
Open Source Is A-Changin’
How Qualitative Research Can Help Us Adapt

Daniel Kluga and Heather Millerb

a University of Basel, Switzerland

b Northeastern University, USA, and EPFL, Switzerland

Abstract In the past five years, industry has overwhelmingly turned to open source as a primary means to
build products and services atop of, with around 80% of surveyed companies acknowledging that they run
on open source. 66% of companies say they would first consider open source options before proprietary ones.
A decade ago, this wasn’t the case at all; these numbers were flipped, with a tiny minority of companies
preferring open source solutions.

This has changed the dynamics of open source community markedly. In the early days of the open source
movement, most people using a project were also contributing back to it in some way. However, the number
of users versus contributors has changed by likely uncountable orders of magnitude. With unicorn startups
being built on top of this open source shared infrastructure, the incentives and motives behind open source
contributors building this valuable infrastructure has also begun to shift.

Meanwhile, software engineering studies focused on open source have been overwhelmingly quantitative;
quantitative analyses on codebases, issue trackers, surveys, etc.

In this essay, we argue that with these changing tides comes dynamics that we can’t easily quantify. Why
then do rely predominantly on quantitative methods when we attempt to understand the dynamics of open
source communities? We lay out a number of research questions and qualitative techniques from the social
sciences that can help us better understand these trends, and how to adapt to them going forward.

ACM CCS 2012
General and reference → Computing standards, RFCs and guidelines;
Applied computing → Publishing;

Keywords open source software, community, sociology

The Art, Science, and Engineering of Programming

Perspective The Art of Programming

Area of Submission Open Source Community, Social Coding

© Daniel Klug and Heather Miller
This work is licensed under a “CC BY 4.0” license.
Submitted to The Art, Science, and Engineering of Programming.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Open Source Is A-Changin’

1 Open Source Has Eaten The World

In the past five to ten years, an enormous shift in industry’s attitude towards open
source software1 has taken place. This trend has been tracked year-to-year by the
open source security and license compliance firm, Black Duck Software. Black Duck
runs an annual survey which asks typically over 1,000 companies about their open
source use. In 2010, Black Duck noted that 42% of respondents said their companies
run part or all of its operations on open source software [44]. By 2015, 78% of the
over 1,300 companies surveyed said that they “run on open source”—a nearly 2x
increase in the number of companies saying they build their software products atop
open source software [43]. In the same 2015 edition of the survey, a whopping 66%
or approximately two-thirds of respondents say that their companies first reach for
open source solutions before even considering proprietary ones!

This is a far cry from reality in the early 2000s. Mark Suster, an entrepreneur and
venture capitalist provides a glimpse of what it was like to build software products at
the turn of the millennium,

“When I built my first company starting in 1999 it cost $2.5 million in infrastructure
just to get started and another $2.5 million in team costs to code, launch, manage,
market and sell our software.” [47]

At that time, infrastructure upon which to build a software product was proprietary
and expensive. Infamous players such as Microsoft fought to keep this status quo,
noting the threat of open source in leaked memos,

“Open source software poses a direct, short-term revenue and platform threat to
Microsoft, particularly in the server space. Additionally, the intrinsic parallelism
and free idea exchange in open source software has benefits that are not replicable
with our current licensing model and therefore present a long term [sic] developer
mindshare threat.” [52]

In an effort to counter the feared rise of open source, Microsoft famously adopted
an “embrace, extend, extinguish” strategy intent on thwarting the momentum of the
open source movement by publicizing usability issues in open source software, and
embracing, extending, and extinguishing open protocols [51]. For the better part of a
decade, Microsoft was in an open war with open source, and the future of software
seemed to be headed in a decidedly different direction.

However, Microsoft’s vision for open source never came to pass. Fast-forward again
to 2015 where a vast majority of companies build atop open source software and avoid
even considering proprietary software in their stacks. Open source has clearly won,
despite countless trials and tribulations over the past decade and a half. And now, the
modus operandi of many software startups is to build value by building on what can
be reused. For example, Mike Krieger, the co-founder of Instagram, in a blog article
offering advice to other startup founders recommends to embrace open source,

1 Throughout this essay, we use the term “open source” but do so with the intention of
indiscriminately referring to both free/libre and open source software (FLOSS).

