
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. F. Nobile, président du jury
Prof. A. Quarteroni, Dr A. Manzoni, directeurs de thèse

Prof. K. Vuik, rapporteur
Prof. H. Elman, rapporteur

Prof. J. S. Hesthaven, rapporteur

Multi space reduced basis preconditioners for
parametrized partial differential equations

THÈSE NO 8553 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 30 AVRIL 2018

 À LA FACULTÉ DES SCIENCES DE BASE
CHAIRE DE MODÉLISATION ET CALCUL SCIENTIFIQUE

PROGRAMME DOCTORAL EN MATHÉMATIQUES

Suisse
2018

PAR

Niccolò DAL SANTO

Studying, and striving for truth and beauty
in general, is a sphere in which we are allowed

to be children throughout life.
— A. Einstein

Acknowledgements

I am very grateful to my advisor, Prof. Alfio Quarteroni, for the invaluable opportunity
of pursuing my doctoral studies at the Chair of Modeling and Scientific Computing
(CMCS) at EPFL. His tireless striving for excellence has played a major role for the
achievements of this dissertation and represents a teaching I will bring with me in my
whole professional carreer.
My most sincere gratitude goes to my co-advisor, Dr. Andrea Manzoni, who has been a
constant support and reference during my whole period at EPFL. This thesis has largely
benefited from his kindness, patience and enthusiasm, both from the scientific and human
perspective; to you my very best wishes for a brilliant career as a professor and advisor.
Additionally, I would like to thank MER Simone Deparis, for being an irreplaceable
scientific reference and co-author, and for having shared in these years coffee breaks and
sport activities, and Dr. Luca Dede’ for the fruitful scientific discussions.

I acknowledge the members of the jury, Prof. Howard Elman, Prof. Jan S. Hesthaven
and Prof. Kees Vuik, for having carefully read this manuscript and for providing useful
comments and feedbacks to improve it. Many thanks to Prof. Fabio Nobile, who
committed himself as president of the jury.

The path towards being a PhD definitely seemed very long at the beginning of this
journey and now I hardly realize how fast the last three and a half years have gone,
leaving me with a multitude of achievements, adventures and memories. Above all, I have
been tremendously lucky in finding on my way splendid people I could work and interact
with. In particular, I wish to thank the best office mate I could wish for, Antobello,
for sharing jokes, thoughts, discussions, beers and a retrobottega, and no matter what
future will reserve us, we’ll always have Paris. Many thanks also to Dr. Barte for all
the adventures, the brotherhood, the once-in-a-lifetime experience of sharing a fridge
with you and most of all for being a constant guide as the old PhD student of our lab. I
would also like to acknowledge all my collegues at CMCS, and in particular Pego Pego
for running together, Claudia for Colciago’s jokes and the advices, Ste for speaking
about great food and Ste da Sanbo for dreaming together of our home town, you have
continuously enriched my time at EPFL in memorable and sparkling ways.
Many thanks to all the wonderful MATHICSE colleagues and friends I had the chance

v

Acknowledgements

to meet in Lausanne and with whom I spent amazing moments, in particular to my
awesome flatmates Mattia, for the multitude of remarkable jokes in the evenings spent
together, and Sènan, for being my personal French teacher and party organizer, to Isa
and Giorgia for suffering together at CP and being true friends, Babak for the trekking
routes and the conferences together, Regula, Vil, Ana and Thierry for beers, beachvolley
matches and funny moments, Carlo for teaching me windsurfing, Teo and Fredrik for
sharing great European weekends. A special mention then goes to Dr. Paolo Gatto
and Dr. Robert Luce, masters of life for young PhD students, and to all my mates in
Innovation Forum Lausanne, the number one EPFL student association, in particular to
Cate, Bea, Konrad and Fra, more than colleagues in IFL you are friends.
Eventually, I have to thank Antonella, Ale and Kira, for warmly welcoming me every
time in Cesena, and my lifetime friends in Verona, in particular Negro, Ale, Ettore, Raky,
Vonny, Emma, Vale, Angy, Giuly, Ferra, Tini, no matter how the time goes by, I always
feel at the first day of school when we spend time together.

My gratefulness goes to my whole family and in particular to my mum Patrizia and my
aunt Isabella, who unconditionally support me in all my decisions.
In the end, to Francesca goes my most beloved gratitude, for your patience, your kindness
and your love: being at your side is an overwhelming experience which fills me of joy
every single day.

Lausanne, April 2018 Niccolò Dal Santo

vi

Abstract

The multiquery solution of parametric partial differential equations (PDEs), that is,
PDEs depending on a vector of parameters, is computationally challenging and appears
in several engineering contexts, such as PDE-constrained optimization, uncertainty
quantification or sensitivity analysis. When using the finite element (FE) method as
approximation technique, an algebraic system must be solved for each instance of the
parameter, leading to a critical bottleneck when we are in a multiquery context, a
problem which is even more emphasized when dealing with nonlinear or time dependent
PDEs. Several techniques have been proposed to deal with sequences of linear systems,
such as truncated Krylov subspace recycling methods, deflated restarting techniques
and approximate inverse preconditioners; however, these techniques do not satisfactorily
exploit the parameter dependence. More recently, the reduced basis (RB) method,
together with other reduced order modeling (ROM) techniques, emerged as an efficient
tool to tackle parametrized PDEs.
In this thesis, we investigate a novel preconditioning strategy for parametrized systems
which arise from the FE discretization of parametrized PDEs. Our preconditioner
combines multiplicatively a RB coarse component, which is built upon the RB method,
and a nonsingular fine grid preconditioner. The proposed technique hinges upon the
construction of a new Multi Space Reduced Basis (MSRB) method, where a RB solver is
built at each step of the chosen iterative method and trained to accurately solve the error
equation. The resulting preconditioner directly exploits the parameter dependence, since
it is tailored to the class of problems at hand, and significantly speeds up the solution of
the parametrized linear system.
We analyze the proposed preconditioner from a theoretical standpoint, providing as-
sumptions which lead to its well-posedness and efficiency. We apply our strategy to a
broad range of problems described by parametrized PDEs: (i) elliptic problems such as
advection-diffusion-reaction equations, (ii) evolution problems such as time-dependent
advection-diffusion-reaction equations or linear elastodynamics equations (iii) saddle-
point problems such as Stokes equations, and, finally, (iv) Navier-Stokes equations. Even
though the structure of the preconditioner is similar for all these classes of problems,
its fine and coarse components must be accurately chosen in order to provide the best
possible results. Several comparisons are made with respect to the current state-of-the-art

vii

Abstract

preconditioning and ROM techniques. Finally, we employ the proposed technique to
speed up the solution of problems in the field of cardiovascular modeling.

Keywords: preconditioning techniques, finite element method, reduced basis method,
parametrized partial differential equations.

viii

Résumé

Trouver la solution multi-requête d’équations différentielles partielles (EDPs), c’est-à-dire
d’EDPs dépendantes d’un vecteur de paramètres, est un problème complexe du point de
vue computationnel, et qui apparaît dans de multiples contextes en ingénierie, comme
par exemple en optimisation d’EDP contraintes, en quantification d’incertitude ou en
analyse de sensibilité. Quand la méthode des éléments finis (FE) est utilisée comme
technique d’approximation, un système algébrique doit être résolu pour chaque valeur du
paramètre, menant à un goulet d’étranglement critique lors de multiples requêtes. Ce
problème devient encore plus important lorsque l’on considère des EDPs non linéaires ou
dépendantes du temps. Plusieurs techniques ont été proposées pour traiter des suites
de systèmes linéaires, comme les méthodes de recyclage des sous-espaces de Krylov
tronquées (plus connues sous le nom de truncated Krylov subspace recycling methods), ou
les préconditionneurs inverses approximés ; cependant, ces techniques n’exploitent pas
la dépendance paramétrique d’une manière satisfaisante. Plus récemment, la méthode
des bases réduites (RB), aussi connu comme reduced basis method, ainsi que d’autres
techniques de modélisation d’ordre réduit (ROM) sont apparues comme étant des outils
efficaces pour aborder les EDPs paramétriques.
Dans cette thèse, nous examinons une nouvelle stratégie de préconditionnement pour
les systèmes paramétriques provenant de discrétisations aux éléments finis d’EDPs
paramétriques. Notre préconditionneur combine de manière multiplicative une composante
RB grossière, construite grâce à la méthode RB, et un préconditionneur non singulier.
La technique proposée repose sur la construction d’une nouvelle méthode des bases
réduites multi-espaces (MSRB), où un solveur RB est construit à chaque itération de la
méthode itérative choisie, puis entrainé pour résoudre avec précision l’équation d’erreur.
Le préconditionneur qui en résulte exploite directement la dépendance paramétrique
puisqu’il s’adapte à la classe de problèmes considérée, et il permet une accélération
significative de la résolution du système linéaire paramétrique.
Nous analysons le préconditionneur proposé d’un point de vue théorique, en fournissant
les hypothèses nécessaires pour être bien posé et efficace. Nous appliquons notre stratégie
à une large gamme de problèmes décrits par des EDPs paramétriques : (i) des problèmes
elliptiques comme les équations d’advection-diffusion-réaction, (ii) des problèmes évolutifs
comme les équations d’advection-diffusion-réaction dépendantes du temps ou les équations

ix

Résumé

linéaires élastodynamiques, (iii) des problèmes de points-selle comme les équations de
Stokes, et finalement (iv) les équations de Navier-Stokes. Bien que la structure du
préconditionneur soit similaire pour toutes ces classes de problèmes, ses composantes
grossières et raffinées doivent être choisies avec soin pour fournir les meilleurs résultats
possibles. Une comparaison est effectuée avec l’actuel meilleur préconditionneur et les
techniques ROM. Nous utilisons finalement les nouveaux préconditionneurs MSRB pour
accélérer la résolution de problèmes dans le domaine de modélisation cardiovasculaire.

Mots cléfs : technique de préconditionnement, méthode des éléments finis, méthode des
bases réduites, équations différentielles partielles paramétriques.

x

Contents
Acknowledgements v

Abstract (English/Français) vii

Contents xi

List of Figures xviii

List of tables xxi

Introduction 1

1 Numerical approximation of parametrized PDEs 7
1.1 Parametrized PDEs . 7

1.1.1 Steady weakly coercive problems 7
1.1.2 Unsteady problems . 11

1.2 Review on solution strategies for parametrized FE systems 13
1.2.1 A short survey on classical preconditioning techniques 14
1.2.2 Solution strategies for sequences of linear systems 20

1.3 Review on RB methods for parametrized steady PDEs 22
1.3.1 Building the RB approximation . 22
1.3.2 Assembling the RB problem: hyper-reduction techniques 25
1.3.3 Error bounds for hyper-reduced RB approximation 31
1.3.4 Galerkin RB methods for time-dependent problems 32

1.4 Towards RB coarse operators for preconditioning parametrized PDEs . . . 34

2 MSRB preconditioners for parametrized PDEs 37
2.1 Preconditioning the Richardson method with a RB coarse operator 37
2.2 Multi space RB preconditioners for elliptic PDEs 39

2.2.1 Multi space RB preconditioners for the Richardson method 39
2.2.2 Nonsingularity of MSRB preconditioners 41
2.2.3 Convergence results for the MSRB-preconditioned Richardson method 43
2.2.4 Dealing with nonaffine problems: (M)DEIM in the context of

MSRB preconditioning methods 45

xi

Contents

2.2.5 Multi space RB preconditioners for flexible GMRES 47
2.3 Algorithmic procedures . 50

2.3.1 Offline phase . 50
2.3.2 Online phase . 52

2.4 Numerical experiments for elliptic problems 53
2.4.1 Test case I: diffusion with nonaffine right hand side 54
2.4.2 Test case II: Thermal beam . 66

2.5 MSRB preconditioners for parabolic PDEs 70
2.5.1 MSRB preconditioner construction 70
2.5.2 Algorithmic procedures for unsteady problems 72

2.6 Numerical results for parabolic problems 75
2.6.1 Test case III: three-dimensional heat transfer past a cylinder . . . 75

3 RB methods & MSRB preconditioners for Stokes equations 81
3.1 Parametrized Stokes equations . 81

3.1.1 Finite element approximation of the Stokes equations 83
3.2 Review on RB methods for Stokes equations 85

3.2.1 RB methods for parametrized saddle-point systems 86
3.3 Algebraic LSRB method for parametrized saddle-point problems 92

3.3.1 Well-posedness of the aLSRB problem 94
3.3.2 Assembling the aLSRB problem 96
3.3.3 On the choice of PX . 98

3.4 Numerical experiments with aLSRB approximation 100
3.4.1 Test case setting: Stokes problem in a parametrized cylinder . . . 100
3.4.2 Numerical results . 104

3.5 MSRB preconditioners for the Stokes equations 109
3.5.1 MSRB preconditioners with enriched G-RB coarse operators . . . 111
3.5.2 MSRB preconditioners with aLSRB coarse operators 112
3.5.3 Nonsingularity of the preconditioner 112
3.5.4 Algorithmic procedures . 114

3.6 Numerical results . 118
3.6.1 Test case I: parametrized cylinder 119
3.6.2 Test case II: parametrized carotid bifurcations 123

4 RB methods and MSRB preconditioners for NS equations 131
4.1 Parametrized Navier-Stokes equations . 131

4.1.1 FE discretization and BDF time integration 133
4.1.2 Algebraic formulation . 134

4.2 A ROM framework for parametrized unsteady NS equations 136
4.2.1 Basis construction: double POD strategy 138
4.2.2 ROM Stability . 139
4.2.3 Enhancing efficiency by hyper-reduction 140

4.3 Sequential ROMs for deformation and fluid flows 143

xii

Contents

4.4 Numerical results for NS-HROM . 145
4.5 MSRB preconditioners for the NS equations 153

4.5.1 Preconditioner construction . 154
4.5.2 Algorithmic procedures . 157

4.6 Numerical results: flow past a cylinder . 159
4.6.1 Periodic regime case . 160
4.6.2 Parametrized case . 162

5 Applications to the cardiovascular system 169
5.1 The role of mathematical simulation in cardiovascular applications 169
5.2 Solute dynamics in carotid bifurcation . 170

5.2.1 The physical model and its FE discretization 171
5.2.2 Numerical results using the MSRB preconditioner 173

5.3 Blood flows in carotid bifurcations . 175
5.3.1 Test case setting . 175
5.3.2 Numerical results . 177

5.4 Abdominal aorta aneurysm in patient specific geometry 183
5.4.1 Test case setting . 183
5.4.2 Variational formulation and FE discretization 185
5.4.3 Numerical results with MSRB preconditioner 187

6 Conclusions 191

Bibliography 195

Curriculum vitæ 211

xiii

List of Figures
1.1 Examples of multigrid cycles, image taken from [Saad, 2003]. The grid

cycles are characterized by lev coarsening steps and γ iterations of the
classic 2-level multigrid cycle. 18

2.1 Test case I: the computational domain Ω is divided into four regions, each
featuring a constant diffusivity value νj , j = 1, . . . , 4. The coefficients
νj , , j − 1, 2, 3 are taken as problem parameters, cf. (2.48), whereas we fix
the value ν4 = 1. 55

2.2 Test case I: example of solutions for different values of μ with a null
Neumann condition on x = 1. 56

2.3 Test case I: eigenvalues of the correlation matrix Ck, k = 0, . . . , L − 1,
Nh = 365′254. As the iteration k increases, the decay of the eigenvalues is
less steep, leading to RB spaces with more basis functions to reach the
same tolerance. 58

2.4 Test case I: speed up and break-even point (BEP) as function of Nh for
both fixed accuracy and fixed dimension approaches. Time are expressed
in seconds. 61

2.5 Test case I: scalability and speed up as function of Ncore for both fixed
accuracy and fixed dimension approaches. Time are expressed in seconds. 62

2.6 Test case I: average relative RB residual rRB and wall time to solve assemble
and solve the RB-DEIM problem as function of δDEIM for different ranges
of σ: the larger the range, the less efficient the RB-DEIM approximation.
Time are expressed in seconds. 64

2.7 Test case I: average wall time (seconds) divided into three phases for
computing the RB solution when a new instance of the parameter is
considered in the online phase as function of δDEIM and for different ranges
of σ. Time are expressed in seconds. 65

2.8 Solution T (μ) for different values of μ computed with P2 finite elements
basis functions, leading to Nh = 2′080′389. 67

2.9 Test case II: singular values σi, i = 1, . . . , 500 for P1 and P2 FE basis
functions computed by POD within MDEIM algorithm. 69

xv

List of Figures

2.10 Test case II: η
(k)
RB as function of k with P1 (top) and P2 FE basis functions

and δRB,k = δRB, k = 0, 1, 2, 3 with δRB = 10−2 (left) and δRB = 10−3

(right). 69
2.11 Test case III: computational domain Ω with boundary flags, with H =

0.41m, L0 = 2.5m. The cylinder has radius r = 0.05m, its center is distant
0.5m from Γd and 0.2m from the bottom face. 74

2.12 Test case III: computational domain Ω obtained with Gmsh [Geuzaine
and Remacle, 2009]. A refinement has been applied in the (orange) area
around the cylinder. 75

2.13 Test case III: example of solutions for different parameter values. 77
2.14 SVD of MDEIM computed for the construction of A(μ) and M(μ). . . . 78
2.15 Test case III: POD used to build the RB projection matrices Vk,0 (bottom,

left) and Vk,5 (bottom, right); the singular values for slab s = 0 decrease
slower than the ones for s = 5 when the same k for the two charts is
considered. 79

3.1 Displacement for different values of μ. 101
3.2 RB and (M)DEIM functions vs δRB, δDEIM = 10−l, l = 2, 3, 4, 5, 6. 106
3.3 FE solution and G-RB and aLSRB errors for μ = (2, −0.3). 106
3.4 FE solution and G-RB and aLSRB errors for μ = (3, 0.3). 107
3.5 FE solution and G-RB and aLSRB errors for μ = (2.7, 0.12). 107
3.6 Convergence of the residual in norm X−1

h (μ) vs the number of basis
functions N = Nu + Np for the two case aLSRB (with X0

h and PX0
h
).

Results computed with δDEIM = 10−8. 108
3.7 Residuals in norm X−1

h (μ) vs δRB for δDEIM = 10−l, l = 2, 3, 4, 5, 6. . . . 108
3.8 Computational times (seconds) vs δRB for δDEIM = 10−l, l = 2, 3, 4, 5, 6. . 108
3.9 Building time (seconds) for AN (μ) vs δRB for δDEIM = 10−l, l = 2, 3, 4, 5, 6. 109
3.10 Deformation of the domain for test case I. 120
3.11 Test case I, numerical solution for three values of μ obtained with the

MSRB preconditioning technique. 120
3.12 Test case I, iteration number and computational times vs Nh. 124
3.13 Test case II, top row: reference domain Ω0 (left) and displacement d(μ)

for μ = (5.0, 0.5); bottom row: example of region A(μ) for two values of μ.125
3.14 Test case II, numerical solution for two values of μ obtained with the

MSRB preconditioning technique. 126

4.1 Offline strategy to build NS-HROM. Red blocks specify when the collection
of solution, matrix and right hand side snapshots is performed, green blocks
specify when a HROM is constructed and then used to boost the offline
phase. 145

4.2 Velocity (lines 1,2) and pressure (lines 3,4) for different values of parameters
and at time t = 0.25 (left) and t = 0.5 (right). 147

4.3 SVDs for building D-HROM and L-HROM problems. 149

xvi

List of Figures

4.4 SVDs for building final RB spaces (left) and final MDEIM of the linearized
term (right). Notice that in the latter, according to εloc

C of the MDEIMs
in time, the number of snapshots and the decay of the resulting SVD for
the final MDEIM change. 149

4.5 Velocity and pressure errors entailed by the NS-HROM as function of time
for two values of the parameter. 152

4.6 Computational domain employed for the flow past a cylinder, with H =
0.41m, L0 = 2.5m. The cylinder has radius r = 0.05m, its center is distant
0.5m from Γd and 0.2m from the bottom face. 159

4.7 Clip of velocity field at the central section at time t = 2.5 seconds (top)
and t = 4.8 seconds (bottom) with ν = 0.01. 160

4.8 POD corresponding to the construction of the RB spaces for Mesh #1 (top
row) and Mesh #2 (bottom row). We distinguish between the creation of
the RB spaces for velocity (left), supremizer (centre) and pressure (right). 161

4.9 SVD for local-in-time MDEIM Mesh #1 and Mesh #2. 162
4.10 Time evolution of CD and CL for two different computational grids. . . . 162
4.11 Phase diagram of the drag and lift coefficients evolution for t ∈ [0, 10]. . 163
4.12 Examples of deformation according to the value of ry. If ry > 0 the section

of the cylinder in the y direction is narrowed, whereas a negative value
enlarges it. 164

4.13 SVD for Mesh # 2. We report the PODs employed to build the RB spaces
for velocity (top-left), supremizer (top-right), pressure (bottom-left); solid
lines correspond to the first time slab s = 0, dash lines to the second time
slab s = 1. Singular values (SV) for the final MDEIM for the two time
slabs s = 0, 1 are in the bottom-right corner. A similar decay of the SV is
observed for the two time slabs in all the cases. 165

4.14 Evolution of drag and lift coefficients for different values of the parameters
computed during the online phase. 165

4.15 Clip of the domain at the central section of the channel: zoom next to the
cylinder of velocity streamlines and pressure field for different values of
parameters and times. 167

5.1 Inlet velocity profile with mesh and velocity field for the dynamics of a
solute. 173

5.2 Sherwood number distribution for values of the parameter vector. 173
5.3 Scalability and speedup as function of the number of cores Ncore for P1

and P2 FE basis functions and fixed accuracy and fixed dimension approach.175
5.4 Reference domain Ωf ; common carotid artery (CCA), internal carotid

artery (ICA) and external carotid artery (ECA). 176
5.5 Region A where the stress �h(μ) is applied (left) and reference flow rate

Q0
CCA(t) (right). 178

xvii

List of Figures

5.6 Starting mesh for Ωf (left) and deformation entailed by parameter instances
μ1, μ2 (middle and right): the higher the value of μ1, the larger the
displacement entailed by �h(μ). 178

5.7 Slices of velocity magnitude for μ1, μ2 at different times. 180
5.8 WSS [dyn·cm−2] magnitude distribution at different times for μ1, μ2. . . 181
5.9 Flow rate QICA(t; μ) at the ICA (left) and ratio QICA(t;μ)

QCCA(t;μ) (right) for
different values of μ. 182

5.10 WSS [dyn·cm−2] magnitude distribution at different times for μ1, μ2. . . 182
5.11 Location of probes (top left) and time evolution of the distribution of the

magnitude of the WSS [dyn·cm−2] for different parameter values. 182
5.12 Domain Ω, boundary flags and computational domain. 185
5.13 Displacement for μ = (1.85 · 106, 1.0625, 1.05 · 105) at different times. . . . 189
5.14 Displacement for μ = (1.05 · 106, 1.2, 7 · 104) at different times. 189
5.15 Time evolution of magnitude displacement for different parameter values

in locations P1, P2, P3. 190

xviii

List of Tables
2.1 Test case I: Richardson method results with P1 FE: δRB,k = 0.001, k =

0, . . . 2. We report the dimension of the RB spaces Nk and the average
accuracy ξ

(k)
RB obtained online for k = 0, . . . 2. 57

2.2 Test case I: Richardson method results with P1 FE: δRB,k = 0.1, k =
0, . . . 8. We report the dimension of the RB spaces Nk and the average
accuracy ξ

(k)
RB obtained online for k = 0, . . . 8. 57

2.3 Test case I: grid analysis results for FGMRES method with fixed accuracy
approach, L = 3, δRB,k = 0.001, ∀k, ∼ 3800 dofs per CPU. Times are in
seconds. 60

2.4 Test case I: grid analysis results for FGMRES method with fixed dimension
approach, Nk = 100 ∀k, ∼ 3800 dofs per CPU. Time are expressed in
seconds. 60

2.5 Test case I: scalability analysis results for FGMRES method with fixed
accuracy approach, δRB,k = 10−3 ∀k. Time are expressed in seconds. . . . 61

2.6 Test case I: scalability analysis results for FGMRES method with fixed
dimension approach, Nk = 150 ∀k. L = 8 RB coarse operators are
produced by Algorithm 5 in all the cases. Time are expressed in seconds. 62

2.7 Test case I: RB-DEIM results with δDEIM = 10−7 as function of the range
of σ ∈ [σmin, 0.5]. The value of σmin significantly impact on the results
obtained by the RB-DEIM, both in terms of accuracy and efficiency, due
to the number N of RB functions and number Qf DEIM basis functions. 66

2.8 MSRB results with fixed dimension approach, with Nk = N, k = 0, 1, . . . , L−
1 as function of the range of σ ∈ [σmin, 0.5]. The efficiency is not signif-
icantly impacted by the range of σ, since the MSRB-preconditioning
method does not rely on any affine approximation of the right hand side,
avoiding the huge overhead caused by DEIM. Time are expressed in seconds. 66

2.9 Test case II: FGMRES results with MSRB preconditioner for P1 FE basis
functions, fixed accuracy approach with δRB,k = 10−2 and L = 4 varying
δMDEIM. 70

2.10 Test case II: FGMRES results with MSRB preconditioner for P1 FE basis
functions, fixed accuracy approach with δRB,k = 10−3 and L = 4 varying
δMDEIM. 70

xix

List of Tables

2.11 Test case II: FGMRES results with MSRB preconditioner for P2 FE basis
functions, fixed accuracy approach with δRB,k = 10−2 and L = 4 varying
δMDEIM. 70

2.12 Test case II: FGMRES results with MSRB preconditioner for P2 FE basis
functions, fixed accuracy approach with δRB,k = 10−3 and L = 4 varying
δMDEIM. 70

2.13 Test case III: number of RB coarse operators Ls computed by Algorithm
8 to reach a tolerance εr = 10−9. They are the same for all the values of
Ncore. 78

2.14 Test case III: results with MSRB preconditioner with fixed dimension
approach (N = 15) and S = 10 time slabs. Computational times are
expressed in seconds. 79

3.1 Computational time (seconds) to build (M)DEIM basis with δDEIM = 10−6.105
3.2 Computational time (seconds) to build RB approximation with δRB = 10−6.105
3.3 Computational time (seconds) required by the RB methods to compute a

solution satisfying a target accuracy. 109
3.4 Test case I, MDEIM offline results, δMDEIM = 10−6. 121
3.5 Test case I, fixed accuracy with GRB, L = 4, δRB,k ≈ 5.6 · 10−3 ∀k. . . . 122
3.6 Test case I, fixed accuracy with aLSRB-X0

h, L = 4, δRB,k ≈ 5.6 · 10−3 ∀k. 123
3.7 Test case I, fixed accuracy with aLSRB-PX0

h
, L = 4, δRB,k ≈ 5.6 · 10−3 ∀k. 123

3.8 Test case I, fixed dimension with GRB, Nu
k = Np

k = N s
k = 10 ∀k. 123

3.9 Test case I, fixed dimension with aLSRB-X0
h, Nu

k = Np
k = 10 ∀k. 123

3.10 Test case I, fixed dimension with aLSRB-PX0
h
, Nu

k = Np
k = 10 ∀k. 123

3.11 Test case II, DEIM and MDEIM number of affine basis functions computed
during the offline phase as function of the tolerances δDEIM and δMDEIM
(always chosen with the same value). The number of affine components
affects the duration of the offline phase of a time taffine, which in the
aLSRB-PX0

h
solver case depends quadratically on the number of affine

terms. 127
3.12 Test case II, results with aLSRB-PX0

h
solver, basis computed with tol-

erance δRB = 10−9 leading to Nu = 327 and Np = 111 basis functions.
The accuracy of the method largely depends on the system approximation
carried out with DEIM and MDEIM. 128

3.13 Test case II, MSRB preconditioner results with FGMRES with a final
tolerance εr = 10−5. The RB spaces are built with the fixed dimension
approach, with Nu

k = Np
k = 50, ∀k, and aLSRB-PX0

h
coarse operators.

The computation is carried out with 360 cores, such that ∼ 8890 dofs per
core. 129

4.1 D-HROM: POD for state reduction and DEIM have been run with εPOD =
δDEIM = 10−7. Computational times are expressed in seconds. 148

xx

List of Tables

4.2 L-HROM: POD for state reduction and (M)DEIM have been run with
εPOD = δDEIM = δMDEIM = 10−7. Computational times are expressed in
seconds. 148

4.3 Chosen settings for numerical experiments of NS-HROM. 149
4.4 Results of the offline phase for settings defined in Table 4.3. computational

times are reported in seconds. 150
4.5 Results averaged on 50 instances of the parameter considered online. Times

are reported in seconds. 151
4.6 Summary results for periodic regime. The problem is solved online on the

interval (2, 10]. Computational times are expressed in seconds and refer
to the average time needed for the solution of one time step. 162

4.7 Number of affine terms (MDEIM decompositions) for the two meshes and
the two time slabs. The value of Qa sums the number of affine components
of D(μ), B(μ) and Mu(μ), Qt

c is the average number of affine terms for
the local-in-time MDEIMs and Qc the number of affine terms for the final
MDEIM. 166

4.8 Summary results for parametrized case. The problem is solved online on
the interval (0, 1] on instances of the parameter different from the training
set. Computational times are expressed in seconds and refer to the average
time needed for the solution of one time step. 166

5.1 results for FGMRES obtained with MSRB preconditioner built a fixed
accuracy approach, δRB,k = 0.001, k =, 1, 2, ns = 300. Time are expressed
in seconds. 174

5.2 results for FGMRES obtained with MSRB preconditioner built a fixed di-
mension approach, δRB,k = 0.001, k =, 1, 2, ns = 300. Time are expressed
in seconds. 174

5.3 Summary results for blood flow in bifurcation. Computational times are
expressed in seconds and tonl

MSRB and tSIMPLE refer to the average time
needed for the solution of one time step. 179

5.4 Results with MSRB preconditioner with (Nk = 25), S = 4 time slabs and
P = PAS 2. Computational times are expressed in seconds and the online
time refer to the solution of one time step. 188

5.5 Results with MSRB preconditioner with (Nk = 25), S = 4 time slabs and
P = PAS 1. Computational times are expressed in seconds and the online
time refer to the solution of one time step. 188

xxi

Introduction

This thesis deals with the development, analysis and application of innovative and reliable
numerical methods for the efficient solution of large-scale parametrized partial differential
equations (PDEs), that is, PDEs depending on a parameters vector. Parameters may
encode physical and/or geometrical properties of the system and enter into play in
many different ways by influencing, for instance, the model coefficients, the boundary
data or the definition of the geometrical domain. Parametrized PDEs are encountered
in a broad range of phenomena in applied sciences and engineering simulations, where
relevant applications account, just to mention few prominent cases, for sensitivity analysis,
uncertainty quantification, parameter estimation or PDE-constrained optimization. These
classes of problems are in general referred to as multiquery problems, for which we are
interested in computing their solution for many different scenarios.

In general, the solution of a PDE is almost never computable in closed form, whence
the need of using a high-fidelity discretization technique, such as the finite element (FE)
method, to determine an approximate solution which is close to the exact one up to a
controllable discretization error, and is computed by solving a (non)linear algebraic system.
Depending on the application at hand and on the desired accuracy, the dimension of such
algebraic system can range from few thousands to tens, or even hundreds, millions for the
most demanding applications. Even if in recent years computing hardware capabilities
have significantly improved, solving such a large algebraic system still represents, in
general, a demanding task, calling for properly designed numerical algorithms. A further
difficulty is added when a parameter-dependent PDE is taken into account, since each
new parameter instance would require, in principle, the solution of such algebraic system
from scratch.

To face such a huge and general problem, in this thesis we propose and analyze a
new preconditioning technique aimed at efficiently dealing with large-scale parameter-
dependent problems arising from the FE discretization of PDEs. The preconditioning
strategy we envision exploits the intrinsic parameter dependence appearing in a multiquery
context, is theoretically analyzed and applied to a wide range of problems, from linear
elliptic to nonlinear unsteady PDEs.

1

Introduction

State of the art

Parametrized PDE problems appear in a variety of contexts, and a broad family of
methods has been developed to tackle their solution. We recall in particular the reduced
basis (RB) method, [Quarteroni et al., 2016a, Hesthaven et al., 2016], which in the last
decade emerged as one of the most widespread reduced order modeling (ROM) technique
for solving parameter-dependent PDEs, and represents one of the main ingredients of this
work. The central idea of the RB method lies in approximating the solution corresponding
to a parameter as a linear combination of solutions of the same PDE for preselected
parameter instances; this is pursued, in practice, through a RB low-rank solver which is
built from the FE problem by (Petrov) Galerkin projection. Such a method has been
successfully used for a wide range of applications; its performance (both in terms of
accuracy and efficiency) is largely affected by the nature of the parameter-dependence of
the problem at hand. This is the case, for instance, of problems involving a parameter
space with very large dimension, for which an extremely large number of RB functions
may be needed to compute an accurate approximation, time-dependent PDEs defined
over a long-time horizon or problems featuring different dynamics across the parameter
space. An additional issue has to be overcome when considering nonaffine and nonlinear
PDEs, where the classic RB method would still rely, in principle, on the dimension of
the high fidelity problem to assemble the RB low-rank solver. To make RB methods
efficient also in these latter cases, additional hyper-reduction techniques, such as the
Empirical Interpolation Method (EIM), [Barrault et al., 2004], or its discrete variant
DEIM, [Chaturantabut and Sorensen, 2010], are required to reduce the computational
effort in the assembling of the RB problem, however entailing heavy additional costs and
introducing further error sources in the solution due to the system approximation.

On the other hand, parametrized linear systems built from FE discretization of PDEs
can be cast in the wider class of sequences of linear systems, for which the solutions of a
collection of linear systems arising from the same problem are sought. Other examples
appear, for instance, when we consider time-dependent problems discretized by means of
a time advancing scheme, restarted algorithms (e.g. restarted GMRES, [Saad and Schultz,
1986, Van der Vorst and Vuik, 1994]) or flexibly preconditioned iterative solvers, as the
case of flexible GMRES, [Saad, 1993], if the preconditioning step is carried out by inner
iterations. In the last decades, several numerical techniques have been proposed to speed
up their solution and, among the others, we mention Krylov subspace recycling, deflated
and augmented methods, [Simoncini and Szyld, 2007, Parks et al., 2006, Morgan, 2005]
and approximate inverse preconditioners, [Benzi and Bertaccini, 2003, Bertaccini and
Durastante, 2016]. These techniques succeed in accelerating the solution of the sequence
of linear systems, however they do not explicitly take advantage of the parametric
dependence of the PDE, possibly showing different behaviors across the parameter space.
This motivates the need to exploit ROM techniques (and in this work specifically the RB
method) to speed up the solution of the preconditioned high fidelity system by directly

2

exploiting the parametric dependence of the PDE and potentially allowing to obtain
uniform performances across the parameter space.

Thesis contributions

In this thesis we propose, analyze and apply a new preconditioning strategy which
exploits a RB low-rank solver as coarse operator combined with a classical fine grid
operator, in a two-level preconditioning fashion. To this aim, we build a sequence of
iteration-dependent RB low-rank solvers, each one tailored to provide an accurate solution
of the error equation arising at iteration k of the iterative method. We have called the
resulting iteration-dependent operator multi space reduced basis (MSRB) preconditioner.
The proposed approach has been initially developed for affinely parametrized linear
elliptic problems and is shown to compute the solution of the parametrized FE linear
system in extremely competitive iteration count and computational time, if compared
with state-of-the-art preconditioning and Krylov subspace recycling methods.

Next, several extensions have been considered: at first nonaffine linear elliptic and
parabolic PDEs are taken into account, for which MSRB preconditioners are shown to
overcome, both theoretically and computationally, the bottleneck originating from the
nonaffine parameter dependence, by relying (at most) on a coarse and easily computable
approximate affine approximation. We then turn our attention to computational fluid
dynamics: we propose a MSRB preconditioning strategy for linear parametrized saddle-
point problems which is used for the efficient solution of steady parametrized Stokes
equations. Finally, the unsteady parametrized Navier-Stokes (NS) equations in parameter-
dependent domains are considered, for which the MSRB preconditioners are extended to
deal with nonlinear problems. Furthermore, the technique can be easily applied to tackle
other different nonlinear unsteady parametrized PDEs. The MSRB preconditioning
method is applied to FE problem of engineering interest featuring a large dimension,
up to millions of degrees of freedom, with emphasis on (but not strictly limited to)
cardiovascular applications.

The MSRB preconditioning strategy represents the main contribution presented in this
work, however other innovative techniques related to the standard RB method have been
explored and devised towards the construction of the aforementioned methodology. More
specifically, we have developed a new Petrov-Galerkin method for linear saddle-point
problems, which represents a generalization of the least squares RB (LSRB) method
initially proposed in [Abdulle and Budáč, 2015]. The main idea of our new approach lies
in suitably modifying, at the algebraic level, the matrix used for the creation of the RB
test space, by substituting it with a more cheaply computable (but spectrally equivalent)
surrogate. The resulting formulation, which is referred to as algebraic least squares RB
(aLSRB) method, is provides a well-posed RB formulation and is tested on problems of
interest.

3

Introduction

Secondly, we extend the state-of-the-art framework of RB methods for the treatment of
the unsteady NS equations in nonaffinely parametrized geometries. This is pursued by
employing a mesh motion technique to tackle the domain deformation and a waterfall of
ROMs to deal at first with the computation of the domain displacement and then with
the fluid flow. In order to gain the maximum efficiency, an hyper-reduction strategy to
treat the nonaffine and nonlinear convective term appearing in the NS equations is also
devised, and applied for the first time to complex three-dimensional flows.

Thesis outline

The first chapter of the thesis introduces the classes of parametrized PDE problems which
are dealt with; in particular, their differential and weak formulation is reported, together
with the FE discretization and the techniques which are considered as state-of-the-art
for the solution of the resulting FE linear systems. Furthermore, as one of the main
ingredients of the methodologies proposed, the RB method for linear (un)steady PDEs is
briefly outlined.

The MSRB preconditioning framework is developed in Chapters 2, 3 and 4 by gradually
increasing the complexity of the addressed problem. In particular, Chapter 2 sets the
foundations of the method by taking into account linear second-order elliptic and parabolic
problems (namely, advection-diffusion-reaction equations in both steady and unsteady
parametrized cases). In Chapter 3, at first the aLSRB method for Stokes equations is
presented and used as RB coarse operator in the MSRB preconditioner for tackling saddle-
point problems. Similarly, an alternative option for building the MSRB preconditioner by
exploiting an enriched velocity Galerkin formulation is developed. Chapter 4 is devoted
instead to the unsteady parametrized Navier-Stokes equations: the reduction strategy
for the NS equations in deformed domains is initially presented and then exploited in
the MSRB preconditioning framework. In Chapter 5, some cardiovascular applications
involving arterial tissue dynamics in abdominal aortic aneurysms and solute dynamics and
blood flow in parametrized carotid bifurcations are presented. Finally, several conclusions
and some areas of future work are discussed in Chapter 6.

This thesis contains results which have already been published (or accepted for publication)
in journal articles or contained on papers which are currently submitted. More specifically,
Chapter 2 is based upon results contained in [Dal Santo et al., 2018a], which is the first
work presenting the MSRB preconditioning framework. Further details and numerical
results (not included in this thesis) can also be found in [Dal Santo et al., 2017a]. Chapter
3 is based upon [Dal Santo et al., 2017b] for the construction and analysis of the aLSRB
method for the parametrized Stokes equations and upon [Dal Santo et al., 2018b] for
MSRB preconditioners for linear saddle-point problems; all these reports are available as
submitted pre-prints. Finally, the results concerning solute dynamics in Chapter 5 are
already reported in [Dal Santo et al., 2018a].

4

Tools of the trade

The numerical experiments presented in this thesis have been obtained by employing the
parallel FE library LifeV1, designed to tackle large-scale problems in a high performance
computing (HPC) environment; here a (MS)RB module has been developed by the author
for parametrized PDEs. LifeV is an open-source C++ library distributed under LGPL
license which takes advantage of the MPI-based linear algebra structures of Trilinos
[Heroux et al., 2005]; in particular, the Ifpack [Sala and Heroux, 2005] and ML [Gee
et al., 2006] packages are extensively used and referred to in this dissertation.

All the numerical simulations have been run on the Swiss National Supercomputing
Center2 (CSCS), which the author gratefully acknowledges for providing the computing
hours under the project IDs s635 and s796. Here, we took advantage of the Piz Daint
cluster, which is a hybrid Cray XC40/XC50 system; in particular we employed the
multicore XC40 computing nodes, each with two Intel R© Xeon R© (E5-2695 v4 @ 2.10GHz,2
x 18 cores, 64/128 GB RAM).

1www.lifev.org
2www.cscs.ch

5

1 Numerical approximation of
parametrized PDEs

In this chapter we introduce the classes of parametrized problems we will deal with and
present a survey on the state-of-the-art methods for their solution. More specifically,
we first consider parametrized steady and unsteady linear, second-order PDEs; we set
the hypotheses which ensure their well-posedness and derive their algebraic counterpart
when numerical methods for spatial (and possibly time) discretization are employed. In
the second part, we discuss the role of preconditioning for the iterative solution of linear
systems arising from the numerical discretization of the aforementioned PDE problems.
We will shortly review some state-of-the-art techniques for the cases of interest; in
particular we refer to domain decomposition (DD) and multilevel methods for elliptic and
parabolic PDEs and block preconditioners for saddle-point problems. Preconditioning
techniques suitable for sequences of linear systems, such as Krylov subspace recycling
methods and approximate inverse preconditioners, will also be accounted for. In the last
part, we present the RB method for parametrized PDEs, addressing its construction and
discussing its main advantages and limitations.

1.1 Parametrized PDEs

In the following, we recall the variational formulation of steady and unsteady linear
second-order parametrized problems, their finite element approximation and the algebraic
structure of the resulting parametrized FE systems.

1.1.1 Steady weakly coercive problems

Variational formulation

Let us consider a parameter space D ⊂ R
p, p ≥ 1, and denote by μ ∈ D a parameter

vector encoding physical and/or geometrical properties of the problem. Furthermore,
let us introduce an open and bounded domain Ω ⊂ R

d, d = 2, 3, and denote by ∂Ω

7

Chapter 1. Numerical approximation of parametrized PDEs

its boundary. Let us consider the Hilbert space X = X(Ω) and its dual space X ′ and
the scalar product (·, ·)X inducing the norm ‖ · ‖X . In this thesis we will consider in
general μ-dependent domains, that is Ω = Ω(μ), with the consequent dependence on μ of
X = X(Ω(μ)), however we omit it throughout the first chapter for the sake of notation.
We introduce the parameter-dependent bilinear form a(·, ·; μ) : X × X → R and the
linear functional f(·; μ) : X → R and consider the following parametrized variational
problem: for any μ ∈ D, find y(μ) = y(μ) ∈ X such that

a(y(μ), w; μ) = f(w; μ) ∀w ∈ X. (1.1)

We further assume that for any μ ∈ D, a(·, ·; μ) is a continuous over X × X and f(·; μ)
continuous over X, that is, for any μ ∈ D, there exist two positive μ-dependent factors
γ1(μ) and γ2(μ) such that∣∣a(y, w; μ)

∣∣ ≤ γ1(μ)
∥∥y

∥∥
X

∥∥w
∥∥

X

∣∣f(w; μ)
∣∣ ≤ γ2(μ)

∥∥w
∥∥

X
, ∀y, w ∈ X, (1.2)

Moreover we assume the bilinear form a(·, ·; μ) to be weakly coercive (or inf-sup stable),
that is, for any μ ∈ D there exists a positive factor β(μ) such that

inf
y∈X

sup
w∈X

a(y, w; μ)∥∥v
∥∥

X

∥∥w
∥∥

X

≥ β(μ). (1.3)

Under these hypotheses the Nec̆as theorem guarantees the well-posedness of problem
(1.1), see [Necas, 1967, Boffi et al., 2013]. A special case is the one of strongly coercive
problems, for which there exists α(μ) > 0 such that

a(y, y; μ) ≥ α(μ)‖y‖2
X ∀y ∈ X. (1.4)

When such assumption is met, the Lax-Milgram lemma guarantees the existence and
uniqueness of the solution of the variational problem for any μ ∈ D (see e.g. [Salsa,
2016, Quarteroni and Valli, 2008]).

Finite element discretization

Solving problem (1.1) calls into play suitable numerical approximation techniques, here
called high fidelity (or full order) approximations, providing a discretized solution which is
close to the exact solution up to a (controllable) discretization error. Noteworthy examples
are the finite element (FE) method [Ciarlet, 2002, Brenner and Scott, 2007, Quarteroni,
2014], spectral methods [Canuto et al., 2012] or the finite volume method [LeVeque,
2002, Wesseling, 2009]. All these methods are built upon the use of a finite dimensional
space Xh ⊂ X, with dim(Xh) = Nh, and require to find an approximate solution yh(μ)

8

1.1. Parametrized PDEs

to (1.1) by solving the following problem: given μ ∈ D, find yh(μ) ∈ Xh such that

a(yh(μ), wh; μ) = f(wh; μ) ∀wh ∈ Xh. (1.5)

If for any μ ∈ D, the bilinear form a(·, ·; μ) and the linear functional f(·; μ) are continuous
on Xh × Xh and Xh, respectively, and a(·, ·; μ) satisfies the inf-sup condition on Xh × Xh,
that is, there exist βmin

h > 0 such that

βh(μ) = inf
y∈Xh

sup
w∈Xh

a(y, w; μ)∥∥y
∥∥

Xh

∥∥w
∥∥

Xh

≥ βmin
h , (1.6)

then the well-posedness of problem (1.5) is guaranteed by the Babus̆ka theorem (see
[Babuška, 1971]).

Even if the methods proposed in this thesis are applicable to any discretization method
which relies on Galerkin projection, we will specifically consider the FE case, for which
problem (1.5) is equivalent to the solution of the linear system

A(μ)y(μ) = f(μ), (1.7)

where y(μ) ∈ R
Nh is the vector representations of the solution yh(μ) ∈ Xh over a

Lagrangian basis
{
φx

i

}Nh

i=1 of Xh, that is Xh = span
{
φx

i , i = 1, . . . , Nh

}
. Indeed, given

a set of nodes
{
�xi

}Nh

i=1 ⊂ Ω, we have that, for any vh ∈ Xh, vh(�xi) = vi, i = 1, . . . , Nh.
Similarly, we have that for the stiffness matrix A(μ) ∈ R

Nh×Nh and the right hand side
vector f(μ) ∈ R

Nh

(
A(μ)

)
ij

= a(φx
j , φx

i ; μ)
(
f(μ)

)
i

= f(φx
i ; μ), ∀i, j = 1, . . . , Nh. (1.8)

We also introduce the matrix Xh ∈ R
Nh×Nh , such that

(
Xh

)
ij

= (φx
j , φx

i)X , ∀i, j = 1, . . . , Nh; (1.9)

Xh is the FE matrix encoding at the FE level the scalar product (·, ·)X . We then define
the scalar product on vectors (x, y)Xh

= (Xhx, y)2, x, y ∈ R
Nh and the associated

norm ‖x‖2
Xh

= (x, x)Xh
. Two classes of problem under the form (1.1) will be discussed

in details in this thesis: elliptic advection-diffusion equation in Chapter 2 and linear
saddle-point PDEs in Chapter 3.

Second order advection-diffusion equations describe a wide range of physical processes,
in particular we consider the following parametrized advection-diffusion problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∇ · (K(μ)∇u(μ)) +�b(μ) · ∇u(μ) = f(μ) in Ω
u(μ) = g(μ) on ΓD

K(μ)∇u(μ) · �n = h(μ) on ΓN .

(1.10)

9

Chapter 1. Numerical approximation of parametrized PDEs

Equation (1.10) models the concentration u(μ) of a solute in the domain Ω, transported
by the advection field �b(μ) and subject to molecular diffusion processes or in the case
�b(μ) = �0 the temperature of a body Ω heated by a source f(μ). In these problems, the
parameter μ can represent, e.g., the intensity and the spatial location of the source f(μ),
the diffusion tensor K describing possible anisotropic materials, or the direction and the
magnitude of the advection field, in the case �b(μ) �= �0. Obviously, μ determines the
nature of the solution of (1.10). We assume the diffusion coefficient K(μ) ∈ R

d×d to be
positive definite and the advection field �b(μ) ∈ R

d to be such that ∇ ·�b(μ) = 0 for any
μ ∈ D. Furthermore, we introduce the Hilbert space

X = H1
ΓD

(Ω) =
{

v ∈ H1(Ω) : v
∣∣
ΓD

= 0
}

,

and a lifting function Rg ∈ H1(Ω) such that Rg(μ)
∣∣
ΓD

= g(μ). Then, the variational
formulation of problem (1.10) is cast under the form (1.1) where for any u, v ∈ X we
define the bilinear form

a(u, v; μ) =
∫

Ω
K(μ)∇u · ∇v dΩ +

∫
Ω

(�b(μ) · ∇u)v dΩ,

and the linear form

f(v; μ) =
∫

Ω
f(μ)v dΩ +

∫
ΓN

h(μ)v dΓN − a(Rg(μ), v; μ).

We will assume that f(μ), g(μ) and h(μ) are chosen such that, together with the
assumptions on K(μ) and �b(μ), the continuity and the coercivity of a(·, ·; μ) and the
continuity of f(·; μ) are verified, leading to a strongly coercive problem. The corresponding
FE discretization automatically fulfills the coercivity of the bilinear form a(·, ·; μ) over
Xh ×Xh and hence its well-posedness is verified, yielding, at algebraic level, a nonsingular
linear system (1.7).

Saddle-point problems are a special case of weakly coercive problems which are en-
countered when considering the constrained minimization of a functional over a Hilbert
space, for instance when dealing with mixed formulation of elliptic PDEs (e.g. incom-
pressible linear elasticity), the Stokes equations or optimal control for PDEs. More
specifically, given two Hilbert spaces V, Q, the bilinear forms d(·, ·; μ) : V × V → R,
b(·, ·; μ) : V × Q → R and the linear functionals f1(·; μ) : V → R, f2(·; μ) : Q → R, we
consider the saddle-point problem: find u(μ) ∈ V and p(μ) ∈ Q such that⎧⎨⎩d(u(μ), v; μ) + b(v, p(μ); μ) = f1(v; μ) ∀v ∈ V

b(u(μ), q; μ) = f2(q; μ) ∀q ∈ Q.
(1.11)

Problem (1.11) can be analyzed in the framework of weakly coercive problems by
considering X = V × Q, y(μ) = (u(μ), p(μ)) ∈ X and, for any (u, p), (v, q) ∈ V × Q, by

10

1.1. Parametrized PDEs

defining the forms

a((u, p), (v, q); μ) = d(u, v; μ) + b(v, p; μ) + b(u, q; μ) (1.12)
f((v, q); μ) = f1(v; μ) + f2(q; μ),

see [Brezzi, 1974, Boffi et al., 2013, Xu and Zikatanov, 2003] for further details. When
a saddle-point problem as (1.11) is discretized through the FE method, the resulting
stiffness matrix A(μ) has the following block structure

A(μ) =
[
A1,1(μ) AT

2,1(μ)
A2,1(μ) O

]
, (1.13)

with A1,1(μ) ∈ R
N1

h×N1
h symmetric and positive definite and A2,1(μ) ∈ R

N2
h×N1

h ; the
dimensions N1

h and N2
h are such that Nh = N1

h + N2
h . The matrix appearing in (1.13) is

a special case of matrices showing a more general block structure,

A(μ) =
[
A1,1(μ) A1,2(μ)
A2,1(μ) −A2,2(μ)

]
, (1.14)

where A1,1(μ) is positive definite and A2,1(μ) is as in (1.13), A1,2(μ) ∈ R
N1

h×N2
h and

A2,2 ∈ R
N2

h×N2
h is positive semidefinite. Saddle-point problems are encountered in many

engineering fields, for this reason the preconditioning of saddle-point systems will be
specifically addressed in the next section. By assuming that a couple of FE spaces
satisfying the inf-sup condition (1.6) is employed, A(μ) is proven to be an indefinite
nonsingular matrix. For an in-depth discussion of saddle-point problems, we refer, e.g.,
to [Boffi et al., 2013, Brezzi, 1974, Brezzi and Bathe, 1990, Benzi et al., 2005].

1.1.2 Unsteady problems

Parabolic PDEs

Given a time interval (0, T), T > 0, we consider the following evolutionary problem: for
any μ ∈ D, find y(μ) = y(t; μ) ∈ X such that for any t ∈ (0, T)⎧⎪⎨⎪⎩

(∂y(μ)
∂t

, w
)

L2(Ω)
+ a(y(μ), w; μ) = f(w; μ) ∀w ∈ X

y(0; μ) = y0(μ) in Ω,
(1.15)

where y0(μ) ∈ L2(Ω) is the assigned initial datum. We consider forms a(·, ·; μ) and
f(·; μ) verifying the same hypotheses of continuity and coercivity as in (1.1), yielding
the well-posedness of (1.15) (see e.g. [Quarteroni and Valli, 2008, Quarteroni, 2014]).

Similarly to the steady case, the FE method is employed to discretize problem (1.15).
This is carried out by introducing a finite dimensional space Xh ⊂ X and by considering

11

Chapter 1. Numerical approximation of parametrized PDEs

the following finite dimensional problem: for any μ ∈ D, find yh(μ) = yh(t; μ) ∈ Xh such
that for any t ∈ (0, T)⎧⎪⎨⎪⎩

(∂yh(μ)
∂t

, wh

)
L2(Ω)

+ a(yh(μ), w; μ) = f(t, wh; μ) ∀wh ∈ Xh

yh(0; μ) = yh0(μ) in Ω,
(1.16)

where yh0(μ) is obtained as L2-projection of y0(μ) over Xh. The algebraic representation
of problem (1.16) results in the following dynamical system⎧⎪⎨⎪⎩M(μ)

dy(μ)
dt

+ A(μ)y(μ) = f(t; μ), t ∈ (0, T)

y(0; μ) = y0(μ),
(1.17)

where the stiffness matrix A(μ) ∈ R
Nh×Nh and the FE vector f(t; μ) ∈ R

Nh are defined
as in (1.8) and y0(μ) ∈ R

Nh is the FE vector representation of yh0(μ). Similarly, the
mass matrix M(μ) ∈ R

Nh×Nh is such that

(
M(μ)

)
ij

=
(
φx

j , φx
i

)
L2(Ω) i, j = 1, . . . , Nh. (1.18)

Problem (1.17) is then discretized in time by introducing a partition of the time interval
[0,T] into Nt ∈ N+ subintervals of size Δt = T/Nt, such that tn = nΔt, n = 0, . . . , Nt

and employing a time-discretization scheme to obtain a sequence (in time) of linear
systems to be solved for each parameter μ considered.

We will employ the backward differentiation formula (BDF) of order 1 or 2 for unsteady
problems in Chapter 2 and 4. In both cases, yn(μ) denotes the approximation of y(μ)
at time tn. BDF methods collect a family of implicit linear multistep schemes, for which
the value of the time derivative at tn+1 is approximated by the value at tn+1 of the
derivative of the Lagrange polynomial which interpolates the numerical solution at the
previous times tn+1, tn, . . . , tn−σ1+1: σ1 denotes the BDF order, see [Ascher and Petzold,
1998, Brenan et al., 1995, Quarteroni et al., 2007]. We can generally represent the BDF
scheme of order σ1 as

dy(μ)
dt

≈ α1yn+1(μ) − yn,σ1(μ)
Δt

; (1.19)

in the numerical examples presented, we will limit ourselves to the case σ1 = {1, 2}, for
which

yn,σ1(μ) =

⎧⎨⎩yn(μ), n ≥ 0 and σ1 = 1

2yn(μ) − 1
2

yn−1(μ), n ≥ 1 and σ1 = 2
(1.20)

and α1 = 1, 3/2 for σ1 = 1 or σ1 = 2, respectively. When considering a new parameter

12

1.2. Review on solution strategies for parametrized FE systems

μ, the following sequence of linear systems must be solved for any n = 0, . . . , Nt − 1

M(μ)
α1yn+1(μ) − yn,σ1(μ)

Δt
+ A(μ)yn+1(μ) = fn+1(μ), (1.21)

or, equivalently,(
α1
Δt

M(μ) + A(μ)
)

yn+1(μ) = fn+1(μ) +
1

Δt
M(μ)yn,σ1(μ), (1.22)

with y0 = y0. We highlight that BDF1 corresponds to the well-known backward Euler
scheme.

In this thesis, the unsteady parametrized Navier-Stokes equations, which describe the
dynamics of a fluid in a domain Ω, are considered. Their (differential and weak)
formulation and FE discretization are specifically addressed in Chapter 4; however, here
we limit ourselves to comment the fact that when discretizing such a problem with the
FE method in space and BDF in time, a nonlinear system similar to (1.21) is obtained,
where A(μ) is a nonlinear saddle-point matrix showing the same block structure of the
matrix in (1.13).

1.2 Review on solution strategies for parametrized FE sys-
tems

As seen in the previous section, when dealing with the numerical approximation of PDEs,
any discretization method leads to a (sequence of) linear system as those appearing in
(1.7) or (1.21). This calls for the use of an efficient solver, especially when dealing with
large scale problems. In this section we recall some state-of-the-art techniques. Although
specifically referring to the steady problem (1.7), the great majority of the methods and
ideas presented is easily extendable to the time dependent case by replacing A(μ) with
the matrix at the left hand side of (1.21). In the next paragraphs, we will also omit the
dependence on μ for ease of notation.

Parallel direct methods are based on suitable modifications of LU and Cholesky fac-
torizations. They are very efficient on 2D discretizations, however, when dealing with
large scale 3D FE discretizations, their scalability performances worsen, making less
convenient their application. An alternative approach consists in using Krylov iterative
solvers, see [Saad, 2003, Greenbaum, 1997, Van der Vorst, 2003] for a full description
of these techniques. Given the initial guess y(0) for solving system (1.7), with residual
r(0) = f − Ay(0), the k-th iterate y(k) satisfies

y(k) ∈ y(0) + Kk(A, r(0)), (1.23)

13

Chapter 1. Numerical approximation of parametrized PDEs

where Kk(A, r(0)) denotes the well-known Krylov subspace of dimension k, such that

Kk(A, r(0)) = span
{

r(0), Ar(0), . . . , Ak−1r(0)
}

. (1.24)

The k-th solution is obtained by minimizing the norm of the residual over the Krylov
subspace Kk(A, r(0)), and the minimization process characterizes the method. Relevant
examples are the full orthogonalization method (FOM) [Saad, 1981], the minimal resid-
ual (MINRES) method for nonsingular symmetric (and possibly indefinite) matrices
[Paige and Saunders, 1975], the conjugate gradient (CG) method for symmetric positive
definite (SPD) matrices [Hestenes and Stiefel, 1952] and the generalized minimal residual
(GMRES) method for general nonsingular matrices [Saad and Schultz, 1986]. The cost
per iteration of these methods is comparable to a matrix-vector multiplication and
their convergence rate highly depends on the spectral properties of the system, that
is the relative position of the eigenvalues of the matrix on the complex plane. In the
case of symmetric matrices, a relevant role is played by the condition number of the
stiffness matrix, which in an elliptic PDE problem discretized with the FE method on
a computational grid with characteristic step size h is O(1/h2). In order to maintain
optimal rate of convergence with computational grids featuring small values of h, these
methods need to be suitably preconditioned.

1.2.1 A short survey on classical preconditioning techniques

Preconditioning a linear system means to turn it into another (equivalent) system with
more favorable spectral properties. Ideally, the preconditioned matrix has a (much)
smaller condition number than the original one. Hereon, P ∈ R

Nh×Nh will denote a
generic (nonsingular) preconditioner, and instead of solving (1.7), we are called to solve
the corresponding preconditioned system

P−1Ay = P−1f . (1.25)

We refer to (1.25) as the left preconditioned system, since a right or symmetric precondi-
tioning approach are also viable alternatives [Elman et al., 2005, Wathen, 2015]. In the
former case we have that (1.7) is substituted by

AP−1w = f , y = P−1w, (1.26)

whereas in the latter two nonsingular preconditioners PL ∈ R
Nh×Nh and PR ∈ R

Nh×Nh

are introduced and one is called to solve

P−1
L AP−1

R w = P−1
L f , y = P−1

R w.

In this thesis we will mostly employ a right preconditioning approach. Left preconditioners
will be used only occasionally.

14

1.2. Review on solution strategies for parametrized FE systems

Consider, for instance, the preconditioned CG (PCG) method. If y(0) ∈ R
Nh is the given

initial guess and A and P are SPD matrices, the error at the k-th iteration is such that

‖y − y(k)‖A
‖y − y(0)‖A

≤ 2
(√

K2(P−1A) − 1√
K2(P−1A) + 1

)k

, (1.27)

where K2 is the condition number with respect to the Euclidean norm. Clearly from
(1.27), the smaller the condition number K2(P−1A), the faster the convergence rate of
PCG, and in practice a good (SPD) preconditioner P for a SPD matrix should have two
properties:

• it minimizes as much as possible K2(P−1A);

• the application of P−1 is very cheap.

Suitably adapted, an equivalent of these statements also holds for nonsymmetric and/or
indefinite problems: a preconditioner should turn the linear system into a new one with
improved spectral properties and the the application of P−1 to a FE vector should feature
a low computational cost.

Classical examples of preconditioning techniques hugely employed in large scale simu-
lations are the multilevel (or multigrid) method and the domain decomposition (DD)
method. As they will be employed throughout this thesis, we recall in the following
paragraphs the basic ideas of these classes of preconditioners.

Domain decomposition preconditioners

DD methods rely on a partition of the domain Ω into M overlapping or non-overlapping
subdomains; a local problem is then associated to each subdomain [Quarteroni and Valli,
1999, Toselli and Widlund, 2005, Smith et al., 1996]. The problem can be partitioned
through specific algorithms which divide the computational domain, or a division could
be a feature of the problem itself, e.g. when dealing with multiphysics problems. Then, at
every iteration of the Krylov method, each local problem is solved exactly or approximately,
using direct solvers, incomplete factorizations or relaxation methods depending on the
chosen algorithm. The classical Schwarz method has been successfully employed for
elliptic and saddle-point problems [Klawonn and Pavarino, 1998, Klawonn and Pavarino,
2000, Toselli and Widlund, 2005]. It exploits an overlap among the subdomains to ensure
communication among the subdomains, and requires to solve exactly M local problems
at every iteration. Given a domain Ω and a partition

{
Ωi

}M

i=1 such that Ω = ∪M
i=1Ωi, the

additive 1-level form of the additive Schwarz (AS) preconditioner can be expressed as

P−1
AS =

M∑
i=1

RiA−1
i (μ)RT

i (1.28)

15

Chapter 1. Numerical approximation of parametrized PDEs

where Ri is the restriction over the subdomain Ωi and A−1
i (μ) is the local inverse matrix.

For elliptic problems, the condition number of the preconditioned matrix is such that

K2(P−1
ASA) ≤ C1

1
HδAS

(1.29)

where δAS is the characteristic size of the overlap between two subdomains and H denotes
the characteristic size of the partition, see [Toselli and Widlund, 2005]. We highlight
that the condition number of the preconditioned matrix increases by decreasing the size
of the subdomains, i.e. the AS preconditioner is not scalable, meaning that if each local
problem is associated to a core in a parallel computing environment, the number of
iterations needed to reach a fixed tolerance grows with the number of cores. A remedy to
overcome this fact consists in adding a coarse grid level, whose characteristic size is H,
that allows to enhance the communication among the cores. In this case, we can define
the 2-level AS preconditioner as

P−1
CAS = P−1

AS + R0A−1
0 RT

0 , (1.30)

for which

K2(P−1
CASA) ≤ C2

H

δAS
; (1.31)

here R0 is the restriction matrix over the coarse grid and A−1
0 is the inverse of the

coarse problem matrix. This latter option thus ensures the scalability of the resulting
preconditioner. In a parameter-dependent context, the preconditioners P−1

AS and P−1
CAS

(and specifically the local matrices Ai, i = 0, . . . , M, and their inverse matrices), need to
be recomputed for each new instance of μ; moreover, the coefficients C1, C2 appearing
in (1.29) and (1.31) will also depend on μ, possibly yielding a nonuniform performance
across the parameter space D.

