulating the robot’s motion during non-contact/contact transitions.

By using this, the robot reduces its velocity to a certain threshold before coming

into contact with the surface such that the post-contact velocity becomes zero;

i.e., the impact is being stable and the robot does not bounce on the surface.

Furthermore, by modulating the motion of the robot in the tangential directions,

98



5.5 Conclusion

(a) Scenario 1

(b) Scenario 2

Figure 5.8: Spatial variational of the initial, contact and leaving/stopping points.
Experimental results verify that the contact is stable and the robot touches the surface
at the desired points.

we showed that the contact location can be specified. Moreover, while the robot

slides on the surface, it can either leave or stop on the surface at the desired

departure or stop points, respectively.

Since the stability of the impact is ensured by bounding the pre-impact ve-

locity at the kinematic level, a careful reader might wonder: why not directly

control the impact force. The answer is that in order to directly control the

impact force, one need to control the motion of the robot at the dynamic level,

which requires manipulators with a high-performance model-based torque con-

troller. It is noteworthy that by controlling the pre-impact velocity, we indirectly

control the impact force; i.e., a zero pre-impact velocity results in a zero impact

force.

Throughout the proofs, we assume that x∗ is a fixed target. However, in two
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Table 5.3: The details of the systematically validating the performance of the con-
troller in an uncertain environment. xc = [−0.74, 0.27, 0.05]T and xl = [−0.68, −
0.32, 0.07]T . δẋ is −0.1m

s
and ρ = 0.2m.

Scenario 1

Initial position
[
−0.5± 0.1 − 0.1± 0.3 0.8± 0.2

]
η 0.06± 0.04
Contact Error 0.11± 0.13
Pre-contact velocity 0.06± 0.05
Pre-transition velocity 1.3± 0.13

cases it is not constant. In the first case, x∗ is changed wrt. the state of the

robot in Proposition 3 and 4. Nevertheless, this does not affect the performance

of the system for two reasons as changing x∗ based on (5.3.8) or (5.3.9) does

not affect the motion of the robot in the normal direction. Hence, the switch

between 0 < NTx and NTx = 0 happens only once. In the second case, x∗

changes while the surface is perturbed. In this case, as the modulation function

is very fast to compute and its convergence rate is faster than the update rate,

it can properly react, in real-time, to the perturbations; see Section 5.4.2.

As the sole knowledge of the surface is its location, any inaccuracies in the

position measurements deteriorate the performance of the controller. To address

this, we present Proposition 5 to improve the robustness of the system in face

of uncertainties in the location of the surface. This, however, fails in identifying

the true location of the surface once the robot contacts the surface and hence

it would not be possible to correctly switch between 0 < NTx and NTx = 0

constraints. One can easily address this problem by using force or tactile sensors.

As a final note, even though, the performance of the system is successfully

evaluated on a bumpy surface, in this chapter, the contact surface is assumed

planar. One way to improve the framework can be considering convex/non-

convex shaped surfaces. Another potential direction to improve the performance

of the proposed system would be to integrate the proposed controller with the

impedance varying controllers. In this way, the modulated DS is capable of

generating the desired motion of the robot, as well as different desired impedance

behaviors defined by local compliant regions in the state space.
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(a) 0.0 s. (b) 0.96 s. (c) 1.29 s. (d) 2.75 s.

(e) 3.48 s. (f) 5.35 s. (g) 5.72 s. (h) 6.1 s.

(i) 6.47 s. (j) 8.31 s. (k) 9.01 s. (l) 9.74 s.

(m) 11.8 s. (n) 14.81 s. (o) 15.94 s. (p) 16.32 s.

(q) 17.07 s. (r) 17.45 s. (s) 17.81 s. (t) 18.18 s.

Figure 5.9: Snapshots of the motion of the robot while performing Scenario 1 under
perturbations. In (a), the initial configuration of the robot, xc and xl are shown.
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(a) 0.0 s. (b) 1.7 s. (c) 4.3 s.

(d) 8.3 s. (e) 10.2 s. (f) 11.1 s.

Figure 5.10: Snapshots of the motion of the robot in a dynamically changing envi-
ronment. The location and the orientation of the surface are changing over the motion
execution. (a) is the initial location. In (c), the robot contacts the surface at xc. In
(d), the robots slides on the surface while the surface’s orientation is changed. In (e),
the robot reaches xl and, consequently, leaves the surface as depicted in (f).

(a) 0.0 s. (b) 3.0 s. (c) 3.3 s. (d) 5.0 s.

Figure 5.11: Snapshots of the motion of the robot in an uncertain environment. As
η = 15 and ρ = 20, the effective transition region is 5cm; the robot enters this region
in (b). Hence, the arm does not contact the surface at xc. However, as the contact was
stable, the robot slides on the surface till it reaches xc in (c)-(d).
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Chapter 6

Conclusions

”Perhaps the most important

principle for the good algorithm

designer is to refuse to be

content.”

Alfred V. Aho

1941 – present

In this chapter, we summarize our main contributions in this thesis. Further-

more, we discuss the limitations and the potential future directions of the work

presented in this thesis.

6.1 Main Contributions

Our key contribution in this thesis lies in presenting motion generators to

accomplish interactive tasks, where being compliant to the state of the envi-

ronment is crucial. Toward this end, we exploit the properties of autonomous

dynamical systems and propose motion-control strategies that actively – and in

real-time– comply with the state of the environments.

First, in Chapter 3, we have presented a compliant motion-control strategy

for catching flying objects. We formulate the controller as a LPV-based dynam-

ical system for generating the end-effector’s motion, where the parameters of

the LPV system are approximated via Gaussian Mixture Models (GMM) from

a set of the fastest kinematically feasible motions of the robot. Furthermore, we

propose a computationally efficient optimization algorithm for estimating the

parameters from the demonstration. We –theoretically1 and empirically– show

that the arm driven by the proposed controller intercepts the object at the de-

sired location, at the right time, and with the desired velocity, specifically a

velocity aligned with that of the object. Aligning the velocity of the arm with

the object at the interception results in having the arm move with the object

for a short period of time. This improves the robustness of the system against

temporal and spatial uncertainties. Moreover, to maximize the softness at the

1The stability and the convergence proofs were developed collaboratively with Mahdi Kho-
ramshahi, currently a PhD student at LASA.
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interception subject to the kinematic constraints of the robot, we suggest a

closed-loop optimal-control problem.

