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Résumé
Dans le processus de photoémission, un matériel excité par rayonnement ultraviolet émet des

électrons. Á partir de la mesure de l’énergie e de la quantité de mouvement de ces soi-disant

photoélectrons et en utilisant les lois de conservation, la spectroscopie de photoémission

résolue en angle (ARPES) permit de reconstruire les propriétés électroniques d’un solide. En

plus, la technique de spectroscopie de photoémission résolue en angle et en spin (SARPES)

permet de mesurer aussi la polarisation de spin du faisceau des photoélectrons avec la réso-

lution énergétique et angulaire typiques de la technique ARPES, nécessaires pour sonder les

états dispersif d’un solide cristallin.

L’information de spin est strictement liée à la polarisation de spin des états électroniques

mésurés, mais elle peut être modifié par plusieurs facteurs pendant le processus de photoé-

mission. En fait, même les électrons émis à partir d’un état initial dégénéré en spin peuvent

manifester une polarisation de spin finie. Cet effet, qui à la fin est lie à des ruptures de symétrie

dans l’expérience de photoémission, se produit quand il y a un phénomène d’interférence

cohérent entre des différents canaux des éléments de matrice qui décrivent la transition. En

particulier, en analogie avec le processus de scattering électronique, la polarisation de spin est

lié à la différence de phase entre les éléments de matrice complexes associés aux canaux qui

font interférence quantique.

Telle différence de phase à la base de la polarisation de spin est étroitement liée aussi à une

autre quantité physique : le décalage temporel de Eisenbud-Winger-Smith (EWS). Malgré

les difficultés fondamentales pour définir le concept du temps en mécanique quantique, le

décalage temporel fut introduit pour décrire le processus de scattering électronique, et il

peut être adapte pour étudier la chronoscopie du processus de photoémission. Grâce aux

développements de la technologie laser pendant le dernière décade, de nos jours on a à

disposition des techniques de spectroscopie résolues en temps qui ont une résolution des

attoseconds (1 as= 10−18 s). Ces techniques, en mesurant le décalage temporel EWS relatif

entre photoélectrons émis par des états différent, permettent de accéder au regime temporel

fondamental de la photoémission sur échelle atomique.

Dans cette Thèse on présentera une voie alternative et indirecte pour sonder le processus

de photoémission dans le domaine des attoseconds, en particulier sans l’utilisation des

techniques laser résolues en temps, mais grâce à la mesure de la polarisation de spin. On

introduira la relation mathématique entre la polarisation de spin obtenu à partir d’un état
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Résumé

dispersif d’un solide cristalline et le décalage temporel EWS. On discutera un model analytique

où la dépendance de la polarisation de spin sûr l’énergie de liaison est reliée à deux types de

décalage temporel EWS : celui associé au processus de photoémission considéré comme un

processus de scattering, τEWS, et celui associé aux canaux d’interférence, τs
EWS. On discutera

aussi le sens physique de ces deux décalages temporels.

Dans cette Thèse on présentera aussi la première détermination expérimentale des déca-

lages temporels EWS d’états dispersifs par la technique SARPES. En particulier, la technique

principale utilisée dans cette Thèse est la SARPES basée sur radiation de synchrotron. Les

résultats pour la bande sp bulk avec dispersion de l’électron libre d’un cristal single de Cu(111)

fournissent τs
EWS ≈ 26 as et τEWS ≈ 11 as. En plus, les bands d aussi et les niveaux de cœur 3p

du cuivre montrent un certain grade de polarisation de spin. Des expériences faites sur le

cuprate supraconducteur fortement corrélé Bi2Sr2CaCu2O8+δ (BSCCO 2212) montrent des

décalages temporels EWS qui sont au moins 3 fois que dans le Cu(111). Ce résultat suggère une

possible dépendance des décalages temporels EWS sur les corrélations électroniques. Dans

tous les états dispersifs on trouve une caractéristique polarisation double, possiblement liée à

des corrections de self-energy du processus de photoémission. En plus, des récents mesures

SARPES basée sur lumière laser sur BSCCO 2212 seront présentées.

Les résultats présentés dans cette Thèse ouvrent la rue à un type d’information qualitati-

vement neuf qui est accessible par la technique SARPES, qui devient complémentaire à les

spectroscopies avec résolution des attoseconds. Le model présenté aide à comprendre la pola-

risation de spin qui est obtenue par des calculs de photoémission one-step, où l’information

temporelle devient donc accessible. Cette approche peut aider à comprendre la physique

des différents matériaux d’intérêt, mais aussi à mieux interpréter l’information de spin obte-

nue expérimentalement avec la SARPES, même que à mieux décrire les bases de mécanique

quantique du processus de photoémission.

Mots clefs : Physique des solides, photoémission, polarisation du spin, décalage temporel
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Sintesi
Nel processo di fotoemissione, un materiale eccitato con luce ultravioletta emette degli elet-

troni. Dalla misura dell’energia e della quantità di moto di questi cosidetti fotoelettroni e

dall’utilizzo di leggi di conservazione, la spettroscopia di fotoemissione risolta in angolo (AR-

PES) permette di ricostruire le proprietà elettroniche del materiale in considerazione. Inoltre,

la tecnica di spettroscopia di fotoemissione risolta in angolo e in spin (SARPES) permette di

misurare anche la polarizzazione di spin del fascio di fotoelettroni mantenendo la risoluzione

energetica e angolare tipiche della tecnica ARPES, che sono necessarie per poter sondare gli

stati dispersivi di un materiale cristallino.

L’informazione di spin è strettamente legata alla polarizzazione degli stati elettronici in esame,

ma può essere modificata da diversi fattori durante il processo di fotoemissione. In effetti,

perfino elettroni emessi da uno stato iniziale degenere in spin possono manifestare una

polarizzazione netta. Questo effetto, che in fin dei conti è legato a rotture di simmetria

nell’esperimento di fotoemissione, avviene a causa di un fenomeno di interferenza coerente tra

diversi canali degli elementi di matrice che descrivono la transizione in esame. In particolare,

in analogia con il processo di scattering elettronico, la polarizzazione di spin è legata alla

differenza di fase tra i canali che interferiscono quantisticamente.

Tale differenza di fase alla base della polarizzazione di spin è strettamente legata anche ad

un’altra quantità fisica: lo scarto temporale di Eisenbud-Wigner-Smith (EWS). Nonostante

le difficoltà fondamentali che si incontrano nel definire il concetto di tempo in meccanica

quantistica, lo scarto temporale EWS fu introdotto per descrivere il processo di scattering

elettronico, e può essere adattato per studiare la cronoscopia del processo di fotoemissione.

Grazie a notevoli sviluppi nella tecnologia laser nell’ultimo decennio, oggigiorno si hanno a

disposizione tecniche di spettroscopia risolte in tempo che raggiungono una risoluzione di

attosecondi (1 as= 10−18 s). Queste tecniche misurano lo scarto temporale EWS relativo tra fo-

toelettroni emessi da diversi stati e permettono di accedere al regime temporale fondamentale

della fotoemissione su scala atomica.

In questa Tesi verrà presentata una via alternativa e indiretta per sondare il processo di

fotoemissione nel dominio degli attosecondi, in particolare senza l’utilizzo di tecniche laser

risolte in tempo, ma attraverso la misura della polarizzazione di spin. Verrà introdotta la

relazione matematica tra polarizzazione di spin ottenuta da uno stato dispersivo di un solido

e lo scarto temporale EWS. Verrà discusso un modello analitico dove la dipendenza della
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Sintesi

polarizzazione di spin dall’energia di legame dell’elettrone è connessa a due tipi di scarto

temporale EWS: quello associato al processo di fotoemissione considerato come un processo

di scattering, τEWS, e quello associato ai canali di interferenza, τs
EWS. Verrà inoltre discusso il

significato fisico di questi due scarti temporali.

In questa Tesi verrà anche presentata la prima determinazione sperimentale di scarti temporali

EWS da stati dispersivi per mezzo della tecnica SARPES. In particolare, la tecnica principale

utilizzata in questa Tesi è la SARPES basata su radiazione di sincrotrone. I risultati per la

banda sp bulk a dispersione di elettrone libero di un singolo cristallo di Cu(111) forniscono

τs
EWS ≈ 26 as e τEWS ≈ 11 as. Inoltre, anche le bande d e i livelli di core 3p del rame mostrano

un notevole grado di polarizzaione di spin. Esperimenti fatti sul cuprato superconduttore

fortemente correlato Bi2Sr2CaCu2O8+δ (BSCCO 2212) mostrano degli scarti temporali EWS che

sono almeno 3 volte maggiori che nel Cu(111). Questo suggerisce una possibile dipendenza

degli scarti temporali EWS dalle correlazioni elettroniche. In tutti gli stati dispersivi viene

osservata una caratteristica doppia polarizzaizone, possibilmente legata a correzioni di self-

energy del processo di fotoemissione. Verranno presentate anche delle recenti misure su

BSCCO 2212 fatte con SARPES basata su luce laser.

I risultati presentati in questa Tesi aprono la strada ad un tipo di informazione qualitativamen-

te nuovo accessibile dalla tecnica SARPES, che diviene complementare alle spettroscopie con

risuluzione negli attosecondi. Il modello presentato aiuta a comprendere la polarizzazione di

spin ottenuta da calcoli di fotoemissione one-step, in cui l’informazione temporale diviene

quindi accessibile. Questo approccio può aiutare a comprendere la fisica di diversi materiali di

interesse, ma anche a meglio interpretare l’informazione di spin ottenuta sperimentalmente

con la SARPES, così come a meglio descrivere le basi di meccanica quantistica del processo

stesso di fotoemissione.

Parole chiave: Fisica dello stato solido, fotoemissione, polarizzazione di spin, scarto temporale
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Abstract
In the photoemission process electrons are emitted from a solid upon excitation with UV

light. From the measurement of energy and momentum of these so-called photoelectrons

and exploiting conservation laws, the angle-resolved photoemission spectroscopy (ARPES)

technique allows to reconstruct the electronic properties of the solid. In addition, in spin-

and angle-resolved photoemission spectroscopy (SARPES) the spin polarization of the photo-

electron beam is measured while maintaining energy and momentum resolution of ARPES,

required to probe a dispersive state of a solid.

The spin information is related to the spin polarization of the state under investigation, but

can be modified for several reasons during the photoemission process. Indeed, even when

the electrons originate from a spin-degenerate initial state, they can acquire a finite spin

polarization. This effect, which is ultimately due to a symmetry breaking in the photoemission

experiment, occurs when different channels in the matrix elements describing the transition

coherently interfere. In particular, in analogy with the electron scattering process, the spin

polarization is related to the phase shift between the complex matrix elements associated to

the interfering channels.

The phase shift at the origin of the spin polarization is also closely related to another quantity:

the Eisenbud-Wigner-Smith (EWS) time delay. Despite the fundamental difficulties to prop-

erly define the concept of time in quantum mechanics, the EWS time delay was introduced

to describe the electron scattering process, and can be adapted to study the chronoscopy

of the photoemission process. Thanks to advances in laser technology in the last decade,

time-resolved spectroscopic techniques that reach attosecond (1 as= 10−18 s) resolution are

nowadays available. By measuring relative EWS time delays between photoelectrons from

different states, they permit to access the fundamental time scale of photoemission at the

atomic level.

In this Thesis, an alternative indirect way to probe the photoemission process in the attosecond

domain without time-resolved laser techniques will be presented. The link between spin

polarization from dispersive states of a solid and the EWS time delay will be introduced. An

analytical model will be discussed, where the dependence of the spin polarization with binding

energy is related to the EWS time delay of photoemission as a scattering process τEWS and

the EWS time delay between the interfering channels τs
EWS. Hence it will be shown that by

measuring the spin polarization of the photoelectrons without an explicit time resolution
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in the experiment it is possible to indirectly determine the time scale of the photoemission

process.

The first experimental determination of EWS time delays from dispersive states by SARPES

will be also presented. Synchrotron radiation-based SARPES is the main technique used in

this Thesis. Results for a single crystal of Cu(111) give τs
EWS ≈ 26 as and τEWS ≈ 11 as for the

free-electron-like sp bulk-derived band. The spin polarization of the d bands and of the 3p

core levels of copper is also investigated. On the other hand, experiments on the strongly

correlated cuprate superconductor Bi2Sr2CaCu2O8+δ (BSCCO 2212) show EWS time delays

that are at least 3 times larger than in Cu(111). A double polarization feature is observed for

the dispersive states, which is likely related to self-energy corrections in the photoemission

process. Recent results on BSCCO 2212 performed with laser-based SARPES will be also

discussed.

The results presented in this Thesis pave the way for a qualitatively new kind of information

accessible by the SARPES technique, which is complementary to attosecond-resolved spectro-

scopies. The model presented sheds light on the spin polarization that is obtained by one-step

model photoemission calculations, where the time information becomes also available. This

approach could help to advance in the understandings of the physics of materials of interests,

in particular electronic correlations, but also to better interpret the spin information that is ex-

perimentally obtained in SARPES, as well as to describe the basics of the quantum mechanics

of the photoemission process itself.

Key words: Solid state physics, photoemission, spin polarization, time delay
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Preface

Angle-resolved photoemission spectroscopy (ARPES) is a well-established technique which

allows to probe energy and momentum of electrons emitted from condensed matter upon UV

or X-ray excitation (photoelectrons), and thus to reconstruct the electronic band structure of a

solid. Spin-resolved ARPES, in addition, measures the spin polarization of the photoelectron

beam, which can be polarized if the initial electronic state is polarized (as in ferromagnets,

Rashba-like materials or topological insulators, for example), but also if quantum interference

occurs during the photoemission process, as it is known since many decades. However, given

the large interest in the physics of the materials of the first case, the second case has been in

general less investigated, and only on localized states or without angular resolution.

The aim of this Thesis is to deepen the understanding of the spin polarization in photoe-

mission from spin-degenerate states, in particular in the case of dispersive states, and to

extract information about the interference process at its origin. The key quantity is the phase

term of complex matrix elements describing the transition. This phase term is also closely

related to the so-called Eisenbud-Wigner-Smith (EWS) time delay of photoemission, which is

used to describe the chronoscopy of the process and can be probed by attosecond-resolved

photoemission experiments. Therefore, in principle, it is possible to give an indirect estimate

of the EWS time delay by measuring the spin polarization from spin-degenerate states. This

estimate is the main topic of this Thesis.

The organization of the Thesis is the following:

• In Chapter 1 the issue of describing time in quantum mechanics is briefly presented,

discussing how state of the art techniques allow measurements in the attosecond (as)

time domain, and showing the starting idea of indirectly accessing time delays in pho-

toemission by the measurement of spin polarization.

• In Chapter 2 the concept of spin is introduced and the effects on the spin polarization of

an electron beam upon elastic scattering are reviewed. This phenomenon is at the basis

of both the photoemission spin detector described in Chapter 3, and of the interference

process in photoemission discussed in Chapter 3 and Chapter 4.
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• In Chapter 3 the basics of the photoemission process are introduced, with focus on

the origin and the measurement of the spin polarization; the experimental setup of the

COPHEE endstation at the Swiss Light Source is also described.

• In Chapter 4 a semi-quantitative model that allows to estimate the EWS time delay in

photoemission from a spin-degenerate state by measuring the spin polarization of the

photoelectrons as a function of binding energy is presented. The case of spin-polarized

states is also briefly discussed. In particular, the two quantities τEWS and τs
EWS are

discussed and their link to the spin polarization is shown.

• In Chapter 5 spin-resolved photoemission experiments on a crystal of copper are shown

and discussed. Time delays of |τs
EWS| ≈ 26 as and |τEWS| ≈ 11 as are found.

• In Chapter 6 similar results are presented for the cuprate superconductor Bi2Sr2CaCu2O8+δ.

The found EWS time delays are at least three times larger than in Cu(111). Recent exper-

iments performed with laser-SARPES will be also shown.

• In Chapter 7 the main findings of the Thesis are summarized, with a focus on the

interpretation of time delays in photoemission, and with an outlook of future possible

applications of the method presented in this Thesis.

• In Appendix A some explicit expressions of formulas introduced in Chapter 4 are given,

whereas in Appendix B further studies of spin polarization from spin-degenerate states

are briefly presented for a quasi-free-standing monolayer of graphene.
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1 Introduction

“Quid est ergo tempus? Si nemo ex me quaerat, scio; si quaerenti explicare velim, nescio.”

“What then is time? If no one asks me, I know; if I wish to explain it to someone asking it,

I do not know.”

- Saint Augustine, Confessions, 11.14.17 (ca. 400)

In this Chapter the issue of dealing with time in quantum mechanics is briefly reviewed.

Different attosecond resolved spectroscopy techniques are described, and the important

concept to this Thesis of the Eisenbud-Wigner-Smith time delay is explained. The idea of

indirectly evaluating time delays in photoemission by the measurement of spin polarization,

the main result developed in the following Chapters, is introduced.

1.1 The problem of time in quantum mechanics

The nature of time has certainly been a central question since the very beginning of phi-

losophy in the antiquity 1 . With the advent of modern science, when the description of

the natural world started to be carried out with mathematical laws, Galilei’s relativity and

Newton’s mechanics required time to be a background parameter, a universal and absolute

coordinate to which a system could be referred to. This concept, which accurately matches

the daily experience of time flowing, lasted for almost 300 years, until the scientific revolution

initiated by Albert Einstein. However, even within the special relativity frame where time

is modified depending on the velocity of the observer, it can still be considered as a global,

external parameter once Lorentz transformations are carefully taken into account. It is only

with general relativity that time - together with space - becomes a quantity that is influenced

by the presence itself of matter, and thus cannot be considered as a global parameter.

1 Among many renowned examples, it is worth to mention at least the following ones. Anaximander, one of the
first known philosophers, already understood the importance of describing phenomena as a function of time [1].
Zeno of Elea pointed out the impossible consequences of dividing time into infinitesimal durations in the arrow’s
paradox [2]. Plato introduced the idea of time as an abstract frame to which movements are referred to [3]. For
Aristotle, on the contrary, time has a logical meaning only in relation to movement [2], so that it could be defined
as the measure of "kinetic length" [4].
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Chapter 1. Introduction

In the realm of quantum mechanics, on the other hand, time remains a global classical

parameter, used to describe the dynamical equations by which all the physical observables vary.

Such classical treatment of time in quantum mechanics is at the basis of the irreconcilability

of this theory with general relativity, one of the biggest open questions of our times. A second

connected big question concerns the direction of time. In daily experience, time is perceived

as unavoidably flowing in only one direction, because of thermodynamical irreversibilities,

but on a mathematical level quantum mechanics equations, as well as classical ones, can work

correctly in both ways 2 .

Besides these problems connecting quantum mechanics to other realms, another main issue

is raised within quantum mechanics itself. All the physical observables (energy, momentum,

angular momentum...) are associated to self-adjoint operators on a Hilbert space. This

naturally occurs also for the position of a particle: x −→ x̂. Time, on the other hand, cannot

be promoted to an operator, but has to merely remain a scalar parameter. This argument has

been made by Wolfgang Pauli [6] and has become the starting point of every discussion about

time in quantum mechanics. He argued that since the Hamiltonian operator is often discrete

and bound, it is formally not possible to construct a self-adjoint operator t̂ that would satisfy

the canonical conjugate commutation relationship [Ĥ , t̂ ] =−i�. This implies that time is not

a physical observable [7]. Another curious difference between space and time can be seen in

a very basic concept of quantum mechanics. An existing quantum particle is guaranteed to

be found, at any time, somewhere in space by wavefunction normalization requirement (i.e.,�+∞
−∞ |ψ|2dr = 1). However, there is no equivalent guarantee that such particle will be found,

at a given position, at some point in time, even in an ideal eternal wait [8].

A consequence of these arguments involves the Heisenberg uncertainty principle. In fact, the

well-known energy-time relationship

ΔEΔt ≥ �

2
, (1.1)

even if it is commonly referred to as an Heisenberg uncertainty relationship, is only a general

property of Fourier transformation, and is not well defined in quantum mechanics because of

the absence of a time observable. A better formulation of the energy-time relationship is the

following [9]:

σĤσQ̂ ≥ �

2

∣∣∣∣d〈Q̂〉
d t

∣∣∣∣ , (1.2)

where σ represents the standard deviation, Ĥ is the Hamiltonian operator of the system

and Q̂ is any observable not explicitly dependent on time (∂Q̂
∂t = 0). Defining ΔE = σĤ and

Δt = σQ̂

|d〈Q̂〉/d t| (here the definition ofΔt already requires the classical variable of time), one then

obtains Eq. (1.1). This relationship is often referred to as Mandelstam-Tamm inequality [9, 10].

2 For a simple introduction to contemporary attempts to solve these issues and a nice discussion on the history
and philosophy of time, see Ref. [5].
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1.1. The problem of time in quantum mechanics

From Eq. (1.2) it follows that for a given uncertainty σĤ the uncertainty of any observable σQ̂

is related to the change in time of the expectation value of the observable itself. In other words,

the rate of change of any observable must be slow enough in order to have a good resolution

in the measurement of energy, which does not set any restriction at all to the actual value of a

measured time itself, once a measurement of time will be properly defined.

At this point, it is worth to mention that the differences between space and time in quantum

mechanics are more subtle, as nicely explained by Jan Hilgevoord [11]. Indeed, to be precise,

also space itself (in the sense of absolute coordinates, without considering the issue of general

relativity) is not an observable, whereas only position with respect to the frame is. One should

therefore rather consider the measurement of the duration of a time interval starting at some

time reference ("time-zero"), in the same way as position being the length of a distance

from some reference. Thus, the time equivalent of the position operator x̂, usually called

arrival time, is not a self-adjoint operator, but it can be shown to be at least a symmetric

operator [12]. Also, it is possible to define several operators associated to time durations,

usually called sojourn times and time delays, which are on the other hand associated to

physical observables. This simple distinction highlights the important issue of defining time-

zero for a time measurement, which is a recurrent and crucial difficulty in experiments. Also,

it looks like that such simple naming nuance has solved the problem, but in practice different

physical situations require different definitions which are not always easy to make compatible

to each other [12, 13].

Without further discussing this extremely complex topic, the point here is that in standard

treatments of quantum experiments, one usually takes into account the time duration only

when looking at " macroscopic" classical time scales, in the sense of dynamical behaviour

of complex collective phenomena. The flow of time can then be seen as in daily experience.

On the other hand, when considering very basic quantum processes, time is not explicitly

taken into account, and changes of states of a system are considered to be instantaneous.

The term "macroscopic" should not be misleading: down to the picosecond (10−12 s) or even

femtosecond (10−15 s) regime, processes such as tunneling, radiation-matter interaction, or

the wavefunction collapse itself, can be safely considered to be instantaneous. This pragmatic

solution has been the workaround of the issue for many decades, since it was anyway impossi-

ble to try to measure such extremely short time durations. Given that the timing of quantum

phenomena on a theoretical level is primarily restricted to single events, the debate about the

instantaneity of "quantum jumps", as named by Niels Bohr, has been relegated for decades to

academic thought experiments [13]. For instance, Erwin Schrödinger, despite being against

the idea of instantaneous quantum jumps, said in this regard: “We never experiment with just

one electron or atom or small molecule. In thought experiments we sometimes assume that we

do, this invariably entails ridiculous consequences (. . . ). In the first place it is fair to state that

we are not experimenting with single particles any more that we can raise Ichthyosauria in the

zoo” [14]. Nowadays though, even if we do not breed dinosaurs yet [15], we do make experi-

ments on individual systems. Also, we even manage to reach extremely small time resolution
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Chapter 1. Introduction

in ensemble experiments. Therefore two main points can be raised against instantaneous

processes.

First, they are still not satisfactory. Even without considering the impossibility to define

instantaneousness because of general relativity, it is difficult to accept that, for example, at

the instant a photon gives its energy to an electron, at that very same instant the electron has

already acquired that energy. This is what an instantaneous transition would imply, which

goes against conservation of energy, and thus there must be some time delay between the

two situations. But what happens in between? A continuous change sounds tricky, since

it is not clear what would happen to quantized entities such as energy. Thus one could

consider theories where the flow of time itself is quantized, so that a small but finite lapse is

introduced. The lowest possible limit for such "quantum of time" would be the famous Plank

time: tP ≈ 5.4×10−44 s (tP is related via the speed of light to the Plank length �P , which is the

Compton length of a particle of mass m when it is of the same order as the Schwarzschild radius

of an object with mass m, and it is defined by universal constants). Other more advanced

models introduce the quantum "chronon" as the time where light travels along the classical

radius of an electron, or modifications of this idea [16, 17], which gives something of the order

of ≈ 10−23 s. Such time scales are nowadays impossible to probe, and are anyway still much

shorter than what one would actually simply estimate for quantum basic atomic processes,

which should occur in the attosecond (10−18 s) domain. Very naively, in 1 as light travels for

about 3 Å, which is of the order of an atomic size. Also, it is instructing to see how the unit

of time in atomic units is ta.u. = �

α2me c2 ≈ 24 as, which corresponds to the time it takes to an

electron to perform one orbit of Hydrogen atom in the Bohr model.