2

Daniel Klug and Heather Miller

“Borrow instead of building whenever possible. There are hundreds of fantastic
open-source projects that have been built through the hard experience of creating
and scaling companies; especially around infrastructure and monitoring … that
can save you time and let you focus on actually building out your product.” [33]

Krieger’s view is also in line with that of Nadia Eghbal’s experience as a software
developer in the foreword of her report on the unseen labor behind open source [23],
namely that building software products these days is in large part pulling together
and building a patchwork of different pieces of open source software,

“I saw the enormous amounts of money being poured into software companies. But
as an amateur software developer, I knew that I had never done any of it alone. I
used free and publicly available code which I cobbled together and offered up for
personal or commercial purposes. Really, the people behind those projects, whoever
they were, had done most of the work.” [23]

1.1 The Manpower Behind Open Source

Meanwhile, as we continue to promote the merits of reusing existing open source
solutions, and as we continue to indiscriminately build products from open source
components, we largely miss the unfortunate reality behind some of these open source
projects.

A well-known example is OpenSSL, a toolkit for Transport Layer Security (TLS) and
Secure Sockets Layer (SSL) protocols, and a general-purpose cryptography library. In
2014, OpenSSL was used on 66% of all web servers worldwide to secure connections
on the internet. In April of 2014, a catastrophic security bug dubbed “Heartbleed”
was discovered in OpenSSL’s implementation of TLS that affected around 17% of the
world’s secure web servers at the time of disclosure.

Prior to Heartbleed, OpenSSL was maintained by only a handful of volunteers,
despite the fact that much of the global internet and the world’s largest companies
depended heavily on the security provided by OpenSSL. Steve Marquess, a US Depart-
ment of Defense security consultant noticed another contributor, Stephen Henson,
worked full time on OpenSSL and learned after years of working with him on OpenSSL
that Henson earned only one-fifth of Marquess’s salary [23]. Nadia Eghbal described
the situation on the OpenSSL team as,

“Until that moment, [Marquess] had ‘always assumed, (as had the rest of the world)
that the OpenSSL team was large, active, and well resourced.’ In reality, OpenSSL
wasn’t even able to support one person’s work.” [23]

While this is just one anecdotal story, it’s likely that there exist many other important
open source projects that businesses are built upon, and which suffer from similar or
worse manpower and sustainability woes.

Although not a reliable metric for identifying projects with sustainability woes,
efforts on estimating the Truck Factor [2, 25] of a given software project could provide
a useful metric for identifying projects with manpower woes. The Truck Factor, or
Bus Factor as it is sometimes known, is the minimum number of team members that
have to suddenly disappear from a project before a project is incapacitated. Tools

3

Open Source Is A-Changin’

to calculate the Truck Factor of a code base based on its commit history have been
developed [29], and offer a powerful and sometimes frightening glimpse into the
health of some of the world’s most widely-used open source projects.

While preliminary work, Avelino et. al [3] have applied their Truck Factor calculation
to the 133 most popular GitHub projects across several programming languages, and
have found that 64% of the top projects on GitHub rely on only 1 or 2 developers to
survive—a jarring figure if true. Projects such as Sass, the popular CSS preprocessor,
and D3, the popular JavaScript library for visualizing data, are both calculated to have
a Truck Factor of 1—meaning that there is only a single developer that guarantees
the project’s survival. Projects such as Pandas, a widely-used Python data analysis
library, the Clojure programming language, and Apache Cassandra, the popular NoSQL
database, are all calculated to have a Truck Factor of 2. The remaining 36% of popular
GitHub projects analyzed have Truck Factors spread from 3 to 250. The full table of
results can be found in Avelino et. al’s prelininary study [3]. If accurate, these results
imply that manpower shortages for popular open source projects not only exist, but
that they may be commonplace!

To make matters worse, reports of contributor distress abound amid the shifting
dynamics and rapid uptake of open source by industry. In her report, Eghbal quotes
Noah Kantrowitz, a member of the Python Software Foundation, who describes this
shift,

“In the early days of the open source movement there were relatively few projects
and in general most people using a project were also contributing back to it in some
way. Both of these have changed by likely uncountable orders of magnitude.”

