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Abstract—Today, epilepsy is one of the most common chronic
diseases affecting more than 65 million people worldwide and
is ranked number four after migraine, Alzheimer’s disease,
and stroke. Despite the recent advances in anti-epileptic drugs,
one-third of the epileptic patients continue to have seizures.
More importantly, epilepsy-related causes of death account for
40% of mortality in high-risk patients. However, no reliable
wearable device currently exists for real-time epileptic seizure
detection. In this paper, we propose e-Glass, a wearable system
based on four electroencephalogram (EEG) electrodes for the
detection of epileptic seizures. Based on an early warning from
e-Glass, it is possible to notify caregivers for rescue to avoid
epilepsy-related death due to the underlying neurological disor-
ders, sudden unexpected death in epilepsy, or accidents during
seizures. We demonstrate the performance of our system using
the Physionet.org CHB-MIT Scalp EEG database for epileptic
children. Our experimental evaluation demonstrates that our
system reaches a sensitivity of 93.80% and a specificity of 93.37 %,
allowing for 2.71 days of operation on a single battery charge.

I. INTRODUCTION AND RELATED WORK

Epilepsy represents one of the major neurological health
issues affecting more than 65 million people worldwide [1].
It is the fourth most common chronic disorder after mi-
graine, stroke, and Alzheimer’s disease [2]. Despite substantial
progress in the efficacy and tolerance of anti-epileptic drugs,
one-third of the epileptic patients continue to have seizures
[3].

Epilepsy is characterized by intermittent seizures caused by
disturbances in the electrical activity of the brain [1]. These
seizures can last from seconds to minutes and can range from
an impaired consciousness, automatic movement, up to severe
convulsions of the entire body. Impaired consciousness may
lead to driving accidents, drowning, as well as other serious in-
juries [4]. This contributes to a severe reduction in the quality
of life and psychosocial functioning. The unpredictable nature
of seizures can be life-threatening with a 2-3 times higher
mortality rate in these patients than in the general population
[5]. Furthermore, the most severe seizures, especially when
occurring at night, can result in sudden unexpected death
in epilepsy (SUDEP) [6]. Epilepsy-related causes of death
account for 40% of mortality in high-risk groups of people
with epilepsy [7]. In order to reduce morbidity and mortality
due to epilepsy, real-time patient monitoring is essential for
alerting family members and caregivers to administer prompt
emergency medication and assist a person at the time of a
seizure.

In the medical community, the standard procedures com-
monly used for epileptic patient monitoring are performed
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based on the video-EEG (v-EEG) [8]. v-EEG takes place in
hospitals over several days and it involves the acquisition of
the audio signal using a microphone, the video recording of
the patient using a camera, the brain electrical activity using
electroencephalography (EEG), as well as the electrical activ-
ity of the heart using electrocardiography (ECG). Considering
the unpredictability of seizures, it is not possible to monitor
patients on a long-term basis, due to the highly intrusive nature
of these procedures.

With the currently flourishing era of embedded computing,
wearable technologies are opening up new opportunities for
real-time epileptic seizures monitoring. These new ultra-low
energy portable devices overcome the limitation of medical
equipment for real-time and long-term patient monitoring. In
particular, the portability of these devices allows real-time re-
mote patient monitoring on a daily basis. Ambulatory real-time
patient monitoring allows hospital physicians to access patient
information remotely and, hence, prevent further patient state
deterioration by early detection of epileptic seizures.

The most popular wearable system for the detection of
epileptic seizures consists of EEG head caps with embedded
electrodes for measuring the electrical activity of the brain
[9]. The placement of electrodes is based on the international
10-20 system [10], [11]. In [12], a new scheme for epileptic
seizure detection based on approximate entropy and discrete
wavelet transform analysis of 100 EEG channels has been
proposed. Furthermore, different approaches that use artificial
neural networks for epileptic seizure detection based on EEG
signals are reported in the literature [13]. Nevertheless, all
these methods use EEG head caps that are cumbersome and
uncomfortable as they require from 23 to 256 wired electrodes
to be placed on the patient’s scalp. The majority of epileptic
patients refuse to wear these caps due to negative effect of
social stigma they are facing in their daily lives [14].

In order to alleviate the negative impact of social stigma
on patient’s daily life, several studies have been conducted
to reduce the number of EEG electrodes needed for epileptic
seizure detection. For instance, in [15], the authors use two
different montages with reduced number of electrodes for
automatic multimodal detection of epileptic seizures: eight
electrodes in forehead montage, and seven electrodes in poste-
rior montage. However, the proposed solution is still intrusive
and, hence, the problem of social stigma persists.