Second, and far more important: "Eppur si move!" 3 , i.e., in this context, despite all the

theoretical considerations we do measure time delays as extremely short as a few attoseconds.

In the past fifteen years, advances in laser technology have opened up the possibility to

investigate electronic dynamics in matter, in a new field called attosecond physics [18–22]. The

processes that are tackled involve radiation-matter interaction, and can be divided mainly into

two families: radiation-driven tunneling ionization, and photon absorption. In the first case,

the interaction with the light electric field bends the atomic potential so that electronic bound

states are allowed to tunnel outside the atom, and in some cases to eventually recollide back

because of a resonant process with the oscillating electric field [23]. This allows to study the

equivalent travel time of an electron during the tunneling process, a fundamental question in

the history of quantum physics [24]. It involves the introduction of time as a complex quantity

and there is not yet a fully accepted answer [25–30]. In the second case, the photon of the

light provides enough energy to an electron to escape from the bound state, a process that is

usually called photoionization in the case of atomic systems, and photoemission in the case of

condensed matter targets. In this Thesis mainly the photoemission process will be considered,

but a link to photoionization will be often made. Whereas the photoemission process will

3 "Still, it moves!", famous quote by Galileo Galilei about Earth after his forced abjuration of heliocentrism to
the Inquisition. It has actually be invented by Giuseppe Baretti in a reconstruction of the episode in his anthology
Italian Library, 1757.
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1.2. Attosecond-resolved photoemission spectroscopy
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Figure 1.1: (a) Scheme of the streaking experiment (modified from Ref. [38]). (b) An example
of a streaking spectrum on W(110) (from Ref. [36]).

be described in more details in Chapter 3, in the next Section only the salient features of

attosecond-resolved photoemission techniques will be shortly presented.

1.2 Attosecond-resolved photoemission spectroscopy

All the current attosecond-resolved techniques are based on a pump-probe setup that relies

on a ≈ 100 as ultraviolet (UV) laser pump and a phase-controlled few-cycle femtosecond

infrared (IR) laser probe, which are temporally closely correlated because of the high harmonic

generation process they rely on [31–33]. There exist two main different techniques [34]:

• Streaking. In attosecond streaking [31, 33, 35–37], a single UV pump pulse photoemits the

electrons, that are then accelerated or decelerated by the electric field of the low intensity

IR pulse as a function of pump-probe controlled delay. The intensity of the IR pulse is high

enough to "streak" the energy of the electron wavepacket in the continuum, but has to be low

enough not to affect the bound electrons. In Fig. 1.1(a) the scheme of a streaking experiment

is shown, while in Fig. 1.1(b) a typical energy streaked spectrum is displayed. The spectrum is

from Ref. [36], which reports attosecond streaking on W(110).

• RABBITT. The "reconstruction of attosecond beating by interference of two-photon transi-

tions" (RABBITT) [32, 39–41] is based on a train of UV pulses and an intense (3×1011 W/cm2)

IR pulse. They induce a two-photon transition that shifts the energy of the electron excited by

the UV laser at energies in between two neighbouring harmonics, the so-called side bands.

The intensity of these side bands will oscillate with the pump-probe controlled delay because

of quantum path interference according to perturbation theory. In Fig. 1.2(a) the scheme of
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Chapter 1. Introduction

0 1

)sf( yaleD
B

S .
mro

N
81

.tni
-8 -6 -4 -2 0 2 4 6

0

0.5

1

)
( ygrene notoh

P
RI

-8 -6 -4 -2 0 2 4 6

16

18

20

22

24

26

-500

-400

-300

-200

-100

0

100

200

300

400

Photon energy (eV)
26 28 30 32 34

IR =15˚

IR =75˚

Experimental
MC

)sa(
yale

D
q2

-500

-400

-300

-200

-100

0

100

200

300

)sa(
yale

D
C

M

(a) (b)

Number of
electrons

El
ec

tr
on

 e
ne

rg
y

Photon energy

qmin qmax

Figure 1.2: (a) Scheme of the RABBITT experiment (from Ref. [43]). (b) RABBITT spectrum for
the 3d valence band of Cu(111) and measured relative time delays for two geometries with
respect to a atomic Ne gas reference. From Ref. [42].

the RABBITT experiment is shown, while in Fig. 1.2(b) an example of measurement is reported

from Ref. [42]. In this experiment, the time delay of the 3d valence band of Cu(111) between

different experimental geometries has been investigated.

Several variation of these techniques are possible, with different proposed algorithms for the

data analysis. In particular, it is crucial to be able to disentangle the time information of the

probed material from additional time delays introduced by the specific measurements, which

are of different kind, and not always easy to identify. It is also worth to mention an interesting

variant of the (linear) streaking technique, namely the angular streaking, also called attoclock:

in this case the IR polarization is circular instead of linear, and the electrons are thus streaked

in a direction in space that depends on the direction of the rotating electric IR field, which

therefore acts as the hand of a clock [25, 26, 44, 45].

Many different systems have been studied in the past few years, ranging from atomic targets to

solid state materials. Typical values of time delays that are obtained are of the order of decades

to hundreds of attoseconds. For example, about ≈ 10 as have been measured for the time

delay between the He+ 2s1/2p1 shake-up transition and the direct He 1s2 photoionization

transition [38]. A time delay of ≈ 100 as has been found between the 4 f core levels and the

conduction band of W(110) [36]. Recently, experiments on WSe2 have shown delays of ≈ 50 as

for the W 4 f core level compared to the Se 4s core level [46]. In Cu(111), the time delay from the

d bands under two different experimental geometries has been measured to be ≈ 330 as [42].

Notably, in this case there is a mismatch of about 50 as with simulations, which has been

ascribed to the fact that the absolute time delay of the photoemission process has not been

taken into account [42]. It is possible to compare this value with the results presented in

Chapter 5, even though there the sp band of Cu(111) has been considered.

Here, for the purposes of this Thesis it is only important to underline the following: because

of their pump-probe nature, all the attosecond-resolved spectroscopy experiments can only
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1.3. The Eisenbud-Wigner-Smith (EWS) time delay

probe a relative time delay between some electronic state under consideration and some

other reference. Such reference could be a different electronic state of the system [36], or a

different system [47], or the same state under a different experimental condition [42], but

no information can be directly extracted about the absolute time information, because of

the nature of a pump-probe experiment. Only recently, a way to access absolute time delays

has been proposed, which however has to rely on theoretical result as an input [38, 48]. The

word "absolute" should not generate confusion: a time delay τ describes a time duration, as

explained in Section 1.1, and therefore still depends on time-zero. In particular, time-zero will

be the instant when the considered process begins, and is not necessarily easy to define in the

experiment [37]. Still, the point is that attosecond-resolved experiments can directly measure

only time delay differences Δτ between different processes.

At this point it is necessary to define an expression for the time delays that are probed in

the photoemission process, which will be done in the following Section in analogy with the

process of particle scattering.

1.3 The Eisenbud-Wigner-Smith (EWS) time delay

In the context of elastic scattering of particles, the concept of time delay as an observable was

first heuristically introduced by Leonard Eisenbud in 1948 in his (unpublished) PhD thesis [49]

under the supervision of Eugene Wigner. Such time delay is interpreted as the "sticking time"

of an incoming particle, because of the formation of a transient quasibound state before

the particle leaves the interaction region of the scatterer. As shown by Wigner, in the simple

case of single channel scattering, one can construct a time delay operator by considering the

incoming and outgoing wave packets and their relative phase shift φ [50], and obtain

t̂ �→ 2�
d

dE
φ(E) . (1.3)

As shown in Fig. 1.3(a) from Ref. [19], the phase shift φ between a free electron wave function

(gray) and the one of a Wentzel–Kramers–Brillouin (WKB) solution to the attractive potential

V0 (black) varies with the kinetic energy of the particle. The time delay can then be evaluated

with Eq. (1.3).

The expression above was extended by Felix Smith in order to consider multichannel scattering.

For an incoming wavefunction ψi n and an outgoing wavefunction ψout , the scattering matrix

S is such that ψout =S ψi n . The time delay operator [51] is given by

t̂ �→ −iS †(E)
d

dE
S (E) , (1.4)

where the dagger symbol indicates the conjugate transpose of the matrix. Eq. (1.3) can be

reobtained by considering that, in spherical symmetry, the single channel scattering ma-

trix is diagonal in the angular momentum � representation, with S�(E) = e2iφ�(E) [22]. The
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Figure 1.3: (a) EWS model in scattering. (b) EWS model in photoionization. Figures modified
from Ref. [19].

expressions in Eqs. (1.3) and (1.4) and related ones historically go under the name of Eisenbud-

Wigner-Smith (EWS) time delay tEWS, or Wigner time delay for short.

Another way of interpreting the EWS time delay without making use of the S matrix is to

consider the group velocity vg of the crest of the outgoing wavepacket as the classical motion

of a particle. Eventually indeed, such particle will asymptotically follow the free particle

motion, with a trajectory described by r = vg (t − tEWS). Therefore the EWS time delay ideally

corresponds to the time difference between the actual scattered particle with respect to a very

same particle that would pass by the scatterer region without feeling the interaction potential.

As pointed out in Ref. [52], there is a small discrepancy in the notations used by Eisenbud and

Smith respectively, which has often been overlooked in literature. In Eisenbud’s work [49],

he considered also the case of scattering into multiple final states, and Smith pointed out

the equivalence of this with his multichannel scattering description [51]. However, the two

results are equivalent only when considering an absolute value: in the simple case of a single-

resonance two-channel problem one finds the same and positive time delay for the two

channels in the sense of Eisenbud, but same and opposite sign time delays according to Smith.

This issue will be again considered in Chapter 7.

The concept of EWS time delay in particle scattering can be extended to describe the photoion-

ization and photoemission processes, which is more suitable for the purposes of this Thesis.

The main idea is that the photoemission process can be considered as a "half-scattering"

process, in the sense that there only is the outgoing electron as a scattered wave in the contin-

uum after absorption of a photon, whereas there is no incoming wave packet, as illustrated

in Fig. 1.3(b). The physical meaning of time delay in photoemission will be examined in

Chapter 7. The fact that the initial state of the particle is a bound state instead of a scattering

state is reflected in the expression for the EWS time delay that is obtained from Eq. (1.4) by

writing the S matrix from perturbation theory applied to the photoemission process of a

one-electron system [22]. This leads to the expectation value of the EWS time delay, that is

τEWS = �
dφ

dE
= �

d�
{〈

ψ f
∣∣Ĥi nt

∣∣ψi
〉}

dE
, (1.5)
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1.3. The Eisenbud-Wigner-Smith (EWS) time delay

where a factor of 2 is missing with respect to Eq. (1.3). The letter τ has been used instead of

t to distinguish the half-scattering from the scattering process. In this case, the phase term

φ is the phase (i.e. the argument) of the complex matrix element M f i = Reiφ describing the

transition: φ=�
{

M f i
}=�

{〈
ψ f

∣∣Ĥi nt
∣∣ψi

〉}
. The quantity M f i will be described in Chapter 3.

When considering a many-electron system, Eq. (1.5) is generalized to the following:

τEWS ≈
∑

q �
d�

{
M q

f i

}
dE

∣∣∣M q
f i

∣∣∣2
∑

q

∣∣∣M q
f i

∣∣∣2 , (1.6)

where the sums are carried out for all the quantum numbers q of the remaining electrons

system in the final state 4 . The approximation consists in neglecting the energy derivative of

the radial part R of the matrix elements [22] (similarly to what it will be done in Section 4.3).

An important difference between the presented formulas for scattering and half-scattering

is that, in the initial work of Eisenbud, Wigner and Smith, Eqs. (1.3) and (1.4) were strictly

well defined only for a short-range (i.e. Yukawa-like) potential. On the other hand, the half-

scattered electron in photoemission will feel a long-range Coulomb-like potential, because of

the interaction with the positive charge left in the system. Therefore, it is required to extend the

discussion to long-range potentials, which has been done already for the problem of particle

scattering [53, 54]. In order to do so, one needs to introduce the Coulomb potential in the

scattering matrix S and to explicitly express the centrifugal potential 5 Vcentr. ∝ �(�+1)
r 2 . This

particular dependence on � has been recently observed in WSe2 [46]. The concept of EWS

time delay is thus extended to the so-called Coulomb time delay tEWS −→ tC [22], where one

finds

tC = tEWS+C +Δtln . (1.7)

The term tEWS+C is the actual time delay due to a phase shift because of the scattering process,

in strong analogy with the EWS time delay itself, which does not depend on the position r

of the electron. The additional term Δtln is a logarithmic correction that takes into account

an additional phase shift ∝ ln(2kr), which describes the Coulomb "drag" from the positive

charge left behind felt by the electron with wavevector k. In terms of classical trajectory

description, since the particle will feel the Coulomb interaction even at large distances, the

term Δtln is equivalent to the time delay occurring in a hyperbolic Kepler trajectory of an

object with fixed angular momentum [22].

4 This expression is necessary when more than two channels are available in the interference process described
in Chapter 4. In this Thesis, however, only two interfering channels will be considered for simplicity. See also the
footnote 1 in Section 4.1.

5 In order to solve the 3D Schrödinger equation, the solution is separated into radial part R and angular part
Y . The part Y is found to be given by the spherical harmonics, while for R one can define a new function u = r R
so that the radial equation becomes the 1D Schrödinger equation. In this case the potential is rewritten as

V −→V + �
2

2m
�(�+1)

r 2 . The additional term is called "centrifugal term" since it corresponds to a classical case that
gives rise to a repulsive centrifugal pseudo-force [55].
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The description of time delays in long-range potentials stays the same when moving to the

photoemission process. In this case, a measurement of a relative time delay between different

τC coincides with the measurement of ΔτEWS+C. One should therefore speak of the Coulomb

EWS-like time delay, but literature often refers to it as simply EWS time delay. Also, a possible

measurement of an absolute time delay implies that the measured time duration is not

anymore referred to the actual time zero, but to the time zero corrected by the term Δτln.

This last term will be considered again in Section 3.1.2 and in Chapter 7. The main focus of

the Thesis, however, will be on the term τEWS+C (simply called τEWS following the literature),

as it will be shown in Chapter 4. Another related quantity, τs
EWS, will be also introduced. A

discussion of the physical meaning of these time delays can be found in Chapter 7.

1.4 An indirect way to time delay

A conventional photoemission spectroscopy technique measures the energy of the emitted

electrons from a material after the interaction with electromagnetic radiation. An energy-

resolved measurement exploits the Fermi golden rule (see Section 3.1.1), where the photoe-

mission intensity depends on the modulus square of the matrix elements M f i , thus loosing

information about the phase term. From this, it looks like that the only way to access phase

shifts and therefore time delays is to use pump and probe setups, where one does not look

at the eigenstates of a system but at all its possible time-dependent responses. However, if

other quantum numbers will depend on the phase of the matrix elements, by measuring the

corresponding physical observables it will still be possible to access the phase information

without direct time-resolved experiments, and indeed this is the case.

An example is the momentum of the photoelectrons: it can be shown [56] that the differential

photoemission cross-section, i.e. the angular distribution of the electrons, does actually

depend on the phase term, too. Therefore one can, in principle, extract the phase information

by measuring the angular distribution of the emitted electrons. This is a difficult experiment,

but can be performed for atomic and molecular levels [57–59]. UV photoelectron diffraction

(UPD) experiments show that it is possible to retrieve the phase information by circular

dichroism in orbitals from non-chiral molecule [60,61]. However it is intrinsically very difficult

for dispersive states of a solid, since in this case the angular distribution unavoidably also

depends on the energy-momentum dispersion relationship.

Another quantum number that carries the phase information is the spin of the photoelectrons.

Indeed, also the spin polarization of the beam of electrons emitted at a certain angle is a

function of the phase of the matrix elements [56, 62]. Therefore it is in principle possible to

retrieve the phase information from the spin polarization from non-spin-polarized states.

The dependence of the spin polarization as well as of the differential cross-section on the

phase can be found by using once again a half-scattering formalism, as it will be presented in

Section 3.3. Thus, in order to understand the origin of this spin polarization in photoemission,

one needs first to study the role of spin in particle scattering, a topic that will be briefly

10



1.4. An indirect way to time delay

reviewed in Chapter 2. The determination of the phase information from the measurement of

spin polarization has been extensively performed in atomic photoionization [63, 64]. To some

extent also the case of photoemission from solids has been considered [65, 66], but the lack of

energy and momentum resolution has been a limitation in the past. With the development of

setups with better resolution the focus has been put mainly on the study of materials where

the spin polarization is a physical property of the initial state.

The possibility to extract information on time delays from the determination of phases has

been proposed only recently in the literature [67]. The estimate of EWS time delays in photoe-

mission without a direct time-resolution in the experiment from the measurement of the

spin polarization of electrons emitted from spin-degenerate dispersive states of a solid is

the main result of this Thesis. A semi-quantitative relationship between spin polarization and

time delay will be presented in Chapter 4, whereas experimental results on different materials

will be reported in the later Chapters.
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2 Spin polarized electrons

“Please add a few words of explanation to your puzzle, such as what’s really going on.”

- James Frank, about the Stern-Gerlach experiment

The main results of this Thesis are based on spin-resolved photoemission spectroscopy. How-

ever, it is useful to first discuss the role of spin polarization in the physical phenomenon of

electron scattering, since it plays a dual crucial role throughout the whole Thesis: it is at the

basis of the spin detector used in the experiments, as described in Section 3.2.1, and at the

same time it is at the origin of the interference effect described in Section 3.3 and Chapter 4.

Therefore, in this Chapter the basics of elastic relativistic electron scattering are summarized

by using the density matrix formalism and the Dirac equation. Most of the results will not be

derived in detail, but simply presented in the lights of their usefulness for later Chapters. The

main reference for this Chapter is the textbook Polarized Electrons, 2nd edition, by Joachim

Kessler [62].

2.1 The spin quantum number

In their famous experiment in 1922 [68], Otto Stern and Walther Gerlach proved for the

first time the phenomenon called space quantization [55]. A beam of silver atoms was sent

through a region with non-uniform magnetic field along z, a direction perpendicular to the

trajectory. Since the atoms were neutral, the only force experienced was the force acting on

a magnetic dipole μ: Fz = ∂Bz
∂z μz . In classical physics, the z component of μ can have any

value from −μ to +μ, since the orbital angular momentum L of a classical atom can have

any orientation in space relative to a given axis. The classical prediction was therefore a

continuous band of silver atoms collected on a detector plate spread along the z direction.

On the other hand, the quantum mechanics prediction by using the Bohr atomic model was

that the z component of the orbital magnetic dipole μ� must assume only discrete values,

since the associated z component of the orbital angular momentum L is quantized: Lz = m��.

In particular, the prediction is μ�z = −g�μbm�, where the g-factor is g� = 1, μb is the Bohr

magneton, and m� is the magnetic quantum number associated to the orbital quantum

number �: m� =−�,−�+1, ...,0, ...,�−1,�.
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Chapter 2. Spin polarized electrons

Figure 2.1: Famous postcard by Walther Gerlach to Niels Bohr (8th February 1922): "Attached is
the experimental proof of directional quantization. We congratulate you on the confirmation
of your theory". Left and right images show the collected silver atoms without and with applied
magnetic field in their path to the detector, respectively. Image from Ref. [69].

The result of the experiment was the splitting of the silver atoms into two regions, up and

down along z (horizontal direction in Fig. 2.1), which qualitatively proves the quantization of

the spatial orientation of the angular momentum, but does not quantitatively agree with the

prediction, since the value m� = 0, which is always allowed, was not observed. In 1925, in order

to explain the fine structure of optical spectra in alkali atoms George Eugene Uhlenbeck and

Samuel Abraham Goudsmit proposed the existence of an intrinsic magnetic dipole moment

in the electron, which has the z component described by a new quantum number ms =
−1/2,+1/2 [70]. A similar experiment to the Stern-Gerlach was performed by T. E. Phipps and

J. B. Taylor in 1927 with a beam of hydrogen atoms [71]. It unambiguously showed that the

measured magnetic dipole moment was related to the electrons in the atoms, since at the

used temperature �= 0 and the measured μ was of the order of μB , which is defined for an

electron mass.

The combination of these results lead to postulate an inherent angular momentum S for

the electron, defined as spin. In analogy to the orbital angular momentum L, the following

relationships hold for the spin:

S =
√

s(s +1)� , with s = 1/2, (2.1)

Sz = ms� , with ms =−1/2,+1/2, (2.2)

μs =−gsμb

�
S , with gs = 2. (2.3)
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2.1. The spin quantum number

It has to be pointed out that all the particles that together with the electrons make up the

ordinary matter, namely protons and neutrons, also have a spin quantum number s = 1/2.

However, in the family of particles in high energy physics, as well as in the zoo of quasiparticles

(i.e. collective excitation phenomena described as equivalent particles) in condensed matter

physics, the spin quantum number can have other values than 1/2, and is in particular integer

or semi-integer, which distinguishes the two families of bosonic and fermionic particles,

respectively. Throughout this Chapter, though, only the particular case of s = 1/2 particles will

be considered.

Spin-orbit interaction

Because of the motion of an electron with respect to the nucleus of an atom, in the electron

rest frame the electron experiences a magnetic field generated by the motion of the nucleus

that is proportional to the electron orbital angular momentum L. The interaction of the

magnetic dipole μs with such magnetic field is called spin-orbit interaction, and the magnetic

dipole energy ΔESO =−μs ·B is called spin-orbit energy, which is ΔESO ∝ S ·L in the case of a

central potential experienced by the electron. The torque acting on μs will make both L and S

undergo a precessional motion with the orientation of one depending on the orientation of

the other. The result is that their vectorial sum, called total angular momentum J = L +S, has

a fixed magnitude J and fixed z component Jz .

On the nature of spin

It is interesting to notice that, in most of the textbooks, spin is introduced as an "intrinsic",

or "internal" property of a particle, pretty much at the same ontological level of mass and

charge. In particular, the distinction with the "extrinsic" orbital angular momentum L is often

pointed out: whereas L is an angular momentum due to the rotational movement of a particle,

S is an angular momentum only to the extent that it couples with L to form the total angular

momentum, but is purely a quantum property without any classical analog. It is indeed true

that spin does not arise from the rigid rotation of a body: a simple calculation would show that

the rotation of an electron (considered as an extended sphere with a plausible estimated radius

instead of a point particle) around its axis would exceed the speed of light by several orders of

magnitude in order to obtain an angular momentum equal to �/2. It thus looks like that since

the early years of quantum mechanics there has been no improvement in the understanding

of the nature of spin, which is merely introduced ad hoc as an intrinsic property. Indeed, even

when considering the relativistic Dirac equation (see Section 2.3.1) where spin naturally arises

from the mathematics by imposing the conservation law of angular momentum, no direct

insight in the physical origin of it is usually given.

Nevertheless, as explained in Ref. [72], there exists since many decades a physical interpreta-

tion of the spin which is completely consistent with standard quantum mechanics. However,

since it was not emphasized at the time of the discovery and since it requires advanced quan-
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Chapter 2. Spin polarized electrons

tum field theory, it is often not even mentioned in textbooks. In the following, a brief sketch of

the interpretation is given without rigorousness.

In Maxwell classical electrodynamics, the Poynting vector of a circularly polarized wave with

finite transverse extent, as a beam of cylindrical shape propagating along z, has a component

that is perpendicular to the wave vector. The circulation of energy flow around the propagation

direction is associated to an angular momentum Sz =U /ω where U is the energy of the wave.

By introducing the energy quantization condition U = �ω, one thus find the quantized spin

angular momentum Sz = � associated to a circularly polarized photon. If the beam is not

centered around z or has an asymmetric shape, there will be an additional "orbital" angular

momentum.

By analogy, F. J. Belinfante showed in 1939 [73] that the so-called momentum density vector of

an electron (the equivalent of the Poynting vector, which is defined in Dirac theory as some

given functional of the electron wavefunction) has two independent terms associated to the

circulating flow of energy density in the rest frame of the electron. This gives rise to two

distinguishable angular momenta, the orbital angular momentum and one that is calculated

to be as �/2 times the Pauli vector operator σ (see Section 2.1.1), that is the spin angular

momentum. For completeness, it has to be mentioned that already in 1928 V. W. Gordon had

shown [74] with a similar argument that the magnetic moment of the electron is associated to

a circulating flow of charge, and it happens to be proportional to the spin itself.

