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ABSTRACT: To evaluate vibronic spectra beyond the Condon approximation, we extend
the on-the-fly ab initio thawed Gaussian approximation by considering the Herzberg−
Teller contribution due to the dependence of the electronic transition dipole moment on
nuclear coordinates. The extended thawed Gaussian approximation is tested on electronic
absorption spectra of the phenyl radical and benzene; calculated spectra reproduce
experimental data and are much more accurate than standard global harmonic approaches,
confirming the significance of anharmonicity. Moreover, the extended method provides a
tool to quantify the Herzberg−Teller contribution; we show that in the phenyl radical,
anharmonicity outweighs the Herzberg−Teller contribution, whereas in benzene, the
Herzberg−Teller contribution is essential because the transition is electronically forbidden
and the Condon approximation yields a zero spectrum. Surprisingly, both adiabatic
harmonic spectra outperform those of the vertical harmonic model, which describes the
Franck−Condon region better. Finally, we provide a simple recipe for orientationally
averaging spectra, valid beyond the Condon approximation, and a relation among the
transition dipole, its gradient, and nonadiabatic coupling vectors.

Vibrationally resolved electronic spectroscopy provides
valuable insight into the structure and dynamics of

polyatomic molecules.1 Indeed, light-induced molecular
dynamics is recognized as one of the key areas of research in
physical chemistry, not only for fundamental understanding of
nature but also for various applications, from solar cells to
photodynamic therapy.2 The development of theoretical
methods for simulating and understanding optical spectra is,
therefore, of great importance.
The time-dependent approach to spectroscopy3 evaluates the

vibronic spectrum as the Fourier transform of the nuclear
wavepacket autocorrelation function and, in contrast to the
commonly used time-independent Franck−Condon (FC)
approach,4,5 can easily account for effects beyond the Born−
Oppenheimer and global harmonic approximations. In the
time-dependent approach, one must first perform exact or
approximate molecular quantum dynamics. While exact
quantum dynamics typically requires a global potential energy
surface6,7 and scales exponentially with dimensions, semi-
classical methods, such as the initial value representation,8

thawed Gaussian approximation (TGA),9 frozen Gaussian
approximation,10 and Herman−Kluk propagator11,12 require
only local information and are suitable for on-the-fly
implementation. The idea of using multiple frozen Gaussians
as a basis for describing the full wavepacket has inspired a
number of quantum13−15 and semiclassical16−21 “first-princi-
ples” approaches, which allow combination with an on-the-fly
ab initio (OTF-AI) evaluation of the electronic structure. Apart
from a few examples,22 thawed Gaussians have been largely
marginalized because they can describe neither wavepacket

splitting nor very anharmonic dynamics. Yet, vibrationally
resolved electronic spectra are mostly determined by short-time
dynamics, during which both wavepacket splitting and
anharmonic effects are less important. Indeed, a recent
implementation of OTF-AI-TGA reproduced successfully the
vibrational structure of electronic absorption, emission, and
photoelectron spectra, even in rather anharmonic and floppy
systems such as ammonia.23,24

Here, an extension of the OTF-AI-TGA beyond the Condon
approximation is presented by employing the Herzberg−Teller
(HT) approximation,25 which, in contrast to the Condon
approximation,4 includes a linear dependence of the transition
dipole moment on nuclear coordinates. We employ OTF-AI
implementation of the extended thawed Gaussian approxima-
tion (ETGA)26 to evaluate the absorption spectra of the phenyl
radical, an anharmonic system allegedly exhibiting a significant
HT contribution,27 and benzene, a textbook example of a
symmetry-forbidden (i.e., electronically forbidden) transition.28