Second, in Chapter 4, we focus on generating the motion of a multi-arm

system such that the robots reach, in coordination with each-other, for a mov-

ing object. To accomplish this scenario, the motion of each arm must comply

with the motion of the other arms, in both task and joint spaces, and with the

motion of the object. We propose a virtual-object-based dynamical system to

coordinate the motion of the arms with each other and the resultant motion of

the arms with that of the object. Furthermore, with the purpose of coordinat-

ing the arm motions in the joint-space level, we propose a centralized inverse

kinematic solver that is formulated as a quadratic program problem subject to

kinematics and collision-avoidance constraints. We theoretically show that the

proposed controllers are able to satisfy the objectives of the task. Moreover, the

performance of the controller is systematically validated by sets of real-world

experiments2.

Third, in Chapter 5, we address the need for control algorithms when the

robotic manipulators come into a contact with a rigid surface. To stably tran-

sition from a free motion region to a contact region, the pre-impact velocity of

the robot should be modified such that the post-impact velocity becomes zero,

i.e., the robot does not bounce on the surface. To this end, we propose a local

modulation function for adapting the nominal motion of the robot before en-

tering into contact so that its velocity aligns with the surface. Furthermore, by

modulating the motion of the robot in the tangential directions to the surface,

we show that the contact location can be specified. Moreover, when the robot

slides on the surface, it can either leave or stop on the surface at the desired

departure or stop points, respectively.

6.2 Limitations and Future Work

At the end of each chapter, we discuss the limitations and drawbacks of the

corresponding frameworks. In this section, we summarize them and elaborate

more on the important limitations, as well as possible working directions to ad-

dress these limitations.

Joint-space task-oriented dynamical Systems

In Chapter 3 and Chapter 5, we have defined the motion of the robot at

the task-space level. We assume that there is an accurate and computationally

efficient inverse kinematic solver that maps the motion of the robot to the corre-

sponding joints’ motions. However, as presented in Section 3.5, it is not always

true in real-world scenarios. This limitation is, in particular, critical in fast mo-

2The real-world experiments were developed and conducted collaboratively with Nadia
Figueroa, currently PhD student at LASA.
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tions, as small deviations from the desired path result in situations where the

object is hit by the undesired parts of the hands/grippers and bounces away.

One way to address this problem is to integrate the “inverse kinematic (IK)

solver” and the “motion generator” blocks into a unified block, the proposed ap-

proach is capable of generating motions that satisfy the kinematic constraints

of the robot.

Force control

In this thesis, we have addressed the need for control architectures for ac-

complishing interactive scenarios when the mechanical compliance is negligible

in comparison with the interaction forces. The proposed control architectures

generate the desired robot actions, based on the current state of the environ-

ment which can be the object (in Chapter 3), the object and the other robots

(in Chapter 4) or the contact surface (in Chapter 5). There are two limitations

inherent to this assumption: (i) the state of the environment must be accurately

measurable, (ii) accurately controlling interaction forces is not possible.

As discussed in Section 3.5 and Section 4.6, to track the object, all the

markers must be visible to the cameras. However, the object’s tracking was

occasionally obscured partly when the object was very close to the arms, hence

covered by them. This is also true in Chapter 5, where the contact surface is

approximated with a plane where uncertainties in the surface orientation could

not be handled and they directly deteriorate the performance.

Apart from uncertainties, in Chapter 4, we control the motion of the arm

from the initial condition (palm open, robots far from the object) to the point

when the arms reach the object and the fingers are about to close on the object.

Hence, there are no interaction forces (which would arise once the robots are in

contact with the object). Once the fingers close on the object, the robot-object

system becomes a closed kinematic chain. In this case, devising an appropriate

force controller is necessary to coordinate the robots. It is also true, in Chapter

5, where the forces exerted on the contact surface are not controlled.

One potential solution would be to integrate force-feedback into the motion

generators, i.e., admittance control architectures. In this way, one can define the

desired reference trajectory of the robot in accordance to the measured forces.

However, this requires the availability of force sensors that can be mounted on

the end-effectors and compensating for all the measurements that are not caused

by the interaction with the environment.

Another potential solution would be the unification of motion generators and

the impedance-varying controllers. In this way, the DS is capable of generating

the desired motion of the robot, as well as different desired impedance behav-
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iors defined by local compliant regions in the state space. Hence, the interacting

force can be controlled by changing the impedance behavior of the robot.

Tailored motion generators

In all the three studied scenarios, we have designed the controllers, based on

the tasks’ requirements that are defined by the authors. Hence, the controllers

are capable of fulfilling only these specific objectives in the specific tasks. Even

though by tailoring the control laws, we theoretically and empirically show that

(under certain assumptions) the objectives can be realized, tailoring control laws

has one inherent shortcoming: the task’s objectives must be precisely definable.

This concern is less problematic when the task is simple and can be decom-

posed into a sequence of goal-oriented sub-tasks where each of them can be

accomplish by designing a control law. Consequently, the entire task can be ac-

complished by switching between these controllers. However, this issue is more

problematic when the task description is vague, e.g., cook a good pasta or gasp

an unknown shape object.

One potential solution to this problem is Inverse Reinforcement Learning

where the reward/objective functions are approximated from expert demon-

strations (Zhifei and Joo, 2012). Hence, there is no need to manually specify the

objectives. Even though this might seem to be a solution for learning complex be-

havior problems, it comes with a challenge: approximating the reward/objective

functions from a set of demonstrations is an ill-posed problem as any demon-

stration might seem optimal under a constant reward.