Therefore, ultimately, the spin of a particle does not have the same ontological status as the

mass or the charge, but can be derived from them. Also, spin can be fully interpreted as an

angular momentum in the sense of rotational motion: only, as circulation of energy flow

instead of rotation of a rigid body.

2.1.1 Spin polarization

Because of the commutation relationships for the spin operators
[
Ŝx , Ŝ y

]= i�Ŝz and its cyclic

permutations, only one quantization axis can be chosen along which a component of the spin

S of the electron is determined during a measurement, while the information on the other two

components will be lost. According to Eq. (2.2), the result of the measurement will be either

+�/2 or −�/2, which are usually referred to as "up" and "down" respectively. However, three

separate measurements over an ensemble of electrons can of course give information about

the average distribution of all the three spatial components. In general, free electrons can

have their spin with arbitrary orientation in space, so that the measurement over an ensemble

will average out. However there is the possibility that a beam of electrons produced in some

physical process will have the two possible spin states along a certain direction that are not

equally populated. This is called a spin polarized electron beam, and the ensemble quantity
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2.2. The Pauli representation of spin

spin polarization along the direction i = x, y, z is introduced as the following:

Pi =
N ↑

i −N ↓
i

N ↑
i +N ↓

i

, (2.4)

where N ↑ and N↓ is the number of electrons with spin along i being "up" and "down", respec-

tively. As an average quantity, all three spatial components of the spin polarization vector can

be determined by performing three sets of measurements.

2.2 The Pauli representation of spin

In order to describe the quantum mechanical properties of the spin vector, it is useful to

introduce the two-component term of the wavefunction χ= (a
b

)
, named spinor, together with

the so-called Pauli vector σ̂= 2
�

Ŝ, of which the three spatial components are the three Pauli

matrices:

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
, (2.5)

which are chosen in such a way to make z the quantization axis. In such coordinate system, one

finds that the eigenvalues of σz are +1 (corresponding to +�/2 in terms of Ŝz ), associated to the

eigenstate χ+ = (1
0

)
(i.e. "up" along the z direction) and −1, associated to the other eigenstate

χ− = (0
1

)
(i.e. "down" along z). A generic spin state can then be written as superposition of this

two states:

χ=
(

a

b

)
= a

(
1

0

)
+b

(
0

1

)
= aχ++bχ− , (2.6)

where the normalization of the wavefunction requires that
〈
χ
∣∣χ〉= |a|2 +|b|2 = 1. The param-

eter a can be interpreted as the probability of finding the eigenvalue +1 if a measurement

of the spin along z is performed, and similar for b. If one performs a measurement along

x or y , the outcome will still be ±�/2, as it can be easily calculated that ±1 are eigenvalues

also for σx and σy . The two eigenvectors in the new basis will be χ+
x = 1�

2

(1
1

)
and χ−

x = 1�
2

( 1
−1

)
for the measurement along x, and χ+

y = 1�
2

(1
i

)
and χ−

y = 1�
2

( 1
−i

)
for the measurement along

y . In these two new bases, the generic spinor χ can be written as a superposition of the two

corresponding eigenstates as

χ=
(

a

b

)
= a +b�

2
χ+

x + a −b�
2

χ−
x = a + i b�

2
χ+

y + a − i b�
2

χ−
y . (2.7)

In order to understand the direction in space e = (sinϑcosϕ, sinϑsinϕ,cosϑ) of a given spinor,

where ϑ is the polar angle from the z axis and ϕ is the azimuthal angle from the x axis in the
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x y plane, it is useful to solve the eigenvalue equation σ̂ ·eχ=λχ. This yields

χ=
(

a

b

)
=
(

cos ϑ
2

sin ϑ
2 eiϕ

)
(2.8)

for the eigenvalue +1, while the solution for −1 corresponds to the spin pointing towards −e.

The spinor representation can be used to determine the spin polarization vector P by evaluat-

ing the normalized expectation value of the Pauli vector:

P =
〈
χ
∣∣σ∣∣χ〉〈
χ
∣∣χ〉 . (2.9)

By combining this with Eqs. (2.5) and (2.8), the explicit expressions for the three spatial

components of P can be obtained:

Px = a∗b +b∗a

|a|2 +|b|2 , (2.10)

Py = i (b∗a −a∗b)

|a|2 +|b|2 , (2.11)

Pz = |a|2 −|b|2
|a|2 +|b|2 . (2.12)

The total amount of spin polarization then becomes P =
√

P 2
x +P 2

y +P 2
z =

√
|a|2 +|b|2, which

is equal to 1 since the pure state
∣∣χ〉 that describes the beam has been considered.

2.2.1 The density matrix formalism

When it is needed to describe a beam with spin polarization smaller than 1, that is a system

which is not in a pure spin state but a statistical mixture of them, it is useful to make use of the

so-called density matrix formalism. Without entering in the mathematical derivation (which

can be found in Ref. [62]), the following formulas will be only reported.

For a statistical mixture of spin states χn , the total spin polarization can be evaluated as

P =
∑
n

〈
χn
∣∣σ∣∣χn

〉
∑
n

〈
χn
∣∣χn

〉 = tr{ρσ}

tr{ρ}
, (2.13)

where tr{M } indicates the trace of a matrix M , and ρ is the so-called density matrix, which is

defined as

ρ =∑
n

∣∣χn
〉〈

χn
∣∣=∑

n

(
|an |2 anb∗

n

a∗
nbn |bn |2

)
= 1

2
(�2 +P ·σ) , (2.14)
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where �2 is the 2x2 identity matrix. The elements of the matrix ρ have an important physical

meaning. The diagonal elements represent the probability of finding the particle in the

corresponding basis state, in fact

tr
{
ρ
}∝ (N ↑

i +N ↓
i ) , (2.15)

which will become useful in order to express the total intensity of the electron beam in later

Chapters. On the other hand, the off-diagonal elements are associated to coherent quantum

interference. In particular, the following statement can be made: if ρ is not diagonal in the

{
∣∣χn

〉
} representation, the system is said to be a coherent superposition of the basis states

{
∣∣χn

〉
}; if on the other hand ρ is diagonal, the system is an incoherent superposition [75].

2.3 Elastic relativistic electron scattering

In this Section the properties in terms of spin polarization of an electron beam during an

elastic scattering process in the relativistic regime 1 will be discussed. In particular, it will be

shown how the scattering process has the dual property of analyzing power and polarizing

power. In order to describe this, it is necessary to first introduce the Dirac equation.

2.3.1 The Dirac equation

The Schrödinger equation i�∂ψ
∂t =− �

2

2m∇2ψ for the wavefunction ψ can be obtained by sub-

stituting the corresponding operators of momentum and energy p̂ :→−i�∇ and Ĥ :→ i�∂ψ
∂t

into the expression of the Hamiltonian function for a free particle H = p2/(2m). By repeating

this for the relativistic energy H 2 = c2∑
μ

p2
μ+m2c4 (μ = x, y, z), one obtains a second-order

differential equation in t , which requires the boundary condition not only for ψ but also for

∂ψ/∂t , and it is therefore difficult to solve. However, one can split the obtained equation into

the product of two linear expressions and consider them individually. This leads to the Dirac

equation for a free particle:

[
i�

∂

∂t
+ i�c

(
αx

∂

∂x
+αy

∂

∂y
+αz

∂

∂z

)
−βmc2

]
ψ= 0, (2.16)

which is correct only if the choice of the parametersαμ andβ is such thatαμαμ′+αμ′αμ = 2δμμ′ ,

αμβ+βαμ = 0 and β2 = 1,in order to be consistent with the second-order differential equation.

These conditions cannot be satisfied with scalar numbers, but it is possible with 4x4 matrices:

αμ =
(

0 σμ

σμ 0

)
, β=

(
�2 0

0 �2

)
. (2.17)

1 In the context of condensed matter, despite the energies at play are usually only of the order of eV or less, the
Fermi velocity of an electron is of the order of ≈ c/100 given its small mass. Anyway, the term relativistic is used
in the sense that corrections due to the spin-orbit (SO) coupling are considered (since, as it will be shown in this
Section, SO coupling naturally arises from relativistic treatment of quantum mechanics).
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Since the matrices are 4x4, the wavefunction in Eq. (2.16) has to have four components. It can

be shown that the general form of a plane wave associated to a particle of mass m with energy

E = �ω and momentum pz = �k is the following:

ψ=

⎛
⎜⎜⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎟⎠= ei (kz−ωt )

⎡
⎢⎢⎢⎢⎣A

⎛
⎜⎜⎜⎜⎝

1

0
cpz

E+mc2

0

⎞
⎟⎟⎟⎟⎠+B

⎛
⎜⎜⎜⎜⎝

0

1

0
−cpz

E+mc2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ . (2.18)

In order to understand the spin states described by this wavefunction, one needs to find the

spin operator Ŝ in the relativistic case, which can be done by exploiting the conservation law of

angular momentum. From Eq. (2.16) one can write the Dirac Hamiltonian H = cαp+βmc2+V ,

where the central potential V has been included and where α is the vector with the three

spatial components αμ. It can be shown that, contrary to the non-relativistic case, [L̂, Ĥ ] �= 0,

which means that L̂ is not a constant of the motion. It is therefore necessary to introduce

another operator Ŝ, defined by [Ŝ, Ĥ ] = −[L̂, Ĥ ], in such a way that it is possible to write

the conservation of total angular momentum law [L̂ + Ŝ, Ĥ ] = [ Ĵ , Ĥ ] = 0, which shows how

spin-orbit (SO) coupling (see Section 2.1) is intrinsic to the relativistic treatment of quantum

mechanics. By doing this, it turns out that Ŝ = �

2 σ̂
r , where σ̂r is the relativistic generalization

of the Pauli vector with 4×4 matrix spatial components:

σr
μ =

(
σμ 0

0 σμ

)
, with μ= x, y, z , (2.19)

where σμ are the non-relativistic Pauli matrices from Eq. (2.5). Now, by using the wavefunction

from Eq. (2.18) to solve the eigenvalue equation for σz , one finds that the two terms of Eq. (2.18)

are eigenstates for spin "up" and "down" along z, respectively. However, their superposition

does not allow to obtain an eigenstate ofσx orσy , contrary to the non-relativistic case. Because

of the spin-orbit coupling, an appropriate description of the spin polarization will work only in

the electron rest frame. Otherwise, in the laboratory frame one can calculate from Eq. (2.9) that

for a beam of electrons polarized along x [A = B = 1 in Eq. (2.18)], Px = γ−1 =
(
1+ Ek

mc2

)−1 �= 1,

where γ is the relativistic Lorentz factor. For example, for a kinetic energy Ek = 40 keV, one

obtains Px = 0.927.

2.3.2 Mott scattering

In order to describe the relativistic electron scattering in a central potential, a process that

goes under the name of Mott scattering, it is required to consider the Dirac equation with an

incident plane wave along z, and to look for solutions with the asymptotic form

ψλ
r→∞−−−−→ aλei kz +a′

λ(θM ,φM )
ei kr

r
(2.20)
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(b)

’

(a)

Figure 2.2: (a) Geometry of the Mott scattering. (b) Physical interpretation of the Mott scatter-
ing asymmetry in terms of spin-orbit potential correction (from Ref. [62]).

for each of the four components (λ= 1,2,3,4) of ψ. The angles θM and φM are the polar and

azimuthal angles shown in Fig. 2.2(a). The differential elastic scattering cross section is given

by the following expression:

dσtot

dΩ

.=σ(θM ,φM ) =

4∑
λ=1

|a′
λ|2

4∑
λ=1

|aλ|2
≈ |a′

1|2 +|a′
2|2

|a1|2 +|a2|2
, (2.21)

where the approximation is due to the fact that, according to Eq. (2.18), |a3,4|� |a1,2|. There-

fore the components ψ3 and ψ4 need not to be considered in the scattering problem, and only

the reduced Dirac plane wave has to be considered:

(
ψ1

ψ2

)
r→∞−−−−→

(
1

0

)
ei kz +

(
S11

S21

)
ei kr

r
(2.22)

for an electron with spin along z, where S11 and S21 are the scattering amplitudes. In particular,

S21, known as "spin-flip amplitude", accounts for the possibility of changing the spin direction

upon scattering because of the interaction with the magnetic field of the scatterer in the

electron rest frame because of the spin-orbit coupling picture. By repeating the same for an

electron with spin along −z, one can then look for the solution of an incident electron with

arbitrary spin direction by coherent superposition of the two cases ±z, and obtain ψ= (A
B

)
ei kz .

It is then possible to explicitly calculate the four scattering amplitudes as an infinite sum

of partial waves with different �, i.e. as functions of associated Legendre polynomials and

scattering phases (see Ref. [62]); for the purposes of this Chapter, however, it is sufficient to

describe such four complex quantities as two complex functions of the scattering angle θM :

S11 = S22 = f (θM ) and S21 =−S12e2iφM = g (θM )eiφM . It is now possible to write Eq. (2.21) in
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terms of the scattering amplitudes:

σ(θM ,φM ) = Itot (θM )

[
1+S(θM )

−AB∗eiφM + A∗Be−iφM

i (|A|2 +|B |2)

]
, (2.23)

where Itot (θM ) = | f |2 +|g |2 and S(θM ) is the so-called Sherman function [76]:

S(θM ) = i ( f g∗ − f ∗g )

Itot
, (2.24)

which is a real function. It has to be pointed out that since the functions f and g describe the

scattering amplitudes, they are not only function of geometry, but also electron kinetic energy

and scattering potential (i.e., substance of the scatterer), and therefore so is the Sherman

function. For completeness, the explicit expression of the Sherman function is here reported

for the scattering by an atomic nucleus as a function of atomic number Z , kinetic energy Ek

and scattering angle θM [77]:

S=
2αZ sin3 θM

2 ln
(
sin θM

2

)√
1− 1(

1+ Ek
mc2

)2

(
1+ Ek

mc2

)√
1−sin2 θM

2

[
1−sin2 θM

2

(
1− 1(

1+ Ek
mc2

)2

)
+παZ

√
1− 1(

1+ Ek
mc2

)2 sin θM
2

(
1−sin θM

2

)] , (2.25)

where α≈ 1
137 is the fine structure constant. For example, with Z = 79 (Au), Ek = 40 keV and

θM = 118◦, S = 0.0884. However, S does not always have this analytical dependence on Z ,

but for some elements it shows a considerable increase of the scattering asymmetry, so that

for example for Au a value of up to S = 0.33 has been computed [78] and S = 0.15 has been

measured [79]. At this point it is interesting to point out the reason why the scattered solution

depends on the azimuthal angle φM , contrary to the non-relativistic treatment with the

Schrödinger equation: because of spin-orbit coupling, the angular momentum conservation

law stands for the quantity J , and the spin-flip described by S21 implies a variation of Sz , that

has to be compensated by a variation of Lz . In spherical coordinates L̂z = L̂z (φM ), and thus

also σ will depend on φM .

As an example, the case of an electron beam fully polarized along x is considered. In this

case Eq. (2.23) becomes: σ = Itot (θM )
[
1−S (θM )sinφM

]
. It is clear that the scattering is

azimuthally asymmetric, and in particular the asymmetry is maximized for φM = 90◦ and

φM = 270◦. Such asymmetry is at the basis of the measurement of spin polarization of electrons

in a Mott polarimeter, as it is described in Section 3.2.1. A simple way of interpreting the

physical reason for the asymmetry is shown in Fig. 2.2(b). In the presence of spin-orbit

coupling, the scattering potential is modified by a term ∼ L ·S, which is therefore a positive or

negative correction depending on whether the spin is parallel or antiparallel to the angular

momentum, respectively. This makes less or more probable the scattering event in one

particular direction.
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2.3. Elastic relativistic electron scattering

It is useful to apply the density matrix formalism introduced in Section 2.2.1 in order to high-

light the link between differential cross-section, Sherman function and spin polarization. For

this, the spinor χ= (A
B

)
in the initial state is considered, and upon scattering it is transformed

into

χ′ =
(

A f −B g e−iφM

B f + Ag eiφM

)
=
(

f −g e−iφM

g eiφM f

)
χ

.=Sχ , (2.26)

where S is defined as spin scattering matrix. Now it is possible to evaluate the two density

matrix for the unscattered state ρ = χχ† and for the scattered state ρ′ =Sχχ†S†, where the

dagger symbol indicates the adjoint of the operator. By combining with Eq. (2.14) it follows

that

ρ′ =SρS† = 1

2
S(�2 +Pσ)S†tr

{
ρ
}

, (2.27)

and therefore one can rewrite the differential cross-section as

σ= tr
{
ρ′}

tr
{
ρ
} = 1

2
tr
{
S(�2 +Pσ)S†

}
= I (θM ) [1+S(θM )P ·n] , (2.28)

which follows from geometrical considerations after choosing ϕ= 0◦, and where n is the uni-

tary vector perpendicular to the scattering plane defined by the electron momenta before and

after scattering, �k and �k ′: n = k×k ′
|k×k ′| = (−sinφM ,cosφM ,0). The last expression in Eq. (2.28)

is the basic equation of Mott scattering, and it illustrates how the scattering asymmetry is

due only to the component of the polarization vector perpendicular to the scattering plane

Pn = P ·n =−Pt sinφM . The term Pt is the transverse component of P , as shown in Fig. 2.2(a),

and this shows how the longitudinal component Pz does not play a role in the asymmetry, as

it will be described in Section 3.2.1.

It is particularly interesting to consider the case of scattering of a beam of unpolarized electron

where P = 0. From Eq. (2.27) and Eq. (2.28) one finds σ = I (θM ), whereas by combining

Eq. (2.27) with Eq. (2.13) the spin polarization P ′ of the scattered beam can be obtained:

P ′ = 1

2
tr
{
SS†σ

} tr
{
ρ
}

tr
{
ρ′} = i ( f g∗ − f ∗g )

| f |2 +|g |2 n = S(θM )n . (2.29)

Therefore, the Sherman function has a dual physical meaning: it describes the asymmetry in

the scattering of a polarized beam but also the amount of polarization of a scattered unpo-

larized beam. This last result will become relevant in photoemission from spin-degenerate

states as described in Section 3.3. The more general case of a scattered polarized beam and its

consequences in photoemission are outlined in Section 4.6.
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3 Photoemission spectroscopy

“Solo dopo aver conosciuto la superficie delle cose, ci si può spingere a cercare quel che c’è sotto.

Ma la superficie delle cose è inesauribile.”

“It is only after you have come to know the surface of things, that you can venture to seek what is

underneath. But the surface of things is inexhaustible.”

- Italo Calvino, Palomar (1983)

In this Chapter, the basics of the photoemission process will be discussed. The experimental

setup used to perform the experiments presented in later Chapters will be briefly described,

with emphasis on the basics of the Mott spin polarimeter. The formalism introduced in

Chapter 2 will be employed to describe an interference process that gives rise to a spin

polarization when measuring spin-degenerate states.

3.1 The photoemission process

Since the discovery of the photoelectric effect by Heinrich Rudolf Hertz in 1887 [80], when he

observed that UV light could influence the electric sparks produced between two metallic

contacts [81], the photoemission process has played a central role in modern physics. As

proposed by Albert Einstein in 1905 [82] and demonstrated by Robert Andrews Millikan in 1914

[83] (milestone works that made them win the Nobel prize in 1921 and in 1923 respectively),

when a quantum of light, nowadays known as photon, hits the surface of a material, an electron

can absorb its energy and escape from the surface of the material with a maximum kinetic

energy of E max
k = hν−Φ. The energy of the photon is hν, where h is the Plank constant and ν

is the frequency of the light, while Φ is a material-dependent quantity called workfunction

(of the order of ∼ 5eV ), that can be seen as the potential barrier at the surface that prevents

electrons to be freely released from a solid. These electron are commonly called photoelectrons

and are said to be photoemitted from the material under investigation.

The electron inelastic mean free path (IMFP), i.e. the length an electron can travel in a material

without being inelastically scattered, is a function of the electron kinetic energy and rather

independent on the material considered. The plot of IMFP versus kinetic energy is shown in
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Chapter 3. Photoemission spectroscopy

Figure 3.1: The "universal curve": electron mean free path for different elements as a func-
tion of electron energy relative to the Fermi level. Adapted from [84], where the elements
considered are tabulated.

Fig. 3.1 and is known in literature as the "universal curve". For typical incident photon energies,

usually in the UV and soft X-ray range in order to have a reasonably high photoemission cross-

section, the mean free path is of the order of only a few nm, which makes any technique based

on the photoemission process definitely surface sensitive. Thus it is only in the 1960’s, after the

developments of ultra-high vacuum (UHV, p < 10−9 mbar) technology, that photoemission

became a mean to probe the electronic properties of a material, thanks to the work of Kai

Siegbahn (Nobel Prize in 1981) and many others.

By measuring the kinetic energy Ek and the momentum of the photoemitted electrons in

UHV one can infer the energy-momentum dispersion relationship of the electrons inside the

solid by exploiting energy and momentum conservation laws. This goes under the name of

photoemission spectroscopy (PES), or photoelectron spectroscopy. By indicating with k the

wave-vector of the electron inside the material and with K the one outside in vacuum, one

has the following well-known equations:

hν= Ek +|Eb |+Φs , (3.1)

Kx =
√

2mEk

�
sinθcosα= kx , (3.2)

Ky =
√

2mEk

�
sinθ sinα= ky , (3.3)

Kz =
√

2mEk

�
cosθ �= kz = 1

�

√
2m(Ek cos2θ+V0) . (3.4)
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3.1. The photoemission process

sample

(a) (b)

(c)

Figure 3.2: (a) Geometry of photoemission [the prime in the coordinate system is used to
distinguish it from the sample spin frame of Fig. 3.6(e)]. (b) Energetics of the photoemission
process, from Ref. [85]. (c) Photoelectron momentum inside (k) and outside (K ) the crystal.

A detailed discussion of these formulas can be found on many reviews about photoemission

(see for example Refs. [85–87]). The angles θ and α are defined in Fig. 3.2(a). Since the setup

used for this Thesis has the analyzer in a fixed position [see Fig. 3.6(e)], the angles are varied

by rotating the sample. Also, the sample coordinate frame in Fig. 3.6(e) is rigid with the sample

surface independently from α. Therefore in this Thesis the angle α is used to determine the

orientation of the Brillouin zone (BZ) of the crystal in reciprocal space, without entering the

definition of kx and ky . Simply, the polar angle θ that allows to access the different points of

the BZ will be different for kx and ky , and namely it will be θp (polar) if it scans along kx , and

θt (tilt) if it scans along ky [see Fig. 3.6(e)].

Eq. (3.1) is the Einstein’s formula for energy conservation, where Eb is the binding energy of the

electron inside the material, as shown in Fig. 3.2(b). The workfunctionΦs that enters in Eq. (3.1)

is not the Φ of the sample, but the one of the spectrometer. In fact in the experiment both

sample and spectrometer are grounded, thus their Fermi level has to coincide. Therefore the

vacuum level which the measured kinetic energy is referred to is the one of the spectrometer,

which will be at Φs above the Fermi level. Eqs. (3.2)-(3.4) can be obtained by considering that

the photoelectron outside the material is a free particle of momentum p = �k with kinetic

energy p2

2m , and by noticing that because of the translational symmetry conserved along x

and y at the interface between the material and the vacuum, K 2
x +K 2

y = K 2
∥ = k2

x +k2
y = k2

∥ .

Also, the momentum of the photon hν/c is neglected, since for energies in the UV range it

is very small if compared with typical Brillouin zone sizes, but it can be easily incorporated

for soft X-ray photoemission. On the other hand, as shown in Fig. 3.2(c), the momentum

component perpendicular to the surface is not conserved, and needs to be evaluated. Under

the free-electron final state approximation, the electron in the final state inside the material

is taken as a free electron so that E f = Ek +Φs = �
2

2m (k∥2 +kz
2)−|E0|, where |E0| determines
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Chapter 3. Photoemission spectroscopy

where in energy the bottom of the final state parabolic dispersion is placed with respect to

the Fermi level. By combining this with Eqs. (3.2) and (3.3) one finds the result in (3.4), where

V0 = |E0|+Φs is called inner potential. Several approaches are possible to determine V0. For

example, in literature [85, 86] this is often done by setting |E0| as the bottom of the valence

band, as it is shown in Fig. 3.2(b), since it corresponds to the bottom of the potential well set

by the crystal. However this simplification is often too rough, and the most common way

to experimentally determine V0 is to match the crystal periodicity in reciprocal space along

kz with the periodicity of the photoemission intensity as a function of hν. Another more

accurate experimental approach consists in combining several measurement on different

sample surfaces by using a triangulation method, which however cannot be applied when

different facets of the sample are not easily accessible [88].