“The other problem is the growing imbalance between producers and consumers. In
the past, these were roughly in balance. Everyone put time and effort in to the Com-
mons and everyone reaped the benefits. These days, very few people put in that effort
and the vast majority simply benefit from those that do. This imbalance has become
so ingrained that for a company to re-pay (in either time or money) even a small
fraction of the value they derive from the Commons is almost unthinkable.” [23]

Meanwhile, contributor distress and even burnout seem to be on the rise, often at the
hands of successful companies that have benefitted from open source. Another quote
from Eghbal’s report, from Daniel Roy Greenfeld, a Python and Django developer
captures this sentiment,

“I personally get regular demands for unpaid work (Discussions about payment
for work always stall) by healthy high profit companies large and small for [my
projects]. If I don’t respond in a timely fashion, if I’m not willing to accept a crappy
pull request, I/we get labeled a jerk. There is nothing like having core Python/PyPA
maintainers working for Redhat [sic] demanding unpaid work while criticizing
what they consider your project’s shortcomings to ruin your day and diminish your
belief in open source.” [23]

Many more often more colorful instances of contributor burnout, rage-quitting, and
other types of contributor attrition continue [1, 7, 15, 50].

4

Daniel Klug and Heather Miller

In the early days of the open source movement, most people using a project were also
contributing back to it in some way. However, the number of users versus contributors
has changed by likely uncountable orders of magnitude. With unicorn startups being
built on top of this open source shared infrastructure, the incentives and motives
behind open source contributors building this valuable infrastructure has also begun
to shift.

With this shift in the dynamics of open source communities, how are contributors’
attitudes changing? In this essay, we argue that with these changing tides comes
dynamics that we can’t easily quantify. Why then do rely predominantly on quantitative
methods when we attempt to understand the dynamics of open source communities?

2 How Have Open Source Communities Been Studied Thus Far?

For almost two decades, open source communities have been the subject of studies
on people’s motivations or on community structures. These studies generally used
quantitative approaches because the goal was to provide universal understanding
about this world-spanning, decentralized, and ever growing phenomenon which has
people freely working together. Here, quantitative studies want to be—and are—able
to generalize findings to make assumptions about a large and dynamic community.
Open source communities as well provide easy access to relevant social and work
related data that can be mined. Therefore, it seems reasonable to turn to quantitative
methods for collecting and analyzing data and to test hypotheses.

Recently, qualitative approaches have begun to be used to analyze characteristics
of open source communities. As we will further outline in the following section, it
becomes clear that there is a growing need for qualitative methods to look at more
detailed aspects of the social dynamics of open source communities.

2.1 Quantitative Approaches

Looking at the ongoing changes in the open source software communities, quantitative
research provides generalized insights on intrinsic and extrinsic factors for contribut-
ing [34]. Job and career opportunities [35], technical and market success, or licensing
and consumer base [38] are equally important motivations as enjoyment, interest,
or obligation and community [36] for people to contribute to open source projects.
While hybrid forms of extrinsic and intrinsic motivation seem to be most common,
psychological factors and as well social characteristics of work design, workplace,
and socio-demographic variables and values play important roles regarding social
recognition and identification in open source contributing [37].

These findings are based on quantitative approaches, such as surveys, which allow
to collect and analyze data about people’s motivation to engage and contribute in
open source software development [21]. Quantitative studies also look at aspects of
labor [28] and problem-solving, project-related behavior, or modes of strategic com-
munication to generate variables for analyzing open source communities in relation
to patterns of participation, membership or (self-)regulation [27].

5

Open Source Is A-Changin’

Quantitative network analysis illustrates factors beyondmotivation. Self-development
and altruism [41], and reputation and positive evaluation are additional factors for
open source software contribution, they largely base on preferential attachment,
accumulated advantage, homophily, and shared affiliations [32].

In a broad perspective, quantitative research demonstrates, that ‘community’ is
one major quality for open source software contribution and engagement. Learning
from peers, creating valuable artifacts, and foremost altruism and personal devotion
to create better software environments while at the same time selflessly helping a
community are key aspects among paid and unpaid contributors alike [4].

Quantitative studies exemplify community-based interaction and structures as gen-
eral key elements in the creation and the progress of open source software groups.
But they as well hint that many detailed aspects on individual levels define people’s
decisions in joining, contributing to, and maintaining open source software projects.
Given the ongoing changes in software industry and its relation with open source soft-
ware development, as well as vice versa, individual aspects seem to play an increasing
role. This calls for new in-depth research on the changes in motivations, benefits,
goals etc. in open source communities from a primarily qualitative perspective.

2.2 Qualitative Approaches

In general, only few approaches have been made so far to analyze open source
communities using qualitative methods, though some studies notice a growing need
for it [45]. Similar to the quantitative research, early qualitative studies identify
comparable motivations and benefits of contributing [9]. However, qualitative analyses
are able to connect the characteristics of open source communities to basic social
concepts, such as the forms of capital by French sociologist Pierre Bourdieu (1986).