Communication delays and Dynamics of the robot

Throughout the thesis, we have assumed that (i) the delays in the communi-

cation channels are zero (II) there is a low-level controller at the position-level,

which fully compensates for the dynamics of the robot + tools mounted on top

of it. However, these are not true in the real-world experiments and we spent

a considerable amount of time dealing with them. The delays in closed-loop

systems can cause one main problem: the robot works much slower than its

nominal speed. Hence, in Chapter 3, the DS works in a closed-loop mode with

the IK solver and not with the real-robot. The second assumption can change

the desired behavior of the system once the payload of the robot changes. In

this case, the payload acts as an external perturbation, which deteriorates the

performance of the controller.

One potential way to address these issues, is to identify the dynamics of the

robot and to propose dynamical systems that encapsulate the low-level controller

of the robots so that the dynamical limitations of the robot can be handled as

well. By this, the motion of the arm can directly be translated into joint torques,

and any changes in the payload of the robot can be seen and properly addressed.

Another way to address these issues is to adapt the parameters of the motion
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(a) (b)

(c)

Figure 6.1: Illustration of a scenario where a quadruped robotic platform is galloping
on an uneven floor. In this case, each leg of a quadruped robotic platform, in synchro-
nization with the rest of the legs, should touch the floor at the right place, otherwise,
the robot might fall.

control law with respect to the tracking error. By this, the identification of the

dynamics of the robot is not required and the control law is, incrementally, re-

defined such that it compensates for the communication delays and the dynamics

uncertainties.

Applications to other domains

Even though the proposed control architectures are implemented solely on

manipulators, their usages are not limited to these robotic platforms. For ex-

ample, in Chapter 3 and Chapter 4, we propose motion generators by which a

single or multi-robotic arms can intercept a reference trajectory on time at a

desired point. By defining this reference trajectory as a limit cycle, one can use

the same framework to generate the motion of a quadruped robotic platform,

where each leg, in synchronization with the rest of the legs, should touch the

floor at the right place, e.g., see Fig. 6.1. The proposed modulation framework,

in Chapter 5, can be used in locomotion scenarios to make sure that the steps

could be stable and the impact force is minimized.

Another application of the proposed motion generator, in Chapter 4, can be

the modeling of the motion of human arms. There has been a number of inter-

esting hypotheses and theories that explain how the human arms are controlled

and how the motions of two arms are related. It has been generally accepted in

the literature that the motions of two arms are closely coordinated (Tayler and

Davids, 1997) and the coordination of hand movements is controlled, optimized

with respect to the task-specific goals (Todorov and Jordan, 2002). These two

can be achieved by introducing the notion of the virtual object that provides

coordination within the arms and with the task-specific goals: intercepting the
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object at the desired points.
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Appendix A

Appendices for chapter 3

A.1 Proof of Theorem 1

Based on (3.3.8), (3.3.5) can be re-written as follows:

[
ξ̇(t)− γ(t)ξ̇O(t)− γ̇(t)ξO(t)

ξ̈(t)− γ(t)ξ̈O(t)− γ̈(t)ξO(t)− γ̇(t)ξ̇O(t)

]

=

[
0D×D ID×D

A1(θ) A2(θ)

][
ξ(t)− γ(t)ξO(t)

ξ̇(t)− γ(t)ξ̇O(t)− γ̇(t)ξO(t)

]

=

K∑
k=1

θk

[
0D×D ID×D

Ak2 Ak1

][
ξ(t)− γ(t)ξO(t)

ξ̇(t)− γ(t)ξ̇O(t)− γ̇(t)ξO(t)

] (A.1.1)

Where, 0D×D ∈ RD×D and ID×D ∈ RD×D are zero and identical matrices,

respectively. We propose a Lyapunov function as follows:

V =
1

2

[
ξ(t)− γ(t)ξO(t)

ξ̇(t)− γ(t)ξ̇O(t)− γ̇(t)ξO(t)

]T
P

[
ξ(t)− γ(t)ξO(t)

ξ̇(t)− γ(t)ξ̇O(t)− γ̇(t)ξO(t)

]
(A.1.2)

As P is positive definite, V is positive definite, radially unbounded, contin-

uous and continuously differentiable. Substituting (A.1.1) into the derivative of
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V with respect to time yields:

V̇ =
dV

dt

=

K∑
k=1

θk︸︷︷︸
>0

[
ξ(t)− γ(t)ξO(t)

ξ̇(t)− γ(t)ξ̇O(t)− γ̇(t)ξO(t)

]T (
[

0D×D ID×D

Ak2 Ak1

]T
P + P

[
0D×D ID×D

Ak2 Ak1

]
︸ ︷︷ ︸

≺0 )[
ξ(t)− γ(t)ξO(t)

ξ̇(t)− γ(t)ξ̇O(t)− γ̇(t)ξO(t)

]
≤ 0

(A.1.3)

Therefore, dynamical system (3.3.5) is globally stable; i.e., ξ and ξ̇ are

bounded as ξO, ξ̇O, γ and γ̇ are bounded. Since V̈ is finite, Barbalet’s lemma

indicates that the attractor is globally asymptotically stable; i.e:

lim
t→∞

‖ξ̇(t)− (γξ̇O(t) + γ̇(t)ξO(t))‖ = 0, lim
t→∞

‖ξ(t)− γ(t)ξO(t)‖ = 0

(A.1.4)

�

To conclude, Theorem 1 is proved.
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Appendices for Chapter 4

B.1 Proof of Theorem 2, Part A

We propose a Lyapunov function

V =
1

2
(xRi (t)− τci(t)xVi (t) + (τci(t)− 1)xdi )

TPRi

(xRi (t)− τci(t)xVi (t) + (τci(t)− 1)xdi )

(B.1.1)

V is positive definite, radially unbounded, continuous, and continuously dif-

ferentiable. The derivative of V with respect to time is

V̇ =
dV

dt
=

1

2

((
(ẋRi (t)− τ̇ci(t)xVi (t)− τci(t)ẋVi (t)+

τ̇ci(t)x
d
i )
TPRi (xRi (t)− τci(t)xVi (t)+

(τci(t)− 1)xdi )
)

+
(
xRi (t)− τci(t)xVi (t)+

(τci(t)− 1)xdi )
TPRi (ẋRi (t)− τ̇ci(t)xVi (t)