Surface vs. bulk

At this point it is useful to point out that being a surface sensitive technique, PES can probe

only electronic state that are strong enough at the surface of a material. This includes 2D

surface states as well as 3D bulk states. The last ones, however, are not necessarily the same

as they are in the bulk of the crystal, since the presence of the surface modifies the local

potential to which these states are solutions. Thus any time "bulk states" are mentioned in

the PES context, they should be intended as "bulk-derived states at the crystal surface". In

extreme cases where the intensity is highly amplified because of the surface, they are often

called bulk-surface resonances. Also atomic core levels bring information about the chemical

composition at the surface, which is not necessarily the same as in the bulk. Finally, one

should always consider that while 2D states can be studied more naturally by PES because of

their intrinsic lack of kz dispersion, for the study of bulk states the kz dispersion and the issue

of not knowing the parameter V0 have to be taken into account.

3.1.1 The 3-step and the 1-step models of photoemission

A simple description of the photoemission process is the so-called 3-step model [89, 90]. It

consists in dividing the process into three separate steps: excitation of an initial Bloch state into

a final Bloch state by absorption of a photon, then traveling of the excited electron towards

the crystal surface, and finally transmission through the surface barrier to the vacuum to

become a free particle. The first step, when the dispersion of the final Bloch state is not known

from calculations, can be simplified by making the free-electron final state approximation

previously discussed. The last two steps are simply described by a probability of transport

and transmission, respectively, while only the first step contains all the information about

the material band structure. Whereas it can be often employed with good results to describe

many qualitative features, the 3-step model is an artificial separation of one single process as

a whole, and cannot highlight subtle quantitative variations of the photoemission intensity

and possible interference phenomena that can take place during the process. For this, one

needs to consider the 1-step model, where the photoemission is rigorously treated as a single
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3.1. The photoemission process

quantum mechanical coherent process. In this case, the final state reached by the electron

upon absorption of a photon is an excited state of the system that matches the boundary

condition of becoming a free-particle wavefunction at the interface with vacuum.

The photoemission intensity is described by the transition probability of optical excitation

Wf i given by the Fermi golden-rule:

Wf i =
2π

�
|〈ψ f

∣∣Ĥi nt
∣∣ψi

〉 |2δ(E f (k)−Ei (k)−hν) , (3.5)

where the δ function assures energy conservation, ψi and ψ f are the initial and final states

of energy Ei and E f respectively, and Ĥi nt is the transition operator describing the inter-

action with the photon. The matrix element in Eq. (3.5) can be rewritten as the integral�+∞
−∞ ψ∗

f Ĥi ntψi dr and its result is a complex number, which is useful for the following Chap-

ters to write as a radial term R and phase term φ:

M f i =
〈
ψ f

∣∣Ĥi nt
∣∣ψi

〉= Reiφ . (3.6)

The operator Ĥi nt can be expressed in perturbation theory by introducing the transformation

p̂ �→ p̂−e Â into the unperturbed Hamiltonian operator H0 = p̂2

2m +V , where p̂ is the generalized

momentum operator p̂ :=−i�∇, thus obtaining Ĥ = Ĥ0 + Ĥi nt . The charge of the electron is

−e, the operator Â is the electromagnetic vector potential, and the gauge with scalar electric

potential equals zero has been chosen. In this gauge, A = A0εei khνr , where ε is the unitary

vector in the direction of the electric field of the light, and khν is the photon momentum.

By neglecting the quadratic term in A2, and considering the so-called dipole approximation,

i.e. the photon wavelength is larger than the characteristic interatomic distances (so that

ei khνr ≈ 1), one finds

Ĥi nt := −e

m
Â · p̂ = −e A0

m
ε · p̂ . (3.7)

The matrix element of Ĥi nt written in this form is known as the velocity form of the optical

transition matrix element M f i .

Another way of expressing Ĥi nt makes use of the equivalency
〈
ψ f

∣∣p̂∣∣ψi
〉= −m(E f −Ei )

i�

〈
ψ f

∣∣r̂ ∣∣ψi
〉

,

where r̂ is the electron position operator, which follows from the commutation relationship[
Ĥ , r̂

]=−−i�
m p̂ . In this way one obtains

Ĥi nt =
e A0(E f −Ei )

i�
ε · r̂ =− A0(E f −Ei )

i�
ε · d̂ , (3.8)

where d̂ =−e r̂ is the electric dipole operator. The matrix element of such expression for Ĥi nt

is known as length form of M f i .

At this point, instead of proceeding with the analytical expressions of the wavefunctions [91],

in order to consider the crystal as a whole N-electron system it is more insightful to consider
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Chapter 3. Photoemission spectroscopy

another approach, developed by John Pendry [92], that relies on the second quantization

formalism and the use of Green functions. Several publications can be found on the topic,

both introductory [85, 87, 93] and advanced [92, 94–97]. In the following, only what is useful

for the purpose of this Thesis will be presented.

In a multiple scattering theory, reminiscent of the Extended X-ray Absorption Fine Structure

(EXAFS) formalism, the crystal is decomposed into a semi-infinite stack of layers made of

muffin-tin potentials, and the photoemission current is described by the combined contri-

bution of four scattering events: scattering by the single atom, within a layer, in between the

layers and at the surface. This is a density functional theory (DFT) method, known as fully

relativistic self-consistent Korringa-Kohn-Rostoker (KKR) Green function method [95, 97], and

it allows to evaluate in one-step the matrix elements M f i . Then by making use of the density

matrix formalism introduced in Chapter 2, it is also possible to introduce the information

about the spin polarization [98]. Some results of this kind of calculations will be presented in

Chapter 5.

In second quantization notation, the Hamiltonian that describes the photon-electron interac-

tion becomes

Ĥi nt =
∑
k,K

〈
ψ1

f

∣∣∣−e A0

m
ε · p̂

∣∣∣ψ1
i

〉
ĉ†

Kĉk =∑
k,K

m1
f i ĉ†

Kĉk , (3.9)

where the ĉ†
K and ĉk are the creation operator of an electron with momentum K and anni-

hilation operator of an electron with momentum k, respectively. The complex number m1
f i

is the one-electron matrix element [99], not to be confused with M f i . The state
∣∣ψ1

i

〉
is the

one-electron initial state wavefunction, which can be considered for simplicity as a Bloch

wave Φk, even if one should take into account a linear combination of Bloch waves of the

crystal that are weighted to meet the boundary condition of the crystal surface. Whereas in

the three-step model the one electron final state
∣∣∣ψ1

f

〉
is also described by Bloch waves, in the

one-step model it has to have the following asymptotic behaviour [91, 93]:

lim
z→+∞ψ1

f = ei k∥r∥
(
ei Kz z +R∗e−i Kz z

)
, (3.10)

lim
z→−∞ψ1

f =T e(i k∥r∥+i kz z)Φk(z) , (3.11)

and the two solutions have to match at the crystal surface. The direction z is along the surface

normal and points away from the surface. The resulting wavefunction can be recognized as

the complex conjugate of a state describing a low-energy electron diffraction (LEED) process,

and it is therefore known in literature as time-reversed LEED state. The coefficients R and T

are the reflection and transmission coefficients, respectively, in LEED formalism.

Now, given the interaction Hamiltonian in Eq. (3.9), one has to evaluate the photoemission

intensity from the Fermi golden rule of Eq. (3.5). The initial state of the N particle system is∣∣ψi
〉 = ∣∣ψN

i

〉 = Â
(
Φk ⊗ψN−1

i

)
, where Â is an operator that antisymmetrizes the wavefunc-
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3.1. The photoemission process

tions product in order to satisfy the Pauli principle. In this way, one electron Φk is explicitly

considered with respect to the rest of the system ψN−1
i , and it has to be pointed out that

ψN−1
i is not an eigenstate of the (N −1) Hamiltonian. A similar separation is done for the

final state
∣∣ψ f

〉= ∣∣∣ψN
f

〉
≈ Â

(
ψ1

f ⊗ψN−1
f

)
, or

∣∣∣ψN
f

〉
≈ ĉ†

K

∣∣∣ψN−1
f

〉
in second quantization, where

the so-called "sudden" approximation has been made, which will be discussed in the follow-

ing Section. For the moment, it is possible to explicitly write the photoemission transition

probability as

Wf i ∝
∣∣∣∣∣
∑

k
m1

f i

〈
ψN−1

f

∣∣∣ĉk

∣∣∣ψN
i

〉∣∣∣∣∣
2

δE =∑
k

∣∣∣m1
f i

∣∣∣2 · ∣∣∣〈ψN−1
f

∣∣∣ĉk

∣∣∣ψN
i

〉∣∣∣2δE , (3.12)

where the δE is the delta function that assures energy conservation as usual. Summing the

second term of the last expression over all the possible eigenstates
∣∣∣ψN−1

f

〉
in order to obtain

an expression proportional to the photoemission total intensity gives what is called the spectral

density function A(k,E), which contains all the information of the many-body effects in the

photoemission process. This is the key quantity of DFT calculations, since it is possible to

evaluate it with Green function formalism without solving an N-particle problem but using

a single functional that describes the electron density. On the other hand, the one-electron

matrix element m1
f i depends on extrinsic factors such as light polarization and experimental

geometry. Noticeably, the experimental intensity modulation that results from the term∣∣∣m1
f i

∣∣∣2 is what is typically referred to as "matrix element effects" in common experimental

photoemission language; this however can be a bit confusing in the context of this Thesis,

since the relationship between spin polarization and time delay in photoemission relies on

interfering channels in the matrix element M f i , as it was introduced in Chapter 1 and it will

be discussed in Chapter 4. Also, it has to be noticed that the last passage in Eq. (3.12) is not

true if there were more than one possible channel ĉk, since there would be an interference

effect from the evaluation of the modulus square, which would require a more sophisticated

definition of spectral function. It is therefore more useful, for the purposes of this Thesis, to

just consider the full matrix element M f i = Reiφ, without further decompositions.

At this point it is also important to mention the well-known dipole transition selection rules. A

somehow lengthy calculations where the quantum numbers n, � and m� are explicitly taken

into account in the initial and final state of the one-electron matrix element shows [9] that this

matrix element is non-zero if and only if Δ�=±1. When taking the SO coupling into account,

one can also show that Δm j = 0 if linearly polarized light is used and Δm j =±1 if circularly

polarized light ς± is used.

3.1.2 The "sudden" approximation

In the previous Section, the so-called "sudden" approximation has been used. Mathematically,

its meaning is clear: it requires the entangled final state of the system, made of (N −1) particles

left in the solid and a photoemitted electron, to be written as an antisymmetric product of
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two separate wavefunctions for the photoelectron and the (N −1) system. That is, as already

shown,∣∣∣ψN
f

〉
≈ Â

(
ψ1

f ⊗ψN−1
f

)
= ĉ†

K

∣∣∣ψN−1
f

〉
, (3.13)

which is necessary in order to separate the one-electron matrix element from the spectral

function. The main argument in favor of such an approximation is that, a posteriori, the

agreement between measured photoemission intensities and calculated spectral functions

is very often remarkably good. The word "sudden" has been used in literature as a physical

justification because of the following: if the electron is fast enough, its interaction with the

charged (N −1) system will be negligible, and thus one can consider the whole system as

two separate objects [85–87, 94, 95]. In other words, the removal of the electron is considered

instantaneous, therefore the word "sudden", so that there is no time to interact with the system

left behind. However, there are some limitations to this interpretation of Eq. (3.13):

• First, it does not fit well the picture of the one-step model. In fact, whereas in the

three-step model one applies the sudden approximation in the first step and then can

introduce a loss function to account for possible scattering events in the second and

third step, in the one-step model it is somehow arbitrary to assume no interaction of

the photoelectron with the system, since the whole idea of the one-step model is to

consider the full quantum mechanical process.

• Second, it is not clear what "fast enough" means. In fact, the photoelectron will always

feel the long-range Coulomb interaction with the photohole left in the system, at least

until the hole is filled (hole lifetimes are of the order of a few fs, up to several hundreds

of fs [100]). This indeed corresponds to the Coulomb logarithmic correction to the

photoemission time delay mentioned in Section 1.3, and it is not necessarily negligible,

as shown in the following simple example. The photoionization of an electron from a

Hydrogen atom can be simplified as an electron (mass m, charge −|q|) moving in 1D

along x with initial velocity v0 =
√

2Ek /m, where Ek is the kinetic energy from Eq. (3.1),

starting at position x0 from a fixed proton, which provides a deceleration to the electron

because of the Coulomb force. Thus from kinematics one can calculate the time lag

Δt = t Coul. − t free between the electron that feels the Coulomb force and the case of free

motion without Coulomb interaction 1 . This time delay has already been introduced in

Section 1.3 as Δτln. In Fig. 3.3 the plot of Δt(x) and Δt(Ek ) are shown for x0 = 1 Å. For

Ek = 45 eV, for example, there is a lag of ≈ 1 as between the two cases after a travel of 1 Å,

a lag of ≈ 40 as after 1 nm, and ≈ 240 as after 5 nm.

1 The explicit expression is given by:

Δt =

⎛
⎜⎜⎝
∫x

x0

d x′√
2kq2

m

(
1
x′ − 1

x0

)
+ 2Ek

m

⎞
⎟⎟⎠−

⎛
⎝ x −x0√

2Ek
m

⎞
⎠ .
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Figure 3.3: Simulation of time lag Δt between an electron moving with initial velocity v0 that
feels a deceleration because of Coulomb interaction with a proton and an electron in free
motion, as a function of (a) position x for different kinetic energies (from 15 eV to 195 eV, step
of 30 eV) and (b) kinetic energy Ek for different positions (from 1 nm to 5 nm, step of 1 nm).

• Third, as nicely argued by Lars Hedin et al. in Ref. [101], whereas the interaction between

photoelectron and rest of the system can be neglected in photoionization of atoms or

molecules once Coulomb correction is considered, it is actually never a good approx-

imation for solids, unless reaching extremely high kinetic energies of several keV. In

fact, whereas on one side the scattering probability decreases with kinetic energy, the

probing depth increases, so that the two effects are more or less balanced. Therefore in a

solid one always has the combination of quasiparticle satellite structures that originates

both from intrinsic losses (i.e. from the spectral function itself), and from extrinsic

losses (i.e. from interaction of the photoelectron with the solid), and the extrinsic losses

are not at all negligible, as the sudden approximation requires. In fact, it can be shown

that the two kinds of losses coherently sum (i.e. they sum in amplitudes, and not in

intensities), resulting in a quantum interference that suppresses many features in the

photoemission satellite structure [101]. This interesting effect helps understanding why

DFT calculations are often much richer in features than the experimental data, even

when the experimental resolution is very good. Indeed, because of the sudden approxi-

mation, the extrinsic losses are not accounted for in DFT, and thus also their interference

with intrinsic losses is not considered. To take this interference into account, it is in

principle possible (but very difficult to apply in real systems) to not consider the sudden

approximation, but to use the so-called adiabatic limit instead, where the calculation of

the spectral function relies on time-dependent potentials where the system adiabatically

adapts to the moving photoelectron.

Despite these considerations, the sudden approximation still works sufficiently well in many

different cases. The word "sudden" however should not lead to misunderstandings, in particu-

lar in the context of this Thesis. In fact, as will be presented in Chapter 4, the extraction of time

delay information from the measurement of spin polarization depends on the phase term of
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the matrix element M f i . This translates, when applying the sudden approximation, in the

assumption that �
∣∣∣ψN

f

〉
≈�

∣∣∣ψN−1
f

〉
, i.e. the phase of the (N −1) system is substantially the

same as the one of the N system in the final state, which is once again reasonable but justifiable

only a posteriori. Therefore one can still consider the time delay of the photoemission process,

where the sudden approximation intervenes only once the photoelectron wavefunction is

formed. It only requires that the photoelectron will not further interact with the system left

behind. As will be shown in Chapter 5, indeed, spin-resolved DFT calculations do lead to

results that are similar to the experiment, within the limit of this "phase approximation", in

addition to the sudden approximation itself.

3.1.3 Angle-resolved photoemission spectroscopy (ARPES)

As can be seen in Eqs. (3.1)-(3.4), in order to obtain the dispersion relationship Eb(k) one has

to measure the kinetic energy Ek of the photoemitted electrons and their emission angles θp

and θt . The most common energy analyzer used in photoemission is the so-called hemispher-

ical electron analyzer (HEA). It is made of two concentric hemispherical electrodes, held at

different voltages, in such a way to allow only the electrons arriving normal to the entrance slit

with a certain energy, known as pass energy, to perform a circular trajectory until the end of

the analyzer, where they can be detected.

Modern analyzer have the possibility of measuring different kinetic energies in parallel along

the vertical direction of the exit slit, combined with an angular acceptance that directly images

in the horizontal direction the different angles θp . However, it is more pedagogical to consider

the older version of HEAs, where each angle and energy have to be measured in series. This is

the case of the COPHEE endstation presented below.

In Fig. 3.4 an example of a bandmap being measured at COPHEE is shown. The sample

manipulator is rotated at angles α, θt and θp , where photoemission intensities are measured

for different kinetic energies of the photoelectrons, corresponding to different binding energies.

Then the angle θp is moved, and the set of Ek is measured again, thus allowing to determine

the relationship Eb(kx ). This sequential way of measurement is particularly relevant when

considering also the spin, as described in Section 3.2.1: for each ensemble of electrons of

given Eb and k , all the three components of spin polarization can be obtained.

Throughout the Thesis, the following names will be used for the different kind of measure-

ments that can be performed while recording the photoemission intensity (and spin polar-

ization if spin-resolved): "momentum distribution curve" (MDC) and "energy distribution

curve" (EDC) when the intensity is measured as a function of momentum kx or ky at fixed

kinetic energy Ek and as a function of Ek at fixed momentum, respectively; "bandmap" when

the energy-momentum dispersion relationship is measured; "constant energy map" (CEM)

when the two directions of reciprocal space (kx ,ky ) are mapped at a fixed kinetic energy (the

"Fermi surface" corresponds to the CEM measured at Ek corresponding to the Fermi level).
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Figure 3.4: An example of a bandmap measured at COPHEE on Bi2Se3. At a given hν and
angles α and θt (hν= 50 eV, α and θt such that θp scans along the ΓK direction), different Ek

are measured for various θp .

The SIS beamline at the Swiss Light Source and the COPHEE endstation

The experiments discussed in Chapters 5-6 were performed at the COmplete PHotoemission

Experiment (COPHEE) endstation [102], which is installed at the Surface and Interface Spec-

troscopy (SIS) beamline of the Swiss Light Source (SLS), at the Paul Scherrer Institut (PSI).

A typical operation mode of the SLS ring has ≈ 2 ns pulse rate, with ≈ 50 ps pulse length,

which can be considered as a continuous wave in the attosecond regime. The electromagnetic

elliptical undulator UE212/424 installed at SIS provides circularly polarized light (ς+ and ς−)

and linearly polarized light (π and σ, also called horizontal and vertical, respectively) in the

range of 20 eV to 800 eV.

At the COPHEE endstation, the angle between the incident light and the outgoing photo-

electrons is fixed at 45◦, as shown in Fig. 3.6(e). The HEA is an Omicron EA125 with three

channeltron detectors. The detection of the spin will be described in Section 3.2.1. At the sam-

ple position, the spot size of the synchrotron radiation beam is ≈ 150 μm. As for the sample

environment, a base pressure < 10−10 mbar guarantees UHV conditions, in a temperature

range between 20 K and room temperature. A six axes manipulator allows for full sample

alignment, providing three translational and three angular degrees of freedom. In particular,

the rotation of the angles θp , θt and α shown in Fig. 3.6(e) allows to access different points

(kx ,ky ) in the reciprocal space. Sample preparation techniques include cleaving with a top

post glued onto the surface, sputtering and annealing, evaporation, or in situ pulsed laser

deposition (PLD). The surface quality and orientation can be checked by Low Energy Electron

Diffraction (LEED).

3.2 Spin- and angle-resolved photoemission spectroscopy (SARPES)

In photoemission spectroscopy, once the momentum and the energy of a photoelectron beam

have been selected, it is possible to measure its spin polarization vector [Eq. (2.4)], in order

35



Chapter 3. Photoemission spectroscopy

to access all the electron’s quantum numbers (momentum, energy, spin). Such technique is

known as spin- and angle-resolved photoemission spectroscopy (SARPES) [103]. The filtering

of spin is often said not to be achievable with a classical Stern-Gerlach setup [68] because of

the combination of Heisenberg uncertainty and Lorentz force [62]. Recently though, it has

been shown that by making a fully quantum description of the experiment it should actually be

possible to separate an electron beam into spin-up and spin-down components, even if such

proposal is experimentally very challenging [104]. Still there are other ways of measuring the

polarization of an electron beam, which all rely on electron scattering processes (see Ref. [105]

for a recent review). For example, ferromagnetic exchange or spin-orbit interaction can

provide the spin filtering capabilities by using magnetic [106–108] or non-magnetic [109–112]

targets, respectively. The first approach is known as very low-energy electron diffraction

(VLEED), the second one as spin-polarized low-energy electron diffraction (SPLEED), or in a

modern way as spin-polarizing mirror.

Another spin-filtering technique relying on spin-orbit interaction is the Mott polarimeter,

which is based on Mott scattering of high energy electrons (see Section 2.3.2). Despite its great

drawback of having an intrinsically low figure of merit and therefore being extremely time

consuming, it is still a reliable choice for quantitative spin analysis, since it does not rely on

sequential measurements (where some parameter is changed, such as magnetization of the

magnetic target, or target orientation, or incident energy) in order to probe the different spin

channels of a certain spin quantization axis. Whereas a new proposal of parallel detection of

electrons with different momenta and energies in a Mott polarimeter exists [113], the single

channel classical Mott polarimeter, which has been used for the experiments presented in this

Thesis, will be described in the following.

3.2.1 3D Mott polarimeter at the COPHEE endstation

In Section 2.3.2, it has been shown how only the transverse component Pt of the spin polar-

ization P plays a role in (2.28) for the differential cross-section σ of the electron scattering

process. It is now more useful to rewrite it as

σ(θM ,φM ) = (| f |2 +|g |2)
[
1−Pt S(θM )sinφM

]
, (3.14)

so that the asymmetry of the number of electrons N scattered towards two different azimuthal

positions a and b identified by the angles φMa and φMb is given by

Ai = Nb −Na

Nb +Na
= σb −σa

σb +σa
= P i

t S sinφMa , (3.15)

where it has been chosen φMb = 2π−φMa . The spatial direction i depends on the particular

choice of a and b. From Eq. (3.15) it follows that by measuring Ai it is possible to obtain P i
t .

A Mott polarimeter consists of a heavy element target (usually a gold foil) onto which a high

energy (several decades of keV) electron beam is sent perpendicularly. Two detectors placed
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(a) (b) (c)

Figure 3.5: Pictures of one of the classical Mott polarimeter installed at the COPHEE endstation
(see text for description).

around the target at azimuthal directions a and b will count the electrons that are scattered in

the two directions, and by combining more detectors one can obtain the spin polarization

components in the target plane of the electron beam [79, 114, 115]. Whereas in the so-called

classical Mott polarimeter the elastically scattered electrons freely travel towards the detectors

at high energy, in the commercially available retarding Mott polarimeter (Mini-Mott) the

scattered electrons are decelerated at low energy before they reach the detectors. In Fig. 3.5(a)

a picture of one of the classical Mott polarimeters installed at the COPHEE endstation is shown.

The whole cylinder goes in UHV, but of its inside only the top part is in UHV. A small aperture

in the top allows the electron beam to enter the polarimeter. In Fig. 3.5(b) the top shield is

removed, and the gold foil target can be seen, whereas four detectors will be mounted in the

four holes around the target.

COPHEE

The COmplete PHotoemission Experiment (COPHEE) at the Swiss Light Source allows to

measure all the quantum numbers of the photoelectrons [102]. It is equipped with two

classical Mott polarimeters that operate at Ek = 40 keV and θM = 118◦ (back scattering)

[79, 114, 115]. The electrons are alternatively sent (with switching frequency of 1 Hz) into the

two polarimeters [called L and R , one is shown in Fig. 3.5], which are mounted at 90◦ as shown

in Fig. 3.6(a). This allows to measure together all the three spatial components of P of the

electron beam ensemble of known energy and momentum. In fact, since one Mott polarimeter

can give information only about the spin polarization in the plane of the scattering target,

the use of a second polarimeter allows to access also the third spatial component. The pink

ceramics in Fig. 3.5(c) encases one of the polarimeters and provides electrical isolation. In the

back of the picture, the second ceramics for the other polarimeter mounted at 90◦ can be seen.
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Figure 3.6: (a) The labeling of the detectors used in the two Mott polarimeters at COPHEE.
View from the back of the analyzer. (b) The 8 diodes scheme. (c) The 5 diodes scheme. (d)
Mott coordinate frame with respect to the laboratory frame, where s is the sample surface
normal. (e) Experimental setup at COPHEE.