2.2.1 Social Capital
Bourdieu defines the potential of an individual as a combination of different pro-
portions of economic, social, cultural, and symbolic capital. Each form of capital is
generated through social interaction and can be accumulated, institutionalized, or
even materialized and as well turned into one of the other forms. Bourdieu defines
social capital as “the aggregate of the actual or potential resources which are linked
to possession of a durable network of more or less institutionalized relationships of
mutual acquaintance and recognition – or in other words, to membership in a group –
which provides each of its members with the backing of the collectivity-owned capital,
a ‘credential’ which entitles them to credit, in the various senses of the word” [10].
Therefore, social capital includes all current and potential resources of an individual
that are linked to participating in social relationships and networks. In this way, social
capital refers to the relationship of individuals within a group and not to the individual
itself, it defines and enables membership in a community [36]. This is an important
aspect when looking at online communities because individuals who are only loosely
connected in a network, or not at all (so-called ‘weak ties’), need to gather higher
social capital in order to participate in networks.

6

Daniel Klug and Heather Miller

Looking at open source software communities, studies find that, while coding
quality is important on a technical and work level, social capital in terms of reputation
based on peer feedback and social behavior within open source communites is as
well crucial [14]. Socialization and sociality are key factors in building, shaping,
and maintaining open source communities as well as for stepping up within open
source communities. This connects to further theories of social capital, for example
Robert Putnam (2000), who shows that social capital and social interaction are
indicators for ways individuals organize themselves in societal structures and how
they maintain communities through shared activities [42]. In interviews with open
source contributors, studies find strong approval of ‘social contributions’ and social
capital, such as community-orientated behavior, versus professional contributions,
like programming or coding, which illustrates that social skills or social capital is not
considered to be ‘work [16].

In terms of the changing dynamics between open source software communities and
industry, the first research question would be:

Research Question 1

In which way do contributors and developers in open source software
communities still value social capital, given the context of increasing in-
dustry exploitation and interference?

Another relevant aspect within open source software communities, is that, for
example, social capital can be achieved through close social relations and solid infras-
tructures but as well through loose networks with structural holes [40].

2.2.2 Structural Holes
The social theory of structural holes can be another relevant approach to look at the
ongoing changes in open source software communities. It derives from American
sociologist Ronald Burt [12] who provides explanations for differences in social capital
through network analysis. Structural holes are based on a concept of competition,
people or parties with complementary resources or information are divided by a
‘structural hole’ that is filled by a third person or party who connects the other two
and therefore creates advantages. In this way, the theory of structural holes deals
with the missing of relationships within a network and defines several networks that
have no or only little overlaps while each network itself has very strong ties. Usually,
structural holes are filled through individuals with weak ties, which means that a high
social capital is needed. Whoever fills structural holes, individuals or groups, gains
higher visibility and information advantage within networks [13].

Contributors to and developers of open source software are able to fill structural
holes between open source community networks and industry networks. This entails
numerous aspects, such as connecting unpaid labor to commercial and profit-seeking
companies. From an organizational perspective, some studies already use a social
network analysis approach to look at strategies of companies in collaborating in open
source software projects [49].

7

Open Source Is A-Changin’

Given the dynamics and changes between open source software communities and
industry, a second research question would be:

Research Question 2

Under which circumstances are open source software contributors and
developers still willing to fill structural holes between open source soft-
ware communities and industry?

Both research questions imply posing longer-term or self-biographical questions
to open source contributors and their relationship to open source software develop-
ment and communities. Further, this also implies to look beyond only the working
environment an open source contributor finds themselves within. Rather, it should
also include questions exploring biographical dimensions, social dimensions, and
political attitudes that touch upon the foundational philosophies of open source and
free software culture.

For example, in their study, Carillo, Huff & Chawner as well propose a “more global
and confirmatory approach addressing an individuals’ entire socialization experi-
ence” [16]. They argue that qualitative research on open source software communities
and their members/contributors should not simply rely on data available from within
the community, such as emails or forums, but should try to capture people’s bio-
graphical and professional history, attitudes, decisions etc. to find out about crucial
socialization aspects concerning open source activities. In qualitative interviews with
open source contributors, Carillo, Huff & Chawner ask about “different instances of
citizenship behavior in the FOSS community context” and about “key factors that
characterize the socialization experience of newcomers in FOSS communities” [16].