At zero temperature, within the electric dipole approxima-
tion, first-order time-dependent perturbation theory, and
rotating-wave approximation, the absorption cross section of
a molecule with two electronic states that are not nonadiabati-
cally coupled can be expressed as the Fourier transform
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where Ĥ1 and Ĥ2 are nuclear Hamiltonian operators of the

ground and excited electronic states, μ̂ is the matrix element μ ⃗2̂1
of the electric transition dipole moment operator projected

along the polarization unit vector ϵ,⃗ i.e., μ̂ ≔ μ ⃗2̂1 · ϵ ⃗ (the
subscript 21 is removed for simplicity because we will almost
exclusively consider this matrix element), and |1,g⟩ is the
ground vibrational state of the ground electronic state with
zero-point energy E1,g. Thus, the vibronic spectrum can be
evaluated by propagating the initial wavepacket |ϕ (0)⟩ = μ̂|1,g⟩
on the excited-state potential energy surface.
To compare with an experiment in the gas phase, where the

molecules are isotropically distributed, one must average the
computed spectrum over all molecular orientations. Yet, due to
the isotropy of space, brute-force numerical averaging is
avoided; averaging is required only over three orientations of
the molecule.29 To show this, consider the spectrum and
autocorrelation function as 3 × 3 tensors σμ⃗μ⃗(ω) and Cμ⃗μ⃗(t),
the latter related to Cμμ(t) by Cμμ(t) = ϵ ⃗T · Cμ⃗μ⃗(t) · ϵ.⃗ A
simple analytical calculation30 shows that the average
over all orientations of the polarization vector ϵ ⃗ is

=μμ μμ⃗ ⃗C t C t( ) Tr[ ( )]1
3

and the corresponding absorption

cross section is

σ ω σ ω σ σ σ= = + +μμ μ μ μ μ μ μ⃗ ⃗( )
1
3

Tr[ ( )]
1
3

( )
x x y y z z (3)

Thus, the average is easily evaluated, e.g., by averaging over
only three arbitrary orthogonal molecular orientations with
respect to the fixed polarization vector ϵ ⃗ or by fixing the
molecular orientation and averaging over only three arbitrary
orthogonal polarization vectors.
While the result (eq 3) holds for arbitrary coordinate

dependence of the transition dipole μ⃗(q), two approximations
are frequently used. Within the most common Condon
approximation, the transition dipole is considered constant,
μ⃗(q) ≈ μ⃗(q0), and the general result (eq 3) reduces to the
textbook recipe for the averaged spectrum, which we shall call
the FC spectrum:

σ ω σ ω= μ μ| ⃗ | | ⃗ |( )
1
3

( )FC (4)

(“Divide the spectrum for the molecular dipole aligned with the
field by 3.”) In the more accurate HT approximation, the
transition dipole moment becomes a linear function of nuclear
coordinates:

μ μ μ⃗ ≈ ⃗ + ⃗| · −q q q q( ) ( ) grad ( )q q0
T

00 (5)

By explicitly differentiating the matrix element μ⃗αβ of the
molecular dipole between electronic states α and β (for a
moment, we reintroduce the subscripts), one can show30 that
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or, in a more compact matrix notation
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where N is the number of atoms, Zj the atomic number, R⃗j the
coordinates of the jth atom, and Fi,αβ ≔ ⟨α|(∂β/∂qi)⟩ is the ith
component of the nonadiabatic coupling vector between states
α and β. For the transition dipole moment, α ≠ β and the term
proportional to δαβ in eq 6 (to 1 in eq 7) vanishes, which shows
that the HT dependence originates from a combination of
nonzero nonadiabatic and dipole couplings of states α and β to
an intermediate state γ. Moreover, because one may usually
neglect nonadiabatic couplings between the ground and excited
electronic states at the ground-state optimized geometry, only
the second term of the commutator survives:

∑μ μ∂
∂

⃗ ≈ − ⃗
γ

γ γq
F

j
i21 ,2 1

(8)

showing that a nonvanishing gradient of the transition dipole
between the ground state 1 and excited state 2 requires an
intermediate, “bright” (μ⃗γ1 ≠ 0) excited state γ that is
vibronically coupled (Fi,2γ ≠ 0) to the excited state 2. Such
interpretation reveals the deep connection between the HT
approximation and the concepts of “vibronic coupling” and
“intensity borrowing.”31 Finally, although eq 7 suggests a way to
evaluate ∂qμ⃗αβ from μ⃗ and Fi, it is usually easier to evaluate the
gradient by finite difference.
To find the autocorrelation function Cμμ(t), one must

propagate the wavepacket. Heller’s TGA3,9,26 relies on the fact
that a Gaussian wavepacket evolved in at most a quadratic
potential remains a Gaussian. Within this approximation, the
anharmonicity of the potential is taken into account partially by
propagating the Gaussian wavepacket