Another well-known branch of DD techniques is based on substructuring methods, which
includes the 1-level and 2-level finite element tearing and interconnect (FETI) method
and the balancing domain decomposition by constraints (BDDC) method, which have
been widely used in structural and fluid mechanics problems. The former has been firstly
introduced in the early 90’s in [Farhat and Roux, 1991], and later improved in its FETI-
DP variant, where DP stands for Dual-Primal, see [Farhat et al., 2001]. These methods
rely on a non-connected partition of the domain with corresponding local problems, whose
compatibility and communication at the interfaces are enforced by the introduction of
suitable Lagrange multipliers. FETI preconditioners have been developed for the iterative
solution of second-order solid mechanics and fourth-order beam problems, but they
have also been applied to fluid dynamics problems, e.g. in [Li, 2002, Li, 2005]. On the
other hand, the BDDC method has been introduced in [Dohrmann, 2003, Mandel and
Dohrmann, 2003] for second- and fourth-order structural mechanics problems, and later
applied to relevant classes of problems such as the (Navier-)Stokes equations and Maxwell

16

1.2. Review on solution strategies for parametrized FE systems

equations for electromagnetic fields. It employs constraints associated with disjoint sets
of nodes on subdomain boundaries and a coarse problem to ensure the independence
of the condition number from the number of subdomains. In demanding application,
the size of the coarse problem represents a bottleneck in terms of computational time,
therefore this technique has been generalized to a multilevel version that recursively
applies the BDDC algorithm, see e.g. [Mandel and Dohrmann, 2007].

Multilevel preconditioners

Multilevel (or multigrid) methods have been firstly introduced by [Brandt, 1977], and
since then they have been on constant development; we refer to, e.g. [Hackbusch, 2013,
Trottenberg et al., 2000, Briggs et al., 2000, Elman et al., 2005, Bramble et al., 1990]
for an extensive outlook of these methods and limit ourselves in recalling their basic
principles. The core idea of these methods lies in iteratively solving the same PDE
problem over a sequence of meshes (or levels); each solution is then used to damp the
high frequencies of the error introduced at its corresponding mesh level. This operation
is called smoothing, and carried out by applying (one or multiple times per grid) a
smoothing operator, which is often chosen as a simple Gauss-Seidel or Jacobi operator.
At the coarse level, the final linear system features a small dimension, consequently it
is often convenient to use a direct solver to obtain its solution; this latter is then used
as coarse correction. Restriction and prolongation operators are used to communicate
the information from one grid to another. Starting from this concept a huge variety of
multilevel methods has been developed; in particular, we mention the well-known V- and
W- cycle multigrid, whose examples are shown in Figure 1.1.

All the multilevel methods discussed so far rely on the fact that the linear system comes
from the discretization of a PDE over a computational domain, or at least a geometrical
knowledge of the problem is available; this is why they are often referred to as geometric
multigrid methods. However, the same concept can be extended to those cases when
one is just given a matrix (instead of the problem which leads to that matrix), giving
birth to algebraic multigrid methods. These techniques try to mimic the construction
of the smoothing and coarse correction operators of the geometric case only by relying
on the knowledge of the matrix coefficient. See e.g. [Stüben, 2001, Xu and Zikatanov,
2017, Saad, 2003] for a description of algebraic multigrid methods.

Multigrid methods have been firstly introduced as solvers, however the multigrid operator
provides a spectrally equivalent preconditioner for the matrix, such that the condition
number of the preconditioned stiffness matrix is independent of the characteristic size h,
under suitable assumptions on the smoothing, prolongation and restriction operators, see
e.g. [Elman et al., 2005]. Nowadays, they can be considered among the state-of-the-art
preconditioning techniques for problems featuring a symmetric positive definite matrix.
They can be straightforwardly applied also to non-symmetric ones, as advection-diffusion

17

Chapter 1. Numerical approximation of parametrized PDEs

Figure 1.1 – Examples of multigrid cycles, image taken from [Saad, 2003]. The grid
cycles are characterized by lev coarsening steps and γ iterations of the classic 2-level
multigrid cycle.

equation, however for the latter case the smoothing and coarse operations must be wisely
selected in order to avoid any reintroduction of high frequencies by the coarse operator,
e.g. by smoothing in a preferred direction provided by the convective term [Ramage,
1999, Yavneh et al., 1998]. Moreover, as already mentioned, these methods rely on
the construction of restriction and prolongation operators, whose assembling can be
demanding, especially in the case an algebraic multigrid method is employed. This issue
is even emphasized when dealing with parametrized problems, since the restriction and
prolongation operators are based on the relative magnitude of the matrix coefficients,
which can largely change depending on the parameter range of μ.

Preconditioners for saddle-point problems

Depending on the problem at hand, the specific structure of the system matrix A(μ) can
be exploited to develop an efficient preconditioner; this is the case of saddle-point (or
mixed variational) problems. In the following we limit ourselves in reporting the basic
ingredients to get this thesis self-contained, we point to [Benzi et al., 2005, Benzi and
Wathen, 2008, Axelsson and Neytcheva, 2003, Zulehner, 2002] for a review on numerical
methods for saddle-point systems.

A linear system involving a matrix of the form (1.14) occurs in many contexts; among
the others, we recall the Stokes equations, optimal control for elliptic and incompressible
fluid flows problems and incompressible elasticity just to mention some relevant cases.

18

1.2. Review on solution strategies for parametrized FE systems

As a result, the numerical solution of such linear system has been a prominent research
subject in the last decades, and several techniques involving domain decomposition and
(algebraic) multilevel methods have been proposed, see e.g. [Elman et al., 2005, Ghia
et al., 1982, Turek, 1999, Wesseling and Oosterlee, 2001, Wittum, 1989] and references
therein. On the other hand, block preconditioners are designed to explicitly exploit
the block structure of A(μ), providing optimal solvers for many types of saddle-point
systems. Their main drawback is however that they are often very specialized, that is, by
changing the problem (e.g. from steady to unsteady Stokes equations) the preconditioner
should be changed. Starting from (1.13) the following factorization of the saddle-point
matrix holds:

A = LDU (1.32)

where

L =
[

IN1
h

0
A2,1A−1

1,1 IN2
h

]
, U =

[
IN1

h
A−1

1,1AT
2,1

0 IN2
h

]
D =

[
A1,1 0

0 S

]
. (1.33)

The matrix

S = −A2,1A−1
1,1AT

2,1 (1.34)

is the Schur complement matrix and plays an essential role in designing an efficient
preconditioner for A. Block preconditioners are indeed devised by considering factoriza-
tion (1.32) where A1,1 and S are approximated by their (ideally spectrally equivalent)
surrogates Ã1,1 and S̃, respectively, since, as a matter of fact, the cost of using directly
(1.32) would be equivalent to invert the matrix A. Hence, the following factorization is
employed in practice

A ≈ L̃D̃Ũ , (1.35)

where the surrogate operators Ã1,1, S̃, such that

Ã−1
1,1 ≈ A−1

1,1, S̃−1 ≈ S−1 (1.36)

are used in (1.33) at the places of A1,1 and S

L̃ =
[

IN1
h

0
A2,1Ã−1

1,1 IN2
h

]
, Ũ =

[
IN1

h
Ã−1

1,1AT
2,1

0 IN2
h

]
D̃ =

[
Ã1,1 0

0 S̃

]
. (1.37)

The matrices Ã1,1 and S̃ are commonly chosen either as preconditioners of A1,1 and S
or consist of inner iterations, where the linear system featuring at the left hand side the
matrix A1,1 (resp. S̃) is solved up to a certain tolerance. Notice that in the latter case,
one should rely on a flexible iterative algorithm, which allows to change preconditioner

19

Chapter 1. Numerical approximation of parametrized PDEs

from one iteration to another.

The block-preconditioning strategy has been particularly exploited in the field of fluid
dynamics and optimal control problems. Block diagonal preconditioners are obtained by
setting

P =
[
Ã1,1 0

0 −S̃

]
,

see [Elman and Silvester, 1996, De Sturler and Liesen, 2005, Wathen and Silvester, 1993].
Instead, block-triangular preconditioners can be constructed by considering the product

P = L̃D̃ or P = D̃Ũ ,

see [Silvester and Wathen, 1994]. Relevant examples are the least-squares commutator
(LSC) preconditioner [Elman et al., 2006, May and Moresi, 2008], the pressure-convection-
diffusion preconditioner [Kay et al., 2002, Silvester et al., 2001] and the pressure mass
matrix (PMM) preconditioner [Rehman et al., 2011]. Finally, SIMPLE type precon-
ditioners are obtained with the factorization (1.35), where A1,1 is substituted with
its diagonal when building the Schur complement and for the update of the velocity,
[Vuik et al., 2000, Elman et al., 2008, Little and Saad, 2003, Forti, 2016]; the SIMPLE
preconditioner will be discussed more in-depth in Chapter 4, where it is considered for
solving the unsteady NS equations. As a matter of fact, SIMPLE preconditioners are
particularly effective when dealing with problems diagonally dominant, as in the case of
unsteady problems with relative small timesteps. In Chapter 3 and 4 we will deal with
saddle-point problems arising in fluid dynamics, and we will take advantage of block-like
preconditioners to design our efficient iterative solvers.

1.2.2 Solution strategies for sequences of linear systems

All the solution methods described in previous sections are developed for a single linear
system, that is, they do not consider the case where a sequence of linear systems, possibly
related one to each other, is taken into account. However, the repeated solution of
parametric PDEs is a frequent issue when dealing, e.g., with sensitivity analysis, problems
involving random input data, PDE-constrained optimization. In all these cases, solving
the same problem for a huge number of parameters may become a critical bottleneck.
As a matter of fact, the CPU time required by the solution of (1.7), which depends on
Nh = dim(Xh), can be highly demanding even on modern parallel architectures, since
in some extreme cases, Nh can be of order O(10q), 6 ≤ q ≤ 9. This issue is emphasized
when dealing with time-dependent or non linear problems treated in an implicit fashion,
due to the time advancing scheme employed within the simulation, the steps of a Newton
method, or even both at the same time.

20

1.2. Review on solution strategies for parametrized FE systems

Taking advantage of storing repeated solutions to similar systems can enhance efficiency
in such a context. For instance, several Krylov-subspace recycling approaches have
been introduced to handle sequences of linear systems arising, e.g., from parametrized,
time-dependent and/or nonlinear PDEs, see [Saad, 1997, Simoncini and Szyld, 2007].
The strategy consists in augmenting the usual Krylov subspace with data retrieved from
previous cycles (in the case of restarted algorithms) or solves (in the case of problems
with both varying matrices and right hand sides). For instance, the first contributions
in this field made use of the whole Krylov subspaces of previous solutions of linear
systems, see e.g. [Farhat et al., 1994, Risler and Rey, 2000, Roux, 1995, Saad, 1987],
yielding however a severe computational and memory effort, especially when the problem
features a large dimension and a slow convergence. Consequently, research has focused
on truncation methods that select a limited number of (significant) linear combinations
of Krylov vectors. For the solution of a single linear system of equations, in [De Sturler,
1996, De Sturler, 1999] the authors propose optimal truncation strategies of the GCR
(generalized conjugate residual) method (GCRO), while in [Morgan, 2002, Chapman
and Saad, 1997, Erhel et al., 1996] deflation techniques to find an approximation of the
eigenvectors associated to the extremal eigenvalues are employed. See, e.g., [Eiermann
et al., 2000, Nabben and Vuik, 2006] for further details related to these techniques. These
methods have been extended to the case of a sequence of linear systems with varying
right hand sides in [Saad et al., 2000], where a deflated version of the CG algorithm
is presented, and in [Parks et al., 2006] where the GCRO method is combined with
deflated restarting for sequences of linear systems where both matrices and right hand
sides vary. Krylov subspace methods have been exploited in the context of ROM to deal
with sequences of single linear systems in [Benner and Feng, 2011] and in the iterative
rational Krylov algorithm (IRKA) for sequences of dual linear systems in [Ahuja et al.,
2012]. More recently, proper orthogonal decomposition (POD) has been used in the
context of solving a sequence of linear systems: in [Carlberg et al., 2016] POD-ROM
has been employed to truncate the augmented Krylov subspace and retain only the
high-energy modes. This technique, suited for linear systems with symmetric matrices,
allows to compute efficiently inexact (yet, very accurate) solutions. In [Cortes et al.,
2018], deflation vectors constructed through a POD-reduced set of snapshots are used to
accelerate the deflated PCG method and applied to porous media problems.

Concerning the preconditioning of parametrized linear systems, remarkable efforts have
been devoted to preconditioning strategies for shifted linear systems. At first, these
techniques compute a preconditioner for the unshifted high-fidelity matrix, and then they
suitably modify it for the shifted matrix. This has proven to be particularly helpful when
employing time-advancing schemes with adaptively chosen time steps, see [Bellavia et al.,
2011, Benzi and Bertaccini, 2003, Ferronato et al., 2012]. More recently, techniques to deal
with sequences of (not necessarily shifted) linear systems, which compute approximate
inverse (AINV) preconditioners by interpolation, have been developed in [Bertaccini and
Durastante, 2016]. Furthermore, in [Zahm and Nouy, 2016] a preconditioner for the

21

Chapter 1. Numerical approximation of parametrized PDEs

parametrized high-fidelity problem (1.7) which relies on an interpolation of the matrix
inverse based on a pre-computed basis of matrix inverses corresponding to selected values
of the parameter has been introduced. This latter method stores the basis of inverted
matrices as exact factorizations, thus yielding a huge amount of storage memory, and is
computationally efficient only for relatively small problems. Finally, in [Kressner and
Tobler, 2011], a low-rank tensor approximation of y(μ) has been exploited to present
low-rank tensor variants of short-recurrence Krylov subspace methods.

1.3 Review on RB methods for parametrized steady PDEs

We start with a brief overview of the RB method for parametrized PDEs, for both elliptic
and parabolic problems. Extensions to linear saddle-point problems will be presented in
Chapter 3, whereas in Chapter 4 we will consider unsteady (nonlinear) problems. For an
introduction to the RB method see, e.g., [Quarteroni et al., 2016a, Hesthaven et al., 2016];
here we limit ourselves to recall the construction of the RB approximation by means of
state reduction and system approximation. The former is carried out by a POD-ROM
strategy and guarantees that an accurate approximation to the FE solution is found;
the latter, by employing the (discrete) Empirical Interpolation Method (EIM) [Barrault
et al., 2004, Chaturantabut and Sorensen, 2010, Grepl et al., 2007, Maday et al., 2009],
ensures that the corresponding RB system can be assembled in an inexpensive way.

1.3.1 Building the RB approximation

The RB method relies on the idea that the μ-dependent solution of the Nh × Nh high-
fidelity problem (1.7) can be well approximated by a linear combination of N � Nh FE
solutions of (1.7) corresponding to (suitably chosen) parameter values. The computation
is usually based on an offline/online splitting. In the former phase, a reduced space (the
RB space)

VN = span{ξi, i = 1, . . . , N} ⊂ Xh, (1.38)

with dimension N , is built; algebraically VN is represented by the matrix V ∈ R
Nh×N ,

V = [ξ1| . . . |ξN], where
{
ξi
}N

i=1 are the FE vector representation of
{
ξi
}N

i=1. In the latter,
the high-fidelity problem (1.7) is replaced by a reduced problem of very small dimension
for any new instance of the parameter μ:

AN (μ)yN (μ) = fN (μ). (1.39)

Here yN (μ) ∈ R
N is the RB solution, AN (μ) ∈ R

N×N the RB matrix and fN (μ) ∈ R
N

the RB right hand side, respectively defined as

AN (μ) = (W(μ))T A(μ)V, fN (μ) = (W(μ))T fN (μ). (1.40)

22

1.3. Review on RB methods for parametrized steady PDEs

W(μ) ∈ R
Nh×N represents, from an algebraic viewpoint, a set of (possibly μ−depen-

dent) functions
{
wi(μ)

}N

i=1 such that a test space WN (μ) is obtained as WN (μ) =
span

{
wi(μ), i = 1, . . . , N

}
⊂ Xh. As matter of fact, problem (1.39) is obtained by

enforcing the projection of the FE residual evaluated at the RB solution VyN (μ) onto
W(μ) to vanish, that is by requiring

(W(μ))T
(
fN (μ) − A(μ)VyN (μ)

)
= 0, (1.41)

where the RB approximation is recovered as the linear combination of the columns of V,
that is y(μ) ≈ VyN (μ). Moreover, the error between the FE solution y(μ) and VyN (μ)
satisfies the following error estimate

∥∥y(μ) − VyN (μ)
∥∥

Xh
≤ 1

βh(μ)
∥∥f(μ) − A(μ)VyN (μ)

∥∥
X−1

h
,

where at the right hand side appear the X−1
h –norm of the FE residual and the stability

factor βh(μ) introduced in (1.6), computable as βh(μ) = σmin(X− 1
2

h A(μ)X− 1
2

h). Should
the high-fidelity solution y(μ) belong to the reduced space, that is y(μ) = VyN (μ), it
can be recovered as

A−1
h (μ)f(μ) = y(μ) = VyN (μ) = VA−1

N (μ)(W(μ))T f(μ) = QN (μ)f(μ).

We highlight that the matrix

QN (μ) = VA−1
N (μ)(W(μ))T (1.42)

represents a low-rank solver which mimics the effect of A−1(μ) on the RB subspace
spanned by the columns of V. This observation will be relevant in Chapter 2 when
building our MSRB preconditioner. Furthermore, we remark that problem (1.39) can
generally be solved inexpensively, usually with direct methods, since N � Nh.

To build the matrix V, both greedy algorithms [Prud’homme et al., 2002, Prud’homme
et al., 2002, Buffa et al., 2012, Hesthaven et al., 2014] or POD, [Berkooz et al., 1993,
Volkwein, 2013], can be used. With the latter, we start by computing ns high-fidelity
solutions

{
y(μi)

}ns

i=1 (called snapshots) corresponding to selected parameter values{
μi

}ns

i=1. POD then aims at compressing the snapshots data by finding the best N -
dimensional subspace, with N ≤ ns, that approximates the space Xns = span

{
y(μi), i =

1, . . . , ns
}
. This is pursued by performing a singular value decomposition of the snapshot

matrix S = [y(μ1), y(μ2), . . . , y(μns)], resulting in the factorization

S = UΣZT ,

where U ∈ R
Nh×Nh , Z ∈ R

ns×ns and Σ ∈ R
Nh×ns , containing the singular values

σ1 ≥ σ2 ≥ . . . ≥ σns ≥ 0 and such that Σii = σi, i = 1, . . . ns, Σij = 0, i �= j. Then,

23

Chapter 1. Numerical approximation of parametrized PDEs

the first N columns of the matrix U, form an orthonormal basis of a N -dimensional
subspace of R

Nh and V = U(:, 1 : N). Such a construction ensures that, among all
possible N -dimensional subspaces of Xns , VN is the best N -dimensional approximation
subspace, as it minimizes the projection error of the snapshots in the Euclidean norm.

This result can be stated in a general (and algebraic) form by considering any matrix-
induced norm and the SVD decomposition of X1/2

h S as follows.

Proposition 1.3.1. Let VN =
{
W ∈ R

Nh×N : WT XhW = IN

}
be the set of all

N-dimensional Xh-orthonormal bases. Then
ns∑

i=1
‖y(μi) − VVT Xhy(μi)‖2

Xh
= min

W∈VN

ns∑
i=1

‖y(μi) − WWT Xhy(μi)‖2
Xh

=
ns∑

i=N+1
σ2

i .

In other words, the POD method allows to compute the space of dimension N , that
minimizes the Xh-projection error of the snapshots in the Xh-norm. Typically, in the
RB method for second-order elliptic PDEs, Xh encodes the H1(Ω) scalar product on the
space Xh, that is, (Xh)ij = (φx

j , φx
i)H1(Ω), i, j = 1, . . . , Nh.

From a practical standpoint, POD is performed by solving an eigenvalue problem
associated to the correlation matrix C = ST XhS, whose eigenvalues directly provide
the singular values squared σ2

i , i = 1, . . . , ns. Through the eigenvectors wi, i = 1, . . . , ns

of C one can build a Xh-orthonormal basis
{
ξi
}ns

i=1 of the snapshots subspace Xns by
setting

ξi =
1
σi

Swi, i = 1, . . . , ns. (1.43)

Finally, the matrix V is built by selecting the first N basis functions ξ1, . . . , ξN . The
complete POD algorithm is reported in Algorithm 1. According to Proposition 1.3.1,
constructing the RB space with the first N eigenvectors yields a relative approximation

Algorithm 1 POD
1: procedure POD(S, X, εPOD)
2: form the correlation matrix Cns = ST XS
3: solve the eigenvalue problem Cnsψi = σ2

i ψi, i = 1, . . . , ns

4: set ξi = 1
σi

Sψi

5: define N as the minimum integer such that
∑N

i=1 σ2
i∑ns

i=1 σ2
i

> 1 − ε2
POD

6: define V = [ξ1| . . . |ξN]
7: end procedure

24

1.3. Review on RB methods for parametrized steady PDEs

accuracy on the snapshots equal to

δ2
RB =

ns∑
i=N+1

σ2
i

/ ns∑
i=1

σ2
i .

Then, if we aim at building a RB space relying on POD we can follow two approaches:

• POD(S, Xh, δRB): given a target accuracy δRB, we choose the first N = N(δRB)

columns of U as basis for the RB space VN , where N is such that
N∑

i=1
σ2

i

/ ns∑
i=1

σ2
i ≥

1 − δ2
RB;

• POD(S, Xh, N): given a fixed dimension N > 0, we select the first N vectors,
leading to an approximation accuracy on the snapshots of δRB = δRB(N).

Depending on the reducibility of the problem at hand, the relation between N and δRB

can significantly vary, ranging from a few (order of 10) to a hundreds or thousands
RB functions. We refer, e.g., to the test case in Section 2.4.1, where the number N of
RB functions to reach the same tolerance δRB changes significantly by modifying the
parameter space D. We refer to [Kunisch and Volkwein, 2002a, Rowley, 2006, Kerschen
et al., 2005, Quarteroni et al., 2016a] for further details and references about POD.

There are essentially two practical choices for W(μ): taking W(μ) = V for any μ leads
to a Galerkin-RB (G-RB) formulation particularly suited for coercive elliptic problems,
since the RB matrix automatically inherits the positive definiteness of A(μ). A G-RB
approximation does not directly lead to the well-posedness of RB saddle-point problems,
which can however be obtained with W(μ) = X−1

h A(μ)V. This choice corresponds to
a Least-Squares RB (LSRB) formulation; a more in-depth discussion is carried out in
Chapter 3, where an algebraic variant of the latter LSRB method is proposed for the
parametrized Stokes equations.

1.3.2 Assembling the RB problem: hyper-reduction techniques

A crucial assumption that allows to speed up the RB method is made by requiring that
Ah(μ) and f(μ) depend affinely on the parameter μ, i.e. that they can be expressed as

Ah(μ) =
Qa∑
q=1

Θq
a(μ)Aq

h, f(μ) =
Qf∑
q=1

Θq
f (μ)f q

h , (1.44)

where Θq
a : D → R, q = 1, . . . , Qa and Θq

f : D → R, q = 1, . . . , Qf are μ-dependent
functions, while the matrices Aq

h ∈ R
Nh×Nh and the vectors f q

h ∈ R
Nh are μ-independent.

25

Chapter 1. Numerical approximation of parametrized PDEs

If assumptions (1.44) are met, then the RB algebraic structures can be obtained as

AN (μ) =
Qa∑
q=1

Θq
a(μ)VT Aq

hV =
Qa∑
q=1

Θq
a(μ)Aq

N (1.45)

fN (μ) =
Qf∑
q=1

Θf
g (μ)VT f q =

Qf∑
q=1

Θq
f (μ)f q

N (1.46)

in the G-RB case, and as

AN (μ) =
Qa∑

q1,q2=1
Θq1

a (μ)Θq2
a (μ)VT (Aq1

h)T X−1
h Aq2

h V (1.47)

=
Qa∑

q1,q2=1
Θq1

a (μ)Θq2
a (μ)Aq1,q2

N

fN (μ) =
Qa∑

q1=1

Qf∑
q2=1

Θq1
a (μ)Θq

f (μ)VT (Aq1
h)T X−1

h f q2 (1.48)

=
Qa∑

q1=1

Qf∑
q2=1

Θq1
a (μ)Θq2

f (μ)f q1,q2
N

in the LSRB case. The matrices Aq
N ∈ R

N×N , q = 1, . . . , Qa and Aq1,q2
N ∈ R

N×N , q1, q2 =
1, . . . , Qa and the vectors f q

N ∈ R
N , q = 1, . . . , Qf , and f q1,q2

N ∈ R
N , q1 = 1, . . . , Qf ,

q2 = 1, . . . , Qa can be precomputed and stored during the offline phase. During the
online phase, only the sums in (1.45)-(1.46) must be calculated to assemble the RB
problem. Notice that the construction of AN (μ) and fN (μ) in (1.45)-(1.46) depends
linearly on the number of affine terms Qa and Qf , while it is quadratic in (1.47)-(1.48).

When building a RB approximation, it is essential to assume that the affine dependence
on μ of the FE arrays is satisfied, that is (1.44) are verified, in order to achieve a full
independence of the assembling of the RB arrays from the size Nh of the high-fidelity
problem. However, in almost every problem of applied interest, the dependence of the
PDE on the parameter μ is generally nonaffine, therefore an affine representation of
A(μ) and f(μ) cannot be computed. Several methods have been designed to overcome
this bottleneck and compute an approximated affine decomposition of the FE matrix
and right hand side. If the assumptions (1.44) do not hold, such affine parametric
dependence can indeed be recovered by using the empirical interpolation method (EIM)
and its discrete variants discrete EIM (DEIM) and matrix DEIM (MDEIM), see [Barrault
et al., 2004, Chaturantabut and Sorensen, 2010, Negri et al., 2015a], which lead to the
so called hyper-reduced problem, where both state reduction and system reduction are
employed. In the following we go through these approximation techniques, since they
will be extensively employed in this thesis.

26

1.3. Review on RB methods for parametrized steady PDEs

(Discrete) Empirical Interpolation Method

The first approach towards this goal has been empirical interpolation method (EIM)
proposed in nonaffine problems [Barrault et al., 2004]; it has been further applied to
general nonaffine and nonlinear problems in [Grepl et al., 2007], in [Manzoni et al., 2012b]
for shape optimization and [Drohmann et al., 2012a] for operator interpolation. Despite its
main application refers to RB methods, EIM represents a general procedure for Lagrangian
interpolation of sets with small Kolmogorov n-width, hierarchically and adaptively
constructing a set basis functions tailored to the problem at hand, see [Maday et al.,
2009]. Given a nonlinear function f(τ) : τ ∈ T ⊂ R

p → f(τ), EIM builds an approximated
affine representation of f(τ) in a low-dimensional subspace spanned by M basis functions
which are encoded in a (τ−independent) matrix Φ = [φ1, . . . , φM] ∈ R

Nh×M . Once Φ
has been constructed, the approximation vector fM (τ) is such that

f(τ) ≈ fM (τ) = Φθ(τ), (1.49)

where θ(τ) ∈ R
M is a τ−dependent vector containing suitable interpolation coefficients.

Matrix Φ is constructed by selecting a set of snapshots
{
f(τi)

}ns

i=1 corresponding to the
parameter values τi, i = 1, . . . , ns. Then, a greedy algorithm is employed to build Φ:
the function which is worst approximated by the current basis is suitably scaled and
shifted to build the new basis function. Given a new parameter τ , an interpolation
problem is solved to compute the coefficients θ(τ). More specifically, given the set
I ⊂ {1, . . . , Nh}, |I| = M , of interpolating indexes iteratively chosen by the greedy
procedure, θ(τ) corresponding to f(τ) is computed by solving the following problem

ΦIθ(τ) = fI(τ), (1.50)

where ΦI ∈ R
M×M and fI(τ) ∈ R

M correspond to the restrictions of Φ and f(τ) to the
rows identified by the indeces I. As a matter of fact, we have

fM (τ) = ΦΦ−1
I fI(τ).

More recently a "discrete" variant of EIM, the Discrete Empirical Interpolation Method
(DEIM), has been proposed in [Chaturantabut and Sorensen, 2010] for the approximation
of nonlinear and nonaffine terms. The main difference between the two algorithms lies in
the way the basis Φ is constructed: DEIM computes at first a set of training snapshots{
f(τi)

}ns

i=1 and then builds Φ with POD, so that an orthonormal basis is constructed at
once. On the other hand, EIM employs a greedy procedure which adaptively builds the
basis Φ, as explained above. The choice of the interpolating points and the interpolation
problem are the same in the two algorithms, as explained above.

In this work we will rely on DEIM to build an approximated affine decomposition of
nonaffine vectors, hence we report the corresponding procedure in Algorithm 2, where a
basis is constructed by providing a set of training parameters

{
τi
}ns

i=1 and a tolerance

27

Chapter 1. Numerical approximation of parametrized PDEs

Algorithm 2 Discrete Empirical Interpolation Method

1: procedure DEIM(
{
τi
}ns

i=1, δDEIM)
2: Compute snapshots

{
f(τi)

}ns

i=1 and set Λ = [f(τ1), . . . , f(τns)]
3: [φ1, . . . , φM] = POD(Λ, δDEIM)
4: i = arg max{1,...,Nh} = |φ1|
5: Φ = φ, I = {i}
6: for k = 2 : M do
7: r = φk − ΦΦ−1

I (φk)I
8: i = arg max{1,...,Nh} = |r|
9: I ← I ∪ {i}

10: Φ ← [Φ, φk]
11: end for
12: end procedure
13: Output: Φ, I

δDEIM (used in the POD at line 3). As alternative, we remark that one could directly
provide the matrix Λ at the place of

{
τi
}ns

i=1, in this case step 2 of the procedure is
skipped.

As concerns the error between the vector f(τ) and its approximation fM (τ) when DEIM
is employed, the following error estimate holds

‖f(τ) − fM (τ)‖2 ≤ ‖Φ−1
I ‖2‖(I − ΦΦT)f(τ)‖2, (1.51)

where the second term on the right hand side can be approximated with the first discarded
singular value of POD algorithm, that is,

‖(I − ΦΦT)f(τ)‖2 ≈ σM+1. (1.52)

Notice that approximation (1.52) holds for any τ ∈ T if a proper sampling of the
parameter space has been performed, leading to a projection error comparable to the
one obtained on the training snapshots, see [Chaturantabut and Sorensen, 2010] for the
derivation of (1.52).

Matrix (Discrete) Empirical Interpolation Method

When dealing with nonaffinely parametrized PDEs, EIM and DEIM are used to approxi-
mate the nonaffine and nonlinear functions and terms which appear in the variational
formulation, typically representing the parametrized physical data or geometrical mapping
of the problem at hand. However, when dealing with complex problem, the parametriza-
tion can be rather nasty, and force to intrusively work on the variational problem to
come up with an approximated affine decomposition. This is especially the case when an
affine dependence for the FE matrix must be recovered, see e.g. [Negri, 2015], Section

28

1.3. Review on RB methods for parametrized steady PDEs

3.3.2 for some examples. To overcome this bottleneck, a matrix version of DEIM, the so
called Matrix-DEIM proposed in [Negri et al., 2015a], represents a convenient black-box
option to affinely approximate a sparse FE matrix.

Given a τ−dependent matrix K(τ) ∈ R
Nh×Nh , we seek its approximation KM (μ) ∈

R
Nh×Nh such that

K(τ) ≈ KM (μ) =
M∑

q=1
Θ̃q(τ)Kq, (1.53)

where Θ̃q(τ) : T → R, q = 1, . . . , M, are τ−dependent coefficients and Kq ∈ R
Nh×Nh ,

q = 1, . . . , M , are τ−independent. Approximation (1.53) can be obtained by MDEIM
by considering the vectorized representation k(τ) = vec(K(τ)) ∈ R

N2
h . Then, an affine

approximation kM (τ) ∈ R
N2

h of k(τ) can be found by applying the DEIM algorithm,
that is,

k(τ) ≈ kM (τ) = Φθ(τ), (1.54)

where Φ ∈ R
N2

h×M and θ(τ) ∈ R
M are the corresponding basis and interpolation

coefficients vector, respectively. Finally, by reversing the vec operation one can obtain
the approximated matrix KM (μ).

The MDEIM algorithm can be implemented by relying on the DEIM Algorithm 2, where
vectorized matrix snapshots are used instead of the vector snapshots. The bases are then
constructed by employing one of the following approaches:

1. providing a set of training parameters
{
τi
}ns

i=1 and employing the matrix assembler
to build the corresponding matrix snapshots at step 2, that is

Φ = MDEIM(
{
τi
}ns

i=1, δMDEIM); (1.55)

2. as for DEIM, directly sampling the procedure with a set of vectorized matrices Λ,
that is,

Φ = MDEIM(Λ, δMDEIM); (1.56)

in this case, step 2 of Algorithm 2 is skipped.

We will mostly take advantage of this latter option within this work.

Remark 1.3.1. Notice that in the FE context, the actual implementation suitably exploits
the sparse format which is used to store the FE matrices, together with the assumption that
the sparsity pattern of the matrix does not change for the range of parameters considered.
Consequently, instead of working with vectors with dimension N2

h , nz−dimensional vectors

29

Chapter 1. Numerical approximation of parametrized PDEs

are employed, where nz, typically much lower than N2
h , is the number of nonzero entries

of the matrix. Furthermore, the computation of the approximated matrix KM (μ) requires
the evaluation of kI(τ) ∈ R

M , i.e. the restriction of k(τ) to the elements identified by
the indeces I. These indeces refer to precise entries of the FE matrix K(τ), which need
to be evaluated. In the FE context, this operation is performed during the online phase by
restricting the assembly of K(τ) to those elements which provide a nonzero contribution
to the entries identified by I. This procedure can be efficiently performed when using
the FE method, thanks to the local support of the FE basis functions, see [Negri et al.,
2015a, Negri, 2015] for further details.

The error between K and KM (μ) can be bounded similarly to (1.51) as

‖K − KM (μ)‖2 ≤ ‖K − KM (μ)‖F (1.57)
= ‖k(τ) − kM (τ)‖2 ≤ ‖Φ−1

I ‖2‖(I − ΦΦT)k(τ)‖2.

The last term on the right hand side can be again approximated by the last singular
value computed by the POD, that is,

‖(I − ΦΦT)k(τ)‖2 ≈ σM+1. (1.58)

(M)DEIM in the context of RB methods

To circumvent the problems of nonaffinity (D)EIM and MDEIM are employed to recover
an approximate affine decomposition of the FE arrays in the RB context. When such
techniques are employed, the relations (1.44) are satisfied up to a certain tolerance
provided to the corresponding algorithms, coming up to a decomposition of the following
form

A(μ) ≈ Ã(μ) =
Qa∑
q=1

Θ̃q
a(μ)Aq, f(μ) ≈ f̃(μ) =

Qf∑
q=1

Θ̃q
f (μ)f q, (1.59)

where Qa and Qf are the number of selected basis. The coefficients Θ̃q
a : D → R q =

1, . . . , Qa (resp. Θ̃q
f : D → R, q = 1, . . . , Qf) are computed by solving the interpolation

problems (1.50), while the matrices Aq ∈ R
Nh×Nh q = 1, . . . , Qa and the vectors f q ∈

R
Nh q = 1, . . . , Qf are μ− independent. We will suppose the matrix Ã(μ) ∈ R

Nh×Nh to
be non singular for any μ ∈ D, that is

β̃h(μ) = σmin(X− 1
2

h Ã(μ)X− 1
2

h) > 0, (1.60)

which holds if M → ∞, thanks to the approximation of the singular values guaranteed
by the Weyl-Mirsky theorem (see, e.g., [Stewart and Sun, 1990]). The approximated

30

1.3. Review on RB methods for parametrized steady PDEs

affinity property (1.59) can be used to approximate the RB arrays as follows

AN (μ) ≈ ÃN (μ) =
Qa∑
q=1

Θ̃q
a(μ)VT AqV =

Qa∑
q=1

Θ̃q
a(μ)Aq

N , (1.61)

fN (μ) ≈ f̃N (μ) =
Qf∑
q=1

Θ̃q
f (μ)VT f q =

Qf∑
q=1

Θ̃q
f (μ)f q

N . (1.62)

The RB problem (1.39) is then substituted by the following hyper-reduced problem

ÃN (μ)ỹN (μ) = f̃N (μ), (1.63)

and the matrices Aq
N , q = 1, . . . , Qa and vectors f q

N , q = 1, . . . , Qf can be computed
and stored once for all during the offline phase, and only the sum in (1.61)-(1.62) must
be carried out during the online phase. The affinely approximated RB problem (1.63)
corresponds to the RB approximation obtained by projecting the following FE system

Ã(μ)ỹ(μ) = f̃(μ), (1.64)

where Ã(μ) and f̃(μ) are as in (1.61)-(1.62) and ỹ(μ) ∈ R
Nh is the solution of the

(M)DEIM-approximated system.

Remark 1.3.2. (M)DEIM can be similarly used to treat an RB approximation with non-
linear contributions, by computing an approximated affine decomposition of the nonlinear
terms to cheaply assemble the RB problem during the online phase.

1.3.3 Error bounds for hyper-reduced RB approximation

We briefly report here the error bounds between the FE high fidelity solution y(μ) and
the hyper-reduced RB approximation ỹN (μ), see [Negri et al., 2015a, Negri, 2015] for
further details. The following Proposition holds when computing the RB solution of
problem (1.63).

Proposition 1.3.2. If Qa ∈ N
+ and

{
Θ̃q

a(μ)}Qa
q=1 are such that the matrix Ã(μ) is

nonsingular for any μ ∈ D, then the error y(μ) − ỹN (μ) can be bounded by

∥∥y(μ)−VỹN (μ)
∥∥

Xh
≤ 1

β̃h(μ)
∥∥Ã(μ)VỹN (μ) − f̃N (μ)

∥∥
X−1

h
(1.65)

+
1

βh(μ)

(∥∥f(μ) − f̃(μ)
∥∥

X−1
h

+
∥∥A(μ) − Ã(μ)

∥∥
Xh,X−1

h

∥∥ỹ(μ)
∥∥

Xh

)
.

Error (1.65) is not suited for a proper offline-online decomposition, since it assumes to
compute the solution ỹ(μ) of the FE problem (1.64). A more usable estimate is given by
the following result.

31

Chapter 1. Numerical approximation of parametrized PDEs

Proposition 1.3.3. Under the assumptions of Proposition 1.3.2, the following estimate
holds:∥∥y(μ) − VỹN (μ)

∥∥ ≤ ΔN (μ) + ΔM (μ), (1.66)

where

ΔN (μ) =
1

βh(μ)
∥∥Ã(μ)VỹN (μ) − f̃N (μ)

∥∥
X−1

h
(1.67)

ΔM (μ) =
1

βh(μ)

(∥∥f(μ) − f̃(μ)
∥∥

X−1
h

(1.68)

+
∥∥A(μ) − Ã(μ)

∥∥
Xh,X−1

h

∥∥VỹN (μ)
∥∥

Xh

)
.

The computation of terms (1.67)-(1.68) does not involve the solution of any additional FE
problem, however it still depends on the FE dimension Nh, due to the error of the affine
approximation of the FE matrix and right hand side in (1.68). An efficient computation
of bound (1.66) can be performed by employing estimates (1.51)-(1.57), together with a
proper sampling of the parameter space, which ensures (1.52) and (1.58) to hold, leading
to the computable estimator

ΔM (μ) ≈ 1
βh(μ)

(
c1

∥∥(Φf
I)−1∥∥

2σf
Qf +1 + c2

∥∥(Φa
I)−1∥∥

2σa
Qa+1

∥∥VỹN (μ)
∥∥

Xh

)
, (1.69)

where σf
Qf +1 and σa

Qa+1 are the first discarded eigenvalues of (M)DEIM for f(μ) and

A(μ), respectively, and c1 = ‖X− 1
2

h ‖2 and c2 = ‖X−1
h ‖2.

Remark 1.3.3. Bounds (1.65) and (1.66) suggest that both an accurate state reduction,
that is a rich enough RB space VN , and system approximation, that is a precise affine
representation of the FE matrix and right hand side, are required to obtain an accurate
RB approximation.

Remark 1.3.4. The number of affine terms to obtain a target accuracy highly depends
on the problem at hand, and if this is too large, it may impact on the efficiency of the RB
solver. See e.g. Section 2.4.1, where the impact of the DEIM affine expansion is taken
into account by varying the parametrization of the considered problem.

1.3.4 Galerkin RB methods for time-dependent problems

We can generalize to the case of time-dependent problems the construction of a RB
method, including the use of hyper-reduction techniques for cheaply assembling the
resulting reduced system. For ease of presentation, we consider the sequence of linear
systems (1.22) obtained by the BDF discretization of the algebraic dynamical system
(1.17), for which we assume the right hand side to be expressed as f(t; μ) = gf (t)f̃(μ).

32

1.3. Review on RB methods for parametrized steady PDEs

Even if the specific case of BDF schemes is treated, the strategies reported in the following
can be easily extended to other implicit time-discretization technique.

Similarly to the steady case, at any time-step n = 0, . . . , Nt the RB approximation is
expressed as a linear combination of N RB functions collected in a matrix V ∈ R

Nh×N

yn ≈ Vyn
N (μ). (1.70)

If we plug in this approximation in (1.22) and perform a Galerkin projection by enforcing
the FE residual to vanish when it is evaluated at the RB approximation, we obtain a
sequence of RB linear systems, to be solved for n = 1, . . . , Nt − 1,(

α1
Δt

MN (μ) + AN (μ)
)

yn+1
N (μ) = gf (tn+1)fN (μ) +

α1
Δt

MN (μ)yn,σ1
N (μ), (1.71)

with y0
N (μ) ∈ R

N obtained by projecting y0 onto V and AN (μ) defined as in (1.40);
fN (μ) ∈ R

N and MN (μ) ∈ R
N×N are instead obtained as

fN (μ) = VT f̃(μ) MN (μ) = VT M(μ)V. (1.72)

Remark 1.3.5. A Petrov-Galerkin formulation, which is obtained by enforcing the
projection of the FE residual onto the space spanned by the columns of a matrix W(μ)
(in general different from V) to vanish, can also be used, see e.g. [Carlberg et al., 2013].
However, here we limit ourselves to recall the Galerkin case, since for unsteady problems
it is the only one considered in this thesis.

The construction of the ROM, that is the offline phase, is carried out in two main steps.

1. State reduction: a double POD approach, similar to the one used in [Paul-Dubois-
Taine and Amsallem, 2015, Negri et al., 2015a, Negri, 2015], can be used to build
the RB projection matrix V. Given the parameter values

{
μi

}ns

i=1, ns sets of finite
elements functions

{
yn

N (μ1)
}Nt

n=1, . . . ,
{
yn

N (μns)
}Nt

n=1 are computed, and a local
POD basis-in-time is constructed

Si = [y1(μi), . . . , yNt(μi)], Vi = POD
(
Si, Xh, εt

)
, i = 1, . . . , ns,

where εt is the tolerance employed to build the local basis. Subsequently, all these
basis functions are collected and a final POD is used to construct the final RB
space

S = [V1, . . . , Vns], V = POD
(
S, Xh, εμ

)
.

The tolerance εμ is employed in this second stage, usually chosen such that εμ ≥ εt.

2. System approximation: also in the unsteady case, it is advisable to rely on an

33

Chapter 1. Numerical approximation of parametrized PDEs

affine decomposition, equivalent to (1.45)-(1.46), of the RB arrays to enhance
the efficiency during the online phase. If M(μ), A(μ), and f̃(μ) do not feature
such affine property, an approximate affine decomposition of those arrays can be
recovered by using (separately) MDEIM on M(μ) and A(μ) and DEIM on f̃(μ).
The arrays {Mq}Qm

q=1, {Aq}Qa
q=1 and {f̃}Qf

q=1 are computed before constructing the
RB projection matrix V and then used to construct the corresponding RB affine
decompositions {Mq

N }Qm
q=1, {Aq

N }Qa
q=1 and {f q}Qf

q=1 such that

MN (μ) ≈ M̃N (μ)
Qm∑
q=1

Θ̃q
m(μ)Mq

N (1.73)

and AN (μ) ≈ ÃN (μ), fN (μ) ≈ f̃N (μ) as in (1.61)-(1.62).

As usual, also a greedy or a POD-greedy approach represent viable options, see e.g.
[Grepl and Patera, 2005, Drohmann et al., 2012b].

During the online phase, (1.22) is replaced by(
α1
Δt

M̃N (μ) + ÃN (μ)
)

yn+1
N (μ) = gf (tn+1)f̃N (μ) +

α1
Δt

M̃N (μ)yn,σ1
N (μ), (1.74)

for which suitable a posteriori error bounds, similar to the one recalled in 1.3.3 for steady
problems, are verified, see [Negri, 2015, Negri et al., 2015a].

This framework to construct a ROM for unsteady parametrized problems is considered
and extended in Chapter 4 to deal with unsteady parametrized nonlinear equations, such
as the Navier-Stokes equations in parameter-dependent domains.

1.4 Towards RB coarse operators for preconditioning pa-
rametrized PDEs

As explained in Section 1.3, the RB method is a powerful tool to tackle parametrized
systems, building an accurate approximation of the FE solution in a possibly very
competitive computational cost. However, the RB approximation can sometimes show
severe bottlenecks, depending on the problem at hand, leading to the deterioration of its
efficiency and accuracy for different reasons: i) the number N of basis functions increases,
leading to a costly computation to invert the RB matrix AN (μ), ii) an approximated
affine decomposition of the FE matrix and/or right hand side features too many terms,
yielding an extensive assembling phase, iii) the presence of different physical regimes
when dealing with time-dependent problems.

Recently, preconditioning techniques for the RB matrix AN (μ) have been proposed,
e.g. in [Elman and Forstall, 2015], to overcome issue i) by iteratively solving the RB

34

1.4. Towards RB coarse operators for preconditioning parametrized PDEs

problem (1.39); this demonstrates to be a convenient option when the RB dimension N

is too large to use direct methods. Our aim is instead to build preconditioners for the
high-fidelity FE problem (1.7), and not for the RB system (1.39). To tackle issue ii), one
can try to improve the computed (D)EIM interpolation basis to (and without changing
its dimension) by optimizing the location of the interpolation points, an example of this
procedure can be found, for instance, in [Sargsyan et al., 2016]. As issue iii) concerns,
local (in time) basis functions can be built by splitting the time interval in macro slabs,
easing the handling of different time regimes of the solution, see e.g. [Peherstorfer et al.,
2014, Amsallem and Haasdonk, 2016, Pagani et al., 2017].

On the other hand, as we have seen from (1.42), the RB method provides us with a
ready-to-use low rank solver which seeks an approximated solution in a subspace of
the FE space, in a similar fashion of coarse grid operators in domain decomposition
or multilevel methods. In a two level approach, where it is combined with a fine grid
operator, the role of the RB approximation is to provide a coarse correction able to boost
the convergence rate of the iterative method applied to the high-fidelity FE problem,
by correcting the scales of the error which are not treated by the fine operator. In this
perspective, the computational load entailed by the presence of nonaffine or nonlinear
terms is no longer an issue, as in the case of the standard RB method. Moreover, a
coarse correction must not be necessarily accurate, and the number of RB functions (or
approximated affine terms) characterizing the RB low-rank solver can be relatively low
so that the overall efficiency is not compromised.

In the following chapters we develop this idea and tailor it to parametrized problems
of engineering interest. We start by considering (nonaffine) linear elliptic and parabolic
PDEs in Chapter 2; we turn to linear saddle-point problems, with focus on Stokes
equations, in Chapter 3. Finally, we focus on unsteady nonlinear PDEs, with specific
interest in the Navier-Stokes equations in Chapter 4.

35

2 Multi space RB preconditioners
for parametrized PDEs

In this chapter we introduce our multi space reduced basis preconditioning strategy,
focusing on parametrized elliptic and parabolic problems. We consider the algebraic
FE system arising from a parametrized advection-diffusion equation, and show how to
exploit a RB coarse component in a two-level preconditioning setting. We first apply
the preconditioner to the Richardson method because of the simple structure of this
latter. We deal with both affine and nonaffine problems, using in the latter case an
approximated RB coarse operator which internally exploits MDEIM algorithm for its
construction. Then, we apply the preconditioner to the FGMRES method and report its
performances on problems characterized by a large dimension. We refer to [Dal Santo
et al., 2018a, Dal Santo et al., 2017a] for additional details and numerical tests.

2.1 Preconditioning the Richardson method with a RB
coarse operator

In this first section, we construct a preconditioned Richardson method which employs
the low-rank RB solver (1.42) as coarse component. Towards this goal, let us consider a
variational problem characterized by a continuous and coercive bilinear form a(·, ·; μ)
and the corresponding parametrized high-fidelity linear system which arises from the use
of the FE element method

A(μ)u(μ) = f(μ). (2.1)

We remark that such a linear system appears, for instance, when considering problem
(1.10). The FE stiffness matrix A(μ) in (2.1) is positive definite thanks to the coercivity
of the bilinear form a(·, ·; μ), weakly coercive problems will be specifically addressed in
Chapter 3.

Given an initial guess u(0) = u(0)(μ) ∈ R
Nh , let us consider two matrices Q1 = Q1(μ),

37

Chapter 2. MSRB preconditioners for parametrized PDEs

Q2 = Q2(μ) ∈ R
Nh×Nh , a multiplicative Richardson iteration for system (2.1) can be

expressed as⎧⎨⎩u(k−1/2)(μ) = u(k−1)(μ) + Q1(μ)r(k−1)(μ),
u(k)(μ) = u(k−1/2)(μ) + Q2(μ)r(k−1/2)(μ), k = 1, 2, . . .

(2.2)

where u(k) = u(k)(μ) is the μ−dependent iterate at the step k, and r(k) = r(k)(μ) is the
corresponding high-fidelity residual of system (2.1), defined as

r(k)(μ) = f(μ) − Ah(μ)u(k)(μ), k = 1, 2,

Equations (2.2) can be equivalently formulated as a single iteration

u(k)(μ) = u(k−1)(μ) + Q(μ)r(k−1)(μ), k = 1, 2, . . . , (2.3)

where Q(μ) in (2.3) is defined as

Q(μ) = Q1(μ) + Q2(μ) − Q2(μ)Ah(μ)Q1(μ).

If Q(μ) is non singular, (2.3) can be regarded as a stationary Richardson iteration, with
acceleration parameter equal to 1, for the preconditioned system

Q(μ)Ah(μ)u(μ) = Q(μ)f(μ),

where the preconditioner is Q−1(μ).

A two stage approach as the one in (2.2) is exploited in two level domain decomposition
strategies which rely on a coarse (or low-rank) component derived from a coarse FE
discretization. We want to apply this idea in the following by considering, at the place of
a coarse grid operator, a RB low-rank solver as coarse component, and towards this goal
we set

Q1(μ) = P−1(μ), Q2(μ) = VA−1
N (μ)VT , (2.4)

where P(μ) ∈ R
Nh×Nh is a nonsingular matrix playing the role of fine preconditioner (to

be chosen among existing preconditioners) and VA−1
N (μ)VT is the RB coarse component.

As explained in Section 1.3.1, the matrix VA−1
N (μ)VT mimics the inverse of A(μ) on

the RB subspace.

However, we have experienced that numerically the convergence rate of (2.2) with
Q2(μ) = VA−1

N (μ)VT is the same as the one obtained by setting Q2(μ) = 0 (i.e. just
using P(μ) as preconditioner); as a matter of fact, the RB coarse component in ineffective.
This behavior can be ascribed to the fact that the application of Q2(μ) to the residual

38

2.2. Multi space RB preconditioners for elliptic PDEs

r(k−1/2)(μ)

Q2(μ)r(k−1/2)(μ) = VA−1
N (μ)VT r(k−1/2)(μ)

can be reinterpreted as computing an approximation of the solution e(k−1/2)(μ) of the
error equation

Ah(μ)e(k−1/2)(μ) = r(k−1/2)(μ), (2.5)

through the RB method, where e(k−1/2)(μ) = u(μ) − u(k−1/2)(μ). In other words,
by computing VA−1

N (μ)VT r(k−1/2)(μ), we are implicitly seeking an approximation of
e(k−1/2)(μ) in the RB space VN , that is, expressed as a linear combination of basis
functions obtained from snapshots of the high-fidelity problem (2.1). The main issue
related with this approach is that the employed ROM (i.e. the RB space VN) is tailored
only for equation (2.1), while here we are trying to use it to solve approximately equation
(2.5), which features the same stiffness matrix Ah(μ) as (2.1) but a different right
hand side. Therefore, the space VN is not well suited to approximate the solution of
problem (2.5), yielding a very poor numerical approximation of the error, as confirmed
by numerical experiments.

2.2 Multi space RB preconditioners for elliptic PDEs

The ineffective procedure outlined above suggests that a different RB space, more suitable
to approximate the error e(k−1/2)(μ), should be employed at step k of the Richardson
method. The corresponding preconditioner is first analyzed in the (simple) context of
Richardson iterations; subsequently, we extend its construction to the FGMRES method
in Section 2.2.5.

2.2.1 Multi space RB preconditioners for the Richardson method

At each step k of the Richardson method we introduce a new RB space that is trained on
equation (2.5), and where a better approximation of e(k−1/2)(μ) can be found. Since the
error highly depends on the iterate k, it makes sense to introduce a different RB space
VNk

at every iteration k, generated by high-fidelity solutions of problem (2.5), that is

VNk
= span

{
e(k−1/2)(μj)

}Nk

j=1
. (2.6)

Here e(k−1/2)(μj) = u(μj)−u(k−1/2)(μj), j = 1, . . . , Nk denote the errors at the (k−1/2)-
th iteration, computed for (properly chosen) instances of the parameters μj , j = 1, . . . , Nk,
where Nk is the dimension of the RB space used at iteration k, possibly changing with k.
Following the standard G-RB method introduced in Section 1.3.1, we can construct the

39

Chapter 2. MSRB preconditioners for parametrized PDEs

matrices

Vk =
[
ξk

1 | . . . |ξk
N

]
, ANk

(μ) = VT
k Ah(μ)Vk, k = 0, 1, . . . (2.7)

where
{
ξk

j

}Nk

j=1 denotes an orthonormalized basis for VNk
, and write the MSRB-precondi-

tioned Richardson iterations as⎧⎨⎩u(k−1/2)(μ) = u(k−1)(μ) + P−1(μ)r(k−1)(μ)
u(k)(μ) = u(k−1/2)(μ) + QNk

(μ)r(k−1/2)(μ), k = 0, 1, . . . ,
(2.8)

now setting QNk
(μ) = VkA−1

Nk
(μ)VT

k . The formulation (2.8) leads to

u(k)(μ) = u(k−1)(μ) + QMSRB,k(μ)r(k−1)(μ), k = 1, 2, . . . , (2.9)

where the matrix QMSRB,k = QMSRB,k(μ) (replacing Q(μ) in (2.3)) is now

QMSRB,k(μ) = P−1(μ) + QNk
(μ)

(
INh

− Ah(μ)P−1(μ)
)
, (2.10)

and can be regarded as a multiplicative combination of P−1(μ) and QNk
(μ).

Given the error e(k−1/2)(μ), the corresponding RB approximation onto VNk
is defined by

e(k−1/2)
Nk

(μ) ∈ R
Nk such that

ANk
(μ)e(k−1/2)

Nk
(μ) = VT

k r(k−1/2)(μ). (2.11)

As a matter of fact, problem (2.11) is the RB approximation of problem (2.5) where
Vk is employed as projection matrix. The FE representation Vke(k−1/2)

Nk
(μ) ∈ R

Nh of
e(k−1/2)

Nk
(μ) can be expressed as

QNk
(μ)r(k−1/2)(μ) = VkA−1

Nk
(μ)VT

k r(k−1/2)(μ) = Vke(k−1/2)
Nk

(μ), (2.12)

and is computed in the second step of (2.8).

Remark 2.2.1. Here and in the following we will assume that, for any k = 0, 1, . . ., the
columns of the matrix Vk are two by two linearly independent. This assumption ensures
that the RB matrix ANk

(μ) is positive definite, since it is obtained by Galerkin projection
from the positive definite matrix A(μ). As a consequence, its inverse A−1

Nk
(μ) exists.

A natural initial guess for iterations (2.8) is the (standard) RB approximation u(0)(μ) =
V0A−1

N0
(μ)VT

0 f(μ), which can be obtained by setting VN0 = VN , i.e. the first RB space
is the one provided by the standard RB method. As a matter of fact, the subsequent
spaces VNk

, k ≥ 1, aim at damping those components of the error that have not been
cured by the previous RB iterations and cannot be addressed by the application of P(μ);
they are therefore directly constructed using the error equation (2.5), whose solution can

40

2.2. Multi space RB preconditioners for elliptic PDEs

be expressed for any μ ∈ D as follows:

e(k−1/2)(μ) = u(μ) − u(k−1/2)(μ) = e(k−1)(μ) − P−1(μ)r(k−1)(μ). (2.13)

Therefore, if the solution u(μ) is known, the corresponding error e(k−1/2)(μ) can be
computed avoiding the solution of the linear system (2.5).

Remark 2.2.2. When building the RB approximation for (2.5), a Galerkin projection
has been preferred to a more general Petrov Galerkin one, since, for elliptic coercive
problems as the advection-diffusion PDE (1.10), the G-RB method straightforwardly
provides a well-posed RB approximation. However, this is not trivial when dealing with
weakly coercive problems, as the case where ∇ ·�b is positive or a saddle-point system is
considered; this issue is taken into account in the following Chapter 3, when dealing with
linear saddle-point problems.

2.2.2 Nonsingularity of MSRB preconditioners

We show in this section that the matrix QMSRB,k(μ). Given a subspace W ⊂ R
Nh such

that dim(W) = M and a basis
{
wj

}M

j=1 such that W = span
{
wj , j = 1, . . . , M

}
, we

denote by W ⊥ the orthogonal complement of W and by W ∈ R
Nh×M , W = [w1, . . . , wM],

the matrix of basis vectors. Moreover, given any nonsingular matrix B ∈ R
Nh×Nh , we

define the following spaces

BW =
{

x ∈ R
Nh : B−1x ∈ W

}
=

{
x ∈ R

Nh : x = Bz, z ∈ W
}

,

BW ⊥ =
{

x ∈ R
Nh : B−1x ∈ W ⊥

}
=

{
x ∈ R

Nh : x = Bz, z ∈ W ⊥
}

.

We remark that R
Nh = BW ⊕ BW ⊥, because of the nonsingularity of B.

Lemma 2.2.1. Let W be a M-dimensional subspace of R
Nh, {wj}M

j=1 a basis thereof
and W = [w1, . . . , wM] ∈ R

Nh×M . Moreover, let B be a nonsingular Nh × Nh matrix
and assume that WT BW is nonsingular. Then the following implication holds:

x ∈ BW and WT x = 0 ⇒ x = 0. (2.14)

Proof. We take x ∈ BW such that WT x = 0 and show that it must be x = 0. By
definition of BW , B−1x = WzM for some zM ∈ R

M . Thanks to the nonsingularity of
B, we obtain

0 = WT x = WT BB−1x = WT BWzM .

As WT BW ∈ R
M×M is invertible, zM = 0. Finally, we have

0 = WzM = B−1x,

41

Chapter 2. MSRB preconditioners for parametrized PDEs

which implies x = 0 thanks to the nonsingularity of B.

In the following we employ Lemma 3.5.1 with W = VNk
, B = P(μ), W = Vk in order

to prove that QMSRB,k(μ) is nonsingular. To this aim, we define

V
P//

Nk
=

{
x ∈ R

Nh : P−1(μ)x ∈ VNk

}
, V P⊥

Nk
=

{
x ∈ R

Nh : P−1(μ)x ∈ V ⊥
Nk

}
.

Theorem 2.2.1. For any μ ∈ D, assume that P(μ) ∈ R
Nh×Nh is a nonsingular ma-

trix such that the matrix VT
k P(μ)Vk is nonsingular. Then the matrix QMSRB,k(μ) is

nonsingular.

Proof. We want to prove that if QMSRB,k(μ)x = 0, then it must be x = 0. Since any
x ∈ R

Nh can be expressed as x = x//+ x⊥, where x// ∈ V
P//

Nk
, x⊥ ∈ V P⊥

Nk
, we first compute

the result of the application of QMSRB,k(μ) on x//:

QMSRB,k(μ)x// = P−1(μ)x// + QNk
(μ)

(
INh

− Ah(μ)P−1(μ)
)
x//

Being x// ∈ V
P//

Nk
, we can write P−1(μ)x// = VkzN (μ) for some zNk

(μ) ∈ R
Nk , yielding

QMSRB,k(μ)x// = VkzN (μ) + QNk
(μ)x// (2.15)

− QNk
(μ)Ah(μ)VkzN (μ) = QNk

(μ)x//,

since QNk
(μ)Ah(μ)VkzN = VkA−1

Nk
(μ)VT

k Ah(μ)VkzN = VkzN . As of the component
x⊥, we have

QMSRB,k(μ)x⊥ = P−1(μ)x⊥ + QNk
(μ)

(
INh

− Ah(μ)P−1(μ)
)
x⊥,

which leads to

0 = QMSRB,k(μ)x =QNk
(μ)x// + P−1(μ)x⊥ (2.16)

+ QNk
(μ)

(
INh

− Ah(μ)P−1(μ)
)
x⊥.

By rewriting equation (2.16) as follows

QNk
(μ)

(
x// + x⊥ + Ah(μ)P−1(μ)x⊥

)
= −P−1(μ)x⊥, (2.17)

we can notice that the left hand side is an element of the space VNk
, whereas the right

hand side is an element of its orthogonal complement V ⊥
Nk

, so that the only way these two
elements are equal is when they are both zero. Being P−1(μ)x⊥ = 0, the nonsingularity
of P(μ) yields x⊥ = 0, allowing us to rewrite equation (2.17) as

0 = QNk
(μ)x// = VkA−1

Nk
(μ)VT

k x//. (2.18)

42

2.2. Multi space RB preconditioners for elliptic PDEs

The columns of Vk being linearly independent, equation (2.18) yields

0 = A−1
Nk

(μ)VT
k x//, (2.19)

which, thanks to the non singularity of the RB matrix ANk
(μ), cf. Remark (2.2.1),

implies

VT
k x// = 0. (2.20)

Finally, by applying Lemma 3.5.1 with W = VNk
, W = Vk and B = P(μ), we obtain

that x// = 0, and thus the thesis.

Now, since the matrix QMSRB,k(μ) is invertible, we can define the MSRB preconditioner
as

PMSRB,k(μ) = Q−1
MSRB,k(μ). (2.21)

Remark 2.2.3. The assumption that the matrix VT
k P(μ)Vk is nonsingular is fairly

mild. For example, it is satisfied for any matrix P(μ) such that xT P(μ)x �= 0 for any
x �= 0. This is indeed the case for classical preconditioners like Jacobi, Gauss-Seidel or
Additive Schwarz preconditioners.

2.2.3 Convergence results for the MSRB-preconditioned Richardson
method

In this section we prove a priori estimates of the error and the residual decay for the
Richardson method (2.8). For ease of notation, hereon we omit the μ−dependence and
denote by INh

the identity Nh × Nh matrix.

Proposition 2.2.1. For any vector norm ‖ · ‖, let the spaces VNk
k = 1, . . . , L satisfy

the following relation

‖e(k−1/2) − Vke(k−1/2)
Nk

‖ ≤ δk‖e(k−1/2)‖, k = 1, . . . , L ∀μ ∈ D, (2.22)

for given tolerances δk, k = 1, . . . , L. Moreover, let the assumption of Theorem 2.2.1 be
satisfied. Then the following estimate holds on the error generated at each iteration k of
the Richardson method

‖e(k)‖ ≤ Ckδ̃k‖e(0)‖, k = 1, . . . , L, ∀μ ∈ D, (2.23)

with C =
∥∥∥INh

− P−1(μ)Ah(μ)
∥∥∥ and δ̃k =

∏k
j=1 δj.