Such an approach could be instructive when applied to better understanding
changes in attitudes and motivations related to contributors’ desire to gather social
capital as well as to fill structural holes.

3 A New Approach

We argue for a new qualitative approach focused on analyzing organizational, profes-
sional and social changes in and as well towards open source communities which could
as well be enhanced with a mixed-method design. Many studies call for qualitative re-
search as it is so far underrepresented in analyzing open source software development.
As previously shown, quantitative studies mainly illustrate reputational, professional,
or social dimensions in contributors’ motivations to work in open source. They also
provide information to outline profiles of contributors to get ideas on the research
area of open source. Data mining and big data sets enable analyses and interpreta-
tions of general aspects in organizational research on open source communities, their
team structures and network structures [17, 53]. This leads to generalizable results
to evaluate organizational structures and peer contexts in open source communities.
Qualitative research may use existing quantitative data of recent studies or can be
based on quantitative results to draft relevant questions. Standardized methods in

8

Daniel Klug and Heather Miller

quantitative research, based on the principle of intersubjectivity, help to measure and
generate phenomena of empirical observation based on hypotheses. In our proposed
research, qualitative methods are far more suitable because we do not seek to gener-
alize hypothetical assumptions but to evaluate in-depth understanding of social and
sociocultural aspects in the changing dynamics of open source communities.

To answer the proposed research questions, an approach based on Grounded
Theory [18, 31, 46] should be applied. Grounded Theory is a methodology from the
social sciences in which a social theory is systematically constructed out of collected
data. For example, to develop a theory about social interaction requires interviewing
people or observing social situations. Grounded Theory methodology allows one
to inductively frame research questions, as well gathered from quantitative studies,
and to collect, transcribe, analyze, and interpret data using a variety of qualitative
methods. In Grounded Theory, collecting, extracting, and analyzing data follows
a circular process based on a special type of sampling called theoretical sampling.
Theoretical sampling allows data to be collected as long as it provides new insights to
the research question, and the size of a sample can be adapted to first results [5, 30,
39].

Therefore, we suggest conducting qualitative interviews [6, 11, 20, 26, 48] with open
source software developers and contributors paired with content analysis of accessible
written documentation in online forums and user groups etc. Qualitative interviews
seek to describe and understand individual meanings in life worlds of the interviewees
and to get behind subjective stories and experiences [20, 22, 26]. In this way, qualitative
research can provide a more detailed and personal perspective than, for example,
quantitative surveys. Qualitative interviews as well enable the researcher to adjust
to the live interview situation and to ask specific follow-up questions based on the
progress of the interview and the information obtained from the interviewee [6, 48].
Interviewees function as experts of their professional and social community [8, 26].
They can provide detailed insights into the structures of a research area. Therefore,
interviews should either be semi-structured or narrative to ensure open questions for
individual subjects, ideas, and structuring by the interviewee [6]. However, general
conversation guiding and stimulating questions should be prepared, also to ensure
easier coding in the following analysis and interpretation of the interview data. Semi-
structured or narrative interviews are also always recorded and transcribed.

The analysis of interview data in Grounded Theory then follows three basic steps.
First, identifying codes in the interview transcripts, that means, marking key aspects
and tagging them with new or already generated codes. Second, combining codes and
connecting them to formulate concepts. Third, comparing concepts and relating them
to each other to formulate a theory. For coding interviews data analysis software, such
as MAXQDA or Dedoose, can be used. These steps as well involve writing memos that
may be integrated at any step while going through codes and concepts. The constant
comparison of concepts includes extracting negative cases that do not fit to refine the
theory [19].

Interviewees can, for example, be recruited by using existing contacts in academia
as well as via online forums [26]. Regarding our research questions, it appears to
be significant to, on the one hand, interview people who are newer to the open

9

Open Source Is A-Changin’

source software community and, on the other hand, people who are seniors and have
contributed and developed a decent number of open source software projects. This is
to broaden the potential field of qualitative data given the assumptions of ongoing
changes in open source software development.

Further questions could ask about personal attitudes towards social and cultural
concepts in open source communities, career factors regarding personal involvement
in open source development, or personal experiences with industry and open source
contributions.

4 In Closing

Open source is changing. However, the motivation and benefits that we can see from
quantitative studies for people in the past are unlikely to change in the future. People
will most likely continue or start to devote their time and skills to open source projects
in favor of community-based learning, sharing, helping, advancing etc. or because of
job prospects. This is the foundation of the open source philosophy. In contrast, what
is changing is that industry is increasingly exploiting the good will of people to build
products that only a small minority may potentially benefit from while at the same
time industry is gaining more and more commercial profit.