ψ

γ
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in the time-dependent effective potential given by the local
harmonic approximation of the full potential:
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where V|qt, gradqV|qt, and HessqV|qt denote the potential energy,
gradient, and Hessian evaluated at the center of the Gaussian,
N0 is the initial normalization constant, (qt,pt) are the phase-
space coordinates of the center of the Gaussian wavepacket at
time t, At is the complex symmetric width matrix, and γt is a
complex number; its real part gives an overall phase factor, and
its imaginary part ensures the normalization of the Gaussian
wavepacket at all times. Parameters of the Gaussian follow
Heller’s equations of motion3,9,26

̇ = ·−q m pt t
1

(11)

̇ = − |p Vgradt q qt (12)
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where m is the diagonal mass matrix and Lt the Lagrangian.
The extended TGA used in this work considers a more

general form of the initial wavepacket, namely, a Gaussian
wavepacket (eq 9) multiplied by a polynomial P(q − q0) in
nuclear coordinates, which, at time zero, can be written as a
polynomial in the derivatives with respect to p0:
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This observation leads to a simple recipe for propagating the
extended TGA wavepacket within the local harmonic
approximation,26 namely, the wavepacket retains this form at
all times:
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p
q( )

i
( )t t
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where ψt(q) is the original TGA wavepacket (eq 9). As for the
initial HT wavepacket, P(q − q0) = μ(q0) + b0

T · (q − q0), where
b0 = gradqμ|q0, and the semiclassical propagation yields

ϕ μ ψ= + · −q q b q q q( ) [ ( ) ( )] ( )t t t t0
T

(17)

The four parameters of the Gaussian ψt(q) are propagated with
the usual TGA eqs 11−14, and only one additional parameter,
bt, must be evaluated:

= − ℏ · + ·b A M M b( 2i )t t qp t pp t, , 0 (18)

where Mqp,t = ∂qt/∂p0 and Mpp,t = ∂pt/∂p0 are the elements of
the stability matrix, which is already needed to propagate At and
γt, implying that the additional evaluation of bt comes at almost
no additional cost. Remarkably, the orientational averaging of
ETGA spectra is even simpler than what could be expected
from the general simplification that we mentioned in the
beginning: within ETGA, the averaging requires only a single
trajectory (instead of three) because the transition dipole
moment does not affect the propagation of qt, pt, At, and γt.
As a consequence of this property, the ETGA can be

combined with an OTF-AI scheme at the same cost as the
original TGA for spectra within the Condon approxima-
tion.23,24 The ab initio calculations are typically performed in
Cartesian coordinates, and therefore, the ab initio gradients and
Hessians needed in eq 10 must be transformed23,24 to the
coordinate system q that fits into our frameworkthe
vibrational normal modes.
As the extended TGA is exact in a globally harmonic

potential, it is useful to compare the on-the-fly approach with
two common approximations of the excited-state potential
energy surface, the vertical harmonic (VH) and adiabatic
harmonic (AH) approximations,32 in which the excited-state
potential is expanded to second order about the ground- and
excited-state optimized geometries, respectively (see refs 23
and 24 for details). We use density functional theory for the
ground-state and time-dependent density functional theory for
the excited-state ab initio calculations, employing B3LYP
functional with SNSD basis set for the phenyl radical and
B3LYP functional with 6-31+G(d,p) basis set for benzene (see

the Supporting Information for details and validation by
comparison with a higher-level ab initio method).
According to Barone and co-workers,27,33 calculation of the

absorption spectrum corresponding to Ã2B1 ← X̃2A1 electronic
transition of the phenyl radical depends on the dimensionality
of the simulation model and on inclusion of the HT
contribution, anharmonicity effects, and mode mixing (Du-
schinsky effect).34 Our model includes all of these effects and
provides the means to evaluate their importance.
To assess the influence of anharmonicity, the experimental

