Développement et validation d'une métasurface acoustique orientable large bande composée de résonateurs électroacoustiques actifs

Hervé Lissek, Etienne Rivet, Thomas Laurence, Romain Fleury

Ecole Polytechnique Fédérale de Lausanne, Switzerland

April 24, 2017

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
0 0000			

Principle :

Interfaces breaking the Snell-Descartes laws of refraction.

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
0 0000			

State of the art :

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
0 00000			

State of the art : Realizations

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
0 00000			

State of the art : Applications

N. Jimenez et al, Scientific Reports 7, 5389 (2017)

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
○ 0000●			

Motivations

Reconfigurability

Passive designs only allow for fixed reflection (resp. transmission) characteristics. No possibility to reconfigure them on-the-fly.

• Broadband properties

The reported (passive) concepts rely on resonant behaviours (labyrinthine, Helmholtz resonators, membranes-based resonators, etc.). The achieved properties only hold around a prescribed frequency, with narrow-band efficiency.

Lossless reflection (resp. transmission)

Acoustic resonators generally yield a certain amount of losses, that lower the reflection (resp. transmission) efficiency.

Difficulties to ensure total reflection (resp. transmission) on passive metasurface.

 \rightarrow active concepts

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
	•000		

Metasurface principle

Proposed geometry of Acoustic Metasurface (reflection)

2D arrangement of $M \times N$ small vibrating circular pistons of same radius r_d . Subwavelength condition : $2r_d < \frac{\lambda}{10}$, where $\lambda = \frac{c_0}{2\pi f}$ is the wavelength and $c_0 = 343$ m.s⁻¹ the sound celerity in the air. \rightarrow maximum radius of 34 mm up to 500 Hz.

Each piston presents an individual reflection coefficient $\Gamma_{m,n}(f) = A^{mn}(f)e^{j\Psi^{mn}(f)}$. Assuming $A^{mn}(f)$ is the same $\forall (m, n)$

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
	0000		

Membrane resonator unit-cell

Unit-cell : loudspeaker diaphragm (SDOF mechanical resonator)

Acoustic specific impedance :

$$Z_{as}(\omega) = \frac{1}{S_d} \left(j\omega M_{ms} + R_{ms} + \frac{1}{j\omega C_{ms}} \right)$$

$$M_{ms} : \text{moving mass,}$$

$$Rms : \text{mechanical resistance,}$$

$$Cms : \text{mechanical compliance,}$$

$$Sd : \text{diaphragm area}$$

$$\begin{aligned} & \rightarrow \text{ reflection coefficient independent on } (\theta_i, \phi_i) : \qquad Z_c = \rho_0 c_0 \text{ with } \rho_0 = 1.2 \text{ kg. m}^{-3} \\ & \Gamma(\omega) = \frac{(R_{ms} - S_d Z_c) + j \left(\omega M_{ms} - \frac{1}{\omega C_{ms}}\right)}{(R_{ms} + S_d Z_c) + j \left(\omega M_{ms} - \frac{1}{\omega C_{ms}}\right)} \qquad \qquad r_s = \frac{R_{ms}}{S_d Z_c} \\ & = \frac{-\left(\frac{f}{f_s}\right)^2 + j \left(\frac{f}{f_s}\right) \frac{1}{Q_s} (1 - \frac{1}{r_s}) + 1}{-\left(\frac{f}{f_s}\right)^2 + j \left(\frac{f}{f_s}\right) \frac{1}{Q_s} (1 + \frac{1}{r_s}) + 1} \qquad \qquad Q_s = \frac{1}{R_{ms}} \sqrt{\frac{M_{ms}}{C_{ms}}} \end{aligned}$$

I lot coll ol c ()

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
	0000		

Membrane resonator unit-cell

Fixed $Q_s = 1$

Unit-cell size
$$\ll \lambda$$

 \rightarrow reflection coefficient independent on (θ_i, ϕ_i) :
 $\Gamma(\omega) = \frac{(R_{ms} - S_d Z_c) + j \left(\omega M_{ms} - \frac{1}{\omega C_{ms}}\right)}{(R_{ms} + S_d Z_c) + j \left(\omega M_{ms} - \frac{1}{\omega C_{ms}}\right)}$
 $= \frac{-\left(\frac{f}{f_s}\right)^2 + j \left(\frac{f}{f_s}\right) \frac{1}{Q_s}(1 - \frac{1}{r_s}) + 1}{-\left(\frac{f}{f_s}\right)^2 + j \left(\frac{f}{f_s}\right) \frac{1}{Q_s}(1 + \frac{1}{r_s}) + 1}$