Consequentially, it seems these trends are challenging the ideals and foundations
of open source philosophy and hence people’s mindset on joining or staying in open
source projects. To find out whether open source contributors are aware of these
changes, and to find out about their personal inner processes of weighing and deciding
of how to contribute or being part of a community, one can’t rely on quantitative
surveys or data.

Rather, as proposed, qualitative methods can provide in-depth insights, detailed
information, and individual perspectives on the dynamics of open source. We know
about the apparent changes on the industry side, but we do not know entirely about
potential changes in decision-making, attitudes, inner processes etc. on the contrib-
utors’ side as they are less visible within the generally “unseen labor” [24] in open
source software.

Qualitative interviews are the most useful way to collect this sort of information
and data from individuals. Grounded Theory is the most sensible way of structuring,
describing, analyzing, and interpreting this kind of interview data to eventually come
up with a social theory that can provide general validity about changing attitudes in
and towards open source software.

References

[1] Matt Asay. Why open source developers are burning out: No respect. Sept. 2017.
url: https://www.techrepublic.com/article/why-open-source-developers-are-
burning-out-no-respect/.

10

https://www.techrepublic.com/article/why-open-source-developers-are-burning-out-no-respect/
https://www.techrepublic.com/article/why-open-source-developers-are-burning-out-no-respect/

Daniel Klug and Heather Miller

[2] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente.
“A Novel Approach for Estimating Truck Factors”. In: Proceedings of the 24th
International Conference on Program Comprehension (ICPC) (Apr. 2016).

[3] Guilherme Avelino, Marco Tulio Valente, and Andre Hora. What is the Truck
Factor of popular GitHub applications? A first assessment. Technical report. PeerJ
PrePrints, 2017.

[4] Hoda Baytiyeh and Jay Pfaffman. “Open source software: A community of
altruists”. In: Comput. Human Behav. 26.6 (Nov. 2010), pages 1345–1354.

[5] Pedro F Bendassolli. “Theory building in qualitative research: Reconsidering the
problem of induction”. In: Forum Qualitative Sozialforschung/Forum: Qualitative
Social Research. Volume 14. 1. 2013.

[6] Bruce L Berg. “Methods for the social sciences”. In: Qualitative Research Methods
for the Social Sciences. Boston: Pearson Education (2004).

[7] Ryan Bigg. Open source work. Nov. 2015. url: https://ryanbigg.com/2015/11/
open-source-work.

[8] Alexander Bogner, Beate Littig, and Wolfgang Menz. “Introduction: Expert
interviews—An introduction to a new methodological debate”. In: Interviewing
experts. Springer, 2009, pages 1–13.

[9] Andrea Bonaccorsi and Cristina Rossi. “Comparing motivations of individual
programmers and firms to take part in the open source movement: From
community to business”. In: Knowledge, Technology & Policy 18.4 (Dec. 2006),
pages 40–64.

[10] Pierre Bourdieu. “The forms of capital (English version)”. In: Handbook of
theory and research for the sociology of education (1986), pages 241–258.

[11] Svend Brinkmann. “Interview”. In: Encyclopedia of critical psychology. Springer,
2014, pages 1008–1010.

[12] Ronald S Burt. Structural Holes. Harvard University Press, 1995.

[13] Ronald S Burt. “Structural holes versus network closure as social capital”. In:
Social capital. Routledge, 2017, pages 31–56.

[14] Yuanfeng Cai and Dan Zhu. “Reputation in an open source software community:
Antecedents and impacts”. In: Decis. Support Syst. 91 (Nov. 2016), pages 103–112.

[15] Brett Cannon. Why I took October off from OSS volunteering. Oct. 2016. url:
https://snarky.ca/why-i-took-october-off-from-oss-volunteering/.

[16] Kevin Carillo, Sid Huff, and Brenda Chawner. “What makes a good contributor?
Understanding contributor behavior within large Free/Open Source Software
projects–A socialization perspective”. In: The Journal of Strategic Information
Systems 26.4 (2017), pages 322–359.