spectrum is compared with the spectra simulated using the
global harmonic approaches (Figure 1, top). While the vertical

harmonic approach only captures the overall envelope of the
experimental spectrum but fails to capture any details, the AH
model reproduces all main features of the spectrum. This is in
contrast with the common expectation that the vertical
harmonic approach should be more accurate32,35 as it describes
better the FC region of the excited-state potential. Indeed, the
emission spectra of oligothiophenes23 and both absorption and
photoelectron spectra of ammonia24 are much better described
with the VH than the AH approach. In phenyl radical, the
failure of the VH approach lies in the incorrect frequencies and
displacements of the two most displaced modes 18 and 24
(Figure S4 of the Supporting Information), resulting in the
missing mode effect:36,37 when the spectrum is not well
resolved, it may contain a single progression whose spacing
does not correspond to any of the vibrational frequencies of the
system. Unlike the global harmonic approaches, the on-the-fly
method overcomes the problem of guessing which excited-state
Hessian should be used (i.e., vertical or adiabatic) and

Figure 1. Calculated absorption spectra of the phenyl radical Ã2B1 ←
X̃2A1 electronic transition compared to the experimental33,38 spectrum
measured in an Ar matrix at 6 K. Top: Comparison of the OTF-AI-
ETGA, AH, and VH models (all three are the FCHT spectra, based on
the HT approximation, eq 5). Bottom: Comparison of the FC and
FCHT spectra (both evaluated with OTF-AI-ETGA). All spectra are
horizontally shifted and rescaled according to the highest peak (see
Table S7 of the Supporting Information).

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b00827
J. Phys. Chem. Lett. 2018, 9, 2367−2372

2369

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b00827/suppl_file/jz8b00827_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b00827/suppl_file/jz8b00827_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b00827/suppl_file/jz8b00827_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.8b00827


reproduces the experimental spectrum rather well and with
minimum human input.
To assess the validity of the Condon approximation, the FC

spectra (using the Condon approximation) and Franck−
Condon Herzberg−Teller (FCHT) spectra (based on the
Herzberg-Teller approximation, eq 5) of the phenyl radical are
compared at the bottom of Figure 1. The FC and FCHT
spectra are very similar because the absorption spectrum of the
phenyl radical is mostly determined by the symmetry-allowed
FC transition, while the HT contribution only broadens the
peaks slightly. We find that in the phenyl radical including
anharmonicity effects with the OTF-AI scheme is more
important than including the HT contribution with extension
of the TGA.
Both the ground- and excited-state geometries of benzene

belong to the D6h point group. Group theory predicts that the
Ã1B2u ← X̃1A1g electronic transition is symmetry-forbidden.
Yet, it is vibronically allowed, since the nonzero elements of the
gradient of the transition dipole moment give rise to the
vibronic spectrum.28 The gradient of the transition dipole
moment originates mostly from nonadiabatic couplings
between the B2u state and the bright E1u state.

39 The spectrum
contains one strong progression, assigned to one of the totally
symmetric modes, as well as a number of hot bands. At present,
we do not attempt to simulate the hot bands, which require
finite-temperature treatment;40 our goal is computing the
correct absorption cross sections of the main progression. In
addition, we do not treat the spectral features arising from the
second-order vibronic coupling, i.e., a number of small-intensity
peaks that cannot be described within the first-order HT
approximation.41

Interestingly, the AH approach again reproduces the
experimental spectrum at least qualitatively, unlike the vertical
harmonic approach, which results in a number of peaks not
observed in the experiment (Figure 2, top). In the VH model,
modes 25, 29, and 30 are more distorted because their
frequencies are significantly lower than the corresponding
frequencies in the AH model (see Table S6 and Figure S5 of
the Supporting Information). Again, due to a partial treatment
of anharmonicity, the OTF-AI-ETGA spectrum shows
significant improvement over both global harmonic methods.
While the relative intensities of AH peaks have errors of 20−
50% and the VH model fails completely, the relative intensities