In this paper, we propose e-Glass, a wearable ultra-low
energy system that uses four EEG electrodes embedded and
hidden in the temples of glasses for real-time epileptic seizure
detection. Concretely, the main contributions of this paper are:

1) A wearable system for reliable detection of epileptic

seizures in real time that reaches a sensitivity of 93.80%
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Fig. 1. The overall flow of e-Glass

and a specificity of 93.37%, allowing for 2.71 days of
operation on a single battery charge.
2) Validation on CHB-MIT database (Physionet.org [16]).
3) Evaluation of energy consumption and battery lifetime
of our proposed e-Glass system.

The remainder of this paper is organized as follows. In
Section II, we propose our real-time system for epileptic
seizure detection with limited number of electrodes. Experi-
mental setup along with the evaluation of energy efficiency and
performance of our system are presented in Section III. Finally,
in Section IV, we conclude that our proposed system monitors
epileptic seizures with high classification performance and
limited number of EEG electrodes on a long basis.

II. REAL-TIME METHODOLOGY FOR EPILEPTIC SEIZURE
DETECTION

In this section, we propose e-Glass, a wearable system for
real-time epileptic seizure detection. The overall flow of our
proposed system is shown in Fig. 1, and it consists of two main
phases: feature extraction (Section II-A) and classification
(Section II-B). Each of these steps is thoroughly explained
in the following subsections.

A. Feature Extraction

In order to capture the complex, non-stationary, and nonlin-
ear nature of EEG signals, we extract various entropy measures
along with several power features.

1) Nonlinear Features Extraction: When using entropy
measures for epileptic seizure detection, it has been shown
that applying a discrete wavelet transform (DWT) as a pre-
processing step improves the detection rate for more than
20% [12]. Therefore, we decompose EEG signals down to
level seven using a DWT. In particular, we use Daubechies
4 (db4) wavelet basis function. The value of sample entropy
is calculated from detail wavelet coefficients at level 6 and
7, whereas the rest of the nonlinear features are calculated
from detail wavelet coefficients at levels 3, 4, 5, 6, and 7 for
different values of input parameters.

e Sample entropy: Given a time-series X =
x(1),...,x¢(N) along with the pattern length m
and the criterion of similarity r [17], we define the
following sequences X, (7):

X (1) = {2(@),2(i+1),...,2(i+ m —1)}
Vi=[LN—m+1].
Then, two patterns X,,,(¢) and X,,,(j) are similar if the

difference between any pair of corresponding measure-
ments in the patterns is less than r:

lz(i + k) —z(j + k)| <r,Vk=1[0,m).
We define the set of all sequences of length m, X,,,, along
with the criterion function Cj,,(r) as follows:
X = {Xmn(1), X0n(2),..., X;n(N —=m+ 1)},

Cim(r) = J(fl:n(%

where 7, (r) is the number of patterns in X, that are
similar to X,, (i) excluding self-matches. The sample
entropy is defined as:

Crm(r) )

Cmt1(r)””
where we calculate Cj,,(r) for each pattern in X,,,
and we define C,,(r) as the mean over Cj,(r). In this
work, we use m = 2, and r = k - std(signal), where
std(signal) represents the standard deviation of a signal,
and k € {0.2,0.35}.

SampEn(z,m,r) = In(

o Permutation entropy: Given a time-series {x;}¢=1. 7,

where T is the length of the time-series, all possible n!
permutations are calculated [18]. The parameter 7 corre-
sponds to the permutation type, whereas the parameter n
represents the number of instances considered in order to
estimate the permutation entropy (e.g., (x;, xj, ¢ # J)),
where n = 2, or (x;, x;, z ¢ # j # k), where n = 3.
For instance, for n = 2, 7 can take on only two values.
Let us denote them by 01 or 10. If y < x4y, then
m = 01, and if z; > 2441, then @ = 10. Hence, in
case of n = 2, there are just two possible permutations,
namely, 01 and 10. The relative frequency for type 7 is

estimated as follows:
__ number of perms that have the type =
p(m) = T—n+1

The permutation entropy of order n > 2 is defined as:

PE(n) = = 3. p(m)log(p(r))-

In this paper, we compute the value of permutation
entropy for n € {3,5,7}.

« Renyi entropy: This entropy is calculated as follows [19]:

_ 1
RE(q) = 1=;In X" p],

where ¢ # 1, and p; defines the total spectral power in

i-th band.

o Shannon entropy: This entropy is the special case of

Renyi entropy [19] for ¢ = 1, namely:
SE = —lim RE(q) = = Y piln(p:).
q—r

« Tsallis entropy: It is defined as in [19]:

TE(q) = 251 =X p).