43

Chapter 2. MSRB preconditioners for parametrized PDEs

Proof. We consider equations (2.8). The error e(k) = u − u(k) at iteration k can be
computed as

e(k) =
(
INh

− QNk
Ah

)
e(k−1/2) = e(k−1/2) − Vke(k−1/2)

Nk
,

where the equation (2.12) has been used. Then∥∥∥e(k)
∥∥∥ =

∥∥∥(INh
− QNk

Ah

)
e(k−1/2)

∥∥∥ ≤ δk

∥∥∥e(k−1/2)
∥∥∥

= δk

∥∥∥(INh
− P−1Ah

)
e(k−1)

∥∥∥ ≤ δk

∥∥∥INh
− P−1Ah

∥∥∥∥∥∥e(k−1)
∥∥∥.

By proceeding recursively we obtain (2.23).

A similar result holds for the residuals of the Richardson method.

Proposition 2.2.2. For any vector norm ‖ · ‖, let the spaces VNk
k = 1, . . . , L satisfy

the following relation

‖r(k−1/2) − AhVke(k−1/2)
Nk

‖ ≤ δk‖r(k−1/2)‖, k = 1, . . . , L ∀μ ∈ D. (2.24)

and given tolerances δk, k = 1, . . . , L. Moreover, let the assumption of Theorem 2.2.1 be
satisfied. Then the following estimate holds:

‖r(k)‖ ≤ Ckδ̃k‖r(0)‖, k = 1, . . . , L ∀μ ∈ D, (2.25)

with C =
∥∥∥INh

− P−1Ah

∥∥∥ and δ̃k =
∏k

j=1 δj.

Proof. We consider equations (2.8). The residual at iteration k can be computed as

r(k) =
(
INh

− AhQNk

)
r(k−1/2) =

(
INh

− AhVkA−1
Nk

VT
k

)
r(k−1/2) (2.26)

= r(k−1/2) − AhVke(k−1/2)
Nk

.

Thanks to (2.24) we obtain∥∥∥r(k)
∥∥∥ =

∥∥∥(INh
− AhQNk

)
r(k−1/2)

∥∥∥ ≤ δk

∥∥∥r(k−1/2)
∥∥∥

= δk

∥∥∥(INh
− AhP−1

)
r(k−1)

∥∥∥ ≤ δk

∥∥∥INh
− AhP−1

∥∥∥∥∥∥r(k−1)
∥∥∥.

By proceeding recursively we obtain (2.25).

44

2.2. Multi space RB preconditioners for elliptic PDEs

2.2.4 Dealing with nonaffine problems: (M)DEIM in the context of
MSRB preconditioning methods

When using the MSRB preconditioning strategies for nonaffine problems, at each iteration
we are called to solve the RB problem (2.11) for equation (2.5), which will provide us
with an accurate and cheap approximation of e(k−1/2)(μ). While doing so, there is no
need to avoid operations whose cost is proportional to Nh for assembling the RB problem
(2.11), as it would happen when using the standard RB method. When building the RB
coarse operator QNk

(μ) for the k-th iteration of Richardson method, the matrix QNk
(μ)

is not explicitly assembled, and Vk and A−1
Nk

(μ), which is computed and stored as LU
factorization of ANk

(μ), are applied consecutively to the right hand side of (2.5). At
first, we build the RB right hand side of (2.11) by projecting r(k−1/2)(μ) onto the RB
space VNk

; as a matter of fact, any potential affine dependence of the right hand side
f(μ) of (2.1), it is not exploited (therefore even if f(μ) featured a nonaffine dependence,
DEIM would not be required). Similarly, an affine dependence of the FE matrix is not
needed a priori during the assembly of the RB matrix ANk

(μ), however a significant
speedup can be achieved if A(μ) verifies the affinity assumption (1.44), since, similarly
to the standard RB method, it can be used to build ANk

(μ):

ANk
(μ) = VT

k A(μ)Vk (2.27)

= VT
k

(Qa∑
q=1

Θq
a(μ)Aq

h

)
Vk =

Qa∑
q=1

Θq
a(μ)VT

k Aq
hVk =

Qa∑
q=1

Θq
a(μ)Aq

Nk
.

Here, the matrices Aq
Nk

∈ R
Nk×Nk , q = 1, . . . , Qa, are μ-independent. This allows to

largely cut off the overhead of projecting A(μ) onto Vk as in (2.7), since only the last
sum in (2.27) must be carried out to assembly ANk

(μ).

On the other hand, if A(μ) features a nonaffine parametric dependence, we rely on
MDEIM to build an approximated affine one. By considering the decomposition (1.59),
we have

ANk
(μ) ≈ ÃNk

(μ) =
Qa∑
q=1

Θ̃q
a(μ)VT

k AqVk =
Qa∑
q=1

Θ̃q
a(μ)Aq

Nk
, k = 0, 1, (2.28)

The matrices Aq
Nk

, q = 1, . . . , Qa, k = 0, . . . , L−1 are μ-independent can be precomputed
and stored offline, while only the sum in the last term of (2.28) needs to be performed
when assembling ÃNk

(μ). Then, the (affinely approximated) RB coarse operators for
nonaffine problems are defined as

QNk
(μ) = VkÃ−1

Nk
(μ)VT

k , k = 0, 1 (2.29)

45

Chapter 2. MSRB preconditioners for parametrized PDEs

Convergence results

In this section we provide a priori estimates of the error and residual decay when the
coarse operators (2.29) with an approximated affine decomposition are employed as
coarse components in the preconditioned Richardson method. These results essentially
represent the counterpart of Proposition 2.2.1 and 2.2.2, respectively.

Proposition 2.2.3. For any vector norm ‖ · ‖, let the spaces VNk
k = 1, . . . , L satisfy

the following relation

‖e(k−1/2) − Vke(k−1/2)
Nk

‖ ≤ (δNk
+ δM)‖e(k−1/2)‖ k = 1, . . . , L, ∀μ ∈ D,

(2.30)

for given tolerances δM and δNk
, for k = 1, . . . , L, accounting for the state reduction and

the affine approximation, respectively. Moreover, let the assumption of Theorem 2.2.1 be
satisfied. Then the following estimate holds:

‖e(k)‖ ≤ Ckδ‖e(0)‖, k = 1, . . . , L ∀μ ∈ D, (2.31)

with C =
∥∥∥INh

− P−1(μ)Ah(μ)
∥∥∥ and δ =

∏k
j=1(δNj + δM).

Proof. The proof is the same as the one for Proposition 2.2.1, where the role of δk is
replaced by δNk

+ δM .

Similarly, a result for the residuals of the Richardson method holds.

Proposition 2.2.4. For any vector norm ‖ · ‖, let the spaces VNk
k = 1, . . . , L satisfy

the following relation

‖r(k−1/2) − AhVke(k−1/2)
Nk

‖ ≤ (δNk
+ δM)‖r(k−1/2)‖ k = 1, . . . , L, ∀μ ∈ D.

(2.32)

for given tolerances δM and δNk
, k = 1, . . . , L, accounting for the state reduction and

the affine approximation, respectively. Moreover, let the assumption of Theorem 2.2.1 be
satisfied. Then the following estimate holds:

‖r(k)‖ ≤ Ckδ‖r(0)‖, k = 1, . . . , L ∀μ ∈ D, (2.33)

with C =
∥∥∥INh

− P−1Ah

∥∥∥ and δ =
∏k

j=1(δNj + δM).

Proof. The proof is the same as the one for Proposition 2.2.2, where the role of δk is
replaced by δNk

+ δM .

In Proposition 2.2.3 and 2.2.4, the roles of δNk
and δM correspond to the ones of ΔN (μ)

and ΔM (μ) in (1.66) for the standard RB method, for which, as highlighted in Remark

46

2.2. Multi space RB preconditioners for elliptic PDEs

1.3.3, a precise affine representation of A(μ) is necessary to reach a small target accuracy.
By contrast, estimates (2.31) and (2.33) state that the final error given by the MSRB-
preconditioned Richardson is provided by the combination of L iterations, each solving
the error equation up to an accuracy of order δNk

+ δM , k = 1, 2, . . . , L, and as a matter
of fact, the affine approximation can be less accurate than the one we would use for the
standard RB method. In practice, an affine decomposition of A(μ) is built by plugging
in MDEIM a tolerance δMDEIM, which is chosen such that δMDEIM is negligible with
respect to δNk

, k = 1, 2, . . . in (2.30)-(2.32).

Remark 2.2.4. Assumptions (2.30) and (2.32) formally hold if a greedy algorithm is
used to construct the RB spaces VNk

and the affine approximation of A(μ). By using
POD and MDEIM, relations (2.32) are assessed numerically if a proper sampling of the
parameter space D is carried out.

2.2.5 Multi space RB preconditioners for flexible GMRES

In the previous Section, our MSRB preconditioner has been illustrated in the context of
Richardson iterations, for sake of clarity. In order to use a more efficient Krylov iterative
method, we opt instead for the flexible GMRES method, FGMRES [Saad, 1993], since the
MSRB preconditioner changes at each iteration. Indeed, the (classical) preconditioned
GMRES algorithm does not ensure convergence in the case the preconditioner changes
at every iteration, while its flexible variant allows to precondition the system with an
iteration-dependent operator. For ease of presentation, we report in Algorithm 3 the
FGMRES algorithm taken from [Saad, 2003]. In the practical implementation, we employ
the Trilinos software [Heroux et al., 2003], where the norm of the relative residual to
be smaller than a prescribed tolerance εr is the stopping criterion.

Algorithm 3 Flexible GMRES (as formulated in [Saad, 2003])

1: procedure FGMRES(A, b, u0,
{
Mk

}
k
, m)

2: Compute r0 = b − Au0, β = ‖r0‖2, and v1 = r0/β
3: for k = 1, . . . , m do
4: Compute zk = M−1

k vk

5: Compute w = Azk

6: for j = 1, . . . , k do
7: hj,k = (w, zj)
8: w = w − hj,kvj

9: end for
10: Compute hk+1,k = ‖w‖ and vk+1 = w/hk+1,k

11: Define Zm = [z1, . . . , zm], H̃m = {hj,k}1≤j≤k+1; 1≤k≤m

12: end for
13: Compute ym = arg min

y∈Rm
‖βe1 − H̃my‖2 and um = u0 + Zmym

14: If satisfied Stop, else set u0 ← um and GoTo 2.
15: end procedure

47

Chapter 2. MSRB preconditioners for parametrized PDEs

In Algorithm 3, the preconditioner employed at iteration k is denoted by Mk. Since
its inverse is applied to the k-th element of the Krylov basis vk, we infer that Mk is
generally used to find an approximation of ck, which is defined as the solution of the
following problem:

Ack = vk. (2.34)

Indeed, if by chance M−1
k vk = A−1vk, FGMRES would yield the exact solution of the

system. In the MSRB case, we have M−1
k = M−1

k (μ) = QMSRB,k(μ), meaning that its
action on vk(μ) can be computed as

M−1
k (μ)vk(μ) = P−1(μ)vk(μ) (2.35)

+ QNk
(μ)

(
INh

− Ah(μ)P−1(μ)
)
vk(μ).

To find the right problem for training the k-th RB space, we highlight that in equation
(2.35) the reduced component of QMSRB,k(μ) is applied to

(
INh

− Ah(μ)P−1(μ)
)

vk(μ).
In order to suitably precondition the FGMRES method, the k-th RB space must therefore
be trained to solve the following problem

Ah(μ)yk(μ) = vk+ 1
2
(μ), k = 1, 2, . . . , (2.36)

where vk+ 1
2
(μ) =

(
INh

− Ah(μ)P−1(μ)
)
vk(μ). Equation (2.36) yields a RB space of the

form

VNk
= span

{
yk(μi)

}Nk

i=1
, k = 1, 2, . . . , (2.37)

where yk(μi) is the solution of equation (2.36) with μ = μi.

When using M−1
k (μ) = QMSRB,k(μ) in the preconditioning step, an approximation

yNk
(μ) ∈ R

Nk of the solution yk(μ) of problem (2.36) can be found by solving

ANk
(μ)yNk

(μ) = VT
k vk+ 1

2
(μ); (2.38)

correspondingly, its high-fidelity representation VkyNk
(μ) ∈ R

Nh is computed as

QNk
(μ)vk+ 1

2
(μ) = VkA−1

Nk
(μ)VT

k vk+ 1
2
(μ) = VkyNk

(μ). (2.39)

Following a similar argument to the one used for the Richardson method in Section 2.2.1,
and exploiting the expressions of the Krylov basis given in Algorithm 3, we can find a
formula which allows to compute yk(μ) without explicitly solving problem (2.36), thus
playing the same role played by (2.13) in the Richardson method. The most suitable
initial guess is the solution of the RB system, we therefore set u0(μ) = V0A−1

N0
(μ)VT

0 f(μ),

48

2.2. Multi space RB preconditioners for elliptic PDEs

which yields

r0(μ) = f(μ) − Ah(μ)u0(μ), β(μ) = ‖r0(μ)‖2, (2.40)
v1(μ) = r0(μ)/β(μ).

Following (2.36), the first preconditioner M−1
1 (μ) must precondition the problem

Ah(μ)y1(μ) =
(
INh

− Ah(μ)P−1(μ)
)
v1(μ) =

1
β(μ)

(
INh

− Ah(μ)P−1(μ)
)
r0(μ),

whose true high-fidelity solution y1(μ) has the following form:

y1(μ) = A−1
h (μ)

(
INh

− Ah(μ)P−1(μ)
)
v1(μ)

=
1

β(μ)
A−1

h (μ)r0(μ) − P−1(μ)v1(μ)

=
1

β(μ)
A−1

h (μ)
(
f(μ) − Ah(μ)u0(μ)

)
− P−1(μ)v1(μ)

=
1

β(μ)
A−1

h (μ)
(
Ah(μ)u(μ) − Ah(μ)u0(μ)

)
− P−1(μ)v1(μ)

=
1

β(μ)

(
u(μ) − u0(μ)

)
− P−1(μ)v1(μ).

We now proceed recursively, supposing to have built our preconditioner up to step k, and
show how to build the (k + 1)-th step. Following (2.36), yk+1(μ) must have the form

yk+1(μ) = A−1
h (μ)vk+1(μ) − P−1(μ)vk+1(μ), (2.41)

where vk+1(μ) is the (k + 1)-th Krylov basis, that is (thanks to Algorithm 3)

vk+1(μ) =
1

hk+1,k

(
Ah(μ)M−1

k (μ)vk(μ) −
k∑

j=1
hj,kvj(μ)

)
k = 1, 2, . . . ,

thus yielding for k = 1, 2, . . .

yk+1(μ) =
1

hk+1,k

(
M−1

k (μ)vk(μ) −
k∑

j=1
hj,kA−1

h (μ)vj(μ)
)

− P−1(μ)vk+1(μ).

Finally, by recalling that zk(μ) = M−1
k (μ)vk(μ), and expressing A−1

h (μ)vk(μ) = yk(μ)+

49

Chapter 2. MSRB preconditioners for parametrized PDEs

P−1(μ)vk(μ) when evaluating equation (2.41) at step k, we obtain the following relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(μ) =
∥∥∥f(μ) − Ah(μ)u0(μ)

∥∥∥
2
,

y1(μ) =
1

β(μ)
(
u(μ) − u0(μ)

)
− P−1(μ)v1(μ),

yk+1(μ) =
1

hk+1,k

[
zk(μ) −

k∑
j=1

hj,k

(
yj(μ) + P−1(μ)vj(μ)

)]
−P−1(μ)vk+1(μ) k ≥ 1.

(2.42)

Compared to the Richardson case, the snapshots of the k-th step depend on those
obtained at all previous steps, hence requiring a higher data storage. However, FGMRES
generally allows to reach convergence in a much slower number of iterations than the
ones needed by the Richardson method.

2.3 Algorithmic procedures

In this section we detail the procedures required to build and use the MSRB preconditioner,
by splitting the computation in an offline (typically expensive) and an online phase,
where the FE problem (2.1) is solved for a new instance of μ. Propositions 2.2.1 and
2.2.2 state that the error e(k)(μ) and the residual r(k)(μ) of the Richardson method decay
as the product of the tolerances δRB,j , j = 0, 1, . . . used to build the reduced spaces. If
we employ a stopping criterion based on the relative residual for the Richardson method

• this means that, given a tolerance εr, the method reaches convergence at iteration
m such that

‖rm(μ)‖2
‖f(μ)‖2

≤ εr, (2.43)

• we must build the RB spaces VN0 , . . . , VNk
, such that

δ =
k∏

j=0
δRB,j ≤ εr. (2.44)

In other words, we require that the combination of all RB spaces yields an error which is
bounded by the target tolerance εr of the Richardson method.

2.3.1 Offline phase

During the offline phase, we build the structures needed for handling the application of
QMSRB,k(μ) to any new possible instance of the parameter online, namely the RB spaces
Vk, k = 0, 1, . . . and the corresponding coarse operators. In the algorithms we propose,

50

2.3. Algorithmic procedures

we employ POD to build the basis for the RB spaces, whose construction is performed
iteratively and according to the following steps:

1) we choose ns parameter values
{
μi

}ns

i=1 and compute the snapshots
{
u(μi)

}ns

i=1 as
the high-fidelity solutions of (2.1) for μ = μi, i = 1, . . . , ns;

2) following the standard RB method, we build VN0 with POD on this set of snapshots,
where N0 is chosen as 5% to 20% of ns, depending on the problem at hand;

3) we iteratively build the snapshots
{
e(k−1/2)(μi)

}ns

i=1 (for the Richardson case with
(2.13)) or

{
yk(μi)

}ns

i=1, (for the FGMRES case by relying on (2.42)) and construct
the RB space for coarse operator k = 1, 2, . . . by using POD. In particular, Algorithm
1 with a tolerance δRB,k is employed for building the RB space k. We highlight
that the construction of the k-th space, employing equation (2.13) or (2.42), does
not require to solve any additional linear system;

4) we build an affine representation of ANk
(μ), k = 0, 1, . . ., that is, build the matrices{

Aq
Nk

}Qa

q=1, k = 0, 1, . . . as defined in (2.27).

In order to design our algorithm, a POD approach has been preferred to a (weak) greedy
approach because of the intrinsic nonaffinity of P−1(μ), that appears in relation (2.13).
Indeed, a greedy algorithm would build the reduced space relying on a fast evaluation
of the error (or a residual-based a posteriori error bound) for a large number of offline
parameters in a training set Ξtrain, typically computed with Nh-independent routines. On
the other hand, computing the error or the residual for the equation (2.13) requires Nh-
dependent operations, which would yield extremely huge offline costs for each μ ∈ Ξtrain.
Relying on a POD approach makes the proposed technique also feasible in view of more
involved applications (e.g. nonlinear problems) where residual-based a posteriori error
bounds are not available. On the other hand, we underline that the hypothesis (2.22)
of Proposition 2.2.1 holds only for a training set Ξtrain ⊂ D when the space VNk

are
constructed, for instance, relying upon a greedy algorithm with a prescribed tolerance
δk = δRB,k on the error and ‖ · ‖ = ‖ · ‖Xh

, where Xh is a symmetric positive definite
matrix used to orthonormalize the RB functions. If we employ POD with a prescribed
tolerance δRB,k on a set of training snapshots for the sake of space construction, hypothesis
(2.22) does not hold, even if it is assessed from a numerical standpoint, since by solving
the reduced problem relying on these reduced space provides an approximate solution
e(k−1/2)

Nk
whose corresponding relative error ‖e(k−1/2) − Vke(k−1/2)

Nk
‖Xh

/‖e(k−1/2)‖Xh
is of

the order of δRB,k. Similarly, the same is observed when considering the decay of residual
in (2.24). Further discussions are reported for the test case I in Section 2.4.1.

Regarding the choice of the tolerances δRB,k, k = 0, 1, . . . , (and, consequently, of the
number Nk, k = 0, 1, . . . , of basis functions) for each RB space, we can follow two
approaches:

51

Chapter 2. MSRB preconditioners for parametrized PDEs

• fixed accuracy: all the tolerances {δRB,k}k are chosen equal to the same value δRB ,
that is δRB,k = δRB for any k. This choice leads to RB coarse operators which
provide a constant accuracy, leading the error norm to decrease at a fixed rate at
each iteration. However, the RB spaces the dimension increases with k, leading to
a larger computational time to assemble and solve the resulting RB system.

• fixed dimension: we build each RB space prescribing the same space dimension N ,
i.e. Nk = N, k = 0, 1, This choice is more convenient when we are dealing with
problems featuring less smooth dependence on the parameter μ, for which the slow
decay of the POD singular values would require a large number of RB functions.
By limiting the number of RB functions in each space, an overhead caused by a
too large RB dimension is avoided, preserving the efficiency of the preconditioner.

Since we need to construct a sufficiently large number of spaces such that inequality (2.44)
is satisfied, in the former approach we shall implicitly fix the number of spaces larger than
�log(εr)/ log(δRB)�, which however may lead to a huge number of RB functions employed
at each RB space. In the latter, instead, we are not limiting the number of spaces. The
detailed algorithms corresponding to these two approaches are reported in Algorithm
4 and 5, respectively. In Section 2.4 we report results for both these approaches. Here
and in the following, we report the algorithms considering the FGMRES method for
ease of presentation and since the it is more largely employed within this thesis; in
the case the Richardson algorithm is used instead, the corresponding set of snapshots{
e(k−1/2)(μi)

}ns

i=1 are computed by relying on (2.42). We refer to [Dal Santo et al., 2017a]
for a more in-depth discussion on the Richardson method.

Algorithm 4 MSRB - Fixed Accuracy

1: procedure MSRB-fixedAccuracy(
{
μi

}ns

i=1, εr, δRB)
2: Set the number of RB spaces L = �log(εr)/ log(δRB)�
3: Compute an (approximated) affine decomposition of A(μ)
4: Compute

{
u(μi)

}ns

i=1 and set S = [u(μ1), . . . , u(μns)]
5: Build the basis V0 = POD(S, δRB)
6: for k = 1, . . . , L − 1 do
7: Compute new snapshots yk(μi), i = 1, . . . , ns, with (2.42)
8: Set S = [yk(μ1), . . . , yk(μns)]
9: Vk = POD(S, Xh, δRB)

10: Build RB affine matrices
{
Aq

Nk

}Qa

q=1
11: end for
12: end procedure

2.3.2 Online phase

In the online phase, we aim at computing the solutions of (2.1) for new instances of
the parameter μ, which have not been considered during the offline phase. We thus

52

2.4. Numerical experiments for elliptic problems

Algorithm 5 MSRB - Fixed Dimension

1: procedure MSRB-fixedDimension(
{
μi

}ns

i=1, εr, N)
2: Compute an (approximated) affine decomposition of A(μ)
3: Compute

{
u(μi)

}ns

i=1 and set S = [u(μ1), . . . , u(μns)], k = 0
4: while

∏
k

δRB,k > εr do

5: Vk = POD(S, Xh, N) and k = k + 1
6: Build RB affine matrices

{
Aq

Nk

}Qa

q=1
7: Compute new snapshots yk(μi), i = 1, . . . , ns, with (2.42)
8: Set S = [yk(μ1), . . . , yk(μns)]
9: end while

10: end procedure

need to compute the coarse operators
{
Qμ

Nk

}
k

through (2.27) and apply the FGMRES
(Richardson) algorithm using QMSRB,k(μ) in the preconditioning step. The operations
required by the matrix-vector multiplication QMSRB,k(μ)vk(μ) are detailed in algorithm
6; step 3 corresponds to the solution of the RB problem

ANk
(μ)yNk

(μ) = VT
k vk+ 1

2
(μ), (2.45)

determined in our implementation by using the LU factorization of the matrix ANk
(μ).

If the number of iterations required to reach a certain tolerance in the FGMRES method
exceeds the number of RB coarse operators constructed, one can either continue to use
the last coarse operator in the remaining operations or drop steps 2-3 of Algorithm 6.

Algorithm 6 Computation of QMSRB,k(μ)vk(μ)

1: apply the inverse of the fine component P(μ): w(k) = P−1(μ)vk(μ);
2: build the residual vk+ 1

2
(μ) = vk(μ) − A(μ)w(k);

3: apply the RB coarse component w(k+ 1
2) = QNk

(μ)vk+ 1
2
(μ);

4: build the preconditioned residual zk(μ) = w(k) + w(k+ 1
2).

2.4 Numerical experiments for elliptic problems

Several numerical experiments involving the numerical solution of linear systems arising
from the FE discretization of advection-diffusion PDEs are presented to illustrate the
capability of the proposed MSRB-preconditioner. We first focus on heat diffusion in a
domain showing a piecewise constant (affinely parametrized) thermal conductivity, to
simulate the effect of different material properties in the domain (test case I). Then, we
turn our attention to a thermal beam with a nonaffine thermal conductivity which is
localized in space (test case II).

As fine preconditioner component, we employ P(μ) = PBJ(μ), a Block Jacobi precon-

53

Chapter 2. MSRB preconditioners for parametrized PDEs

ditioner, where each block represents the restriction of the computational domain Ω
to the degrees of freedom of a subdomain selected by Parmetis1 at the mesh level.
If the number of iterations required by the iterative solver to reach the prescribed
tolerance εr exceeds the number of spaces (which is fixed once the offline phase has
been completed) the final iterations just employ the fine preconditioner, i.e. we set
PMSRB,k(μ) = P(μ) ∀k ≥ L. Concerning the solutions of the RB systems, i.e. the
computation of A−1

Nk
(μ) in (2.39), the very small number of RB functions yields RB

problems of small size; consequently a sequential LU factorization is employed to solve
either (2.11) or (2.38). For all simulations we report the number of spaces L and RB
functions Nk, k = 0, 1, . . . produced by Algorithm 4 or 5, the results obtained online with
the MSRB preconditioner averaging on Nonl = 250 parameters and the computational
time toff required by the offline phase. We compare the results with those obtained using
an algebraic multigrid (AMG) preconditioner PML(μ), that exploits an exact coarse
component and 2-sweeps Gauss-Seidel smoother obtained with default settings from the
Trilinos package ML [Gee et al., 2006], which is used as preconditioner in the GMRES
method (noted as GML).

2.4.1 Test case I: diffusion with nonaffine right hand side

We consider a parametrized diffusion problem in a blockwise cubic domain, including
anisotropy effects in the diffusion tensor and a nonaffine right hand side to model a
source localized in space.

Problem setting

Consider Ω = (0, 1)3 ⊂ R
3, such that ∂Ω = ΓD ∪ ΓN with

◦
ΓD ∩

◦
ΓN = ∅, we subdivide

it into J subregions Ωj , j = 1, . . . J s.t. Ω̄ = ∪J
j=1Ω̄j and

◦
Ωi ∩

◦
Ωj , i �= j. More

precisely, we set J = 4 and subdivide Ω such that
◦
Ω1 = (0, 1) × (0, 0.5) × (0, 0.5),

◦
Ω2 = (0, 1)×(0, 0.5)×(0.5, 1),

◦
Ω3 = (0, 1)×(0.5, 1)×(0, 0.5),

◦
Ω4 = (0, 1)×(0.5, 1)×(0.5, 1).

We consider problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∇ · (K(μ)∇u(μ)) = f(μ) in Ω
u(μ) = 0 on ΓD

K(μ)∇u(μ) · �n = 0 on ΓN ,

(2.46)

1http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

54

2.4. Numerical experiments for elliptic problems

Figure 2.1 – Test case I: the computational domain Ω is divided into four regions, each
featuring a constant diffusivity value νj , j = 1, . . . , 4. The coefficients νj , , j − 1, 2, 3 are
taken as problem parameters, cf. (2.48), whereas we fix the value ν4 = 1.

which is a special case of (1.10) where �b(μ) = �0 and

K(μ) = K(x; μ) = ν(x)

⎡⎢⎣1 0 0
0 1 0
0 0 10−2

⎤⎥⎦ .

Here ν(x) > 0 is the piecewise constant material property on each Ωj , such that
ν(x) =

∑4
j=1 νjXΩj , where XΩj is the indicator function that is equal to 1 on Ωj and 0

otherwise, and

ΓN =
{

x = (x1, x2, x3) ∈ Ω̄ : x1 = 1
}

, ΓD = ∂Ω\ΓN .

We provide in Figure 2.1 a sketch of the subdivision of the domain. We consider as
source term the following parameter dependent function

f(μ) = f(x; μ) = σ +
1
σ

exp
(‖x − x0‖2

σ

)
, (2.47)

that is, a Gaussian function centered at x0 ∈ Ω and rescaled by a factor σ > 0.

We parametrize the problem with respect to the diffusion coefficients νj , j = 1, . . . , J − 1,
the coordinates x0 and the scaling factor σ appearing in the definition of (2.47), leading
to the 7-dimensional parameter vector:

μ = (ν1, . . . , ν3, x0, σ) ∈ D = [0.1, 1]J −1 × [0.4, 0.6]3 × [σmin, 0.5] ⊂ R
7, (2.48)

where σmin > 0; on the other hand, we fix the value of the coefficient ν4 to 1. The localized
(in space) parametrized nature of f(μ), together with the varying diffusion coefficients
yield a problem which is challenging from the parameter viewpoint, as it is hardly solvable

55

Chapter 2. MSRB preconditioners for parametrized PDEs

(a) (0.1, 0.1, 0.1, 0.4, 0.4, 0.4, 0.05) (b) (1, 1, 1, 0.6, 0.6, 0.6, 0.5) (c) (1, 0.5, 1, 0.5, 0.5, 0.5, 0.2)

Figure 2.2 – Test case I: example of solutions for different values of μ with a null Neumann
condition on x = 1.

accurately by the standard RB method due to the nonaffinely parametrized source term
f(μ). As we will see in the next sections, its localized nature requires a large amount of
DEIM basis functions to accurately reconstruct it, significantly hampering the efficiency
of the RB approximation. Moreover, multilevel preconditioners are known to be the
state-of-the-art technique for second-order symmetric elliptic problems, however the
anisotropy appearing in K(μ) significantly lowers its capabilities with respect to the
isotropy case.

For the sake of simplicity, we consider homogeneous Dirichlet and Neumann boundary
conditions, although the whole framework can be easily adapted to the case of nonho-
mogeneous (parametrized) boundary conditions in a straightforward way. Moreover,
in all simulations, we employ linear piecewise continuous FE tetrahedra on structured
meshes as high-fidelity discretization. Examples of solutions obtained for different values
of parameters, are reported in Figure 2.2. POD is always run with ns = 750 snapshots
with respect to the scalar product induced by the symmetric positive definite matrix Xh,
which represents the H1

0 (Ω) scalar product on Vh. A stopping criterion based on the
Euclidean norm of the (finite element vector of the) residual, rescaled with respect to the
Euclidean norm of the right hand side of the system has been used for all the tests, with
a tolerance set to 10−7. Furthermore, we build the RB spaces such that inequality (2.44)
is satisfied with δ = 10−9, since POD is optimal in the sense of minimizing the sum of
the squared projection errors onto the reduced space evaluated on the selected snapshots,
when the reduced solution for a different parameter is computed, the corresponding error
can be slightly larger. Results for both the Richardson and the FGMRES method are
presented.

Numerical results for the Richardson method

We start by considering the Richardson method with a computational mesh leading to
Nh = 365′254 (run on Ncore = 96 cores and with σmin = 0.25) and assess the accuracy of

56

2.4. Numerical experiments for elliptic problems

Table 2.1 – Test case I: Richardson method results with P1 FE: δRB,k = 0.001, k = 0, . . . 2.
We report the dimension of the RB spaces Nk and the average accuracy ξ

(k)
RB obtained

online for k = 0, . . . 2.

k 1 2 3
Nk 45 187 702
ξ

(k)
RB 2.5e-02 1.1e-02 3.9e-02

Table 2.2 – Test case I: Richardson method results with P1 FE: δRB,k = 0.1, k = 0, . . . 8.
We report the dimension of the RB spaces Nk and the average accuracy ξ

(k)
RB obtained

online for k = 0, . . . 8.

k 1 2 3 4 5 6 7 8 9
Nk 5 19 40 81 148 228 319 387 386
ξ

(k)
RB 4.3e-01 2.3e-01 3.3e-01 2.7e-01 2.1e-01 2.2e-01 2.5e-01 3.3e-01 4.0e-01

the RB solvers employed within the MSRB preconditioning strategy, to verify that the
residual decays with a rate proportional to the tolerances employed to construct the RB
spaces. Consequently, we compute the coefficients ξ

(k)
RB(μ), k = 0, 1, . . . , L − 1 as

ξ
(k)
RB(μ) =

∥∥r(k−1/2)(μ) − Ah(μ)QNk
(μ)r(k−1/2)(μ)

∥∥
X−1

h∥∥r(k−1/2)(μ)
∥∥

X−1
h

k = 0, . . . , L − 1,

to measure the accuracy of the RB coarse component employed at step k. In fact, ξ
(k)
RB(μ)

represents the RB residual associated to error equation (2.5) at iteration k; we denote
by ξ

(k)
RB the corresponding quantity obtained by average over the parameters considered

online. We build the MSRB preconditioner with the fixed accuracy approach (Algorithm
4) and:

i) δRB,k = 0.001, yielding the construction of L = 3 RB spaces,

ii) δRB,k = 0.1, yielding L = 9 RB spaces.

In Table 2.1 and 2.2 the results corresponding to cases i) and ii) are reported: the
dimension Nk of the RB spaces and the obtained average coefficients ξ

(k)
RB. All the RB

spaces provide a fixed online accuracy ξ
(k)
RB, equal to about 10−2 in the first case, and

10−1 in the second case, thus yielding a constant decay of the residual.

The results show that generating different levels with the same tolerance yields RB spaces
whose dimensions grow with the iteration count k, see Table 2.1-2.2. This fact is also
confirmed by the decay of the eigenvalues of the correlation matrices Ck = ST

k XhSk, k =

57

Chapter 2. MSRB preconditioners for parametrized PDEs

0 100 200 300 400 500 600 700 800

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

σ
i

k=0
k=1
k=2

(a) δRB,k = 0.001, , k = 0, 1, 2

0 100 200 300 400 500 600 700 800

i

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

σ
i

k=0
k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8

(b) δRB,k = 0.1, , k = 0, . . . , 8

Figure 2.3 – Test case I: eigenvalues of the correlation matrix Ck, k = 0, . . . , L − 1,
Nh = 365′254. As the iteration k increases, the decay of the eigenvalues is less steep,
leading to RB spaces with more basis functions to reach the same tolerance.

0, L − 1, reported in Figure 2.3 for L = 3, 9. Here

Sk = [e(k−1/2)(μ1)| . . . |e(k−1/2)(μns)]

denotes the snapshots matrix employed for the construction of level k. As k grows, the
decay of the eigenvalues is slower, so that larger RB spaces are needed to reach the
same tolerance. This behavior can be ascribed to the fact that at step k the manifold
Mk =

{
e(k−1/2)(μ), μ ∈ D

}
is less regular compared to M0, . . . , Mk−1: the higher k,

then the more noisy the pattern of the error, the smaller its magnitude and the more
difficult its approximation.

Once a new instance of the parameter μ is considered online, the linear system with
the MSRB-preconditioned Richardson method employs on average 5 iterations to reach
convergence in case i) and 13 in case ii), thanks to the fast convergence obtained by
using accurate RB coarse corrections.

Analysis with respect to the mesh size

From now on, we employ the FGMRES for all next simulations. We start by carrying
out an analysis with respect to three different grids whose characteristic dimensions are
h = 0.05, 0.025, 0.0125, leading to dimensions Nh = 365′254, 2′887′193 and 22′767′295,
respectively, for the high-fidelity FE approximation. Similarly to what previously done,
we choose σmin = 0.25 and construct the RB spaces by POD with ns = 750 snapshots.
These simulations have been carried out with 96, 768, 6144 cores, respectively, in order
to maintain the same number of degrees of freedom (about 3800) per core. We compare

58

2.4. Numerical experiments for elliptic problems

the results with those obtained using an algebraic multigrid preconditioner PML(μ) from
ML package [Gee et al., 2006] of Trilinos, which exploits an exact coarse component
and 2-sweeps Gauss-Seidel smoother and with the GCRO-DR Krylov subspace recycling
method proposed in [Parks et al., 2006], where PML(μ) is again used as preconditioner,
for sequences of linear systems with varying matrices and right hand sides. The latter
method combines the optimal truncation strategy of GCRO [De Sturler, 1999] with
deflation employed in GMRES with deflated restarting, GMRES-DR [Morgan, 2002].
Both techniques are used with default settings stated by the Trilinos library.

The results are reported in Table 2.3, 2.4. The computational time employed online to
solve the linear system (2.1) using PMSRB,k(μ) as preconditioner for the new instances
of the parameter is not highly impacted by the FE dimension, since the number of
RB coarse components and their dimensions are not significantly affected by the FE
dimension. Indeed, the online computational time tonl

MSRB and the number of iterations
are always lower than the ones obtained either by PML(μ) (tGML) or GCRO-DR (tG-DR),
for both the fixed dimension and the fixed accuracy approaches. Moreover, we notice that
the MSRB preconditioner built with the fixed accuracy approach features a faster online
solution and a less expensive offline phase than the one built with the fixed dimension
approach. In Table 2.3 and 2.4 the break-even point (BEP), quantifying the number of
online evaluation needed to repay the offline phase, is also reported. This criterion is
based on the wall time comparison, where

BEP =
toff

min{tGML, tG-DR} − tonl
MSRB

.

Here toff denotes the wall time required by the offline computation, i.e. the construction
of the RB coarse components, and is given by the sum of tns , the time for the snapshots
computation, and the time tPOD for building the basis with POD; as a matter of fact,
toff = tns + tPOD. On the other hand, tGML, tG-DR and tonl

MSRB denote the wall times
needed to solve the FE linear system (2.1) for any new instance of μ during the online
phase using the preconditioner PML(μ), the GCRO-DR method and the preconditioner
QMSRB,k, respectively.

The larger the FE dimension, the lower the BEP (up to 1067 and 1240 parameters in the
case of the finest grid, depending on the construction approach); indeed, by increasing Nh,
the use of the MSRB preconditioner is more convenient compared to the use of PML(μ) or
the GCRO-DR method, even though a more demanding offline phase must be performed.
In Figure 2.4a and 2.4b the speedup obtained with respect to the most convenient choice
between PML(μ) and GCRO-DR technique and the BEP are reported as function of
the FE dimension. By comparing these quantities for both the fixed dimension and the
fixed accuracy approaches, we conclude that the larger the FE dimension, the higher
the speedup and the lower the break-even point for both approaches. In the case with
Nh = 22′767′295, both PML(μ) and the GCRO-DR perform very poorly due to the very

59

Chapter 2. MSRB preconditioners for parametrized PDEs

large FE dimension and the corresponding huge communication costs; in particular the
latter succeeds in reducing the time of about 10% by recycling the Krylov subspace.
On the other hand, the MSRB preconditioner employs embarrassingly parallel fine and
coarse components, and the linear system (2.1) is solved by the MSRB preconditioned
FGMRES up to 70 (resp. 50) faster than either PML(μ) or GCRO-DR for the fixed
accuracy (resp. fixed dimension) approach. In terms of memory requirements, the fixed
accuracy approach (entailing the storage of about 1050 FE vectors to build the RB spaces
for the problem at hand) is less demanding than the fixed dimension approach (about
1400 FE vectors). These requirements make data storage related to our preconditioners
heavier than the one required by the ML preconditioner, although this latter is used
only for a single-instance of the parameter, if no updating or recycling techniques are
employed. Nevertheless, compared to the standard RB method, the number of FE vectors
stored by our preconditioners is comparable since it is an intrinsic fact caused by the RB
method employed by the coarse operators.

Table 2.3 – Test case I: grid analysis results for FGMRES method with fixed accuracy
approach, L = 3, δRB,k = 0.001, ∀k, ∼ 3800 dofs per CPU. Times are in seconds.

Ncore Nk tonl
MSRB(Itonl) tGML(It) tG-DR(It) toff tns tPOD BEP

96 49 296 725 0.34 (5) 0.59 (28) 0.48 (28) 1161.21 1071.66 89.55 4606
768 48 279 721 0.46 (9) 1.91 (41) 2.29 (38) 2872.27 2746.07 126.20 1989
6144 49 269 713 0.75 (12) 55.73 (54) 49.98 (53) 56768.20 56486.86 281.34 1067

Table 2.4 – Test case I: grid analysis results for FGMRES method with fixed dimension
approach, Nk = 100 ∀k, ∼ 3800 dofs per CPU. Time are expressed in seconds.

Ncore L tonl
MSRB(Itonl) tGML(It) tG-DR(It) toff tns tPOD BEP

96 15 0.43 (13) 0.59 (28) 0.48 (28) 4546.21 4390.47 155.74 28448
768 14 0.68 (25) 1.91 (41) 2.29 (38) 6775.94 6597.13 178.81 5517
6144 13 1.19 (40) 55.73 (54) 49.98 (53) 65437.90 64951.30 486.60 1240

Scalability test

In this section we test the scalability capabilities of the MSRB preconditioner and
compare them with the ones obtained with the AMG preconditioner when P2 FE basis
functions are employed; the dimension of the FE linear system is Nh = 2′848′000. We
keep the same setting of the previous tests and use both a fixed accuracy (Table 2.5)
and fixed dimension (Table 2.6) approach. We build three RB coarse operators with
δRB,k = 10−3 with the former approach, whereas we set Nk = 150 for any k in latter,
which leads to the construction of eight RB coarse corrections in all the tests where
it is employed. As a matter of fact, the computational times during the online phase
dramatically reduces when using the MSRB preconditioner. This is due to the fact the
proposed preconditioner is composed of two embarrassingly parallel components: the
RB coarse operator entails a little cost since its dimension is very limited (its size is at
most 700 in the last RB operator for the fixed accuracy approach), whereas the fine

60

2.4. Numerical experiments for elliptic problems

10 5 10 6 10 7 10 8

N
h

0

10

20

30

40

50

60

70

80

m
in

(t
M

L
, t

G
C

R
O

-D
R
)

/ t
M

S
R

B

Fixed Accuracy
Fixed Dimension

(a) Speedup.

10 5 10 6 10 7 10 8

N
h

0

0.5

1

1.5

2

2.5

3

B
E

P

×10 4

Fixed Accuracy
Fixed Dimension

(b) Break-even point.

Figure 2.4 – Test case I: speed up and break-even point (BEP) as function of Nh for
both fixed accuracy and fixed dimension approaches. Time are expressed in seconds.

Table 2.5 – Test case I: scalability analysis results for FGMRES method with fixed
accuracy approach, δRB,k = 10−3 ∀k. Time are expressed in seconds.

Ncore Nk tonl
MSRB(Itonl) tGML(It) toff

64 46 265 699 4.67(2) 6.77(59) 26626.7
128 46 260 694 1.91(2) 3.73(59) 12167.1
256 46 262 700 0.93(3) 4.36(60) 8887.1
512 46 259 701 0.67(3) 7.84(92) 11360.9
1024 46 255 698 0.43(3) 6.78(70) 10109.6

grid preconditioner is a Block Jacobi operator which does not require communication.
This provides a good overall scalability, as shown in Figure 2.5a, where we report the
time entailed by the MSRB preconditioner as function of the number of cores Ncore to
assemble the preconditioner and solve the FE linear system. On the other hand, when
the number of cores increases, the computational time provided by the ML operator is
stuck due to the communication required by the prolongation and restriction operators:
the larger the number of cores, the more convenient the use of a MSRB preconditioner;
in fact its use is up to 20 times faster than employing PML(μ), as reported in Figure
2.5b. The computational time entailed by the fixed dimension approach is lower since
the size of the RB matrices is smaller, thus yielding to a faster construction and LU
factorization of ANk

(μ), k = 0, . . . , L − 1. This is particularly evident when the number
of cores grows, since the construction and application time of PBJ(μ) gets milder, hence
the one of the RB coarse operators become relatively more important. Furthermore, the
number of iteration Itonl is about the same and ranges from 2 to 4 in all the simulations
when using the MSRB preconditioner; instead about 60 or more iterations are needed
when the ML preconditioner is used.

61

Chapter 2. MSRB preconditioners for parametrized PDEs

Table 2.6 – Test case I: scalability analysis results for FGMRES method with fixed
dimension approach, Nk = 150 ∀k. L = 8 RB coarse operators are produced by
Algorithm 5 in all the cases. Time are expressed in seconds.

Ncore tonl
MSRB(Itonl) tGML(It) toff

64 4.68(3) 6.77(59) 60821.5
128 1.9(3) 3.73(59) 25162.1
256 0.83(3) 4.36(60) 13457.3
512 0.61(4) 7.84(92) 15067
1024 0.32(3) 6.78(70) 11298.7

10 2 10 3

N
core

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t M
S

R
B

on
l

fixed accuracy
fixed dimension
ideal

(a) Computational time as function of the number
cores Ncore.

10 2 10 3

N
core

0

5

10

15

20

25

t M
L
 /

t M
S

R
B

on
l

fixed accuracy
fixed dimension

(b) Speedup with respect the use of PML(μ).

Figure 2.5 – Test case I: scalability and speed up as function of Ncore for both fixed
accuracy and fixed dimension approaches. Time are expressed in seconds.

Comparison with RB-DEIM

A natural question arising in this context is about the comparison, in terms of both
accuracy and efficiency, between the proposed approach (MSRB preconditioning) and
the classical RB method. In this latter case, the solution of system (2.1) is approximated
by the one of the RB system (1.39). In this section we compare the results obtained
with the standard RB method with the ones computed with the FGMRES method
preconditioned with the proposed MSRB preconditioner, showing results for the FE grid
with Nh = 2′887′193.

At first, we notice that the function (2.47) nonaffinely depends on the parameter μ,
leading to a nonaffine right hand side f(μ) in (2.1). The nonaffine dependence of the
operators is one of the most limiting bottlenecks of the standard RB method, as it does
not allow to assemble the RB arrays independently from the FE dimension and gain the
maximum speed up with respect to the high-fidelity simulation. In our case, we employ
the DEIM algorithm [Chaturantabut and Sorensen, 2010], see Section 1.3.2, to deal with
the nonaffine right hand side. This latter is approximated as a linear combination of

62

2.4. Numerical experiments for elliptic problems

properly chosen DEIM basis functions up to a certain tolerance δDEIM, which is plugged
in the DEIM algorithm. We use the shorthand notation RB-DEIM to indicate the RB
method which exploits the DEIM algorithm to compute an affine approximation of the
right hand side. It is well known that, on one hand, the tolerance δDEIM limits the
accuracy of the RB-DEIM approximation and, on the other hand, it may yield a huge
overhead in the online phase due to a (possibly) large number of DEIM basis functions.
This is indeed the case of the data in (2.47) due to the localized (in space) nature of
the source term, which depends on the value of σ (the smaller σ, the more localized the
source term).

We employ RB-DEIM with different DEIM tolerances δDEIM = 10−1, 10−3, 10−5, 10−7

and values of σmin = 0.1, 0.05, 0.01, such that the parameter σ ∈ [σmin, 0.5]. The RB
spaces are built through POD algorithm by setting a tolerance of εPOD = 10−9 for all
the tests; we choose a number of snapshots equal to ns = 1000 for σmin = 0.1, ns = 2000
for σmin = 0.05 and ns = 3500 for σmin = 0.01, respectively. An increasing number of
snapshots is chosen in order to properly sample the parameter, which requires a more
accurate sampling as σmin decreases. To assess the accuracy of the RB solution, the
average FE relative residual computed in the RB solution, which is defined as

rRB(μ) =
‖f(μ) − Ah(μ)VuN (μ)‖2

‖f(μ)‖2
, (2.49)

is evaluated and averaged over Nonl = 250 online parameters. We denote by rRB the
corresponding averaged quantity.

In Figure 2.6a rRB is reported for different DEIM tolerances δDEIM. The results show
that the accuracy of RB-DEIM is strongly hampered by the tolerance δDEIM; not only, it
is compulsory to use a small value of δDEIM to obtain a very accurate solution. Moreover,
we observe that from a certain point on the residual stagnates to the value 10−5 even if a
smaller δDEIM has been provided. In Figure 2.6b the wall time tonl

RB employed to assemble
and solve the RB problem for a new instance of μ is reported for different values of σmin
as function of δDEIM. The total time to solve the RB problem for a new instance of
the μ is largely affected by the value of σmin and by δDEIM: the smaller the tolerance
of the DEIM algorithm, the bigger the wall time required to compute the RB solution
(even up to 19.87 seconds for σ ∈ [0.01, 0.5] and δDEIM = 10−7). In particular, the large
wall time required when using a small DEIM tolerance is caused by the assembling the
RB right hand side, which depends on the huge number of DEIM basis functions and
the communication needed to compute the coefficients Θ̃q

f , q = 1, . . . , Qf in (1.59), see
Figures 2.7a-2.7b-2.7c, where the time required online for assembling the RB matrix
and right hand side and solve the RB system are reported for different values of σmin

and δDEIM. In Table 2.7 we report the results for the different ranges of σ: the average
relative residual rRB and the wall time tonl

RB for the online computation of the RB solution,
the number Qf of DEIM terms, the offline phase time toff and the snapshots number ns.

63

Chapter 2. MSRB preconditioners for parametrized PDEs

10 -8 10 -6 10 -4 10 -2 10 0

δ
deim

10 -4

10 -3

10 -2

10 -1

r R
B

on
l

σ ∈ [0.10, 0.5]
σ ∈ [0.05, 0.5]
σ ∈ [0.01, 0.5]

(a) Relative residual.

10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1

δ
deim

0

2

4

6

8

10

12

14

16

18

20

t R
B

on
l

σ ∈ [0.10, 0.5]
σ ∈ [0.05, 0.5]
σ ∈ [0.01, 0.5]

(b) Wall times for solving and assembling the
RB problem.

Figure 2.6 – Test case I: average relative RB residual rRB and wall time to solve assemble
and solve the RB-DEIM problem as function of δDEIM for different ranges of σ: the larger
the range, the less efficient the RB-DEIM approximation. Time are expressed in seconds.

By contrast, in the FGMRES method preconditioned with the MSRB preconditioner,
an approximated affine decomposition of the right hand side is not needed, since we
solve the full FE problem, therefore the use of DEIM is not required; as a matter of fact
both the offline time to build a DEIM basis and the online time to assemble the RB
right hand side with (1.62) are saved. In Table 2.8 the results obtained by setting a final
relative tolerance for the FGMRES equal to εr = 10−7 are shown for the fixed dimension
approach. In particular, we report, together with the number L of coarse operators, the
number of RB functions N defining each coarse operator, the wall time tonl

MSRB and the
iterations It required to compute the solution with the MSRB-preconditioned FGMRES
method, the computational time toff of the offline phase and the number of snapshots ns.
For σmin = 0.1, 0.05, 0.01, we have set N = Nk = 180, 300, 600 for any k, respectively.
In all cases, Algorithm 5 has built L = 13 RB spaces, and compared with the results
obtained with the RB-DEIM method, we highlight that:

• the MSRB preconditioner is more insensitive to the range of parameters (and
particularly to the values of σ), whereas the performance of the RB-DEIM method
strongly depends on it;

• as a matter of fact, the wall time for each online solution ranges from 1.37 to
19.87 seconds for RB-DEIM (tonl

RB) and from 1.05 to 1.59 seconds in the MSRB case
(tonl

MSRB);

• the relative residual of the RB-DEIM approximation stagnates at the value of 10−5,
even though a smaller tolerance δDEIM, equal to 10−7, is employed; the MSRB
preconditioning method allows instead to obtain a relative residual lower than the
tolerance εr = 10−7, which is fixed as stopping criterion in the FGMRES algorithm.

64

2.4. Numerical experiments for elliptic problems

10 -5

δ
deim

0

0.2

0.4

0.6

0.8

1

1.2

1.4
t R

B
on

l

Total time
f
N

(μ) construction

A
N

(μ) construction

Solve RB system

(a) σ ∈ [0.1, 0.5].

10 -5

δ
deim

0

0.5

1

1.5

2

2.5

3

3.5

t R
B

on
l

Total time
f
N

(μ) construction

A
N

(μ) construction

Solve RB system

(b) σ ∈ [0.05, 0.5].

10 -5

δ
deim

0

5

10

15

20

t R
B

on
l

Total time
f
N

(μ) construction

A
N

(μ) construction

Solve RB system

(c) σ ∈ [0.01, 0.5].

Figure 2.7 – Test case I: average wall time (seconds) divided into three phases for
computing the RB solution when a new instance of the parameter is considered in the
online phase as function of δDEIM and for different ranges of σ. Time are expressed in
seconds.

This remarkable gain obtained with the MSRB-preconditioned FGMRES with respect to
the standard RB method in both accuracy and efficiency is achieved at the expense of a
significantly higher offline time toff , equal to 50973.70 seconds in the MSRB case and
30804.32 seconds in the RB-DEIM case (for σ ∈ [0.01, 0.5]). This overhead is caused by
the larger number of PODs to be performed and the necessity to build the snapshots
errors with (2.42), however, it is well repaid during the online phase, when the FGMRES
method with the MSRB preconditioner reaches a much more accurate (100 times) result
than the RB-DEIM approach, showing also a relevant speedup, up to almost 12 times
faster of the standard RB method (for σ ∈ [0.01, 0.5]).

For problems involving a nonaffine (left and/or) right hand side, the RB method must
rely on hyper-reduction like DEIM to compute an approximated affine decomposition
of f(μ). In the considered case, the use of DEIM strongly limits the accuracy of the
RB approximation and entails a huge overhead, see Table 2.7. On the other hand,
the MSRB-preconditioned FGMRES method does not require any approximated affine
representation of f(μ), therefore this limitation in accuracy and efficiency does not occur.
As a matter of fact, the proposed preconditioning strategy is well-suited when dealing
with challenging nonaffine PDEs, since it allows to exploit the parameter dependence
overcoming the need to have an accurate affine decomposition of the FE arrays.

65

Chapter 2. MSRB preconditioners for parametrized PDEs

Table 2.7 – Test case I: RB-DEIM results with δDEIM = 10−7 as function of the range
of σ ∈ [σmin, 0.5]. The value of σmin significantly impact on the results obtained by
the RB-DEIM, both in terms of accuracy and efficiency, due to the number N of RB
functions and number Qf DEIM basis functions.

rRB N Qf tonl
RB toff ns

σ ∈ [0.1, 0.5] 3.03e-05 670 196 1.37 7913.75 1000
σ ∈ [0.05, 0.5] 2.22e-05 1055 341 3.65 17562.31 2000
σ ∈ [0.01, 0.5] 6.52e-05 2143 1060 19.87 30804.32 3500

Table 2.8 – MSRB results with fixed dimension approach, with Nk = N, k = 0, 1, . . . , L−1
as function of the range of σ ∈ [σmin, 0.5]. The efficiency is not significantly impacted
by the range of σ, since the MSRB-preconditioning method does not rely on any affine
approximation of the right hand side, avoiding the huge overhead caused by DEIM. Time
are expressed in seconds.

εr L N tonl
MSRB(It) toff ns

σ ∈ [0.1, 0.5] 1.e-7 13 180 1.05 (22) 13820.00 1000
σ ∈ [0.05, 0.5] 1.e-7 13 300 1.00 (15) 26406.40 2000
σ ∈ [0.01, 0.5] 1.e-7 13 600 1.59 (17) 50973.70 3500

2.4.2 Test case II: Thermal beam

The second test case concerns a parametrized thermal beam. In the considered numerical
example, the thermal conductivity α(μ) of the beam features a nonaffine parameter
dependence, which enters in the definition of the stiffness matrix A(μ); as a result, an
exact parameter affine dependence of the matrix cannot be computed. This setting
represents a notable difference with respect to the problem considered in the previous
section, where the FE matrix featured an affine parameter dependence. To overcome this
issue an approximated affine decomposition is recovered with MDEIM and used within
the MSRB-preconditioning framework, as outlined in Section 2.2.4.

Problem setting

Let us consider the domain Ω = (0, 1) × (0, 5) × (0, 0.1) and a diffusion problem under
the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∇ · (α(μ)∇T) = 0 in Ω
α(μ)∇T · �n = h(μ) on Γ1

N

α(μ)∇T · �n = 0 on Γ2
N

T = 1 on ΓD,

(2.50)

where T is the temperature of the beam. In (2.50) we define the boundaries

ΓD =
{
x ∈ Ω̄ : x = 1

}
, Γ1

N =
{
x ∈ Ω̄ : x = 0

}
, Γ2

N = ∂Ω\ΓD\Γ1
N ,

66

2.4. Numerical experiments for elliptic problems

(a) μ = (0.5, 2.5, 0.5, 1) (b) μ = (0.4, 1.94, 0.11, −0.58)

(c) μ = (0.39, 2.33, 0.19, −0.91) (d) μ = (0.2, 0.5, 0.1, −1)

Figure 2.8 – Solution T (μ) for different values of μ computed with P2 finite elements
basis functions, leading to Nh = 2′080′389.

such that ∂Ω = Γ̄D ∪ Γ̄1
N ∪ Γ̄2

N , the parameter vector

μ = (x1
0, x2

0, σ, η0) ∈ [0.2, 0.5] × [0.5, 2.5] × [0.1, 0.5] × [−1, 1] ⊂ R
4

and the coefficients

α(μ) = α(x; μ) = σ +
1
σ

exp
(

−‖x − x0(μ)‖2

σ

)
,

x0(μ) = (x1
0, x2

0, 0.05), h(μ) = η0.

As in the previous test case, the FE approximation of (2.50) leads to the linear system
(2.1), where now the stiffness matrix does not verify the affine property (1.44), due to
the nonaffine nature of the coefficient α(μ). In the following, we use either linear (P1)
or quadratic (P2) basis functions, yielding a dimension of the high-fidelity FE system
equal to Nh = 282′835 and Nh = 2′080′389, respectively. These two problems are run on
64 and 256 cores, respectively. In Figure 2.8, the solutions corresponding to different
instances of the parameter are shown.

Numerical results with varying MDEIM affine approximation

The diffusion coefficient α(μ) non affinely depends on μ, therefore in the following we
employ MDEIM (see Section 1.3.2) to build the approximated affine decomposition
(1.59), up to a certain tolerance δMDEIM, which is then used for building the RB coarse
operators as in (2.29). We then solve the FE linear system with the MSRB-preconditioned
FGMRES method up to a tolerance of 10−6 on the Euclidean norm of the residual rescaled

67

Chapter 2. MSRB preconditioners for parametrized PDEs

with the Euclidean norm of the right hand side. We build L = 4 RB coarse operators
(by adopting a fixed accuracy approach) with tolerance δRB,k = δRB, k = 0, 1, 2, 3, using
either δRB = 10−2 or δRB = 10−3. The offline phase is carried out by using ns = 1500
snapshots for constructing the RB spaces and 500 matrix snapshots for MDEIM; the
singular values σi, i = 1, . . . , 500 obtained by performing SVD on the matrix collecting
these latter snapshots are reported in Figure 2.9. A similar behavior is observed for P1
and P2 FE basis functions, in both cases the decrease of the singular values is slow and
reaches a plateau for i ≥ 250.

The results during the online phase are averaged on Nonl = 250 instances of μ randomly
selected. To evaluate the accuracy of the RB approximation VkyNk

(μ) of the FE solution
yk(μ), we compute the average coefficient

η
(k)
RB(μ) =

∥∥vk+ 1
2
(μ) − A(μ)VkyNk

(μ)
∥∥

2∥∥vk+ 1
2
(μ)‖2

, (2.51)

which corresponds to the relative FE residual evaluated in the RB solution of problem
(2.38) and related to coarse operator k. The value of η

(k)
RB(μ) is strictly related to

the tolerances δRB and δMDEIM used for constructing the RB spaces (δRB) and the
MDEIM affine approximation (δMDEIM); for this latter we report results obtained by
using δMDEIM = 10−l, l = 4, 5, 6, 7. The average η

(k)
RB, k = 0, 1, 2, 3, obtained online

is reported for P1 FE basis functions (Figure 2.10a-2.10b) and P2 FE basis functions
(Figure 2.10c-2.10d) for different values of δRB and δMDEIM. As a matter of fact, when
using δRB = 10−2 (Figure (2.10a)-(2.10c)), online the measured accuracy of the RB
coarse operators is almost constant by varying δMDEIM, and a fixed decay (about 4 · 10−2)
is achieved in the FGMRES residual; indeed, since δRB > δMDEIM, the error generated
by the RB coarse operator is mainly caused by the tolerance δRB = 10−2, which is the
leading term between δMDEIM and itself, and determines the accuracy obtained online,
for any δMDEIM. On the other hand, when using δRB = 10−3 (Figure (2.10b)-(2.10d)),
δRB is the leading term for all MDEIM tolerances but δMDEIM = 10−4, since the accuracy
in this latter case (blue lines) is more affected compared to the others. We remark that
the same behavior is observed for both P1 and P2 FE basis functions.

The number of MDEIM basis functions Qa, the iteration number Itonl, the time tonl
MSRB

to compute the solution during the online phase and the time toff of the offline phase
are reported in Table 2.9 (δRB = 10−2 and P1 FE), Table 2.10 (δRB = 10−3 and P1 FE),
Table 2.11 (δRB = 10−2 and P2 FE) and Table 2.12 (δRB = 10−2 and P2 FE). The online
time tonl

MSRB and the offline time toff are largely affected by δMDEIM. Indeed, the former
is impacted by the assembly of the RB matrices online, while the latter is influenced
during the construction of the affine RB decomposition Aq

Nk
, q = 1, . . . , Qa and both

these operations have a linear complexity with respect to the number of affine terms
Qa. However, the iteration counts for each simulation confirm that the convergence is
always reached in 4 iterations or less, since the accuracy of the RB coarse component

68

2.4. Numerical experiments for elliptic problems

0 50 100 150 200 250 300 350 400 450 500

i

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

σ
i

P1
P2

Figure 2.9 – Test case II: singular values σi, i = 1, . . . , 500 for P1 and P2 FE basis
functions computed by POD within MDEIM algorithm.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
k

10 -2

10 -1

η
R

B
(k

)

δmdeim = 10 -4

δmdeim = 10 -5

δmdeim = 10 -6

δmdeim = 10 -7

(a) P1 FE, δRB,k = 10−2 k = 0, 1, 2, 3.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
k

10 -2

10 -1
η

R
B

(k
)

δmdeim = 10 -4

δmdeim = 10 -5

δmdeim = 10 -6

δmdeim = 10 -7

(b) P1 FE, δRB,k = 10−3 k = 0, 1, 2, 3.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
k

10 -2

10 -1

η
R

B
(k

)

δmdeim = 10 -4

δmdeim = 10 -5

δmdeim = 10 -6

δmdeim = 10 -7

(c) P2 FE, δRB,k = 10−2 k = 0, 1, 2, 3.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
k

10 -2

10 -1

η
R

B
(k

)

δmdeim = 10 -4

δmdeim = 10 -5

δmdeim = 10 -6

δmdeim = 10 -7

(d) P2 FE, δRB,k = 10−3 k = 0, 1, 2, 3.

Figure 2.10 – Test case II: η
(k)
RB as function of k with P1 (top) and P2 FE basis functions

and δRB,k = δRB, k = 0, 1, 2, 3 with δRB = 10−2 (left) and δRB = 10−3 (right).

is very mildly affected by the value of δMDEIM, thanks to the fact that for any chosen
value of δMDEIM, the tolerance δRB is the leading term in (2.30). As a matter of fact, an
extremely accurate approximation of the affine decomposition is not required in practice

69

Chapter 2. MSRB preconditioners for parametrized PDEs

Table 2.9 – Test case II: FGMRES results
with MSRB preconditioner for P1 FE ba-
sis functions, fixed accuracy approach with
δRB,k = 10−2 and L = 4 varying δMDEIM.

δMDEIM Qa Itonl tonl
MSRB (sec) toff (sec)

1e-04 70 4 0.23 4084.55
1e-05 102 3 0.39 4584.39
1e-06 139 3 0.49 5123.29
1e-07 182 3 0.62 5445.38

Table 2.10 – Test case II: FGMRES results
with MSRB preconditioner for P1 FE ba-
sis functions, fixed accuracy approach with
δRB,k = 10−3 and L = 4 varying δMDEIM.

δMDEIM Qa Itonl tonl
MSRB (sec) toff (sec)

1e-04 70 3 0.74 5587.14
1e-05 102 2 0.91 8878.12
1e-06 139 2 1.27 11598.90
1e-07 182 2 1.50 14535.10

Table 2.11 – Test case II: FGMRES results
with MSRB preconditioner for P2 FE ba-
sis functions, fixed accuracy approach with
δRB,k = 10−2 and L = 4 varying δMDEIM.