− τci(t)ẋVi (t) + τ̇ci(t)x
d
i )
))

(B.1.2)
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By substituting (4.4.1) into (B.1.2), we have:

V̇ =
1

2

((
Ai(θi)(x

R
i − xdi − τci(xVi − xdi )))TPRi

(xRi (t)− τci(t)xVi (t) + (τci(t)− 1)xdi )
)
+(

xRi (t)− τci(t)xVi (t) + (τci(t)− 1)xdi )
TPRi

(Ai(θi)(x
R
i − xdi − τci(xVi − xdi )))

)

=
1

2

(
(xRi − xdi − τci(xVi − xdi ))T

dsi∑
k=1

θikA
T
ikP

R
i

(xRi − xdi − τci(xVi − xdi )
)
+(

xRi − xdi − τci(xVi − xdi ))TPRi

(

dsi∑
k=1

θikA
T
ik(xRi − xdi − τci(xVi − xdi )))

)
=(xRi − xdi − τci(xVi − xdi ))T

dsi∑
k=1

θik︸︷︷︸
>0

(
ATikP

R
i + PRi Aik︸ ︷︷ ︸
≺−QRi

)

(xRi − xdi − τci(xVi − xdi )
)

≤ 0

(B.1.3)

Therefore, dynamical system (4.4.1) is globally stable; i.e., xRi (t) − xdi −
τci(x

V
i − xdi ))xdi and its time derivative is bounded. Since V̈ is finite, Barbalat’s

lemma Khalil (2002) indicates that the attractor is globally asymptotically sta-

ble; i.e:

lim
t→∞

‖xRi (t)− τci(t)xVi (t) + (τci(t)− 1)xdi ‖ = 0 (B.1.4)

�, c.q.f.d.

B.2 Proof of Theorem 2, Part B

Consider the following storage function:

Vi =
1

2
(xRi )

T
PRi (xRi ) ∀i ∈ {1, . . . , NR} (B.2.1)

Clearly (B.2.1) is positive definite, radially unbounded, continuous and con-

tinuously differentiable. To simplify the notations, in this section, we consider
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Yi = PRi x
R
i and Ui = τ̇ci(x

V
i − xdi ) + τci ẋ

V
i −Ai(.)(x

d
i + τci(x

V
i − xdi )) as the

output and the input of (4.4.1). To prove the passivity of (B.2.1), we need to

show that

dV

dt
+ ψ(.) ≤ Ui

TYi ∃ψ(.), 0 ≤ ψ(.) (B.2.2)

The derivative of V with respect to time is as follow:

V̇ =
1

2
(ẋRi )TPRi (xRi ) +

1

2
(xRi )TPRi (ẋRi )

=
1

2

(
τ̇ci(x

V
i − xdi ) + τci ẋ

V
i +

dsi∑
k=1

θikAik(xRi − xdi − τci(xVi − xdi ))
)T

PRi (xRi )+

1

2
(xRi )TPRi

(
τ̇ci(x

V
i − xdi ) + τci ẋ

V
i +

dsi∑
k=1

θikAik(xRi − xdi − τci(xVi − xdi ))
)

= (xRi )T
dsi∑
k=1

θik︸︷︷︸
0≥

(ATikP
R
i + PRi Aik︸ ︷︷ ︸
≺−QRi

)xRi + UT
i Yi

(B.2.3)

By defining ψ(.) = −(xRi )T
∑dsi
k=1 θik(ATikP

R
i + PRi Aik)xRi , (B.2.2) is satis-

fied. Furthermore, as the memoryless system xRi = (PRi )−1Yi is passive, the

dynamical system given by (4.4.1) is passive when τ̇ci(x
V
i − xdi ) + τci ẋ

V
i −

Ai(θi(x
R
i ))(xdi τci(x

V
i − xdi )) and xRi (t) are the input the output, respectively.

�, c.q.f.d.

B.3 Proof of Theorem 3, Part A

As ẋVi = ẋV ,∀i ∈ {1, . . . , NR}, (4.4.10) can be written as:

ẋV (t) =γẋO + γ̇xO +AV (xV − γxO) (B.3.1)

We propose a Lyapunov function as follows:

V =
1

2
(xV (t)− γxO)TPV (xV (t)− γxO) (B.3.2)

V is positive definite, radially unbounded, continuous and continuously dif-

ferentiable. Substituting, (B.3.1) into the derivative of V with respect to time
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results in:

V̇ =
dV

dt
=

1

2

(
(xV (t)− γxO)TPVAV (xV (t)− γxO)

+ (xV (t)− γxO)TAV
T
PV (xV (t)− γxO)

)
=(xV (t)− γxO)T (PVAV +AV

T
PV )︸ ︷︷ ︸

−QV

(xV (t)− γxO)

≤0

(B.3.3)

Therefore, dynamical system (B.3.1) and (4.4.10) are globally stable; i.e.,

xV and ẋV are bounded as γxO, γ̇xO and γẋO are bounded. Since V̈ is finite,

Barbalat’s lemma Khalil (2002) indicates that the attractor is globally asymp-

totically stable; i.e:

lim
t→∞

‖ξV (t)− γ(t)ξO(t)‖ = 0

lim
t→∞

‖ξ̇V (t)− (γ(t)ξ̇O(t) + γ̇(t)ξO(t))‖ = 0
(B.3.4)

�, c.q.f.d.