2) Power features: Epileptic seizures affect the distribution
of EEG signal power in different frequency bands [20], [21].
The most commonly reported features extracted from EEG
signals in the literature [22] rely on the spectral power of
EEG signals in various frequency bands of the EEG, namely
delta [0.5, 4] Hz, theta [4, 8] Hz, alpha [8, 12] Hz, beta [13, 30]
Hz, gamma [30, 45] Hz. We calculate the total and the relative
EEG signal powers in the aforementioned frequency bands,
as well as the relative EEG powers in the following bands:
[0,0.1] Hz, [0.1,0.5] Hz, [12,13] Hz. These power features
are extracted from raw EEG signals.

B. Classification Based on Random Forest

Random forest generates an ensemble of decision trees
that are combined to produce an aggregate mode, which is
more powerful than any of its individual decision trees alone
[23]. However, one of the main disadvantages of using a
single decision tree for classification purposes is its overfitting
tendency. Nonetheless, combining different decision trees into
an ensemble solves the problem of overfitting.

Each of the classification trees is constructed using a boot-
strap sample of data. In particular, if our training set has M
rows in the feature matrix, a bootstrap sample of data of size
M 1is constructed by randomly picking one of the M rows
of the dataset with replacement; hence, allowing the same
row to be selected multiple times. This process is repeated
M times resulting in a bootstrap sample of size M. This
sample has the same number of rows as the training set, with
possibly some rows from the training dataset missing while
others occurring multiple times, just due to the nature of the
random selection with replacement. For each of the bootstrap
samples, we grow an unprunted tree (fully grown) [24]. At
each node, we randomly select a subset of features and we
choose the best split within this smaller subset.

To classify a new sample, each decision tree gives a classifi-
cation decision. The forest chooses the classification decision
that has the most votes among the other trees in the forest.
Using bootstrap aggregation, as well as a random feature
selection algorithm for growing each tree individually, results
in a low-variance model and a robust outcome, as shown in our
experiments in Section III. The highest classification accuracy
of our system is obtained by random forest. However, our
system is not classifier-dependent, hence, any other state-of-
the-art classification algorithm can be used as well.

III. EXPERIMENTAL SETUP AND RESULTS

In this section, we demonstrate the classification perfor-
mance of our system using Physionet.org CHB-MIT Scalp
EEG database. This database is described in Subsection III-A.
Then, the target computing system of the e-Glass wearable
platform on which we port our classification technique is
explained in Subsection III-B. Next, the performance of our
real-time detection algorithm is shown in Subsection III-C, and
the energy consumption estimation is presented in Subsection
1I-D.

A. CHB-MIT Database

The used database contains EEG signals from children with
refractory seizures. All recordings are collected from children
(in the 1.5-22 age range). EEG signals are sampled at fs =
256Hz. In order to be able to evaluate the performance of our
proposed system and the impact of the reduced number of

Fig. 2. e-Glass: a wearable system for real-time epileptic seizure detection

electrodes, we consider multiple traces from 10 patients that
are fully compliant with the standard acquisition protocol [11].
These traces include the total number of 55 seizures.

B. Target Platform

The proposed e-Glass wearable system is shown in Fig. 2.
Our system acquires EEG signals from two electrode pairs:
F;T5, and FgTy, shown in Fig. 1. The sampling frequency
of acquired EEG signals ranges from 125 Hz up to 16
KHz with up to 16-bit resolution. Our system features an
ultra-low gower 32-bit microcontroller STM32L151 [25] with
an ARM® Cortex®-M3, which can operate at a maximum
frequency of 32 MHz. e-Glass contains a 570 mAh battery,
as well as 48 KB RAM, 384 KB Flash, and several analog
peripherals including a 24-bit ADC [26]. At the time of a
seizure, a warning from e-Glass is sent to the caregivers
through the communication with a mobile phone. For these
purposes, we use Bluetooth low energy (nRF8001) [27].

C. Performance Evaluation of e-Glass

1) Classification Performance Metric and Cross-Validation:
To evaluate the classification performance of our system, we
consider both sensitivity and specificity metrics, as well as
their geometric mean (gmean), which is the only correct
average of normalized measurements [28]. These metrics are
defined as follows:

L ip
sensitivity = 1
Y= (1)

tn
speci ficity = , 2
pecificity = - — > (2)
gmean = +\/sensitivity - speci ficity, (3)

where tp, tn, fp, fn represent the number of true positive,
true negative, false positive, and false negative, respectively.