δMDEIM Qa Itonl tonl
MSRB (sec) toff (sec)

1e-04 69 4 0.45 20723.80
1e-05 102 4 0.59 21544.70
1e-06 139 4 0.74 22779.90
1e-07 183 4 0.87 24916.40

Table 2.12 – Test case II: FGMRES results
with MSRB preconditioner for P2 FE ba-
sis functions, fixed accuracy approach with
δRB,k = 10−3 and L = 4 varying δMDEIM.

δMDEIM Qa Itonl tonl
MSRB (sec) toff (sec)

1e-04 69 2 1.19 24761.50
1e-05 102 2 1.45 31754.10
1e-06 139 2 1.76 35711.00
1e-07 183 2 2.23 44932.00

and it should be avoided, since it causes a significant overhead in the efficiency of the
method without providing any effective benefit. Finally, as a rule of thumb used in the
following numerical examples of this thesis, δMDEIM is chosen trading off between a small
enough and negligible term in (2.30), but a large enough value to avoid any efficiency
overhead at the same time.

2.5 MSRB preconditioners for parabolic PDEs

In this section we extend the MSRB preconditioning framework developed so far to
the case of parametrized unsteady problems; for the sake of synthesis, we focus on the
construction and the application in the case of the FGMRES method, however the
procedures outlined are directly applicable also in the context of Richardson iterations.

2.5.1 MSRB preconditioner construction

Let us start by considering the sequence of parametrized linear systems to be solved for
n = 0, . . . , Nt − 1(

α1
Δt

M(μ) + A(μ)
)

un+1(μ) = fn+1(μ) +
1

Δt
M(μ)un,σ1(μ), (2.52)

with u0(μ) = u0(μ), which arises from the BDF time discretization of the algebraic
dynamical system (1.17). As a matter of fact, the MSRB preconditioning framework is

70

2.5. MSRB preconditioners for parabolic PDEs

straightforwardly applicable to problems as (2.52) by considering the matrix
(α1

ΔtM(μ) +
A(μ)

)
instead of A(μ) in the construction outlined in the previous sections. Following

(2.10), we define our MSRB preconditioner for problem (2.52) as

QMSRB,k(μ) = P−1(μ) + QNk
(μ)

(
INh

−
(

α1
Δt

M(μ) + A(μ)
)

P−1(μ)
)
, (2.53)

where now P(μ) is a fine grid nonsingular preconditioner for the left hand side matrix
in (2.52). When considering a parameter instance μ and time step tn, the FGMRES
preconditioning step at iteration k approximately solves the linear system(

α1
Δt

M(μ) + A(μ)
)

cn
k(μ) = vn

k(μ), (2.54)

where vn
k(μ) is the k-th Krylov basis function. Hence, the RB coarse operator QNk

(μ)
in QMSRB,k(μ) must be trained to approximate the solution of(

α1
Δt

M(μ) + A(μ)
)

yn
k(μ) =

(
INh

−
(

α1
Δt

M(μ) + A(μ)
)

P−1(μ)
)

vn
k(μ). (2.55)

As in the steady case, an approximation of the solution of (2.55) is sought in a Nk-di-
mensional RB space VNk

spanned by solutions of (2.55), this time computed for properly
chosen time steps and parameter values.

We consider the projection matrix Vk ∈ R
Nh×Nk which algebraically represents the RB

space VNk
and we introduce the RB matrices

MNk
(μ) = VT

k M(μ)Vk ANk
(μ) = VT

k A(μ)Vk, (2.56)

we then set the RB coarse operator as the RB low-rank solver for (2.55) on the subspace
Vk, that is,

QNk
(μ) = Vk

(
α1
Δt

MNk
(μ) + ANk

(μ)
)−1

VT
k . (2.57)

As a matter of fact, when using the matrix M−1
k (μ) = QMSRB,k(μ) defined in (2.53) in

the preconditioning step, an approximation yn
Nk

(μ) ∈ R
Nk of the solution of problem

(2.55) is found by solving(
α1
Δt

MNk
(μ) + ANk

(μ)
)

yn
Nk

(μ) = VT
k vn

k+ 1
2
(μ), (2.58)

where vn
k+ 1

2
(μ) =

(
INh

−
(α1

ΔtM(μ) + A(μ)
)

P−1(μ)
)

vn
k(μ), and the high-fidelity repre-

71

Chapter 2. MSRB preconditioners for parametrized PDEs

sentation Vkyn
Nk

(μ) ∈ R
Nh of yn

k(μ) is computed as

QNk
(μ)vn

k+ 1
2
(μ) = Vk

(
α1
Δt

MNk
(μ) + ANk

(μ)
)−1

VT
k vn

k+ 1
2
(μ) = Vkyn

Nk
(μ).

(2.59)

For the efficient assembly of the RB matrix
(α1

ΔtMNk
(μ) + ANk

(μ)
)
, we can rely on the

affine decomposition of MNk
(μ) and ANk

(μ), which is inherited by the affine property
of the FE matrices M(μ) and A(μ). As already discussed, such affine decomposition is
not trivial to be found as a built-in property in engineering application; should M(μ)
and A(μ) not verify such assumption, we (separately) employ MDEIM to obtain an
approximate one, yielding, for k = 0, 1, . . .,

MNk
(μ) ≈ M̃Nk

(μ) =
Qm∑
q=1

Θ̃q
m(μ)VT

k MqVk =
Qa∑
q=1

Θ̃q
a(μ)Mq

Nk

ANk
(μ) ≈ ÃNk

(μ) =
Qa∑
q=1

Θ̃q
a(μ)VT

k AqVk =
Qa∑
q=1

Θ̃q
a(μ)Aq

Nk
.

Then, an approximated RB coarse operator is constructed by substituting ANk
(μ) and

MNk
(μ) in (2.59) with the corresponding MDEIM-approximated ones, that is by setting

QNk
(μ) = Vk

(
α1
Δt

M̃Nk
(μ) + ÃNk

(μ)
)−1

VT
k .

2.5.2 Algorithmic procedures for unsteady problems

In this section we show how to handle the practical construction of a MSRB preconditioner,
and specifically of the RB coarse operators, when dealing with time dependent problems.
To this purpose, we could follow either a fixed accuracy or a fixed dimension approach,
that is we can rely on an equivalent of either Algorithm 4 or 5, where both snapshots
in time and with respect to μ are collected. For the sake of synthesis, we report in
Algorithm 7 the construction in the fixed dimension case, being the one employed in the
numerical experiments presented. We start by computing the (eventually approximated)
affine decompositions of M(μ) and A(μ) and the solution of (2.52) for a set of selected
parameters

{
μi

}ns

i=1 and time steps n = 0, . . . , Nt − 1; these snapshots are employed to
build the first RB projection matrix V0. Secondly, the iterative relation (2.42), which
holds provided A(μ) is substituted by

(α1
ΔtM(μ) + A(μ)

)
, is exploited to build the

snapshots for the subsequent RB spaces, until the tolerance εr is larger than the product
of the RB tolerances δRB,k, k = 0, . . . , L−1. Then, L RB coarse corrections are produced
by Algorithm 7.

Algorithm 7 provides a practical way to build the MSRB preconditioner, however it can
be too computationally demanding when the time steps number Nt is too large. In fact:

72

2.5. MSRB preconditioners for parabolic PDEs

Algorithm 7 MSRB for unsteady problems - Fixed Dimension

1: procedure MSRB-unsteady-fixedDimension(
{
μi

}ns

i=1, εr, N)
2: Compute an (approximated) affine decomposition of A(μ) and M(μ)
3: Compute {un(μ1)}Nt

n=1, . . . , {un(μns)}Nt
n=1

4: Set S = [u1(μ1), . . . , uNt(μ1), . . . , u1(μns), . . . , uNt(μns)] and k = 0
5: while

∏
k

δRB,k > εr do

6: Vk = POD(S, Xh, N) and k = k + 1
7: Build RB affine matrices

{
Aq

Nk

}Qa

q=1 and
{
Mq

Nk

}Qm

q=1
8: Compute new snapshots yn

k(μi), n = 1, . . . , Nt, i = 1, . . . , ns, with (2.42)
9: Set S = [y1

k(μ1), . . . , yNt
k (μ1), . . . , y1

k(μns), . . . , yNt
k (μns)]

10: end while
11: end procedure

1. POD is performed in practice by solving the eigenvalue problem for the correlation
matrix (cf. Section 1.3.1), whose cost scales with the cube of its dimension. In
general, this does not represent a bottleneck in the case of steady problems, since
the correlation matrix has size ns, which usually is at most of order of 102 − 103.
On the other hand, this can be an issue when considering time dependent problems,
for which the correlation matrix has dimension Nt · ns.

2. the need of storing the vectors {yn
k(μi)}Nt

n=1 for i = 1, . . . , ns and k = 0, . . . , L − 1,
can lead to a huge memory consumption during the construction phase.

Both these bottlenecks can be overcome by adopting a time slab perspective. To this
aim, we divide the interval [0, T] in S time slabs of equal size Δτ � Δt and we build
a different preconditioner for each time slab s, for which a sequence of Ls RB spaces
Vk,s, k = 0, . . . , Ls − 1, and the corresponding coarse operators are constructed

ANk,s(μ) = VT
k,sA(μ)Vk,s, MNk,s(μ) = VT

k,sM(μ)Vk,s. (2.60)

Then, the preconditioner for time slab s is defined as

QMSRB,k,s(μ) = P−1(μ) + QNk,s(μ)
(
INh

−
(

α1
Δt

M(μ) + A(μ)
)

P−1(μ)
)
, (2.61)

where

QNk,s(μ) = Vk,s

(
α1
Δt

MNk,s(μ) + ANk,s(μ)
)−1

VT
k,s. (2.62)

We finally define as Nτ = Δτ/Δt the number of time steps contained in a time slab and
express any time tn in terms of the time slab sn it belongs, that is,

sn = � n

Nτ
�, tn = snΔτ + (n − snNτ)Δt, n = 0, . . . , Nt.

73

Chapter 2. MSRB preconditioners for parametrized PDEs

At time tn, n = 1, . . . , Nt, the preconditioner built for the time slab sn is then employed.
The procedure for the time slab construction is reported in Algorithm 8, which essentially
repeats Algorithm 7 for each time slab s = 0, . . . , S − 1 and generates Ls RB coarse
operators. We highlight that in general, the preconditioners are independent from one
time slab to the other, including, for instance, a different number of RB coarse corrections
Ls. By employing Algorithm 8, a more accurate preconditioner (in time) is constructed
and the dimension of the POD correlation matrices used to build the RB spaces is limited
to Nτ · ns; in practice, the number of time slabs Nτ is chosen such that this dimension
does not exceed a certain maximum (e.g., few thousands).

Algorithm 8 MSRB for unsteady problems - Fixed Dimension with time slabs

1: procedure MSRB-slabs-fixedDimension(
{
μi

}ns

i=1, εr, N, S)
2: Compute an approximated affine decomposition of A(μ) and M(μ) and set k = 0
3: for s = 0, . . . , S − 1 do
4: Compute {un(μ1)}Nτ (s+1)

n=Nτ s+1, . . . , {un(μns)}Nτ (s+1)
n=Nτ s+1

5: Set S = [uNτ s+1(μ1), . . . , uNτ (s+1)(μ1), . . . , uNτ s+1(μns), . . . , uNτ (s+1)(μns)]
6: while

∏
k

δRB,k > εr do

7: Build RB space Vk,s = POD(S, Xh, N)
8: Build RB affine matrices

{
Aq

Nk,s

}Qa

q=1 and
{
Mq

Nk,s

}Qm

q=1 and set k = k + 1
9: Compute yn

k(μi), n = Nτ s + 1, . . . , Nτ (s + 1), i = 1, . . . , ns with (2.42)
10: Set S = [yNτ s+1

k (μ1), . . . , yNτ s+1
k (μns), . . . , yNτ (s+1)

k (μns)]
11: end while
12: end for
13: end procedure

Figure 2.11 – Test case III: computational domain Ω with boundary flags, with H = 0.41m,
L0 = 2.5m. The cylinder has radius r = 0.05m, its center is distant 0.5m from Γd and
0.2m from the bottom face.

74

2.6. Numerical results for parabolic problems

Figure 2.12 – Test case III: computational domain Ω obtained with Gmsh [Geuzaine and
Remacle, 2009]. A refinement has been applied in the (orange) area around the cylinder.

2.6 Numerical results for parabolic problems

2.6.1 Test case III: three-dimensional heat transfer past a cylinder

The third test case considered is related to unsteady heat transfer past a cylinder.

Test case setting

We consider the domain in Figure 2.11 and the temperature C(μ) evolution to be governed
by the following advection diffusion equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C(μ)
∂t

− αcΔC(μ) + �v · ∇C(μ) = 0 in Ω × (0, T)

C(μ) = 0 on Γd × (0, T)
C(μ) = Cd on Γc × (0, T)
αc∇C(μ) · n = 0 on Γn ∪ Γw × (0, T)
C(0; μ) = 0 in Ω × (0, T),

(2.63)

where T = 10 seconds, the advection field �v is the solution of an underlying steady
Navier-Stokes problem describing the dynamics of the fluid velocity and pressure, αc is the
thermal diffusivity and Cd ∈ R is the given Dirichlet datum. The problem is parametrized
with respect to the values of αc and Cd, that is μ = (αc, Cd) ∈ [10−3, 10−2] × [1, 10].
Regarding the FE discretization, we employ the computational grid shown in Figure
2.12, opting for a SUPG formulation, since the problem is highly transport dominated,
see e.g. [Quarteroni and Valli, 2008] for further details on this stabilization technique.
We introduce a triangulation Th of Ω and a lifting function which takes into account
the nonhomogeneous Dirichlet condition. Then, we obtain the following semi-dicrete
problem, which reads: for all t ∈ (0, T], find Ch(μ) ∈ Xh such that

mh

(
Ch(μ), wh; t; μ

)
+ ah

(
Ch(μ), wh; t; μ

)
= gh(wh; μ) ∀wh ∈ Xh. (2.64)

75

Chapter 2. MSRB preconditioners for parametrized PDEs

For any Ch, wh ∈ Xh, we define

mh

(
Ch, wh; μ

)
=

(∂Ch

∂t
, wh

)
L2(Ω)

+
∑

K∈Th

(∂Ch

∂t
, τK(μ)�vh · ∇wh

)
L2(K)

(2.65)

ah

(
Ch, wh; μ

)
=

(
αc∇Ch, ∇wh

)
L2(Ω)

+
(
�vh · ∇Ch, wh

)
L2(Ω)

(2.66)

+
∑

K∈Th

(
− αcΔCh + �vh · ∇Ch, τK(μ)�vh · ∇wh

)
L2(K)

.

In (2.64), gh(wh; μ) encodes the right hand side and the lifting function, while the SUPG
parameter τK(μ) is defined as

τK(μ) =
(4

Δt2 + �vh · GK�vh + α2
cGK : GK

)−1/2
, (2.67)

where GK is the covariant metric tensor of the computational domain defined as

(GK)ij =
d∑

l=1

∂ξj

∂xi

∂ξj

∂xj
, i, j = 1, . . . , d; (2.68)

see [Bazilevs et al., 2007] for additional details.

From an algebraic standpoint, problem (2.64) is equivalent to the Nh−dimensional system
of ordinary differential equations in (1.17). Notice, however, that in the considered case
the mass matrix M(μ) and the stiffness matrix A(μ) take into account the stabilization
terms, which arise due to the SUPG-FE formulation. As a matter of fact, the SUPG
formulation yields two nonaffine matrices M(μ), A(μ) even if the starting differential
problem (2.63) featured an affine parameter dependence.

We employ a computational grid with 802’048 elements and 147’558, with a refinement
near the cylinder, cf. Figure 2.11, and P2 polynomial basis functions, leading to Nh =
1′124′412 degrees of freedom. The time discretization is carried out by employing the
BDF1 method, that is by the backward Euler method, with Δt = 0.01. Examples of
solutions are shown in Figure 2.13 for selected values of the parameter and times: the
value of the parameter can largely influence the solution at a given time. The results are
computed up to a tolerance equal to 10−7 on the relative residual as stopping criterion
for the FGMRES method and using Ncore = 128, 256, 512 cores.

76

2.6. Numerical results for parabolic problems

(a) μ = (10−2, 10), t = 2s (b) μ = (10−2, 10), t = 5s (c) μ = (10−2, 10), t = 10s

(d) μ = (10−3, 1), t = 2s (e) μ = (10−3, 1), t = 5s (f) μ = (10−3, 1), t = 10s

(g) μ = (6.85 · 10−3, 4.15), t = 2s (h) μ = (6.85 · 10−3, 4.15), t = 5s (i) μ = (6.85 · 10−3, 4.15), t = 10s

Figure 2.13 – Test case III: example of solutions for different parameter values.

77

Chapter 2. MSRB preconditioners for parametrized PDEs

Table 2.13 – Test case III: number of RB coarse operators Ls computed by Algorithm 8
to reach a tolerance εr = 10−9. They are the same for all the values of Ncore.

s 0 1 2 3 4 5 6 7 8 9
Ls 13 9 8 7 7 6 5 5 4 5

Numerical results

A block Jacobi preconditioner is again chosen as fine grid component for the MSRB
preconditioner, that is P(μ) = PBJ(μ), and the offline phase is carried out with ns = 25
parameters (chosen randomly) for the construction of the MSRB precondtioner; such
leading to 25000 snapshots in total. To avoid this computational load, we divide the
interval (0, T) in S = 10 time slabs, each of length Δτ = 1, and build a MSRB
preconditioner for each time slab, such that each local-in-time construction is performed
with 2500 snapshots, to reach εr = 10−9 with Nk = 15, k = 0, . . . , Ls −1, s = 0, . . . , 9. On
the other hand, MDEIM, with tolerance δMDEIM = 10−7 and 75 initial matrix snapshots,
is used to determine an affine approximated decomposition of the matrices M(μ), A(μ),
yielding 1 and 4 affine terms, respectively. The SVDs used within MDEIM for the two
affine approximations are reported in Figure 2.14, where the rapid decay of the singular
values can be observed.

The number of RB spaces Ls produced by Algorithm 8 as function of the time slab s is
reported in Table 2.13 and ranges from 4 to 13, decreasing with time, due to the fact the
solution reaches the steady state (notice that source and boundary data are modeled
time independent). This is confirmed by the decay of the singular values in the POD to
build the RB projection matrices Vk,s, k = 0, . . . , Ls − 1, s = 0, . . . , 9, reported in Figure
2.15a, 2.15b for the slabs s = 0 and s = 5, respectively. The singular values for slab
s = 0 decrease slower than the ones for slab s = 5 when a fixed k for the two charts is
considered, leading to the construction of a larger amount of spaces for the first slab, since
we are employing a fixed dimension approach. The MSRB preconditioners are then used

0 10 20 30 40 50 60 70 80

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

σ
i/σ

1

SVD MDEIMs

A(μ)
M(μ)

Figure 2.14 – SVD of MDEIM computed for the construction of A(μ) and M(μ).

78

2.6. Numerical results for parabolic problems

0 500 1000 1500 2000 2500

i

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

σ
i/σ

1

PODs slab 0

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8
k = 9
k = 10
k = 11
k = 12

(a) POD for consructing the RB projection ma-
trices Vk,0.

0 500 1000 1500 2000

i

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

σ
i/σ

1

PODs slab 5

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

(b) POD for consructing the RB projection ma-
trices Vk,5.

Figure 2.15 – Test case III: POD used to build the RB projection matrices Vk,0 (bottom,
left) and Vk,5 (bottom, right); the singular values for slab s = 0 decrease slower than
the ones for s = 5 when the same k for the two charts is considered.

online on 100 parameters different from the ones used during the offline phase. We report
its average performance in Table 2.14 and we compare the obtained results with the ones
provided by the AMG preconditioner from ML package of Trilinos. The number of
iterations needed to reach convergence is on average 4 or 5 for the MSRB-preconditioned
FGMRES, that is about 3 times smaller than the one needed by AMG-preconditioned
GMRES. Furthermore, the corresponding computational time decreases as the number of
cores Ncore grows, entailing good performances if compared with the AMG preconditioner,
however not featuring optimally scalable performances.

The time toff required for the construction of the MSRB preconditioners and the break-
even point BEP are reported as well. In particular, the latter accounts for the computa-
tional time required to repay the offline phase with respect to using the reference AMG
preconditioner, and is defined as

BEP =
toff

tGML − tonl
MSRB

,

and is a decreasing function of Ncore.

Table 2.14 – Test case III: results with MSRB preconditioner with fixed dimension
approach (N = 15) and S = 10 time slabs. Computational times are expressed in
seconds.

Ncore tonl
MSRB(It) tGML(It) toff BEP

128 149.93 (4) 268.03 (12) 45312.9 369
256 100.97 (5) 237.12 (14) 31030.7 228
512 90.19 (5) 290.01 (13) 27107.6 136

79

3 RB methods and multi space RB
preconditioners for parametrized
Stokes equations

In this chapter we consider the Stokes equations as relevant example of parametrized
linear saddle-point problem. We propose a new way to solve the Stokes problem in the
framework of RB methods, which can be regarded as an algebraic LSRB method; for
this reason we refer to it as aLSRB method. The aLSRB method extends and improves
the existing RB methods for Stokes equations in several directions: it does not need an
enrichment of the velocity space, it exploits suitable approximations of the matrix-norm
Xh(μ) in the definition of the supremizing operator, the resulting aLSRB problem is
inf-sup stable and in the case of geometrical parameters it does not require the use of an
analytical map between a reference domain and the original domain Ω(μ). We analyze it
theoretically and assess its numerical performance on some problems of interest.

Then, we turn our attention to the MSRB preconditioning strategy for the Stokes
equations, and propose two different variants for the construction of the RB coarse
operators. A first strategy exploits an enriched velocity Galerkin-RB formulation;
alternatively, we employ the newly proposed aLSRB method as coarse operator. We
verify the nonsingularity of the proposed preconditioner and formulate the algorithms
for its construction and application. We finally test its capabilities with Stokes problems
in parametrized geometries and compare the results with the ones obtained using state-
of-the-art techniques. We refer to [Dal Santo et al., 2017b, Dal Santo et al., 2018b] for
additional details on the topic.

3.1 Parametrized Stokes equations

In this section we introduce the Stokes equations in parametrized domains, together with
their weak formulation and the resulting FE approximation, specifically focusing on a
parametrized geometric formulation. This will be useful in cardiovascular applications.

81

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

However, the Given a μ−dependent domain Ω(μ) ⊂ R
d, d = 2, 3, such that, for any

μ ∈ D, ∂Ω(μ) = Γout(μ) ∪ Γin(μ) ∪ Γw(μ) and Γ̊out(μ) ∩ Γ̊in(μ) = Γ̊w(μ) ∩ Γ̊in(μ) =
Γ̊out(μ) ∩ Γ̊w(μ) = ∅, the Stokes equations read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ν(μ)Δ�u(μ) + ∇p(μ) = �f(μ) in Ω(μ)
∇ · �u(μ) = 0 in Ω(μ)
�u(μ) = �gD(μ) on Γin(μ)
�u(μ) = �0 on Γw(μ)

−p(μ)�n(μ) + ν(μ)
∂�u(μ)
∂�n(μ)

= �gN (μ) on Γout(μ),

(3.1)

where (�u(μ), p(μ)) denote the velocity and the pressure of a viscous incompressible
Newtonian fluid with viscosity ν(μ), respectively. We introduce a regular enough lifting
function �r�gD

(μ) ∈
(
H1(Ω(μ))

)d and the following μ-dependent Hilbert spaces

V (μ) =
{

�v ∈
(
H1(Ω(μ))

)d : �v
∣∣
Γw(μ) = �v

∣∣
Γin(μ) = �0

}
,

Q(μ) = L2(Ω(μ)) or Q(μ) = L2
0
(
Ω(μ)

)
if Γout(μ) = ∅,

equipped with the scalar products (and the corresponding induced norms) (·, ·)V (μ) =
(·, ·)(H1

0 (Ω(μ)))d and (·, ·)Q(μ) = (·, ·)L2(Ω(μ)). For a given μ ∈ D, the weak formulation of
problem (3.1) reads: find (�u(μ), p(μ)) ∈ V (μ) × Q(μ) such that⎧⎨⎩ d(�u(μ), �v; μ) + b(�v, p(μ); μ) = f(�v; μ) ∀�v ∈ V (μ)

b(�u(μ), q; μ) = −b(�r�gD
(μ), q; μ) ∀q ∈ Q(μ),

(3.2)

where �r�gD
(μ) is a regular enough lifting function and we define the forms in (3.2) for

�u,�v ∈ V (μ), q ∈ Q(μ) as

d(�u,�v; μ) =
∫

Ω(μ)
ν(μ)∇�u : ∇�vdΩ(μ),

b(�v, q; μ) = −
∫

Ω(μ)
q∇ · �vdΩ(μ)

f(�v; μ) =
∫

Ω(μ)
�f(μ) · �vdΩ(μ) +

∫
Γout(μ)

�gN (μ) · �vdΓout(μ) − d(�r�gD
(μ), �v; μ).

Problem (3.2) can be written as a symmetric non-coercive problem, provided we define
the space X(μ) = V (μ) × Q(μ), equipped with the scalar product

(
(�u, p), (�v, q)

)
X(μ) = (�u,�v)V (μ) + (p, q)Q(μ), (�u, p), (�v, q) ∈ X(μ),

and the norm

‖(�v, q)‖X(μ) =
√(

(�v, q), (�v, q)
)

X(μ), (�v, q) ∈ X(μ).

82

3.1. Parametrized Stokes equations

System (3.2) can thus be equivalently written as: find �z(μ) ∈ X(μ) such that

a(�z(μ), �w; μ) = f(�w; μ) ∀�w ∈ X(μ). (3.3)

The well-posedness of problem (3.3) is ensured according to the general theory of saddle-
point problems, see, e.g., [Boffi et al., 2013, Brezzi, 1974, Brezzi and Bathe, 1990].

3.1.1 Finite element approximation of the Stokes equations

All the preconditioning and ROM techniques considered hereafter for the efficient solution
of the parametrized problem (3.3) hinge upon a high-fidelity finite element approximation,
which represent a successful technique to handle the numerical approximation of (3.1), see
e.g. [Elman et al., 2005, Quarteroni and Valli, 2008, Girault and Raviart, 2012, Temam,
1984]. Since we consider a domain deformation dependent on μ; the corresponding
meshes are also taken as a deformation of a reference mesh, hence not affecting the mesh
connectivity, that is without changing the topology of the degrees of freedom.

Let us denote by Vh(μ) and Qh(μ) two finite dimensional FE spaces of dimension
Nu

h and Np
h , respectively, with Vh(μ) ⊂ V and Qh(μ) ⊂ Q. Moreover, let us set

Xh(μ) = Vh(μ) × Qh(μ) with dimension Nh = Nu
h + Np

h . The FE approximation of
problem (3.3) reads: find �zh(μ) ∈ Xh(μ) such that

a(�zh(μ), �wh; μ) = f(�wh; μ) ∀�wh ∈ Xh(μ). (3.4)

We further assume that the following μ−uniform inf-sup condition holds: there exists a
positive constant βmin

h , independent of μ, such that

βmin
h (μ) = inf

�zh∈Xh(μ)
sup

�wh∈Xh(μ)

a(�zh, �wh; μ)
‖�zh‖X(μ)‖�wh‖X(μ)

≥ βmin
h ∀μ ∈ D. (3.5)

A couple of FE spaces which fulfills condition (3.5) is given by P2 − P1 (Taylor-Hood)
finite elements basis functions, for velocity and pressure, respectively. Condition (3.5)
ensures the stability of problem (3.4). In algebraic form, problem (3.4) can be rewritten
as

A(μ)z(μ) = g(μ), (3.6)

featuring the saddle-point structure (1.13), that is,

A(μ) =
[
D(μ) BT (μ)
B(μ) O

]
, z(μ) =

[
u(μ)
p(μ)

]
, g(μ) =

[
f(μ)
r(μ)

]
, (3.7)

where A(μ) ∈ R
Nh×Nh and z(μ), g(μ) ∈ R

Nh . More precisely D(μ) ∈ R
Nu

h ×Nu
h , B(μ) ∈

R
Np

h
×Nu

h , f(μ) ∈ R
Nu

h and finally r(μ) ∈ R
Np

h . In particular, by introducing the basis

83

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

functions
{
φ�u

i (μ)
}Nu

h

i=1 and
{
φp

i (μ)
}Np

h
i=1 of Vh(μ) and Qh(μ), respectively, so that Vh(μ) =

span
{
φ�u

i (μ), i = 1, . . . , Nu
h

}
and Qh(μ) = span

{
φp

i (μ), i = 1, . . . , Np
h

}
, we have that the

block matrices are defined as

(
D(μ)

)
ij

= d(φ�u
j (μ), φ�u

i (μ); μ) ∀i, j = 1, . . . , Nu
h (3.8)(

B(μ)
)

ij
= b(φ�u

j (μ), φp
i (μ); μ) ∀i = 1, . . . , Np

h , j = 1, . . . , Nu
h

and the block vectors as

(
f(μ)

)
i

= f(φ�u
i (μ); μ) ∀i = 1, . . . , Nu

h (3.9)(
r(μ)

)
i

= −b(�r�gD
(μ), φp

i (μ); μ) ∀i = 1, . . . , Np
h . (3.10)

The solution of system (3.6) exploits suitable preconditioned iterative methods. As
discussed in Section 1.2.1, several techniques relying on domain decomposition, multilevel
methods and block factorizations have been proposed as preconditioners, we refer in
particular to [Elman et al., 2005, Rehman et al., 2011, ur Rehman et al., 2009, Segal
et al., 2010, Toselli and Widlund, 2005] and references therein. Condition (3.5) can be
algebraically expressed as follows: there exists βmin

h > 0 such that

βmin
h (μ) = inf

�zh∈R
Nh

sup
�wh∈R

Nh

wT A(μ)z
‖z‖Xh(μ)‖w‖Xh(μ)

≥ βmin
h ∀μ ∈ D, (3.11)

where the symmetric and positive definite matrix Xh(μ) ∈ R
Nh×Nh encodes the scalar

product (·, ·)X(μ) on the FE space Xh(μ), and is built as a block diagonal matrix of the
form

Xh(μ) =
[
Xu(μ) 0

0 Xp(μ)

]
; (3.12)

Xu(μ) ∈ R
Nu

h ×Nu
h and Xp(μ) ∈ R

Np
h

×Np
h encode the scalar products on the spaces Vh(μ)

and Qh(μ), respectively. Notice that since the computational domain is μ−dependent,
also the matrix Xh(μ) depends on the parameter μ. We highlight that one could
alternatively ensure the well-posedness of (3.6) in terms of the matrix B(μ), by requiring
the existence of βp > 0

βhp(μ) = inf
q∈R

N
p
h

sup
v∈R

Nu
h

vT BT (μ)q
‖v‖Xu(μ)‖q‖Xp(μ)

≥ βp ∀μ ∈ D; (3.13)

notice indeed that (3.13) together with the positive definiteness of D(μ) is equivalent to
(3.11), and ensures that the matrix A(μ) is nonsingular, yielding a well-posed algebraic
problem.

84

3.2. Review on RB methods for Stokes equations

3.2 Review on RB methods for Stokes equations

The RB method represents a convenient framework for the reduction of parametrized
saddle-point problems as the Stokes equations. In recent years, several works have been
devoted to the analysis and the implementation of the RB method for addressing problems
involving Stokes-like systems; a non-exhaustive list includes, among others: Stokes
flows featuring affine parameter dependence [Rozza and Veroy, 2007, Gerner and Veroy,
2012, Rozza et al., 2013], nonaffine parameter dependence [Rozza, 2009]; Navier-Stokes
flows depending on physical and/or geometrical parameters [Deparis, 2008, Quarteroni
and Rozza, 2007, Deparis and Rozza, 2009, Manzoni, 2014]; parametrized optimal control
problems [Negri et al., 2015b] or shape optimization problems [Manzoni et al., 2012b]
involving Stokes flows. In all these cases, the RB method hinges upon:

1. a (weak) greedy algorithm for the incremental construction of the RB space,
performed by selecting a new basis for velocity and pressure upon the use of a
residual-based a posteriori error estimator. This latter is a μ-dependent quantity
related with the FE approximation and is not always easily available or computable;

2. a Galerkin projection onto the RB space to generate the RB problem (G-RB
method).

Of course, this is not the only available choice. Regarding point 1., POD, rather than
greedy algorithms, can be used to build the RB spaces for velocity and pressure, either
jointly or separately [Bache et al., 2010, Bergmann et al., 2009, Elman and Forstall,
2017, Kunisch and Volkwein, 2002b, Weller et al., 2010]. This option has been considered,
e.g., in [Ballarin et al., 2015] where two-dimensional Navier-Stokes flows on simple
geometries affinely parametrized have been treated. Moreover, we remark that other
possibilities have been investigated, e.g. in [Díez et al., 2017], where proper generalized
decomposition (PGD) is applied to the Stokes equations in two-dimensional parametrized
geometries.

Concerning point 2., a more general Petrov-Galerkin (rather than Galerkin) projection -
such as in the case of a least-squares (LS) method - can be performed, choosing a test
space different from the trial space, see e.g. [Carlberg et al., 2011, Dahmen et al., 2012].
This option has been first explored in the case of two-dimensional, affinely parametrized
Stokes problems on simple geometries in [Abdulle and Budáč, 2015]. Moreover, in both
these cases parameter-dependent domains Ω(μ) were obtained as images of a reference
domain Ω0 through a parameter-dependent map whose expression was known analytically.
This is a relevant limitation toward the application of Petrov-Galerkin RB methods to
more general domains with varying shape, not necessarily obtained in an explicit way
from a priori known, parametrized deformations.

85

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

3.2.1 RB methods for parametrized saddle-point systems

As already discussed, the RB method is based on the idea that the solution of the
parametrized system (3.6), for a certain value of the parameter μ, can be well approx-
imated by a linear combination of basis functions obtained by orthonormalizing the
solutions of the same problem for other values of the parameter. In the case of Stokes
equations, the RB space VN is defined as

VN = span
{�ξi, i = 1, . . . , N

}
where

�ξi = (�ϕ�u
i , 0) i = 1, . . . , Nu

�ξi = (�0, ϕp
i) i = 1, . . . , Np, (3.14)

with
{

�ϕ�u
i

}Nu

i=1 a basis for the velocity approximation and
{
ϕp

i

}Np

i=1 for the pressure approx-
imation. As a matter of fact, here N = Nu + Np and VN = VNu × QNp , where

VNu = span
{

�ϕ�u
i , i = 1, . . . , Nu

}
QNp = span

{
ϕp

i , i = 1, . . . , Np
}
.

Then, a general PGRB approximation is constructed by introducing a set of (possibly
μ−dependent) functions {wi(μ)}N

i=1 such that a test space WN (μ) is obtained as

WN (μ) = span{wi(μ), i = 1, . . . , N},

and considering the following problem: find �zN (μ) ∈ VN such that

a(�zN (μ), �wN ; μ) = f(�wN ; μ) ∀�wN ∈ WN (μ). (3.15)

In order to obtain a well-posed RB approximation, an inf-sup condition at the RB level
must also be satisfied. Specifically, there must exist βmin

N > 0, independent of μ, such
that

βN (μ) = inf
�zN ∈VN

sup
�wN ∈WN (μ)

a(�zN , �wN ; μ)
‖�zN ‖X(μ)‖�wN ‖X(μ)

≥ βmin
N > 0 ∀μ ∈ D. (3.16)

Being able to ensure this condition, as we will see in the following, essentially depends
on the type of projection used to generate the RB problem and the way the RB spaces
are built.

Algebraically, we recall that VN is represented by the matrix V = [ξ1| . . . |ξN] ∈ R
Nh×N ,

where ξi, i = 1, . . . , N are the FE vector representation of the basis �ξi, i = 1, . . . , N . On
the other hand, WN (μ) is represented by a matrix W(μ) ∈ R

Nh×N , which is generally
different from V and may be μ-dependent. If W(μ) �= V we have the more general
PGRB approximation, otherwise, if W(μ) = V, we come up with the more usual Galerkin

86

3.2. Review on RB methods for Stokes equations

approximation. Problem (3.15) leads to the following algebraic RB linear system

AN (μ)zN (μ) = gN (μ), (3.17)

where the RB matrix AN (μ) ∈ R
N×N and the RB right hand side gN (μ) ∈ R

N are
defined as

AN (μ) = (W(μ))T A(μ)V, gN (μ) = (W(μ))T g(μ). (3.18)

The nonsingularity of AN (μ) is ensured by (3.16), which at algebraic level is equivalent
to

βN (μ) = inf
zN ∈RN

sup
wN ∈RN

wT
N AN (μ)zN

‖VzN ‖Xh(μ)‖W(μ)wN ‖Xh(μ)
≥ βmin

N ∀μ ∈ D. (3.19)

In the framework we developed, the matrix V is built by employing the POD method,
which in the Stokes case turns to

V =
[
VNu 0

0 VNp

]
=

[
ξ1| . . . |ξNu |ξNu+1| . . . |ξN

]
; (3.20)

here VNu ∈ R
Nu

h ×Nu and VNp ∈ R
Np

h
×Np are used to approximate the velocity u(μ) and

the pressure p(μ), respectively. In particular,

ξi =
[
ϕ�u

i

0

]
i = 1, . . . , Nu, ξNu+i =

[
0

ϕp
i

]
i = 1, . . . , Np,

where
{
ϕ�u

i

}Nu

i
and

{
ϕp

i

}Np

i
are the FE vector basis functions for the velocity and the

pressure RB space, that is,

VNu =
[
ϕ�u

1 | . . . |ϕ�u
Nu

]
, VNp =

[
ϕp

1| . . . |ϕp
Np

]
,

and such that ϕ�u
i , i = 1, . . . , Nu, (resp. ϕp

i , i = 1, . . . , Np) are the FE vector representa-
tion of �ϕ�u

i , i = 1, . . . , Nu, (resp. ϕp
i , i = 1, . . . , Np).

The construction of the RB spaces is thus performed by first collecting a set of FE snap-
shots

{
u(μi)

}ns

i=1,
{
p(μi)

}ns

i=1, solutions of (3.6) for different instances of the parameters{
μi

}ns

i=1, and then performing separately POD, yielding

VNu = POD
(
S�u, Xu, εPOD

)
, VNp = POD

(
Sp, Xp, εPOD

)
,

where S�u = [u(μ1), . . . , u(μns)] ∈ R
Nu

h ×ns and Sp = [p(μ1), . . . , p(μns)] ∈ R
Np

h
×ns

collect the velocity and pressure snapshots, respectively. The matrices VNu and VNp are
constructed by selecting the largest Nu and Np eigenmodes respectively, as explained in

87

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

Algorithm 1 in Section 1.3.1. We highlight that the dimension N = Nu + Np � Nh of the
RB system is smaller than the dimension Nh of the FE linear system of several orders of
magnitude, so that problem (3.17) is solved by direct methods and in genera Nu �= Np.

What makes the RB approximation of parametrized Stokes equations (and, more generally,
of parametrized saddle-point problems) much harder than coercive elliptic problems, is
ensuring the stability of the resulting RB problem. This is the main reason why, for
instance, reduced-order models for fluid dynamics problems have sometimes focused
on approximations for the velocity field uniquely, recovering then the pressure in a
different way, rather than building a reduced-order approximation based on a mixed
velocity-pressure formulation. Indeed, it is well-known that in the RB approximation,
a stable couple of reduced subspaces for velocity and pressure, satisfying an equivalent
inf-sup condition at the reduced level, ensures that the RB Stokes problem is well-posed.
This property is not automatically fulfilled if the RB problem is constructed through
a Galerkin projection employing RB spaces made solely of orthonormalized solutions
of (3.6) obtained for different values of parameters. To overcome this shortcoming, two
strategies have been proposed.

A. The velocity space is augmented by means of a set of enriching basis functions
computed through the pressure supremizing operator Tp(·; μ) : Qh(μ) → Vh(μ)
such that, for any given qh ∈ Qh(μ), Tp(qh; μ) is the solution of the following
variational problem

(Tp(qh; μ), �vh)V (μ) = b(�vh, qh; μ) ∀�vh ∈ Vh(μ). (3.21)

This yields a RB problem with additional degrees of freedom for the velocity field (as
many as the pressure variable), see [Rozza et al., 2013] for the details. In presence
of parameter-dependent domains, the supremizing operator is μ-dependent, so that
to recover computational efficiency (and avoid the construction of the pressure
supremizing operator for any value of μ online), an offline enrichment is employed.
This strategy leads to a RB problem which is inf-sup stable in practice, however
its well-posedness is not proven rigorously. Such a framework has been originally
introduced in conjunction with a (weak) greedy algorithm [Rozza and Veroy,
2007, Gerner and Veroy, 2012, Rozza et al., 2013], and later exploited when dealing
with POD. In the former case, for each pressure basis selected by the greedy
algorithm, a supremizing function (hereon also referred to as supremizer) is used
to augment the velocity space. In the latter case, however, the basis functions are
not directly related to precise instances of the parameter, so that a set of enriching
functions for the velocity space must be computed in advance starting from the
pressure snapshots, so that (3.21) must be solved for any parameter considered
offline; then POD is applied to build the enriching basis [Ballarin et al., 2015]. This
technique allows to build a stable RB problem, however it is not clear, a priori,

88

3.2. Review on RB methods for Stokes equations

how many supremizing functions are needed to properly stabilize the problem.
Taking as many enriching functions as the number of velocity and pressure basis is
a working rule of thumb, however very likely this leads to an excessive number of
basis functions.

B. Alternatively to strategy A, we can exploit a least squares (LS) method [Abdulle and
Budáč, 2015, Quarteroni et al., 2016a] to build an automatically stable RB problem.
The resulting LSRB method relies on a test space which is obtained as the image
of the RB space through a global supremizing operator T (·; μ) : Xh(μ) → Xh(μ),
such that

(T (�zh; μ), �wh)X(μ) = a(�zh, �wh; μ) ∀�wh ∈ Xh(μ). (3.22)

With respect to the definition of Tp(·; μ) provided by (3.21), both velocity and
pressure appear, together with the full Stokes operator at the right hand side.
The corresponding algebraic construction of this operator substantially relies on
the choice of the matrix-norm to be used for the velocity and pressure spaces.
By this approach the resulting RB problem is automatically stable - that is, it
satisfies the required inf-sup condition - as usually happens when dealing with
PGRB methods for weakly coercive problems, see [Quarteroni et al., 2016a] for
further details. However, the existing formulation of the LSRB method for Stokes
equations proposed in [Abdulle and Budáč, 2015] presumes the existence of an
explicit μ−dependent function which enables to recast the problem on a reference
domain. Without this function available, as it is the case when the deformation
results from the solution of an additional FE problem, the computational work to
build the RB problem is unbearable, thus preventing the use of the LSRB method.

In the following sections we report both the G-RB and LSRB approximations for the
parametrized Stokes equations. In Section 3.3 a novel algebraic LSRB (aLSRB) method,
which overcomes the structural limitations of the existing LSRB approximation, is
constructed. In Section 3.4 we report numerical results which show how the proposed
aLSRB approach yields to a more accurate and efficient approximation than the one
obtained by relying on state-of-the-art RB formulations.

Galerkin-RB method with velocity enrichment

A Galerkin-RB formulation is obtained by choosing WN (μ) = VN (or algebraically
W(μ) = V) in (3.18), resulting in a RB approximation whose well-posedness is guaranteed
by satisfying the following assumption: there must exist β̃min

N > 0 such that

β̃N (μ) = inf
qN ∈QNp

sup
�vN ∈VNu

b(�vN , qN ; μ)
‖�vN ‖V (μ)‖qN ‖Q(μ)

≥ β̃min
N > 0 ∀μ ∈ D. (3.23)

89

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

Unfortunately, as explained above, condition (3.23) is not automatically satisfied when the
RB spaces VNu and QNp are constructed by POD, or by greedy algorithms, by considering
basis functions extracted from velocity and pressure snapshots only. Consequently, we
consider an "enriched" velocity space formulation, as proposed in [Ballarin et al., 2015],
where the velocity space VNu is augmented to guarantee the well-posedness of the resulting
RB approximation. Algebraically, this is pursued by building a matrix VNs ∈ R

Nu
h ×Ns

whose columns form a basis for the enriching RB velocity space, which is properly
orthonormalized with a Gram-Schmidt (G-S) procedure:

VNu = G-S([VNu , VNs], Xu). (3.24)

Then, the G-RB approximation is built by considering V = W(μ) in (3.18) with VNu as
in (3.24).

The enriching strategy is based upon the use of the pressure-supremizing operator defined
by problem (3.21), which corresponds to a FE problem with the following algebraic
structure

Xu(μ)tp(q; μ) = BT (μ)q, (3.25)

where q ∈ R
Np

h is the FE vector representation of qh ∈ Qh(μ). A well-posed G-RB
approximation for a new parameter μ is obtained in two ways:

• build for each pressure basis {ϕp
i }Np

i=1 the corresponding supremizing functions
{tp(ϕp

i ; μ)}Np

i=1 and define

VNs = [tp(ϕp
1; μ)| . . . |tp(ϕp

Np
; μ)],

leading to a RB formulation which by definition satisfies (3.23). However, in this
way the construction of the supremizing enriching functions is not computationally
feasible, because it entails (online) the solution of Np FE linear system for each
new value of μ;

• compute a set of supremizing snapshots
{
tp(p(μi); μi)

}ns

i=1 corresponding to the
pressure snapshots

{
p(μi)

}ns

i=1 through (3.25), and then build the matrix VNs

through POD

VNs = POD
(
S�t, Xu, εPOD

)
,

with S�t = [tp(ϕp
1; μ1), . . . , tp(ϕp

ns
; μns)]. Notice that this option does not ensure

that condition (3.23) (or any equivalent one) is satisfied. Moreover, the number
Ns of basis functions for VNs is usually chosen equal to Nu, doubling the size of
the RB velocity space. This looks like a reliable option which yields a stable RB
problem for the steady Navier-Stokes equations, see [Ballarin et al., 2015].

90

3.2. Review on RB methods for Stokes equations

LSRB method

Instead of performing a Galerkin projection onto properly enriched RB spaces, the Petrov-
Galerkin (PG)-RB method uses a different test space W(μ) and naturally builds an
inf-sup stable RB problem. The PGRB method has been firstly analyzed for the affinely
parametrized Stokes equations in [Abdulle and Budáč, 2015] where the RB space is built
upon a greedy algorithm. In this work we deepen the analysis carried out in [Abdulle and
Budáč, 2015], propose several strategies to make this method computationally efficient
and use instead the POD method for the construction of the RB space, which does not
need any error estimator. Moreover, we do not assume to have an analytical function
which maps the reference domain Ω0 to the physical domain Ω(μ); the main consequence
is that we consider the more general case where recasting the problem on a reference,
parameter-independent domain Ω0 is not possible. We restrict ourselves to the case
of PGRB method built through the least-squares (LS) method, which automatically
guarantees to obtain an inf-sup stable problem. With this aim, we exploit the global
supremizing operator defined in (3.22), which entails a μ−dependent FE problem to
be solved for T (�zh; μ). Then, the RB problem reads as (3.15), where the test space is
chosen as

WN (μ) = span
{
T (�ξi; μ), i = 1, . . . , N

}
,

while the trial RB space is chosen as in (1.38). From an algebraic standpoint, given
z ∈ R

Nh , the supremizing solution t(z; μ) is obtained by solving the linear system

Xh(μ)t(z; μ) = A(μ)z. (3.26)

The projection matrix W(μ), whose columns are supremizers of type (3.26) and form a
basis for the (parameter-dependent) test space, is then given by

W(μ) = X−1
h (μ)A(μ)V, (3.27)

where Xh(μ) is the μ−dependent norm matrix (3.12). Finally, the linear system (3.17)
representing the LSRB problem is recovered by setting

AN (μ) = VT AT (μ)X−1
h (μ)A(μ)V, gN (μ) = VT AT (μ)X−1

h (μ)g(μ). (3.28)

The RB matrix as defined in (3.28) is nonsingular, leading to a well-posed RB approxi-
mation, as the following results confirms, see also [Abdulle and Budáč, 2015, Quarteroni
et al., 2016a].

Lemma 3.2.1. Assume that condition (3.11) holds and that W(μ) is taken as in (3.27).
Then, the LSRB problem (3.17) is inf-sup stable uniformly with respect to μ, that is, there
exists βmin

N > 0 independent of μ such that (3.19) holds with βmin
N = βmin

h . Moreover, it

91

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

has a unique solution zN (μ) ∈ R
N for any μ ∈ D, which satisfies

‖zN (μ)‖Xh(μ) ≤ 1
βN (μ)

‖g(μ)‖X−1
h

(μ).

Proof. We report an algebraic variant of the proof of the result shown in [Abdulle and
Budáč, 2015]. Starting from (3.26) and the Cauchy-Schwarz inequality

wT A(μ)z = wT Xh(μ)t(z; μ) ≤ ‖t(z; μ)‖Xh(μ)‖w‖Xh(μ) ∀w ∈ R
Nh ,

and the equality is reached for w = t(z; μ). Then, we have

βN (μ) = inf
�zN ∈RN

sup
�wN ∈RN

wT
N AN (μ)zN

‖VzN ‖Xh(μ)‖W(μ)wN ‖Xh(μ)
= inf

zN ∈RN

‖tμ(VzN)‖Xh(μ)
‖VzN ‖Xh(μ)

≥ inf
z∈R

Nh

‖t(z; μ)‖Xh(μ)
‖z‖Xh(μ)

≥ βmin
h .

The proof is concluded by employing an algebraic variant of the Babus̆ka theorem for
non-coercive problems satisfying an inf-sup stability property, see [Babuška, 1971].

Remark 3.2.1. The solution zN (μ) ∈ R
N of problem (3.17) solves the following mini-

mization problem

zN (μ) = arg min
vN ∈RN

‖g(μ) − A(μ)VvN ‖2
X−1

h
(μ), (3.29)

i.e. the RB solution minimizes the residual in the norm induced by the symmetric positive
definite matrix X−1

h (μ), see [Quarteroni et al., 2016a] for further details.

3.3 Algebraic LSRB method for parametrized saddle-point
problems

The LSRB method described in Section 3.2.1 requires to build the μ-dependent matrix
X−1

h (μ) or to solve approximately the N linear systems (3.26) associated with the
matrix Xh(μ) to construct a stable RB problem for any new parameter instances μ ∈ D
considered online. If an analytical map is available, one can recast problem (3.3) over the
reference domain Ω0 by using the Jacobian of the map. In this way, the LSRB problem
would be built with respect to the reference domain, and the independence of the norm
matrix Xh(μ) on μ would be easily achieved. However, if the displacement of the domain
is not analitically available, it is not possible to rely on this strategy, due to the huge
assembling costs of AN (μ).

In this section we propose a purely algebraic PGRB method which can be viewed as an
algebraic LSRB (aLSRB) method described above for parametrized saddle-point problems

92

3.3. Algebraic LSRB method for parametrized saddle-point problems

as (3.6), see [Dal Santo et al., 2017b]. Compared to the approximate enrichment of
the velocity space described in Section 3.2.1, the aLSRB method allows to build a RB
problem which is automatically and rigorously inf-sup stable and henceforth it does not
require to enrich the velocity space doubling the degrees of freedom of the velocity.

The underlying idea is to substitute the matrix Xh(μ) appearing in the definition of the
test space (3.27) by a properly chosen surrogate PX ∈ R

Nh×Nh . To this aim, we suppose
the following assumption to hold.

Assumption 3.3.1. The matrix PX ∈ R
Nh×Nh is symmetric and positive definite and

induces a scalar product (x, y)PX = xT PXy and a norm ‖x‖2
PX

= (x, x)PX = xT PXx
for any x, y ∈ R

Nh. Moreover, there exist two positive constants c and C such that

c‖x‖PX ≤ ‖x‖Xh(μ) ≤ C‖x‖PX ∀x ∈ R
Nh . (3.30)

Next, we introduce a slightly modified supremizing operator TPX (·; μ) : Vh(μ)×Vh(μ) →
Vh(μ) defined by the following problem

(TPX (�zh; μ), �wh)PX = a(�zh, �wh; μ) ∀�wh ∈ Vh(μ), (3.31)

where the difference with respect to (3.22) is the choice of the scalar product with respect
to which the operator is built. Reasoning as in the previous section, we introduce a PG
problem under the form: find �zN ∈ VN such that

a(�zN , �wN ; μ) = f(�wN ; μ) ∀�wN ∈ WN,PX
(μ), (3.32)

where now the test space is chosen as

WN,PX
(μ) = span

{
TPX (�ξi; μ), i = 1, . . . , N

}
,

where {�ξi}N
i=1 are the RB functions defining VN in (1.38). Problem (3.31) is algebraically

equivalent to solving

PXtPX (z; μ) = A(μ)z, (3.33)

and yields a projection matrix of the following form

WPX (μ) = P−1
X A(μ)V. (3.34)

Finally, the corresponding RB system is

ÂN (μ)zN (μ) = ĝN (μ), (3.35)

where the RB matrix ÂN (μ) ∈ R
N×N and the RB right hand side ĝN (μ) ∈ R

N are

93

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

defined as

ÂN (μ) = VT AT (μ)P−1
X A(μ)V, ĝN (μ) = VT AT (μ)P−1

X g(μ). (3.36)

Remark 3.3.1. Equations (3.36) are similar to the ones in (3.28), provided that Xh(μ)
is substituted with PX .

Similarly to (3.7), the following block structure can be devised for the aLSRB problem:

ÂN (μ) =
[
D̂N (μ) B̂T

N (μ)
B̂N (μ) ĈN (μ)

]
, (3.37)

and

zN (μ) =
[
uN (μ)
pN (μ)

]
, ĝN (μ) =

[
f̂N (μ)
r̂N (μ)

]
, (3.38)

where the block (2,2) is filled as in the standard LSRB method. The RB block matrices
are defined as

D̂N (μ) = (VNu)T DT (μ)P−1
Xu

D(μ)VNu + (VNu)T BT (μ)P−1
Xp

B(μ)VNu ,

B̂N (μ) = (VNp)T B(μ)P−1
Xu

D(μ)VNu ,

ĈN (μ) = (VNp)T B(μ)P−1
Xu

BT (μ)VNp ,

and the RB block vectors are

f̂N (μ) = (VNu)T DT (μ)P−1
Xu

f(μ) + (VNu)T BT (μ)P−1
Xp

r(μ),

r̂N (μ) = (VNp)T B(μ)P−1
Xu

f(μ).

3.3.1 Well-posedness of the aLSRB problem

In the following, we provide results showing the stability of system (3.35) and the
optimality properties satisfied by the solution zN (μ) of (3.35).

Proposition 3.3.1. Assume that condition (3.11) holds, that W(μ) is taken as in (3.34)
and let assumption 3.3.1 hold. Then problem (3.35) is inf-sup stable, more precisely, for
any μ ∈ D

βPX ,N (μ) = inf
zN ∈RN

sup
wN ∈RN

wT
N ÂN (μ)zN

‖VzN ‖Xh(μ)‖WPX (μ)wN ‖Xh(μ)
≥ c

C
βmin

h . (3.39)

Moreover, problem (3.35) has a unique solution zN (μ) ∈ R
N for any μ ∈ D, which

94

3.3. Algebraic LSRB method for parametrized saddle-point problems

satisfies

‖zN (μ)‖Xh(μ) ≤ 1
βPX ,N (μ)

‖g(μ)‖X−1
h

(μ).

Proof. Starting from (3.33), it holds

wT A(μ)z = wT PXtPX (z; μ) ≤ ‖tPX (z; μ)‖PX ‖w‖PX ∀w ∈ R
Nh ,

where the equality is reached for w = tPX (z; μ). Consequently, using the inequalities in
(3.30) we have

βPX ,N (μ) = inf
zN ∈RN

sup
wN ∈RN

wT
N ÂN (μ)zN

‖VzN ‖Xh(μ)‖WPX (μ)wN ‖Xh(μ)

≥ 1
C

inf
zN ∈RN

sup
wN ∈RN

wT
N ÂN (μ)zN

‖VzN ‖Xh(μ)‖WPX (μ)wN ‖PX

=
1
C

inf
zN ∈RN

‖tPX (VzN ; μ)‖PX

‖VzN ‖Xh(μ)

≥ 1
C

inf
z∈R

Nh

‖tPX (z; μ)‖PX

‖z‖Xh(μ)

=
1
C

inf
z∈R

Nh

sup
w∈R

Nh

wT A(μ)z
‖z‖Xh(μ)‖w‖PX

≥ c

C
inf

z∈R
Nh

sup
w∈R

Nh

wT A(μ)z
‖z‖Xh(μ)‖w‖Xh(μ)

=
c

C
βmin

h (μ) ≥ c

C
βmin

h .

By applying an algebraic equivalent of the Babus̆ka theorem for non-coercive problems
satisfying an inf-sup stability property, see [Babuška, 1971], concludes the proof.

Proposition 3.3.2. Let assumption 3.3.1 hold, then problem (3.35) corresponds to
solving the minimization problem

zN (μ) = arg min
vN ∈RN

‖g(μ) − A(μ)VvN ‖2
P−1

X
. (3.40)

Proof. We consider the quadratic functional

J(vN) = ‖g(μ) − A(μ)VvN ‖2
P−1

X
, vN ∈ R

N ,

which has a unique minimum in uN ∈ R
N thanks to the nonsingularity of the matrices

PX and A(μ). We impose its gradient with respect to vN and evaluated at uN to vanish.

95

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

By employing the definition of the norm ‖ · ‖P−1
X

we obtain

0 =
∂{J(vN)}

∂vN
(uN) =

∂

∂vN

{
(g(μ))T P−1

X g(μ)

+ vT
N VT AT (μ)P−1

X A(μ)VvN − 2(g(μ))T P−1
X A(μ)VvN

}
(uN)

= 2VT AT (μ)P−1
X A(μ)VuN − 2(g(μ))T P−1

X A(μ)VuN

= 2ÂN (μ)uN − 2ĝN (μ).

Therefore, uN is such that

ÂN (μ)uN = ĝN (μ),

hence it coincides with the RB solution zN (μ), since the matrix ÂN (μ) is invertible.

3.3.2 Assembling the aLSRB problem

When building the aLSRB approximation, it is essential to assume the affine dependence
on μ in the FE arrays (3.6), that is D(μ), B(μ), f(μ), r(μ) (separately) satisfy the affine
assumption (1.44). In this way, the aLSRB algebraic structures can be written as

ÂN (μ) =
Qa∑

q1,q2=1
Θq1

a (μ)Θq2
a (μ)VT (Aq1

h)T P−1
X Aq2

h V (3.41)

=
Qa∑

q1,q2=1
Θq1

a (μ)Θq2
a (μ)Aq1,q2

N

ĝN (μ) =
Qa∑

q1=1

Qg∑
q2=1

Θq1
a (μ)Θq

g(μ)VT (Aq1
h)T P−1

X gq2 (3.42)

=
Qa∑

q1=1

Qg∑
q2=1

Θq1
a (μ)Θq2

g (μ)gq1,q2
N .

In the G-RB case, the algebraic RB structures can be instead obtained similarly to
(1.45)-(1.46). The matrices Aq

N , q = 1, . . . , Qa, Aq1,q2
N ∈ R

N×N , q1, q2 = 1, . . . , Qa, and
the vectors gq

N ∈ R
N , q = 1, . . . , Qg, gq1,q2

N ∈ R
N , q1 = 1, . . . , Qa, q2 = 1, . . . , Qg can be

precomputed and stored during the offline phase. During the online phase, only the sums
in (3.41)-(3.42) and (1.61)-(1.62) must be calculated out to assemble the RB problem.
Notice that the number of operations for building AN (μ) and gN (μ) in (1.61)-(1.62)
depends linearly on the number of affine terms Qa and Qg for the G-RB method. On
the other hand, the corresponding aLSRB structures ÂN (μ) and ĝN (μ) in (3.41)-(3.42)
depend quadratically Qa and Qg. Practically, employing the G-RB method softens the
dependence on the number of affine terms, since less RB structures must be assembled
and stored with respect to the aLSRB method. This advantage is also visible in the

96

3.3. Algebraic LSRB method for parametrized saddle-point problems

online phase, since the construction of the RB matrix and right hand side scales linearly
with respect to Qa and Qg. However, the aLSRB matrices and right hand sides have
a smaller dimension, since the velocity basis is not augmented, entailing a lower cost
for computing and storing each array and for computing the solution of the RB system.
Finally, notice that the affine decomposition (1.44) would not be exploitable in the case
of standard LSRB method, due to the μ−dependence of the matrix Xh(μ). Indeed, one
would need also an affine decomposition of X−1

h (μ), which is generally not available since
it is never explicitly assembled and its application is performed by solving a linear system
where Xh(μ) is at the left hand side.

In the numerical examples considered in this work, as well as in almost every problem
of applied interest, the geometrical dependence of the computational domain on the
parameter μ is generally nonaffine, therefore an affine representation of A(μ) and g(μ)
cannot be computed. To circumvent this problem both the empirical interpolation
method (EIM) or its discrete variants DEIM and Matrix-DEIM offer, as in the case
of elliptic problems, the possibility to recover an approximate affine decomposition.
Furthermore, in our practical implementation, we run separately MDEIM on the matrices
D(μ) and B(μ), meaning that we compute two basis, Dq ∈ R

Nu
h ×Nu

h , q = 1, . . . , Qd

and Bq ∈ R
Np

h
×Nu

h , q = 1, . . . , Qb, of μ−independent matrices such that the following
relations hold

D(μ) ≈
Qd∑
q=1

Θ̃q
d(μ)Dq, B(μ) ≈

Qb∑
q=1

Θ̃q
b(μ)Bq, (3.43)

where the functions Θ̃q
d : D → R, q = 1, . . . , Qd and Θ̃q

b : D → R, q = 1, . . . , Qb are
μ−dependent. Similarly for the right hand sides it holds

f(μ) ≈
Qf∑
q=1

Θ̃q
f (μ)f q, r(μ) ≈

Qr∑
q=1

Θ̃q
r(μ)rq, (3.44)

with μ−dependent functions Θ̃q
f : D → R, q = 1, . . . , Qf and Θ̃q

r : D → R, q = 1, . . . , Qr

and μ-independent basis functions f q ∈ R
Nu

h , q = 1, . . . , Qf and rq ∈ R
Np

h , q = 1, . . . , Qr.
Then, the block matrices in (3.37) are such that

D̂N (μ) ≈
Qd∑

q1,q2=1
Θ̃q1

d (μ)Θ̃q2
d (μ)D̂q1,q2

N1 +
Qb∑

q1,q2=1
Θ̃q1

b (μ)Θ̃q2
b (μ)D̂q1,q2

N2 , (3.45)

B̂N (μ) ≈
Qd∑

qd=1

Qb∑
qb=1

Θ̃qd
d (μ)Θ̃qb

b (μ)B̂qbqd
N , (3.46)

ĈN (μ) ≈
Qb∑

q1,q2=1
Θ̃q1

b (μ)Θ̃q2
b (μ)Ĉq1,q2

N , (3.47)

97

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

and the μ-independent RB matrices D̂q1,q2
N1 ∈ R

Nu×Nu , D̂q1,q2
N2 ∈ R

Nu×Nu , B̂qbqd
N ∈ R

Np×Nu

and Ĉq1,q2
N , q1, q2 = 1, . . . , Qb, ∈ R

Np×Np are defined similarly to (3.41) by exploiting the
approximated affine decompositions (3.44) and can be precomputed and stored during
the offline phase, such that only the evaluation of the coefficients and the sums in
(3.45)-(3.46)-(3.47) need to be performed online.

3.3.3 On the choice of PX

A natural question arising in this context regards the choice of the matrix PX , since
this directly affects the values of the constants c and C and the computational efficiency
of the proposed aLSRB method. These constants play indeed a relevant role in the
conditioning of the aLSRB approximation. Moreover, it is clear that c/C ≤ 1 and by
taking PX = Xh(μ) we would have the optimal case c/C = 1, hence recovering the
standard LSRB method. Therefore, PX should be chosen as close as possible to Xh(μ),
however it has to be μ-independent for the sake of computational efficiency. The following
results offer some insights on how to properly choose the matrix PX .