116



B.4 Proof of Theorem 3, Part B

B.4 Proof of Theorem 3, Part B

Consider the following storage function:

V =
1

2
(xV )TPV (xV ) (B.4.1)

Clearly (B.4.1) is positive definite, radially unbounded, continuous and con-

tinuously differentiable. To simplify the notations, in this section, we consider

Y = PV xV and U = γẋO + γ̇xO − AV γxO as the output and the input of

(4.4.10). To prove the passivity of (B.4.1), we need to show that

dV

dt
+ ψ(.) ≤ UTY ∃ψ(.), 0 ≤ ψ(.) (B.4.2)

The derivative of V with respect to time is as follow:

V̇ =
1

2
(ẋV )TPV (xV ) +

1

2
(xV )TPV (ẋV )

=
1

2

(
γẋO + γ̇xO +AV (xV − γxO)

)T
PV xV +

1

2
(xV )TPV

(
γẋO + γ̇xO +AV (xV − γxO)

)
= (xV )T (PVAV + (AV )

T
PV︸ ︷︷ ︸

≺−QV

)xV + UTY

(B.4.3)

Hence, ψ(.) = −(xV )T (PVAV + (AV )
T
PV )xV . Furthermore, as the memo-

ryless system xV = (PV )−1Y is passive, the dynamical system given by (B.3.1)

and consequently (4.4.10) are passive when γẋO + γ̇xO−AV γxOand xV are the

input the output, respectively. �, c.q.f.d.
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B.5 Proof of Theorem 4

Consider the following storage function.

V =
1

2
uTu (B.5.1)

(B.5.1) is positive definite, radially unbounded, continuous and continuously

differentiable. To simplify the notations, in this section, we consider Y = u and

U = (I+MT )PΩ(u−(Mu+b)) as the output and the input of (4.5.5). To prove

the passivity of (4.5.5), we need to show that

dV

dt
+ ψ(u) ≤ Y TU ∃ψ(u), 0 ≤ ψ(u) (B.5.2)

The derivative of V with respect to time is as follow:

V̇ = uT u̇

V̇ = uT (I +MT )(PΩ(u− (Mu+ b)− u)

V̇ + uT (I +MT )u = uT (I +MT )PΩ(u− (Mu+ b))

(B.5.3)

Hence, ψ(u) = uT (I + MT )u, which indicates the passivity of (4.5.5). �,

c.q.f.d.

118



Appendix C

Appendices for Chapter 5

C.1 Proof of Theorem 5

By definition, Q is an orthonormal matrix; i.e QQT = I, QT = Q−1. More-

over, as qi ∀i ∈ {1, . . . , d} form an orthonormal basis in Rd, ∀w ∈ Rd:

w =

d∑
i=1

qiqi
Tw (C.1.1)

Substituting (5.3.2) and (5.2.2) into (5.2.1) and multiplying both sides of

the resultant equation by qT1 = NT and x∗ = xc yields:

NT ẍ =NTQΛQ−1f(x, ẋ, t)

=

d∑
j=1

λ1j(x, ẋ)qTj f(x, ẋ, t)

=

d∑
j=1

−2ωNT ẋ− ω2NTx

f(x, ẋ, t)
T
f(x, ẋ, t)

f(x, ẋ, t)
T
qjq

T
j f(.)

=
−2ωNT ẋ− ω2NTx

f(.)
T
f(.)

f(.)
T

d∑
j=1

qjq
T
j f(x, ẋ, t)

=
(
−2ωNT ẋ− ω2NTx

) f(x, ẋ, t)
T
f(x, ẋ, t)

f(x, ẋ, t)
T
f(x, ẋ, t)

=− 2ωNT ẋ− ω2NTx

(C.1.2)

Which is a second order linear differential equation. The solution of (C.1.2)

for a given initial state {x0, ẋ0} is:

NTx = e−tω(NTx0 + (NTx0ω +NT ẋ0)t) (C.1.3)

Based on (5.3.3), as |N
T ẋ0|

NT x0
≤ ω and 0 < NTx0, 0 ≤ NTx0ω+NT ẋ0. Hence,
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(C.1.3) is zero only when t tends to infinity; i.e.

lim
t→+∞

NTx = 0 (C.1.4)

Moreover, the time derivative of (C.1.3) at t = +∞ is zero; i.e.,

lim
t→+∞

NT ẋ = lim
t→+∞

e−tω(NT ẋ0 − (NTx0ω +NT ẋ0)ωt)

= 0
(C.1.5)

Hence, the motion generated by 5.2.1 and 5.2.2 with respect to (5.3.2) and

(5.3.3), enters the contact surface with zero normal velocity. Hence, Objective 1

is satisfied.

Similar to (C.1.2), substituting (5.3.4) and (5.2.2) into (5.2.1) and multiply-

ing both sides of the resultant equation by qi, ∀i ∈ {2, . . . , d} yields:

qTi ẍ =qTi QΛQ−1f(.)

=

d∑
j=1

λij(x, ẋ)qTj f(.)

=− 2ωqi
T ẋ− ω2qi

T (x− x∗)

(C.1.6)

Which is a second order linear differential equation. Similar to (C.1.3), the

solution of (C.1.6) for a given initial state {x0, ẋ0} converges to qi
Tx∗ when t

tends to infinity; i.e.

lim
t→+∞

‖qiTx− qiTx∗‖ = 0 (C.1.7)

Where, in this theorem, x∗ = xc. As (C.1.7) holds ∀i ∈ {2, . . . , D} and the

rate of change of (C.1.2) and (C.1.6) are the same, the motion reaches xc when

t = +∞, the dynamical system (5.2.1) and (5.2.2) with respect to (5.3.3) and

(5.3.4) contacts the surface at xc; i.e., Objective 2 is satisfied. �
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C.2 Proof of Proposition 2

As the modulation function is activated once the robot enters the transition

region, ρ = NTx0. Substituting (5.3.2) and (5.2.2) into (5.2.1) with ω = |NT ẋ0|
ρ

and multiplying both sides of the resultant equation by NT yields:

NT ẍmax =− 2ωNT ẋ0 − ω2NTx0 = −2ωNT ẋ0 − ω2ρ

=− 2
|NT ẋ0|
ρ

NT ẋ0 − (
NT ẋ0

ρ
)2ρ⇒

ρ =
−2|NT ẋ0|NT ẋ0 − (NT ẋ0)2

NT ẍmax

(C.2.1)

To be safe, we take the upper bound of (C.2.1), i.e., :

ρ =
3(NT ẋmax)2

|NT ẍmax|
(C.2.2)

Substituting (C.2.2) into ω = |NT ẋ0|
ρ yields:

ω = | N
T ẍmax

3NT ẋmax
| (C.2.3)

�

C.3 Proof of Proposition 3

Substituting (5.3.4) and (5.2.2) into (5.2.1) yields an asymptotically stable dy-

namical system to x∗ in the tangential direction to the surface as shown in

(C.1.7). Hence, once the robot is in a contact with the surface (NTx = 0), by

setting x∗ = xs, the robot asymptotically converges to the desired stop location.
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C.4 Proof of Proposition 4

xl is located in the middle of xc and 2xl − xc.Once the robot is in contact with

the surface (NTx = 0), as the motion generated by (5.3.4) moves on a straight

line towards x∗ = 2xl − xc1, it passes xl. Moreover, the modulation part of

(5.3.10) is less than ρ for all the points between xc and xl as ∀θ ∈ [0, 1) and

x = xc + θ(xl − xc)

(
ρ− (xl − xc)T (xl − x)

)
e−(xl−x)TΣ−1(xl−x) =(

ρ− (xl − xc)T (xl − xc − θ(xl − xc))
)
e−(1−θ)2(xl−xc)TΣ−1(xl−xc) =ρ−(1− θ)(xl − xc)T (xl − xc)︸ ︷︷ ︸

0<

 e−(1−θ)2(xl−xc)TΣ−1(xl−xc)︸ ︷︷ ︸
<1

< ρ

(C.4.1)

However, if lim
θ→1+

, the modulation part of (5.3.10) is greater than ρ. Hence,

once the robot passes xl, the modulation function is deactivated based on (5.2.3)

and the nominal dynamical system leaves the surface to converge to xt. However,

it is important to note that if Σ is very small, even thought it leaves the surface

at xl, the motion might not converge to xt. �

C.5 Proof of Theorem 6

Substituting (5.3.12)-(5.3.14) and (5.2.2) into (5.2.1) and multiplying both

sides of the resultant equation by qT1 = NT yields:

NT ẍ =


− ω

(
NT ẋ− (δẋ + ν)

)
NT ẋ < δẋ

ω2NTx+ νω

δẋ
NT ẋ− ω2NTx δẋ ≤ NT ẋ ≤ 0

− 2ωNT ẋ− ω2NTx 0 < NT ẋ

(C.5.1)

(C.5.2)

(C.5.3)

As shown in Table. 5.1, NT ẍ defined by (C.5.1)-(C.5.3) is continuous. Based

on NT ẋ0, the proof of Theorem 6 needs to be done in three different velocity

regions. In the third region, 0 < NT ẋ0. Hence, based on (C.5.3):

NT ẍ = −2ωNT ẋ− ω2NTx (C.5.4)

Which is equal to (C.1.2). Hence, as shown in Appendix C.1, as long as
|NT ẋ0|
NT x0

≤ ω, the motion generated by (C.5.4) reaches the surface with zero

1As ∀i ∈ {2, . . . , d}, the gains of the second order critically damped DS (C.1.6) are equal,
the rate of converges of (C.1.6) is equal in all the directions. Hence, the generated motion by
(C.1.6) is a straight line.
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velocity. Hence, Objective 1 is satisfied.

In the second region, δẋ ≤ NT ẋ ≤ 0. Hence, based on (C.5.2),

NT ẍ =
ω2NTx+ νω

δẋ
NT ẋ− ω2NTx (C.5.5)

The aforementioned DS yields that if NT ẋ = δẋ, NT ẍ = ων, where, based

on (5.3.15), 0 < ων. This means that once NT ẋ enters this region, it does not

cross the velocity boundary at δẋ; i.e., it does not get less than δẋ. Moreover,

while the robot is above the surface (i.e., 0 < NTx) and NT ẋ = 0, the normal

acceleration is negative; i.e., NT ẍ ≤ 0. Hence, the robot’s normal velocity can

not get higher than zero. To sum up, if NT ẋ is in this region, the robot moves

towards the contact surface with the velocity between 0 and δẋ. Hence, Objective

1 is satisfied.

In the first region, NT ẋ0 < δẋ. Hence, based on (C.5.1),

NT ẍ = −ω(NT ẋ− (δẋ + ν)) (C.5.6)

The solution of (C.5.6) for a given initial state {x0, ẋ0} is given by:

NTx(t) =

(ν + δẋ −NT ẋ0)e−ω
−1t + ω(NTx0 + νt+ δẋt) + (ν + δẋ)t+NT ẋ0

ω

(C.5.7a)

NT ẋ(t) = (NT ẋ0 − ν − δẋ)e−ωt + δẋ + ν (C.5.7b)

Both (C.5.7a) and (C.5.7b) are monotonic profiles; i.e., if 0 < NTx0 and

NT ẋ0 < δẋ, (C.5.7a) is monotonically decreasing and (C.5.7b) is monotonically

increasing. Hence, based on (C.5.7b), NT ẋ(t∗) = δẋ at

t∗ = −ln(
ν

ν + δẋ −NT ẋ0
)ω−1 (C.5.8)

Given NT ẋ0 < δẋ, substituting (5.3.3), (5.3.15) and (C.5.8) into (C.5.7a)

yields

NTx(t∗)

= (δẋ + ν)(−ω−1 ln(
ν

ν + δẋ −NT ẋ0
)) + (NT ẋ0 − δẋ)ω−1 +NTx0

= (−(δẋ + ν) ln(
ν

ν + δẋ −NT ẋ0
)− δẋ +NT ẋ0)ω−1 +NTx0

(C.5.9)
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As −N
T ẋ0

NT x0
≤ ω, NTx(t∗) defined by (C.5.9) is bounded as follows:

NTx0δẋ
NT ẋ0

(
ln

(
ν

ν + δẋ −N T ẋ0

)
+ 1

)
+

N Tx0 ν

N T ẋ0
ln

(
ν

ν + δẋ −N T ẋ0

)
≤ NTx(t∗) < NTx0

(C.5.10)

By defining 0 < δẋ−NT ẋ0

e1−1 < ν, the lower bound of (C.5.10) will be positive:

0 <
NTx0δẋ
NT ẋ0︸ ︷︷ ︸

0<

(
ln

(
ν

ν + δẋ −N T ẋ0

)
+ 1

)
︸ ︷︷ ︸

0<

+
N Tx0 ν

N T ẋ0︸ ︷︷ ︸
<0

ln

(
ν

ν + δẋ −N T ẋ0

)
︸ ︷︷ ︸

<0

(C.5.11)

Hence, the robot’s normal velocity is δẋ before it gets into the contact. More-

over, as 0 < NT ẍ if NT ẋ = δẋ, the robot moves toward the contact surface with

δẋ ≤ NT ẋ. To sum up, in all three regions, the proposed modulation function

regulates the normal velocity of the robot such that it satisfies (5.3.11) before

the robot gets into the contact with the surface. �

C.6 Proof of Proposition 5

To satisfy (5.3.11) when the location of the surface is uncertain, we need to

study the worse scenario; namely when η = ηηη. In this case, to achieve Objective

1 , the robot’s normal velocity must be δẋ at NTx = ηηη. Hence, (C.5.9) should

lower bounded by ηηη:

(−(δẋ + ν) ln(
ν

ν + δẋ −NT ẋ0
)− δẋ +NT ẋ0)ω−1 +NTx0 = ηηη (C.6.1)

Moreover, Theorem 6 requires that

0 < ν ≤ −δẋ, 0 < ω (C.6.2)

Equation (C.6.1) with respect to (C.6.2) does not have a unique solution. Hence,

one can use numerical solvers to minimize ω with respect to (C.6.1) and (C.6.2).

However, as ηηη < NTx0 and NT ẋ0 < δẋ, one can set ν = −δẋ and ω = δẋ−NT ẋ0

NT x0−ηηη .

This, based on our experience, results in an acceptable performance. To con-

clude, by defining (5.3.16), NT ẋ(t) = δẋ at NTx(t) = ηηη. Hence, ∀η ∈ [−ηηη,ηηη],

based on (5.3.13), the robot’s velocity at the contact is δẋ ≤ NT ẋ; i.e., (5.3.11)

is satisfied. �
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Appendix D

Student Projects
Supervised by the Author

In this appendix, the list of the projects which were supervised by the author is

provided.

Master Project1, Spring 2015

Student: Guillaume Clivaz

Title: Controlling a redundant robot for the task space manipulations

Description:
Redundant manipulators have been designed to improve manipulability, flex-

ibility and dexterity. One of the most fundamental issues regarding redun-

dant manipulators is task space manipulation; i.e. finding a joint level com-

mand corresponding to the desired end-effector’s trajectory. There are two

general solutions to solve this problem. The first option involves, directly

solving the inverse kinematics problem by finding a feasible joint trajectory

given the end-effector’s trajectory. An alternative option is to use a task

space inverse dynamic controller. The aim of this project is to control a re-

dundant robot in the task space, subject to equality and inequality/bound

constraints such as joint limits, angular velocity and acceleration limits. The

student will first review literature on related topics, then the proposed con-

trol architecture will be implemented in C/C++ in a simulator in Linux

environment and then with the real robot, a 7 DOF arm from KUKA.

Master Project2, Spring 2016

Student: Sylvain Proux

Title: Object-Throwing with a Robot Arm

Description:
Dynamic motions such as catching, juggling, hitting and throwing require

accurate motion planning and motor control. In this work, we consider the

problem of precisely throwing an object (namely a ball) to a predefined

target. Throwing an object precisely is a challenging problem and requires

the solution of three challenging problems. First, the release point needs to

be determined with respect to the workspace of the robot and the target

1This project was co-supervised by Dr. Alireza Karimi and Nadia Figueroa
2This project was co-supervised by Nadia Figueroa
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position. To address this challenge, a potential direction is estimating a set

of trajectories that pass through the desired target position. Then one of

these trajectories is chosen to provide a release point (position and velocity)

which satisfies the kinematic constraints of the robot. The second challenge is

coordinating hand and arm motions. A throwing motion needs to coordinate

the arm motion with the hand opening such that the fingers open at a

desired point. This motion is modeled through a reverse coupling of the

arm and finger motions, where the fingers are closed at the beginning of the

motion and then will open at the desired release point. The third challenge

is generating a throwing motion. To address this problem, a DS (Dynamical

System) needs to be devised to generate a throwing motion from the initial

point to the release point with respect to the robot constraints. The throwing

motion will be implemented and tested on a 7DOF KUKA LWR robot arm.

Master Project3, Spring 2017

Student: Camille Lechot

Title: Smart Adaptive Control of Venetian Blinds and Electric Lighting Sys-

tem based on novel High Dynamic Range (HDR) Vision Sensor

Description:
Smart control of the dynamic façade and electric lighting system of an oc-

cupied building is a challenging task that requires considering numerous

factors such as façade geometry, sun shading characteristics, occupant’s vi-

sual and thermal comfort. Moreover, the one-fit-all solutions have revealed

serious deficiencies with regard to user acceptance of the technology. Well-

designed sun control and shading system can dramatically reduce building

peak heat gain and cooling requirement, improve the natural lighting qual-

ity of building interiors and reduce the rejection rate of the automatic sys-

tem. Recently, a novel approach for assessing and integrating glare indices

and non-image forming effects of light in building automation is developed

through a calibrated High Dynamic Range (HDR) imaging sensor (Figure

1). Researchers have shown that the human-building interactions (namely

expressed “wishes”) are the best source of information for personalizing the

automation system and adapting it to each occupant’s needs. The goal of

this project is to develop a human based controller for commanding electric

lighting and shadings based on the lightning conditions. To achieve this, at

first, the student needs to familiarize him/herself with literatures for con-

trol strategies of venetian blinds and electric lighting. Then, based on the

data collected from human actions (the wishes), a proper decision making

controller for commanding the electric lighting and the shadings needs to

be proposed. Finally, the performance of the proposed system are systemat-

ically verified, if time permits. Some funding might be at disposal for tests

3This project was co-supervised by Ali Motamed
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in case of promising preliminary outcomes. This project is carried out in

collaboration with LESO-PB. Please contact both responsible for getting

more information.