CFA 2018, Le Havre, April 23 - 27, 2018

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
	0000		

Membrane resonator unit-cell

Unit-cell size «
$$\lambda$$

 \rightarrow reflection coefficient independent on (θ_i, ϕ_i) :

$$\Gamma(\omega) = \frac{(R_{ms} - S_d Z_c) + j \left(\omega M_{ms} - \frac{1}{\omega C_{ms}}\right)}{(R_{ms} + S_d Z_c) + j \left(\omega M_{ms} - \frac{1}{\omega C_{ms}}\right)}$$

$$= \frac{-\left(\frac{f}{f_s}\right)^2 + j \left(\frac{f}{f_s}\right) \frac{1}{Q_s} (1 - \frac{1}{r_s}) + 1}{-\left(\frac{f}{f_s}\right)^2 + j \left(\frac{f}{f_s}\right) \frac{1}{Q_s} (1 + \frac{1}{r_s}) + 1}$$

CFA 2018, Le Havre, April 23 - 27, 2018

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
	0000		

(passive) design guidelines

In order to ensure desired reflection properties still hold over a significant frequency bandwidth around the natural frequency of the loudspeaker, we need to set the resistance and quality factor of the (passive) loudspeaker diaphragm. MONACOD CDV 20M

	Selected loudspeaker. MONACON SEX-SUM			v
	Parameter	Symblol	Value	Unit
	Effective piston area	Sd	32	cm ²
lt violdo i	Effective piston radius	r _d	32	cm
it yields .	Mechanica mass	M _{ms}	3.17	g
$r \in [0, 3] \rightarrow R_{m} \sim \frac{S_d Z_c}{C}$	Mechanical resistance	R _{ms}	0.75	N.s.m ⁻¹
$r_s \in [0.3 - 0.0] \rightarrow R_{ms} \sim 2$	Mechanical compliance	Cmc	184.10 ⁻⁶	m.N ⁻¹
$Q_{\rm s} \in [1-10]$	(with enclosure)			
	Force factor	Bℓ	3.67	N/A
	Resonance frequency	fs	208	Hz
	Loss factor	rs	0.57	
	Quality factor	Q_s	5.5	

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
	0000		

Metasurface design strategy

Question : how to impose desired reflection phases Ψ^{mn} at resonance frequency f_s ?

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
	0000		

Metasurface design strategy

Question : how to impose desired reflection phases Ψ^{mn} at resonance frequency f_s ?

Reflection phase linearly decreases with frequency, turning (almost) from 0 to -2π over a given frequency band (at least one octave around f_s).

If Q_s and r_s are preserved on all unit-cells, a simple resonance shift Δf^{mn} allows assigning prescribed reflection phases Ψ^{mn} .

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
		•0000	

Electroacoustic resonator

Electroacoustic resonator principle

Specific feedforward control : Microphone-based feedforward control, through voltage-controlled current amplifier

The effective specific acoustic impedance at the diaphragm then reads :

$$\begin{split} Z_{a}(\omega) &= \frac{P_{t}(\omega)}{V(\omega)} = \frac{Z_{ms}(\omega)}{S_{d} - B\ell\Theta(\omega)} \\ \text{Strategy} \quad \text{to achieve a target specific acoustic impedance } Z_{at}^{mn}(\omega) \\ \Theta^{mn}(\omega) &= \frac{S_{d}Z_{at}^{mn}(\omega) - Z_{ms}(\omega)}{B\ell Z_{at}^{mn}(\omega)} \end{split}$$

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
		0000	

Studied Active Metasurface geometry

To simplify the design, we will only consider a row of the 2D metasurface, made of M=32 unit-cells ($\phi_i = \phi_r = 0$ rad)

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
		00000	

Active metasurface design

1 choice of the target reflected angle θ_r for a given incident angle θ_i (at central frequency f_0);

2 definition of the reflection phase grating $\psi^m(f_0)$ over the metasurface of lattice constant $2r_d$ according to $\Psi^m(f_0) = \Psi_0 - m \frac{2\pi f_0}{c_0} (2r_d)(\sin \theta_r + \sin \theta_i)$;

- **3** definition of the reflection phase reference at the $(M/2+1)^{th}$ cell such as $\arg(\Gamma^{M/2+1}(f_0)) = -\pi$;
- 4 identification of the resonance shift $\Delta f^m = f_0 f^m$ for each cell over the metasurface, so that $\arg(\Gamma^{M/2+1}(f^m)) = \psi^m$;
- **5** identification of the control parameters μ_M^m , μ_C^m achieving such resonance shift (with constant $\mu_R = 1/3$):