We use a sliding window of four seconds with 80% overlap
for extracting the features mentioned in Subsection II-A.
Namely, we extract these features for both, seizure and seizure-
free signal parts. In order to have balanced classes, the same
number of seizure and seizure-free windows is used for each
patient.
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Fig. 3. Geometric mean (gmean) for personalized versus generic approach
using four electrodes

2) Personalized Versus Generic: In this section, we inves-
tigate the difference in terms of classification performance
between the personalized and generic approach. Namely, the
generic approach uses leave-one-out cross-validation scheme.
Out of ten subjects, a single subject is retained for testing
the model, and the remaining nine are used as training data.
The personalized approach performs the classification based
on the features extracted from different trials of one subject.
Hence, this classification is done per subject. While splitting
the data into training and test sets each trial is included into
either the training set or the test set. First, we find the number
of seizures for each patient. As we want to make sure that
the test set contains at least one seizure, 30% of seizure data
is put in the test set, whereas 70% goes to the training set.
For instance, let us assume that patient A has had 6 seizures.
Then, feature windows that correspond to two seizures are put
in the testing set, whereas the remaining four seizure windows
are put in the training test. We use all possible combinations
of six seizures to select two at a time for test set. For each
of these combinations, we split the rest of seizure-free data
into training and test sets for all possible 70-30% splits. We
report the value of gmean (Eq. (3)) for each subject in our
personalized approach.

Fig. 3 shows the gmean across all subjects (vertical axis)
for four electrodes used: F773, and FgT, in Fig. 1. The
geometric mean across all subject for the generic approach is
80.48% (sensitivity = 80.82%, specificity = 80.15%), whereas
this value reaches 93.59% for the case of our personalized
approach (sensitivity = 93.80%, specificity = 93.37%). In the
best case, for patient 6 our approach improves the detection
rate for 26.26%, as shown in Fig. 3. As we can infer from
this figure, the personalized classification approach can adapt
to significant inter-patient variations in EEG patterns. Thus, it
achieves a higher classification performance.

3) EEG Caps Versus e-Glass: In this section, we compare
the classification accuracy in case of the personalized approach
for a different number of used electrodes. Fig. 4 shows the
value of gmean for personalized approach using EEG caps
(all available electrodes) versus the value of gmean obtained
from e-Glass (four selected electrodes: F713, and FgTy). The
geometrical mean across all subjects is 96.36% (sensitivity
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Fig. 4. Geometric mean (gmean) for personalized approach using EEG caps
(all electrodes) versus e-Glass (four selected electrodes)

96.95%, specificity = 95.77%). and 93.59% (sensitivity
= 93.80%, specificity = 93.37%) for all electrodes and for
the subset of electrodes, respectively. As it can be observed
from Fig. 4, using only a few electrodes it is possible to
ensure a high degree of wearability without any major loss
in classification performance. Even though there is a slight
difference for subject number 7 in Fig. 4, this difference is
within the expected statistic range since the number of trials
for this subject is limited.

D. Energy Consumption and System Lifetime Analysis

Our proposed e-Glass system includes a 570 mAh battery,
as previously discussed. Assuming that the EEG acquisition
circuit is active all the time, we run our proposed algorithm for
epileptic seizure detection every four seconds. The processing
of a four-second window takes 3.08 seconds, which represents
the latency of our system. Therefore, the CPU duty cycle of
our system is 77%. This results in 65.15 hours of operation
on a single battery charge. Thus, it allows for 2.71 days of
continuous operation. Furthermore, e-Glass is designed to be
an inconspicuous system that could enable patients to avoid
the aforementioned social stigma of wearing EEG head caps.

IV. CONCLUSIONS

In this paper, we have presented e-Glass, a new wearable
system for real-time epileptic seizure detection. Our experi-
mental evaluation demonstrates that our personalized approach
outperforms the generic approach in terms of classification
performance reaching a sensitivity of 93.80% and a specificity
of 93.37%, while allowing for 2.71 days of operation on a
single battery charge. Furthermore, it also ensures the high
degree of wearability without any major loss in terms of
classification performance. This reduced set of electrodes
overcomes the lack of portability of hospital equipment, as
well as reducing the computational complexity, which further
leads to a reduction in energy consumption. Thus, e-Glass can
provide an early warning of epileptic seizures and promptly in-
form patient family members of preventive measures to avoid
possible accidents during seizures and epilepsy-related death.
Overall, e-Glass can significantly contribute to improvements
in the patient’s quality of life by reducing the socioeconomic
burden of epilepsy.
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