Lemma 3.3.1. Let the assumption 3.3.1 hold. The optimal values for the constants
C ≥ c satisfying (3.30) are

C = ‖P−1/2
X (Xh(μ))1/2‖PX , c = ‖(Xh(μ))−1/2P1/2

X ‖−1
Xh(μ). (3.48)

Proof. Since Xh and PX are symmetric and positive definite, for any y ∈ R
Nh it holds

‖y‖2
Xh

=
(
X1/2

h y, X1/2
h y

)
2

=
(
P−1/2

X PXP−1/2
X X1/2

h y, X1/2
h y

)
2

=
(
PXP−1/2

X X1/2
h y, P−1/2

X X1/2
h y

)
2

=
(
P−1/2

X X1/2
h y, P−1/2

X X1/2
h y

)
PX

= ‖P−1/2
X X1/2

h y‖2
PX

≤ ‖P−1/2
X X1/2

h ‖2
PX

‖y‖2
PX

,

and there exists an element y0 ∈ R
Nh where equality is reached. This leads to an optimal

C = ‖P−1/2
X X1/2

h ‖PX . Similarly, by inverting the roles of PX and Xh and following the
same argument, we have that c = ‖X−1/2

h P1/2
X ‖−1

Xh
.

Hereon, we set C and c equal to their optimal values (3.48).

Lemma 3.3.2. Let the assumption 3.3.1 hold. The two constants C ≥ c > 0 satisfying
(3.30) and (3.48) are such that

c

C
=

[
KXh

(P−1
X Xh(μ))

]−1/2
=

[
K2(P−1/2

X XhP−1/2
X)

]−1/2
. (3.49)

98

3.3. Algebraic LSRB method for parametrized saddle-point problems

Proof. We rewrite the optimal values for C and c as it follows

C2 = ‖P−1/2
X X1/2

h ‖2
PX

= sup
y∈R

Nh ,y�=0

‖P−1/2
X X1/2

h y‖2
PX

‖y‖2
PX

= sup
y∈R

Nh ,y�=0

(P−1/2
X X1/2

h y, P−1/2
X X1/2

h y)PX

(y, y)PX

= sup
y∈R

Nh ,y�=0

(X1/2
h y, X1/2

h y)2

(P1/2
X y, P1/2

X y)2

= sup
y∈R

Nh ,y�=0

(X1/2
h P−1/2

X P1/2
X y, X1/2

h P−1/2
X P1/2

X y)2

(P1/2
X y, P1/2

X y)2

= sup
w∈R

Nh ,w�=0

(X1/2
h P−1/2

X w, X1/2
h P−1/2

X w)2
(w, w)2

= sup
w∈R

Nh ,w�=0

‖X1/2
h P−1/2

X w‖2
2

‖w‖2
2

= ‖X1/2
h P−1/2

X ‖2
2. (3.50)

Similarly, we have that ‖X−1/2
h P1/2

X ‖Xh
= ‖P1/2

X X−1/2
h ‖2, yielding

c

C
=

(
‖X−1/2

h P1/2
X ‖Xh

‖P−1/2
X X1/2

h ‖PX

)−1
=

(
‖P1/2

X X−1/2
h ‖2‖X1/2

h P−1/2
X ‖2

)−1

=
[
K2(X1/2

h P−1/2
X)

]−1
=

[
K2(P1/2

X X−1/2
h)

]−1
,

where the last two relations are both used to find different equalities. Next, by recalling
the definition of condition number (with respect to the Euclidean norm) K2 for a matrix,
we obtain

K2(X1/2
h P−1/2

X) =

√√√√√√λmax
(
(X1/2

h P−1/2
X)T X1/2

h P−1/2
X

)
λmin

(
(X1/2

h P−1/2
X)T X1/2

h P−1/2
X

) =

√√√√√√λmax
(
P−1/2

X XhP−1/2
X

)
λmin

(
P−1/2

X XhP−1/2
X

)
=

√
K2

(
P−1/2

X XhP−1/2
X

)
,

which verifies the second equality of (3.49). On the other hand we have

K2(P1/2
X X−1/2

h) =
√

K2
(
X−1/2

h PXX−1/2
h

)
=

√
‖X−1/2

h PXX−1/2
h ‖2‖X1/2

h P−1
X X1/2

h ‖2

=
√

‖X−1
h PX‖Xh

‖P−1
X Xh‖Xh

=
√

KXh
(P−1

X Xh),

where we used that

‖X−1/2
h PXX−1/2

h ‖2 = ‖X−1
h PX‖Xh

, ‖X1/2
h P−1

X X1/2
h ‖2 = ‖P−1

X Xh‖Xh
;

these latter relationships are verified similarly to (3.50), and their proof can therefore be
omitted.

99

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

Lemma 3.3.2 provides further insights about the choice of the matrix PX . Indeed, this
latter should be chosen in such a way that the condition number of the preconditioned
matrix P−1

X Xh(μ) does not depend on the mesh size h; in other words, PX should be
an optimal preconditioner for Xh(μ). If this is not the case, the value of the stability
constant of the RB approximation βPX ,N (μ) may depend on h. Furthermore, if we set
up our RB approximation in a HPC environment, employing a mesh partitioner to divide
the computational domain among the processors, it is also advisable to choose PX such
that c

C does not depend on the size H of the subdomains, i.e. PX should be a scalable
preconditioner for Xh(μ).

In our numerical experiments PX is chosen either as PX = X0
h, i.e. as the norm matrix

in the reference domain, or as a block diagonal preconditioner of X0
h, where the two

blocks are generated as symmetric and positive definite preconditioners PXu ∈ R
Nu

h ×Nu
h

of X0
u and PXp ∈ R

Np
h

×Np
h of X0

p, respectively.

3.4 Numerical experiments with aLSRB approximation

In this section we provide numerical results showing the capabilities of the proposed
aLSRB approximation. In particular, we compare the G-RB method (with velocity
enrichment) and the aLSRB method in the case of large-scale Stokes flows in a cylindrical
domain which is nonaffinely parametrized. The deformation is not analitically known,
since it is retrieved as the solution of an additional FE problem which harmonically
extends in the interior of the domain the datum prescribed on a Dirichlet boundary. In
the following sections, we present the setup of the problem.

3.4.1 Test case setting: Stokes problem in a parametrized cylinder

We consider the Stokes equations in a parameter dependent domain Ω(μ) ⊂ R
3, which is

obtained by deforming a reference domain

Ω0 = {�x ∈ R
3 : x2

1 + x2
1 < 0.25, x3 ∈ (0, 5)}

by means of a displacement �d(μ) obtained as the harmonic extension of a boundary
displacement. More specifically, we set

Ω(μ) = {�x(μ) ∈ R
3 : �x(μ) = �x + �d(μ)},

where �d(μ) solves the following (vector) Laplace equation⎧⎨⎩−Δ�d(μ) = �0 in Ω0

�d(μ) = �h(μ) on ∂Ω0.
(3.51)

100

3.4. Numerical experiments with aLSRB approximation

(a) μ = (2.7, 0.12) (b) μ = (2, −0.3) (c) μ = (3, 0.3)

Figure 3.1 – Displacement for different values of μ.

In our numerical experiments we take μ = (μ1, μ2) ∈ D = [−0.3, 0.3] × [2, 3] and a
Dirichlet datum of the form

�h(μ) =

⎡⎢⎣−x1μ1 exp{−5(x3 − μ2)2}
−x2μ1 exp{−5(x3 − μ2)2}

0

⎤⎥⎦ ,

entailing a deformation of the cylinder by narrowing or enlarging (according to the sign
of μ1) its section in different positions along the coordinate x3 (according to the value of
μ2). Since the solution �d(μ) of (3.51) is not known a-priori, we compute its numerical
approximation �dh(μ) by writing the variational form of problem (3.51) and by employing
the FE method. We denote by d(μ) ∈ R

Nd
h the solution of the corresponding FE linear

system.

Moreover, once the computational domain has been deformed, the lifting function �r�gD
(μ)

is computed similarly by solving the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ�r�gD
(μ) = �0 in Ω(μ)

�r�gD
(μ) = �gD(μ) on Γin(μ)

�r�gD
(μ) = �0 on Γw(μ)

∂�r�gD
(μ)

∂�n(μ)
= �0 on Γout(μ),

(3.52)

which is an harmonic extension of the Dirichlet data in (3.1). Here �gD is a parabolic
profile such that the flow rate at the inlet is equal to 1. Problem (3.52) as well is
discretized with the FE method with second order polynomials (P2) basis functions,
leading to a parametrized linear system whose solution r(μ) ∈ R

Nu
h is the approximated

lifting functions. In Figure 3.1, the deformation d(μ) is reported for three different values
of μ ∈ D. In the numerical experiments we present, Taylor-Hood FE (P2 − P1), with a
mesh leading to Nh = Nu

h + Np
h = 1′503′280 + 64′943 = 1′568′223 degrees of freedom, are

employed for the Stokes equations.

101

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

FE simulation setup

For any parameter μ considered, we solve the FE problems to approximate the dis-
placement �d(μ) of problem (3.51) and the lifting function �r�gD

(μ) of problem (3.52).
The associated algebraic systems are solved by the preconditioned CG method, with a
tolerance on the Euclidean norm of the residual (rescaled with the Euclidean norm of
the right hand side) of 10−8. An algebraic multigrid (AMG) preconditioner from the
ML package of Trilinos, see [Gee et al., 2006], is employed in this respect. Once
computed the deformation for a new parameter value μ, we employ a move-mesh tool
to shape the computational domain and assemble the FE arrays. This ensures that the
meshes for different instances of the parameter μ are topologically equivalent and there
is a one-to-one correspondence between degrees of freedom.

The linear system (3.6) resulting from the FE discretization of the Stokes equations
is solved with the preconditioned flexible GMRES (FGMRES) method, where the
preconditioner is the Pressure Mass Matrix (PMM) operator, which exploits the block
structure of (3.7) and employs the rescaled mass matrix in pressure to approximate the
Schur complement. It entails at every iteration the solution of a problem for the velocity
(involving the velocity stiffness matrix) and one for the pressure (involving the pressure
mass matrix). Both linear systems are solved inexactly with the preconditioned CG
method, where the preconditioner is still the AMG preconditioner from the ML package
of Trilinos, this time with a tolerance on the Euclidean norm of the residual (rescaled
with the Euclidean norm of the right hand side) of 10−5. Notice that we employed the
FGMRES (instead of regular GMRES) due to the use of inner iterations for the problems
involving the velocity and the pressure, which, as a matter of fact, yield an iteration
dependent preconditioner. The PMM preconditioner provides satisfactory results in the
case of the Stokes equations, cf. [Rehman et al., 2011, Elman et al., 2005, Elman and
Silvester, 1996]. Finally, in order to compute the FE solution with the flexible GMRES
method, up to a final tolerance of 10−8, our solver requires on average of 38.0 seconds,
which also accounts for the time for deforming the domain, building the lifting function,
the PMM preconditioner and the FE solution. In particular, computing the deformation
d(μ) and the lifting function r(μ) requires 2.5 seconds (6.5% of the FE simulation).

RB simulation setup

During the offline phase, we explore the parameter domain D for building our RB
approximation. In particular we perform the following steps:

• we randomly choose a set of ns = 150 parameters
{
μi

}ns

i=1 ⊂ D; then we compute
the velocity snapshots

{
u(μi)

}ns

i=1 and pressure snapshots
{
p(μi)

}ns

i=1 by solving the
corresponding linear system (3.6). Next, we build the RB space VN by separately
computing a basis VNu for the velocity and VNp for the pressure, by plugging

102

3.4. Numerical experiments with aLSRB approximation

in the POD the same tolerance εPOD = δRB in both cases. If the Galerkin-RB
method with velocity enrichment is employed, we also compute ns = 150 pressure
supremizer snapshots

{
tp(p(μi); μi)

}ns

i=1. Since in general we do not retain the
same number of basis functions for the velocity and pressure RB spaces, we use a
tolerance also for computing the pressure supremizer basis functions. With this
aim, we employ POD with εPOD = δRB/10 to build the supremizer basis VNs ,
which represents a heuristic criterion to provide a stable G-RB problem.

• we compute a basis to affinely approximate f(μ), r(μ) (with DEIM) and D(μ),
B(μ) (with MDEIM), by taking ns = 100 snapshots for each of these quantities
and a tolerance δDEIM to be used in the POD;

In the online phase, we solve the RB linear system resulting from either the G-RB or
aLSRB methods, and analyzed their performances in terms of accuracy and efficiency
with respect to the tolerances δRB (or the number of basis functions N) and δDEIM,
by choosing δRB, δDEIM = 10−l, l = 2, 3, 4, 5, 6. We evaluate the accuracy of the RB
solutions zN (μ) in terms of the rescaled RB residual

rRB(μ) =
‖g(μ) − A(μ)VzN (μ)‖X−1

h
(μ)

‖g(μ)‖X−1
h

(μ)
,

averaging the results obtained for Nonl = 100 parameters (denoting the average rRB),
different from the one employed within the offline phase. For the aLSRB method, we
present the results for two choices of the matrix PX :

• PX = X0
h, i.e. we approximate Xh(μ) with the matrix norm on the reference domain

Ω0. With this aim, in the offline phase, we need to solve Qa FE linear systems
with X0

h on the left hand side to compute the affine terms Aq1,q2
N , q1, q2 = 1, . . . , Qa.

These linear systems are solved with the CG method preconditioned with AMG,
up to a tolerance of 10−8 on the Euclidean norm of the relative residual;

• PX = PX0
h
, i.e. we take the preconditioner PX0

u
of Xh(μ), which has a block

structure PX0
h

= diag(PX0
u
, PX0

p
), where PXu ∈ R

Nu
h ×Nu

h (resp. PXp ∈ R
Np

h
×Np

h)
is a symmetric and positive definite AMG preconditioner of X0

u (resp. X0
p).

Both choices lead to a matrix PX which does not depend on μ. Notice that for any
new parameter μ considered online, we solve the FE linear system for computing the
deformation d(μ) and the lifting function r(μ). Alternatively, we could compute the RB
approximations of d(μ) and r(μ), to be exploited during the online phase, similarly to
what has been proposed in [Manzoni and Negri, 2017] for the parametrized Helmholtz
scattering problem.

103

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

3.4.2 Numerical results

Offline phase

In Tables 3.1-3.2 we show the offline time required to build the structures of the RB
approximations when using δRB = δDEIM = 10−6 (comparable results hold when bigger
tolerances are used). We recall that δRB is used within POD to build the velocity and
pressure RB spaces, while δDEIM for building an affine approximation of the FE blocks
of A(μ) and g in the (M)DEIM algorithm.

In the first table, we report the computational times to build the (M)DEIM basis
functions which provide an affine approximation of the FE matrices and right hand
sides; this effort is common to both the G-RB and aLSRB methods. In the second table,
the total time of the offline computation is reported, together with its splitting into:
snapshots computation, POD and RB affine arrays construction. Snapshots computation
is the most demanding phase, and is particularly expensive if the G-RB method is
employed, since it entails the additional computation of ns pressure supremizer snapshots{
tp(p(μi); μi)

}ns

i=1. The second phase, involving the POD to build the RB spaces, only
requires a tiny percentage of the offline time for all the three methods considered, however
also in this case, the two variants of the aLSRB method need a shorter time than the
G-RB method, because they require only the construction of the velocity and pressure
spaces VNu and VNp , while in the G-RB case the pressure supremizer space VNs must
also be constructed. Concerning the construction of the affine RB matrices and vectors,
the G-RB method scales linearly with the number (Qa and Qf) of affine terms of the FE
matrices and right hand sides, yielding a computational time which is shorter than the
one obtained with the aLSRB methods for this phase. However, there is also a significant
difference between the two variants of aLSRB method. By employing PX = X0

h, for
assembling the affine terms Aq1,q2

N , q1, q2 = 1, . . . , Qa, a FE linear system must be solved
for each combination of the N RB functions {ξi}N

i=1 and Qa affine terms {Aq
h}Qa

q=1, leading
to N · Qa FE linear systems. On the other hand, by employing PX = PX0

h
, only N · Qa

applications of P−1
X0

h
need to be performed, boosting the computation of the affine RB

structures. Finally, the lowest offline time is required by the aLSRB method where
PX = PX0

h
is employed, performing the offline phase in about 81% of the time required

by the aLSRB method with PX = X0
h and 96% of the time required by the G-RB

method. This is due to the fact that it does not require the construction of the pressure
supremizing snapshots to augment the velocity RB space and to cheaply construct the
RB affine arrays.

In Figure 3.2 the number of RB functions (left) and (M)DEIM affine terms are reported
as function of the tolerances δRB and δDEIM, respectively. The number of pressure RB
functions is the same for the G-RB and aLSRB method, however the number of velocity
basis functions doubles in the former case, due to the velocity enrichment required to
ensure the well-posedness of the resulting G-RB approximation.

104

3.4. Numerical experiments with aLSRB approximation

Table 3.1 – Computational time (seconds) to build (M)DEIM basis with δDEIM = 10−6.

MDEIM - D(μ) MDEIM - B(μ) DEIM - f(μ) DEIM - r(μ) Total (M-)DEIM
362.6 249.4 326.7 321.3 1260.0

Table 3.2 – Computational time (seconds) to build RB approximation with δRB = 10−6.

G-RB aLSRB (X0
h) aLSRB (PX0

h
)

Snapshots computation 6102.2 5699.4 5699.4
POD 3.5 2.1 2.1
Affine arrays construction 19.6 1789.8 153.3
Total (M)DEIM 1260.0 1260.0 1260.0
Total offline phase 7385.3 8751.3 7114.8

Online phase

In Figure 3.3, 3.4 and 3.5 the FE solution computed for different values of the parameter
and the corresponding errors obtained with the G-RB method and the aLSRB method
with PX = X0

h are shown (the aLSRB method with PX = PX0
h

provides similar results).

The proposed aLSRB method, either with PX = X0
h or PX = PX0

h
, allows to obtain an

exponential decay of the residual rRB with respect to the number of RB functions N ,
see Figure 3.6. A tolerance δDEIM = 10−8 has been used for (M)DEIM algorithms, in
order to make the error induced by affinely approximating the FE arrays negligible.

An analysis of the convergence of the residual rRB with varying both the tolerances
δRB, δDEIM = 10−l, l = 2, 3, 4, 5, 6 is reported in Figure 3.7 for the G-RB and the two
variants of the aLSRB methods. By using the same tolerances δDEIM and δRB , the aLSRB
method allows to compute a more accurate solution of about 1 order of magnitude during
the online phase. Moreover, notice that by using the same δDEIM for the aLSRB methods
and the G-RB method, the latter requires a lower tolerance δRB to reach a solution
with the same accuracy, yielding a much larger number N of RB functions. Obtaining a
more accurate solution with the aLSRB method is an expected result, since the standard
LSRB method seeks a RB approximation minimizing the X−1

h (μ) norm of the residual,
and the aLSRB method provides a RB approximation minimizing its P−1

X norm, where
P−1

X ≈ X−1
h (μ), as shown in Proposition 3.3.2.

In Figure 3.7, the computational time required to assemble and solve the RB problem is
reported for the three methods by varying both the tolerances δRB, δDEIM = 10−l, l =
2, 3, 4, 5, 6. Depending on the desired level of accuracy and the RB method employed,
the computational time required to solve the RB problem online ranges from 3.75 to 4.3
seconds. Therefore, a solution accurate up to an error of 0.01% on the FE residual rRB is
computed in a time ranging from 10% to 12% of the time required by the FE simulation.

Notice however that the online computational time accounts also for the time employed for
assembling and solving the FE problems to compute the deformation d(μ) and the lifting

105

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

10 -6 10 -5 10 -4 10 -3 10 -2

δ
RB

0

20

40

60

80

100

120

140

N

GRB-velocity
GRB-pressure
aLSRB-velocity
aLSRB-pressure

(a) RB.

10 -6 10 -5 10 -4 10 -3 10 -2

δDEIM

0

10

20

30

40

50

N
um

be
r

of

(M
-)

D
E

IM
 fu

nc
tio

ns

RHS-velocity
RHS-pressure
Velocity stiffness
Divergence matrix

(b) (M)DEIM.

Figure 3.2 – RB and (M)DEIM functions vs δRB, δDEIM = 10−l, l = 2, 3, 4, 5, 6.

(a) FE velocity magnitude. (b) G-RB velocity error magni-
tude.

(c) aLSRB velocity error magni-
tude.

(d) FE pressure. (e) G-RB norm of pressure er-
ror.

(f) aLSRB norm of pressure er-
ror.

Figure 3.3 – FE solution and G-RB and aLSRB errors for μ = (2, −0.3).

function r(μ), which on average requires 2.5 seconds in total. In our implementation
this is included in the assembly of the RB matrix, whose required computational time
is reported in Figure 3.9. By substituting in the simulation pipeline the assembly and
solution of the FE problems to compute d(μ) and r(μ) with a less expensive model, e.g.
by using a cheap RB approximation, one can compute an accurate solution with the
aLSRB method, which needs only 5% of the time required by the FE simulation.

In Table 3.3, for the three methods examined, we compare the minimum time to determine
a RB approximation whose residual rRB is lower than a fixed target accuracy. The two
versions of the aLSRB method again reach a better accuracy in a lower time. The ’x’ in
the G-RB column states that the accuracy 10−4 cannot be reached when this method

106

3.4. Numerical experiments with aLSRB approximation

(a) FE velocity magnitude. (b) G-RB velocity error magni-
tude.

(c) aLSRB velocity error magni-
tude.

(d) FE pressure. (e) G-RB norm of pressure er-
ror.

(f) aLSRB norm of pressure er-
ror.

Figure 3.4 – FE solution and G-RB and aLSRB errors for μ = (3, 0.3).

(a) FE velocity magnitude. (b) G-RB velocity error magni-
tude.

(c) aLSRB velocity error magni-
tude.

(d) FE pressure. (e) G-RB norm of pressure er-
ror.

(f) aLSRB norm of pressure er-
ror.

Figure 3.5 – FE solution and G-RB and aLSRB errors for μ = (2.7, 0.12).

is used with the given tolerance values δRB, δDEIM = 10−l, l = 2, 3, 4, 5, 6. Therefore,
one should further decrease δRB and δDEIM to compute a more accurate solution when
employing the G-RB method, yes increasing assembling and solving costs even further.

107

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

0 50 100 150
N = N u + N p

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

r R
B

aLS-RB X h
0

aLS-RB PX
h

0

Figure 3.6 – Convergence of the residual in norm X−1
h (μ) vs the number of basis functions

N = Nu + Np for the two case aLSRB (with X0
h and PX0

h
). Results computed with

δDEIM = 10−8.

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

10 -4

10 -3

10 -2

10 -1

r rb

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(a) GRB.

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

10 -4

10 -3

10 -2

10 -1

r rb

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(b) aLSRB (X0
h).

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

10 -4

10 -3

10 -2

10 -1

r rb

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(c) aLSRB (PX0
h

).

Figure 3.7 – Residuals in norm X−1
h (μ) vs δRB for δDEIM = 10−l, l = 2, 3, 4, 5, 6.

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

3.7

3.8

3.9

4

4.1

4.2

4.3

co
m

pu
ta

tio
na

l t
im

e
on

lin
e

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(a) GRB.

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

3.7

3.8

3.9

4

4.1

4.2

4.3

co
m

pu
ta

tio
na

l t
im

e
on

lin
e

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(b) aLSRB (X0
h).

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

3.7

3.8

3.9

4

4.1

4.2

4.3

co
m

pu
ta

tio
na

l t
im

e
on

lin
e

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(c) aLSRB (PX0
h

).

Figure 3.8 – Computational times (seconds) vs δRB for δDEIM = 10−l, l = 2, 3, 4, 5, 6.

108

3.5. MSRB preconditioners for the Stokes equations

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

3.7

3.8

3.9

4

4.1

4.2

4.3

co
m

pu
ta

tio
na

l t
im

e
to

 b
ui

ld
 th

e
R

B
 m

at
rix

 o
nl

in
e

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(a) GRB.

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

3.7

3.8

3.9

4

4.1

4.2

4.3

co
m

pu
ta

tio
na

l t
im

e
to

 b
ui

ld
 th

e
R

B
 m

at
rix

 o
nl

in
e

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(b) aLSRB (X0
h).

10 -6 10 -5 10 -4 10 -3 10 -2

δrb

3.7

3.8

3.9

4

4.1

4.2

4.3

co
m

pu
ta

tio
na

l t
im

e
to

 b
ui

ld
 th

e
R

B
 m

at
rix

 o
nl

in
e

δdeim =1e-02

δdeim =1e-03

δdeim =1e-04

δdeim =1e-05

δdeim =1e-06

(c) aLSRB (PX0
h

).

Figure 3.9 – Building time (seconds) for AN (μ) vs δRB for δDEIM = 10−l, l = 2, 3, 4, 5, 6.

Table 3.3 – Computational time (seconds) required by the RB methods to compute a
solution satisfying a target accuracy.

Accuracy G-RB aLS-RB (X0
h) aLS-RB (P0

X)
1e-01 3.73 3.74 3.74
1e-02 3.93 3.74 3.74
1e-03 3.99 3.76 3.77
1e-04 x 4.14 3.91

3.5 MSRB preconditioners for the Stokes equations

After having introduced the RB approximation of the parametrized Stokes equations and
having conceived and developed a new aLSRB method, we focus now on the construction
of a MSRB preconditioner for the same problem.

Similarly to the elliptic case, we employ a multiplicative combination of an iteration
dependent RB coarse operator QNk

(μ) and a fine grid preconditioner P(μ), hence
exploiting the structure (2.10):

QMSRB,k(μ) = P−1(μ) + QNk
(μ)

(
INh

− Ah(μ)P−1(μ)
)
. (3.53)

In the following, we will focus on the FGMRES iterative method, even though a similar
construction can be done for the Richardson method. Furthermore, we devise a MSRB
preconditioning strategy with a RB coarse operator which is constructed by relying on
either a G-RB or aLSRB formulation; subsequently, to set up the MSRB preconditioner
in a fairly general way, we consider a general PGRB formulation to build QNk

(μ). To
this aim, we recall that at iteration k of the FGMRES method we aim at computing a
RB approximation yNk

(μ) of the solution yk(μ) of the following problem

Ah(μ)yk(μ) =
(
INh

− Ah(μ)P−1(μ)
)
vk(μ). (3.54)

To this aim, we introduce the matrices Vk = [ξk
1 | . . . |ξk

N] ∈ R
Nh×Nk , k = 1, 2, . . ., such

109

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

that the basis
{
ξk

i

}Nk

i
is tailored to provide VkyNk

(μ) ≈ yk(μ). We remark that the
RB coarse component for the MSRB preconditioner is obtained, similarly to (1.41), by
enforcing the projection of the FE residual of (3.54) evaluated for the RB coarse operator
VkyNk

(μ) onto a test space generated by the columns of a matrix Wk(μ) to vanish, that
is by requiring

(Wk(μ))T
(
vk+ 1

2
(μ) − A(μ)VkyNk

(μ)
)

= 0. (3.55)

In general, Wk(μ) depends on both k and μ; if Wk(μ) �= Vk, we build a PGRB coarse
operator; otherwise, the choice Wk(μ) = Vk leads to a G-RB coarse operator. This
procedure leads to the following RB problem, to be solved at iteration k = 1, 2, . . . , for
any μ

(Wk(μ))T A(μ)VkyNk
(μ) = (Wk(μ))T

(
INh

− A(μ)P−1(μ)
)
vk(μ), (3.56)

whose solution yNk
(μ) ∈ R

Nk is the RB approximation to the solution yk(μ) ∈ R
Nh of

(3.54) where vk(μ) is the k-th Krylov basis generated by the FGMRES method.

Accordingly with the construction in Section 3.2, the RB matrices ANk
(μ) ∈ R

Nk×Nk ,

k = 1, 2, . . . are built as

ANk
(μ) = (Wk(μ))T A(μ)Vk. (3.57)

The FE representation VkyNk
(μ) of the RB approximation is then recovered as in

equation (2.39)

VkyNk
(μ) = Vk(ANk

(μ))−1(Wk(μ))T
(
INh

− A(μ)P−1(μ)
)
vk(μ),

from which we set the coarse operator as QNk
(μ) = Vk(ANk

(μ))−1(Wk(μ))T .

In the case of the parametrized Stokes equations, the solution of equation (3.54) is made
of both velocity and pressure components, that is, yk(μ) = [yu,k(μ), yp,k(μ)]T , k = 1,
Consequently, we build the RB spaces for these two variables separately by setting

Vuk = POD
(
S(k)

�u , Xu, δRB,k

)
, (3.58)

Vpk = POD
(
S(k)

p , Xp, δRB,k

)
, (3.59)

where S(k)
�u = [yu,k(μ1), . . . , yu,k(μns)] ∈ R

Nu
h ×ns , S(k)

p = [yp,k(μ1), . . . , yp,k(μns)] ∈
R

Np
h

×ns and δRB,k > 0 is a prescribed tolerance (possibly depending on k). Here{
yu,k(μi)

}ns

i=1 and
{
yp,k(μi)

}ns

i=1 are error snapshots for the velocity and the pressure for
properly chosen instances of the parameters. Notice that POD on velocities

{
yu,k(μi)

}ns

i=1,

k = 1, . . . is performed with respect to the scalar product induced by the norm matrix
Xu. On the other hand, POD on pressures

{
yp,k(μi)

}ns

i=1 is performed with respect to

110

3.5. MSRB preconditioners for the Stokes equations

the scalar product induced by the norm matrix Xp. Finally, the matrix Vk has the
following form

Vk =
[
Vuk 0

0 Vpk

]
. (3.60)

Remark 3.5.1. An inf-sup condition similar to (3.16) must hold in order to guarantee
the nonsingularity of the matrices ANk

(μ) for k = 1, 2, . . ., that is, for any k = 1, 2, . . .

there must exist βmin
Nk

> 0 such that

βNk
(μ) = inf

zN ∈RN
sup

wN ∈RN

wT
N ANk

(μ)zN

‖VzN ‖Xh(μ)‖Wk(μ)wN ‖Xh(μ)
≥ βmin

Nk
∀μ ∈ D.

(3.61)

Remark 3.5.2. Instead of providing the tolerances δRB,k, we could prescribe the dimen-
sions Nu

k and Np
k of the RB spaces for the velocity and the pressure, respectively, at each

iteration.

In the following we devise two alternative techniques to build a well-posed RB coarse
operator, according to two different choices of Wk(μ), k = 1, 2 . . . which reflect the choice
between a G-RB or an algebraic LSRB method discussed above.

3.5.1 MSRB preconditioners with enriched G-RB coarse operators

A G-RB approximation to build the k−th coarse operator is obtained by choosing
Wk(μ) = Vk, k = 1, 2, However, the resulting RB approximation is not guaranteed
to fulfill (3.61), similarly to what happens for the standard G-RB approximation for
the Stokes problem. Consequently, we consider an enriched velocity space formulation,
where the velocity space spanned by the columns of Vuk is augmented by a set of N s

k

enriching basis functions. Given the pressure snapshots
{
yp,k(μi)

}ns

i=1, we build the
pressure supremizing snapshots

{
yt,k(μi)

}ns

i=1 by solving the following problems

Xu(μ)yt,k(μi) = BT (μi)yp,k(μi) i = 1, . . . , ns. (3.62)

Next, we run POD on the set of pressure supremizing snapshots
{
yt,k(μi)

}ns

i=1 and obtain
Vsk ∈ R

Nh×Ns
k as

Vsk = POD
(
S(k)

�t
, Xu, δs

RB,k

)
,

with S(k)
�t

= [yt,k(μ1), . . . , yt,k(μns)] ∈ R
Nu

h ×ns and δs
RB,k a prescribed tolerance. The

columns of Vsk form a N s
k−dimensional space employed to augment the velocity space

111

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

after a proper Gram-Schmidt procedure:

Vuk = G-S([Vuk, Vsk], Xu). (3.63)

By using (3.63) and setting Wk(μ) = Vk, k = 1, . . . , in (3.57), we obtain a well-posed
G-RB coarse operator. Notice that a velocity enrichment is required for every coarse
operator, leading to solve ns additional problems of the form of (3.62) for each coarse
operator QNk

(μ), k = 1, 2, . . . which has to be built, leading to a couple of RB spaces
which proves to be numerically stable, even though a rigorous stability result cannot be
proven, see e.g. [Dal Santo et al., 2017b].

3.5.2 MSRB preconditioners with aLSRB coarse operators

Compared to the approximate enrichment of the velocity space described in Section
3.5.1, the aLSRB method features a smaller dimension of the RB spaces (a lower number
of RB functions), since in this case the velocity space is not augmented. This yields
a remarkable advantage when the RB coarse operators and the inverse matrices of
ANk

(μ), k = 1, 2, . . . , are constructed for a new parameter. Furthermore, the resulting
RB formulation is automatically inf-sup stable, i.e. (3.61) is fulfilled. To build a LSRB
approximation, we take advantage of the matrix PX verifying Assumption 3.3.1. The
aLSRB coarse operator is constructed by taking Wk(μ) = P−1

X A(μ)Vk in (3.57), leading
to the following definition

ANk
(μ) = VT

k (A(μ))T P−1
X A(μ)Vk, k = 1, (3.64)

The RB problem with ANk
(μ) so chosen yields a naturally well-posed problem, verifying

(3.61) with βmin
Nk

= βmin
h c/C.

3.5.3 Nonsingularity of the preconditioner

When a G-RB approximation is employed to build the coarse operators, as in the
case where an augmented velocity space is used, the MSRB preconditioner operator
QMSRB,k(μ) is invertible, with proper assumptions on P(μ) and the basis Vk, see Section
2.2.2. In the following we extend these results, showing that QMSRB,k(μ) is invertible
when a more general PGRB approach is used to build the RB coarse operators.

Let W1 = span{w1
j }M

j=1 and W2 = span{w2
j }M

j=1 ⊂ R
Nh be two subspaces such that

dim(W1) = dim(W2) = M . We denote by W ⊥
1 and W ⊥

2 the orthogonal complement of
W1 and W2, respectively, and by W1, W2 ∈ R

Nh×M the matrices of basis vectors such
that W1 = [w1

1, . . . , w1
M], W2 = [w2

1, . . . , w2
M]. Moreover, given a subspace W ⊂ R

Nh

112

3.5. MSRB preconditioners for the Stokes equations

and a nonsingular matrix B ∈ R
Nh×Nh , we define the following spaces

BW =
{

x ∈ R
Nh : B−1x ∈ W

}
=

{
x ∈ R

Nh : x = Bz, z ∈ W
}

,

BW ⊥ =
{

x ∈ R
Nh : B−1x ∈ W ⊥

}
=

{
x ∈ R

Nh : x = Bz, z ∈ W ⊥
}

.

We remark that R
Nh = BW ⊕ BW ⊥, because of the nonsingularity of B.

Lemma 3.5.1. Let W1 and W2 be two M-dimensional subspaces of R
Nh, {w1

j }M
j=1

and {w2
j }M

j=1 their basis and W1 = [w1
1, . . . , w1

M] ∈ R
Nh×M , W2 = [w2

1, . . . , w2
M] ∈

R
Nh×M . Moreover, let B be a nonsingular Nh × Nh matrix and assume that WT

2 BW1
is nonsingular. Then the following implication holds:

x ∈ BW 1 and WT
2 x = 0 ⇒ x = 0.

Proof. We take x ∈ BW 1 such that WT
2 x = 0 and show that it must be x = 0. By

definition of BW 1, B−1x = W1zM for some zM ∈ R
M . Thanks to the nonsingularity of

B, we obtain

0 = WT
2 x = WT

2 BB−1x = WT
2 BW1zM ,

which implies zM = 0, due to the nonsingularity of WT
2 BW1 ∈ R

M×M . Finally, we have

0 = W1zM = B−1x,

which, thanks to the nonsingularity of B, ends the proof.

In the following we employ Lemma 3.5.1 by taking W1 = Vk, W2 = Wk(μ), B = P(μ)
in order to prove that QMSRB,k(μ) is nonsingular. To this aim, we define

V
P//

Nk
=

{
x ∈ R

Nh : P−1(μ)x ∈ VNk

}
, V P⊥

Nk
=

{
x ∈ R

Nh : P−1(μ)x ∈ V ⊥
Nk

}
.

Theorem 3.5.1. For any μ ∈ D, assume that P(μ) ∈ R
Nh×Nh is a nonsingular matrix

such that the matrix (Wk(μ))T P(μ)Vk is nonsingular. Then the matrix QMSRB,k(μ) is
nonsingular.

Proof. The proof is similar to the one outlined in Section 2.2.2. Given x = x// + x⊥,
where x// ∈ V

P//
Nk

, x⊥ ∈ V P⊥
Nk

, such that QMSRB,k(μ)x = 0, then it must be x = 0. Then
we have

QMSRB,k(μ)x// = P−1(μ)x// + QNk
(μ)

(
INh

− A(μ)P−1(μ)
)
x//

= Vkzμ
N + QNk

(μ)x// − QNk
(μ)A(μ)Vkzμ

N = QNk
(μ)x//,

113

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

where P−1(μ)x// = Vkzμ
N for some zμ

Nk
∈ R

Nk . Then

0 = QMSRB,k(μ)x = QMSRB,k(μ)x// + QMSRB,k(μ)x⊥

= QNk
(μ)x// + P−1(μ)x⊥ + QNk

(μ)
(
INh

− A(μ)P−1(μ)
)
x⊥

which leads to

QNk
(μ)

(
x// + x⊥ + A(μ)P−1(μ)x⊥

)
= −P−1(μ)x⊥. (3.65)

The left hand side is an element of VNk
, the right hand side is an element of V ⊥

Nk
, therefore

the only way for them to be equal is when they are both zero. Being P−1(μ)x⊥ = 0,
implies x⊥ = 0 thanks to the nonsingularity of P(μ), leading to

0 = QNk
(μ)x// = VkA−1

Nk
(μ)(Wk(μ))T x// (3.66)

which, thanks to linear independence of the columns of Vk and the non singularity of
ANk

(μ) yields

(Wk(μ))T x// = 0.

Finally, by applying Lemma 3.5.1 with W1 = VNk
, W1 = Vk, W2 = Wk(μ) and

B = P(μ), we obtain that x// = 0.

As in the Galerkin-RB case, thanks to the nonsingularity of QMSRB,k(μ) invertible, we
can define the MSRB preconditioner as

PMSRB,k(μ) = Q−1
MSRB,k(μ).

3.5.4 Algorithmic procedures

In this section we detail the procedures required to build and use the MSRB preconditioner
for the Stokes problem. As in the elliptic case, we split the computation in an offline and
an online phase.

Offline phase

First, the RB spaces as in (3.58)-(3.59) are constructed. To this goal, we solve the FE
problem (3.6) for ns instances of μ to build the snapshots for velocity

{
u(μi)

}ns

i=1 and
pressure

{
p(μi)

}ns

i=1, and set

yμi
u0 = uμi , yμi

p0 = pμi , i = 1, . . . , ns.

114

3.5. MSRB preconditioners for the Stokes equations

These snapshots are used to build the spaces Vu
Nu

0
and Vp

Np
0
, respectively, which in turn

are used to provide the initial guess to the FGMRES algorithm. As a matter of fact they
are the usual spaces used for the standard RB approximation, that is, Vu

Nu
0

= VNu and
Vp

Np
0

= VNp . For each new RB space Vk, k = 1, 2, . . ., the new snapshots
{
yu,k(μi)

}ns

i=1
and

{
yp,k(μi)

}ns

i=1, k = 1, 2, . . ., solution of (3.54) for particular instances of μ, are
computed taking advantage of (2.42). An (approximated) affine dependence of A(μ) can
also be exploited: if (1.44) is verified, the RB matrix ANk

(μ) can be constructed as

ANk
(μ) =

Qa∑
q=1

Θq
a(μ)VT

k Aq
hVk =

Qa∑
q=1

Θq
a(μ)Aq

Nk
(3.67)

in the G-RB case and as

ANk
(μ) =

Qa∑
q1,q2=1

Θq1
a (μ)Θq2

a (μ)VT
k (Aq1

h)T P−1
X Aq2

h Vk (3.68)

=
Qa∑

q1,q2=1
Θq1

a (μ)Θq2
a (μ)Aq1,q2

Nk
.

in the aLSRB case. The matrices Aq
Nk

, q = 1, . . . , Qa, Aq1,q2
Nk

∈ R
N×N , q1, q2 = 1, . . . , Qa,

depending on the chosen RB approximation, can be precomputed and stored once the
RB spaces Vk are constructed. Then, given a new value μ of parameter, only the sum
in (3.67) or (3.68) must be carried out to build ANk

(μ). If only an approximated affine
decomposition is available (e.g. reconstructed with MDEIM), then the left equalities in
(3.67)-(3.68) hold approximately. Furthermore, we remark that the 2 × 2 RB matrices
ANk

(μ) read

ANk
(μ) =

[
DNu

k
(μ) BT

Nk
(μ)

BNk
(μ) CNp

k
(μ)

]
. (3.69)

In the G-RB coarse operator case this is a saddle-point matrix, since CNp
k
(μ) = O,

whereas, in the aLSRB one, CNp
k
(μ) is a symmetric and positive definite matrix yielding

the symmetry and the positive definiteness of ANk
(μ).

The offline construction of the MSRB preconditioner is outlined in Algorithm 9 for the
G-RB case and in Algorithm 10 for the aLSRB case. We provide a set of sampling
parameters

{
μi

}ns

i=1, a final tolerance εr and the tolerances to construct each RB space
{δRB,k}k; then, at first we compute an affine decomposition {Aq

h}Qa
q=1 of the matrix

A(μ) with M-DEIM algorithm [Negri et al., 2015a] (step 2), and we construct the
snapshots required to build the first space (step 3). Then, we iteratively build the
necessary RB spaces through POD (steps 5-8) and the affine RB decomposition matrices
{Aq1,q2

Nk
}Qa

q1,q2=1 (step 9). The final number of RB spaces constructed is L. In the G-RB
case, the construction of the snapshots is more demanding, since it requires to build also

115

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

the supremizer snapshots and an additional POD for each RB space, which also leads to
RB coarse components of larger dimension due to the enrichment of the velocity space.
However, the number of affine structures to be computed and stored is Qa in the G-RB
case, but increases to Q2

a in the aLSRB case. Hence, taking into account all these factors
and depending on the application at hand, one should decide between a G-RB or aLSRB
approach and prefer the latter if the number of affine terms is not excessive.

Algorithm 9 MSRB Preconditioner with G-RB coarse operator - Offline phase

1: procedure MSRB-PRECONDITIONER-G-OFFLINE(
{
μi

}ns

i=1, εr, {δRB,k}k,
δMDEIM)

2: Compute an (approximated) affine decomposition of A(μ)
3: Compute the FE solutions

{
z(μi)

}ns

i=1 and pressure supremizers
{
tp(p(μi); μi)

}ns

i=1
4: Set S(0)

�u = [uμ1 , . . . , uμns], S(0)
p = [pμ1 , . . . , pμns], S(0)

�t
= [tp(μ1), . . . , tp(μns)]

and k = 0
5: while

∏
k

δRB,k > εr do

6: Vuk = POD(S(k)
�u , Xu, δRB,k)

7: Vpk = POD(S(k)
p , Xp, δRB,k)

8: Vsk = POD(S(k)
�t

, Xu,
δRB,k

10
)

9: Vuk = G-S(Vuk, Vsk, Xu)
10: Build RB affine matrices

{
Aq

Nk

}Qa

q=1
11: Compute new snapshots

{
yu,k(μi)

}ns

i=1 and
{
yp,k(μi)

}ns

i=1 with (2.42)
12: Compute new supremizer snapshots

{
yt,k(μi)

}ns

i=1 with (3.62)
13: S(k+1)

�u = [yu,k+1(μ1), . . . , yu,k+1(μns)],
14: S(k+1)

p = [yp,k+1(μ1), . . . , yp,k+1(μns)]
15: S(k+1)

�t
= [yt,k+1(μ1), . . . , yt,k+1(μns)]

16: k = k + 1
17: end while
18: end procedure

Notice that instead of providing a set of tolerances {δRB,k}k, we can also provide a set
of dimensions {Nk}k. Following the elliptic case, two strategies have been employed to
build in practice the RB coarse operators:

• fixed space accuracy: we build each RB space prescribing the same tolerance δRB,
i.e. δRB,k = δRB for any k. If a G-RB method approach is employed, then the
tolerance provided to POD for the construction of the enriching basis functions
Vsk is δRB,k/10, which empirically results in a well-posed G-RB approximation;

• fixed space dimension: the dimensions {Nu
k }k, {Np

k }k and, eventually, {N s
k}k of the

RB spaces are set to a fixed value N , that is Nu
k = Np

k = N(= N s
k) for any k.

116

3.5. MSRB preconditioners for the Stokes equations

Algorithm 10 MSRB Preconditioner with aLSRB coarse operator - Offline phase

1: procedure MSRB-PRECONDITIONER-ALS-OFFLINE(
{
μi

}ns

i=1, εr, {δRB,k}k,
δMDEIM)

2: Compute an affine approximation {Aq
h}Qa

q=1
3: Compute the FE solutions

{
z(μi)

}ns

i=1
4: Set S(0)

�u = [u(μ1), . . . , u(μns)], S(0)
p = [p(μ1), . . . , p(μns)] and k = 0

5: while
∏
k

δRB,k > εr do

6: Vuk = POD(S(k)
�u , δRB,k)

7: Vpk = POD(S(k)
p , δRB,k)

8: Build RB affine matrices
{
Aq1,q2

Nk

}Qa

q1,q2=1
9: Compute new snapshots

{
yu,k(μi)

}ns

i=1 and
{
yp,k(μi)

}ns

i=1 with (2.42)
10: S(k+1)

�u = [yu,k+1(μ1), . . . , yu,k+1(μns)],
11: S(k+1)

p = [yp,k+1(μ1), . . . , yp,k+1(μns)]
12: k = k + 1
13: end while
14: end procedure

Sequential RB coarse operator construction

The offline phase, and especially the computation of the set of snapshots
{
z(μi)

}ns

i=1 in
step 3 of Algorithm 9 and 10, can be particularly expensive. In order to speed up the
process, we can alternatively opt for a sequential construction of the RB coarse operators.
With this aim, we partition the snapshot set by introducing M subsets Zm, m = 1, . . . , M ,
of

{
z(μi)

}ns

i=1, of dimension nm
s , respectively, and such that

{
z(μi)

}ns

i=1 =
M⋃

m=1
Zm, ns =

M∑
m=1

nm
s , Zm =

{
zμi

h

}im

1+im−1
,

where im =
m∑

l=1
nl

s. Then, the k-th RB matrix Vk is built using
⋃k

m=1 Zm as snapshots set.

We remark that there is not any correspondence between the choice of the number of RB
spaces L and the number of snapshot partition M . Exploiting only part of the snapshots
allows to use the MSRB preconditioner developed up to iteration k for the computation
of the new snapshots Zj , j > k, which will be employed to construct the RB spaces
Vj , j > k. This technique yields a reduction of the overall time required by the snapshot
computation, since the speed up provided by the MSRB preconditioner is sequentially
used to build part of the snapshots. M and Zm, m = 1, . . . , M are empirically chosen
such that the accuracies obtained by the RB coarse operators do not change if compared
with the ones obtained with the RB coarse operators built with the complete set of
snapshot.

117

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

Online phase

In the online phase, we aim at computing the solutions of (3.6) for new instances of the
parameter μ, which have not been considered during the offline phase. We thus need
to compute the weights {Θq

a(μ)}Qa
q=1 of the affine decomposition of A(μ), and build the

coarse operators {Qμ
Nk

}k. The assembly of ANk
(μ) is performed blockwise by relying on

the (eventually approximated) affine decomposition of the matrices D(μ) and B(μ), for
the aLSRB coarse operators similarly to what explained in Section 3.3.2. Finally, we
apply FGMRES algorithm 3 with M−1

k (μ) = QMSRB,k(μ) in the preconditioning step.

3.6 Numerical results

In this section we show numerical results where the proposed MSRB preconditioner,
based on either a G-RB or an aLSRB method, is employed to solve Stokes equations in
parametrized geometries. Parameter dependent domains are obtained by considering
a map from a reference domain to the physical domain which can be provided either
analytically (test case I) or by computing the solution of an additional FE problem (test
case II), e.g. when a solid extension mesh moving technique is employed, see [Manzoni
and Negri, 2017]. However, we highlight that the proposed strategy is applicable also to
the case where physical parameters are considered.

We employ Taylor-Hood (P2 − P1) finite element spaces for velocity and pressure,
respectively, as high-fidelity discretization, which are proven to provide an inf-sup stable
FE problem. The lifting function �r�gD

(μ) is computed as harmonic extension of the
Dirichlet data �gD(μ) in (3.1), which is chosen as a parabolic profile such that the flow
rate at the inlet is equal to 1. An approximation of �r�gD

(μ) is computed by employing the
FE method, with second order polynomials basis functions. This leads to a parametrized
linear system whose solution r(μ) ∈ R

Nu
h is the approximated lifting functions computed

with the preconditioned conjugate gradient (PCG) method, exploiting an Algebraic
Multigrid (AMG) preconditioner from the ML package of Trilinos [Gee et al., 2006].

As fine component P(μ) we employ the Pressure Mass Matrix (PMM) preconditioner
defined as

P(μ) = PM(μ) =
[
D(μ) BT (μ)

0 − 1
ν(μ)Xp(μ)

]
, (3.70)

where the Schur complement S(μ) is approximated with the rescaled pressure mass
matrix, that is S̃(μ) = 1

ν(μ)Xp(μ) (which is spectrally equivalent to S(μ) at least for
two-dimensional problems). The PMM preconditioner (3.70) allows to obtain extremely
satisfactory results both in terms of optimality and scalability, see e.g. [Rehman et al.,
2011] and results therein. Specifically, the application of PM(μ) is detailed in Algorithm
11, where the application of P−1

M (μ) to the k−th Krylov basis function vk = [vu,k, vp,k]T

118

3.6. Numerical results

(at step k of the Krylov method) is summarized. Steps 1 and 3 are solved inexactly
by inner iterations up to a tolerance of 10−5 on the Euclidean norm of the residual
rescaled with the Euclidean norm of the right hand side. An algebraic multigrid (AMG)
preconditioner from the ML package of Trilinos [Gee et al., 2006] is employed for the
inner iterations.

Algorithm 11 Computation of P−1
M (μ)vk

1: solve the pressure problem − 1
ν(μ)Xp(μ)zp,k = vp,k (solved inexactly by inner itera-

tions);
2: update the velocity vu,k = vu,k − BT (μ)zp,k;
3: solve the velocity problem D(μ)zu,k = vu,k (solved inexactly by inner iterations).

In the following, we compare the results obtained with the MSRB preconditioner with
the ones obtained by using only the PMM preconditioner PM(μ).

3.6.1 Test case I: parametrized cylinder

The first test case concerns a Stokes flow in a three-dimensional cylinder whose shape
varies according to a set of parameters. We introduce a reference domain

Ω0 = {�x ∈ R
3 : x2

1 + x2
2 < 0.25, x3 ∈ (0, 5)},

and obtain the computational domain Ω(μ) as

Ω(μ) = {�x(μ) ∈ R
3 : �x(μ) = �x + �d(μ)},

where �d(μ) is an analytical displacement

�d(μ) =

⎡⎢⎢⎣
−x1μ1 exp{− (x3−2.5)2

μ2
}

−x2μ1 exp{− (x3−2.5)2

μ2
}

0

⎤⎥⎥⎦ .

Here the parameter μ = (μ1, μ2) ∈ D = (0, 0.3) × (0.5, 1). The cylinder is narrowed in
the central section by a factor μ1/2, whereas μ2 determines how the narrowing effect
propagates towards the inlet and outlet sections. An example of deformation is shown in
Figure 3.10. Compared to the example considered for the aLSRB solver in Section 3.4,
in this case the displacement is assigned analytically in whole the domain (instead of
being an harmonic extension of a boundary condition) and the position of the largest
narrowing section is fixed at x3 = 2.5 (instead of being parameter dependent).

119

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

Figure 3.10 – Deformation of the domain for test case I.

Simulation setup

We show numerical results obtained for three different meshes, leading to a finite element
problem with dimension Nh = 52′152, 320′338, 1′568′223, respectively, computed with
Ncore = 36, 180, 900 cores, thus distributing about 1800 dofs per CPU. The FE solution
for different values of the parameter μ is reported in Figure 3.11.

(a) Velocity μ = (0.3, 1) (b) Velocity μ = (0.0, 0.5) (c) Velocity μ = (0.21, 0.85)

(d) Pressure μ = (0.3, 1) (e) Pressure μ = (0.0, 0.5) (f) Pressure μ = (0.21, 0.85)

Figure 3.11 – Test case I, numerical solution for three values of μ obtained with the
MSRB preconditioning technique.

As RB coarse component, we show results for both the fixed accuracy and fixed dimension
approaches in the following configurations:

• GRB: G-RB coarse operators;

• aLSRB-X0
h: aLSRB coarse operators where PX = X0

h, i.e. the matrix norm (3.12)
on the reference domain;

• aLSRB-PX0
h
: aLSRB coarse operators where PX = PX0

h
, where PX0

h
is a

symmetric and positive definite preconditioner for X0
h with a block structure

PX0
h

= diag(PX0
u
, PX0

p
), where PXu ∈ R

Nu
h ×Nu

h (resp. PXp ∈ R
Np

h
×Np

h) is a
symmetric and positive definite AMG preconditioner of X0

u (resp. X0
p).

120

3.6. Numerical results

Table 3.4 – Test case I, MDEIM offline results, δMDEIM = 10−6.

Nh Qd Qb D(μ) offline time (s) B(μ) offline time (s)
52152 7 10 24.65 5.25
320338 6 10 37.29 8.11
1568223 6 10 54.37 11.71

For the offline phase, we take ns = 100 snapshots for both the construction of the
RB coarse operators and the MDEIM algorithm, which is employed to provide an
affine approximation of the matrices D(μ) and B(μ). Specifically, for MDEIM we set
δMDEIM = 10−6. Regarding the construction of the RB spaces, we take as final tolerance
εr = 10−9 for all the test cases. For the fixed accuracy approach we construct L = 4 RB
spaces, yielding δRB,k = δRB = 10−9/4 ≈ 5.6 · 10−3 for each k. For the fixed dimension
approach, we take Nk = 10 for each k.

During the online phase, we test the proposed MSRB preconditioners with the three
different RB coarse operators (GRB, aLSRB-X0

h and aLSRB-PX0
h
). We solve the FE

linear system with the FGMRES method on 150 online parameters different from the ones
employed during the offline phase to build the RB coarse operators. We use a stopping
criterion based on the Euclidean norm of the residual, rescaled with the Euclidean norm
of the right hand side, and require this quantity to be lower than 10−6.

Numerical results

The computational time required to compute the approximate affine decomposition of the
matrices D(μ) and B(μ) with the MDEIM algorithm and the number of basis functions
Qa are reported in Table 3.4. The number of required basis functions Qa mainly depends
on the parameter dependence of the PDE, consequently it does not vary with the FE
dimension, and ranges from 6 to 10 with a tolerance δMDEIM = 10−6.

The results obtained with the MSRB preconditioner during the online phase, i.e. for new
instances of the parameter, for the fixed accuracy approach with GRB, aLSRB-X0

h
and aLSRB-PX0

h
are reported in Table 3.5, 3.6 and 3.7, respectively. For the fixed

dimension approach, the results are reported in Table 3.8, 3.9 and 3.10, respectively.
For each case, we report the number of RB coarse operators L and the total number of
basis functions Nk for the space k, as the sum of the velocity, pressure and supremizer
RB functions, this latter only if GRB is employed. We underline that the number of
basis functions is larger in the GRB case, due to the velocity enrichment. Furthermore,
the detailed results concerning the time required to compute the solution by employing
the PMM preconditioner tPMM and the MSRB preconditioner tonl

MSRB, together with the
corresponding iteration counts ItPMM and Itonl, are reported.

The number of iterations Itonl required to reach convergence in the FGMRES algorithm

121

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

is lower than or equal to 6 for all the tests carried out with the MSRB preconditioner,
it does not significantly vary with the FE dimension and, depending on the simulation,
it is between 5% and 15% of that obtained by using the PMM preconditioner only, see
Figure 3.12a. The computational times tonl

MSRB required to solve the FE linear system by
employing the MSRB preconditioner is reduced of about 85% with respect to the one
needed by employing only the PMM preconditioner tPMM for the GRB and aLSRB-PX0

h
cases, and is reduced of about 70% in the aLSRB-X0

h, see Figure 3.12b. The additional
time required by this latter approach is caused by the application of the matrix X−1

h (μ)
to the vector vk+ 1

2
at each iteration of the FGMRES method (see step 3 in Alg. 6);

this is practically performed by solving the corresponding linear system where Xh(μ) is
at the left hand side and vk+ 1

2
is at the right hand side. The GRB and aLSRB-PX0

h
approaches entail a cheaper computation of such a step since in the former we rely on a
G-RB method, while in the latter only the (fast) application of P−1

X is required.
The computational time toff required by the offline phase is reported for all tests, together
with the break even point (BEP), that is, the number of online evaluations required to
repay the offline phase. Our critreion is based on the wall time comparison:

BEP =
toff

tPMM − tonl
MSRB

,

where we indicate by toff the wall time required by the offline computation, i.e. the
construction of the RB coarse components. We highlight that the GRB case entails a
larger offline time than the one required by the other options, due to the need of computing
the pressure supremizer snapshots S�t and performing an additional POD. On the other
hand, the offline time in the case of aLSRB-X0

h is larger than the one obtained with
aLSRB-PX0

h
due to the construction of the RB affine matrices Aq1,q2

Nk
, q1, q2 = 1, . . . , Qa,

because in the former case a FE linear system needs to be solved for each combination
of the Nk RB functions {ξi}N

i=1 and Qa affine terms {Aq
h}Qa

q=1, leading to N · Qa FE
linear systems, while by employing PX = PX0

h
, only N · Qa applications of P−1

X0
h

need
to be performed, boosting the computation of the affine RB structures. By inspecting
the BEP values, it emerges that the most convenient approach is obtained by adopting
the aLSRB-PX0

h
method. Indeed, such a strategy allows to solve the problem online

in a computational time comparable to the one obtained with the GRB approach,
however entailing a cheaper offline phase, especially when the FE dimension increases.
We highlight that this confirms the results obtained in Section 3.4, where the aLSRB
solver with PX = PX0

h
has been shown to be the most accurate and efficient choice

among the considered RB solvers.

Table 3.5 – Test case I, fixed accuracy with GRB, L = 4, δRB,k ≈ 5.6 · 10−3 ∀k.

Nh Nk tonl
MSRB (sec) Itonl tPMM (sec) ItPMM toff (sec) BEP

52152 9 24 50 113 0.72 3 4.70 40 1514.78 374
320338 9 24 48 118 1.30 3 11.32 42 2951.76 291
1568223 9 23 48 116 5.10 3 30.65 42 9548.40 372

122

3.6. Numerical results

Table 3.6 – Test case I, fixed accuracy with aLSRB-X0
h, L = 4, δRB,k ≈ 5.6 · 10−3 ∀k.

Nh Nk tonl
MSRB (sec) Itonl tPMM (sec) ItPMM toff (sec) BEP

52152 5 13 24 54 1.97 4 4.70 40 1493.10 535
320338 5 13 23 56 4.82 6 11.32 42 3411.82 519
1568223 5 13 23 52 11.25 6 30.65 42 8542.47 437

Table 3.7 – Test case I, fixed accuracy with aLSRB-PX0
h
, L = 4, δRB,k ≈ 5.6 · 10−3 ∀k.

Nh Nk tonl
MSRB (sec) Itonl tPMM (sec) ItPMM toff (sec) BEP

52152 5 13 24 53 1.29 4 4.70 40 1374.38 395
320338 5 13 23 55 2.57 6 11.32 42 2727.60 307
1568223 5 13 23 52 5.36 6 30.65 42 6975.20 274

Table 3.8 – Test case I, fixed dimension with GRB, Nu
k = Np

k = N s
k = 10 ∀k.

Nh L tonl
MSRB (sec) Itonl tPMM (sec) ItPMM toff (sec) BEP

52152 9 0.51 2 4.70 40 2476.72 584
320338 7 1.24 3 11.32 42 4546.66 447
1568223 8 4.74 3 30.65 42 18369.68 707

Table 3.9 – Test case I, fixed dimension with aLSRB-X0
h, Nu

k = Np
k = 10 ∀k.

Nh L tonl
MSRB (sec) Itonl tPMM (sec) ItPMM toff (sec) BEP

52152 9 1.51 5 4.70 40 2507.38 776
320338 8 5.12 6 11.32 42 6770.73 1086
1568223 8 10.14 5 30.65 42 15121.68 735

Table 3.10 – Test case I, fixed dimension with aLSRB-PX0
h
, Nu

k = Np
k = 10 ∀k.

Nh L tonl
MSRB (sec) Itonl tPMM (sec) ItPMM toff (sec) BEP

52152 9 1.17 5 4.70 40 2886.91 810
320338 8 2.74 6 11.32 42 5475.75 633
1568223 8 4.75 5 30.65 42 11489.38 442

3.6.2 Test case II: parametrized carotid bifurcations

In the second test case, we consider parametrized Stokes flows in a carotid bifurcation,
whose shape varies according to a set of parameters. Even though the Stokes equations
are not suited for simulating the blood flow in an artery as large as the carotid, we
are interested in measuring the capabilities of the proposed MSRB preconditioning
technique when dealing with flows complex geometries, since our final goal is to deal
with cardiovascular applications and compare the results with the ones obtained with
the standard RB method.

The computational domain Ω(μ) is obtained by deforming a reference domain Ω0, such
that ∂Ω0 = Γw ∪ Γin ∪ Γout, by setting

Ω(μ) = {�x(μ) ∈ R
3 : �x(μ) = �x + �d(μ)},

123

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

10 5 10 6

N
h

0

5

10

15

20

25

30

35

40

45

Ite
ra

tio
n

co
un

t o
nl

in
e

Yh
0 (tol)

Yh
0 (dim)

PY
h

0 (tol)

PY
h

0 (dim)

Grb (tol)
Grb (dim)
Pmm

(a) Iterations vs Nh.

10 5 10 6

N
h

0

5

10

15

20

25

30

35

C
om

pu
ta

tio
na

l t
im

e
on

lin
e

(s
)

Yh
0 (tol)

Yh
0 (dim)

PY
h

0 (tol)

PY
h

0 (dim)

Grb (tol)
Grb (dim)
Pmm

(b) Computational times (sec) vs Nh.

Figure 3.12 – Test case I, iteration number and computational times vs Nh.

where the displacement �d(μ) is computed as the solution of the following parametrized
elliptic problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Δ�d(μ) = �0 in Ω0

�d(μ) = �0 on Γin ∪ Γout

∂ �d(μ)
∂�n

= �h(μ) on Γw.

(3.71)

The parametrized datum �h(μ) represents a stress load entailing a deformation leading
to the narrowing of one of the branches of the bifurcation. We consider as parameter
μ = (μ1, μ2) ∈ D = [4, 5] × [0, 0.5] and introduce a μ−dependent radius r(�x; μ) =
r(μ) =

√
(x1 + 0.8)2 + (x2 − μ1)2 + (x3)2, R = 0.65 and the region A(μ), such that

A(μ) =
{
�x ∈ R

3 : (r(μ))2 < R2},

which identifies the portion of volume where �h(μ) is loaded as follows

�h(μ) = �h(�x; μ) = −μ2
(
1 − r2(�x)

R2

)
�nXA(μ)(�x), �x ∈ R

3,

where and XA(μ)(�x) is the indicator function over the set A(μ); two examples of the
region identified by a(μ) for two values of the parameter μ are reported in Figure 3.13c
and 3.13d. This parametrization entails a narrowing of the straight branch in different
positions along the coordinate x2 (according to the value of μ2) and simulates an occlusion.
The reference domain Ω0 is shown in Figure 3.13a, whereas an example of deformation
computed for μ = (5.0, 0.5) is given in Figure 3.13b. Examples of solutions for different
values of the parameter μ are shown in Figure 3.14a-3.14b and 3.14c-3.14d.

