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Acoustic metasurfaces

Principle :
Interfaces breaking the Snell-Descartes laws of refraction.

Snell-Descartes Anomalous re�ection Anomalous transmission
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Acoustic metasurfaces

State of the art :

C. Faure et al, Applied Physics Letters 108, 064103
(2016)

J. Lan et al, Scienti�c Reports 7, 10587 (2017)
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Acoustic metasurfaces

State of the art : Realizations

Helmholtz resonators

C. Faure et al, Applied Physics
Letters 108, 064103 (2016)

Labyrinthine-path
("space coiling")

K. Song et al, Scienti�c Reports 94,
014302(2016)

Membrane resonators

H. Esfahlani et al, Physical
Review B 6, 32300 (2016)
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Acoustic metasurfaces

State of the art : Applications

Cloaking

H. Esfahlani et al, Physical Review B 6, 32300
(2016)

Sound di�usion

N. Jimenez et al, Scienti�c Reports 7, 5389 (2017)
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Motivations

• Recon�gurability
Passive designs only allow for �xed re�ection (resp. transmission) characteristics.
No possibility to recon�gure them on-the-�y.

• Broadband properties
The reported (passive) concepts rely on resonant behaviours (labyrinthine,
Helmholtz resonators, membranes-based resonators, etc.).
The achieved properties only hold around a prescribed frequency, with
narrow-band e�ciency.

• Lossless re�ection (resp. transmission)
Acoustic resonators generally yield a certain amount of losses, that lower the
re�ection (resp. transmission) e�ciency.
Di�culties to ensure total re�ection (resp. transmission) on passive metasurface.

→ active concepts
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Metasurface principle

Proposed geometry of Acoustic Metasurface (re�ection)
2D arrangement of M × N small vibrating circular pistons of same radius rd .

Subwavelength condition : 2rd <
λ

10
, where λ =

c0

2πf
is the wavelength and

c0 = 343m.s−1 the sound celerity in the air.
→ maximum radius of 34 mm up to 500 Hz.

Each piston presents an individual re�ection coe�cient Γm,n(f ) = Amn(f )e jΨ
mn(f ).

Assuming Amn(f ) is the same ∀(m, n)

Anomalous re�ection condition :
Incident harmonic plane wave (frequency
f )
Incident angle (θi , φi ).
→ Anomalous re�ected angle (θr , φr ) if
(Generalized Snell-Descartes law) :

Ψmn = ψ0 −
2πf

c0
(2rd ) [m(sin θr cosφr + sin θi cosφi )− n(sin θr sinφr + sin θi sinφi )]

ψ0 : phase reference over the metasurface (eg. central cell)
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Membrane resonator unit-cell

Unit-cell : loudspeaker diaphragm (SDOF mechanical resonator)

Acoustic speci�c impedance :

Zas(ω) =
1

Sd

(
jωMms + Rms +

1

jωCms

)
Mms : moving mass,

Rms : mechanical resistance,

Cms : mechanical compliance,

Sd : diaphragm area

Unit-cell size � λ
→ re�ection coe�cient independent on (θi , φi ) :

Γ(ω) =
(Rms − SdZc ) + j

(
ωMms − 1

ωCms

)
(Rms + SdZc ) + j
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(passive) design guidelines
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In order to ensure desired re�ection properties still hold over a signi�cant frequency
bandwidth around the natural frequency of the loudspeaker, we need to set the
resistance and quality factor of the (passive) loudspeaker diaphragm.

It yields :

rs ∈ [0.3− 0.6]→ Rms ≈
SdZc

2
Qs ∈ [1− 10]

Selected loudspeaker : MONACOR SPX-30M
Parameter Symblol Value Unit

E�ective piston area Sd 32 cm2

E�ective piston radius rd 32 cm
Mechanical mass Mms 3.17 g

Mechanical resistance Rms 0.75 N.s.m−1

Mechanical compliance Cmc 184.10−6 m.N−1

(with enclosure)
Force factor B` 3.67 N/A

Resonance frequency fs 208 Hz
Loss factor rs 0.57
Quality factor Qs 5.5
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Metasurface design strategy

Question : how to impose desired re�ection phases Ψmn at resonance frequency fs ?