Each polarimeter has four detectors placed at azimuthal directions of 90◦ from each other

[see Fig. 3.5(b)]. In this way, the asymmetries are measured with couples of detectors that

are at opposite scattering directions (φMa = 90◦), which maximizes Eq. (3.15) giving Ai = P i
t S

for each spatial direction i . In Fig. 3.6(a) and (b) the numbering of the eight Passivated

Implanted Planar Silicon (PIPS) diodes used as detectors is shown. This corresponds to the

8 diodes scheme which is currently used at COPHEE to measure P in the Mott coordinate

frame (xM , yM , zM ). For example, for the component Pt = PyM one has b and a corresponding

to L4 and L2 respectively [see Fig. 3.6(b)]. The set of equations used to measure P is the

following:

Pκ
i = 1

S
Aκ

i , (3.16)

AL
yM

= L4 −L2

L4 +L2
, (3.17)

AL
zM

= L3 −L1

L3 +L1
, (3.18)

AR
xM

= R4 −R2

R4 +R2
, (3.19)

AR
zM

=−R3 −R1

R3 +R1
= AL

zM
, (3.20)

where κ= L,R and i = xM , yM , zM as shown in Fig. 3.6(b).
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Even if the 8 diodes scheme is the most straightforward and most commonly used, it is not

the only choice. First of all, the asymmetry for the zM component is clearly redundant, as

shown in Eq. (3.20), since it is measured in both L and R polarimeters. Whereas in practice

Az is recorded as the average of the two separate measurements, in principle it is possible

to consider only the 6 diodes scheme as the standard of three-dimensional spin polarization

measurements. However, there is one more redundancy which is much less obvious and which

is not explicitly described in the literature. This leads to the 5 diodes scheme described in

the following, where as an example the detector L4 is considered to be the redundant one.

By taking φMa = 45◦, it is possible to keep the fixed positions of the diodes L1, L2, L3 and

define two new axis y ′
M and z ′

M as shown in Fig. 3.6(c). Now the asymmetry equations are the

following:

AL
y ′

M
= L3 −L2

L3 +L2
= Py ′

M
S

1�
2

, (3.21)

AL
z ′

M
= L2 −L1

L2 +L1
= Pz ′

M
S

1�
2

, (3.22)

where the last term is obtained from Eq. (3.15). By combining Eq. (3.15),(3.17),(3.21),(3.22)

and by considering that ŷM = 1�
2

(
ŷ ′

M − ẑ ′
M

)
one can write

PyM = 1

S
AyM = 1

S

L4 −L2

L4 +L2
= 1�

2
(Py ′

M
−Pz ′

M
) = 1�

2

�
2

S

(
L3 −L2

L3 +L2
− L2 −L1

L2 +L1

)
(3.23)

=⇒ L4 −L2

L4 +L2
= L3 −L2

L3 +L2
− L2 −L1

L2 +L1
. (3.24)

By solving Eq. (3.24) with respect to L4 one thus obtains

L4 = L2
L1L2 −L2L2 +3L1L3 +L2L3

L1L2 +3L2L2 −L1L3 +L2L3
. (3.25)

Therefore Eqs. (3.16)-(3.19) can be used, where L4 is not the measured one but is obtained

from Eq. (3.25).

A similar calculation can be done for all the other diodes, depending on which one is chosen to

be the redundant one. This trick can be very useful in practice in the case of one of the diodes

being damaged. Also, this allows for different designs: for example, only three diodes placed

at 120◦ from each other in each polarimeter. One could think of reducing one more diode, by

using 3 diodes in the L polarimeter and only 1 in the R polarimeter, considering the fact that

AR
zM

= AL
zM

. This however does not work, since the corresponding equation to Eq. (3.25) for

R4 would require the knowledge of R1 and R3 independently, and not only of AR
zM

. It is also

very interesting to point out that the redundancy described by Eq. (3.25) can be exploited, in

principle, to better cancel possible instrumental asymmetries and to reduce the noise of the

spin signal in the classical 8 diodes scheme. In fact, each asymmetry can be measured not

only from a couple of opposite detectors, but also from four sets of three detectors considered

separately, all averaged together.

39



Chapter 3. Photoemission spectroscopy

Finally, in order to understand the experimental results, the Mott coordinate frame is not very

helpful. This one is shown in Fig. 3.6(d) with respect to the sample surface normal s. It is more

useful to rotate the vector P in the sample coordinate frame (x, y, z) shown in Fig. 3.6(e) (to be

noticed that they are both left-handed), thanks to a rotation matrix that takes into account the

angles θp and θt . The transformation is given by

⎛
⎜⎝

x

y

z

⎞
⎟⎠= 1�

2

⎛
⎜⎝

+cosθp −cosθp −�2sinθp

+cosθt − sinθp sinθt +cosθt + sinθp sinθt −�2cosθp sinθt

+sinθp cosθt + sinθt −sinθp cosθt + sinθt +�2cosθp cosθt

⎞
⎟⎠
⎛
⎜⎝

xM

yM

zM

⎞
⎟⎠ . (3.26)

3.3 Spin polarization in photoemission

Certain classes of materials have some electronic states where the electrons have a preferential

spin orientation. These states are said to be spin-polarized in the sense of Eq. (2.4). A typical

example are the classical ferromagnets such as Fe, Co and Ni, where the magnetism is due

to their 3d electrons. The exchange interaction causes an energy shift of these electrons

with a sign that depends on their spin, whether it is up or down along the magnetization

direction. In an angle-integrated picture, since both sub-bands are populated up to the

Fermi level, the imbalance of the electronic occupation will cause the electrons when being

photoemitted to have a spin polarization that will depend on the incident photon energy

[116, 117]. Another example are materials where spin-orbit interaction plays a role in the

definition of the electronic structure. In Rashba materials, the breaking of the inversion

symmetry at the crystal surface causes the lifting of Kramers degeneracy, thus resulting in

the splitting of spin-polarized surface states [103, 118, 119]. In topological insulators, the

topological inequivalence of their bulk band structure with the surroundings guarantees the

existence of metallic surface states in the insulating band gap that is opened because of spin-

orbit coupling. These so-called topological surface states are spin-polarized because Kramers

degeneracy is lifted by the spin-orbit coupling term [120, 121].

In order to probe the spin polarization of photoelectrons emitted from materials with spin-

polarized initial states, it is natural to employ the SARPES technique described in the previous

Section. It is however very important to keep in mind that photoemission probes the spectral

function, as seen in Eq. (3.12), where the dipole transition from the initial to the final state

takes place. It is therefore not correct to assume that the measured spin polarization is the

one of the initial state, but modification of it can occur during the photoemission process. For

example, matrix element effects can change or even reverse the direction of P as a function of

photon energy or light polarization [122–124]; the diffraction through the surface can be spin-

dependent, thus modifying P [125]; the coherent excitation of different spin states can result in

spin interference effects [126]. All these possibilities make SARPES results difficult to interpret

not only on a quantitative level, because of the requirement of sequential measurements with

faster detectors or because of the required sample stability with the time consuming Mott
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polarimeter, but also on a qualitative level. Nevertheless, the information that can be extracted

is highly valuable once such effects are properly considered.

On top of this, there is another subtle effect that becomes an additional correction to P ,

and which has recently not been taken into account very often, despite being known since

three decades [56, 62–64, 127–129]: the fact that photoemission can be described as a spin-

dependent "half-scattering" process. In Eq. (2.29) it has been shown that the scattering of an

unpolarized electron beam leads to a polarized beam depending on the scattering direction.

Analogously, a spin polarized photoelectron beam is obtained even in the case when a spin-

degenerate initial state is being probed in photoemission [67]. This case will be described

in the following, while in Section 4.6 it will be outlined how to extend this to the case of

spin-polarized initial states.

3.3.1 Spin-degenerate initial states: atomic photoionization

In 1969 Ugo Fano recognized that the photoionization of alkali atoms by means of circularly

polarized light leads to the emission of electrons that are spin polarized, even when integrated

in angle [130]. This is know as the Fano effect, and relies on the spin-orbit splitting of the

atomic levels and on the selection rule Δm j =+1 (Δm j =−1) for ς+ (ς−) light polarization.

The calculations are rather long, and can be found explicitly in Ref. [62]. In the following they

will only be summarized. The initial state |ms ,m�〉 =
∣∣1

2 ,0
〉

of the alkali atom will be excited

into
∣∣1

2 ,1
〉

, whereas
∣∣−1

2 ,0
〉

will be excited into a superposition of
∣∣1

2 ,0
〉

and
∣∣−1

2 ,1
〉

weighted by

the Clebsch-Gordan coefficients. Thus one can calculate the matrix elements of the transitions:

they will depend on the angular parts of the wavefunction, which are spherical harmonics,

and on the radial parts. In particular it is useful in this context to define the quantities R1/2 and

R3/2, which are the dipole matrix elements between the radial part of the ground state and the

two radial parts of the j = 1/2 and j = 3/2 final states, respectively. One can then construct the

density matrix ρ described in Section 2.2.1. Therefore an expression for the total intensity of

photoionization Itot can be found by using Eq. (2.15), and for the spin polarization P averaged

over all the angles by using Eq. (2.13). One finds P x = P y = 0 and

Itot ∝
[

1− β

2
L2(cosγ)

]
, (3.27)

P z = P z (R1/2,R3/2) �= 0, (3.28)

where Ln are Legendre polynomials resulting from the integration of spherical harmonics, γ is

the angle between photon momentum and electron momentum, and P z is a rational function

of R1/2 and R3/2. The parameter β is also a function of R1/2 and R3/2, and is called dynamical

angular asymmetry parameter. It is interesting to observe that, analogously to the electron

scattering process described in Chapter 2, the polarization depends on the cross-section for

the production of electrons in the two spin channels.
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(a) (c)(b)

Figure 3.7: (a) Symmetry requirement for the direction of P in atomic photoionization (from
Ref. [131]). (b) Interference of matrix elements in atomic photoionization for the transition
�→ �±1. (c) Two interfering transitions build up the photoemission final state wavefunction,
and their phase shift will determine an angular resolved spin polarization.

As shown by Nikolai Cherepkov [127], it is possible to extend these results to the case of

unpolarized light or linearly polarized light. By repeating the same kind of calculation for

ς− light polarization and incoherently summing the density matrices for the two cases, one

obtains the result for unpolarized light. The interesting result is that, without integrating over

all the angles, one does find a spin polarization also in this case, even if there is not a net

angular momentum transfer by the incident photon. The result is the following [56, 62, 63]:

P = 2ξsinγcosγ

1− β
2 L2(cosγ)

n . (3.29)

The denominator is proportional to Itot [see Eq. (3.27)]. The direction n is the perpendicular

to the scattering plane defined by the momenta of the incoming photon khν and the outgoing

electron k . It can be understood by the following symmetry argument, in full analogy with

a scattering process, similarly to what was discussed with regard to Eq. (2.28) [62]. Given

the parity conservation in all the electromagnetic-driven interactions, a system must be

equal to itself upon parity inversion (x, y, z) �→ (−x,−y,−z). Since rotations do not change

the chirality, in this case parity inversion can be considered as a mirror inversion (x, y, z) �→
(x,−y, z) followed by a rotation of π around y . If P · k is positive, then upon reflection it

becomes negative. Since one expects a final state not dependent on the experiment coordinate

system, P ·k must be zero, thus P ⊥ k . Also, as shown in Fig. 3.7(a), electrons going towards 1

or 2 must have opposite polarization because of axial symmetry. Now, since the magnitude

of khν is typically negligible, the result has to be the same when rotated by π around y . Thus

P ⊥ khν.

The term ξ in Eq. (3.29) is the so-called spin dynamical parameter [56]. For completeness, if one

would calculate P with angular resolution for circularly polarized light, two other parameters

will be found (sometimes called A and γ in the literature [127]), whereas they cancel out for

unpolarized light and only ξ remains. Noticeably, there exist an equation linking β,ξ, A,γ,

which are therefore not independent [132]. Together with σ, all these values form a set of five
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parameters that describe the electron properties in a complete photoionization experiment

(other two parameters are then required to describe also the residual ion [133, 134]).

In the simpler case of unpolarized light considered here there is only ξ, and according to

Refs. [56, 62, 67, 135] one finds the following result:

ξ∝ Im
[
M1M∗

2

]∝ R1R2 sin
(
φ2 −φ1

)
R2

1 +R2
2

= r sinφs

1+ r 2 , (3.30)

where r and φs are defined as the ratio of the radial part of the two matrix elements r = R2/R1

and the difference between the two phase terms φs =φ2 −φ1, respectively. The phase shift

has the subscript s since it is at the origin of the spin polarization, not to be confused with the

phase term φ of Eq. (1.5) (see discussion in Section 4.1). The full explicit expression of ξ and

β can be found in Appendix A. Here M1,2 are the matrix elements describing the transitions

to two different degenerate final states, and it is clear how the spin polarization is a result

of the interference between two possible transitions. This is pictured in Fig. 3.7(b). Following

the example of alkali atoms, these two matrix elements are related to transitions towards

different m j values. However it turns out that in this case the phase difference is very small,

thus no appreciable polarization can be measured [62]. On the other hand, one can have

different degenerate final states when �> 0, that are the �+1 and �−1 levels. This has been

experimentally proved for the first time in Xe atoms [131].

Finally, in a similar way, it is also possible to consider the photoionization by linearly polarized

light by coherently summing the two results for ς+ and ς−. The result is the following [62, 63,

135]:

P = −4ξsinγcosγ

1+βL2(cosγ)
n . (3.31)

In this case, the angle γ is defined between the light polarization vector E and the electron

momentum k , and n is the direction perpendicular to the plane defined by these two vectors.

3.3.2 Spin-degenerate initial states: solid state photoemission

The effects seen in atomic photoionization are found also in photoemission from crystals.

Angular integrated photoemission by using circularly polarized light, for instance, yields

spin polarized electrons when the electronic states involved are influenced by SO coupling,

equivalently to the atomic Fano effect. This is, for example, the famous case of the GaAs

crystal [136]. Also the use of linearly polarized or unpolarized light can yield spin polarized

electrons from spin-degenerate states. As in photoionization, two interfering transitions are

required. They can be due to SO coupling in a high symmetry setup [137, 138], or even due

to a symmetry breaking in the experiment [65, 128, 139]. In this case in particular, as long as

the light impinges on the sample surface with off-normal incidence, the photoelectrons are

spin polarized both in the case of normal emission and off-normal emission. An intrinsic
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complication is the fact that with off-normal emission further effects such as diffraction

through the surface might play a role; but on the other hand it is necessary to probe off-normal

emission electrons if dispersive states are being measured, in order to fulfill the energy-

momentum dispersion relationship. An interesting complementary approach to the study of

spin polarization is the use of spin-resolved inverse photoemission, which is the time-reversal

process of photoemission where spin polarized electrons are sent on a crystal and UV light is

emitted upon deexcitation [140, 141]. The initial state of the inverse photoemission process

corresponds to the final state of the photoemission process, and the unoccupied part of the

electronic structure of a crystal can be probed. In this case the similarity with a half-scattering

process are even clearer, and similar effects to the ones described in this Section have been

observed in the unoccupied states [142].

Analogous to the atomic case, one finds that the spin polarization in photoemission from

solids is given by the following expression [128, 139, 143]:

P = I−1
tot (Ω) f (Ω)Im[M1 ·M∗

2 ]n = P (r,φs)n . (3.32)

The term Ω is a set that contains all the relevant angles describing the actual photoemission

geometry. As usual, the definition of polarization requires the normalization term I−1
tot , which

will depend on Ω. Also in photoemission from solids, the spin polarization of photoelectrons

from spin-degenerate states is given by the interference between (at least) two photoemission

channels, described by the matrix elements M1 and M2. In particular, the modulus of the

polarization P depends on the quantities r and φs , i.e. the ratio of the radial part of the two

matrix elements r = R2/R1 and the difference between the two phase terms φs =φ2 −φ1. As

for the direction n, it will not be due only to the direction of E and k , but it will also depend

on the symmetry of the particular crystal and state under consideration. This occurs also for

photoionization of molecules, where the direction n is influenced by the symmetry of the

molecule [144]. Some specific equations have been derived for certain cases in solids [143], but

it is more useful here to consider the generic direction n, not necessarily known a priori but in

principle accessible in an experiment by measuring the three spatial components Px,y,z [145].

The proportionality constant f will also depend on the actual crystal and geometry, and it can

be seen as a geometrical correction term that depends on Ω [145] (see Section 4.2).

This interference effect was theoretically demonstrated by Eiiti Tamura and Roland Feder, who

showed that a necessary ingredient is the use of a one-step photoemission model [128,137,139].

In fact without the translational symmetry breaking at the crystal surface, the three-step model

cannot take into account the interference since both initial and final states are Bloch states. If

compared to atomic photoionization, however, the matrix elements are not related to different

partial waves in the final state, but to the projection of the linear light polarization electric field

vector onto the crystal surface, which will have a parallel and a perpendicular component. The

reason is that the two components will allow a transition from or to different spatial parts of the

double group symmetry representation of the electronic states, which is necessary to introduce

when considering the SO coupling [65, 128, 146, 147]. A different point of view is to consider
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3.3. Spin polarization in photoemission

the different orbital projections that are probed by the different E field components. At the

end, in a more general sense, the expression in Eq. (3.32) can be considered as the result for

any situation where two degenerate channels are possible in the experiment, either because of

different final states, initial states, or dipole transition channels. For instance, in nonmagnetic

crystals with inversion symmetry every state is twofold degenerate [148, 149]. The situation is

pictured in Fig. 3.7(c), where the wavefunction of the measured free photoelectron is build up

by the interference of two different transitions and has a phase term that is the phase difference

between the two matrix elements. In a multiple scattering picture as in KKR calculations,

without further developments of the theory, one can still consider as a simplification that the

spin polarization comes out of all the possible interference paths as if dependent on a "net"

phase shift φ 2 . This effect has been studied in the past from the experimental point of view

with circular polarized light [147, 150, 151], unpolarized light [152] as well as linearly polarized

light [65, 138, 146, 147] on localized states, despite the difficulty of the measurement. It is

interesting however to consider the possibility of looking at dispersive states in a solid [145],

without integrating in energy or angle but maintaining the angular and energy resolution that

are typical in ARPES. This will allow to access the phase information via the spin polarization,

and to eventually make a link to the time delay in the photoemission process. In Chapter 4 the

explicit expression for P in the COPHEE setup can be found, and it will be linked to the time

information. The following Chapters will report experimental results along these lines.

2 See also the footnote 1 in Section 4.1.
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4 From spin to time

“Physics is becoming so unbelievably complex that it is taking longer and longer to train a

physicist. It is taking so long, in fact, to train a physicist to the place where he understands the

nature of physical problems that he is already too old to solve them.”

- Eugene Paul Wigner

In this Chapter a semi-quantitative model linking spin polarization and time delay in pho-

toemission from a spin-degenerate dispersive state of a solid will be presented. An outlook

at the end will show how to extend this for spin-polarized initial states. The main concept of

this Chapter has been introduced in Ref. [145], and many of the details will be submitted for a

future publication.

4.1 Phase shift as a common term

In Chapter 1 it was shown how a simple description of the Eisenbud-Wigner-Smith (EWS)

scattering time delay of photoemission is given by τEWS = �
dφ

dEk
, where φ is the phase term

of the matrix element: φ = �
{

M f i
}

[see Eq. (1.5)]. In Chapter 3, on the other hand, it has

been discussed how the spin polarization in photoemission from spin-degenerate states

arises from an interference process between two different channels 1 of the matrix elements,

P ∝ Im
[
M1M∗

2

]
(r,φs) [see Eq. (3.32)], which depends on the ratio of the radial terms r = R2/R1

and the phase shift φs =φ2 −φ1.

The two phases φ and φs are closely related. In fact, given the two interfering channels 1 and 2,

one has M f i = Reiφ = 〈
ψ f

∣∣Ĥi nt
∣∣ψi

〉= 〈
ψ f

∣∣Ĥ 1
i nt + Ĥ 2

i nt

∣∣ψi
〉= M1+M2 = R1eiφ1 +R2eiφ2 , and

1 It is possible that more than two channels are available in the interfering process. It is in principle possible
to analytically expand the expression for the spin polarization and the model presented in this Chapter to this
more general case, however the expressions would become very heavy. In this Thesis only two channels are
considered, and the results can still be applied to a more general case with the simplification of considering two
virtual channels that will mimic the actual more complex process.
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Chapter 4. From spin to time

by making the sum of complex numbers in polar form one obtains 2 :

φ=φ1 +arctan

(
R2 sin

(
φ2 −φ1

)
R1 +R2 cos

(
φ2 −φ1

))= arctan

(
r sinφs

1+ r cosφs

)
, (4.1)

where in the last step it has been chosen φ1 = 0, since it is necessary to set a reference given

that the two phases φ1,2 are not absolutely determined (see discussion in Chapter 7). For later,

it is useful to notice that r > 0 since the radial terms are positive, and φ and φs are defined

within
[−π

2 ,+π
2

]
.

At this point it is interesting to investigate the possibility of accessing the time information by

the measurement of the spin polarization. In fact, Eq. (4.1) shows how the measurement of P

in photoemission can in principle lead, via φs , to an estimate of φ, and therefore of τEWS by

varying the kinetic energy of the photoelectron Ek . In particular:

τEWS = �
dφ

(
r (Ek ) ,φs (Ek )

)
dEk

≈ �
dφs

dEk
· r (r +cosφs)

1+2r cosφs + r 2
.= τs

EWS ·w(r,φs) , (4.2)

where the approximation consists in considering dr
dEk

≈ 0 (see Section 4.4). The EWS time

delay of the interfering channels τs
EWS = �

dφs

dEk
has been introduced, and the rational function

w = w(r,φs) has been defined. The physical meaning of τs
EWS and τEWS will be clearer from

the model presented in this Chapter and will be discussed in Chapter 7. Before proceeding

with the evaluation of the two EWS time delays from the measured spin polarization, it is

useful to write the explicit dependence on r and φs of P in Eq. (3.32), which is done in the

following Section.

4.2 Spin polarization in solids: geometrical correction

In Eq. (3.32), the geometrical correction term f (Ω) depends on the set Ω of relevant angles

describing the symmetry of the system. As shown in Section 3.3.1, in the case of atomic

photoionization the direction n of the spin polarization is perpendicular to the reaction

plane defined by the incident light momentum khν and outgoing electron momentum k for

unpolarized light, and by the light electric field vector E and k for linearly polarized light. The

only relevant angle that determines the spin polarization magnitude in atomic photoionization

is the angle γ between the two vectors that define the reaction plane, i.e. the angle between

E and k for linearly polarized light. In the following, only the case of linearly polarized light

will be considered. It can be shown [62] that the proportionality coefficient in this case is

f = 4sinγcosγ. In the experimental setup of Fig. 3.6(e), for π polarized light the reaction

plane is the xz plane and therefore the direction of n corresponds to the y direction.

2 To be precise, Eq. (4.1) should be written as φ=φ1 +arctan2
{
R2 sin

(
φ2 −φ1

)
,R1 +R2 cos

(
φ2 −φ1

)}
, but in

this context there will be no difference.
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4.2. Spin polarization in solids: geometrical correction

As mentioned in Section 3.3.2, in photoemission from solids the reaction plane can vary,

depending on the symmetry of the crystal under consideration [128, 139]. For localized states,

one would expect a similar behaviour as for atomic levels, but for dispersive states the situation

is different because of an intrinsic symmetry reduction. Whereas it should be in principle

possible to determine such direction for specific crystals by symmetry arguments, it is however

very difficult in practice. A different approach consists in determining the reaction plane a

posteriori, by considering it as the one perpendicular to the measured spin polarization vector.