11

https://ryanbigg.com/2015/11/open-source-work
https://ryanbigg.com/2015/11/open-source-work
https://snarky.ca/why-i-took-october-off-from-oss-volunteering/

Open Source Is A-Changin’

[17] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir Filkov.
“Developer Onboarding in GitHub: The Role of Prior Social Links and Language
Experience”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pages 817–
828.

[18] Kathy Charmaz. “Constructing grounded theory: A practical guide through
qualitative research”. In: SagePublications Ltd, London (2006).

[19] Kathy Charmaz. “Grounded Theory: Objectivist and Constructivist Methods”.
In: Handbook of qualitative research. Jan. 2000.

[20] Kathy Charmaz and Liska Belgrave. “Qualitative interviewing and grounded
theory analysis”. In: The SAGE handbook of interview research: The complexity
of the craft 2 (2012), pages 347–365.

[21] Namjoo Choi and Joseph A Pruett. “The characteristics and motivations of
library open source software developers: An empirical study”. In: Libr. Inf. Sci.
Res. 37.2 (Apr. 2015), pages 109–117.

[22] Rosalind Edwards and Janet Holland. What is Qualitative Interviewing? en.
A&C Black, Nov. 2013.

[23] Nadia Eghbal. Roads and Bridges: The Unseen Labor Behind Our Digital Infras-
tructure. Ford Foundation, 2016.

[24] Nadia Eghbal. Roads and Bridges: The Unseen Labor Behind Our Digital Infras-
tructure. Ford Foundation, 2016.

[25] Mivian Ferreira, Marco Tulio Valente, and Kecia Ferreira. “A comparison of three
algorithms for computing truck factors”. In: Proceedings of the 25th International
Conference on Program Comprehension (ICPC) (2017).

[26] Uwe Flick. An introduction to qualitative research. Sage, 2014.

[27] Nicolai J Foss, Lars Frederiksen, and Francesco Rullani. “Problem-formulation
and problem-solving in self-organized communities: How modes of communi-
cation shape project behaviors in the free open-source software community”.
In: Strategic Manage. J. 37.13 (2016), pages 2589–2610.

[28] Giampaolo Garzarelli and Riccardo Fontanella. “Open source software produc-
tion, spontaneous input, and organizational learning”. In: Am. J. Econ. Sociol.
70.4 (2011), pages 928–950.

[29] GitTrends. http://gittrends.io/.

[30] Barney G Glaser and Judith Holton. “Remodeling Grounded Theory”. In: His-
torical Social Research / Historische Sozialforschung. Supplement 19 (2007),
pages 47–68.

[31] Barney G Glaser and Anselm L Strauss. Discovery of grounded theory: Strategies
for qualitative research. Routledge, 2017.

[32] Daning Hu, J Leon Zhao, and Jiesi Cheng. “Reputation management in an
open source developer social network: An empirical study on determinants of
positive evaluations”. In: Decis. Support Syst. 53.3 (June 2012), pages 526–533.

12

http://gittrends.io/

Daniel Klug and Heather Miller

[33] Mike Krieger.Understanding Changes in the Software & Venture Capital Industries.
Apr. 2013. url: http://opbeat.com/blog/posts/picking-tech-for-your-startup/.

[34] Sandeep Krishnamurthy. “On the intrinsic and extrinsic motivation of free/li-
bre/open source (FLOSS) developers”. In: Knowledge, Technology & Policy 18.4
(Dec. 2006), pages 17–39.

[35] Karim R Lakhani and Robert G Wolf. “Why Hackers Do What They Do: Under-
standing Motivation and Effort in Free/Open Source Software Projects”. In:
(Sept. 2003).

[36] Yan Li, Chuan-Hoo Tan, and Hock-Hai Teo. “Leadership characteristics and
developers’ motivation in open source software development”. In: Information
& Management 49.5 (2012), pages 257–267.

[37] Patrick Mair, Eva Hofmann, Kathrin Gruber, Reinhold Hatzinger, Achim Zeileis,
and Kurt Hornik. “Motivation, values, andwork design as drivers of participation
in the R open source project for statistical computing”. en. In: Proc. Natl. Acad.
Sci. U. S. A. 112.48 (Dec. 2015), pages 14788–14792.

[38] Vishal Midha and Prashant Palvia. “Factors affecting the success of Open Source
Software”. In: J. Syst. Softw. 85.4 (Apr. 2012), pages 895–905.

[39] Janice M Morse. “Sampling in grounded theory”. In: The Sage handbook of
grounded theory (2010), pages 229–244.