We remark that the solution �d(μ) of problem (3.71) is not known analytically; conse-

124

3.6. Numerical results

(a) Reference domain Ω0. (b) Displacement field for μ = (5.0, 0.5).

(c) A(μ) with μ1 = 4. (d) A(μ) with μ1 = 5.

Figure 3.13 – Test case II, top row: reference domain Ω0 (left) and displacement d(μ)
for μ = (5.0, 0.5); bottom row: example of region A(μ) for two values of μ.

quently, its numerical approximation �dh(μ) is computed employing the FE method on
its corresponding variational formulation. We denote by d(μ) ∈ R

Nd
h the solution of the

corresponding FE linear system.

In our computations, Taylor-Hood FE (P2 −P1), with a mesh leading to Nh = Nu
h +Np

h =
3′198′820 degrees of freedom, are employed for the FE discretization of the Stokes problem,
on 360 computing cores.

Simulation setup

When considering a new instance of the parameter μ, we compute d(μ) by solving
the corresponding FE linear system with the PCG method, preconditioned with the
AMG preconditioner. The system is solved up to a tolerance 10−8 on the Euclidean
norm of the residual rescaled with the Euclidean norm of the right hand side. The
computation of the deformation d(μ) requires on average 1.9 seconds and this time is
not included in the results reported, since it does not vary in the different scenarios
presented. Notice that we could accelerate the computation of d(μ) by employing

125

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

(a) Slice of velocity field for μ = (5.0, 0.5). (b) Pressure field for μ = (5.0, 0.5).

(c) Slice of velocity field for μ = (4.0, 0.0). (d) Pressure field for μ = (4.0, 0.0).

Figure 3.14 – Test case II, numerical solution for two values of μ obtained with the
MSRB preconditioning technique.

the MSRB preconditioning strategy or the standard RB method to deal with problem
(3.71). Then, the solution of the Stokes problem (3.6) is computed employing the MSRB
preconditioner. Here we report in particular the results obtained with the aLSRB-PX0

h
case and the fixed dimension approach only, however a detailed analysis similar to the
one carried out to Test case I can also be done. For the aim of RB spaces construction,
we use ns = 350 snapshots, which are computed incrementally as explained in Section
3.5.4, with M = 3 and n1

s = 100, n2
s = 100 and n3

s = 150. Then, we set εr = 10−7, by
choosing Nu

k = Np
k = 50 for any k = 0, . . . , L − 1, leading to L coarse operators with

dimension Nk = 100 for any k = 0, . . . , L − 1. We test the resulting preconditioner on
100 online instances of the parameter randomly chosen, by solving the resulting FE
problem up to a tolerance 10−5. For the MSRB preconditioner, we employ MDEIM
(with tolerance δMDEIM = 10−4) to compute an approximated affine decomposition of
the matrices D(μ), B(μ), allowing us to cheaply assemble online the coarse operators
ANk

(μ), k = 0, . . . , L − 1.

We compare the results obtained with the MSRB precondtioner with the ones obtained by
relying on the standard RB method, where the aLSRB-PX0

h
approach detailed in Section

3.3 is used as solver. For this latter, we build the RB basis functions by using POD with
a tolerance of 10−9 on ns = 350 snapshots; then we construct the RB approximation
by affinely approximating the FE Stokes right hand sides and matrices by using DEIM
and MDEIM, respectively. Indeed, we remark that, as highlighted in Section 3.3.2, the
standard RB method also relies on the affine dependence of the FE right hand side g(μ).

126

3.6. Numerical results

Table 3.11 – Test case II, DEIM and MDEIM number of affine basis functions computed
during the offline phase as function of the tolerances δDEIM and δMDEIM (always chosen
with the same value). The number of affine components affects the duration of the offline
phase of a time taffine, which in the aLSRB-PX0

h
solver case depends quadratically on

the number of affine terms.

δDEIM = δMDEIM MDEIM - D(μ) MDEIM - B(μ) DEIM - f(μ) DEIM - r(μ) taffine (sec)
1e-02 1 3 3 4 75.41
1e-03 1 6 6 13 184.68
1e-04 3 17 15 25 1165.29
1e-05 8 36 29 48 5013.85
1e-06 19 79 63 117 49129.40

Since in the considered test case this assumption is not satisfied, DEIM is performed on
the right hand side to compute an affine approximation of the vectors f(μ) and r(μ).

Numerical results: comparison with the standard RB method

We show the results obtained by using the aLSRB-PX0
h

method as solver on a set of
100 instances of the parameter and varying the tolerances δMDEIM and δDEIM employed
for the MDEIM and DEIM algorithms, respectively. In Table 3.11, the number of
affine components for the different FE arrays is reported, together with the computa-
tional time (part of the offline phase of the standard RB method) taffine to build and
store the affine RB matrices Aq1,q2

N , q1, q2 = 1, . . . , Qa in (3.41) and the RB vectors
gq1,q2

N , q1, . . . , Qa, q1, . . . , Qg in (3.42). Notice that the number of affine basis functions
largely affects the time taffine, leading overall to a very demanding offline phase.

By setting δRB = 10−9 to construct the RB space, we obtain Nu = 327 and Np = 111 basis
functions for velocity and pressure, respectively. In order to evaluate the accuracy of the
RB solution, we compute the average relative residual rRB of the FE problem evaluated
on the RB solution defined as in (2.49), which we report in Table 3.12. As a matter of
fact, in order to obtain an accurate RB solution, it is mandatory to build an accurate
approximate affine decomposition of the FE arrays, cf. Table 3.12, since the accuracy
of the RB solution is strongly related to the accuracy of the affine approximations.
The online time tonl to assemble and solve the RB problem is significantly affected by
the values δDEIM and δMDEIM and reaches up to 8.66 seconds in the most demanding
case. In particular, the time for assembling the RB matrix AN (μ) and the time for
assembling the RB right hand side gN (μ) are the most affected ones by the number of
affine components. As regards the computational time toff required by the offline phase,
it largely increases according to the number of affine terms, since it takes into account
the time taffine reported in Table 3.11.

In Table 3.13, the results obtained with the FGMRES method preconditioned with MSRB
preconditioner (with aLSRB-PX0

h
coarse operators) are presented. We employ MDEIM

127

Chapter 3. RB methods & MSRB preconditioners for Stokes equations

Table 3.12 – Test case II, results with aLSRB-PX0
h

solver, basis computed with tolerance
δRB = 10−9 leading to Nu = 327 and Np = 111 basis functions. The accuracy of
the method largely depends on the system approximation carried out with DEIM and
MDEIM.

δDEIM = δMDEIM rRB tonl
RB (sec) toff (sec)

1e-02 1.9e-02 5.75 41931.61
1e-03 4.0e-03 5.39 42040.87
1e-04 1.1e-03 5.33 43021.49
1e-05 2.8e-04 5.81 46870.05
1e-06 6.3e-05 8.66 90985.60

with δMDEIM = 10−4 to build an approximated affine decomposition of the FE matrices
D(μ) and B(μ), leading to Qd = 3 and Qb = 17 affine basis functions, respectively. A
large MDEIM tolerance δMDEIM is employed since each RB coarse operator is trained
to solve equation (3.54) up to an accuracy greater than δMDEIM = 10−4; therefore such
value does not affect the local accuracy of any coarse operator, as deeply investigated
in the case of the thermal beam in Section 2.4.2. Furthermore, we notice that in this
context there is no need to employ DEIM to approximate f(μ) and r(μ), as explained in
Section 2.2.4.

L = 4 RB spaces are computed with a dimension Nu
k = Np

k = 50 for k = 0, 1, 2, 3 for
both velocity and pressure, respectively; as a matter of fact, the convergence up to a
tolerance of 10−5 on rRB is reached on average in 5 iterations and about 6.45 seconds.
The cheaper computation of the solution is motivated by the milder dependence on the
MDEIM tolerance, which allows to obtain a significantly more accurate solution (with
a residual rRB lower than 10−5) in a shorter computational time, compared to the one
computed with the standard RB method. In addition, the results obtained show that
a cheaper offline phase is also achieved. This is motivated by two reasons: since the
employed affine decomposition is coarser than the one exploited by the aLSRB solver,
a lower number of affine RB components must be precomputed and stored; secondly,
the sequential construction of the RB spaces allows to exploit the (still in construction)
MSRB preconditioner, thus boosting the computation of the snapshots.

Finally, we compare the iteration count and the computational time employed by MSRB-
preconditioned FGMRES iterations with the ones needed to solve the same problem with
the FGMRES method preconditioned with the PMM preconditioner, reported in Table
3.13 as well. When this latter technique is employed, the problem is solved in about 80.69
seconds and 87 iterations, on average. Therefore the proposed MSRB technique allows
to obtain the solution by reducing by more than 92% the time needed by employing the
PMM preconditioner only, yielding a break-even point of 627 evaluations.

128

3.6. Numerical results

Table 3.13 – Test case II, MSRB preconditioner results with FGMRES with a final
tolerance εr = 10−5. The RB spaces are built with the fixed dimension approach, with
Nu

k = Np
k = 50, ∀k, and aLSRB-PX0

h
coarse operators. The computation is carried out

with 360 cores, such that ∼ 8890 dofs per core.

Nh L tonl
MSRB (sec) Itonl tPMM (sec) ItPMM toff (sec)

3198820 4 6.45 5 80.69 87 46554.90

Conclusions

In this chapter, we have proposed a new algebraic LSRB method for the Stokes equations,
we have verified its well-posedness and outlined its construction. Furthermore, we
have compared it to the current state-of-the-art ROM techniques for dealing with the
parametrized Stokes equations: i) our aLSRB approach extends the current LSRB
method, since it is applicable when we consider a geometric parametrization for which
an analytical map is not known a priori; ii) we have shown it allows to cut offline and
online costs and, at the same time, achieve a better online accuracy if compared with a
G-RB solver exploiting a velocity enrichment formulation.

Secondly, we have developed a new framework for the MSRB-precondioned FGMRES
iterations for the Stokes equations, by exploiting either a G-RB or aLSRB formulation
for building a RB coarse component. We have outlined the advantages and drawbacks
of either option, and compared them with the PMM preconditioner to solve large-scale
FE linear systems. As a matter of fact, exploiting the MSRB preconditioning technique
largely improves the efficiency of the PMM preconditioner when a new instance of the
parameter is considered. Also a comparison with a RB solver has been carried out,
highlighting that the performances (in terms of computational time during both the
offline and online phases) of the MSRB preconditioner benefit from its milder dependence
on the affine decomposition of the FE arrays with respect to the standard RB solver. As a
matter of fact, the results look promising towards the extension to nonlinear saddle-point
problems as the parametrized Navier-Stokes equations.

Finally, even if we focused on the Stokes equations only, both the RB and MSRB
preconditioning methods proposed in this chapter are straightforwardly applicable to
other parametrized linear saddle-point systems.

129

4 RB methods and multi space RB
preconditioners for parametrized
Navier-Stokes equations

In this chapter we consider the unsteady Navier-Stokes (NS) equations in parametrized
domains. After recalling their differential and weak formulation and the corresponding
FE approximation, we present a new model reduction method obtained by extending the
currently employed RB methods for linear PDEs in deformed domains, as in [Manzoni and
Negri, 2017], and unsteady NS equations where only physical parameters are considered
[Veroy and Patera, 2005, Negri et al., 2015a]. In particular, we treat the NS nonlinearity
by adopting a double POD hyper-reduction algorithm which relies on (M)DEIM.

We then extend the MSRB preconditioner to the case of the unsteady NS equations.
Starting from the framework developed in Section 2.5 for linear parabolic PDEs, here we
adopt a velocity enriching Galerkin RB approach, as done for the parametrized Stokes
equations in Section 3.5.1. Additionally, we exploit the double POD hyper-reduction
algorithm developed for the RB approximation of parametrized NS equation to enhance
the efficiency of the resulting preconditioner. Numerical examples are presented to show
the advantages of the proposed methodologies in terms of both efficiency and accuracy.

4.1 Parametrized Navier-Stokes equations

In this section we introduce the Navier-Stokes equations for an incompressible, homoge-
neous, Newtonian fluid. Given an open bounded and μ-dependent domain Ω(μ) ⊂
R

d, d = 2, 3, such that, for any μ ∈ D, ∂Ω(μ) = Γout(μ) ∪ Γin(μ) ∪ Γw(μ) and
Γ̊out(μ) ∩ Γ̊in(μ) = Γ̊w(μ) ∩ Γ̊in(μ) = Γ̊out(μ) ∩ Γ̊w(μ) = ∅, and a final time T > 0, let

131

Chapter 4. RB methods and MSRB preconditioners for NS equations

us consider the following nonlinear differential problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂�u(μ)
∂t

+ �u(μ) · ∇�u(μ) − ∇ · σ
(
�u(μ), p(μ)

)
+ ∇p(μ) = �0 in Ω(μ) × (0, T)

∇ · �u(μ) = 0 in Ω(μ) × (0, T)
�u(μ) = �0 on Γw(μ) × (0, T)
�u(μ) = �gNS(μ) on Γin(μ) × (0, T)
σ
(
�u(μ), p(μ)

)
�n(μ) = �0 on Γout(μ) × (0, T)

�u(0; μ) = �u0 on Ω(μ),
(4.1)

where �u(μ) and p(μ) are the velocity and the pressure of the fluid and σ
(
�u(μ), p(μ)

)
is

the stress tensor defined as

σ
(
�u(μ), p(μ)

)
= −p(μ)I + 2νε

(
�u(μ)

)
. (4.2)

Here ν = ν(μ) denotes the (possibly parameter-dependent) kinematic viscosity that is,
ν = μ̄/ρ̄, being μ̄ and ρ̄ the dynamic viscosity and density, respectively, and

ε
(
�u(μ)

)
=

1
2

(
∇�u(μ) + ∇�u(μ)T

)
(4.3)

is the strain tensor. The Dirichlet boundary datum is supposed to be time-dependent,
such that the time dependence can be expressed by separating time and μ, that is, we
assume

�gNS(μ) = �gNS(t; μ) = w(t)gD(μ). (4.4)

In this context, we define the well-known Reynolds number Re as the non-dimensional
ratio of convection to diffusion

Re =
LŪ

ν
, (4.5)

where L and Ū are the characteristic length of the domain and velocity of the flow. In
this work we are interested in laminar flows, featuring a Reynolds number in the range
[1, 103].

In order to introduce the variational formulation, let us denote by

V =
{

�v ∈
[
H1(Ω(μ))

]d : �v
∣∣
Γin(μ)∪Γw(μ) = �0

}
, Q = L2(Ω(μ)), (4.6)

the functional spaces for velocity and pressure, respectively. We highlight that, as in
Section 3.1, the functional spaces depend on the parameter μ, that is V = V (μ) and
Q = Q(μ), and similarly the FE spaces which will be introduced below; the μ-dependence

132

4.1. Parametrized Navier-Stokes equations

will be however omitted for the sake of clarity. The variational formulation of the
parametrized unsteady NS equations reads: for any t ∈ (0, T), find (�u(μ), p(μ)) ∈ V × Q

such that(
∂�u(μ)

∂t
,�v

)
+ d(�u(μ), �v; μ) + b(�v, p(μ); μ) + c(�u(μ), �u(μ), �v; μ) (4.7)

+ b(q, �u(μ); μ) = F1(t, �v; μ) + F2(t, q; μ) ∀(�v, q) ∈ V × Q

with �u(0; μ) = �u0 as initial condition. The forms in (4.7) are defined, for any �u,�v, �w ∈ V

and q ∈ Q, as

d(�u,�v; μ) =
∫

Ω(μ)
ν(μ)(∇�u + ∇�uT) : ∇�v dΩ(μ) (4.8)

b(q,�v; μ) = −
∫

Ω(μ)
q∇ · �v dΩ(μ) (4.9)

c(�u,�v, �w; μ) =
∫

Ω(μ)
(�v · ∇)�u · �w dΩ(μ), (4.10)

and F1(t, �v; μ), F2(t, q; μ) are linear (t, μ)-dependent forms accounting for the contribu-
tion of the lifting function.

4.1.1 FE discretization and BDF time integration

Problem (4.7) is first discretized in space by means of the FE method, and in time
with the BDF scheme. Given two finite dimensional spaces Vh ⊂ V and Qh ⊂ Q with
dimensions Nu

h , Np
h , such that Nu

h + Np
h = Nh, respectively, the semi-discretized (in

space) problem reads: for any t ∈ (0, T), find (�uh(μ), ph(μ)) ∈ Vh × Qh such that(
∂�uh(μ)

∂t
,�vh

)
+ d(�uh(μ), �vh; μ) + b(�vh, ph(μ); μ) + c(�uh(μ), �uh(μ), �vh; μ) (4.11)

+ b(q, �uh(μ); μ) = F1(t, �vh; μ) + F2(t, qh; μ) ∀(�vh, qh) ∈ Vh × Qh.

A fully-discretized problem is finally obtained from (4.11) by using the BDF scheme
of order σ1 = {1, 2} (see Section 1.1.2). Let us introduce a partition of the interval
[0, T] in Nt subintervals of equal size Δt = T/Nt, such that tn = nΔt, the fully-
discretized problem reads: given μ ∈ D, �un

h(μ), . . . , �un+1−σ
h (μ), for n ≥ σ1 − 1 find

(�un+1
h (μ), pn+1

h (μ)) ∈ Vh × Qh such that �u0
h(μ) = �u0 and(

1�un+1
h (μ) − �un,σ

h (μ)
Δt

, �vh

)
+ d(�un+1

h (μ), �vh; μ) + b(�vh, pn+1
h (μ); μ) (4.12)

+ c(�un+1
h (μ), �un+1

h (μ), �vh; μ) + b(q, �un+1
h (μ); μ)

= F1(t, �vh; μ) + F2(t, qh; μ) ∀(�vh, qh) ∈ Vh × Qh,

where (�un
h(μ), pn

h(μ)) is the FE solution at time n and �un,σ
h (μ) is defined as in (1.20).

133

Chapter 4. RB methods and MSRB preconditioners for NS equations

Following this strategy, after spatial and time discretizations, the fully discrete formulation
of problem (4.12) consists in a nonlinear problem to be solved at each time-step. An
approximation of this nonlinear problem can be obtained, for example, by using the
Newton method, this latter requiring at each iteration the assembly of the Jacobian
matrix and the solution of a linear system. While a fully implicit approach yields in
general a stable time discretization scheme, the associated computational costs may
be remarkably high due to the repeated assembly of the residual vector and Jacobian
matrix and the solution of the associated linear system. To reduce the computational cost
related with the use of a fully implicit BDF approach, we consider instead a semi-implicit
BDF scheme, for which the nonlinear terms in �un

h(μ) are extrapolated by means of the
Newton-Gregory backward polynomials, as similarly done in [Gervasio et al., 2006, Forti
and Dedè, 2015]. To this aim, we consider the following extrapolations of order σ1 = 1, 2
for the velocity at the discrete time tn+1:

�un,∗
h (μ) =

⎧⎨⎩�un
h(μ) if σ1 = 1

2�un
h(μ) − �un−1

h (μ) if σ1 = 2,

and starting from the fully implicit formulation (4.12), we use the above extrapolations
by Newton-Gregory backward polynomials. In this way, the fully discrete linearized
semi-implicit formulation of problem (4.12) reads: given μ ∈ D, �un

h(μ), . . . , �un+1−σ
h (μ),

for n ≥ σ1 − 1 find (�un+1
h , pn+1

h) ∈ Vh × Qh such that �u0
h(μ) = �u0 and(

α1�un+1
h (μ) − �un,σ

h (μ)
Δt

, �vh

)
+ d(�un+1

h (μ), �vh; μ) + b(�vh, pn+1
h (μ); μ) (4.13)

+ c(�un+1
h (μ), �un,∗

h (μ), �vh; μ) + b(q, �un+1
h (μ); μ)

= F1(t, �vh; μ) + F2(t, qh; μ) ∀(�vh, qh) ∈ Vh × Qh,

Thanks to this time discretization, the fully discrete semi-implicit formulation (4.13)
yields a linear problem in the variables �un+1

h (μ) and pn+1
h (μ) to be solved only once

at each time tn. We consider problem (4.13) as our high-fidelity approximation of the
unsteady NS equations.

4.1.2 Algebraic formulation

Problem (4.13) leads to a sequence in time of parametrized linear systems of the form

N(un,∗(μ); μ)
[
un+1(μ)
pn+1(μ)

]
= gn+1(μ) n = 0, . . . , Nt − 1, (4.14)

where un(μ), un,∗(μ), un,σ(μ) ∈ R
Nu

h and pn(μ) ∈ R
Np

h denote the FE vector rep-
resentation of the FE functions �un

h(μ), �un,∗
h (μ), �un,σ

h (μ) and pn
h(μ), respectively, and

134

4.1. Parametrized Navier-Stokes equations

u0(μ) = u0 ∈ R
Nu

h as the initial condition. The arrays N(un,∗(μ); μ) ∈ R
Nh×Nh and

gn+1(μ) ∈ R
Nh are defined as

N(un,∗(μ); μ) =

⎡⎣α1
Δt

Mu(μ) + D(μ) + C(un,∗(μ); μ) BT (μ)
B(μ) 0

⎤⎦ (4.15)

gn+1(μ) =

⎡⎣ 1
Δt

Mu(μ)un,σ(μ) + fn+1
1 (μ)

fn+1
2 (μ)

⎤⎦ . (4.16)

Here Mu(μ) ∈ R
Nu

h ×Nu
h is the velocity mass matrix, that is

(
Mu(μ)

)
ij

=
(
φu

j , φu
i

)
L2(Ω(μ))

i, j = 1, . . . , Nu
h ,

D(μ) ∈ R
Nu

h ×Nu
h and B(μ) ∈ R

Np
h

×Nu
h are the velocity stiffness and the divergence

operator, respectively, defined in (3.8) and C(un,∗(μ); μ) ∈ R
Nu

h ×Nu
h is the matrix arising

from the linearization of the nonlinear convective term,

(
C(un,∗(μ); μ)

)
ij

= c(φu
j , �un,∗

h (μ), φu
i ; μ) i, j = 1, . . . , Nu

h . (4.17)

Remark 4.1.1. Similarly to what discussed for the Stokes equations in Section 3.1,
the velocity and pressure FE spaces Vh and Qh must yield a divergence matrix B(μ)
that fulfills the inf-sup condition (3.13) to guarantee the well-posedness of (4.14). A
possible choice, which is the one used in the numerical experiments, consists in employing
Taylor-Hood FE spaces, that is P2 and P1 basis functions for velocity and pressure,
respectively.

The efficient solution of the sequence of linear systems defined in (4.14) calls into play
suitable numerical methods. Several techniques have been proposed to deal with systems
(4.14), and in addition to the already mentioned multilevel, domain decomposition
methods and block preconditioners, which have been designed for both steady and
unsteady NS equations, we specifically recall the SIMPLE method [Segal et al., 2010, Vuik
et al., 2000], based on Patankar’s Semi-Implicit Pressure Linked Equation technique
[Patankar, 1980]. We start from the following factorization

N(un,∗(μ); μ) = Lbt(μ)U(μ) (4.18)

with

Lbt(μ) =
[

F(μ) 0
B(μ) S(μ)

]
, U(μ) =

[
INu

h
F−1(μ)BT (μ)

0 INp
h

]
, (4.19)

where S(μ) = −B(μ)F−1(μ)BT (μ) denotes the Schur complement matrix and F(μ) is
the block (1,1) of the matrix N(un,∗(μ); μ) defined in (4.15). The application of the

135

Chapter 4. RB methods and MSRB preconditioners for NS equations

Algorithm 12 Computation of z = P−1
SIMPLEv (μ is omitted)

1: approximately solve with inner iterations Fzu = vu

2: approximately solve with inner iterations S̃zp = vp − Bzu

3: update zu = zu − D−1
F BT zp

SIMPLE preconditioner, which we denote by PSIMPLE(μ), to the Krylov basis consists
in employing the procedure is reported in Algorithm 12 and requires to approximately
solve two FE linear systems up to a provided tolerance. The matrix DF ∈ R

Nu
h ×Nu

h is the
diagonal of F and S̃ ∈ R

Np
h

×Np
h is an approximation to the Schur complement S, where F

is substituted by DF . In our implementation, steps 1-2 are carried out by inner GMRES
iterations. Suitable modifications of SIMPLE preconditioner have also been proposed,
in particular we recall SIMPLER preconditioner, which provides Reynolds-independent
convergence rates, and MSIMPLER, which improves the latter by substituting F(μ) with
the velocity mass matrix in the Schur complement and in the update step; we refer to
[Van Doormaal and Raithby, 1984, Wesseling, 2009, Vuik et al., 2009, Segal et al., 2010]
for further details about SIMPLE and its variants.

In our numerical experiments, we will use a FE approximation and BDF2 time-approximation
scheme; the linearized linear system (4.14) will be solved with the SIMPLE-preconditioned
FGMRES method. On the other hand, in the numerical experiments for the MSRB
preconditioner for the unsteady NS equations, the SIMPLE preconditioner will play the
role of fine grid component.

4.2 A ROM framework for parametrized unsteady NS equa-
tions in moving domains

In this section we present a ROM technique to reduce the cost needed to solve the
FE system (4.14), by providing an algebraic, black-box, way to treat the NS equations
parametrized geometry and the nonaffine parametric dependence entailed by the nonlinear
term. In the numerical examples used to illustrate the method, we will put more emphasis
on geometrical parameters, however the construction is general and accounts for physical
parameters as well. The RB approximation of velocity and pressure fields at time tn is
expressed as a linear combination of the RB basis functions,

un(μ) ≈ VNuun
N (μ), pn(μ) ≈ VNppn

N (μ) (4.20)

where VNu ∈ R
Nu

h ×Nu and VNp ∈ R
Np

h
×Np denote the matrices whose columns are the

vectors of degrees of freedom of the basis functions for the velocity and the pressure RB
spaces, respectively. The construction of these spaces will be detailed in the following
section.

136

4.2. A ROM framework for parametrized unsteady NS equations

Substituting (4.20) into (4.14) and performing a Galerkin projection, we obtain the
following Galerkin RB problem: given μ ∈ D, un

N , . . . , un+1−σ
N , for n ≥ σ − 1 find

(un+1
N (μ), pn+1

N (μ)) ∈ R
Nu × R

Np such that u0
N (μ) = uN,0 and

NN (VNuun,∗
N (μ); μ)

[
un+1

N (μ)
pn+1

N (μ)

]
= gn+1

N (μ). (4.21)

The RB arrays NN (VNuun,∗
N (μ); μ) ∈ R

N×N and gn+1
N (μ) ∈ R

N are obtained by pro-
jecting onto the RB spaces VNu and VNp the corresponding blocks defined in (4.15); in
other words, they can be obtained as

NN (VNuun,∗
N (μ); μ) =

⎡⎣α1
Δt

Mu
N (μ) + DN (μ) + CN (VNuun,∗

N (μ); μ) BT
N (μ)

BN (μ) 0

⎤⎦ ,

(4.22)

gn+1
N (μ) =

⎡⎣ 1
Δt

Mu
N (μ)un,σ

N (μ) + fn+1
N1 (μ)

fn+1
N2 (μ)

⎤⎦ , (4.23)

where

DN (μ) = VT
Nu

D(μ)VNu , Mu
N (μ) = VT

Nu
Mu(μ)VNu , (4.24)

BN (μ) = VT
Np

B(μ)VNu

and

fn+1
N1 (μ) = VT

Nu
fn+1
1 (μ), fn+1

N2 (μ) = VT
Np

fn+1
2 (μ), uN,0 = VT

Nu
u0.

Finally the linearized term CN (VNuun,∗
N (μ); μ) is obtained by projecting its FE element

counterpart evaluated at the RB approximation, that is

CN (VNuun,∗
N (μ); μ) = VT

Nu
C(VNuun,∗

N (μ); μ)VNu . (4.25)

Remark 4.2.1. An alternative to the Galerkin-RB formulation is the Petrov Galerkin
method. Such option is particularly convenient when dealing with turbulent flows, since
it allows to obtain a properly well-posed reduced problem in terms of long-term stability
for highly nonlinear dynamical systems, see e.g. [Carlberg et al., 2013]; however, for
the regimes we are interested in, there is not such an issue, and a Galerkin approach
represents a reliable option.

Remark 4.2.2. Throughout this chapter, we will use the matrices Xu ∈ R
Nu

h ×Nu
h and

Xp ∈ R
Np

h
×Np

h , as introduced in (3.12), which algebraically encode the scalar products
(·, ·)V and (·, ·)Q over the velocity and pressure space, respectively.

137

Chapter 4. RB methods and MSRB preconditioners for NS equations

4.2.1 Basis construction: double POD strategy

To construct the reduced basis matrices VNu and VNp we use POD. This requires to
collect snapshots of the FE solution for a sample of selected parameter values

{
μi

}ns

i=1
by computing, for n = 0, . . . , Nt − 1, the solution of the high-fidelity linear system
(4.14); then POD is performed separately on velocity and pressure snapshots. This
procedure would in principle lead to either the SVD of very large snapshot matrices
(of size nsNt × Nu

h and nsNt × Np
h for velocity and pressure, respectively), or to an

eigenproblem for two correlation matrices of size nsNt × nsNt. As a matter of fact, the
computation of its eigenvalues entails a very demanding amount of work.

To avoid such a cost, given the parameter values
{
μi

}ns

i=1, we rather build the POD basis
sequentially by performing at first a POD with respect to the time trajectory (for a fixed
μ) and secondly collecting together this information to perform a POD with respect to
the parametric dependence. This procedure is done in the following steps:

1. for each μi, i = 1, . . . , ns, we compute the solution of (4.14) for n = 0, . . . , Nt − 1
and then collect snapshots [u1(μi), . . . , uNt(μi) (resp. p1(μi), . . . , pNt(μi)) in a
matrix Si

�u (resp. Si
p). Then, we perform a SVD on its time trajectory, that is, for

any i = 1, . . . , ns, we compute

Si
�u = [u1(μi), . . . , uNt(μi)] Vi

Nu
= POD

(
Si

�u, Xu, εt

)
, (4.26)

Si
p = [p1(μi), . . . , pNt(μi)] Vi

Np
= POD

(
Si

p, Xp, εt

)
; (4.27)

hereon, we refer to this step as POD in time.

2. we collect all the basis functions produced by the ns PODs in time and perform a
final POD (POD in parameter) of the matrix whose columns are the retained basis
functions, that is,

S�u = [V1
Nu

, . . . , Vns
Nu

] VNu = POD
(
S�u, Xu, εμ

)
(4.28)

Sp = [V1
Np

, . . . , Vns
Np

] VNp = POD
(
Sp, Xp, εμ

)
(4.29)

The tolerances εt > 0 and εμ > 0 are used as stopping criteria (based on the discarded
singular values) for the POD in time and in parameter, respectively, and are chosen such
that εμ ≥ εt, in order to guarantee that the POD in parameter is based on a proper
sampling in time.

138

4.2. A ROM framework for parametrized unsteady NS equations

4.2.2 ROM Stability

In (4.21) we considered a Galerkin projection onto the POD basis to obtain a well-posed
RB approximation. However, similarly to the Stokes case of Section 3.2.1, this does
not automatically ensure the stability of the resulting RB problem (in the sense of the
fulfillment of an inf-sup condition at the reduced level) of the RB problem, thus yielding
a potentially singular matrix N(un,∗(μ); μ). This issue can be overcome by enriching
the velocity space by so-called supremizer functions, according to the strategy for the
Galerkin RB approximation of the Stokes problem outlined in Section 3.2.1. We recall
that the pressure supremizing operator, already introduced in (3.21), is such that, for
any given qh ∈ Qh, Tp(qh; μ) returns the solution of the following variational problem

(Tp(qh; μ), �vh)V (μ) = b(�vh, qh; μ) ∀�vh ∈ Vh(μ). (4.30)

In particular, an approximate supremizer option is pursued, in order the velocity space
not to be μ-dependent. Moreover, for the case at hand, the supremizers must take
into account also time dependence. We essentially extend the procedure explored in
[Ballarin et al., 2015] to the time-dependent case, so that in practice the enriching velocity
functions are constructed as follows:

1. for each i = 1, . . . , ns and n = 1, . . . , Nt we compute the supremizers, by solving

Xu(μi)tn
p (μi) = BT (μi)pn(μi), (4.31)

we collect them in Si
�t

∈ R
Nu

h ×ns and compress them by performing POD in time

Si
�t

= [t1
p(μi), . . . , tNt

p (μi)] Vi
Ns

= POD
(
Si

�t
, Xu, εt

)
; (4.32)

2. we generate a global snapshot matrix and perform a POD in parameter to obtain
an enriching basis VNs ∈ R

Nu
h ×Ns

S�t = [V1
Ns

, . . . , Vns
Ns

] VNs = POD
(
S�t, Xu, εμ

)
; (4.33)

3. we finally perform a Gram-Schmidt orthonormalization procedure to merge the
supremizer basis functions with the columns of VNu and obtain the basis matrix
for the velocity space,

VNu = G-S([VNu , VNs], Xu). (4.34)

Remark 4.2.3. An enriching strategy to recover the well-posedness of the RB problem
is necessary because our starting high-fidelity model (4.14) is not strongly coercive; if, on
the other hand, we had employed a SUPG stabilization formulation for the FE problem,
we would not need any velocity enrichment, see e.g. [Negri, 2015], where this option is
investigated.

139

Chapter 4. RB methods and MSRB preconditioners for NS equations

4.2.3 Enhancing efficiency by hyper-reduction

Because of the μ-dependence induced by the geometry deformation, all the matrices
and vectors appearing in (4.14) depend nonaffinely on the parameter μ; moreover, a
critical issue is represented by the RB linearized term CN (VNuun,∗

N (μ); μ). In order to
construct it we should at first build VNuun,∗

N (μ), which is used to assemble the FE matrix
C(VNuun,∗

N (μ); μ); then this latter must be projected as in (4.25). As a matter of fact,
these operations prevent an efficient decoupling between an offline and online stage, since
they entail a huge assembly cost for the ROM. We highlight that such a difficulty arises
because of the nonaffine geometric dependence, indeed, if an affine parametrization only
is considered, the quadratically nonlinear term CN (VNuun,∗

N (μ); μ) could be expressed
as an sum of Nu affine components, where Nu is the dimension of the RB velocity space.

With the goal of cheaply assembling the ROM problem, we employ here, for the first time
in the case of nonlinear unsteady Navier-Stokes equations in parametrized geometries,
the Matrix version of DEIM. Such a procedure requires the evaluation of a sample of
system (vectors and matrices) snapshots, followed by a POD on vectors and vectorized
matrices, then by a further selection procedure to define a set of well-chosen interpolation
points.

To start with, MDEIM can be readily employed to compute an approximated affine decom-
position of Mu(μ), D(μ) and B(μ), which is used to build the RB affine approximations
{Dq

N }Qd
q=1, {Bq

N }Qb
q=1, {Mq

N }Qm
q=1 for the RB matrices, yielding

DN (μ) ≈ D̃N (μ), BN (μ) ≈ B̃N (μ), Mu
N (μ) ≈ M̃�u

N (μ), (4.35)

as already done for the Stokes equations (in the case of the matrices DN (μ) and BN (μ))
and the linear parabolic problems (regarding Mu

N (μ)).

The assumption on the inlet condition outlined in (4.4) allows, on the other hand, to
uncouple the time and space-parameter contributions in the inlet Dirichlet condition.
This is then reflected in the corresponding contribution at the right hand side of (4.14):
this latter can indeed be expressed as

fn+1
1 (μ) = w(tn+1)f1(μ) fn+1

2 (μ) = w(tn+1)f2(μ), (4.36)

where fi(μ), i = 1, 2 are time-independent vectors, thus yielding

fn+1
N1 (μ) = w(tn+1)VT

Nu
f1(μ) = w(tn+1)fN1(μ),

fn+1
N2 (μ) = w(tn+1)VT

Nu
f2(μ) = w(tn+1)fN2(μ).

The uncoupling in (4.36) allows to use DEIM to build an affine approximation {f q
1 }Q1

f

q=1,

{f q
2 }Q2

f

q=1 of f1(μ) and f2(μ), respectively, which is then employed to precompute and store

140

4.2. A ROM framework for parametrized unsteady NS equations

in the offline phase the affine approximations {f q
N1}Q1

f

q=1, {f q
N2}Q2

f

q=1 for fN1(μ) and fN2(μ),
respectively, such that

fN1(μ) ≈ f̃N1(μ), fN2(μ) ≈ f̃N2(μ). (4.37)

The linearized term C(VNuun,∗
N (μ); μ) nonaffinely depends on the parameter μ, however

an MDEIM-approximated affine decomposition is not readily computable, due to its
dependence on VNuun,∗

N (μ); hence, a different strategy, which takes advantage of a
sequential time-parameter POD approach is used in this respect. In particular, once
the sequence of linear systems (4.14) is solved for the parameter instances

{
μi

}ns

i=1, the
following steps are executed:

1. for each parameter μi, i = 1, . . . , ns, vectorized matrix snapshots in time of the
convective term are collected, and POD is applied to build a basis with respect to
the time trajectory of the system

Si
C = [vec(C(u0,∗(μi); μi)), . . . , vec(C(uNt−1,∗(μi); μi))],

Vi
C = MDEIM(Si

C , εloc
C),

we call this stage MDEIM in time;

2. all the time matrix basis are gathered and a final approximated affine basis is
constructed with respect to the parameter dependence

SC = [V1
C , . . . , Vns

C] VC = MDEIM(SC , εC),

where the MDEIM algorithm (1.56) is employed (MDEIM in parameter);

3. the approximate affine decomposition {Cq
N }Qc

q=1 of CN (VNuun,∗
N (μ); μ) is built,

such that

CN (VNuun,∗
N (μ); μ) ≈ C̃N (VNuun,∗

N (μ); μ)

=
Qc∑
q=1

Θ̃q
c(μ)VT

Nu
CqVNu =

Qc∑
q=1

Θ̃q
c(μ)Cq

N , (4.38)

where the matrices Cq
N ∈ R

Nu
h ×Nu

h , q = 1, . . . , Qc, are the "unvectorized" columns of
VC and constitute an approximated affine basis for C(un,∗(μ); μ). As a matter of
fact, the matrices Cq

N ∈ R
N×N are parameter independent and can be precomputed

and stored in the offline phase.

In the procedure above, εloc
C and εC are the tolerances used to stop the modes selection for

the POD in time (for each k = 1, . . . , ns) and the one in parameter. The final algorithm

141

Chapter 4. RB methods and MSRB preconditioners for NS equations

Algorithm 13 Offline construction NS-HROM

1: procedure NS-RB-OFFLINE(
{
μi

}ns

i=1, εt, εμ, εloc
C , εC , δMDEIM, δDEIM)

2: Use MDEIM to compute an affine decomposition of D(μ), B(μ), Mu(μ)
3: Use DEIM to compute an affine decomposition of f1(μ), f2(μ)
4: for i = 1 : ns do
5: Compute {un(μi)}Nt

n=1, {pn(μi)}Nt
n=1, {tn

p (μi)}Nt
n=1

6: Set Si
�u = [u1(μi), . . . , uNt(μi)] and Vi

Nu
= POD(Si

�u, Xu, εt)
7: Set Si

p = [p1(μi), . . . , pNt(μi)] and Vi
Np

= POD(Si
p, Xp, εt)

8: Set Si
�t

= [t1
p(μi), . . . , tNt

p (μi)] and Vi
Ns

= POD(Si
�t
, Xu, εt)

9: Set Si
C = [vec(C(u0,∗(μi); μi)), . . . , vec(C(uNt−1,∗(μi); μi))]

10: and Vi
C = POD(Si

C , I(Nu
h

)2 , εloc
C)

11: end for
12: Set S�u = [V1

Nu
, . . . , Vns

Nu
] and VNu = POD(S�u, Xu, εμ)

13: Set Sp = [V1
Np

, . . . , Vns
Np

] and VNu = POD(Sp, Xp, εμ)
14: Set S�t = [V1

Ns
, . . . , Vns

Ns
] and VNs = POD(S�t, Xu, εμ)

15: Set SC = [V1
C , . . . , Vns

C] and VC = MDEIM(SC , εC)
16: Orthonormalize: VNu = G-S(VNu , VNs , Xu)
17: Precompute and store the (approximated) RB affine decompositions:

18: {Dq
N }Qd

q=1, {Bq
N }Qb

q=1, {Mq
N }Qm

q=1, {Cq
N }Qc

q=1, {f q
N1}Q1

f

q=1, {f q
N2}Q2

f

q=1.
19: end procedure

involving the construction of the NS-HROM for the parametrized sequence of algebraic
system (4.14) is outlined in Algorithm 13.

When considering a new parameter online, we solve the approximated RB system

ÑN (VNuun,∗
N (μ); μ)

[
un+1

N (μ)
pn+1

N (μ)

]
= g̃n+1

N (μ), (NS-HROM)

where ÑN (VNuun,∗
N (μ); μ) features the same saddle-point structure as the matrix in

(4.22), but involves the approximated affine matrices D̃N (μ), BN (μ), Mu
N (μ) and

C̃N (VNuun,∗
N (μ); μ); similarly the DEIM-approximated RB vectors (4.37) are employed

for the cheap assembly of the right hand side g̃n+1
N (μ).

142

4.3. Sequential ROMs for deformation and fluid flows

4.3 Sequential ROMs for deformation and fluid flows

When dealing with fluid dynamics in deformed domains arising from engineering applica-
tions, domain displacement is seldom expressed by an analytical function; indeed, often
the deformation results from an additional FE problem either describing the behavior
of the structure with respect to given inputs or an harmonic extension of boundary
data. In the context of parametrized problems, these inputs typically depend on the
underlying parametrization and thus vary when considering different instances of the
parameter. Hence, when aiming at solving the NS system (4.14) for any new instance
of the geometric parameters, the FE problem describing the deformation must first be
solved. More specifically, we set

Ω(μ) = {�x(μ) ∈ R
3 : �x(μ) = �x + �d(μ)},

where �d(μ) is the solution of a variational problem: find �d(μ) ∈ Vd, such that

ad(�d(μ), �w; μ) = fd(�w, μ), ∀�w ∈ Vd (4.39)

where Vd is a suitable Hilbert space. Problem (4.39) arises, for instance, when an
harmonic or solid extension is considered to extend a boundary data to the whole fluid
domain, see e.g. [Staten et al., 2011, Baker, 2002, Stein et al., 2004]. When using the FE
method, as described in Section 1.1.1, problem (4.39) yields the linear system

Ad(μ)d(μ) = fd(μ), (4.40)

where Ad(μ) ∈ R
Nd

h×Nd
h is the FE matrix obtained from ad(·, ·; μ) and the right hand

side fd(μ) ∈ R
Nd

h is obtained from fd(·, μ).

Additionally, one should take into account the effort to obtain a lifting function, which in
nontrivial geometries entails a third FE linear system to be solved. Indeed, the following
problem is considered to compute the lifting function needed to build the right hand side
of (4.13): find �l(μ) ∈ Vl, such that

al(�l(μ), �w; μ) = fl(�w, μ), ∀�w ∈ Vl, (4.41)

where Vl = Vl(μ) is a proper Hilbert space and �l(μ) is the lifting function. In the same
way as for (4.39), problem (4.41) is discretized with the FE element method yielding the
linear system

Al(μ)l(μ) = f l(μ), (4.42)

with l(μ) ∈ R
N l

h , Al(μ) ∈ R
N l

h×N l
h and f l(μ) ∈ R

N l
h . When a large computational grid

is considered, the solution of (4.40) and (4.42) entails the use of a proper FE solver
when each instance of the parameter μ is considered for the NS equations (4.14). On the

143

Chapter 4. RB methods and MSRB preconditioners for NS equations

resulting domain, then one can solve the fluid flow problem.

When performing the offline phase of the ROM for the fluid problem (Algorithm 13),
problems (4.40) and (4.42) must be solved for each μi, i = 1, . . . , ns. The same occurs
during the online phase when the NS-ROM is employed to solve the problem for new
instances of the parameter and, even though the fluid dynamics problem is typically the
most demanding one, the computational costs entailed by problems (4.40) and (4.42)
may hamper the overall efficiency of the method.

In the following, we devise a sequential hyper-reduced order model (HROM) construction
where the RB method is employed to cheaply compute an approximation of the displace-
ment �d(μ) and the lifting function �l(μ), which are then used to feed the construction of
the NS-HROM during the offline phase and its use during the online phase.

Toward this goal, we follow the procedure outlined in Section 1.3 to construct two HROMs
to compute the RB approximation of d(μ) and l(μ). Given a set of offline parameters
{μd

i }nd
s

i=1, we build by POD a Nd-dimensional RB projection matrix Vd ∈ R
Nd

h×Nd

for approximating the deformation and MDEIM and DEIM to construct the affine
decomposition of Ad(μ), fd(μ), respectively. Then VddN (μ) ≈ d(μ) is obtained by
solving the RB problem

Ãd
N (μ)dN (μ) = f̃d

N (μ), (D-HROM)

for dN (μ) ∈ R
Nd instead of (4.40); Ãd

N (μ) ∈ R
Nd×Nd and f̃d

N (μ) ∈ R
Nd are obtained

by Galerkin projection onto the subspace spanned by the columns of Vd.

Similarly, given a set of offline parameters {μl
i}

nl
s

i=1 (possibly different from the ones con-
sidered for the deformation problem), we build by POD a Nl-dimensional RB projection
matrix Vl for approximating the lifting function and MDEIM and DEIM to construct the
affine decomposition of Al(μ), f l(μ), respectively. The RB problem (D-HROM) is used
in view of the computation of the lifting functions {l(μl

i)}
nl

s
i=1, which are used to build

the projection matrix Vl by POD, and of the arrays Al(μl
i), f l(μl

i), which are employed
to compute a (M)DEIM affine decompositions. Finally, problem (4.42) is substituted by

Ãl
N (μ)lN (μ) = f̃ l

N (μ), (L-HROM)

where lN (μ) ∈ R
Nl is the RB solution, such that l(μ) ≈ VllN (μ) and Ãl

N (μ) ∈ R
Nl×Nl

and f̃ l
N (μ) ∈ R

Nl are obtained by Galerkin projection onto Vl.

Problems (D-HROM) and (L-HROM) are then used in the construction of NS-HROM
in Algorithm 13. The complete procedure is outlined in Figure 4.1.

144

4.4. Numerical results for NS-HROM

Sample {μd
1, . . . , μd

nd
s
}

Collect snapshots
d(μd

i), Ad(μd
i), fd(μd

i)

D-HROM Sample {μl
1, . . . , μl

nl
s
} Collect snapshots

l(μl
i), Al(μl

i), f l(μl
i)

L-HROMSample {μ1, . . . , μns}

Collect snapshots
un(μi), pn(μi), tn

p (μi)
D(μi), B(μi), Mu(μi)

C(un,∗(μi); μi)

NS-HROM

POD +
(M)DEIM

POD +
(M)DEIM

POD +
(M)DEIM

Figure 4.1 – Offline strategy to build NS-HROM. Red blocks specify when the collection
of solution, matrix and right hand side snapshots is performed, green blocks specify when
a HROM is constructed and then used to boost the offline phase.

4.4 Numerical results for NS-HROM

We consider in this section the solution of the NS problem (4.1), and set ν = 0.01, the
time interval (0, 0.5) and use the geometrical configuration already employed in the
numerical experiments in Section 3.4.2.

Test case setting

We consider the cylindrical reference domain

Ω0 = {�x ∈ R
3 : x2

1 + x2
1 < 0.25, x3 ∈ (0, 5)}

145

Chapter 4. RB methods and MSRB preconditioners for NS equations

and generate the displacement �d(μ) as the harmonic extension of a boundary deformation;
this yields the μ-dependent domain

Ω(μ) = {�x(μ) ∈ R
3 : �x(μ) = �x + �d(μ)}.

Here �d(μ) solves the (vector) Laplace equation (3.51), where we define

�h(μ) =

⎡⎢⎣−x1μ1 exp{−5(x3 − μ2)2}
−x2μ1 exp{−5(x3 − μ2)2}

0

⎤⎥⎦ ,

thus entailing a deformation of the cylinder which consists in the narrowing or enlargement
(according to the sign of μ1) of its section, in different positions, depending on the value
of μ1. Examples of the solution of (4.14) for different values of the parameter and times
are reported in Figure 4.2.

Since the solution �d(μ) of (3.51) is not known a-priori, we compute its numerical
approximation �dh(μ) by employing the FE method (with P2 FE basis functions), yielding
problem (4.40). Notice that by considering the special case (3.51), the FE matrix Ad(μ)
does not depend on the parameter.

Once the computational domain has been deformed, the lifting function is computed by
solving problem (3.52), where �gD(μ) is the one defined in (4.4) and such that the velocity
vanishes on the wall and the flow rate at the inlet is equal to 1; regarding the time
dependent contribution, we take w(t) = sin(2πt). Problem (3.52) as well is discretized
with the FE method with second order polynomials (P2) basis functions, leading to the
parametrized linear system (4.42). We take as parameters the coefficients μ1 and μ2,
that is μ = (μ1, μ2) ∈ [−0.3, 0.3] × [2, 3], which yield a parametrization affecting the
deformation problem, the computation of the lifting and ultimately the fluid flow.

We use a computational domain with 13’603 vertices, and discretize the NS equations
using Taylor-Hood FE spaces, that is with P2 − P1 FE basis functions leading to
Nu

h = 306′735 and Np
h = 13′603 degrees of freedom for velocity and pressure, respectively,

leading to a total dimension of the FE problem of Nh = 320′338. We employ the BDF2
method with Δt = 0.01 for the time discretization. The FE problem (4.14) is solved with
FGMRES preconditioned with a SIMPLE preconditioner, where the solves (steps 1 and
2 in Algorithm 12) are carried out by inner iterations up to a tolerance of 10−5 using
an Additive Schwarz preconditioner from the Ifpack package of Trilinos. The FE
solver takes on average 0.55 and 0.41 seconds for the deformation and lifting problem
respectively solved with an AMG-preconditioned GMRES and with a stopping criterion
of 10−9 on the FE residual rescaled with the Euclidean norm of the right hand side.

146

4.4. Numerical results for NS-HROM

(a) μ = (0.13, 2.6), t = 0.25 (b) μ = (0.13, 2.6), t = 0.5

(c) μ = (−0.125, 2.08), t = 0.25 (d) μ = (−0.125, 2.08), t = 0.5

(e) μ = (0.13, 2.6), t = 0.25 (f) μ = (0.13, 2.6), t = 0.5

(g) μ = (−0.125, 2.08), t = 0.25 (h) μ = (−0.125, 2.08), t = 0.5

Figure 4.2 – Velocity (lines 1,2) and pressure (lines 3,4) for different values of parameters
and at time t = 0.25 (left) and t = 0.5 (right).

Offline phase

The offline phase is divided in three stages for the subsequent construction of the HROM
for the domain deformation, the lifting function and the fluid flow. We report in the
following the results for the first two steps.

1. We first construct an HROM for the deformation (D-HROM); the results are
reported in Table 4.1. The offline phase is carried out with nd

s = 30 snapshots for
POD and DEIM (MDEIM is not employed since the matrix Ad(μ) is parameter
independent); the singular value decompositions (SVDs) corresponding to the

147

Chapter 4. RB methods and MSRB preconditioners for NS equations

Table 4.1 – D-HROM: POD for state reduction and DEIM have been run with εPOD =
δDEIM = 10−7. Computational times are expressed in seconds.

Nd Qd
f Qd

a rRB tonl
RB tFE nd

s toff
11 1 11 5.5e-7 0.026 0.25 30 25.53

Table 4.2 – L-HROM: POD for state reduction and (M)DEIM have been run with
εPOD = δDEIM = δMDEIM = 10−7. Computational times are expressed in seconds.

Nl Ql
f Ql

a rRB tonl
RB tFE nl

s toff
42 22 44 7.3e-6 0.030 0.41 50 89.13

construction of the RB matrix Vd and the DEIM affine approximation are reported
in Figure 4.3a. By plugging in a tolerance of 10−7 we come up with Nd = 11
RB function for the state approximation and Qd

f = 11 DEIM basis functions for
approximating the right hand side; in Figure 4.3a the singular value corresponding
to POD and DEIM are reported. As a matter of fact, only a few RB functions are
necessary to accurately approximate the solution of (3.51), as one should expect
for such linear elliptic problem. The offline phase is toff = 51.17 seconds long; by
testing online the HROM for the deformation on 50 instances of the parameter,
we obtain an average FE residual rRB = 5.5 · 10−7, with a solution computed in
0.026 seconds on average. This yields a computation about 10 times faster than
the one entailed by solving the FE problem, which in this context represents a
relevant boost, since the deformation problem is solved for each snapshot toward
the construction of the lifting HROM (L-HROM) and the NS-HROM (cf. Figure
4.1).

2. We then construct an HROM for the lifting function (L-HROM), which is fed with
the approximated deformation computed at step 1; the corresponding results are
reported in Table 4.2. The offline phase is performed with nl

s = 150 snapshots for
POD, DEIM and MDEIM; the singular value decompositions (SVDs) corresponding
to the construction of the RB matrix Vl and the (M)DEIM affine approximations
are reported in Figure 4.3b. By plugging in a tolerance of εPOD = 10−7 we come
up with Nl = 42 RB function for the state approximation, Ql

f = 22 DEIM basis
functions for approximating the right hand side and Ql

a = 44 MDEIM basis matrices
for Al(μ); the offline phase is toff = 89.13 seconds long. By testing online the
HROM for the lifting on 50 instances of the parameter, we obtain an average FE
residual rRB = 7.3 · 10−6, with a solution computed in 0.03 seconds on average.
Similarly to the previous case, the resulting ROM also leads to a speed up of about
14 with respect to the solution of the FE linear system.

The third step consists in building the HROM for the NS equations on top of the
previous two, which represents the most demanding stage of the offline phase. To this
aim, we employ ns = 50 snapshots for the state reduction, keeping fixed the tolerance

148

4.4. Numerical results for NS-HROM

0 5 10 15 20 25 30

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

σ
i

SVD - deformation problem

POD
DEIM

(a) SVD of POD (state reduction) and DEIM
(system approximation) for building D-HROM.

0 50 100 150

i

10 -15

10 -10

10 -5

10 0

10 5

σ
i

SVD - lifting problem

POD
DEIM
MDEIM

(b) [SVD of POD (state reduction) and
(M)DEIM (system approximation) for building
L-HROM.

Figure 4.3 – SVDs for building D-HROM and L-HROM problems.

0 200 400 600 800 1000

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

σ
i

Final POD w.r.t. parameter

Velocity
Supremizer
Pressure

(a) SVD of final POD w.r.t. μ to build the RB
matrices VNu , VNs , VNs .

0 50 100 150 200 250 300 350 400 450

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

σ
i

Final MDEIM SVD

ε
C
loc = 10 -5

ε
C
loc = 10 -6

ε
C
loc = 10 -7

(b) SVD final MDEIM for building VC .

Figure 4.4 – SVDs for building final RB spaces (left) and final MDEIM of the linearized
term (right). Notice that in the latter, according to εloc

C of the MDEIMs in time, the
number of snapshots and the decay of the resulting SVD for the final MDEIM change.

Table 4.3 – Chosen settings for numerical experiments of NS-HROM.

Setting εt εμ δDEIM = δMDEIM = εloc
C εC

SET 1 10−7 10−3 10−5 10−3

SET 2 10−7 10−3 10−7 10−3

SET 3 10−7 10−3 10−7 10−5

SET 4 10−7 10−5 10−7 10−3

149

Chapter 4. RB methods and MSRB preconditioners for NS equations

for the POD in time to εt = 10−7, and varying the tolerance εμ, for building the final
velocity and pressure RB spaces. We highlight that for the enriching RB matrices
Vi

Ns
, i = 1, . . . , ns and the final VNs , we use a tolerance equal to εt/10 and εμ/10,

respectively. On average, the POD in time retains 20 basis functions for the velocity, 13
for the pressure and 20 for the enriching functions. Having 50 offline parameters, the
final RB matrices VNu , VNp , VNs are built with POD starting from 1000, 1000 and 645
snapshots, respectively, and their dimensions depend on the value of εμ.

Regarding the system approximation, the construction of an approximate affine decompo-
sition (through MDEIM) of D(μ), B(μ) and Mu(μ), and an approximation of f1(μ) and
f2(μ) (through DEIM) employs ns = 150 snapshots, with tolerances δMDEIM and δDEIM
which are varied in the experiments. Similarly, the influence of εloc

C for computing the
basis in time with MDEIM of the linearized term and the tolerance εC for the ultimate
MDEIM is analyzed. In Table 4.3 a summary of the considered combinations of these
tolerances are reported; in general, we choose δMDEIM = δDEIM = εloc

C < εC , where the
latter inequality is motivated by the fact that a proper sampling in time must be carried
out in order to obtain an accurate affine approximation of the term CN (VNuun,∗

N (μ); μ).

In Table 4.4 the results of the offline phase obtained with the settings reported in Table
4.3 are reported. In particular, Nu, Ns, Np ia the number of RB functions retained by
the PODs for velocity, enriching velocities and pressure, respectively; in Figure 4.4a
the corresponding SVDs are shown instead: as a matter of fact, the decay of pressure
singular values is faster than the one obtained for velocity and supremizers; therefore,
fewer modes are retained. The decay of velocity and supremizer snapshots is similar,
however by using a smaller tolerance for the latter, the final dimension of VNs is larger
than the one of VNu . These functions are then merged with a Gram-Schmidt procedure.
The total number of RB functions finally ranges from 599 to 1361, depending on the
chosen tolerance εμ. The number of matrix basis computed from the MDEIM in time Qt

c

and from the final MDEIM Qc for the linearized term range from 4 to 9 in the former
case, and from 36 to 203 in the latter case, respectively. By decreasing the employed
tolerances, the offline time increases accordingly, since it entails the computation of the
RB affine basis for the matrices and right hand sides (cf. step 17-18 of Algorithm 13),
however we remark that the most demanding effort is that of the NS FE problem for
building the fluid flow snapshots.

Table 4.4 – Results of the offline phase for settings defined in Table 4.3. computational
times are reported in seconds.

Setting Nu Ns Np Qt
c Qc toff

SET 1 210 303 86 4 36 22596.8
SET 2 210 303 86 9 69 22733.7
SET 3 210 303 86 9 203 23610.0
SET 4 512 612 237 9 69 27941.1

150

4.4. Numerical results for NS-HROM

Table 4.5 – Results averaged on 50 instances of the parameter considered online. Times
are reported in seconds.

Setting ēu
RB ēp

RB tonl
RB SPEEDUP

SET 1 3.07e-02 3.60e-02 4.48 71
SET 2 1.91e-03 3.80e-04 9.60 33
SET 3 1.88e-03 1.52e-04 10.96 29
SET 4 3.51e-04 1.04e-04 32.08 10

Online phase

During the online phase we use the four ROMs defined in Table 4.3 on 50 online
parameters. In order to assess the quality of the RB approximation, we define

eu
RB(μ) =

√√√√∑Nt
n=1 ‖un(μ) − VNuun

N ‖2
Xu∑Nt

n=1 ‖un(μ)‖2
Xu

, (4.43)

as the velocity relative error on the time interval [0, T] and similarly we introduce

ep
RB(μ) =

√√√√√∑Nt
n=1 ‖pn(μ) − VNppn

N ‖2
Xp∑Nt

n=1 ‖pn(μ)‖2
Xp

, (4.44)

as equivalent for the pressure.

We denote by ēu
RB, ēp

RB the errors averaged on the number of parameters considered
online, which are reported in Table 4.5, and indicate the accuracy of the RB solution with
respect to the FE one. The time tonl

RB to compute online the RB solution in the online
phase and the speedup obtained with respect to the FE simulation are also shown. Let
us consider SET 1 and SET 2, where only the tolerance εloc

C varies; by decreasing it from
10−5 to 10−7, there is a significant improvement in the quality of the RB approximation,
since the relative errors (4.43)-(4.44) decrease of one order of magnitude. This is due
to the fact that the time trajectory of the linearized term is not well approximated in
the first case and the corresponding MDEIM basis in time is not accurate, yielding a
poor final MDEIM approximation. This fact can also be observed by the singular values
of the final MDEIM with respect to the parameter variability where the bases in time
have been computed using εloc

C = 10−5, 10−6 and 10−7; the decay of the singular values
significantly changes by considering a smaller εloc

C . As a matter of fact, the number of
affine terms produced is 36 for SET 1 and 69 for SET 2, even though the same tolerance
εC has been used (cf. Table 4.4). In the next experiments we use εloc

C = 10−7.

Let us now consider SET 3 and SET 4, where either εC or εμ is decreased to 10−5; the
first option has not a beneficial impact on the solution, since the error keeps constant:
the convergence of the error is hampered by the too coarse state reduction. On the other
hand, in the latter case, the quality of the RB approximations improves, especially for

151

Chapter 4. RB methods and MSRB preconditioners for NS equations

the velocity. This fact is confirmed by considering the velocity and pressure relative
errors

eu
RB(tn; μ) =

‖un(μ) − VNuun
N ‖2

Xu

‖utn(μ)‖2
Xu

ep
RB(tn; μ) =

‖pn(μ) − VNppn
N ‖2

Xu

‖pn(μ)‖2
Xu

as function of the time step tn, which are reported for two values of the parameters in
Figure 4.5 for SET 2 and SET 4. As a matter of fact, the velocity is approximated at
every time step with the same discrepancy from the two methods, while the pressure
error tends to be similar at the beginning but then follows a different path according to
the employed setting. As the time to compute the RB approximation concerns, it ranges

0 0.1 0.2 0.3 0.4 0.5

t

10 -4

10 -3

10 -2

10 -1

e
R

B
u

(t
;μ

)

Velocity relative error vs t

SET2
SET4

(a) Velocity relative error μ = (0.27, 2.95).

0 0.1 0.2 0.3 0.4 0.5

t

10 -4

10 -3

10 -2

e
R

B
p

(t
;μ

)

Pressure relative error vs t

SET2
SET4

(b) Pressure relative error μ = (0.27, 2.95).

0 0.1 0.2 0.3 0.4 0.5

t

10 -4

10 -3

10 -2

10 -1

e
R

B
u

(t
;μ

)

Velocity relative error vs t

SET2
SET4

(c) Velocity relative error μ = (−0.27, 2.05).

0 0.1 0.2 0.3 0.4 0.5

t

10 -4

10 -3

10 -2

e
R

B
p

(t
;μ

)

Pressure relative error vs t

SET2
SET4

(d) Pressure relative error μ = (−0.27, 2.05).

Figure 4.5 – Velocity and pressure errors entailed by the NS-HROM as function of time
for two values of the parameter.

from about 4.5 to 32 seconds, with a speed up which varies from 10 to 71 times faster,
depending on the accuracy entailed, than the reference FE solution, whose computational
cost is on average 318.16 seconds. The HROM we have constructed therefore entails
a significant speed up for the computation of an accurate solution of the unsteady NS
problem. Furthermore, the new treatment of the nonlinear term demonstrated to be a
reliable and efficient option to efficiently assembly the RB system, and it will be used in
the next sections for developing an efficient MSRB preconditioner for the NS problem
(4.14), where we will also consider more involved test cases.