The geometrical correction term becomes f = 4sinγ′ cosγ′, where γ′ is the angle between the

projections of E and k in the reaction plane, and thus depends on the set of relevant angles

Ω = (γ,θ,ψ,δ) defined in Fig. 4.1. In the following, the expression for f will be derived as

a function of these angles. The experimental setup of COPHEE shown in Fig. 3.6(e) will be

considered (but choosing a right-handed coordinate system, by inverting y), in the particular

case of π polarized light and MDC measured by varying the angle θp (the subscript p will be

dropped in this Chapter). Similar equations for θt as well as for different light polarization

directions can be derived along the same lines (as shortly outlined in the discussion of the

experimental results presented in Chapter 6).

(a) (b)

Figure 4.1: Definition of the relevant symmetry angles: (a) γ,θ,α,χ and (b) ψ,δ. See the text
for details.

In Fig. 4.1(a) the angles γ, θ, χ= (γ−θ
)

and α= (γ/2−θ
)

are shown. Since the angle between

incident light and outgoing photoelectron is fixed at COPHEE (at 45◦), also γ is fixed (γ= 45◦).

Thus, in order to access different points of reciprocal space, the angle θ is varied by rotating

the sample normal (dotted line). The angles χ and θ can be used to evaluate the ratios

Ex /Ez = tanχ and kx /kz = tanθ. In Fig. 4.1(b) the angles ψ and δ are shown. They are the

elevation angles of the measured P from the x y and y z planes, respectively, and thus are

always between 0◦ and 90◦. Accordingly, the three components of the spin polarization

vector can be written as:
(
Px ,Py ,Pz

) = (
P sinδ,P

√
cos2δ− sin2ψ,P sinψ

)
. It is important

to underline that the deviation of ψ and δ from the atomic case (δ = ψ = 0◦) intrinsically

depends on the orientation of the crystal planes and the orbital symmetry of the state under

consideration, but here they are only considered as the outcome of a measurement.
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Chapter 4. From spin to time

It is useful to rewrite the correction term f in terms of the parameter t defined as t
.= tan

(
γ′/2

)
,

which is commonly known in trigonometry as parametric Weierstrass substitution. This gives:

f (γ′) = 4sinγ′ cosγ′ = 8t
1− t 2

(1+ t 2)2 . (4.3)

Now it is necessary to evaluate the parameter t = tan
[
γ′
(
γ,α,ψ,δ

)
/2
]

by trigonometric con-

struction. One obtains

t
.= tan

(
γ′

2

)
= tan

(γ
2

)(cosψ

cosδ
cos2α+ cosδ

cosψ
sin2α

)
, (4.4)

which can be checked by considering separately the cases where ψ and δ are zero, first with

α= 0◦ and then varying α. Now for a given experiment the coefficient f can be calculated. It

has to be pointed out that apart from exceptional cases, the variation of f with θ, which is

varied in a measurement, is negligibly small if the θ range is small (i.e. a few degrees, as it is

for an MDC through a band).

In order to explicitly write P = P (r,φs), two more ingredients are needed: the interfering term

Im
[
M1M∗

2

]
and an expression for Itot . The interfering term can be expressed as

Im
[
M1M∗

2

]= Im
[

R1R2ei(φ1−φ2)
]
= R1R2 sin

(
φ1 −φ2

)=−R1R2 sinφs . (4.5)

The expression for Itot as a function of matrix elements can be found in Refs. [128, 139] as

Itot = 2R2
1 sin2γ′ +2R2

2 cos2γ′ , (4.6)

which has been modified here with the angle γ′ instead ofγ, and where the channels 1 and 2 are

specified as the two cases of light polarization vector components perpendicular and parallel

to the sample surface, respectively. These two components will select different spatial terms

of the double group symmetry representation of the state under consideration. Combining

Eqs. (4.3)-(4.6), finally Eq. (3.32) can be written as

P = −2sinγ′ cosγ′R1R2 sinφs

R2
1 sin2γ′ +R2

2 cos2γ′
= −2tanγ′r sinφs

tan2γ′ + r 2 = −4t (1− t 2)r

4t 2 + r 2(1− t 2)2 sinφs
.= c(r, t )sinφs ,

(4.7)

where the parametrization t = tan
(
γ′/2

)
and the trigonometric duplication formula tan

(
γ′
)=

2tan(γ′/2)
1−tan2(γ′/2) have been used in the second to last step, and the rational function c = c (r, t ) has

been defined.

For a fixed value of r one has max(c) = 1 for a certain value t = t ′, and min(c) = −1 for a

certain value t = t ′′. The measured value of t depends on the direction n, which is described

by the angles ψ and δ, dictated by symmetry requirements, and by the angles γ and α, given

by the experimental geometry. At fixed γ and α, there are several possible combinations of
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4.3. Estimate of time delays

ψ and δ for which t = t ′ or t = t ′′. The experimental values of ψ and δ for the measurements

on Cu(111) presented in Chapter 5, which are the only available precise measurement for

the determination of t , are one of these combinations for which t and r (the estimate of r

is presented in the next Section) give max |c| = 1. Such coincidence might suggest that the

symmetry requirements of the crystal are such that the function |c(r, t)| [and thus P (r, t)] is

maximized.

4.3 Estimate of time delays

In this Section it will be shown how to estimate the interfering EWS time delay τs
EWS and

the scattering time delay τEWS in photoemission from a dispersive state by measuring the

spin polarization as a function of binding energy. At the end of the Section, a scheme that

summarizes the model can be found.

From Eqs. (4.2) and (4.7), it is clear that knowledge of the parameter r is required in order to

directly estimate τs
EWS and τEWS, even if it has already been considered to be constant with

kinetic energy. In fact, since P depends on both r and φs , an independent measurement

of r would be required in order to evaluate φs . In principle, this should be accessible by

UV photoelectron diffraction (UPD), where the angular distribution of photoelectrons is

mapped and thus the angular asymmetry parameter β is accessed. Indeed, as mentioned in

Section 3.3.1 and shown in Appendix A for atomic photoionization, also β depends on both r

and φs . This approach however is experimentally very difficult to perform on dispersive states,

and for the moment it works sufficiently well only on molecular orbitals [60, 61]. Furthermore,

it would be required to combine spin resolution with UPD. Another way to obtain r would be

a careful quantitative analysis of linear dichroism, which however is not often feasible because

of difficult control of light intensity for different light polarizations. Therefore one needs to

estimate the value of r = R2/R1, and a possibility is r = E∥/Ez , where it is assumed that the

weights of the two interfering terms in the state under investigation are the same. Else, if they

are known for example from calculations, they could be taken into account to modify the

estimate of r .

Once r is estimated, it is possible to proceed to calculate the EWS time delays in the following

way. The measurement of P gives information on both P and n, which determines t . Now

c(r, t) is given, and from Eq. (4.7) one can calculate φs = arcsin(P/c). In order to vary Ek ,

one could think of varying the incident photon energy hν, as it has been routinely done

for atomic photoionization [63, 64]. For a dispersive band of a solid, however, this leads to

the complication of accessing a different point of the Brillouin zone, since it corresponds to

varying the probed kz , and it can be an issue when looking at dispersive bands along kz . In

general, matrix element effects related to cross-section can even lead to strong variations

of photoemission intensity with photon energy, thus making it more difficult to draw any

quantitative conclusion on the spin polarization. Luckily, there is another way of changing

the kinetic energy Ek of the photoelectrons from a dispersive state: by looking at different
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Chapter 4. From spin to time

binding energies Eb . Henceforth a dot will represent the derivative with binding energy:

�̇ �→ d
dEb

= − d
dEk

. Under the assumption that r is a constant with Ek , any change of P (Eb)

directly corresponds to a change of φs(Ek ).

At this point one can thus evaluate φs for various Eb , and then compute the interfering EWS

time delay as τs
EWS = −�φ̇s . Now, by using Eq. (4.2), it is possible to compute w

(
r,φs(Eb)

)
and finally obtain the scattering EWS time delay τEWS. Noticeably, since w depends on Eb ,

also τEWS will. However, given that the value of P and its variation with Eb is expected to be

relatively small, such dependence will not be large.

It is insightful to now consider a different approach, where an estimate for a finite lower limit

of τs
EWS can be found without relying on the knowledge of the value of r . Starting from the

expression of P = P (r,φs), multiplying by � and applying the chain rule in order to evaluate

the derivative with binding energy gives

�Ṗ = �
dP

dr
ṙ +�

dP

dφs
φ̇s , (4.8)

where the derivative with respect to the relevant angles Ω has been neglected (since the

variation of f (θ) is negligible in a small θ range, as already discussed). Since τs
EWS =−�φ̇s , this

leads to

τs
EWS =

−�
dP/dφs

(
Ṗ − ṙ dP/dr

)≈ −�
dP/dφs

Ṗ , (4.9)

where in the last step the usual approximation ṙ ≈ 0 has been used (see Section 4.4). The

explicit expressions of dP/dr and dP/dφs evaluated from Eq. (4.7) can be found in Appendix A.

The result of Eq. (4.9) will yield to a similar value of τs
EWS as with the direct method discussed

before, by estimating r = E∥/Ez and evaluating dP/dφs(r,φs , t ). However, in order to only

evaluate a lower limit for τs
EWS, one can proceed in the following way. First, the absolute value

of both sides of Eq. (4.9) is taken. The signs of P and dP/dφs determine the sign of τs
EWS,

which in general can be positive or negative, simply meaning a positive or negative delay of

the interfering channel 2 with respect to 1. This distinction is however not very interesting,

and it is very difficult to make sure that all the possible contributions to signs are properly

taken into account, in the formalism as well as in the experiment. It is therefore more useful

to look only at absolute values. Then, it is possible to write

∣∣τs
EWS

∣∣= �∣∣dP/dφs
∣∣ ∣∣Ṗ ∣∣≥ �

max
∣∣dP/dφs

∣∣ ∣∣Ṗ ∣∣= �
∣∣Ṗ ∣∣ (4.10)

since
∣∣dP/dφs

∣∣≤ max
∣∣dP/dφs

∣∣= 1, where, in particular, the maximum
∣∣dP/dφs

∣∣= 1 occurs

for φs = nπ with n integer and |c(r, t )| = max |c| = 1 (see the discussion of Eq. (4.7) and the

expression of dP/dφs in Appendix A).
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4.3. Estimate of time delays

This procedure can be extended to the estimate of a finite lower limit for the scattering EWS

time delay |τEWS| from Eq. (4.2) in the following way:

|τEWS| =
∣∣τs

EWS

∣∣ ∣∣w(r,φs)
∣∣= �∣∣m(r,φs , t )

∣∣ ∣∣Ṗ ∣∣≥ �

max |m|
∣∣Ṗ ∣∣ , (4.11)

where m
.= (dP/dφs

)
/w . The explicit expression of m(r,φs , t ) can be found in Appendix A. In

this case, though, this function cannot be maximized for every possible value of r and t , since

|m|→+∞ for (r, t ) → (0,0), and therefore it is not possible to directly set a finite lower limit for

|τEWS| from the measurement of Ṗ . However, for given values of r and t which will be different

from 0 (r = 0 in fact means that there is no interfering transitions, and t = 0 is geometrically

pathological), it is possible to evaluate max
∣∣m(φs)

∣∣ and thus find a finite lower limit for |τEWS|.
Also, by estimating φs(Eb) = arcsin[P (Eb)/c] from Eq. (4.7) as previously discussed, one can

find the actual value of |m(Eb)|, and therefore estimate |τEWS(Eb)| itself.

It can be useful to consider a way to find also an upper limit to the estimates. This is possible

by rewriting Eq. (4.7) as

∣∣∣∣ P

c(r, t )

∣∣∣∣= ∣∣sinφs
∣∣≤ 1. (4.12)

This inequality can be used to find the range of allowed possible values of r for given P and t

from the measurements, without being limited to the assumption r = E∥/Ez . Therefore one

can use these different values of r in Eqs. (4.10) and (4.11) to find the largest possible values of

|τs
EWS| and |τEWS|. These values are the upper limits to the estimate of EWS time delays from

the measured values of P and t without any assumption on r .

Noticeably, from Eq. (4.2) it can be seen that the function |w | is always limited between 0

and 1 for φs ∈
[−π

2 ,+π
2

]
, with the curious consequence that |τEWS| < |τs

EWS|. This might be

counter-intuitive at first; however, as discussed in Chapter 7, the physical interpretation of the

two EWS time delays in this Thesis is the following: τEWS is a purely (half-)scattering time delay,

whereas τs
EWS accounts for the time delay of the photoemission process. This is because the

two interfering partial channels do not correspond to two separate events, but they together

form the final photoelectron. In addition to this interpretation, it is worth to consider more

carefully the allowed range for φs , as discussed in the following.

Note on the domain of definition of the phase shifts

Previously, it has been mentioned that φ and φs are defined within
[−π

2 ,+π
2

]
. Whereas this is

true for φ from Eq. (4.1), there is no univocal choice for φs , which only has to be in a range of π.

If one chooses [0,π], the function |w | can have values larger than 1, and therefore it can occur

that |τEWS| > |τs
EWS|. Also, the estimate of max

∣∣m(φs)
∣∣ is not straightforward anymore, since

for a given r and t there is now a certain φs for which |m| still diverges. A further complication

involves the estimate of φs itself from Eq. (4.7), which is not anymore univocal either, since
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Chapter 4. From spin to time

also the solution φs = π−arcsin(P/c) becomes possible. It has to be noted, however, that

since M f i = R1 +R2eiφs from Eq. (4.1) the choice of the range
[−π

2 ,+π
2

]
seems more natural,

since it allows the two interfering channels to be combined in a way that Im
[
M f i

]
can be

both positive and negative. Whereas this issue deserves further theoretical investigation, it

will not be considered anymore in the following for simplicity (apart from the footnote 5 in

Section 5.2), and only the range
[−π

2 ,+π
2

]
will be considered.

Summary of the model for the estimate of time delays

In Fig. 4.2 a summary of the model presented so far can be found. In particular it shows that by

measuring the spin polarization modulus (b) and direction (a) as a function of binding energy

for a certain dispersive state and with the assumption ṙ ≈ 0 (k) one can estimate the lower and

upper limit of the interfering EWS time delay |τs
EWS|. With the further assumption r = E∥/Ez

(l), or knowing r from calculations or other experiments such as UV photoelectron diffraction,

one can then evaluate |τs
EWS| itself. Using Eq. (4.2) also the scattering EWS time delay |τEWS|

can be obtained.

4.4 Influence of the radial terms on the estimate

In order to find a good estimate of the time delays, in the previous Section it has been discussed

how a reasonable choice for the value of r would be r = E∥/Ez , but other estimates of r are

possible. In Fig. 4.3 the dependence of |τs
EWS| and |τEWS| on r is shown for a given value of

Ṗ and for different values of t and φs , whereas in Fig. 4.4(a) the values of Ṗ , t and φs are the

ones found in the experiment on Cu(111) presented in Chapter 5. Since φs varies with Eb , the

different plots of Fig. 4.3 for different φs should be considered when the values of |τs
EWS| and

|τEWS| are evaluated for different Eb .

Furthermore, in the previous Section the assumption that the parameter r = R2/R1 does not

vary with binding energy (ṙ ≈ 0) has been made. In the following, this assumption will be

discussed. The ratio r = R2/R1 depends both on the geometry, i.e. on the projection of the

E field vector onto the crystal surface, and on the electronic state composition in terms of

double group symmetry representation. In order to measure spin-resolved MDCs through a

dispersive band at different binding energies, the angle θ will be different by only a few degrees

within the whole band. Thus, since E∥/Ez = tanχ= tan(45◦ −θ), a small change of θ will not

sensibly affect r for different Eb . As for the state composition, in principle one could have a

strong variation of matrix elements within the band under special circumstances, for instance

along very low symmetry directions or where states are hybridized with neighbouring bands.

However, for a well defined band within a small Eb range, it is reasonable to assume that its

double group symmetry representation does not sensibly vary when the state is considered

along a certain high symmetry direction. Experimentally, a good hint to make the assumption

ṙ ≈ 0 is to observe İ tot ≈ 0 [see Eq. (4.6)].
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: see Fig. 4.1

Scattering EWS time delay:

Figure 4.2: Summary scheme of the model used to evaluate EWS time delays in photoemission
from the measurement of spin polarization.

On the other hand, it is still possible to consider the more general case where ṙ �= 0. In such

a case, a variation of P with Eb is due to a time delay (φ̇s), but also to a change of matrix

elements ratio within the band (ṙ ), as shown by Eq. (4.8). Also, Eq. (4.2) is modified as in the

following:

τEWS = τs
EWS ·w(r,φs)−�ṙ ·w ′(r,φs) = −�Ṗ

m
+ �ṙ

(
dP/dr −w ′m

)
m

, (4.13)

where the last step is obtained by inserting the full form of Eq. (4.9). The explicit expression of

the function w ′(r,φs) is reported in Appendix A, together with all the other functions presented

in this Chapter. In Fig. 4.4(b) the effect of ṙ on the estimate of time delays is shown, where

|τs
EWS| and |τEWS| are plotted as a function of ṙ for given values of r , Ṗ , t and φs . Noticeably, in

this case there are values for which the time delays are zero, which means that the variation

of P with Eb is entirely due to variation of the radial part of the matrix elements. The most
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(as)

(as)

(as)

(as)

(a) (b)

(c) (d)

Figure 4.3: Time delays |τs
EWS| [(a), (c)] and |τEWS| [(b), (d)] plotted as a function of r for two

values of t : t = 0.28 [(a), (b)] and t = 0.6 [(c), (d)]. Every figure shows several plots for different
values of φs ranging from 0 to π/2 (same trend for φs ranging from 0 to −π/2). The value of Ṗ
is Ṗ = 0.04 eV−1.

general situation will correspond to variations in both phase shifts (i.e. time delays) and radial

parts. Also, it is important to point out that there exist values of ṙ for which |τEWS| > |τs
EWS|.

4.5 Spurious effects

In the case of photoemission from solids there might be additional effects other than the

interference described in this Chapter that will modify the spin polarization vector. These

spurious effects can be due to diffraction through the surface, or to scattering with defects

of the crystal during the transport to the surface. The formalism described in this Chapter

will be modified in the following way. The spurious effects are modeled by a spin polarization

term η, such that the measured spin polarization vector P m is given by P m = P +η, where

P = Pn is the actual spin polarization given by the interference effects under consideration.

The vectorial sum could lead to a rotation of the direction of P m with respect to n, thus making

it difficult to determine both the relevant quantity P and the direction n itself, which is used

to evaluate the parameter t . In fact, one should now write the two components of P m as

P n
m = P +ηn and P p

m = ηp , where n and p stand for along and perpendicular to n, respectively.
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(as) (a) (b) (as)

Figure 4.4: (a) Plot of |τEWS| (blue) and |τs
EWS| (red) as a function of r , for Ṗ = 0.04 eV−1, t = 0.28

and φs = 0.1, where in this case ṙ = 0. (b) Plot of |τEWS| (blue) and |τs
EWS| (red) as a function of

ṙ , for r = 0.67 and same values as in (a) for the other parameters [from Eqs. (A.7) and (A.8)].

Clearly, in general the results presented in this Chapter are not valid anymore; however, it is

possible to make the following two considerations.

• First, one can at least use Eq. (4.10), where only the derivative of P with binding energy

appears, and consider the fact that spurious effects related to scattering will not strongly

depend on kinetic energy. Thus it will be possible to proceed with an estimate of the

lower limit of |τs
EWS|.

• Second, diffraction effects will strongly depend on experimental geometry. It is possible

to exclude an influence of these effects by measuring the spin polarization from a state

of the crystal which is expected not to be dependent on experimental geometry, and

showing that there is no variation. This is the case of core levels of the crystal, which

will behave as in the case of photoionization of atomic levels [66] so that the spin

polarization will not depend on the actual orientation of the crystal with respect to the

incoming light. Therefore if this spin polarization does not change when measured

with different orientations, it is possible to conclude that the surface does not affect

the spin polarization signal with diffraction effects. This situation will be shown for the

experiment presented in Chapter 5.

4.6 The case of a spin polarized initial state

The results presented in this Chapter until this point concern the spin polarization arising

from interfering channels in the matrix elements in the case of a spin-degenerate initial state.

The situation is in close analogy with what has been presented in Chapter 2 for electron

scattering, where an unpolarized beam of electrons acquires spin polarization because of the

interference of the different partial wave components. However, as introduced in Section 3.3,
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Figure 4.5: Scattering of an electron beam with momentum k1 and polarization P into a beam
with momentum k2. The two momenta define the scattering plane indicated by its normal n.

there exist certain classes of materials with an initial state that is already spin-polarized, so

that there is a preferential direction in space where the spin of the electrons will point. The

question is, how will this spin behave during the photoemission process. There is a number

of cases where it has been shown that, indeed, the spin polarization that is measured does

not directly reflect the one in the initial state, but it is affected by the particular experimental

conditions [124,153]. This topic is rather complex and not fully covered by a single model, and

its review goes beyond the aim of this Thesis. However it is natural to ask how the interference

effect previously presented will affect a spin-polarized state, a question which has not been

much investigated in the literature.

A proposal to address the issue of spin polarized initial states is the following. Along the

lines of the electron scattering picture, one should consider the case of the scattering of

a spin-polarized electron beam. It is reasonable to assume that the spin polarization of

photoelectrons will be modified in a similar fashion as in the case of scattering. The behaviour

of spin-polarized electrons in elastic scattering is well known in literature [62], and a summary

without demonstrations is presented in the following.

In Fig. 4.5 the scattering plane defined by the incident and outgoing electron momenta is

indicated by the normal vector n, and the spin polarization of the incident beam P is shown

with its two components P n = Pnn perpendicular to the plane and P p parallel to it. In Eq. 2.29

the spin polarization P ′ of the scattered beam when P = 0 has been calculated. In the more

general case where P �= 0, P ′ can be calculated in the same way as

P ′ = [Pn +S(θM )]n +T (θM )P p +U (θM )(n ×P p )

1+PnS(θM )
, (4.14)

where S(θM ) is the Sherman function defined in Eq. (2.24), whereas T (θM ) and U (θM ) are two

other functions defined as

T (θM ) = | f |2 −|g |2
Itot

, (4.15)

U (θM ) = f g∗ + f ∗g

Itot
. (4.16)
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There are several consequences of Eq. (4.14). The component Pn of the spin polarization

vector is modified by a term proportional to S, while the component Pp is modified by a term

proportional to T ; also, the spin polarization acquires a new component out of its original

plane (P n ,P p ), and in particular it rotates away from P p by an angle equal to arctan U
T . In the

particular case of P = 0, Eq. (4.14) reduces to P ′ = Sn as already presented in Eq. (2.29).

Therefore, in general, the spin polarization vector rotates and also changes its modulus upon

scattering. In two special cases, however, it will only rotate without modifying its modulus:

if S = 0, and if P = 1. This last case, in particular, is very interesting when considering the

analogous case of photoemission as a half-scattering process. It shows that if the photoelectron

beam is expected to have a spin polarization P = 1, as is often the case [154], the interference

effect of the different channels in the matrix elements will not modify the modulus of P , but it

will only rotate its direction from the expected one. Indeed, in a real experiment, the measured

spin polarization very rarely points exactly along the direction that is expected from theory, but

it is often canted by small angles in different directions depending on the actual experimental

geometry. Such observation could be explained by taking into account the interference effect

described in this Chapter.
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5 Results: the model system Cu(111)

“Not all who wander are lost.”

- John Ronald Reuel Tolkien, The Fellowship of the Ring (1954)

In this Chapter, the model presented in Chapter 4 for the determination of EWS time delays

will be applied in a case study, where the spin-degenerate sp bulk band of Cu(111) has been

investigated. The measurement of spin polarization from localized states of Cu(111) will be

also shown. The experiment has been performed at the COPHEE endstation (see Section 3.2.1).

The main findings have been published in Ref. [145].

5.1 Characterization of Cu(111) crystal

Copper (Cu) is a well known material, one of the most used metals both in ancient and modern

times. Being an elemental (Z = 29) noble metal with f cc crystal structure, it is a textbook

example in the context of photoemission [86, 155], because of its free electron-like dispersion

of the bulk band that crosses the Fermi level and thus makes it metallic. Such bulk band

originates from the 4s atomic level (Cu electronic configuration: [Ar]3d104s1), but in the crystal

it acquires an sp character because of hybridization with the fully occupied 3p states. The

most common surfaces that have been investigated in photoemission are the (001), (110) and

(111) facets [93].

In Fig. 5.1(a) and (b) the 3D Brillouin Zone and the Fermi surface of f cc copper are shown

respectively, and in Fig. 5.1(c) a calculation of the bulk band structure of Cu(111) is reported.

The spherical Fermi surface shows the well-known neck distortion at the zone boundaries,

and the bulk band structure displays five d states with small dispersion, together with the

parabolic sp conduction band.