Semester Project4, Fall 2015

Student: Ben Hattar Benjamin Henri

Title: Implementation of the singularity free inverse kinematic solution for

redundant robots

Description:

Redundant manipulators have been designed to improve manipulability, flex-

ibility and dexterity. One of the most fundamental issues regarding redun-

dant manipulators is solving the inverse kinematics problem; i.e. finding a

feasible joint trajectory given the end-effector’s trajectory. Solutions to the

inverse kinematics problem can be formulated to handle joint physical lim-

its, singularities, obstacle avoidance and to optimize various performance

criteria, while conducting the primary end-effector motion task. The aim of

this project is to implement a singularity-free inverse kinematics solution for

a 7 Degree of Freedom –DoF– KUKA LWR, subject to equality and inequal-

ity/bound constraints such as joint limits, angular velocity and acceleration

limits. The student will first implement this in C/C++ in a simulator in

linux environment and then with the real robot, a 7 DOF arm from KUKA.

Semester Project5, Fall 2015

Student: Alberto Arrighi

Title: Studying the arms motions in the catching a flying object scenario

Description:

Dynamic motions such as catching, hitting and throwing require accurate

trajectory and motor control generation. Humans can instantly execute

these motions with excellent accuracy and speed. For example, the prob-

lem of catching an object requires ?getting the hands to the right place at

the right time?. To successfully catch an object, humans move their hands

in coordination to intercept and stop the object. The aim of this project

is to study the motion of human hands when catching a large object with

both hands. This project consists of two main phases. In the first phase, the

student should record the kinematic of hand motion and build a data set

of typical postures of arms, hands and fingers and the object. The motions

are recorded by using the Optitrack motion capture system, available in the

lab. In the second phase, the data are analyzed to find potential correlations

4This project was co-supervised by Nadia Figueroa
5This project was co-supervised by Nadia Figueroa

127



D Student Projects Supervised by the Author

between the relative postures of the arms & hands and the position of the

object in the person’s workspace.

Semester Project6, Fall 2016

Student: Nadir Benjamin Ramtoula

Title: Motion study for bimanual catching of a flying object

Description:

Bimanual catching of a flying object is an intriguing problem of visuo-

motor coordination. In robotics, such a task is an interesting problem that

has many possible applications (e.g. dynamic human-robot interaction with

large objects or catching a falling object in dangerous situations), however,

at the same time, it is a challenging problem that involves fast motor control

with time constraint based on the perceived visual information. Humans are

capable of coordinating the two arms in a very smooth and efficient way –

especially if we consider how slow human brains are compared to the com-

putational capabilities of robots these days. It is still largely unknown how

humans coordinate their arms and generate desired trajectories in fast adap-

tive scenarios such as catching a flying ball with both hands. The simple and

efficient strategy that humans use in their motions has large potential in the

robotic applications where it can be used in designing a fast and effective

controller.

The purpose of this study is to analyze the characteristics of the hand

trajectories in terms of the temporal constraint that is present in catching

a flying object scenario. The goal of this project is to study:

(i) how the remaining time before catching (time to contact, TTC) affects

the trajectories of the hands, (ii) whether humans estimate the TTC and

utilize it in motion generations, and (iii) how the trajectories of the two

hands are coordinated in given TTC.

In order to achieve the goals, the student should perform a set of exper-

iments where the motions of two arms are recorded using a motion capture

system for different catching scenarios. The student is expected to get fa-

miliarized himself/herself with related topics including human motions in

interceptive actions through reading the literature. Once the data is col-

lected from experiments, the student should analyze the data in terms of

the trajectory, movement onset time, movement duration, tangential veloc-

ity at impact, normal velocity to the object, and etc. The student should

analyze the effect of the TTC on the trajectories of hands in the aspects

mentioned above. One possible way to explore is to compare the trajectories

for catching a moving object with the trajectories for reaching a stationary

object.

6This project was co-supervised by Kevin Gonyop Kim
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Internship Project, Spring-Summer 2015

Student: Edouard Lagrue

Title: Bi-manual Catching in flight objects

Internship Project, Spring-Summer 2016

Student: Kevin Gonyop Kim

Title: Human-inspired Bi-manual Catching

Internship Project7, Fall-Winter 2016

Student: Neda Taymourtash

Title: Soft Catching with a Humanoid Robot

Description:
Dynamic motions such as catching, juggling, hitting , and throwing require

accurate motion planning and motor control. Catching objects in flight is

a particularly challenging task as the time to move toward the object is

extremely short, usually lasting about a quarter of a second. The time at

impact is even shorter, leaving less than a few milliseconds for the hands

to close on the object to secure it tightly in the grip. Soft catching strategy

has been proposed as a promising avenue for improving the success rate of

catching [1]. The soft catching strategy consists of having the robot move

with the object for a short period of time. This leaves more time for the

fingers to close on the object and avoids failure due to imprecise control

of the time and position at which the hand intercepts the object. The aim

of this project is to implement the soft catching algorithm proposed by [1]

on the COMAN humanoid robot. The COMAN robot is 95cm tall, weighs

31kg and has 25 DOF. COMAN can walk and balance using inertial sensors

in the pelvis and chest, and its series elastic joint design makes it robust

against impacts and external disturbances. The student will first familiarize

him/herself with the implemented version of the algorithm on the KUKA

IIWA robot in C++. Then, the algorithm will be implemented in C/C++

in the COMAN simulator under Linux environment and consequently with

the real COMAN robot.

[1] S. S. M. Salehian, M. Khoramshahi and A. Billard, ”A Dynamical

System Approach for Softly Catching a Flying Object: Theory and Experi-

ment,” in IEEE Transactions on Robotics, vol. 32, no. 2, pp. 462-471, April

2016.

7This project was co-supervised by Nadia Figueroa
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Martin Buss. Dynamic manipulation: Nonprehensile ball catching. In Control
& Automation (MED), 2010 18th Mediterranean Conference on, pages 365–
370. IEEE, 2010.
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