Re�ection phase linearly decreases with frequency, turning (almost) from 0 to −2π
over a given frequency band (at least one octave around fs).
If Qs and rs are preserved on all unit-cells, a simple resonance shift ∆f mn allows
assigning prescribed re�ection phases Ψmn.
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Electroacoustic resonator

Electroacoustic resonator principle
Speci�c feedforward control :
Microphone-based feedforward control,
through voltage-controlled current ampli�er

Zms .V = Pt (Sd − B`Θ)

The e�ective speci�c acoustic impedance at the diaphragm then reads :

Za(ω) =
Pt(ω)

V (ω)
=

Zms(ω)

Sd − B`Θ(ω)
Strategy : to achieve a target speci�c acoustic impedance Zmn

at (ω) :

Θmn(ω) =
SdZ

mn
at (ω)− Zms(ω)

B`Zmn
at (ω)
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Studied Active Metasurface geometry

To simplify the design, we will only consider a row of the 2D metasurface, made of
M=32 unit-cells (φi = φr = 0rad)

The mth unit-cell re�ection phase, at f0 shall
be :

Ψm(f 0) = Ψ0−m
2πf0

c0
(2rd )(sin θr + sin θi )

with Ψ0 = ΨM/2+1(f0) = −π
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Active metasurface design

1 choice of the target re�ected angle θr for a given incident angle θi (at central
frequency f0) ;

2 de�nition of the re�ection phase grating ψm(f0) over the metasurface of lattice

constant 2rd according to Ψm(f 0) = Ψ0 −m
2πf0

c0
(2rd )(sin θr + sin θi ) ;

3 de�nition of the re�ection phase reference at the (M/2+1)th cell such as
arg(ΓM/2+1(f0)) = −π ;

4 identi�cation of the resonance shift ∆f m = f0 − f m for each cell over the
metasurface, so that arg(ΓM/2+1(f m)) = ψm ;

5 identi�cation of the control parameters µmM , µmC achieving such resonance shift
(with constant µR = 1/3) :

• µmC =
1

2πZcSdCmsQs

1

(f0 + ∆f m)µR

• µmM =
ZcQsSd

2πCms

µR

(f0 + ∆f m)

6 modi�cation of the acoustic impedance of the mth cell with the controller

Θm
t (ω) = Sd

B`

(jω)2Mms(µm
M−1)+jω(µRSdZc−Rms )+

(
1−µm

C
µm
C
Cms

)
(jω)2µm

M
Mms+jωµRSdZc+ 1

µm
C
Cms

.
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Assessment of the achieved re�ection coe�cients

Let's consider the case where θi = −
π

4
and θr =

π

3
, and a metasurface composed of

32 unit-cells.
The target re�ection phase, at f0 = 343Hz (>fs), over the 32 unit-cells are :
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Assessment of the achieved re�ection coe�cients

These settings are achieved experimentally on a MONACOR SPX-30M loudspeaker,
and the re�ection coe�cient for each control case is assessed in an impedance tube :
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Assessment of the achieved re�ection coe�cients
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Simulation setting

The active metasurface simulation is performed with COMSOL Multiphysics with the
Acoustics Module :

• 3D space dimension

• Background plane wave condition, with θi = −
π

4• cylindrical acoustic domain of radius 6 m, including 1.2m of PML, and a height
of 2rd=6.4 cm

• 32 unit-cells modelled as Acoustic Impedances with µmM ,µR and µmC .• all other surfaces are modelled as "Sound Hard Boundary" (including the two
delimiting xoz planes)

• Meshing : maximum element size = λ/6 at 500 Hz.
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Sound pressure �elds

Two simulations cases :

θi = −
π

4
and θr =

π

3
θi = −

π

4
and θr = 0 rad.
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Directivities

Two simulations cases :
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Conclusions

• Active Electroacoustic Resonators allow steering re�ected wavefronts in a
prescribed manner

• E�ective at a central frequency, with relative bandwidth extension (up to one
octave)

• Re�ected coe�cient higher than 0.5

• However, it is not yet possible to scan the full range of re�ection phases
([−2π − 0])

CFA 2018, Le Havre, April 23 - 27, 2018 Hervé Lissek et al 19



Motivations Acoustic metasurface concept Active unit-cell design and assessment Simulations and results Conclusions

Perspectives

• Toward broadband re�ection properties :
Design Multiple Degrees of Freedom Electroacoustic Resonators (MDOF,
instead of SDOF)

• Realization of an experimental (1D or 2D) prototype for validation of the
re�ection properties.

• Lowering the losses should allow practical application of the concept.
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