A single crystal of Cu(111) has been measured at COPHEE (see Section 3.2.1). The sample

was cleaned by several cycles of Ar sputtering at 1 kV followed by annealing at 400 ◦C. All the

measurements were performed at room temperature. The sample was aligned with the ΓK

direction along kx by means of Low Energy Electron Diffraction (LEED) and Fermi surface

maps. The quality of the surface is confirmed by the LEED image in Fig. 5.2(a), where the
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(a) (b) (c)

Figure 5.1: (a) 3D Brillouin Zone of a f cc crystal. (b) Fermi surface of copper. (c) Calcu-
lated bulk band structure of copper (from Ref. [93]), with relativistic and non-relativistic (in
parenthesis) symmetry labels.

diffraction spots are sharp and bright. They are six as expected for a (111) facet of an f cc

crystal, and they correspond to the various Γ points in the second Brillouin zones. The spot

corresponding to Γ0 in the first zone is not visible since it is aligned below the electron gun in

the center of the image, as usual in LEED. The six-fold symmetry is visible also in the Fermi

surface measured by ARPES as shown in Fig. 5.2(b) (only the first zone is shown), which does

not feature a circular state but the already mentioned neck distortions. In Fig. 5.2(c) the

Cu(111) surface state parabolic dispersion measured by ARPES is shown. The quality of the

sample surface can also be checked from this measurement. In fact, the position of the bottom

of the band would be closer to the Fermi level with worse surface quality, but in Fig. 5.2(c) it is

measured at Eb ≈ 440 meV, which is similar to what is obtained in literature [156].

In Fig. 5.2(d) a spin-resolved MDC of the surface state performed close to the Fermi level

[black line in Fig. 5.2(c)] is shown. Although the experimental resolution is not sufficient to

resolve the Rashba-type spin splitting of the surface state 1 , this is visible in the spin-resolved

MDC. In this geometry the Rashba component corresponds to the y direction, and indeed

Py in Fig. 5.2(d) clearly shows a Rashba-like signal. The good quality of the sample surface is

reflected in the absence of strong impurity scattering features 2 in the other two components,

even though they are not exactly zero as it should ideally be in a perfect crystal.

1 Under inversion symmetry breaking, time-reversal symmetry alone cannot guarantee the Kramers degeneracy,
and thus the spin degeneracy is lifted as a function of momentum resulting into two concentric states with helical
spin texture. Since the presence of a surface itself implies inversion symmetry breaking, electronic surface states
experience the so-called Rashba splitting [103].

2 In Ref. [157] it is shown that for a surface of Cu(111) with a large number of structural defects, the measured
spin polarization in the plane perpendicular to the Rashba component is about six times larger than the spin po-
larization along the direction expected for the Rashba splitting. This effect is ascribed to the coherent interference
between the two Rashba-split states.
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(a) (b)

(d)(c)

Figure 5.2: (a) LEED image of Cu(111), Ek ≈ 185 eV. (b) Fermi surface obtained with hν= 127 eV
(the measured square portion of Fermi surface has been replicated and rotated several times
in order to compose the full image). (c) Bandmap of the surface state of Cu(111) measured
with hν = 21 eV . (d) 3D spin-resolved MDC of the surface state along the black line in (c),
measured with π polarized light of hν= 21 eV .

In Fig. 5.3(a) a bandmap measured with hν = 120 eV is shown. In this measurement the d

bulk bands and the sp bulk band are visible. In Fig. 5.3(b) a photon energy scan close to

the Fermi level is shown. The top and bottom parts of the plot correspond to two different

measurements performed for a different photon energy range along the kx and ky directions,

respectively. The surface state, which does not disperse along kz , is visible together with the

sp state. For comparison, in Fig. 5.3(c) a one-step photoemission calculation of the hν scan

is shown, where all the features are remarkably well reproduced. The calculations [96] have

been performed by Henrieta Volfová and Jan Minár at the Ludwig-Maximilians-Universität of

Munich.

5.2 EWS time delays from the sp bulk band

The sp bulk conduction band of Cu(111) has been investigated with spin-resolved ARPES with

the purpose to extract the EWS time delays according to the model presented in Chapter 4. In

order to maximize the counts of the spin-resolved measurements, optimal photon energies

have been chosen from the hν scan in Fig. 5.3(b). Local maxima in intensity were found

at 46 eV and 130 eV . A bandmap for hν = 130 eV is reported in Fig. 5.4(a), which does not

show significant changes of photoemission intensity with binding energy. This observation

is a hint that the assumption ṙ ≈ 0 is reasonable, as discussed in Section 4.4. Solid lines

indicate the binding energies where spin-resolved MDCs have been measured by scanning

the angle θp with π linearly polarized light [see Fig. 3.6(e)]. The sequence has been measured

in an alternated order, in order to not misinterpret possible sample aging effects. The free-

electron-like band under consideration is the only state in a 2 eV range from the Fermi level
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(a) (b) (c)

band

bands

Figure 5.3: (a) Bandmap of Cu(111) measured with hν= 120 eV along the ΓK direction. (b)
Photon energy scan close to the Fermi level, which maps the dispersion along the kz direction
(the two parts of the plot correspond to two different measurement performed along kx and
ky ). (c) One-step photoemission calculation of the hν scan.

and therefore cannot have any hybridization with other bands. This is important since the

presence of other bands would make very difficult to disentangle different contributions

to the spin signal. At this photon energy, the angle θp is varied between 9.5◦ and 12.5◦ in

order to access the band with angular resolution at the various binding energies. As it has

been discussed in Chapter 4, for such a small angular range the variation of the geometrical

correction parameter f (θp ) can be neglected. By choosing θp = 11◦, one can then estimate

the quantity r as r = E∥/Ez = tanχ= 0.67 [see Section 4.3, Fig. 4.1(a) and Fig. 5.6(a)].

In Fig. 5.4(b) the three spatial components x, y , z of P for the MDC measured 0.2 eV below the

Fermi level [i.e. at energy E2 of Fig. 5.4(a)] are shown, together with the total photoemission

intensity. Two main observations can be made:

• First, despite the probed band is a spin-degenerate state, there is a clear spin polarization

signal in the y and z components, which is generated during the photoemission process.

It is possible to exclude possible surface-induced Rashba-like effects 3 in the initial

state bulk bands as the main cause for the observed spin polarization from similar

measurements on Au(111) (Z = 79), shown in Fig. 5.5(a). A spin polarization with similar

magnitude and splitting as in Cu(111) (Fig. 5.4(b), reproduced also in Fig. 5.5(b) for

3 In some materials, where there is no inversion symmetry in the bulk because of their crystal structure, also
the bulk states will experience Rashba splitting [158, 159]. This is however not the case of Cu(111), since its f cc
crystal structure is inversion symmetric. Nevertheless, the possibility for a bulk state to be spin split has still been
suggested, because of the combined strong influence of the surface on the bulk band structure and the surface
sensitivity of photoemission [160].
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Figure 5.4: (a) Bandmap at hν= 130 eV with the sp bulk conduction band. Solid lines indicate
the Eb where the spin-resolved MDCs have been measured. The actual set was performed in a
random sequence in order to prevent any sample aging artifact. (b) 3D spin-resolved MDC
along kx measured 0.2 eV below the Fermi level [E2 in (a)] with π polarized light of hν= 130 eV.
The total intensity and the three polarization spatial components are shown. (c) Plot of P (Eb)
for the two spin signals k− and k+.

comparison) is found, whereas for Rashba-like effects one would expect a much larger

spin polarization magnitude and splitting in a material with much stronger spin-orbit

coupling.

• Second, the spin polarization signal does not correspond to the maximum of the pho-

toemission intensity, as would be expected for atomic levels or localized states [62, 66],

but it displays two opposite vectors to the left and to the right of the main peak, indi-

cated as k− and k+ respectively in Fig. 5.4(b). This peculiar feature will be called double

polarization feature (DPF), and will be analyzed in Section 5.2.1. Here, it can be already

mentioned that this is not a measurement artifact for the following reason. In Fig. 5.5(c)

a spin-resolved EDC measured with hν = 203 eV over the 3p core levels of copper is

shown. This measurement has been performed with a photon energy and a geometry

such that the kinetic energy and the angle θp are the same as the measurement of the

sp band of Fig. 5.5(b). In this case a localized state is probed, and only a single spin

polarization vector is observed corresponding to each core level (3p1/2 and 3p3/2), as

expected for atomic-like states [66]. A discussion of the spin-resolved measurement

over the 3p core levels can be found in Section 5.3. This argument alone regarding the

EDC measurement against possible artifacts is not complete, since one cannot consider

the possibility of the DPF occurring only in MDCs, given that the core levels are local-

ized and thus one will not find a peak in an MDC. However, the existence of the DPF

is also corroborated by calculations, as presented in Section 5.2.1, and seems to be a

general property of dispersive states, since it has also been observed in other systems

(see Chapter 6).

As shown in Fig. 5.6(a), the E field of the light lies in the xz plane and thus probes both in-

plane and out-of-plane orbital components, which in turn are not isotropic in contrast to
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Figure 5.5: (a) Spin-resolved MDC close the Fermi level performed on a Au(111) crystal with π

polarized light of hν= 40 eV . In this case the direction of P is given by δ≈ 0◦ and ψ≈ 44◦. (b)
Same figure as in Fig. 5.4(b) reported here for comparison. (c) Spin resolved EDC of the 3p
core levels with same Ek and θp as the measurement in (b).

the simpler case of atomic targets. Because of these symmetries, combined with the (111)

crystal orientation probed with a low-symmetry non-normal incidence setup, the expected

direction n of the spin polarization will deviate from the purely atomic one, which would

correspond to y . Indeed, the direction of the two spin polarization vectors at k− and k+ is

in the y z plane, as can be extracted from Fig. 5.4(b). In particular, one obtains δ ≈ 0◦ and

ψ≈ 51◦ [angles defined in Fig. 4.1(b)] for the vector corresponding to k−, shown in Fig. 5.6(b)

together with the corresponding reaction plane, and the opposite direction for the vector at

k+. A variation of ±5◦ from these directions is found for the measurements at different Eb ,

which is within the experimental accuracy of the COPHEE setup. As discussed in Section 4.2,

the reaction plane in the case of photoemission from solids deviates from the case of atomic

photoionization (which would be xz in the given setup) because of the reduced symmetry of a

crystal with respect to an isotropic atom. It is difficult to determine this plane a priori, but it

is interesting to observe that the one found experimentally coincides with the (2,1,0) crystal

plane 4 . Further experiments on different facets could shed more light on this point. The

measured angles δ and ψ can be used to compute the geometrical correction in the equations

from Chapter 4, and in particular one finds t = 0.28 from Eq. (4.4). It has to be noted that

this value of t corresponds to the one for which c(r, t) ≈ 1 (and thus P is maximized) for the

previously estimated value of r = 0.67 (see Section 4.2).

From the spin-resolved MDC at the given energy E2 shown in Fig. 5.4(b) the value of P at

this Eb is obtained. By repeating other measurements at different Eb , a plot of P (Eb) can be

constructed, as shown in Fig. 5.4(c) for both peaks k− and k+. The slope of their linear fit,∣∣Ṗ ∣∣ ≈ 0.04 eV−1 (the smaller value corresponding to k− will be considered), is the relevant

quantity to determine the EWS time delays. In fact, in Chapter 4 the quantity
∣∣Ṗ ∣∣ has been

related to both time delays τs
EWS and τEWS, which are associated to the phase shift between

the interfering channels and to the phase term of the full matrix element of the transition,

4 The measured angle between the reaction plane and the (111) facet is 90◦ −51◦ = 39◦. The angle between the
plane (h,k,�) and the (1,1,1) is given by arccos h+k+��

3
�

h2+k2+�2
. For example, this is equal to 35.3◦ for the (1,1,0)

plane and to 39.2◦ for the (2,1,0) plane.

66



5.2. EWS time delays from the sp bulk band

(111)

(111)

(a) (b)

Figure 5.6: (a) Experimental geometry. (b) Orientation in space of the measured P at k− (the
one at k+ is opposite). The reaction plane is tilted by ψ= 51◦ from the atomic reaction plane
xz.

respectively. From Eq. (4.10) one can estimate
∣∣τs

EWS

∣∣≥ �
∣∣Ṗ ∣∣≈ 26 as, but also

∣∣τs
EWS

∣∣≈ 26 as

from Eq. (4.9) because of the combined optimum of r and t yielding c ≈ 1. Similarly, from

Eq. (4.11) one obtains |τEWS| ≈ 11 as.

As shown in Section 4.3, the two Eqs. (4.9) and (4.11) can also be used to find the dependence

of the two time delays on binding energy from the dependence of φs (P (Eb)). However it can

be checked that the variation of P with binding energy leads to a negligible variation with

binding energy of both
∣∣τs

EWS

∣∣ and |τEWS| 5 .

If one does not calculate r = E∥/Ez but allows different values for r , the estimates of the time

delays will be different. Then it is possible to set an upper limit as discussed in Section 4.4.

From Eq. (4.12) one finds rmax = 12.1 by using φs = 0.1 and rmax = 6 by using φs = 0.2. Under

the assumption ṙ ≈ 0 the largest possible value of r is rmax = 6, which gives
∣∣τs

EWS

∣∣≤ 134 as

and
∣∣τs

EWS

∣∣≤ 115 as. It should be mentioned that the estimate of an upper limit for
∣∣τs

EWS

∣∣ as

reported in Ref. [145] is not discussed in this Thesis, since the estimate given here is more

precise.

The P (Eb) measurement has been repeated for various photon energies as shown in Fig. 5.7.

In addition, the experiment at hν = 130 eV has been performed twice in order to test the

reproducibility of the measurement. Within the limits of relatively large error bars and a small

number of data points, a similar overall slope is observed for all the hν. This suggests that

possible additional effects related to the travel time of the electron during the transport to

the surface [161, 162] are not of importance, at least within the experimental capabilities (see

discussion in Chapter 7).

To conclude this Section, from the measurement of modulus and direction of the spin polariza-

tion vector as a function of binding energy for the sp bulk band of Cu(111) the two following es-

5 On the other hand, if one allows φs >π/2 (see the discussion on the domain of definition of the phase shifts in
Section 4.3) then

∣∣τEWS
∣∣ (Eb ) varies between ≈ 40 as and ≈ 50 as in the probed Eb range.
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Figure 5.7: Plot of P (Eb) for the two spin signals k− and k+, repeated for different hν.

timates of EWS time delays have been found: 26 as≤ ∣∣τs
EWS

∣∣≤ 134 as and 11 as≤ |τEWS| ≤ 115 as.

Furthermore, by assuming r = E∥/Ez one finds
∣∣τs

EWS

∣∣≈ 26 as and |τEWS| ≈ 11 as.

5.2.1 DFT calculations and the double polarization feature

In the previous Section, the two EWS time delays
∣∣τs

EWS

∣∣ and |τEWS| have been determined for

the sp bulk band of Cu(111). In particular, they have been obtained from the measurement of

the spin polarization P as a function of binding energy. The experiment has been performed

for several photon energies. In Fig. 5.8(a) a summary of P from all the MDCs performed with

hν = 130 eV is shown. The red/blue color scale takes into account the sign of P along the

direction n obtained from the three spatial components Px ,Py ,Pz . Crucially, whereas the sp

state displays one single band when probed without spin resolution, as well established in

literature [93] and shown in Fig. 5.1(c) and Fig. 5.4(a), when measured with spin resolution it

displays an up/down signal called double polarization feature (DPF).

In order to understand the DPF, fully relativistic self-consistent multiple-scattering Korringa-

Kohn-Rostoker (KKR) density functional theory (DFT) calculations [96] have been performed

by Henrieta Volfová and Jan Minár at the Ludwig-Maximilians-Universität of Munich. In

Fig. 5.8(b) the evaluated P from the calculations in the framework of one-step photoemission

[95, 97] within its spin-density matrix formulation [98] for a semi-infinite Cu(111) system is

shown, and its three spatial components are reported in Fig. 5.8(d). Given the complexity of

these spin signals, it is not possible to unambiguously fix a direction along which P could

be projected in order to plot it in a red/blue color scale, and therefore in Fig. 5.8(b) only the

modulus of P is shown. Such complexity could be missing in the experiment due to a lack of

resolution, but on the other hand it could also be an overestimate of the DFT calculations,

along the lines of the discussion about extrinsic losses and sudden approximation presented

in Section 3.1.2. Despite this, still it is clear that the sp band gives rise to at least two spin
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Figure 5.8: (a) Summary of spin polarization P from MDCs measured along kx with π polarized
light of hν = 130 eV plotted as a bandmap. (b) P from KKR calculations performed for
parameters similar to the experiment. (c) Plot of P (Eb) for a selected feature of (b). (d) The
three calculated spatial components of P . Their complexity does not permit to unambiguously
fix a direction along which P in (b) could be projected in order to plot it in a red/blue color
scale.

signals, matching to the experimental results and thus strengthening the interpretation of the

DPF as a real feature and not an artifact of the measurement.

The fact that the spin polarization signal is reproduced by the calculations suggests that it

is also possible to extract the EWS time delays information from the output of DFT using

the same model presented in Chapter 4. In fact, as shown in Fig. 5.8(c), the fit of P (Eb) for

a selected feature has a slope that is relatively close to the value found experimentally. In

principle, one could even directly extract the phase terms of the matrix elements from the

DFT calculations. Such operation would give valuable information about the system under

investigation, but requires important modifications of the available DFT codes [163].

A similar feature to the DPF has already been obtained, but not discussed, in previous calcula-

tions from a different group related to the study of self-energy corrections in Cu(111) [164]. In

that work, the single feature of the sp band calculated without self-energy terms [Fig. 5.9(a)]

becomes split into two features when self-energy corrections are included [Fig. 5.9(b)], as

indicated by a red circle. This result is remarkably similar to the spin-resolved data of Fig 5.8.

However, it is important to note that this calculation is not spin-resolved. Also, this peculiar

feature is not even mentioned in Ref. [164], since it does not appear in the (spin-integrated)

experimental data reported there. Further investigation of the calculations from Ref. [164]
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(a) (b)

Figure 5.9: Calculated band structure of Cu(111) from Ref. [164] (modified). (a) No self-energy
corrections included. (b) Self-energy corrections included, with orbital-dependent shifts of
the Local Density Approximation potential Σd = −0.8 eV and Σsp = +0.3 eV. The red circle
indicates the peculiar splitting of the sp band that is reminiscent of the DPF.

suggests that different contributions to the DPF from the bulk state and the bulk-derived state

at the crystal surface might also play a role [165].

As will be presented in Chapter 6, it seems like the DPF is a common feature of dispersive

states, since it is found also in a system very different from Cu(111) such as Bi2Sr2CaCu2O8+δ.

However it does not appear in localized states (see Section 5.3), in accordance with the atomic

photoionization model. It is difficult to investigate the nature of the DPF, because of the lack

of a one-step theory of photoemission where these phase-related spin polarization effects

are explicitly described and not only a result of the calculation of the matrix elements. In the

following, possible ingredients from literature to explain the DPF, in addition to self-energy

corrections and surface-related effects, will be highlighted.

In general, the phase term of the final state wavefunction in the one-step model of photoe-

mission goes from 0 to π when passing through an atomic resonance, whereas in solids it

becomes a complex quantity with characteristic resonant shape when hole lifetime effects

(closely related to self-energy corrections) are included, as explained in Ref. [92]. This suggests

that every state inherently provides a phase-shift of π when it is probed in photoemission,

and since according to Eq. (4.5) P ∝ sinφs , it will result in two opposite directions of the spin

polarization vector when crossing the state.

As has already been pointed out, it seems that such a π shift occurs only in dispersive states,

i.e. when it is possible to look at a state as a function of momentum. The dependence on

momentum could be understood by considering the following similar situation from the field

of cold atoms. In Ref. [166] it is shown that, thanks to spin-orbit coupling, two cold atoms of

different momenta can be coherently combined in a so-called Feshbach molecule with the

spin of the two atoms antiparallel to each other. In other words, spin-orbit coupling provides

a π phase difference to particles with slightly different momenta at the resonant energy of a

system. This suggests that, in photoemission, the electrons coming from a dispersive state

70



5.3. Spin-resolved survey of the 3p core levels

that have a finite different momentum because of the intrinsic broadening of the state might

experience a phase difference of π in their wavefunction because of the influence of spin-orbit

coupling.

The concept of a Feshbach molecule is closely related to the phenomenon of resonance

scattering, which allows to interpret the DPF from a different perspective, namely as an energy

instead of momentum splitting, as explained in the following. This is based on considering

once again the similarity of the photoemission process with the one of electron scattering,

as in Section 3.3, and is summarized in Ref. [62]. Mott scattering, as it has been presented

in Chapter 2, does not take into account the possibility of the incident electron to form a

quasi-bound state. However, if the energy of the elastically scattered electron is close enough

to one of the energies of the excited states of the atom, it is possible for the electron to be

temporarily bound to the atom in an ionic compound. This quasi-bound state significantly

increases the cross-section of the scattering process. Then if spin-orbit coupling is present in

the excited state, two peaks are present in the cross-section as a function of electron kinetic

energy. It can be shown that this corresponds to a spin polarization that switches sign between

the two peaks. This effect is known as Feshbach resonance. A similar mechanism, known

as shape resonance, relies on the particular shape of the atomic potential in conjunction

with the centrifugal potential of the trapped electron. Whereas Feshbach resonances have

energies that are lower than the parent atomic excited state, shape resonances have higher

energies. The parallel with photoemission could be done by considering that the electrons

that will be photoemitted are naturally at the energy that allows a bound state, i.e. the energy

where the photohole is formed. Therefore, during the photoemission process, the entangled

photoelectron-photohole system might experience all these fine corrections from electron

scattering formalism that lead to a π phase shift, which will experimentally result in a DPF.

5.3 Spin-resolved survey of the 3p core levels

In order to study the influence of possible additional effects on the measured spin polarization,

a set of spin-resolved EDCs over the 3p core levels of Cu(111) has been measured. The 3p

level is spin-orbit split into 3p1/2 (Eb = 77.3 eV ) and 3p3/2 (Eb = 75.1 eV ). Because of the

strong localization of the core levels, the spin polarization is expected to follow the atomic

photoionization model described in Section 3.3.1. This measurement has already been per-

formed in the past [66], but only the component relevant to atomic symmetry was considered

(i.e. the one that corresponds to Py in the COPHEE setup), and the other two were said to be

necessarily zero.

In Fig. 5.10(a) a comparison of EDCs measured with hν= 130 eV at three different angles is

shown. The three angles θ1,2,3 correspond to Γ (i.e. normal emission) and to the particular k∥
at which the sp band crosses the Fermi level for the two photon energies 130 eV and 46 eV

respectively. As already mentioned in Section 5.2, the measurements do not show any sign of

DPF. In fact, here the up/down feature in the spin signal corresponds to the two core levels,
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Figure 5.10: Spin-resolved EDCs over the Cu(111) 3p core levels (a) as a function of θp (hν=
130 eV , θ1 = 0◦, θ2 = 12.5◦, θ3 = 22.5◦), and (b) as a function of hν (θp = θ2).

where an opposite spin polarization is expected because of the different value of j [66], as

shown in Fig. 5.5(c) (which is the same as in Fig. 5.10 with hν= 130 eV and θp = θ2). In addition

to Py , also Px shows a certain degree of polarization, suggesting that the orientation of the spin

polarization vector in crystals does not strictly follow the symmetry arguments of completely

isotropic atomic targets. An important observation is that the three measurements at different

angles are equivalent within the experimental resolution. Therefore one can conclude that

the spin polarization discussed in Section 5.2 for the estimate of EWS time delays (measured

at θ2,3 for the two photon energies 130 eV and 46 eV ) is not affected by diffraction through

the surface, since these effects should vanish at normal emission (θ1), and should be strongly

dependent on the particular angular position.

In Fig. 5.10(b) the two photon energies hν= 130 eV and hν= 203 eV are compared, which

places the 3p levels at about the same Ek of the experiment performed on the sp band at

hν = 46 eV and hν = 130 eV , respectively. The two measurements differs only in the Py

component, which changes by about a factor of 2. Given the large difference in kinetic energy,

this suggests that effects related to scattering and transport to the surface are not the main

cause of the spin polarization, since a change of a factor of 2 is also observed in the much
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smaller energy range of the measurement shown in Fig. 5.4. Noticeably, a careful study of

the variation of the spin polarization from the core levels with photon energy would be very

interesting, in order to access the phase (and therefore time) information for these localized

states, along the lines of the atomic photoionization measurements performed in the past [63].