•
$$\mu_C^m = \frac{1}{2\pi Z_c S_d C_{ms} Q_s} \frac{1}{(f_0 + \Delta f^m) \mu_F}$$

•
$$\mu_M^m = \frac{Z_c Q_s S_d}{2\pi C_{ms}} \frac{\mu_R}{(f_0 + \Delta f^m)}$$

6 modification of the acoustic impedance of the mth cell with the controller

$$\Theta_t^m(\omega) = \frac{S_d}{B\ell} \frac{(j\omega)^2 M_{ms}(\mu_M^m - 1) + j\omega(\mu_R S_d Z_c - R_{ms}) + \left(\frac{1 - \mu_C^m}{\mu_C^m - ms}\right)}{(j\omega)^2 \mu_M^m M_{ms} + j\omega\mu_R S_d Z_c + \frac{1}{\mu_C^m C_{ms}}}$$

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
		00000	

Let's consider the case where $\theta_i = -\frac{\pi}{4}$ and $\theta_r = \frac{\pi}{3}$, and a metasurface composed of 32 unit-cells.

The target reflection phase, at $f_0 = 343Hz$ (> f_s), over the 32 unit-cells are :

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
		00000	

Let's consider the case where $\theta_i = -\frac{\pi}{4}$ and $\theta_r = \frac{\pi}{3}$, and a metasurface composed of 32 unit-cells.

The target reflection phase, at $f_0 = 343Hz$ (> f_s), over the 32 unit-cells are :

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
		00000	

These settings are achieved experimentally on a MONACOR SPX-30M loudspeaker, and the reflection coefficient for each control case is assessed in an impedance tube :

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
		00000	

These settings are achieved experimentally on a MONACOR SPX-30M loudspeaker, and the reflection coefficient for each control case is assessed in an impedance tube :

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Simulations and results	Conclusion
			•oo	

Simulation setting

The active metasurface simulation is performed with COMSOL Multiphysics with the Acoustics Module :

- 3D space dimension
- Background plane wave condition, with $\theta_i = -\frac{\pi}{A}$
- cylindrical acoustic domain of radius 6 m, including 1.2m of PML, and a height of $2r_d$ =6.4 cm
- 32 unit-cells modelled as Acoustic Impedances with μ_M^m, μ_R and μ_C^m .
- all other surfaces are modelled as "Sound Hard Boundary" (including the two delimiting xoz planes)
- Meshing : maximum element size = $\lambda/6$ at 500 Hz.

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Simulations and results	Conclusion
			000	

Sound pressure fields

Two simulations cases :

$$heta_i = -rac{\pi}{4}$$
 and $heta_r = rac{\pi}{3}$

$$heta_i=-rac{\pi}{4}$$
 and $heta_r=$ 0 rad

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Simulations and results	Conclusion
			000	

Sound pressure fields

Two simulations cases :

$$heta_i = -rac{\pi}{4}$$
 and $heta_r = rac{\pi}{3}$

f=350 Hz - Reflected Sound Pressure Levels Map (dB re. 20 µPa)

f=350 Hz - Reflected Sound Pressure Levels Map (dB re. 20 µPa)

CFA 2018, Le Havre, April 23 - 27, 2018

dB

82

80

78

76

74

72

70

68

66

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Simulations and results	Conclusion
			000	

Directivities

Two simulations cases :

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Conclusion
			•0

Conclusions

- Active Electroacoustic Resonators allow steering reflected wavefronts in a prescribed manner
- Effective at a central frequency, with relative bandwidth extension (up to one octave)
- Reflected coefficient higher than 0.5
- However, it is not yet possible to scan the full range of reflection phases $([-2\pi 0])$

JOURNAL OF APPLIED PHYSICS 123, 091714 (2018)

Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators

Hervé Lissek,^{1,a)} Etienne Rivet,¹ Thomas Laurence,¹ and Romain Fleury² Laboratory of Signal Processing 2 (LTS2). Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 11, CH-1015 Lausane, Switzerland ²Laboratory of Wave Engineering (LWE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 11, CH-1015 Lausane, Switzerland CrossMark

Motivations	Acoustic metasurface concept	Active unit-cell design and assessment	Simulations and results	Conclusion
0 00000	0000	00000		○●

Perspectives

 Toward broadband reflection properties : Design Multiple Degrees of Freedom Electroacoustic Resonators (MDOF, instead of SDOF)

- Realization of an experimental (1D or 2D) prototype for validation of the reflection properties.
- Lowering the losses should allow practical application of the concept.