[40] Chitu Okoli and Wonseok Oh. “Investigating recognition-based performance in
an open content community: A social capital perspective”. In: Information &
Management 44.3 (Apr. 2007), pages 240–252.

[41] Shaul Oreg and Oded Nov. “Exploring motivations for contributing to open
source initiatives: The roles of contribution context and personal values”. In:
Comput. Human Behav. 24.5 (Sept. 2008), pages 2055–2073.

[42] Robert D Putnam. Bowling Alone: The Collapse and Revival of American Commu-
nity. en. Simon and Schuster, Aug. 2001.

[43] Black Duck Software, editor. 2015 Future of Open Source Survey Results. Apr.
2015. url: https://www.slideshare.net/blackducksoftware/2015-future-of-open-
source-survey-results.

[44] Black Duck Software, editor. 78% of Companies Run on Open Source Yet Lack
Formal Policies. Apr. 2015. url: https://www.blackducksoftware.com/about/news-
events/releases/companies-lack-open-source-policies.

[45] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. “A systematic literature review on the barriers faced by
newcomers to open source software projects”. In: Information and Software
Technology 59 (Mar. 2015), pages 67–85.

[46] Anselm Strauss and Juliet Corbin. Basics of qualitative research: Procedures and
techniques for developing grounded theory. 1998.

13

http://opbeat.com/blog/posts/picking-tech-for-your-startup/
https://www.slideshare.net/blackducksoftware/2015-future-of-open-source-survey-results
https://www.slideshare.net/blackducksoftware/2015-future-of-open-source-survey-results
https://www.blackducksoftware.com/about/news-events/releases/companies-lack-open-source-policies
https://www.blackducksoftware.com/about/news-events/releases/companies-lack-open-source-policies

Open Source Is A-Changin’

[47] Mark Suster. Understanding Changes in the Software & Venture Capital Industries.
June 2011. url: https://bothsidesofthetable.com/understanding-changes-in-the-
software-venture-capital-industries-b69a7e3a1ec7.

[48] Steven J Taylor, Robert Bogdan, andMarjorie DeVault. Introduction to qualitative
research methods: A guidebook and resource. John Wiley & Sons, 2015.

[49] Jose Teixeira, Gregorio Robles, and Jesús M González-Barahona. “Lessons
learned from applying social network analysis on an industrial Free/Libre/Open
Source Software ecosystem”. en. In: Journal of Internet Services and Applications
6.1 (July 2015), page 14.

[50] The reason people burn out on open source. https://news.ycombinator.com/item?
id=8712370.

[51] Christopher Tozzi and Jonathan Zittrain. For Fun and Profit: A History of the
Free and Open Source Software Revolution. en. MIT Press, Aug. 2017.

[52] Vinod Valloppillil. Halloween Document 1: Open Source software—a (new?)
development methodology. Microsoft internal strategy memorandum leaked to
Eric S. Raymond. 1999.

[53] Bogdan Vasilescu, Alexander Serebrenik, Mathieu Goeminne, and Tom Mens.
“On the variation and specialisation of workload—A case study of the Gnome
ecosystem community”. en. In: Empir. Softw. Eng. 19.4 (Aug. 2014), pages 955–
1008.

14

https://bothsidesofthetable.com/understanding-changes-in-the-software-venture-capital-industries-b69a7e3a1ec7
https://bothsidesofthetable.com/understanding-changes-in-the-software-venture-capital-industries-b69a7e3a1ec7
https://news.ycombinator.com/item?id=8712370
https://news.ycombinator.com/item?id=8712370

Daniel Klug and Heather Miller

About the authors

Daniel Klug is an Assistent in the Seminar for Media Studies in
Department of Art, Media, and Philosophy at the University of
Basel, Switzerland. daniel.klug@unibas.ch

Heather Miller is an Assitant Clinical Professor of Computer Sci-
ence at Northeastern University, in Boston, and the Executive Di-
rector of the Scala Center, an open source foundation focused on
supporting the Scala programming language at EPFL in Lausanne,
Switzerland. heather@ccs.neu.edu

15

mailto:daniel.klug@unibas.ch
mailto:heather@ccs.neu.edu

	1 Open Source Has Eaten The World
	1.1 The Manpower Behind Open Source

	2 How Have Open Source Communities Been Studied Thus Far?
	2.1 Quantitative Approaches
	2.2 Qualitative Approaches
	2.2.1 Social Capital
	2.2.2 Structural Holes

	3 A New Approach
	4 In Closing
	About the authors