152

4.5. MSRB preconditioners for the NS equations

4.5 MSRB preconditioners for the NS equations

In this section we will tailor the construction of the MSRB preconditioners to the case
of unsteady parametrized NS equations, which will exploit the low-rank NS-HROM
developed in the previous sections as RB coarse operator. Solving the sequence of linear
systems (4.14) raises some critical issues we need to deal with: i) the time-dependent
nature of the solution, ii) the efficient assembling of the linearized nonlinear term
appearing in block (1,1) of (4.15), iii) the saddle-point nature of the system. To tackle
them, we make use of different ingredients introduced above and in the previous chapters.
In particular:

1. time dependence is treated as in Section 2.5 for linear parabolic problems, that is
by constructing the RB coarse components by accounting for the time variability.
We start by considering a MSRB preconditioner version with a single time slab,
then we extend it to the multi time slab construction;

2. similarly to the case of nonaffine problems, the use of hyper-reduction techniques to
handle linearized terms is not necessary when employing a MSRB preconditioner.
However, it can significantly speed up the construction of the RB coarse operators
during the online phase; for this reason, we use MDEIM to treat the linearized
nonlinear term. Our strategy is inspired by the one developed for the ROM of
the NS equations in Section 4.2.3, where a MDEIM basis (with a double POD
approach) was constructed for the linearized convective term;

3. as seen for the Stokes equations, the construction of a well-posed RB coarse operator
cannot rely on a simple Galerkin RB approximation on the velocity and pressure
RB spaces. Hence, we employ an enriched-velocity Galerkin RB formulation for
defining the RB coarse operators, similarly to what we have done for the Stokes
equations in Section 3.5.1. An enriched G-RB approximation has been preferred
to a Petrov Galerkin RB one (such as the one provided by a LSRB for the NS
equations) because, as we have seen from the numerical experiments in Section
4.4, the number of affine terms Qc computed when approximating the linearized
term with MDEIM can be very large, and the RB coarse operators obtained with a
PG-RB formulation would depend quadratically on Qc, whereas a G-RB approach
only entails a linear dependence.

As usual, we focus our attention on the FGMRES method, however we remark that the
framework developed is easily applicable to other iterative methods as well.

153

Chapter 4. RB methods and MSRB preconditioners for NS equations

4.5.1 Preconditioner construction

The definition of the MSRB preconditioner for problem (4.14) follows (2.10) and (2.53),
that is, we can set

QMSRB,k(μ) = P−1(μ) + QNk
(μ)

(
INh

− N(un,∗(μ); μ)P−1(μ)
)
, (4.45)

where this time P(μ) is a fine grid nonsingular preconditioner for the NS operator
N(un,∗(μ); μ), and the RB coarse operator QNk

(μ) is trained to approximate the solution
of

N(un,∗(μ); μ)yn
k(μ) =

(
INh

− N(un,∗(μ); μ)P−1(μ)
)

vn
k(μ), (4.46)

which is a FE saddle-point linear system featuring the NS matrix at the left hand side.
We introduce the projection matrix Vk ∈ R

Nh×Nk , which algebraically represents a
Nk-dimensional RB space VNk

spanned by solutions of (4.46) and computed for properly
chosen time steps and parameter values. Then, for k = 1, 2, . . . , we define the RB
matrices

NNk
(un,∗(μ); μ) = VT

k N(un,∗(μ); μ)Vk (4.47)

obtained by performing a Galerkin projection of the NS matrix N(un,∗(μ); μ) onto the
subspace spanned by the columns of Vk. Then, we set the RB coarse operator as the
RB low-rank solver for (4.46) with respect to Vk, that is,

QNk
(μ) = VkN−1

Nk
(un,∗(μ); μ)VT

k . (4.48)

Since Vk contains solutions with respect to both time and parameter variability, QNk
(μ)

as in (4.48) is used as coarse correction of iteration k for all time steps, and yields a RB
approximation yn

Nk
(μ) ∈ R

Nk of yn
k(μ) by solving

NNk
(un,∗(μ); μ)yn

Nk
(μ) = VT

k vn
k+ 1

2
(μ), (4.49)

such that Vkyn
Nk

(μ) ≈ yn
k(μ).

As already remarked, problem (4.46) is a NS problem of the same form as (4.14),
with a modified right hand side; its solution is made of a velocity and a pressure
component, that is, yn

k(μ) = [yn
u,k(μ), yn

p,k(μ)]T , which we aim at approximating by
relying on a RB coarse operator. With this goal, we introduce two RB spaces, for velocity
and pressure approximation, respectively, algebraically represented by two matrices
Vuk ∈ R

Nu
h ×Nu

k , Vpk ∈ R
Np

h
×Np

k , and constructed by (separately) using POD with
solutions of (4.46) for selected values of μ and time steps. In other words, given a set of

154

4.5. MSRB preconditioners for the NS equations

parameter values
{
μi

}ns

i=1, we set, for k = 1, 2, . . .,

Vuk = POD
(
S(k)

�u , Xu, δRB,k

)
, Vpk = POD

(
S(k)

p , Xp, δRB,k

)
, (4.50)

where

S(k)
�u = [y1

u,k(μ1), . . . , yNt
u,k(μ1), . . . , y1

u,k(μns), . . . , yNt
u,k(μns)] (4.51)

S(k)
p = [y1

p,k(μ1), . . . , yNt
p,k(μ1), . . . , y1

p,k(μns), . . . , yNt
p,k(μns)] (4.52)

and δRB,k > 0 is the prescribed tolerance. The matrix Vuk (resp. Vpk) is then used to
approximate yn

u,k(μ) (resp. yn
u,k(μ)); however, their simple combination in a Galerkin

RB formulation as the one employed in (4.47) does not guarantee the well-posedness of
the RB coarse component. As a matter of fact, Vuk and Vpk possibly yield a singular
RB matrix NNk

(un,∗(μ); μ), since they do not verify an equivalent inf-sup condition on
the reduced problem, similarly to what explained in Section 4.2.2 for the NS-HROM and
in Section 3.5.1 for the Stokes equations. To overcome this issue, we rely on the pressure
supremizing operator defined in (4.30) to enrich the velocity spaces Vuk, k = 1, 2, . . .

with a proper set of functions collected in the matrix Vsk ∈ R
Nu

h ×Ns
k . More precisely,

we consider the pressure error snapshots
{
yn

p,k(μi)
}ns,Nt

i=1,n=1: for each n = 1, . . . , Nt and
parameter μi, i = 1, . . . , ns, we solve

Xu(μi)yn
t,k(μi) = BT (μi)yn

p,k(μi); (4.53)

then, we set

S(k)
�t

= [y1
t,k(μ1), . . . , yNt

t,k(μ1), . . . y1
t,k(μns), . . . , yNt

t,k(μns)],

Vsk = POD
(
S(k)

�t
, Xu, δs

RB,k

)
.

The basis Vsk is used to augment the velocity space, with a proper Gram-Schmidt
procedure

Vuk = G-S([Vuk, Vsk], Xu),

with respect to the scalar product induced by Xu. Finally, by setting in (4.47)-(4.48)

Vk =
[
Vuk 0

0 Vpk

]
, (4.54)

we obtain a well-posed RB coarse operator, yielding the following RB matrix

NNk
(un,∗(μ); μ) =

⎡⎣α1
Δt

Mu
Nk

(μ) + DNk
(μ) + CNk

(un,∗(μ); μ) BT
Nk

(μ)
BNk

(μ) 0

⎤⎦ , (4.55)

where the RB matrices Mu
Nk

(μ), DNk
(μ), CNk

(un,∗(μ); μ) and BNk
(μ) are defined as

155

Chapter 4. RB methods and MSRB preconditioners for NS equations

in (4.24) and (4.25), provided we replace VNu and VNp with Vuk and Vpk, respectively.

Remark 4.5.1. Since we are using a Galerkin projection approach, the nonsingularity
of the preconditioner operator defined in (4.45) is ensured by Theorem 2.2.1.

In order to speed up the assembly of NNk
(un,∗(μ); μ), we can use the (approximated)

affine decomposition of the RB matrices in (4.55). The efficient assembly of MNk
(μ) is

treated as in the case of unsteady problems (cf. Section 2.5.1), whereas for DNk
(μ) and

BNk
(μ) we adopt the strategy outlined for the Stokes problem (cf. Section 3.5.4). On the

other hand, we employ the double POD approach devised in in Section 4.2.3 to construct
an approximated MDEIM basis for the efficient construction of CNk

(un,∗(μ); μ). As a
matter of fact, we end up with the affinely approximated saddle-point matrix

N(un,∗(μ); μ) ≈ Ñ(un,∗(μ); μ) ∈ R
Nh×Nh

which is used to build the corresponding RB matrix ÑNk
(un,∗(μ); μ). §This is pursued

with a Galerkin projection of Ñ(un,∗(μ); μ) onto Vk, that is

ÑNk
(un,∗(μ); μ) = VT

k Ñ(un,∗(μ); μ)Vk

=

⎡⎣α1
Δt

M̃�u
Nk

(μ) + D̃Nk
(μ) + C̃Nk

(un,∗(μ); μ) B̃T
Nk

(μ)
B̃Nk

(μ) 0

⎤⎦
where the symbol ~ stands for substitution of the RB matrices with their corresponding
MDEIM approximations. Finally, the RB coarse operator is constructed by setting

QNk
(μ) = Vk

(
ÑNk

(un,∗(μ); μ)
)−1

VT
k . (4.56)

Similarly to what done for linear parabolic problems in Section 2.5.1, a convenient way
to tackle relatively long times is to divide the interval [0, T] in time slabs, such that the
memory and computational load entailed by the snapshots and the PODs is not excessive.
This is pursued by dividing the interval [0, T] in S time slabs and by constructing for
each of them a sequence of RB spaces and the corresponding coarse operators, as the
one defined in (4.56). As a matter of fact, for each time slab s, we end up with Ls RB
projection matrices Vk,s, k = 0, . . . , Ls − 1, s = 0, . . . , S − 1 of the form

QNk,s(μ) = Vk,s

(
ÑNk,s(un,∗(μ); μ)

)−1
VT

k,s, (4.57)

each one tailored for the corresponding time slab, where ÑNk,s(un,∗(μ); μ) is obtained
by Galerkin projection onto Vk,s, that is

ÑNk,s(un,∗(μ); μ) = VT
k,sN(un,∗(μ); μ)Vk,s.

The local-in-time construction we have carried out by means of a partition in time slabs

156

4.5. MSRB preconditioners for the NS equations

yields some relevant benefits:

• with a fixed dimension of the RB spaces, it allows to reach a better accuracy, since
only a specific part of the time trajectory is employed for building the RB coarse
operators;

• a local-in-time MDEIM approximation of the linearized matrix C̃Nk
(un,∗(μ); μ) can

be exploited, yielding a more precise affine approximation and possibly a reduction
of the number of affine terms computed by MDEIM. This will be specifically
addressed in the next section;

• in principle, problems featuring different solution behaviors over the time interval
could benefit by this local-in-time construction, carried out by partitioning the
time interval in accordance with the different physical behaviors (this case however
will not be addressed in this work).

4.5.2 Algorithmic procedures

We now focus on the construction of the MSRB preconditioner during the offline phase;
the corresponding procedure is outlined in Algorithm 13. We start by building an
approximated MDEIM affine decomposition of D(μ), B(μ), Mu(μ) and dividing the
time interval [0, T] in S time slabs of equal size Δτ = T/S, such that in each time slab
Nτ time steps are contained. Then, given a set of parameters

{
μi

}ns

i=1 and a time slab
s, we compute the corresponding FE solutions {un(μi)}Nτ (s+1)

n=Nτ s+1, {pn(μi)}Nτ (s+1)
n=Nτ s+1, the

supremizers snapshots {ti
p}Nτ (s+1)

n=Nτ s+1 as in (4.31) and a set of local (in time) MDEIM basis
Vs,i

C for the linearized term {C(un,∗(μi); μi)}Nτ (s+1)
n=Nτ s+1 for i = 1, . . . , ns; then a MDEIM

global basis Vs
C (with respect to the parameters) is extracted for the time slab s. In the

next phase, we build the basis for the RB coarse operators: at each iteration k, a basis
from the velocity, pressure and supremizers snapshots is computed and used to build the
corresponding (approximated) RB affine decompositions

M�u,q,s
Nk

= VT
uk,sMqVuk,s, q = 1, . . . , Qm,

Dq,s
Nk

= VT
uk,sDqVuk,s, q = 1, . . . , Qd,

Bq,s
Nk

= VT
pk,sBqVuk,s, q = 1, . . . , Qb,

Cq,s
Nk

= VT
uk,sCqVuk,s, q = 1, . . . , Qc,

which are then used at time slab s. In the online phase, given tn and μ, the MSRB
preconditioner built for the time slab s is built and applied to vn

k(μ).

157

Chapter 4. RB methods and MSRB preconditioners for NS equations

Algorithm 14 NAVIER-STOKES-MSRB-OFFLINE

1: procedure NS-MSRB-OFFLINE(
{
μi

}ns

i=1, εr, {Nk}k, δMDEIM, εloc
C , εC , S)

2: Use MDEIM to compute an affine decomposition of D(μ), B(μ), Mu(μ)
3: for s = 0, . . . , S − 1 do
4: for i = 1 : ns do
5: Compute {un(μi)}Nτ (s+1)

n=Nτ s+1, {pn(μi)}Nτ (s+1)
n=Nτ s+1, {tn

p (μi)}Nτ (s+1)
n=Nτ s+1

6: Set Si
C = [vec(C(uNτ s,∗(μi); μi)), . . . , vec(C(uNτ (s+1)−1,∗(μi); μi))]

7: and Vs,i
C = POD(Si

C , I(Nu
h

)2 , εloc
C)

8: end for

9: Set S(0)
�u = [uNτ s+1(μ1), . . . , uNτ (s+1)(μ1), . . . , uNτ s+1(μns), . . . , uNτ (s+1)(μns)]

10: Set S(0)
p = [pNτ s+1(μ1), . . . , pNτ (s+1)(μ1), . . . , pNτ s+1(μns), . . . , pNτ (s+1)(μns)]

11: Set S(0)
�t

= [tNτ s+1
p (μ1), . . . , tNτ (s+1)

p (μ1), . . . , tNτ s+1
p (μns), . . . , tNτ (s+1)

p (μns)]
12: Set SC = [Vs,1

C , . . . , Vs,ns

C]
13: Compute MDEIM basis Vs

C = MDEIM(SC , εC)
14: Set [Cs,1

Nk
, . . . , Cs,Qc

Nk
] = unvec(Vs

C)

15: while
∏
k

δRB,k > εr do

16: [Vuk,s, δRB,k] = POD(S(k)
�u , Xu, Nk)

17: [Vpk,s, δRB,k] = POD(S(k)
p , Xp, Nk)

18: [Vsk,s, δRB,k] = POD(S(k)
�t

, Xu, Nk)
19: Vuk,s = G-S(Vuk,s, Vsk,s, Xu)
20: Build RB affine matrices

{
M�u,q,s

Nk

}Qm

q=1,
{
Dq,s

Nk

}Qd

q=1,
{
Bq,s

Nk

}Qb

q=1,
{
Cq,s

Nk

}Qc

q=1
21: Compute new snapshots

{
yu,k(μi)

}ns

i=1 and
{
yp,k(μi)

}ns

i=1 with (2.42)
22: Compute new supremizer snapshots

{
yt,k(μi)

}ns

i=1 with (4.53)
23: S(k+1)

�u = [yu,k+1(μ1), . . . , yu,k+1(μns)],
24: S(k+1)

p = [yp,k+1(μ1), . . . , yp,k+1(μns)]
25: S(k+1)

�t
= [yt,k+1(μ1), . . . , yt,k+1(μns)]

26: k = k + 1
27: end while
28: end for
29: end procedure

158

4.6. Numerical results: flow past a cylinder

4.6 Numerical results: flow past a cylinder

We consider the domain Ω0 shown in Figure (4.6) (already taken into account when
dealing with the heat equation) and the flow described by the NS equations. We set the
inlet condition on Γd as

�gNS(μ) = 8yz(H − y)(H − z)/H4(1 − cos(2πt))�e1 t ∈ (0, T), (4.58)

where �e1 ∈ R
3 is the unit vector in direction x and H = 0.41m. The test case is inspired

from the classical test for laminar flows proposed in [Schäfer et al., 1996]. We show
the results for two computational grids: the first one featuring 100’256 elements and
20’245 vertices (Mesh #1), the second one with 802’048 tetrahedra and 147’558 vertices
(Mesh #2). By employing Taylor-Hood FE spaces we come up with Nu

h = 442′674
and Np

h = 20′245 degrees of freedom in the first case and with Nu
h = 3′373′240 and

Np
h = 147′558 in the second one, for velocity and pressure, respectively. The time

discretization employs the BDF2 scheme with Δt = 0.01. The velocity and pressure
fields computed with the finest grid are reported in Figure 4.7 for time t = 2.5 seconds
and 4.8 seconds.

In all experiments, the offline phase is carried out by employing the FGMRES method
with a final tolerance set to 10−8 and the SIMPLE preconditioner described in Algorithm
12, where the steps 1 and 2 use GMRES inner iterations (up to a tolerance of 10−5)
preconditioned with an Additive Schwarz preconditioner (with 2-level overlap) from the
Ifpack package of Trilinos. In the online phase, we combine the RB coarse components
with the same SIMPLE preconditioner, that is P(μ) = PSIMPLE(μ) in (4.45). The
problem is solved with 128 and 1024 computing cores for the coarse and fine grid,
respectively.

At first, we consider the case where the problem is parametrized with respect to time
only; subsequently, we call into play geometrical and physical parameters. In both tests,

Figure 4.6 – Computational domain employed for the flow past a cylinder, with H = 0.41m,
L0 = 2.5m. The cylinder has radius r = 0.05m, its center is distant 0.5m from Γd and
0.2m from the bottom face.

159

Chapter 4. RB methods and MSRB preconditioners for NS equations

Figure 4.7 – Clip of velocity field at the central section at time t = 2.5 seconds (top) and
t = 4.8 seconds (bottom) with ν = 0.01.

we are interested in computing the drag coefficient CD and the lifting coefficient CL,
which are defined as

CD = CD(�u(μ), p(μ)) = − 1
q∞S

∫
ΓC(μ)

(σ
(
�u(μ), p(μ)

)
�n) · �v∞dΓC(μ) (4.59)

CL = CL(�u(μ), p(μ)) =
1

q∞S

∫
ΓC(μ)

(σ
(
�u(μ), p(μ)

)
�n) · �n∞dΓC(μ), (4.60)

where S is the surface area of the cylinder, �v∞ is the unit vector directed as the incoming
flow, q∞ = 0.5ρ̃V 2

∞, with ρ̃ the fluid density, is the dynamic pressure, while �n∞ is a unit
vector orthogonal to �v∞.

4.6.1 Periodic regime case

In this first test case, we consider ν = 0.01, leading to a Reynolds number Re ∈ (0, 4.45)
and the time interval [0, 10]. Furthermore, we employ the MSRB preconditioner in a
predictive setting: during the offline phase, we train it on the interval [0, 2] (on S = 1
time slab); then we use it during the online phase for the interval (2, 10]. We set ns = 1,
εr = 10−9 and Nk = 20 velocity, supremizer and pressure RB functions, leading to
coarse operators of dimension 3Nk = 60. The PODs corresponding to velocity snapshots,
supremizer snapshots and pressure snapshots are reported in Figure 4.8a, 4.8b and 4.8c
for Mesh #1 and in Figure 4.8d, 4.8e and 4.8f for Mesh # 2, respectively, and a similar
behavior can be observed with the two meshes for the decay of the singular values. As

160

4.6. Numerical results: flow past a cylinder

0 50 100 150 200

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

σ
i

Velocity PODs Mesh #1

k = 0
k = 1
k = 2
k = 3

(a) Velocity - Mesh #1.

0 50 100 150 200

i

10 -15

10 -10

10 -5

10 0

10 5

σ
i

Supremizer PODs Mesh #1

k = 0
k = 1
k = 2
k = 3

(b) Supremizer - Mesh #1.

0 50 100 150 200

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

σ
i

Pressure PODs Mesh #1

k = 0
k = 1
k = 2
k = 3

(c) Pressure - Mesh #1.

0 50 100 150 200

i

10 -10

10 -5

10 0

10 5

σ
i

Velocity PODs Mesh #2

k = 0
k = 1
k = 2

(d) Velocity - Mesh #2.

0 50 100 150 200

i

10 -15

10 -10

10 -5

10 0

10 5

σ
i

Supremizer PODs Mesh #2

k = 0
k = 1
k = 2

(e) Supremizer - Mesh #2.

0 50 100 150 200

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

σ
i

Pressure PODs Mesh #2

k = 0
k = 1
k = 2

(f) Pressure - Mesh #2.

Figure 4.8 – POD corresponding to the construction of the RB spaces for Mesh #1 (top
row) and Mesh #2 (bottom row). We distinguish between the creation of the RB spaces
for velocity (left), supremizer (centre) and pressure (right).

analyzed in Section 2.4.1 for the steady case, the decay of the singular values is slower as
the iteration k grows; by using a fixed dimension approach, this leads to the construction
of less accurate RB coarse components. The number of RB coarse corrections produced
by Algorithm 14 is L = 4 in the first case (Mesh #1) and L = 3 in the second one (Mesh
#2).

Concerning the term C(un,∗(μ); μ), the singular values corresponding to the local-in-
time MDEIM are reported in Figure 4.9 for the two computational grids. By setting
a tolerance equal to εloc

C = 10−6, MDEIM leads to 4 matrix bases (Mesh #1) and 3
matrix bases (Mesh #2); as a matter of fact, only few terms are needed to provide an
accurate approximate affine decomposition of the time trajectory of C(un,∗(μ); μ), this is
explained by the extremely rapid decay of the singular values, cf. Figure 4.9. Since we do
not have a parameter dependence, the final MDEIM w.r.t. to the parameter variability
(step 13 in Algorithm 14) is not performed.

The problem is then solved on the interval (2, 10] and the corresponding results are
reported in Table 4.6. Compared to using only the SIMPLE preconditioner, about one
third of the iterations are needed to reach the same convergence tolerance of 10−5 in the
FGMRES method, and about half of the time with Mesh #1 and one third with Mesh
#2. The evolution of the drag and lift coefficients as function of the time is reported
in Figure 4.10. Mesh #1 leads to an error of about 0.3% on CD and 4.8% for CL. In

161

Chapter 4. RB methods and MSRB preconditioners for NS equations

0 50 100 150 200

i

10 -6

10 -4

10 -2

10 0

10 2

10 4

σ
i

Local MDEIM SVD

Mesh #1
Mesh #2

Figure 4.9 – SVD for local-in-time MDEIM Mesh #1 and Mesh #2.

Table 4.6 – Summary results for periodic regime. The problem is solved online on the
interval (2, 10]. Computational times are expressed in seconds and refer to the average
time needed for the solution of one time step.

tonl
MSRB Itonl tSIMPLE ItSIMPLE toff

Mesh #1 5.15 4 9.42 11 5430.6
Mesh #2 13.28 8 44.07 27 12762.1

Figure 4.11 the phase diagram of CD-CL is reported and the convergence towards the
periodic regime can be clearly observed.

4.6.2 Parametrized case

In the second part, we consider the NS equations for the time interval [0, 1] in the
parametrized domain

Ω(μ) = {�x(μ) ∈ R
3 : �x(μ) = �x + �d(μ)},

0 2 4 6 8 10

t

-2

0

2

4

6

8

10

12

14

16

18

C
D

Drag coefficient as function of time

Mesh #1
Mesh #2

(a) Drag coefficient CD vs t.

0 2 4 6 8 10

t

-0.05

0

0.05

0.1

0.15

0.2

0.25

C
L

Lift coefficient as function of time

Mesh #1
Mesh #2

(b) coefficient CL vs t.

Figure 4.10 – Time evolution of CD and CL for two different computational grids.

162

4.6. Numerical results: flow past a cylinder

-5 0 5 10 15 20

C
D

-0.05

0

0.05

0.1

0.15

0.2

0.25

C
L

Phase diagram C
D

 - C
L

t = 0

Mesh #1
Mesh #2

Figure 4.11 – Phase diagram of the drag and lift coefficients evolution for t ∈ [0, 10].

where �d(μ) solves the following (vector) Laplace equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δ�d(μ) = �0 in Ω0

�d(μ) = �h(μ) on ΓC

�d(μ) = �0 on ∂Ω0\ΓC ,

(4.61)

where �h(μ) = [0, h2(μ), 0]T and

h2(μ) = −(x2 − 0.205)ry exp{−200(x3 − 0.205)2}, (4.62)

entailing a displacement on the section cylinder along the y coordinate; a few examples
of deformed domains are reported in Figure 4.12. We introduce the parameter vector

μ = (ν, ry) ∈ D = (0.001, 0.01) × (−0.3, 0.3)

where ν is the kinematic viscosity appearing in the definition of the stress tensor (4.2),
and ry is the parameter in (4.62); the considered values of ν lead to a Reynolds number
in the range of [0, 44.5]. In the following, we present results for the two meshes Mesh #1
and Mesh #2 already considered in the previous section.

We solve the FE problem in the offline phase (with the same settings as in the previous
section) on 16 offline parameters, which are chosen according to a 4 × 4 tensor grid with
equidistant points. The time interval is divided into S = 2 time slabs (of size Δτ = 0.5)
and on each of the MSRB preconditioner is built with a fixed dimension approach, with
Nk = 80 RB basis functions for velocity, supremizer and pressure. This leads to a
dimension for the RB coarse operators equal to 3Nk = 240. The POD corresponding

163

Chapter 4. RB methods and MSRB preconditioners for NS equations

(a) ry = 0.3. (b) ry = −0.3.

Figure 4.12 – Examples of deformation according to the value of ry. If ry > 0 the section
of the cylinder in the y direction is narrowed, whereas a negative value enlarges it.

to the construction of the RB spaces is reported in Figure 4.13a, 4.13b and 4.13c for
Mesh #2, a similar behavior can be observed, however, for Mesh #1 as well. Algorithm
14 builds L = 3 RB coarse components on each time slab and for the two meshes; as
a matter of fact, the same number of RB spaces is built since the singular values on
the two time slabs feature a similar decay. If we compare the results with the ones
obtained for the periodic case analyzed in the previous section, the decay of the singular
values is much slower (cf. Figure 4.8). This is an expected result due to the parametric
dependence which enters into play in the test considered in this section. However, notice
that about the same number of RB spaces is created (3 or 4) for both tests and meshes,
thanks to suitably setting Nk as the desired dimension; in this case the dimensions of
the RB spaces are indeed four times larger than in the previous test (240 instead of 60).

Concerning the affine approximation of the nonlinear term, for each parameter considered
in the offline phase a decay of the eigenvalues similar to the one in Figure 4.9 can be
observed, leading to collect between 4 and 5 MDEIM basis matrices for each instance of
the parameter and for each time slab when a tolerance εloc

C = 10−7 is employed, leading
to a total of 68 matrix snapshots for the final MDEIMs for both time slabs. These matrix
snapshots are then used to build the final MDEIM basis to affinely approximate the
matrix C(un,∗(μ); μ), and the SVD corresponding to the final MDEIMs for time slabs
s = 0, 1 is reported in Figure 4.13d for Mesh #2: by using a final tolerance εC = 10−6, 45
high modes are retained for the first time slab, whereas 47 matrix basis are constructed
in the second one. On the other hand for Mesh #1 58 affine terms are retained for both
time slabs in the final MDEIM. A summary of the number of the affine decomposition
can be found in Table 4.7, where Qa sums the number of affine terms for D(μ), B(μ)
and Mu(μ) (and it does not change from one time slab to another), Qt

c is the average
number of affine terms for the MDEIMs in time and Qc the one for the final MDEIM.
As expected, there is not a significant difference for the two meshes and the two time
slabs, since Qc mainly depends on the time trajectory and the μ-dependence.

164

4.6. Numerical results: flow past a cylinder

0 100 200 300 400 500 600 700 800 900

i

10 -20

10 -15

10 -10

10 -5

10 0

10 5

10 10
σ

i
Velocity PODs

k = 0, s = 0
k = 1, s = 0
k = 2, s = 0
k = 0, s = 1
k = 1, s = 1
k = 2, s = 1

(a) Velocity PODs.

0 100 200 300 400 500 600 700 800 900

i

10 -25

10 -20

10 -15

10 -10

10 -5

10 0

10 5

σ
i

Supremizer PODs

k = 0, s = 0
k = 1, s = 0
k = 2, s = 0
k = 0, s = 1
k = 1, s = 1
k = 2, s = 1

(b) Supremizer PODs.

0 100 200 300 400 500 600 700 800 900

i

10 -20

10 -15

10 -10

10 -5

10 0

10 5

10 10

σ
i

Pressure PODs

k = 0, s = 0
k = 1, s = 0
k = 2, s = 0
k = 0, s = 1
k = 1, s = 1
k = 2, s = 1

(c) Pressure PODs.

0 10 20 30 40 50 60 70

i

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

σ
i

Final MDEIM SVDs

s = 0
s = 1

(d) Final MDEIM.

Figure 4.13 – SVD for Mesh # 2. We report the PODs employed to build the RB
spaces for velocity (top-left), supremizer (top-right), pressure (bottom-left); solid lines
correspond to the first time slab s = 0, dash lines to the second time slab s = 1. Singular
values (SV) for the final MDEIM for the two time slabs s = 0, 1 are in the bottom-right
corner. A similar decay of the SV is observed for the two time slabs in all the cases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

i

-2

0

2

4

6

8

10

12

14

16

C
D

Drag coefficient

μ = (0.00235, -0.210)
μ = (0.0050, -0.230)
μ = (0.00890, 0.097)
μ = (0.00150, -0.187)

(a) Drag coefficient.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

i

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C
L

Lift coefficient

μ = (0.00235, -0.210)
μ = (0.0050, -0.230)
μ = (0.00890, 0.097)
μ = (0.00150, -0.187)

(b) Lift coefficient.

Figure 4.14 – Evolution of drag and lift coefficients for different values of the parameters
computed during the online phase.

165

Chapter 4. RB methods and MSRB preconditioners for NS equations

Table 4.7 – Number of affine terms (MDEIM decompositions) for the two meshes and the
two time slabs. The value of Qa sums the number of affine components of D(μ), B(μ)
and Mu(μ), Qt

c is the average number of affine terms for the local-in-time MDEIMs and
Qc the number of affine terms for the final MDEIM.

slab s Qa Qt
c Qc

Mesh #1 0 9 5.25 58
Mesh #1 0 9 5 58
Mesh #2 1 8 4 45
Mesh #2 1 8 4 47

Table 4.8 – Summary results for parametrized case. The problem is solved online on the
interval (0, 1] on instances of the parameter different from the training set. Computational
times are expressed in seconds and refer to the average time needed for the solution of
one time step.

tonl
MSRB Itonl tSIMPLE ItSIMPLE toff SPEEDUP BEP

Mesh #1 2.94 2 7.40 11 24275.9 2.5 55
Mesh #2 12.42 7 44.07 27 96004.4 3.5 31

The problem is solved online up to a tolerance of 10−5 on the relative residual; the
corresponding results and a comparison with the ones obtained by using the SIMPLE
preconditioner alone is given in Table 4.8. The problem is solved in about 3 and 12.5
seconds per time step for Mesh #1 and #2, respectively. If compared to the SIMPLE
preconditioner, the number of iterations significantly decreases of about 80% in the first
case and 75% in the second one, leading to a significant speedup of 2.5 and 3.5 for the
two computational grids. Moreover, we define the break even point (BEP), as the number
of parameter evaluations to repay the offline phase, in other words

BEP =
toff

Nt
(
tSIMPLE − tonl

MSRB
) , (4.63)

where Nt is the number of time steps; its computation is as well reported and is equal to
55 and 31 online evaluations, depending on the employed grid. As remarked also in other
tests carried out in this thesis, it is evident how the MSRB preconditioning strategy is
more convenient when the dimension of the FE problem becomes larger. This is also
confirmed in this case, where with the larger grid a smaller BEP and a higher speedup
are achieved if compared with the smaller mesh.

Some examples of solutions computed using the MSRB preconditioner for few instances
of the parameter (with Mesh #2) can be found in Figure 4.15. For the same parameters
the time evolution of the drag and lift coefficients has been computed and reported in
Figure 4.14. The range of CD and CL, as expected, largely changes when physical and
geometrical parameters vary.

166

4.6. Numerical results: flow past a cylinder

(a) μ = (0.00889, 0.09), t = 0.5. (b) μ = (0.00889, 0.09), t = 0.9.

(c) μ = (0.00145, −0.19), t = 0.5. (d) μ = (0.00145, −0.19), t = 0.9.

(e) μ = (0.00889, 0.09), t = 0.5. (f) μ = (0.00889, 0.09), t = 0.9.

(g) μ = (0.00145, −0.19), t = 0.5. (h) μ = (0.00145, −0.19), t = 0.9.

Figure 4.15 – Clip of the domain at the central section of the channel: zoom next to the
cylinder of velocity streamlines and pressure field for different values of parameters and
times.

167

5 Applications to the cardiovascular
system

In this chapter we present different test cases related to parametrized cardiovascular
simulations, where MSRB preconditioners are used to accelerate the solution of the
parametrized system. After a briefly recall of the role of numerical simulations in
cardiovascular pathologies, we consider three test cases of interest: i) the dynamics of a
solute in blood flow, ii) the blood dynamics in carotid bifurcations and, finally, iii) an
abdominal aortic bifurcation affected by an aneurysm where we simulate the behavior of
the arterial tissue.

5.1 The role of mathematical simulation in cardiovascular
applications

The mathematical and numerical modeling of the cardiovascular system acquired a
conspicuous attention in recent years, representing a subject undergoing intense study
from the numerical analysis community [Quarteroni et al., 2017, Formaggia et al.,
2010, Taylor and Figueroa, 2009, Quarteroni et al., 2016b]. This trend is motivated
by the well-known social importance (and impact) of cardiovascular pathologies, which
represent nowadays the main cause of death in the western world, and by the remarkable
contribution that computational mathematics can provide clinicians. As a matter of fact,
its noninvasive nature allows to obtain quantitative information often not available from
imaging and/or and measurements, but which are, at the same time, of great interest in
the decision-making process of patients’ treatment; examples of these quantities are, e.g.,
wall shear stresses and vorticity in vascular districts.

When dealing with cardiovascular applications, two important aspects need to be taken
into account: the correct modeling of all the components entering into play and the use
of proper numerical methods to accurately approximate the dynamics. These two factors,
together with the recent improvement of hardware computational capabilities, make
nowadays feasible the simulation of real-case scenarios, see e.g. [Malossi and Bonnemain,

169

Chapter 5. Applications to the cardiovascular system

2013, Forti, 2016] for the numerical study of blood flows in the arterial tree. These
achievements, which rely on a high-fidelity approximation as the one computed through
the FE method, represent a remarkable step in the correct simulation of the functioning
of the cardiovascular system. On the other hand, such a complex dynamics is strongly
related to the correct choice of important coefficients of the model, whose values are
often experimentally acquired (thus uncertain) and, most of all, vary from one patient
to another. Last but not least, the underlying geometry plays one of the most relevant
roles in this perspective.

As a matter of fact, for each set of new parameter coefficients and geometry, the simulation
must be carried out once again from scratch, thus making unfeasible the description of the
dynamics for a large set of parameter scenarios. ROM techniques can give a significant
contribution from this viewpoint, by building a cheap low-rank solver which can be used
to compute outputs of interest in a wide range of predetermined cases, see e.g. [Manzoni
et al., 2012a, Negri, 2015, Colciago et al., 2014, Pagani, 2017]. Similarly, in this chapter
we aim at using the MSRB preconditioner developed so far to accelerate the simulation
of problems arising in cardiovascular applications in a parametrized setting when the FE
method, and thus the high fidelity linear system, must be solved. Towards this goal, three
test cases are presented: i) the dynamics of a solute, which may represent oxygen or drugs,
in the carotid bifurcation, ii) the blood dynamics in carotid bifurcations parametrized
with respect to the geometry and, finally, iii) the simulation of the arterial tissue located
in the abdominal aortic bifurcation and affected by an aneurysm. The computational
grids employed in these test cases have been generated from patients’ specific geometries
and have been obtained by using the Vascular Modeling Toolkit (vmtk), [Antiga et al.,
2008], for centerlines extraction and gmsh for the 3D mesh generation [Geuzaine and
Remacle, 2009].

5.2 Solute dynamics in carotid bifurcation

The first test case of this chapter concerns the dynamics of a solute by focusing on the
solution of a fluid-wall mass-transport model which describes the exchange of substances
between blood in the lumen and arterial wall. In this context, the solute, which in our
model can represent, e.g., oxygen, macromolecules or drugs, is regarded as a passive
scalar transported along the artery by the blood, which is modeled as a Newtonian fluid
and governs the exchange of the solute through the stress produced on the arterial wall.
We take into account the so-called steady wall-free model for the absorption of the solute,
[Quarteroni et al., 2002], which couples the steady Navier-Stokes (NS) equations with
an advection-diffusion equation governing the concentration of the solute. This model
is parametrized with respect to the permeability of the arterial wall and the diffusion
coefficient of the solute in the blood, whereas the concentration of the solute in the wall
is assumed to be constant. This problem has been largely addressed in the literature, see
e.g. [Caputo et al., 2013, Quarteroni et al., 2002] and the references therein.

170

5.2. Solute dynamics in carotid bifurcation

5.2.1 The physical model and its FE discretization

We consider an open bounded domain Ωf ∈ R
3, such that ∂Ωf = Γw ∪ Γout ∪ Γin. Here,

Γw, Γout and Γin denote the artery wall, the outlet and the inlet, respectively, see Figure
5.1a. The physical domain Ωf describes the carotid bifurcation with an average section
radius r = 0.3 cm. We define Cf ∈ [0, 1] as the normalized concentration of the solute,
whose dynamics is governed by the following advection diffusion equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∇ · (νf ∇Cf) + ũ · ∇Cf = 0, x ∈ Ωf

n · (νf ∇Cf) + ξCf = ξkw on Γw

Cf = 1 on Γin

n · (νf ∇Cf) = 0 on Γout,

(5.1)

where νf is the diffusivity coefficient of the solute, ξ and kw are the permeability and the
concentration in the arterial wall, respectively. We model the permeability of the wall as
ξ = ξ(ũ) = β(1 + τw(ũ)), being τw(ũ) the wall shear stress (WSS) distribution on Γw,
and we choose as vector of parameters μ = (νf , β) ∈ [5 · 10−5, 5 · 10−2] × [10−4, 10−3]. On
the other hand, we fix the value of kw = 0.5 for all the simulations. The advection field
ũ = ũ(x) describes the velocity of the blood flow, and it is obtained as the solution of
the NS equations corresponding during the diastolic phase. As boundary conditions for
the NS equations we set a no-slip condition on Γw, homogeneous Neumann conditions on
Γout and a parabolic inlet velocity, with a peak 22.5 cm s−1, on Γin. Finally we consider
a constant kinematic viscosity of the blood ν = 0.035 cm2s−1. We remark that in the
model considered in this section the NS equations are not parametrized, their solution
only representing a datum for problem (5.1). Here we consider the solution of problem
(5.1) for very small values of νf which yield huge Péclet numbers Pe = |ũ|r

2νf
. Since the

standard FE method may lead to oscillations for such convective dominant problems, we
employ a stabilized FE formulation. In the following, we detail the weak formulation of
problem (5.1) and its corresponding high-fidelity FE discretization involving a streamline-
upwind/Petrov-Galerkin (SUPG) stabilization.

The variational formulation of problem (5.1) reads: find Cf ∈ V = V (Ωf) =
{
v ∈

H1(Ωf) : v|Γin = 1
}

such that∫
Ωf

(νf ∇Cf · ∇w + ũ · ∇Cf w) +
∫

Γw

ξCf w =
∫

Γw

ξkww, ∀w ∈ H1
Γin

(Ωf),

(5.2)

where H1
Γin

(Ωf) =
{
v ∈ H1(Ωf) : v|Γin = 0

}
. To this aim, we introduce a conforming

partition Th of Ωf and the FE space

Xr
h =

{
wh ∈ C0(Ω̄f) : wh|K ∈ Pr(K) ∀K ∈ Th

}
, (5.3)

171

Chapter 5. Applications to the cardiovascular system

where Pr(K) denotes the space of polynomials with degree lower than or equal to r on
the element K. Then, the SUPG-FE formulation reads: find Cf,h ∈ Vh = Xr

h ∩ V such
that ∫

Ωf

(νf ∇Cf,h∇wh+ũ · ∇Cf,hwh) +
∫

Γw

ξCf,hwh (5.4)

+
∑

K∈Th

(
ũ · ∇Cf,h − ∇ · (νf ∇Cf)τK ũ · ∇wh

)
K

=
∫

Γw

ξkwwh, ∀wh ∈ Wh = Xr
h ∩ H1

Γin
(Ωf);

here (·, ·)K denotes the L2(K) scalar product on K ∈ Th, whereas

τK = δS
hK

|ũ| , (5.5)

being δS a positive constant, which in the numerical experiments is set to 1, and hK the
diameter of the element K ∈ Th. Similarly to the previous cases, problem (5.4) can be
written in algebraic form as (2.1).

A quantity of interest to be evaluated for different values of the parameters is the
Sherwood number, whose distributions measures the non-dimensional mass flux through
the vessel wall, see e.g. [Coppola and Caro, 2008], and is defined as

Sh =
−2r(∇Cf · n)

Cf,in − kw
,

where r = 0.3 cm is the reference radius of the artery and Cf,in = 1 is the inlet
concentration.

Concerning the numerical setting, we employ a mesh with boundary layer, and a P2 − P1
FE discretization for the Navier Stokes equations, whose resulting velocity field is
reported in Figure 5.1c. Concerning the discretization of equation (5.4), we analyze the
performance of the MSRB preconditioner PMSRB,k(μ) with respect to the employment of
P1 and P2 finite elements basis functions, resulting in computational linear systems with
429’892 and 3’467’673 unknowns, respectively. We are particularly interested in the case
of quadratic (P2) elements because the evaluation of quantities involving the gradient of
the concentration, as the Sherwood number, need a very accurate computation of the
derivatives of the unknown. In Figure 5.2 we report the Sherwood number obtained for
different instances of the parameter: we notice that employing quadratic FE polynomials
can yield a smoother field. For the solution of the FE linear system with the FGMRES
method, we use a stopping criterion based on the Euclidean norm of the FE residual
rescaled with respect to the right hand side with a tolerance equal to εr = 10−7.

172

5.2. Solute dynamics in carotid bifurcation

(a) Physical domain Ωf with
boundary conditions.

(b) Velocity inlet and grid. (c) Velocity field.

Figure 5.1 – Inlet velocity profile with mesh and velocity field for the dynamics of a
solute.

(a) μ = (5 · 10−5, 10−4) (b) μ = (5 · 10−2, 10−3)

Figure 5.2 – Sherwood number distribution for values of the parameter vector.

5.2.2 Numerical results using the MSRB preconditioner

We now assess the computational performance of the MSRB preconditioner on this
problem, which is constructed by combining the RB coarse operators for elliptic problems,
devised in Chapter 2, with a block Jacobi preconditioner PBJ(μ) as fine grid component.
The results are compared with the ones obtained by employing the ML preconditioner
PML(μ) from the ML package of Trilinos.

We first remark that very similar outcomes are obtained either with the fixed accuracy
or the fixed dimension approach. In Table 5.1 and 5.2 we show detailed results for the
fixed accuracy (with δRB,k = 0.001, k = 0, 1, 2) and fixed dimension (with Nk = 20, k =
0, 1, . . .) approach employing a number of cores Ncore = 96, 192, 384. The FGMRES
method with the MSRB preconditioner converges in 3 iterations (at most), both for P1
and P2 finite elements: employing different FE degrees does not impact on the dimension
of the reduced spaces, and consequently on the time needed for the solution online of

173

Chapter 5. Applications to the cardiovascular system

Table 5.1 – results for FGMRES obtained with MSRB preconditioner built a fixed
accuracy approach, δRB,k = 0.001, k =, 1, 2, ns = 300. Time are expressed in seconds.

Ncore L Nk tonl
MSRB (It) tGML (It) toff tns tPOD BEP

P1 96 3 8 22 46 0.12852 (2) 0.35 (57) 260.85 258.37 2.48 1178
P1 192 3 8 22 45 0.0456 (2) 0.34 (62) 185.31 183.16 2.15 619
P1 384 3 8 22 44 0.0282 (2) 0.42 (67) 188.47 186.34 2.13 482
P2 96 3 9 24 50 3.2651 (2) 15.86 (177) 9172.65 9158.77 13.88 729
P2 192 3 9 23 49 1.1635 (2) 9.13 (195) 4935.78 4927.46 8.32 620
P2 384 3 9 23 49 0.4188 (2) 14.12 (401) 5877.46 5872.17 5.29 429

Table 5.2 – results for FGMRES obtained with MSRB preconditioner built a fixed
dimension approach, δRB,k = 0.001, k =, 1, 2, ns = 300. Time are expressed in seconds.

Ncore L Nk tonl
MSRB (It) tGML (It) toff tns tPOD BEP

P1 96 4 20 0.12868 (2) 0.35 (57) 314.01 307.74 6.27 1419
P1 192 4 20 0.04576 (2) 0.34 (62) 208.85 205.67 3.18 698
P1 384 4 20 0.02896 (2) 0.42 (67) 201.1 198.05 3.05 515
P2 96 4 20 3.2818 (3) 15.86 (177) 10391.4 10370.12 21.28 827
P2 192 4 20 1.1689 (3) 9.13 (195) 5363.1 5350.8 12.3 674
P2 384 4 20 0.4264 (3) 14.12 (401) 6095.57 6087.78 7.79 446

the reduced problems. On the other hand, employing P2 FE has a huge impact on the
performances of the PML(μ) preconditioner: the iteration count is three times higher
and the overall computational times largely increase.

The small sizes of the RB coarse operators plays a relevant role in the overall efficiency,
since the computational times obtained with PMSRB,k(μ) in the online phase are essentially
dominated by the construction of the fine preconditioner PBJ(μ), which is embarrassingly
parallel, thus yielding a very good scalability, see Figure 5.3a for both fixed dimension
and fixed accuracy approach. Such result is motivated by the fact that the computational
time is mainly governed by the LU factorizations of the local matrices in PBJ(μ). On the
other hand, solving the linear system with PML(μ) (and consequently the offline phase
as it mainly involves snapshots computation) results in a larger time when using 384
cores due to the communication costs of the ML preconditioner. In Figure 5.3b we report
the speedup in computational time obtained by employing PML(μ) and PMSRB,k(μ): by
increasing the number of cores we solve the problem online up to 14 times faster than ML
in the case of P1 elements and 35 in the case of P2 elements. As a result, the break-even
point (BEP) of online evaluations decreases with the number of cores up to about 450
(resp. about 500) for P2 (resp. P1) elements.

174

5.3. Blood flows in carotid bifurcations

N
pr

100 200 300 400 500

t M
S

R
B

10 -2

10 -1

10 0

10 1

fixed accuracy P1
fixed dimension P1
fixed accuracy P2
fixed dimension P2
ideal

(a) Scalability.

N
pr

100 200 300 400 500

t M
L
 /

t M
S

R
B

10 0

10 1

10 2

fixed accuracy P1
fixed dimension P1
fixed accuracy P2
fixed dimension P2

(b) Speedup.

Figure 5.3 – Scalability and speedup as function of the number of cores Ncore for P1 and
P2 FE basis functions and fixed accuracy and fixed dimension approach.

5.3 Blood flows in carotid bifurcations

The carotid bifurcation is located along the sides of the neck and furnishes the blood
supply to the face and the brain [Wootton and Ku, 1999]. Three branches can be
distinguished: the common carotid artery (CCA) which then splits in the internal carotid
artery (ICA) and the external carotid artery (ECA), see Figure 5.4. In adult age,
the carotid bifurcation may be subject to atherosclerosis, that is a narrowing of the
artery in the bifurcation region, which might ultimately lead to stroke in most of the
patients. The fluid dynamics of blood plays an important role in the development of
such disease and CFD can be of help in the prediction of possible diseases. One of the
main indicators employed in the risk analysis is distribution of the wall shear stresses
(WSSs) occurring at the bifurcation [Slager et al., 2005], in this perspective, numerical
simulations can play a relevant role in providing quantitative results able to support
clinicians. As the carotid bifurcation concerns, several studies have been conducted
[Lancellotti et al., 2017, Guerciotti et al., 2016]. In the following we consider two problems
related to the carotid bifurcation: at first, we analyze the dynamics of a solute in the
carotid bifurcation; secondly, we investigate the behavior of the blood flow when different
physical and geometrical configurations described in terms of parameters are considered.

We consider now the unsteady NS equations (4.1) in the carotid bifurcation with para-
metrized domain configurations and inlet boundary conditions.

5.3.1 Test case setting

To start with, as done in Section 3.6.2 for the Stokes flow, we consider a deformation
of the reference domain, shown in Figure 5.4, obtained as the harmonic extension of
a Neumann boundary datum. Hence, let us consider the following (vectorial) Laplace

175

Chapter 5. Applications to the cardiovascular system

Figure 5.4 – Reference domain Ωf ; common carotid artery (CCA), internal carotid artery
(ICA) and external carotid artery (ECA).

problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Δ�d(μ) = �0 in Ωf

�d(μ) = �0 on Γin ∪ Γout

∂ �d(μ)
∂�n

= �h(μ) on Γw,

(5.6)

where the parametrized datum �h(μ) represents a stress load entailing a deformation
which narrows the two branches of the bifurcation (notice that in the Stokes example
only one of the branches was significantly deformed, instead). We introduce the region

A =
{
�x ∈ R

3 : r2 ≤ R2} ∩ ∂Ωf , r2 = r2(�x) = x2
1 + (x2 − 2.5)2 + x2

3, (5.7)

which identifies the portion of volume where �h(μ) is loaded as follows

�h(μ) = h(�x; μ) = −μ1
(
1 − r2(�x)

)
�nXA(�x), �x ∈ R

3.

Here μ1 is a parameter determining the magnitude of the load and XA(�x) is the indicator
function equal to 1 on A and vanishing otherwise. The region identified by the set A is
located at the separation of the CCA in the ECA and the ICA, see Figure 5.5a, where
the region affected by the load is reported in red.

By following the setup employed in [Lancellotti et al., 2017], at the CCA inlet boundary
we prescribe a parametrized flow rate QCCA(t; μ), obtained as a suitable modification of
the reference flow rate Q0

CCA(t), which has been acquired from echo-color Doppler and
is reported in Figure 5.5b for a single heartbeat; the resulting prescribed inlet velocity
�gNS(μ) is the unique parabolic function in the normal direction and vanishing in the

176

5.3. Blood flows in carotid bifurcations

tangential ones, such that∫
Γin

�gNS(t; μ) · �n dΓin = QCCA(t; μ) = μ2 Q0
CCA(t).

We highlight that assuming parabolic profile at the inlet represents a proper choice when
dealing with carotid bifurcations, see e.g. [Campbell et al., 2012].

The parameter parameter vector is μ = (μ1, μ2) ∈ D = [0.2, 0.4] × [0.85, 1.0] ⊂ R
2; the

value of μ1 entails a narrowing of the bifurcation, thus simulating the effect of a stenosis
obstructing the vessel; μ2 determines instead the magnitude of the flow rate at the inlet
entering the CCA. The radius at the inlet boundary at the entrance of the CCA measures
approximately 0.27cm, leading to a peak of the inlet velocity profile of approximately 59
ms−1, when μ2 = 1, during the systolic phase.

Two examples of deformation with respect to the reference domain are reported in Figure
5.6 for different instances of the parameter μ1 = (0.375, 0.975) and μ2 = (0.225, 0.875).
Finally, the blood kinematic viscosity is chosen as ν = 0.035cm2s−1, which represents a
physiological value.

Taylor-Hood (P2 − P1) finite elements are employed for the spatial discretization, leading
to Nu

h = 248′019 dofs for the velocity and Np
h = 11′911 for the pressure, respectively,

such that Nh = Nu
h + Np

h = 259′930, and the BDF2 scheme with Δt = 0.02 for the time
discretization. In order to simulate an entire heartbeat, we take T = 0.64 seconds. The
deformation problem (5.6) is discretized by means of the FE method and solved with
the AMG-preconditioned CG up to a tolerance of 10−7. Notice that a coarser grid, with
respect to the one used for the solute dynamics case, has been used due to the extensive
computational effort entailed by the offline phase and the fact that the computational
resources limit the job time to 24 hours. The simulations have been carried out by
employing 32 cores.

5.3.2 Numerical results

The numerical results are summarized in Table 5.3. In the construction of the MSRB
preconditioner, we use the SIMPLE preconditioner PSIMPLE(μ) as fine grid component,
this latter employs GMRES inner iterations, with a final tolerance on the relative residual
of 10−5, where an Additive Schwarz preconditioner, with two layers of elements of overlap,
is used for the two solve steps (cf. Algorithm 12). We set S = 1 time slab, and employ
in the offline phase ns = 20 parameter instances {μi}ns

i=1, chosen on a 5 × 4 tensor
grid with equidistant points of D. These parameter instances represent the training
set used to compute the matrix snapshots for the affine approximations of the matrices
D(μ), B(μ) and Mu(μ), which leads to Qa = 12 affine terms for their approximation in
total. The same offline parameters are then employed to construct the solution snapshots

177

Chapter 5. Applications to the cardiovascular system

(a) Region A (in red) as defined in (5.7) .

0 0.1 0.2 0.3 0.4 0.5 0.6

t [s]

1

2

3

4

5

6

7

F
lo

w
 r

at
e

[c
m

3
/s

]

Carotid artery inlet flow rate

mid deceleration

systole

diastole

(b) Inlet flow rate QCCA(t) [cm3s−1] with high-
lighted systole, mid deceleration and diastole
phases.

Figure 5.5 – Region A where the stress �h(μ) is applied (left) and reference flow rate
Q0

CCA(t) (right).

(a) Starting mesh for Ωf . (b) μ1 = (0.375, 0.975). (c) μ2 = (0.225, 0.875).

Figure 5.6 – Starting mesh for Ωf (left) and deformation entailed by parameter instances
μ1, μ2 (middle and right): the higher the value of μ1, the larger the displacement entailed
by �h(μ).

178

5.3. Blood flows in carotid bifurcations

Table 5.3 – Summary results for blood flow in bifurcation. Computational times are
expressed in seconds and tonl

MSRB and tSIMPLE refer to the average time needed for the
solution of one time step.

Qa Qt
c Qc tonl

MSRB Itonl tSIMPLE ItSIMPLE toff SPEEDUP BEP
12 32 463 6.33 3 55.06 91 98074.1 8.68 65

for the MSRB coarse components, where a fixed dimension approach, with Nk = 220 RB
functions for velocity, supremizer and pressure and εr = 10−9 is set. Such a choice leads
to the construction of 5 RB coarse operators QNk

(μ), k = 0, . . . , 4, each with dimension
3Nk = 660.

For the convective term C(un,∗(μ); μ), we compute the affine approximation following
the double POD strategy as outlined in Algorithm 14, by first constructing for each
parameter μi, i = 1, . . . , ns a MDEIM basis in time with a tolerance εloc

C = 10−7, which
in this case retains 32 matrix bases on average. Notice that compared to the cylinder
case examined in Section 4.6, a much larger number of bases are retained to properly
approximate the time trajectory of C(un,∗(μ); μ), due to the larger Reynolds number
of the case under examination. The final MDEIM retains instead 463 affine terms by
employing a tolerance εC = 5 · 10−5.

The system is solved online for 20 new instances of the parameter, different from the
training set {μi}ns

i=1, up to a tolerance of 10−5 on the rescaled residual in 3 iterations
and with a computational cost of 6.33 seconds per time step on average; this is a
remarkable gain compared to the time employed by the SIMPLE preconditioner only,
which requires 91 iterations and 55.06 seconds per time step on average. Hence, the
MSRB preconditioning strategy leads to a significant speedup of 8.7 with respect to the
use of the pure SIMPLE case.

Examples of solutions for different values of the parameters, computed with MSRB
preconditioner, are reported in Figure 5.9b. The velocity pattern greatly changes by
varying the parameter configuration, also influencing the flow rate at the outlet boundaries:
in Figure 5.9a we report the outflow rate QICA(t; μ) at the ICA boundary as function
of the time, while in Figure 5.9b the ratio QICA(t;μ)

QCCA(t;μ) , that is the percentage of flow rate
exiting from the ICA branch, is reported. As a matter of fact, the physical parameter
μ2, mainly affects the absolute value of QICA(t; μ), whereas the geometrical parameter
μ1 plays a more relevant role in how the fluid is distributed between the two branches:
the higher μ1, the larger the portion of blood directed in the ICA with respect to the
one entering the ECA.

179

Chapter 5. Applications to the cardiovascular system

(a) μ1 = (0.375, 0.975), t = 0.2. (b) μ2 = (0.225, 0.875), t = 0.2.

(c) μ1 = (0.375, 0.975), t = 0.3. (d) μ2 = (0.225, 0.875), t = 0.3.

(e) μ1 = (0.375, 0.975), t = 0.4. (f) μ2 = (0.225, 0.875), t = 0.4.

Figure 5.7 – Slices of velocity magnitude for μ1, μ2 at different times.

As already remarked, a relevant quantity of interest when dealing with cardiovascular
simulations is the wall shear stress (WSS) distribution �τw on Γw, which is defined as

�τw =
(
2μ̄ε

(
�u
)
�n
)

· �t = 2μ̄
(
ε
(
�u
)
�n −

(
ε
(
�u
)
�n · �n

)
�n
)

, (5.8)

where �n and �t are the (outer) normal and tangential unit vectors on Γw, respectively, ε

is the strain tensor defined in (4.3) and μ̄ is the dynamic viscosity of the fluid. In this
context the WSS distribution clearly depends on the parameter μ, that is �τw = �τw(μ),
due to the of both the solution �u(μ) and the geometry, that is �n = �n(μ) and �t = �t(μ),
in its definition. In Figure 5.8 the WSS magnitude distribution is reported for different
values of the parameters and at different times; as expected, the WSS magnitude is is
higher during the systolic peak and concentrated close to the separation of the branches.
To further investigate the phenomenon, we place three probes in different location of
Γw, shown in Figure 5.10a: P2 is located close to the outflow of the ICA, whereas P1
and P3 close to the bifurcation, at the entrance of the ICA and the ECA, respectively.
The time dependence of the WSS magnitude in the points identifies by P1, P2 and P3 is
reported for 5 values of the parameter in Figure 5.10b–5.10f. As a matter of fact both
the geometrical and physical parameters give a large contribution to the time variability
of �τw, especially next to bifurcation at P1 and P3. In particular, in the latter location
the WSS magnitude reaches the highest values, due to the smaller diameter of the ECA.

180

5.3. Blood flows in carotid bifurcations

(a) μ1 = (0.375, 0.975), t = 0.2. (b) μ2 = (0.375, 0.975), t = 0.3. (c) μ1 = (0.375, 0.975), t = 0.4.

(d) μ2 = (0.225, 0.875), t = 0.2. (e) μ2 = (0.225, 0.875)), t = 0.3. (f) μ2 = (0.225, 0.875), t = 0.4.

Figure 5.8 – WSS [dyn·cm−2] magnitude distribution at different times for μ1, μ2.

181

Chapter 5. Applications to the cardiovascular system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

t

0.5

1

1.5

2

2.5

3

3.5

4

Q
IC

A

μ = (0.375,0.975)
μ = (0.375,0.875)
μ = (0.225,0.875)
μ = (0.225,0.975)
μ = (0.3,0.925)

(a) QICA(t; μ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

t

0.575

0.58

0.585

0.59

0.595

0.6

0.605

0.61

0.615

Q
IC

A
 /

Q
C

C
A

μ = (0.375,0.975)
μ = (0.375,0.875)
μ = (0.225,0.875)
μ = (0.225,0.975)
μ = (0.3,0.925)

(b) QICA(t;μ)
QCCA(t;μ) .

Figure 5.9 – Flow rate QICA(t; μ) at the ICA (left) and ratio QICA(t;μ)
QCCA(t;μ) (right) for different

values of μ.

(a) Location of probes. (b) μ1 = (0.375, 0.975). (c) μ2 = (0.225, 0.875).

(d) μ3 = (0.375, 0.875). (e) μ4 = (0.225, 0.975). (f) μ5 = (0.3, 0.925).

Figure 5.10 – WSS [dyn·cm−2] magnitude distribution at different times for μ1, μ2.

Figure 5.11 – Location of probes (top left) and time evolution of the distribution of the
magnitude of the WSS [dyn·cm−2] for different parameter values.

182

5.4. Abdominal aorta aneurysm in patient specific geometry

5.4 Abdominal aorta aneurysm in patient specific geome-
try

Abdominal aortic aneurysms (AAAs) represent a relevant disease in population above
the age of 65, being the cause of death from 75 % to 90% of cases, see [Fleming et al.,
2005, Reid et al., 1990]. The diameter, that is, the maximum transverse dimension of
the AAA, is considered as the main indicator for the rupture risk in the current clinical
treatment. However, more recently, the analysis of the wall stresses demonstrated to
provide more reliable measures to predict AAA’s rupture, which occurs when the wall
stresses overcome the wall strength [Fillinger et al., 2002]. Due to its relevant social issues,
studies have been conducted to evaluate the rupture of an AAA, see e.g. [Raghavan and
Vorp, 2000, Gasser et al., 2010] and references therein; FE analysis thus represents a
convenient and noninvasive tool in this respect [Maier et al., 2010, Colciago, 2014].

In this section, we consider a parametrized model to describe, as a function of the
Young modulus and the arterial pressure, the displacement of the arterial wall. Such a
phenomenon is modeled with a linear elastodynamics equation, which is discretized by
means of the FE method in space and the BDF scheme in time. By doing so, for each
parameter we obtain a sequence (in time) of parametrized linear systems, and we use the
MSRB preconditioning strategy, as the one employed for parabolic problems and devised
in Section 2.5, to accelerate their solution. We highlight that the considered model is
rather simple to capture the physiological dynamics, which is normally simulated through
the use of complex nonlinear material models; nevertheless it already represents a first
approximation to describe the considered problem, providing us with the possibility to
test the effectivity of the proposed MSRB preconditioning in an involved context.

5.4.1 Test case setting

We consider the time interval (0, T], T > 0 and the open domain Ω shown in Figure 5.12a,
such that ∂Ω = ΓD ∪ Γin ∪ Γex, and ΓD = Γ1

D ∪ Γ2
D ∪ Γ3

D. The following parametrized
unsteady linear elasticity problem describes the displacement �d(μ) = �d(t; μ) of the
arterial tissue with respect to a reference configuration⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂2 �d(μ)

∂t2 − ∇ · Π(�d(μ); μ) = �0 in Ω × (0, T]
�d(μ) = �0 on ΓD × (0, T]
Π(�d(μ); μ)�n = −p(t)�n on Γin × (0, T]

Π(�d(μ); μ)�n + ks
�d(μ) + cs

∂ �d(μ)
∂t

= 0 on Γex × (0, T],

(5.9)

183

Chapter 5. Applications to the cardiovascular system

with �d(μ)|t=0 = ∂ �d(μ)
∂t

∣∣
t=0 = �0 as initial conditions. Here ρ = 1.2gcm−3 is the material

density, �n is the outer normal vector,

Π(�d(μ); μ) = 2μ̃ε(�d(μ)) + λ̃∇ · �d(μ)I, (5.10)

is the stress tensor and

ε(�d(μ)) =
1
2
(
∇�d(μ) + ∇�d(μ)T)

(5.11)

is the strain tensor. The coefficients μ̃ and λ̃ are the Lamé coefficients, which can be
expressed in terms of the Young’s modulus E and the Poisson’s ration ν as

λ̃ =
Eν

(1 + ν)(1 − 2ν)
, μ̃ =

E

2(1 + ν)
.

To start with, we divide the domain Ω in two regions: ΩA, representing the dome of the
aneurysm sac, and ΩH = Ω\ΩA; they are shown in Figure 5.12c. The different behaviors
of the tissue in the two regions is modeled by a piecewise Young’s modulus coefficient,
that is

E = EAXA + EHXH (5.12)

where EA, EH are positive real numbers and XA and XH are the indicator functions
on ΩA, ΩH , respectively. Regarding the boundary conditions, the artery bifurcation
is clamped at the inlet and outlet and a stress p(t; μ) = μpp0(t) is prescribed on the
inner surface Γin to simulate the arterial pressure, where μp is a scaling parameter
and p0(t) is a reference pressure reported in Figure 5.12d, which has been computed
through a fluid structure interaction model in [Malossi and Bonnemain, 2013] and has
been taken in this work as reference arterial pressure at the abdominal aorta. An
important aspect to consider when dealing with the structural dynamics of arterial
tissue is the boundary condition prescribed to the external boundary Γex. Indeed, one
should ideally model the contact problems between the artery and the surrounding
organs; however, the computation of the interaction with the environment may lead to
unbearable computational costs. In the literature, it has been proposed to simulate the
presence of the surrounding environment by employing a Robin boundary condition for
viscoelastic materials, see (5.9), which is set on Γex. The values of the coefficients ks and
cs are not trivial. It has been shown in [Malossi and Bonnemain, 2013] that a practical
option consists in choosing cs = ks/10, even if in general the value of ks itself is not easy
to be chosen.