of the OTF-AI-ETGA peaks lie within 5% of experiment. The
influence of anharmonicity on the spectrum is investigated
using the autocorrelation functions in Supporting Information
(see Figures S6−S8). To further explore whether it is the error
in the phase or magnitude of the autocorrelation function that
affects the spectra more, we construct two hybrid, nonphysical
autocorrelation functions. The first, denoted |AH|exp(i OTF),
combines the magnitude of the AH autocorrelation function
with the phase from the on-the-fly correlation function, while
the second, denoted |OTF|exp(i AH), combines the magnitude
of the on-the-fly autocorrelation function with the phase from
the AH autocorrelation function. The spectra in Figure 3
simulated using these two hybrid autocorrelations show clearly
that it is the error in the phase of the AH model that most
corrupts the intensities of the peaks. The difference between
the two phases is closely related to the propagation of the
stability matrix and, consequently, to the Hessians of the
excited electronic state potential.
In contrast to the almost perfect description of the intensities

by OTF-AI-ETGA, neither AH nor OTF-AI-ETGA reproduces
correctly the experimental spacing of the peaks in the main
progression. This error, however, can be assigned to the
electronic structure method, implying that the use of other
density functional or wave function-based methods could give
more accurate curvature of the potential and hence a better
spacing.
Our main result is contained in the bottom panel of Figure 2,

which compares the FC spectrum (based on the Condon
approximation), which can be evaluated with the original TGA,
and the FCHT spectrum (based on the HT approximation, eq
5), which requires the extended TGA. While FCHT agrees very
well with experiment, the FC spectrum is zero because the
transition dipole moment at the ground-state equilibrium is
zero, which is the precise meaning of an electronically
forbidden transition.
Incidentally, one can imagine simulating the FC spectrum by

the commonly adopted procedure in which the transition
dipole moment is set to unity and the spectrum is rescaled at
the end. Although reasonable for electronically allowed
transitions, here this “blind” procedure makes no sense because
μFC = 0. This “FC” approach is compared to the FCHT result
(see Figure S9 of the Supporting Information), and, somewhat
surprisingly, the spectra are very similar, the main difference

Figure 2. Calculated absorption spectra of the benzene Ã1B2u ← X̃1A1g electronic transition compared to the experimental
42,43 spectrum measured at

293 K. See the caption of Figure 1 for details. To clarify the difference between the AH and OTF-AI spectra, we show the scaled intensities of the
experimental (black), OTF-AI (blue), and AH (red) peaks.
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being a constant shift corresponding exactly to the excited-state
frequency of the degenerate inducing modes 27 and 28 (see
Tables S5−S6 of the Supporting Information). However, such
similarity between the “FC” and the FCHT approach is not
general. In addition, the “FC” approach is not capable of
reproducing the absolute magnitudes of absorption cross
sections, while the full FCHT approach provides a good
estimate of the absolute absorption cross sections, as shown in
Figure S10 of the Supporting Information.
To conclude, we presented an extension to OTF-AI-TGA

and employed it to evaluate absorption spectra of the phenyl
radical and benzene within the HT approximation. Consid-
erable improvement compared to the usual global harmonic
approaches was achieved, and further insight into the origins of
the spectral features was given. The results obtained for the
absorption spectrum of the phenyl radical imply that including
the anharmonicity effects is more important than the HT
contribution to the spectrum. Although TGA is often described
in the context of calculating low-resolution spectra, here we
reported the evaluation of a rather high resolution absorption
spectrum of benzene with high accuracy. The improvement was
especially pronounced in the intensities of the peaks due to
partial inclusion of the anharmonicity of the excited-state
potential. Thus, OTF-AI-ETGA can be used not only to
reproduce spectra but also to evaluate the importance of
different effects by going beyond the commonly used Condon
and global harmonic approximations.
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MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of
Atmospheric Interest. Earth Syst. Sci. Data 2013, 5, 365−373.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b00827
J. Phys. Chem. Lett. 2018, 9, 2367−2372

2372

http://dx.doi.org/10.1021/acs.jpclett.8b00827