We parametrize the model with respect to ks, the Young’s modulus in ΩA to simulate
different aneurysm behaviors and the factor μp, ending up with the parameter vector

μ = (EA, μp, ks) ∈ D = [106, 3 · 106] × [0.875, 1.25] × [6 · 104, 105], (5.13)

184

5.4. Abdominal aorta aneurysm in patient specific geometry

(a) Computational domain Ω with boundaries. (b) Computational mesh.

(c) Location ΩA of the dome of the aneurysm
sac (red).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t

-1

0

1

2

3

4

5

p
0
(t

)
[d

yn

·
 c

m
-2

]

×10 4

p
0
(t)

(d) p0(t) as function of time.

Figure 5.12 – Domain Ω, boundary flags and computational domain.

where the value of EA is expressed in [dyn cm−2] and the ones for ks in [dyn cm−3].
Instead EH is set to 3 · 106dyn cm−2 and ν = 0.48 as in [Malossi and Bonnemain, 2013].

5.4.2 Variational formulation and FE discretization

We introduce the variational space V = (H1
ΓD

(Ω))3 and by integrating by parts we come
up with the following variational formulation: for each μ and for each t ∈ (0, T], we seek
�d(μ) ∈ V such that �d(0, μ) = ∂ �d(μ)

∂t

∣∣
t=0 = �0 and

∫
Ω

(∂2 �d(μ)
∂t2 · �v + Π(�d(μ); μ) : �v

)
dΩ +

∫
Γex

(
ks

�d(μ) · �v
)
dΓex (5.14)

+
∫

Γex

(
cs

∂ �d(μ)
∂t

· �v
)
dΓex = −

∫
Γex

(
p(t)�n · �v

)
dΓex ∀�v ∈ V.

185

Chapter 5. Applications to the cardiovascular system

By introducing a proper FE subspace Vh ⊂ V and its basis
{

�ϕi

}Nh

i=1
, we discretize problem

(5.14) as follows: for each μ and for each t ∈ (0, T], we seek �dh(μ) ∈ Vh such that

∫
Ω

(∂2 �dh(μ)
∂t2 · �vh + Π(�dh(μ); μ) : ∇�vh

)
dΩ +

∫
Γex

(
ks

�dh(μ) · �v
)
dΓex (5.15)

+
∫

Γex

(
cs

∂ �dh(μ)
∂t

· �v
)
dΓex = −

∫
Γex

(
p(t)�n · �v

)
dΓex ∀�v ∈ V,

which corresponds to solving the following algebraic dynamical system

M(μ)
d2d(μ)

dt2 + MΓex(μ)
dd(μ)

dt
+ A(μ)d(μ) = p(μ) t ∈ (0, T], (5.16)

with d(0; μ) = dd(μ)
dt

∣∣
t=0 = 0. The FE vector d(μ) is the vector representation of �dh(μ),

the matrices M(μ), MΓex(μ) and A(μ) such as

(M(μ))i,j =
∫

Ω
�ϕi · �ϕjdΩ (MΓex(μ))i,j = cs

∫
Γex

�ϕi · �ϕjdΩ

(A(μ))i,j =
∫

Ω

(
Π(�ϕj ; μ) : �ϕi

)
dΩ + ks

∫
Γex

�ϕj · �ϕidΓex, i, j = 1, . . . , Nh

while p(μ) encodes the contribution of the arterial pressure

(p(μ))i = −
∫

Γin

(
p(t)�n · �ϕi

)
dΓex, i = 1, . . . , Nh.

Problem (5.16) is then discretized in time by employing the BDF scheme of order 1 or 2
for second order ordinary differential equations. Towards this goal, the first derivative is
approximated as in (1.19), whereas the second derivative is approximated as

d2d(μ)
dt2 ≈ α2dn+1(μ) − dn,σ2(μ)

Δt2 , (5.17)

where the BDF scheme of order σ2 = 1, 2 is identified by

dn,σ2(μ) =

⎧⎨⎩2dn(μ) − dn−1(μ), n ≥ 0 and σ2 = 1
5dn(μ) − 4dn−1(μ) + dn−2(μ), n ≥ 1 and σ2 = 2

(5.18)

and α2 = 1 for σ2 = 1 and α2 = 2 for σ2 = 2, yielding the following sequence of
parametrized linear systems to be solved for any n = 0, . . . , Nt − 1(

α2
Δt2 M(μ) +

α1
Δt

MΓex(μ) + A(μ)
)

dn+1(μ) = (5.19)

M(μ)
dn,σ2(μ)

Δt2 + MΓex(μ)
dn,σ1(μ)

Δt
+ pn+1(μ),

186

5.4. Abdominal aorta aneurysm in patient specific geometry

supplied with null initial conditions. The BDF order σ1, for the discretization of the first
derivative, is chosen as equal to σ2.

5.4.3 Numerical results with MSRB preconditioner

Even if system (5.19) arises from the spatial and time discretization of an elastodynamics
problem as (5.9), for the sake of preconditioning with the MSRB technique, it can be
treated as the one resulting from the spatial and time discretization of parabolic problems,
see Section 2.5. In the numerical results presented below, we employ the computational
grid shown in Figure (5.12b) and either P1 or P2 finite elements basis functions, leading
to Nh = 115′542 and Nh = 856′973, respectively. We employ 32 computing cores in the
former case and 256 in the latter. Here T = 0.8 seconds and Δt = 0.01 is set as time
step.

An Additive Schwarz preconditioner, with either 1 or 2 layers of overlapped elements
and denoted PAS 1 and PAS 2, respectively, is chosen as fine component of the MSRB
preconditioner; the RB coarse operators are trained on 50 parameter instances, for which
PAS 2 is used to compute the corresponding snapshots, randomly chosen in D. This choice
yields a total of 4000 snapshots if both parameter and time variability are considered,
therefore, in order to speed up the subsequent computation of the PODs used to build
the RB spaces, we employ a time slab partitioning approach by dividing the time interval
[0, T] in S = 4 time slabs, each of length Δτ = 0.2.

On each time slab, the MSRB preconditioner is built during the offline phase by selecting
a final tolerance εr = 10−8 and by using a fixed dimension approach with Nk = 25 RB
functions for each RB coarse correction. Such a setting yields the construction of Ls = 4
RB coarse operators in the time slabs s = 0, 1, 2 and with Ls = 3, for s = 3. A smaller
number of RB coarse corrections is needed in the last slab to reach the same tolerance
due to the unload in the last part of the time interval (cf. Figure 5.12d). Furthermore,
an affine decomposition of the matrices in (5.19) is readily available, therefore MDEIM
is not employed to recover an approximate one in this case. The system is solved online
with FGMRES up to a tolerance of 10−6 on the rescaled FE residual, the results in terms
of iteration count and computational times of the computation are reported in Table (5.4)
and (5.5), when using P = PAS 2 and P = PAS 1, respectively, as fine grid component.
The results are compared with the option of using PAS 2 alone, which is the one providing
the better performance compared to PAS 1. As a matter of fact, each linear system is
solved on average in 2 or 3 iterations and in a very competitive computational time. In
particular, choosing P = PAS 1 as fine grid component results in the most convenient
choice in this respect, leading to a speed up of 6.7 for P2 FE basis functions, if compared
with the case in which PAS 2 is used standalone. The break-even point (BEP), which is

187

Chapter 5. Applications to the cardiovascular system

Table 5.4 – Results with MSRB preconditioner with (Nk = 25), S = 4 time slabs and
P = PAS 2. Computational times are expressed in seconds and the online time refer to
the solution of one time step.

tonl
MSRB(It) tAS2(It) toff SPEEDUP BEP

P1 1.06 (2) 2.86 11096.8 2.7 78
P2 3.44 (3) 14.43 45059.4 4.2 52

Table 5.5 – Results with MSRB preconditioner with (Nk = 25), S = 4 time slabs and
P = PAS 1. Computational times are expressed in seconds and the online time refer to
the solution of one time step.

tonl
MSRB(It) tAS2(It) toff SPEEDUP BEP

P1 0.81 (2) 2.86 (28) 11094.7 3.5 68
P2 2.16 (2) 14.43 (43) 46225.4 6.7 48

defined as

BEP =
toff

Nt
(
tonl
MSRB − tAS2

) ,

is reported in Table (5.4) and (5.5) as well, and in all considered cases it ranges from 48 to
78 online evaluations, confirming that the larger the FE dimension, the more convenient
the use of the MSRB preconditioner.

Numerical results for some selected parameter instances at different times are reported
in Figure 5.13 and 5.14, where the influence of the parameter is clearly highlighted. The
region undergoing larger displacement is located in correspondence with the bifurcation,
with different intensity according to the value of μ. To further investigate the role of
parameters, we report in Figure 5.15 the time evolution of the displacement magnitude in
three different location, two of them (P1 and P2) located in the region with a parametrized
Young’s modulus EA. By comparing Figure 5.15a and 5.15c, we see how the dynamics
in P1 and P2 changes according to the value EA, the higher its value, the smaller the
corresponding displacement magnitude. The values of ks and μp also play a role: by
taking Figure 5.15a and 5.15d, we see that by decreasing ks, the displacement magnitude
increases of about 10%, moreover, by comparing Figure 5.15c and 5.15f where ks is
decreased and μp increased at the same time, an even larger displacement is found.

188

5.4. Abdominal aorta aneurysm in patient specific geometry

(a) t = 0.3. (b) t = 0.44. (c) t = 0.6.

Figure 5.13 – Displacement for μ = (1.85 · 106, 1.0625, 1.05 · 105) at different times.

(a) t = 0.3. (b) t = 0.44. (c) t = 0.6.

Figure 5.14 – Displacement for μ = (1.05 · 106, 1.2, 7 · 104) at different times.

189

Chapter 5. Applications to the cardiovascular system

(a) μ = (1.05 · 106, 1.0625, 1.05 ·
105).

(b) P1, P2, P3 locations. (c) μ = (2.95 · 106, 1.0625, 1.05 ·
105).

(d) μ = (1.05 · 106, 1.0625, 9 ·
104).

(e) μ(1.05 · 106, 1.2, 7 · 104). (f) μ(2.95 · 106, 1.2, 7 · 104).

Figure 5.15 – Time evolution of magnitude displacement for different parameter values
in locations P1, P2, P3.

190

6 Conclusions

In this dissertation we have proposed a new two-level preconditioner based on the
combination of a RB coarse component and a fine grid preconditioner for large-scale
linear systems arising from the FE discretization of parametrized PDEs. The driving
idea lies in building a sequence of RB low-rank solvers which are tailored to provide an
accurate approximation to the error equation originating at each step from the chosen
iterative method, whence the name MSRB preconditioner. This strategy provides an
iteration-dependent operator enabling to tune the decay of the error at each step of the
iterative method, by properly selecting the desired accuracy. We have initially outlined
the MSRB preconditioner and analyzed its properties in the amenable case of affinely
parametrized second order elliptic problems.

The employed RB coarse operators are obtained by (Petrov) Galerkin projection onto
the RB subspaces, and for their practical construction the affine property of the systems
has been suitably exploited; on the other hand, when such assumption is not verified, an
approximated RB coarse operator has been devised by employing MDEIM to affinely
approximate the FE matrix. The resulting preconditioner depends on the affine approx-
imation in a milder way than standard RB methods, thus overcoming the bottleneck
given by the nonaffine parameter dependence. The main reason behind this feature lies
in the fact that at each iteration even a coarse affine representation of the FE matrix
yields a negligible error compared to the one entailed by the RB approximation, thus
without affecting the overall accuracy.

Extensions have been proposed for time-dependent and (nonlinear) saddle-point problems
in CFD; for the former, a version exploiting the partitioning of the time interval in time
slabs has been devised, whereas a suitable RB formulation, relying on either an enriched
velocity RB space or a Petrov Galerkin projection, has been used for the Stokes equations.
Furthermore, the unsteady parametrized Navier-Stokes (NS) equations have been taken
into account: we have developed a MSRB preconditioning strategy which minimizes
the computational complexity by employing a time slab formulation to treat the time

191

Chapter 6. Conclusions

dependence and a double POD algorithm to compute an affine approximation of the
nonlinear convective term.

Several numerical examples have been presented, showing the generality and computa-
tional efficiency of the proposed methodology in a variety of contexts: linear affine and
nonaffine second order elliptic PDEs, parabolic and elastodynamics problems, (non)linear
saddle-point systems. In all cases, the MSRB preconditioning strategy works well in
involved scenarios, regarding both parameter dependence and physics. In particular, we
summarize in the following the situations where the MSRB preconditioner has shown to
be particularly effective.

• Large dimension of the FE linear system: the RB coarse operators are not affected
by the underlying discretization (neither by the grid size nor by the local polynomial
degree); their accuracy and efficiency solely depend on the given physical problem
and its parameter dependence.

• Large-scale simulations: even when the number of cores gets large, the RB coarse
operators feature a very small dimension, making them efficiently applicable in an
HPC environment.

• Fine preconditioner with an expensive cost per iteration: the application of some
fine grid preconditioners, such as the SIMPLE in CFD applications, may lead
to heavy computational costs; combining them with a RB coarse operator in a
MSRB preconditioner allows to cut such cost by reaching convergence in only few
iterations.

• Involved (and possibly nonaffine) parameter dependence: the accuracy and efficiency
of standard RB methods deteriorate when facing problems with a severe parameter
dependence, due to either a nonaffine nature or a wide parameter variability, such
as the advection-diffusion cases presented in Chapter 2 or the Stokes equations
in parametrized domains tacked in Chapter 3. This bottleneck is overcome when
using a MSRB preconditioner with a fixed dimension approach to construct the
RB coarse operators. This limits indeed the number of RB functions used within
the coarse operator and allows the use of a coarse affine approximation without
compromising the overall efficiency.

With the goal of constructing the MSRB preconditioner, other contributions related to
RB methods, which are summarized in the following, have been developed.

• Algebraic LSRB method for linear saddle-point problems: we have developed and
analyzed a new RB method which is a suitable modification of the standard LSRB
method. The applicability of this latter is extended by properly substituting the
matrix-norm which defines the RB test space. The resulting RB formulation

192

provides a well-posed RB solver whose application leads to a more efficient and
accurate method than the ones commonly used in this context. The proposed
method has been exploited for the reduction of parametrized Stokes equations,
however its formulation and applicability have a general scope for parametrized
(linear and nonlinear) saddle-point problems.

• A ROM framework for the unsteady NS equations in parametrized geometries: we
have extended the state-of-the-art techniques for the reduction of unsteady parame-
trized NS equations by proposing a hyper-reduction strategy which exploits a double
POD algorithm to efficiently treat the nonlinear convective term. Mesh motion
techniques have been embedded to effectively deal with parametrized geometries.
The resulting technique has been successfully applied to three-dimensional flows.

Overall, the techniques developed in this thesis represent a powerful tool to tackle
parametrized systems of large size, yet further extensions can be devised in several
directions. In particular, the results obtained on advection-diffusion equations suggest
that the proposed MSRB preconditioners can be effectively used in the field, e.g., of
parametrized multi-scale modeling in porous media, where the problem is typically
characterized by heterogeneous coefficients with high variations.

Furthermore, from the viewpoint of CFD, different improvements can be undertaken.
At first, the developed NS-HROM framework for the computational reduction the NS
equations in parametrized domains can be theoretically analyzed to shed light on the
impact of the use of successive RB approximations for the deformation and the fluid flow,
possibly considering the use of a different RB formulation as well. In this perspective, an
adaptation to the NS equations of the algebraic LSRB method, proposed here for linear
steady saddle-point problems, can be investigated.

On the other hand, when considering the MSRB preconditioners for the NS equations,
at first a detailed theoretical analysis can be carried out to clarify the implications of the
approximations used to efficiently construct the preconditioner; secondly, a larger range
of applications can be considered. Indeed, MSRB preconditioners have been employed in
this work on laminar flows with relatively low Reynolds number, however not preventing
their use, in principle, to treat more involved flow regimes. On a parallel track, the
entire scope can also be further expanded to the case of time dependent deformations,
embedding the use of mesh-motion techniques which comply with time variability. Such
a development would allow to set the way, in a longer term perspective, to deal with
parametrized fluid structure interaction (and in general multi-physics) problems, for
which the construction of efficient and reliable ROM techniques are, at this time, still
under investigation.

193

Bibliography

[Abdulle and Budáč, 2015] Abdulle, A. and Budáč, O. (2015). A Petrov–Galerkin re-
duced basis approximation of the Stokes equation in parameterized geometries. C. R.
Math. Acad. Sci. Paris, 353(7):641–645.

[Ahuja et al., 2012] Ahuja, K., de Sturler, E., Gugercin, S., and Chang, E. R. (2012).
Recycling BiCG with an application to model reduction. SIAM Journal on Scientific
Computing, 34(4):1925–1949.

[Amsallem and Haasdonk, 2016] Amsallem, D. and Haasdonk, B. (2016). PEBL-ROM:
Projection-error based local reduced-order models. Advanced Modeling and Simulation
in Engineering Sciences, 3(1):6.

[Antiga et al., 2008] Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi,
A., and Steinman, D. (2008). An image-based modeling framework for patient-
specific computational hemodynamics. Medical & Biological Engineering & Computing,
46(11):1097–1112.

[Ascher and Petzold, 1998] Ascher, U. M. and Petzold, L. R. (1998). Computer methods
for ordinary differential equations and differential-algebraic equations, volume 61. Siam.

[Axelsson and Neytcheva, 2003] Axelsson, O. and Neytcheva, M. (2003). Preconditioning
methods for linear systems arising in constrained optimization problems. Numerical
Linear Algebra with Applications, 10(1-2):3–31.

[Babuška, 1971] Babuška, I. (1971). Error-bounds for finite element method. Numerische
Mathematik, 16(4):322–333.

[Bache et al., 2010] Bache, E., Vega, J., and Velazquez, A. (2010). Model reduction in
the back step fluid–thermal problem with variable geometry. International Journal of
Thermal Sciences, 49(12):2376–2384.

[Baker, 2002] Baker, T. J. (2002). Mesh movement and metamorphosis. Engineering
with Computers, 18(3):188–198.

[Ballarin et al., 2015] Ballarin, F., Manzoni, A., Quarteroni, A., and Rozza, G. (2015).
Supremizer stabilization of POD–Galerkin approximation of parametrized steady

195

Bibliography

incompressible Navier–Stokes equations. International Journal for Numerical Methods
in Engineering, 102(5):1136–1161.

[Barrault et al., 2004] Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T. (2004).
An ‘empirical interpolation’ method: application to efficient reduced-basis discretization
of partial differential equations. Comptes Rendus Mathematique Académie des Sciences
Paris, 339(9):667–672.

[Bazilevs et al., 2007] Bazilevs, Y., Calo, V. M., Tezduyar, T. E., and Hughes, T. J.
(2007). Yzβ discontinuity capturing for advection-dominated processes with application
to arterial drug delivery. International Journal for Numerical Methods in Fluids, 54(6-
8):593–608.

[Bellavia et al., 2011] Bellavia, S., De Simone, V., Di Serafino, D., and Morini, B. (2011).
Efficient preconditioner updates for shifted linear systems. SIAM Journal on Scientific
Computing, 33(4):1785–1809.

[Benner and Feng, 2011] Benner, P. and Feng, L. (2011). On recycling Krylov subspaces
for solving linear systems with successive right-hand sides with applications in model
reduction. In Model Reduction for Circuit Simulation. P. Benner, M. Hinze and E.J.W.
Ter Maten, eds., Lecture Notes in Electrical Engineering, volume 74, pages 125–140.
Springer, Dordrecht.

[Benzi and Bertaccini, 2003] Benzi, M. and Bertaccini, D. (2003). Approximate inverse
preconditioning for shifted linear systems. BIT Numerical Mathematics, 43(2):231–244.

[Benzi et al., 2005] Benzi, M., Golub, G. H., and Liesen, J. (2005). Numerical solution
of saddle point problems. Acta numerica, 14:1–137.

[Benzi and Wathen, 2008] Benzi, M. and Wathen, A. J. (2008). Some preconditioning
techniques for saddle point problems. In Model order reduction: theory, research
aspects and applications, pages 195–211. Springer Berlin Heidelberg.

[Bergmann et al., 2009] Bergmann, M., Bruneau, C.-H., and Iollo, A. (2009). Enablers
for robust POD models. Journal of Computational Physics, 228(2):516 – 538.

[Berkooz et al., 1993] Berkooz, G., Holmes, P., and Lumley, J. L. (1993). The proper
orthogonal decomposition in the analysis of turbulent flows. Annual review of fluid
mechanics, 25(1):539–575.

[Bertaccini and Durastante, 2016] Bertaccini, D. and Durastante, F. (2016). Interpo-
lating preconditioners for the solution of sequence of linear systems. Computers &
Mathematics with Applications, 72(4):1118–1130.

[Boffi et al., 2013] Boffi, D., Brezzi, F., Fortin, M., et al. (2013). Mixed finite element
methods and applications, volume 44. Springer.

196

Bibliography

[Bramble et al., 1990] Bramble, J. H., Pasciak, J. E., and Xu, J. (1990). Parallel multi-
level preconditioners. Mathematics of Computation, 55(191):1–22.

[Brandt, 1977] Brandt, A. (1977). Multi-level adaptive solutions to boundary-value
problems. Mathematics of computation, 31(138):333–390.

[Brenan et al., 1995] Brenan, K. E., Campbell, S. L., and Petzold, L. R. (1995). Numer-
ical solution of initial-value problems in differential-algebraic equations. SIAM.

[Brenner and Scott, 2007] Brenner, S. and Scott, R. (2007). The mathematical theory of
finite element methods, volume 15. Springer Science & Business Media.

[Brezzi, 1974] Brezzi, F. (1974). On the existence, uniqueness and approximation of
saddle-point problems arising from lagrangian multipliers. ESAIM: Mathematical
Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique,
8(R2):129–151.

[Brezzi and Bathe, 1990] Brezzi, F. and Bathe, K.-J. (1990). A discourse on the stabil-
ity conditions for mixed finite element formulations. Computer methods in applied
mechanics and engineering, 82(1-3):27–57.

[Briggs et al., 2000] Briggs, W. L., Henson, V. E., and McCormick, S. F. (2000). A
multigrid tutorial. SIAM.

[Buffa et al., 2012] Buffa, A., Maday, Y., Patera, A. T., Prud’homme, C., and Turinici, G.
(2012). A priori convergence of the greedy algorithm for the parametrized reduced basis
method. ESAIM: Mathematical Modelling and Numerical Analysis, 46(3):595–603.

[Campbell et al., 2012] Campbell, I. C., Ries, J., Dhawan, S. S., Quyyumi, A. A., Taylor,
W. R., and Oshinski, J. N. (2012). Effect of inlet velocity profiles on patient-specific
computational fluid dynamics simulations of the carotid bifurcation. Journal of
biomechanical engineering, 134(5):051001.

[Canuto et al., 2012] Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A.
(2012). Spectral methods in fluid dynamics. Springer Science & Business Media.

[Caputo et al., 2013] Caputo, M., Chiastra, C., Cianciolo, C., Cutrì, E., Dubini, G.,
Gunn, J., Keller, B., Migliavacca, F., and Zunino, P. (2013). Simulation of oxygen
transfer in stented arteries and correlation with in-stent restenosis. International
journal for numerical methods in biomedical engineering, 29(12):1373–1387.

[Carlberg et al., 2011] Carlberg, K., Bou-Mosleh, C., and Farhat, C. (2011). Efficient non-
linear model reduction via a least-squares Petrov–Galerkin projection and compressive
tensor approximations. International Journal for Numerical Methods in Engineering,
86(2):155–181.

197

Bibliography

[Carlberg et al., 2013] Carlberg, K., Farhat, C., Cortial, J., and Amsallem, D. (2013).
The GNAT method for nonlinear model reduction: effective implementation and appli-
cation to computational fluid dynamics and turbulent flows. Journal of Computational
Physics, 242:623–647.

[Carlberg et al., 2016] Carlberg, K., Forstall, V., and Tuminaro, R. (2016). Krylov-
subspace recycling via the pod-augmented conjugate-gradient method. SIAM Journal
on Matrix Analysis and Applications, 37(3):1304–1336.

[Chapman and Saad, 1997] Chapman, A. and Saad, Y. (1997). Deflated and augmented
Krylov subspace techniques. Numerical linear algebra with applications, 4(1):43–66.

[Chaturantabut and Sorensen, 2010] Chaturantabut, S. and Sorensen, D. C. (2010). Non-
linear model reduction via discrete empirical interpolation. SIAM Journal on Scientific
Computing, 32(5):2737–2764.

[Ciarlet, 2002] Ciarlet, P. G. (2002). The finite element method for elliptic problems.
SIAM.

[Colciago, 2014] Colciago, C. M. (2014). Reduced order fluid-structure interaction models
for haemodynamics applications. PhD thesis, EPFL.

[Colciago et al., 2014] Colciago, C. M., Deparis, S., and Quarteroni, A. (2014). Compar-
isons between reduced order models and full 3d models for fluid–structure interaction
problems in haemodynamics. Journal of Computational and Applied Mathematics,
265:120–138.

[Coppola and Caro, 2008] Coppola, G. and Caro, C. (2008). Oxygen mass transfer in a
model three-dimensional artery. Journal of The Royal Society Interface, 5(26):1067–
1075.

[Cortes et al., 2018] Cortes, G. D., Vuik, K., and Jansen, J. (2018). On pod-based
deflation vectors for dpcg applied to porous media problems. Journal of Computational
and Applied Mathematics, 330:193–213.

[Dahmen et al., 2012] Dahmen, W., Huang, C., Schwab, C., and Welper, G. (2012).
Adaptive Petrov–Galerkin methods for first order transport equations. SIAM Journal
on Numerical Analysis, 50(5):2420–2445.

[Dal Santo et al., 2017a] Dal Santo, N., Deparis, S., and Manzoni, A. (2017a). A numer-
ical investigation of multi space reduced basis preconditioners for parametrized elliptic
advection-diffusion equations. Communications in Applied and Industrial Mathematics,
8(1):282–297.

[Dal Santo et al., 2017b] Dal Santo, N., Deparis, S., Manzoni, A., and Quarteroni,
A. (2017b). An algebraic least squares reduced basis method for the solution of
parametrized Stokes equations. Technical Report 21.2017, MATHICSE–EPFL.

198

Bibliography

[Dal Santo et al., 2018a] Dal Santo, N., Deparis, S., Manzoni, A., and Quarteroni, A.
(2018a). Multi space reduced basis preconditioners for large-scale parametrized PDEs.
Mathicse 32.2016. Accepted for publication on SIAM Journal on Scientific Computing.

[Dal Santo et al., 2018b] Dal Santo, N., Deparis, S., Manzoni, A., and Quarteroni, A.
(2018b). Multi space reduced basis preconditioners for parametrized Stokes equations.
Technical Report 03.2018, MATHICSE–EPFL.

[De Sturler, 1996] De Sturler, E. (1996). Nested Krylov methods based on GCR. Journal
of Computational and Applied Mathematics, 67(1):15–41.

[De Sturler, 1999] De Sturler, E. (1999). Truncation strategies for optimal Krylov sub-
space methods. SIAM Journal on Numerical Analysis, 36(3):864–889.

[De Sturler and Liesen, 2005] De Sturler, E. and Liesen, J. (2005). Block-diagonal and
constraint preconditioners for nonsymmetric indefinite linear systems. part i: Theory.
SIAM Journal on Scientific Computing, 26(5):1598–1619.

[Deparis, 2008] Deparis, S. (2008). Reduced basis error bound computation of parameter-
dependent Navier–Stokes equations by the natural norm approach. SIAM Journal of
Numerical Analysis, 46(4):2039–2067.

[Deparis and Rozza, 2009] Deparis, S. and Rozza, G. (2009). Reduced basis method for
multi-parameter-dependent steady Navier-Stokes equations: Applications to natural
convection in a cavity. Journal of Computational Physics, 228(12):4359–4378.

[Dohrmann, 2003] Dohrmann, C. R. (2003). A preconditioner for substructuring based
on constrained energy minimization. SIAM Journal on Scientific Computing, 25(1):246–
258.

[Drohmann et al., 2012a] Drohmann, M., Haasdonk, B., and Ohlberger, M. (2012a).
Reduced basis approximation for nonlinear parametrized evolution equations based on
empirical operator interpolation. SIAM Journal on Scientific Computing, 34(2):A937–
A969.

[Drohmann et al., 2012b] Drohmann, M., Haasdonk, B., and Ohlberger, M. (2012b).
Reduced basis approximation for nonlinear parametrized evolution equations based on
empirical operator interpolation. SIAM Journal on Scientific Computing, 34(2):A937–
A969.

[Díez et al., 2017] Díez, P., Zlotnik, S., and Huerta, A. (2017). Generalized parametric
solutions in Stokes flow. Computer Methods in Applied Mechanics and Engineering,
326:223 – 240.

[Eiermann et al., 2000] Eiermann, M., Ernst, O. G., and Schneider, O. (2000). Analysis
of acceleration strategies for restarted minimal residual methods. Journal of Computa-
tional and Applied Mathematics, 123(1):261 – 292. Numerical Analysis 2000. Vol. III:
Linear Algebra.

199

Bibliography

[Elman et al., 2006] Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., and Tumi-
naro, R. (2006). Block preconditioners based on approximate commutators. SIAM
Journal on Scientific Computing, 27(5):1651–1668.

[Elman et al., 2008] Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., and Tumi-
naro, R. (2008). A taxonomy and comparison of parallel block multi-level precondition-
ers for the incompressible Navier–Stokes equations. Journal of Computational Physics,
227(3):1790–1808.

[Elman and Forstall, 2015] Elman, H. C. and Forstall, V. (2015). Preconditioning tech-
niques for reduced basis methods for parameterized elliptic partial differential equations.
SIAM Journal on Scientific Computing, 37(5):S177–S194.

[Elman and Forstall, 2017] Elman, H. C. and Forstall, V. (2017). Numerical solution of
the parameterized steady-state navier–stokes equations using empirical interpolation
methods. Computer Methods in Applied Mechanics and Engineering, 317:380 – 399.

[Elman and Silvester, 1996] Elman, H. C. and Silvester, D. (1996). Fast nonsymmetric
iterations and preconditioning for Navier–Stokes equations. SIAM Journal on Scientific
Computing, 17(1):33–46.

[Elman et al., 2005] Elman, H. C., Silvester, D. J., and Wathen, A. J. (2005). Finite
elements and fast iterative solvers: with applications in incompressible fluid dynamics.

[Erhel et al., 1996] Erhel, J., Burrage, K., and Pohl, B. (1996). Restarted GMRES
preconditioned by deflation. Journal of computational and applied mathematics,
69(2):303–318.

[Farhat et al., 1994] Farhat, C., Crivelli, L., and Roux, F. X. (1994). Extending sub-
structure based iterative solvers to multiple load and repeated analyses. Computer
Methods in Applied Mechanics and Engineering, 117(1-2):195–209.

[Farhat et al., 2001] Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., and Rixen, D.
(2001). FETI-DP: a dual–primal unified FETI method—part i: A faster alternative
to the two-level FETI method. International Journal for Numerical Methods in
Engineering, 50(7):1523–1544.

[Farhat and Roux, 1991] Farhat, C. and Roux, F.-X. (1991). A method of finite element
tearing and interconnecting and its parallel solution algorithm. International Journal
for Numerical Methods in Engineering, 32(6):1205–1227.

[Ferronato et al., 2012] Ferronato, M., Janna, C., and Pini, G. (2012). Shifted FSAI
preconditioners for the efficient parallel solution of non-linear groundwater flow models.
International Journal for Numerical Methods in Engineering, 89(13):1707–1719.

[Fillinger et al., 2002] Fillinger, M. F., Raghavan, M. L., Marra, S. P., Cronenwett, J. L.,
and Kennedy, F. E. (2002). In vivo analysis of mechanical wall stress and abdominal
aortic aneurysm rupture risk. Journal of vascular surgery, 36(3):589–597.

200

Bibliography

[Fleming et al., 2005] Fleming, C., Whitlock, E. P., Beil, T. L., and Lederle, F. A. (2005).
Screening for abdominal aortic aneurysm: a best-evidence systematic review for the
US preventive services task force. Annals of Internal Medicine, 142(3):203–211.

[Formaggia et al., 2010] Formaggia, L., Quarteroni, A., and Veneziani, A. (2010). Car-
diovascular Mathematics: Modeling and simulation of the circulatory system, volume 1.
Springer Science & Business Media.

[Forti, 2016] Forti, D. (2016). Parallel algorithms for the solution of large-scale fluid-
structure interaction problems in hemodynamics. PhD thesis, EPFL.

[Forti and Dedè, 2015] Forti, D. and Dedè, L. (2015). Semi-implicit bdf time discretiza-
tion of the Navier–Stokes equations with vms-les modeling in a high performance
computing framework. Computers & Fluids, 117:168–182.

[Gasser et al., 2010] Gasser, T. C., Auer, M., Labruto, F., Swedenborg, J., and Roy, J.
(2010). Biomechanical rupture risk assessment of abdominal aortic aneurysms: model
complexity versus predictability of finite element simulations. European Journal of
Vascular and Endovascular Surgery, 40(2):176–185.

[Gee et al., 2006] Gee, M. W., Siefert, C. M., Hu, J. J., Tuminaro, R. S., and Sala, M. G.
(2006). Ml 5.0 smoothed aggregation user’s guide. Technical report, SAND2006-2649,
Sandia National Laboratories.

[Gerner and Veroy, 2012] Gerner, A.-L. and Veroy, K. (2012). Certified reduced ba-
sis methods for parametrized saddle point problems. SIAM Journal on Scientific
Computing, 34(5):A2812–A2836.

[Gervasio et al., 2006] Gervasio, P., Saleri, F., and Veneziani, A. (2006). Algebraic
fractional-step schemes with spectral methods for the incompressible navier–stokes
equations. Journal of Computational Physics, 214(1):347–365.

[Geuzaine and Remacle, 2009] Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-d
finite element mesh generator with built-in pre-and post-processing facilities. Interna-
tional journal for numerical methods in engineering, 79(11):1309–1331.

[Ghia et al., 1982] Ghia, U., Ghia, K. N., and Shin, C. (1982). High-re solutions for
incompressible flow using the Navier-Stokes equations and a multigrid method. Journal
of Computational Physics, 48(3):387–411.

[Girault and Raviart, 2012] Girault, V. and Raviart, P.-A. (2012). Finite element meth-
ods for Navier-Stokes equations: theory and algorithms, volume 5. Springer Science &
Business Media.

[Greenbaum, 1997] Greenbaum, A. (1997). Iterative methods for solving linear systems.
SIAM.

201

Bibliography

[Grepl et al., 2007] Grepl, M. A., Maday, Y., Nguyen, N. C., and Patera, A. T. (2007). Ef-
ficient reduced-basis treatment of nonaffine and nonlinear partial differential equations.
ESAIM: Mathematical Modelling and Numerical Analysis, 41(3):575–605.

[Grepl and Patera, 2005] Grepl, M. A. and Patera, A. T. (2005). A posteriori error
bounds for reduced-basis approximations of parametrized parabolic partial differential
equations. ESAIM: Mathematical Modelling and Numerical Analysis, 39(1):157–181.

[Guerciotti et al., 2016] Guerciotti, B., Vergara, C., Azzimonti, L., Forzenigo, L., Buora,
A., Biondetti, P., and Domanin, M. (2016). Computational study of the fluid-dynamics
in carotids before and after endarterectomy. Journal of Biomechanics, 49(1):26 – 38.

[Hackbusch, 2013] Hackbusch, W. (2013). Multi-grid methods and applications, volume 4.
Springer Science & Business Media.

[Heroux et al., 2003] Heroux, M., Bartlett, R., Hoekstra, V. H. R., Hu, J., Kolda, T.,
Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H.,
Tuminaro, R., Willenbring, J., and Williams, A. (2003). An Overview of Trilinos.
Technical Report SAND2003-2927, Sandia National Laboratories.

[Heroux et al., 2005] Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu,
J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T.,
et al. (2005). An overview of the trilinos project. ACM Transactions on Mathematical
Software (TOMS), 31(3):397–423.

[Hestenes and Stiefel, 1952] Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate
gradients for solving linear systems. Journal of Research of the National Bureau of
Standards, 49(1).

[Hesthaven et al., 2016] Hesthaven, J. S., Rozza, G., and Stamm, B. (2016). Certified
reduced basis methods for parametrized partial differential equations. SpringerBriefs
in Mathematics.

[Hesthaven et al., 2014] Hesthaven, J. S., Stamm, B., and Zhang, S. (2014). Efficient
greedy algorithms for high-dimensional parameter spaces with applications to empirical
interpolation and reduced basis methods. ESAIM: Mathematical Modelling and
Numerical Analysis, 48(1):259–283.

[Kay et al., 2002] Kay, D., Loghin, D., and Wathen, A. (2002). A preconditioner for
the steady-state Navier–Stokes equations. SIAM Journal on Scientific Computing,
24(1):237–256.

[Kerschen et al., 2005] Kerschen, G., Golinval, J., Vakakis, A. F., and Bergman, L. A.
(2005). The method of proper orthogonal decomposition for dynamical characteriza-
tion and order reduction of mechanical systems: an overview. Nonlinear Dynamics,
41(1):147–169.

202

Bibliography

[Klawonn and Pavarino, 1998] Klawonn, A. and Pavarino, L. F. (1998). Overlapping
schwarz methods for mixed linear elasticity and Stokes problems. Computer Methods
in Applied Mechanics and Engineering, 165(1):233–245.

[Klawonn and Pavarino, 2000] Klawonn, A. and Pavarino, L. F. (2000). A comparison
of overlapping schwarz methods and block preconditioners for saddle point problems.
Numerical Linear Algebra with Applications, 7(1):1–25.

[Kressner and Tobler, 2011] Kressner, D. and Tobler, C. (2011). Low-rank tensor Krylov
subspace methods for parametrized linear systems. SIAM Journal on Matrix Analysis
and Applications, 32(4):1288–1316.

[Kunisch and Volkwein, 2002a] Kunisch, K. and Volkwein, S. (2002a). Galerkin proper
orthogonal decomposition methods for a general equation in fluid dynamics. SIAM
Journal on Numerical Analysis, 40(2):492–515.

[Kunisch and Volkwein, 2002b] Kunisch, K. and Volkwein, S. (2002b). Galerkin proper
orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J.
Numerical Analysis, 40(2):492–515.

[Lancellotti et al., 2017] Lancellotti, R. M., Vergara, C., Valdettaro, L., Bose, S., and
Quarteroni, A. (2017). Large eddy simulations for blood dynamics in realistic stenotic
carotids. International journal for numerical methods in biomedical engineering, 33(11).

[LeVeque, 2002] LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems,
volume 31. Cambridge University Press.

[Li, 2002] Li, J. (2002). Dual-primal FETI Methods for Stationary Stokes and Navier-
Stokes Equations. New York University, Graduate School of Arts and Science.

[Li, 2005] Li, J. (2005). A dual-primal FETI method for incompressible Stokes equations.
Numerische Mathematik, 102(2):257–275.

[Little and Saad, 2003] Little, L. and Saad, Y. (2003). Block preconditioners for saddle
point problems. Numerical Algorithms, 33(1-4):367–379.

[Maday et al., 2009] Maday, Y., Nguyen, N. C., Patera, A. T., and Pau, S. H. (2009). A
general, multipurpose interpolation procedure: the magic points. Communications on
Pure & Applied Analysis, 8(1):383–404.

[Maier et al., 2010] Maier, A., Gee, M., Reeps, C., Pongratz, J., Eckstein, H.-H., and
Wall, W. (2010). A comparison of diameter, wall stress, and rupture potential index for
abdominal aortic aneurysm rupture risk prediction. Annals of Biomedical Engineering,
38(10):3124–3134.

[Malossi and Bonnemain, 2013] Malossi, A. C. I. and Bonnemain, J. (2013). Numerical
comparison and calibration of geometrical multiscale models for the simulation of
arterial flows. Cardiovascular Engineering and Technology, 4(4):440–463.

203

Bibliography

[Mandel and Dohrmann, 2007] Mandel, J. and Dohrmann, C. (2007). Multilevel BDDC
in theory and practice. HARRACHOV 2007, page 63.

[Mandel and Dohrmann, 2003] Mandel, J. and Dohrmann, C. R. (2003). Convergence of
a balancing domain decomposition by constraints and energy minimization. Numerical
linear algebra with applications, 10(7):639–659.

[Manzoni, 2014] Manzoni, A. (2014). An efficient computational framework for reduced
basis approximation and a posteriori error estimation of parametrized Navier-Stokes
flows. ESAIM: Mathematical Modelling and Numerical Analysis, 48(4):1199–1226.

[Manzoni and Negri, 2017] Manzoni, A. and Negri, F. (2017). Efficient reduction of
PDEs defined on domains with variable shape. In Benner, P., Ohlberger, M., Patera,
A., Rozza, G., and Urban, K., editors, Model Reduction of Parametrized Systems,
volume 17, pages 183–199. Springer, Cham.

[Manzoni et al., 2012a] Manzoni, A., Quarteroni, A., and Rozza, G. (2012a). Model
reduction techniques for fast blood flow simulation in parametrized geometries. Inter-
national journal for numerical methods in biomedical engineering, 28(6-7):604–625.

[Manzoni et al., 2012b] Manzoni, A., Quarteroni, A., and Rozza, G. (2012b). Shape
optimization for viscous flows by reduced basis methods and free-form deformation.
International Journal for Numerical Methods in Fluids, 70(5):646–670.

[May and Moresi, 2008] May, D. A. and Moresi, L. (2008). Preconditioned iterative
methods for Stokes flow problems arising in computational geodynamics. Physics of
the Earth and Planetary Interiors, 171(1):33–47.

[Morgan, 2002] Morgan, R. B. (2002). GMRES with deflated restarting. SIAM Journal
on Scientific Computing, 24(1):20–37.

[Morgan, 2005] Morgan, R. B. (2005). Restarted block-GMRES with deflation of eigen-
values. Applied Numerical Mathematics, 54(2):222–236.

[Nabben and Vuik, 2006] Nabben, R. and Vuik, C. (2006). A comparison of deflation and
the balancing preconditioner. SIAM Journal on Scientific Computing, 27(5):1742–1759.

[Necas, 1967] Necas, J. (1967). Les méthodes directes en théorie des équations elliptiques.

[Negri, 2015] Negri, F. (2015). Efficient Reduction Techniques for the Simulation and
Optimization of Parametrized Systems. PhD thesis, EPFL.

[Negri et al., 2015a] Negri, F., Manzoni, A., and Amsallem, D. (2015a). Efficient model
reduction of parametrized systems by matrix discrete empirical interpolation. Journal
of Computational Physics, 303:431–454.

204

Bibliography

[Negri et al., 2015b] Negri, F., Manzoni, A., and Rozza, G. (2015b). Reduced basis
approximation of parametrized optimal flow control problems for the Stokes equations.
Computers & Mathematics with Applications, 69:319–336.

[Pagani, 2017] Pagani, S. (2017). Reduced-order models for inverse problems and uncer-
tainty quantification in cardiac electrophysiology. PhD thesis, Politecnico di Milano.

[Pagani et al., 2017] Pagani, S., Manzoni, A., and Quarteroni, A. (2017). Numerical
approximation of parametrized problems in cardiac electrophysiology by a local reduced
basis method. Technical Report 25.2017, EPFL.

[Paige and Saunders, 1975] Paige, C. C. and Saunders, M. A. (1975). Solution of sparse
indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 12(4):617–
629.

[Parks et al., 2006] Parks, M. L., De Sturler, E., Mackey, G., Johnson, D. D., and Maiti,
S. (2006). Recycling Krylov subspaces for sequences of linear systems. SIAM Journal
on Scientific Computing, 28(5):1651–1674.

[Patankar, 1980] Patankar, S. (1980). Numerical heat transfer and fluid flow. CRC press.

[Paul-Dubois-Taine and Amsallem, 2015] Paul-Dubois-Taine, A. and Amsallem, D.
(2015). An adaptive and efficient greedy procedure for the optimal training of paramet-
ric reduced-order models. International Journal for Numerical Methods in Engineering,
102(5):1262–1292.

[Peherstorfer et al., 2014] Peherstorfer, B., Butnaru, D., Willcox, K., and Bungartz, H.-J.
(2014). Localized discrete empirical interpolation method. SIAM Journal on Scientific
Computing, 36(1):A168–A192.

[Prud’homme et al., 2002] Prud’homme, C., Rovas, D. V., Veroy, K., and Patera, A. T.
(2002). A mathematical and computational framework for reliable real-time solution
of parametrized partial differential equations. ESAIM Math. Modelling Numer. Anal.,
36(5):747–771.

[Prud’homme et al., 2002] Prud’homme, C., Rovas, D. V., Veroy, K., Machiels, L.,
Maday, Y., Patera, A. T., and Turinici, G. (2002). Reliable real-time solution of
parametrized partial differential equations: Reduced-basis output bound methods.
Journal of Fluids Engineering, 124(1):70–80.

[Quarteroni, 2014] Quarteroni, A. (2014). Numerical Models for Differential Problems,
volume 9 of Modeling, Simulation and Applications (MS&A). Springer-Verlag Italia,
Milano, 2nd edition.

[Quarteroni et al., 2016a] Quarteroni, A., Manzoni, A., and Negri, F. (2016a). Reduced
Basis Methods for Partial Differential Equations: An Introduction. Springer.

205

Bibliography

[Quarteroni et al., 2017] Quarteroni, A., Manzoni, A., and Vergara, C. (2017). The
cardiovascular system: mathematical modelling, numerical algorithms and clinical
applications. Acta Numerica, 26:365–590.

[Quarteroni and Rozza, 2007] Quarteroni, A. and Rozza, G. (2007). Numerical solution
of parametrized Navier–Stokes equations by reduced basis methods. Numerical Methods
for Partial Differential Equations, 23(4):923–948.

[Quarteroni et al., 2007] Quarteroni, A., Sacco, R., and Saleri, F. (2007). Numerical
mathematics, volume 37. Springer Verlag.

[Quarteroni and Valli, 1999] Quarteroni, A. and Valli, A. (1999). Domain decomposition
methods for partial differential equations, volume 10. Oxford University Press.

[Quarteroni and Valli, 2008] Quarteroni, A. and Valli, A. (2008). Numerical approxima-
tion of partial differential equations. Springer Science & Business Media.

[Quarteroni et al., 2016b] Quarteroni, A., Veneziani, A., and Vergara, C. (2016b). Geo-
metric multiscale modeling of the cardiovascular system, between theory and practice.
Computer Methods in Applied Mechanics and Engineering, 302:193–252.

[Quarteroni et al., 2002] Quarteroni, A., Veneziani, A., and Zunino, P. (2002). Mathe-
matical and numerical modeling of solute dynamics in blood flow and arterial walls.
SIAM Journal on Numerical Analysis, 39(5):1488–1511.

[Raghavan and Vorp, 2000] Raghavan, M. and Vorp, D. A. (2000). Toward a biomechan-
ical tool to evaluate rupture potential of abdominal aortic aneurysm: identification
of a finite strain constitutive model and evaluation of its applicability. Journal of
Biomechanics, 33(4):475–482.

[Ramage, 1999] Ramage, A. (1999). A multigrid preconditioner for stabilised discretisa-
tions of advection–diffusion problems. Journal of computational and applied mathe-
matics, 110(1):187–203.

[Rehman et al., 2011] Rehman, M., Geenen, T., Vuik, C., Segal, G., and MacLachlan, S.
(2011). On iterative methods for the incompressible Stokes problem. International
Journal for Numerical Methods in Fluids, 65(10):1180–1200.

[Reid et al., 1990] Reid, D., Welch, G., and Pollock, J. (1990). Abdominal aortic
aneurysm: a preventable cause of death? Journal of the Royal College of Surgeons of
Edinburgh, 35(5):284–288.

[Risler and Rey, 2000] Risler, F. and Rey, C. (2000). Iterative accelerating algorithms
with Krylov subspaces for the solution to large-scale nonlinear problems. Numerical
Algorithms, 23(1):1.

206

Bibliography

[Roux, 1995] Roux, F. X. (1995). 10. parallel implementation of a domain decomposition
method for non-linear elasticity problems. In Domain-Based Parallelism and Problem
Decomposition Methods in Computational Science and Engineering, pages 161–175.
SIAM.

[Rowley, 2006] Rowley, C. W. (2006). Model reduction for fluids, using balanced proper
orthogonal decomposition. In Modeling And Computations In Dynamical Systems: In
Commemoration of the 100th Anniversary of the Birth of John von Neumann, pages
301–317. World Scientific.

[Rozza, 2009] Rozza, G. (2009). Reduced basis methods for Stokes equations in domains
with non-affine parameter dependence. Computing and Visualization in Science,
12(1):23–35.

[Rozza et al., 2013] Rozza, G., Huynh, D., and Manzoni, A. (2013). Reduced basis
approximation and error bounds for Stokes flows in parametrized geometries: roles of
the inf–sup stability constants. Numerische Mathematik, 125(1):115–152.

[Rozza and Veroy, 2007] Rozza, G. and Veroy, K. (2007). On the stability of the reduced
basis method for Stokes equations in parametrized domains. Computer Methods in
Applied Mechanics and Engineering, 196(7):1244–1260.

[Saad, 1981] Saad, Y. (1981). Krylov subspace methods for solving large unsymmetric
linear systems. Mathematics of Computation, 37(155):105–126.

[Saad, 1987] Saad, Y. (1987). On the Lanczos method for solving symmetric linear
systems with several right-hand sides. Mathematics of computation, 48(178):651–662.

[Saad, 1993] Saad, Y. (1993). A flexible inner-outer preconditioned GMRES algorithm.
SIAM Journal on Scientific Computing, 14(2):461–469.

[Saad, 1997] Saad, Y. (1997). Analysis of augmented Krylov subspace methods. SIAM
Journal on Matrix Analysis and Applications, 18(2):435–449.

[Saad, 2003] Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.

[Saad and Schultz, 1986] Saad, Y. and Schultz, M. H. (1986). GMRES: A generalized
minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal
on Scientific and Statistical Computing, 7(3):856–869.

[Saad et al., 2000] Saad, Y., Yeung, M., Erhel, J., and Guyomarc’h, F. (2000). A deflated
version of the conjugate gradient algorithm. SIAM Journal on Scientific Computing,
21(5):1909–1926.

[Sala and Heroux, 2005] Sala, M. and Heroux, M. (2005). Robust algebraic precondi-
tioners using ifpack 3.0. Sandia National Laboratories p, 123.

207

Bibliography

[Salsa, 2016] Salsa, S. (2016). Partial differential equations in action: from modelling to
theory, volume 99. Springer.

[Sargsyan et al., 2016] Sargsyan, S., Brunton, S. L., and Kutz, J. N. (2016). Online
interpolation point refinement for reduced order models using a genetic algorithm.
arXiv preprint arXiv:1607.07702.

[Schäfer et al., 1996] Schäfer, M., Turek, S., Durst, F., Krause, E., and Rannacher, R.
(1996). Benchmark computations of laminar flow around a cylinder. In Flow simulation
with high-performance computers II, pages 547–566. Springer.

[Segal et al., 2010] Segal, A., ur Rehman, M., and Vuik, K. (2010). Preconditioners for
incompressible Navier-Stokes solvers. Numerical Mathematics: Theory, Methods and
Applications, 3(3):245–275.

[Silvester et al., 2001] Silvester, D., Elman, H. C., Kay, D., and Wathen, A. (2001).
Efficient preconditioning of the linearized Navier–Stokes equations for incompressible
flow. Journal of Computational and Applied Mathematics, 128(1):261–279.

[Silvester and Wathen, 1994] Silvester, D. and Wathen, A. (1994). Fast iterative solution
of stabilised stokes systems part ii: using general block preconditioners. SIAM Journal
on Numerical Analysis, 31(5):1352–1367.

[Simoncini and Szyld, 2007] Simoncini, V. and Szyld, D. B. (2007). Recent computational
developments in krylov subspace methods for linear systems. Numerical Linear Algebra
with Applications, 14(1):1–59.

[Slager et al., 2005] Slager, C., Wentzel, J., Gijsen, F., Thury, A., Van der Wal, A.,
Schaar, J., and Serruys, P. (2005). The role of shear stress in the destabilization of
vulnerable plaques and related therapeutic implications. Nature Reviews Cardiology,
2(9):456.

[Smith et al., 1996] Smith, B. F., Bjørstad, P. E., and Gropp, W. D. (1996). Domain
Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge University Press, New York, NY, USA.

[Staten et al., 2011] Staten, M. L., Owen, S. J., Shontz, S. M., Salinger, A. G., and Coffey,
T. S. (2011). A comparison of mesh morphing methods for 3d shape optimization. In
Proceedings of the 20th international meshing roundtable, pages 293–311. Springer.

[Stein et al., 2004] Stein, K., Tezduyar, T. E., and Benney, R. (2004). Automatic mesh
update with the solid-extension mesh moving technique. Computer Methods in Applied
Mechanics and Engineering, 193(21-22):2019–2032.

[Stewart and Sun, 1990] Stewart, G. and Sun, J.-g. (1990). Matrix perturbation theory.
Academic Press, New York.

208

Bibliography

[Stüben, 2001] Stüben, K. (2001). An introduction to algebraic multigrid. Multigrid,
pages 413–532.

[Taylor and Figueroa, 2009] Taylor, C. A. and Figueroa, C. (2009). Patient-specific
modeling of cardiovascular mechanics. Annual review of biomedical engineering, 11:109–
134.

[Temam, 1984] Temam, R. (1984). Navier-Stokes Equations, volume 2. North-Holland
Amsterdam.

[Toselli and Widlund, 2005] Toselli, A. and Widlund, O. B. (2005). Domain decomposi-
tion methods: algorithms and theory. Springer series in computational mathematics.
Springer, Berlin.

[Trottenberg et al., 2000] Trottenberg, U., Oosterlee, C. W., and Schuller, A. (2000).
Multigrid. Academic press.

[Turek, 1999] Turek, S. (1999). Efficient Solvers for Incompressible Flow Problems: An
Algorithmic and Computational Approache, volume 6. Springer Science & Business
Media.

[ur Rehman et al., 2009] ur Rehman, M., Vuik, K., and Segal, G. (2009). Block precon-
ditioners for the incompressible Stokes problem. In Lirkov I., Margenov S., Waśniewski
J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer
Science, volume 5910, pages 829–836. Springer, Berlin, Heidelberg.

[Van der Vorst, 2003] Van der Vorst, H. A. (2003). Iterative Krylov methods for large
linear systems, volume 13. Cambridge University Press.

[Van der Vorst and Vuik, 1994] Van der Vorst, H. A. and Vuik, C. (1994). GMRESR:
a family of nested GMRES methods. Numerical Linear Algebra with Applications,
1(4):369–386.

[Van Doormaal and Raithby, 1984] Van Doormaal, J. and Raithby, G. (1984). Enhance-
ments of the SIMPLE method for predicting incompressible fluid flows. Numerical
Heat Transfer, 7(2):147–163.

[Veroy and Patera, 2005] Veroy, K. and Patera, A. (2005). Certified real-time solution
of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-
basis a posteriori error bounds. International Journal for Numerical Method in Fluids,
47(8-9):773–788.

[Volkwein, 2013] Volkwein, S. (2013). Proper orthogonal decomposition: Theory and
reduced-order modelling. Lecture Notes, University of Konstanz, 4(4).

[Vuik et al., 2009] Vuik, C., Segal, G., et al. (2009). SIMPLE-type preconditioners for the
Oseen problem. International Journal for Numerical Methods in Fluids, 61(4):432–452.

209

Bibliography

[Vuik et al., 2000] Vuik, K., Saghir, A., and Boerstoel, G. (2000). The Krylov accelerated
SIMPLE (R) method for flow problems in industrial furnaces. International Journal
for Numerical Methods in Fluids, 33(7):1027–1040.

[Wathen and Silvester, 1993] Wathen, A. and Silvester, D. (1993). Fast iterative solution
of stabilised stokes systems. part i: Using simple diagonal preconditioners. SIAM
Journal on Numerical Analysis, 30(3):630–649.

[Wathen, 2015] Wathen, A. J. (2015). Preconditioning. Acta Numerica, 24:329–376.

[Weller et al., 2010] Weller, J., Lombardi, E., Bergmann, M., and Iollo, A. (2010). Nu-
merical methods for low-order modeling of fluid flows based on POD. Int. J. Numer.
Methods Fluids, 63(2):249–268.

[Wesseling, 2009] Wesseling, P. (2009). Principles of Computational Fluid Dynamics,
volume 29. Springer Science & Business Media.

[Wesseling and Oosterlee, 2001] Wesseling, P. and Oosterlee, C. W. (2001). Geometric
multigrid with applications to computational fluid dynamics. Journal of Computational
and Applied Mathematics, 128(1):311–334.

[Wittum, 1989] Wittum, G. (1989). Multi-grid methods for Stokes and Navier-Stokes
equations. Numerische Mathematik, 54(5):543–563.

[Wootton and Ku, 1999] Wootton, D. M. and Ku, D. N. (1999). Fluid mechanics of
vascular systems, diseases, and thrombosis. Annual Review of Biomedical Engineering,
1(1):299–329.

[Xu and Zikatanov, 2003] Xu, J. and Zikatanov, L. (2003). Some observations on
Babus̆ka and Brezzi theories. Numerische Mathematik, 94(1):195–202.

[Xu and Zikatanov, 2017] Xu, J. and Zikatanov, L. (2017). Algebraic multigrid methods.
Acta Numerica, 26:591–721.

[Yavneh et al., 1998] Yavneh, I., Venner, C. H., and Brandt, A. (1998). Fast multigrid
solution of the advection problem with closed characteristics. SIAM Journal on
Scientific Computing, 19(1):111–125.

[Zahm and Nouy, 2016] Zahm, O. and Nouy, A. (2016). Interpolation of inverse operators
for preconditioning parameter-dependent equations. SIAM Journal on Scientific
Computing, 38(2):A1044–A1074.

[Zulehner, 2002] Zulehner, W. (2002). Analysis of iterative methods for saddle point
problems: a unified approach. Mathematics of computation, 71(238):479–505.

210

Niccolò Dal Santo
Curriculum Vitæ et Studiorum

Date and place of birth: 18th August 1990, Verona, Italy
Nationality: Italian
Address: Rue de Genève 77, Lausanne, VD, Switzerland
Mobile: +41 78 9234508, +39 342 1570842
E-mail: niccolo.dalsanto@epfl.ch, ncl.dalsanto@gmail.com

Work experiences

01.2015 - Doctoral assistant, Chair of Modeling and Scientific Computing,
present École Polytechnyque Féderale de Lausanne, Lausanne, Switzerland.

01.2015 - Software developer and main author of rb-LifeV, the module
present of LifeV (www.lifev.org) for reduced basis methods. LifeV is an open

source C++ library for the numerical solution of PDEs with the
Finite Element method.

01.2017 - Volunteer as project manager at Innovation Forum Lausanne (IFL).
present About IFL: non-profit student association with the mission of fostering

next generation of scientist-entrepreneurs (lausanne.inno-forum.org).

Education

01.2015 - Ph.D. in Mathematics, École Polytechnyque Féderale de Lausanne.
present Thesis: Multi space reduced basis preconditioners for parametrized

partial differential equations.
Directors: Prof. A. Quarteroni, Dr. A. Manzoni.

09.2012 - Master degree in Mathematical Engineering, Politecnico di Milano.
12.2014 Thesis: An adaptive discontinuous Galerkin spectral element method

for systems of ordinary differential equations with applications
to elastodynamics.
Directors: Prof. A. Quarteroni, Dr. P. F. Antonietti.
Final grade: 110/110 cum Laude.

02.2013 - Alta Scuola Politecnica (www.asp-poli.it), PoliMi and PoliTo.
12.2014 Project: Aced-IoT, Safe cities through Cloud and Internet of Things.

Master degree in Mathematical Engineering, Politecnico di Torino,
Final grade: 110/110 cum Laude.

211

10.2013 - Exchange student, Erasmus program. Computational Science and
03.2014 Engineering, Technische Universität München, Munich, Germany.

09.2009 - Bachelor degree in Mathematical Engineering, Politecnico di Milano
09.2012 Thesis: Model and Solutions for the Korteweg-de Vries equation.

Director: Dr. G. Verzini.
Final grade: 110/110 cum Laude.

Research interests

Finite Element method, Reduced Order Modeling, Reduced Basis method, Precondition-
ing techniques, High Performance Computing, Computational Fluid Dynamics.

Publications

• P.F. Antonietti, N. Dal Santo, I. Mazzieri, A. Quarteroni. A high-order discontinu-
ous Galerkin approximation to ordinary differential equations with applications to
elastodynamics. IMA Journal of Numerical Analysis, 2017.

• N. Dal Santo, S. Deparis, A. Manzoni, A. Quarteroni. Multi space reduced basis
preconditioners for large-scale parametrized PDEs. SIAM Journal on Scientific
Computing, 40(2):A954-A983, 2018.

• N. Dal Santo, S. Deparis, A. Manzoni. A numerical investigation of multi space
reduced basis preconditioners for parametrized elliptic advection-diffusion equations.
Communications in Applied and Industrial Mathematics, 8(1):282-297, 2017.

• N. Dal Santo, S. Deparis, A. Manzoni, A. Quarteroni. An algebraic least squares
reduced basis method for parametrized Stokes equations. Mathicse Report 21.2017.
Submitted.

• N. Dal Santo, S. Deparis, A. Manzoni, A. Quarteroni. Multi space reduced basis
preconditioners for parametrized Stokes equations. Mathicse Report 03.2018.
Submitted.

• N. Dal Santo, A. Manzoni. Hyper-reduced order models for parametrized unsteady
Navier-Stokes equations on domains with variable shape. Submitted.

212

Conferences and workshops

• Model Reduction of Parametrized Systems IV, École Centrale Nantes, Nantes,
France, 10-13 April 2018 (Poster).

• Preconditioning 2017 (31.07 - 02.08.2017), University of British Columbia, BC,
Canada (Talk in contributed session).

• SIAM CSE 2017 (27.02 - 03.03.2017), Hilton Atlanta, Atlanta, GA (Talk in two
MiniSymposia).

• Recent developments in numerical methods for model reduction (07 - 10.11.2016),
IHP quarter on Numerical Methods for PDEs, IHP, Paris, France (Poster).

• Reduced Basis summer School 2016 (03 - 07.10.2016), Max Planck Insitute for
dynamics of complex and technical systems Magdeburg, Kloster Hedersleben,
Hedersleben, Germany. (Talk)

• SIMAI 2016 (13 - 16.09.2016), Politecnico di Milano, Milano, Italy (Talk in a
MiniSymposium).

• Corso Estivo SMI: Reduced Basis, Optimal Control & Application to Cardiovascular
Modeling (27 - 31.07.2015), Cortona, Italy.

• Spectral Elements in Elastodynamics: applications to seismic wave propagation
problems (09.04.2015), MOX, Politecnico di Milano (Invited talk).

Teaching activities

• Semester project co-supervisor: Reduced basis method for flows in moving domains,
Clément Lefebvre, Master Program in Computational Science and Engineering,
Spring Sem. 16/17, EPFL.

• Semester project co-supervisor: Reduced basis solver for time dependent problems,
Vincent Pollet, Master Program in Computational Science and Engineering, Spring
Sem. 16/17, EPFL.

• Semester project co-supervisor: Élastodynamique linéaire pour problème géophysi-
que et dispersion numérique, Julie Favre, Bachelor Program in Mathematics, Spring
Sem. 14/15, EPFL.

• Teaching Assistant at EPFL, classes: Numerical Analysis, Bachelor Program in
Biomedical engineering, Spring Sem. 16/17; Numerical Analysis & Computational
Mathematics, Master Program in Computational Science and Engineering; In-
troduction to Finite Elements method, Bachelor Program in Mathematics and
Master Program in Computational Science and Engineering, Winter Sem. 15/16;
Numerical Analysis, Bachelor Program in Mathematics, Spring Sem. 14/15.

213