In particular, a comparison with time-resolved experiments would be easier given their limited

energy resolution. However, given the relatively low photoemission intensity of the core levels

at these photon energies and the present state-of-the-art quantitative 3D spin polarization

measurements, such experiments would be highly time-consuming.

5.4 Spin polarization from the d bands

The spin polarization from the d bands has also been investigated. Given their small dispersion

and their intricate structure, a binding energy dependent study aimed to extract information

on the EWS time delays is not feasible. However, it is interesting to observe that also in this

case, where a spin-degenerate state is being probed, a spin polarization is measured.

In Fig. 5.11 all the three spatial components of P for four spin-resolved EDCs are shown,

together with the corresponding spin up and down channels N ↑,↓ obtained from Eq. (2.4). The

four EDCs have been performed with photon energies of 28 eV, 34 eV and 46 eV using π light

polarization, and σ light polarization for hν= 46 eV. The measurements have been performed

at normal emission (θp = θ1 = 0◦). In Fig. 5.12 the same data set has been measured off-normal

emission with an emission angle θp = θ4 = 16.4◦. As shown in Fig. 5.9, a larger binding energy

spread of the d bands is expected for θ4 than for θ1. The following observations can be made

about the spin signals.

• All the states show a high degree of measured spin polarization up to almost 50%,

with non-zero components of P in all the three spatial directions. In contrast to the

measurement on the 3p core levels of Fig. 5.10, here the Py component is not the largest.

This is sign that also for the d bands the crystal symmetry plays a role in determining

the direction of P , as in the case of the sp band [Fig. 5.5(b)].

• The general trend is a decrease of spin polarization signal with increasing photon

energies, but the different states have different dependencies.

• Some of the states show a high degree of linear dichroism, where the photoemission

intensity is strongly suppressed for σ polarization compared to π (see for example the

state marked as 2 in the N ↑
x or N ↓

x plot at 46 eV in Fig. 5.11), whereas other states do not

sensibly change (for example the state marked as 1 in the same plot).

• Also the spin signal shows some dichroic features, since not only the states with dichro-

ism in the intensity but also some of those who do not change in intensity have a

variation of spin polarization with light polarization (as in the Pz component of the

previously mentioned state marked as 1). This is a hint of a possible interplay between
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Figure 5.11: Spin-resolved EDCs over the Cu(111) d bands measured as a function of photon
energy and light polarization. Each plot shows the spin up channel (red line) and spin down
channel (blue line) along the spatial direction i = x, y, z in millions of counts (left axis), as
well as the spin polarization component Pi (black dots, right axis). The emission angle is
θp = θ1 = 0◦, corresponding to the Γ point, i.e. normal emission.
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Figure 5.12: Same as Fig. 5.11, measured off-normal emission with an angle θp = θ4 = 16.4◦.
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spin polarization and linear dichroism, which is important to study for a better under-

standings of spin-resolved measurements in general [167].

At least five peaks can be identified in the scans of Fig. 5.11, which correspond to the 5 d

states. However it is difficult to carefully analyze this kind of measurements with the present

resolution, in order to disentangle the spin information from the different states as well as

to find the possible presence of DPFs. Nevertheless, this example shows a further potential

application of spin-resolved ARPES on spin-degenerate states: the possibility of accessing the

information about the symmetry of the probed states through dichroism analysis of the spin

polarization.
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6 Results: the strongly correlated mate-
rial BSCCO
“The more that I see, the less that I know for sure.”

- John Lennon, Borrowed time (1980)

In this Chapter, a study of the spin polarization and the EWS time delays in photoemission

from the cuprate superconductor Bi2Sr2CaCu2O8+δ (BSCCO) will be presented. Despite the

limitation of the COPHEE endstation for a demanding system such as BSCCO, a comparison of

this strongly correlated electron system with the free electron-like system such as Cu(111) will

be discussed. The main findings have been published in Ref. [168]. Also, recent laser-SARPES

experiments performed on BSCCO at the University of Tokyo will be shown.

6.1 Photoemission from BSCCO 2212

Copper oxide-based compounds (cuprates) are one of the most studied class of materi-

als among the unconventional high TC superconductors. These are materials where super-

conductivity is not accounted for by the well established Bardeen-Cooper-Schrieffer (BCS)

model [169], and where the superconducting critical temperature TC can be much higher than

the one limited by the BCS theory, i.e. ≈ 30 K [170]. Cuprates have been discovered by Georg

Bednorz and K. Alex Müller [171], for which they received the Nobel Prize in 1987. They have

a layered perovskite crystal structure, where CuO2 planes are separated by spacer layers as

shown in Fig.6.1(a).

Cuprate superconductors are representative systems for the study of strong electron cor-

relations, and as such they have been probed extensively by ARPES [174–179]. A strongly

correlated material is characterized by electronic properties that cannot be described by con-

sidering any electron to be influenced by the average "sea" of all the other electrons, but the

interaction among them become relevant also on a qualitative level. In particular, the spectral

function mentioned in Section 3.1.1 is modified from a simple series of delta functions to a

more complex, material-dependent function with a main peak and several satellites.
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Chapter 6. Experimental results: the strongly correlated material BSCCO

(a) (b)

Figure 6.1: (a) Bi2Sr2CaCu2O8+δ unit cell (from Ref. [172]). (b) Typical phase diagram of a
cuprate (from Ref. [173]).

Among cuprates, the bismuth strontium calcium copper oxide (BSCCO, pronounced "bisko")

is a well-known example. Its non-stoichiometric chemical formula is Bi2Sr2Can−1CunO2n+4+δ,

with n integer; in particular, the three cases n = 1 (Bi2Sr2CuO6+δ, BSCCO 2201, TC ≈ 8 K ),

n = 2 (Bi2Sr2CaCu2O8+δ, BSCCO 2212, TC ≈ 95 K ) and n = 3 (Bi2Sr2Ca2Cu3O10+δ, BSCCO 2223,

TC ≈ 108 K ) are the most studied. The crystal unit cell of BSCCO 2212 is shown in Fig. 6.1(a).

The phase diagram of cuprates is extremely rich, as it is shown in Fig. 6.1(b). As a function of

temperature and hole doping, in particular, they can show antiferromagnetic insulating phase,

normal Fermi liquid phase and superconducting phase, among other more exotic phases. The

TC of the superconducting phase varies with doping, and a cuprate with a doping where TC is

maximum is referred to as optimally doped.

Spin-resolved photoemission has already been employed to study BSCCO, but only with angle-

integrated measurements performed with circularly polarized light of energy hν= 931.5 eV,

which is resonant to the Cu L3 absorption edge [180]. In this particular case, the resonant

process was exploited in order to determine the Zhang-Rice singlet character of the relevant

low energy states in BSCCO, thus improving the description of its electronic structure. The

experiments presented in this Chapter are the first characterization of BSCCO by means of spin-

resolved photoemission while maintaining the full energy and angular resolution of ARPES.

It will be shown that even in the less-specific case of off-resonance photoemission, a sizable

spin polarization P is measured as a function of energy and momentum. The states under

investigation are not spin polarized, thus the measured P is a result of the photoemission

process according to the model presented in Chapter 4 and similarly to the results on Cu(111)

presented in Chapter 5. Therefore, this case study of BSCCO allows to access the phase

information in the photoemission process, which leads to qualitatively new insights in the

study of strong correlations in high temperature superconductors.
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6.1. Photoemission from BSCCO 2212

(a) (b)

Figure 6.2: (a) LEED image of a freshly cleaved BSCCO 2212 sample (Ek ≈ 107 eV). (b) Scheme
of the Fermi surface of BSCCO 2212. The red lines indicate the nodal (N) and antinodal (A)
directions, which have been probed with the spin-resolved MDCs. The blue circles indicate
the error margin of the measurements because of difficulties of the alignment.

A batch of optimally doped BSCCO 2212 samples has been measured at COPHEE (see Sec-

tion 3.2.1). An optimally doped BSCCO 2201 sample has also been measured as a comparison.

All the samples have been provided by Enrico Giannini (University of Geneva) and Fabrizio

Carbone (EPFL). The BSCCO 2212 sample growth and characterization is reported in Ref. [181],

whereas the characterization of BSCCO 2201 can be found in Ref. [182]. The BSCCO samples

were cleaved in situ with a glued top post at low temperature (T = 20 K ) and at a base pressure

lower than 1×10−10 mbar in order to obtain a clean surface for the SARPES experiment. The

surface quality and orientation were checked by Low Energy Electron Diffraction (LEED),

which is reported in Fig. 6.2(a). All the spin-resolved measurements were performed at 20 K ,

therefore the BSCCO 2212 was in the superconductive phase, whereas BSCCO 2201 was in the

normal phase. Because of the low photoemission count rate of the states close to the Fermi

level and the need to mitigate effects of deterioration of the sample’s surface with time, only

one of the two Mott detectors of the COPHEE endstation was used, reducing the acquisition

time by a factor of 2. Thus only two spatial components of P were measured, namely xM

and zM . Instead of the sample coordinate frame of Fig. 3.6(e), the relevant geometry to be

considered for this experiment is the one in the Mott coordinate frame shown in Fig. 3.6(d).

The different regions of the Fermi surface were reached by moving the sample’s normal s by

changing the angles φ and θp . All the MDC measurements were performed with π polarized

light of energy hν= 50 eV by scanning the angle θt . The choice of this angle instead of θp as

in the measurements on Cu(111) presented in Chapter 5 is due to the difficulties inherent in

aligning a system without states around the Γ point with the single channel setup at COPHEE,

as well as to a better count rate in this geometry. This choice requires a modification of some

details of the model presented in Chapter 4, as discussed in Section 6.3.

A sketch of the BSCCO Fermi surface with its common labeling is shown in Fig. 6.2(b). The

band under consideration that encloses the Brillouin zone corners is the CuO2-derived state

of BSCCO 2212, which is relevant for the superconductivity. The state is affected by umklapp
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bands due to diffraction by the Bi atoms at the cleaved surface [183], as it is also visible in

the LEED reconstructed pattern of Fig. 6.2(a). In the BSCCO 2212 case, the state presents a

splitting into bonding and antibonding states due to the presence of a CuO2 bilayer within the

unit cell [174]. In particular, the ΓX and Y M directions in reciprocal space were considered.

These are known in literature as nodal (N) and antinodal (A) directions, respectively, since the

superconducting gap is closed along N and largest along A, and they are shown by red dashed

lines in Fig. 6.2(b). The error margins in the precise orientation of the sample because of the

difficult alignment are shown by two blue circles on the N and A directions in Fig. 6.2(b). As a

note, another common labeling in the field of cuprates consists in calling the corners and the

center of the edges of the Brillouin Zone as (π,π) and (π,0) respectively, where π indicates the

position at π/a in k-space in units of cell size a.

6.2 Spin polarization from the CuO2-derived band

In Fig. 6.3(a) and (b), the two PxM and PzM spatial components of P are shown for MDC

scans along the nodal and antinodal directions, respectively. The PzM component shows no

clear dependence on momentum. On the other hand, all the bands at positive and negative

momenta for the nodal and antinodal directions present a clear momentum-resolved spin

polarization along the xM direction, with a value that reaches about 10%. Notably, each

photoemission intensity peak in the antinodal direction presents an up-down spin structure

reminiscent of the double polarization feature (DPF) observed in Cu(111) (see Section 5.2.1).

In the nodal direction, the photoemission intensity peaks are more structured, and there

appear to be two partially overlapped DPFs, as it can be better seen in Fig. 6.3(c), which shows

a zoom of PxM for negative momenta from Fig. 6.3(a). The signal was fitted with four Gaussian

peaks, with same width and opposite height for each pair of peaks constituting a DPF. Whereas

the bonding and antibonding states of BSCCO 2212 might play a role in the spin signal but are

not resolved, the two DPFs corresponding to the photoemission intensity peaks at ≈−0.35

Å and ≈−0.55 Å can be assigned to the main band and to the umklapp replica, respectively. As

suggested by the structured photoemission intensity peak, the umklapp replica is possibly

enhanced by the misalignment indicated by a blue circle in Fig. 6.2(b). A similar behavior is

also observed at positive momenta, where, however, the total intensity is lower.

For comparison, the same scan along the nodal direction was measured in the non supercon-

ducting state of the related compound BSCCO 2201, as shown in Fig. 6.3(d). The presence

of a clear spin polarization signal with DPF arising from this system as well, which has no

bilayer splitting, excludes any possible interpretation of the spin polarization signal as a direct

consequence of the bonding and antibonding splitting, or of the superconducting state itself.
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Figure 6.3: PxM and PzM spatial components of P for MDCs along the (a) nodal and (b) antin-
odal directions at 40 meV below the Fermi level. The arrow in (a) indicates the momentum
position of the spin-polarized peak considered to construct the plot of Fig. 6.4(b). (c) A
closeup of PxM for negative momenta from (a), in which two DPFs appear in the spin signal
as highlighted by the fit with four Gaussian peaks (red line). (d) Reference measurement on
BSCCO 2201, which is not superconducting at 20 K ; same direction as in (a). In (a), (b) and (d)
the photoemission total intensity is also shown in arbitrary units as a dotted black line.

6.3 Estimate of EWS time delays

In Fig. 6.4(a), the bandmap measured on BSCCO 2212 along the nodal direction is shown.

Red solid lines indicate the MDCs that were measured with spin resolution in nonsequential

order to avoid possible effects related to sample aging. Since the PzM signal from Fig. 6.3(a) is

considerably smaller compared to PxM , only PxM will be considered. According to the model

presented in Chapter 4, the relevant quantity for the estimate of the EWS time delays is the

slope of the spin polarization versus binding energy. Therefore Px (Eb) is constructed by

plotting the spin polarization for one peak from each MDC measured at different Eb . The peak

closer to Γ has been chosen because it is the cleanest by virtue of being less influenced by
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Figure 6.4: (a) Band map along the nodal direction, with red lines indicating the spin-resolved
MDCs. (b) Plot of PxM (Eb). The absolute slope of 0.13 eV−1 is used to estimate Ṗ and thus the
EWS time delay.

overlaps with other DPFs, as indicated by an arrow in Fig. 6.3(a). The plot of PxM (Eb) is shown

in Fig. 6.4(b), with an obtained absolute value of the slope of |ṖxM | ≈ 0.13 eV−1.

Since there is no information about the third component PyM from the measurement, it is not

possible to proceed with a careful estimate of the EWS time delays, in contrast to the case of

Cu(111) in Chapter 5. In particular, it is not possible to obtain the quantity Ṗ , and neither the

angles ψ and δ which determine the parameter t via Eq. (4.4) (see Chapter 4). In addition,

Eq. (4.4) itself would not be correct, since the geometrical correction in Chapter 4 has been

developed for a θp MDC scan, whereas in this case the angle θt was varied, and therefore it

would be necessary to develop a similar equation for the evaluation of t . However, it is at least

possible to give an estimate of the lower limit of
∣∣τs

EWS

∣∣ from Eq. (4.10) in the following way.

Under the assumption that P does not vary direction but only its modulus in the measured

Eb range, similarly to what was found in Cu(111), one can write |Ṗ | ≥ |ṖxM | and therefore still

find a finite lower limit for the interfering channels EWS time delay as:
∣∣τs

EWS

∣∣≥ �|Ṗ | ≥ �|ṖxM |.
If, for example, one assumes PyM ≈ 0, then Ṗ ≈ ṖxM and therefore |τs

EWS| ≥ 85 as, whereas if

PyM (Eb) ≈ PxM (Eb) then |τs
EWS| ≥ �|ṖxM |�2 ≈ 120 as. These values are at least 3 times larger

than the one found for Cu(111), which was ≈ 26 as (see Section 5.2).

For completeness, it is worth to mention that this estimate of
∣∣τs

EWS

∣∣ is the simplest and the

one that does not rely on the specific geometry of the experiment, where none of the values

of r, t ,δ,ψ are considered. A measurement with information about Py should yield a better

estimate of
∣∣τs

EWS

∣∣, which will be larger than the one given here, according to Eq. (4.10). With

regard to |τEWS|, on the other hand, as it was described in Section 5.2 it is at least necessary to

first give an estimate of the parameter r . By construction, for a θt MDC it can be found that

at θp = 0◦ one has r = 1/cosθt ≈ 1 for small values of θt (such as θt ≈ 7◦ in the measurement

under consideration). Therefore, one can calculate max |m| in Eq. (4.11) and find |τEWS| ≥ 43 as

if one assumes |Ṗ | ≈ |ṖxM |, and |τEWS| ≥ 60 as by assuming |Ṗ | ≈ |�2ṖxM |. Since the maximum
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of the function m(t ) is considered, this result does not require an estimate of the parameter t .

Also in this case, the estimate of the EWS time delay is sensibly larger compared to the one

found for Cu(111), which was ≈ 11 as (see Section 5.2). The reason is that apart from the small

corrections of the geometrical model the measured spin polarization variation with binding

energy is much larger. However, the investigated binding energy range was necessarily much

smaller, and is therefore less suited to make precise estimates about the slope of P (Eb). A

discussion on the different EWS time delays in the correlated system BSCCO 2212 and in the

Fermi liquid system Cu(111) can be found in Chapter 7.

6.4 Laser SARPES on BSCCO 2212

The main limitations of the results presented in the previous Sections are due to the difficul-

ties of measuring a sample such as BSCCO at the COPHEE endstation, both because of the

challenging alignment of a system without states around the Γ point with a single-channel

analyzer, and because of the limited energy resolution. In order to overcome these issues,

laser-based SARPES experiments have been performed in January 2018 at the Laser and Syn-

chrotron Research Center (LASOR) at the Institute for Solid State Physics of the University of

Tokyo, and these recent results will be briefly shown in this Section.

The laser SARPES setup at LASOR is equipped with a SCIENTA-OMICRON DA30L hemispheri-

cal analyzer and two highly efficient VLEED spin detectors that allow to measure all the three

spatial component of the spin polarization of the photoelectrons [107]. The light source [184]

is based on a commercial frequency tripled Nd:YVO4 quasi-continuous wave laser (repetition

rate of 160 MHz), and an energy of hν = 6.994 eV corresponding to the 6th harmonics is

obtained using an optical contact prism coupling technique [185] with a nonlinear KBe2BO3F2

crystal [186].
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Figure 6.5: (a) Laue diffraction pattern, where the horizontal direction corresponds to the a
axis. (b) Fermi surface of BSCCO 2212 measured at LASOR.

The BSCCO 2212 sample was grown by Edoardo Martino and László Forró at EPFL. The sample

was cleaved in situ at a temperature of T = 35 K. The azimuthal orientation of the sample was
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Chapter 6. Experimental results: the strongly correlated material BSCCO

checked by Laue diffraction at EPFL [Fig. 6.5(a)]. In Fig. 6.5(b) the portion of the constant

energy map reachable with hν= 6.994 eV is shown, with the nodal direction aligned along kx .

The state was reached in k-space by rotating the polar angle, and the angular resolution in the

spin-resolved measurement is obtained with the deflector electron lens of the analyzer.
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Figure 6.6: Spin resolved measurement of BSCCO 2212 at LASOR for the three spatial compo-
nents x, y, z in the detector coordinate frame. The zero of the kx axis is set at kF = 0.5 Å−1. (a)
Total intensity I ↑ + I ↓. (b) Intensity difference I ↑ − I ↓. (c) Spin polarization (color scale from
red to blue corresponding to −1 to +1).

In Fig. 6.6 the spin resolved measurement of BSCCO 2212 performed with σ polarized light

is displayed. In panel (a) the total intensity measured by the spin detector (I ↑ + I ↓) is shown

for the three spatial components (in the spin detectors coordinate frame, see Ref. [107] for
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6.4. Laser SARPES on BSCCO 2212

details), whereas in panel (b) the intensity differences (I ↑ − I ↓) are shown. Panel (c) shows

the spin polarization evaluated according to Eq. (3.16) (with Sherman function S = 0.29). The

main signal in intensity differences is in the y direction, which corresponds to the direction

perpendicular to the mirror plane MΓM . Two main differences are found between this

measurement and the one performed at COPHEE presented in the previous Sections. First,

there is no clear indication of a DPF: the asymmetry peak corresponds to the position of the

total intensity peak. Second, not only the spin polarization does not present a DPF, but it

does not even show any clear peak, since only an overall constant value is observed. This

is better illustrated in Fig. 6.7, where both the bandmap of total spin polarization (a) and

a spin-resolved EDC along y performed close to kF show a constant featureless total spin

polarization.
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Figure 6.7: (a) Total spin polarization obtained from Fig. 6.6(c). The zero of the kx axis is set at
kF . (b) High statistics spin-resolved EDC along y performed close to kF .

In this Chapter, the nature of the interfering transitions in BSCCO 2212 has not been addressed.

Whereas in Cu(111), as discussed in Chapter 5, they are suggested to be the two spatial parts of

the double group representation that are selected by in-plane and out-of-plane components of

the E field of the light, in BSCCO 2212 the situation can be more complicated. In fact, further

possibilities must be considered, such as the contribution from bonding and antibonding

states, umklapp states, and the intrinsic hybridization of the d-derived states of Cu and p-

derived states of O. A possibility to explain the observations of Fig. 6.6 is to consider the fact

that at the low photon energy of the laser compared to the synchrotron radiation, the final

state reached by the potoelectrons might have a single well defined orbital composition. This

would mean that only one single transition is allowed from the CuO2 state, and therefore no

interference between different partial channels can occur. If this is the case, the phase and

time information would not be accessible by SARPES, since it implies that the parameter r is

either r → 0 or r →+∞, and therefore according to Eq. (4.7) no spin polarization is produced.

In order to be confirmed, this argument certainly requires theoretical calculations of the final

states composition, which are currently being performed [163].
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Chapter 6. Experimental results: the strongly correlated material BSCCO

For the time being, an observation that supports the argument of one single transition at

this photon energy is shown in Fig. 6.8, where the photoemission intensity integrated in an

energy and angular range that covers the full CuO2 state displayed in Fig. 6.6(a) is plotted

versus the light polarization vector orientation. The intensity of the light is independent of

Figure 6.8: Photoemission intensity of the CuO2 state versus light polarization angle (θpol = 0
for π polarization). The curve is fitted with Eq. (6.1).

the polarization in the laser setup, and the angle θpol is defined to be 0 when the light is π

polarized. The photoemission intensity is maximum when the light is σ polarized, as required

by the symmetry of the initial state. If only two transitions are allowed, a simple scenario that

is considered throughout this Thesis, then the photoemission intensity [124] would be given

by

I (θpol .) ∝|c2|2 sin2θpol .+|c1|2 cos2θpol . = |c2|2 sin2θpol .+ (1−|c2|2)(1−sin2θpol .) , (6.1)

where c1,2 are the complex weights of the two channels. Fitting the curve in Fig. 6.8 with

Eq. (6.1) gives |c2|2 = 0.955, which is very close to 1, and the parameter r can be calculated as

r = R2

R1
=
√

|c2|2
|c1|2

=
√

|c2|2
1−|c2|2

=
√

Imax

Imi n
, (6.2)

where Imax and Imi n are the photoemission intensity obtained in this case with σ and π

polarization, respectively 1 . Using Eq. (6.2) one finds r ≈ 4.6 for the measurement on BSCCO

2212, which is large but not r →+∞. However, it is important to consider also the fact that

the light polarization of the laser is 95% linear, a value that accounts well for |c2|2 being not

exactly 1.

At this point, the reason why a net constant spin polarization is observed still remains an open

question. First of all, such a constant could be an offset of the experimental setup. In a spin

1 Interestingly, the expression
√

Imax
Imi n

also gives tanθ0
pol . when spin polarized states are considered, where θ0

pol .
is the special light polarization angle for which the spin polarization component corresponding to the initial state
spin polarization vanishes because of interference (and the perpendicular component is maximum), as discussed
in Ref. [124].
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polarized photoelectron beam, a small offset can be easily overlooked when compared to

the actual spin signal, but if the CuO2 state gives perfectly unpolarized electrons at the laser

photon energy then it becomes an issue. Even if more unlikely in a VLEED detector rather than

in a Mott detector, still it is difficult to exclude this completely. On the other hand, it might

still be that at this low photon energy the CuO2 state of BSCCO does give rise to spin polarized

electrons for other reasons, for example with contributions from its incoherent tail. Once

again, spin-resolved one-step photoemission calculations will help to elucidate this point.
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7 Discussion on EWS time delays in
photoemission and concluding re-
marks
"Aλλὰ καὶ επιχειρoυ̃ντί τoι τo ι̃ς καλo ι̃ς καλòν καὶ πάσχειν oτι αν τω συμβη παθει̃ν”

"In striving after Beauty, also whatever one must go through is beautiful.”

- Plato, Phaedrus, 274b (ca. 370 BC)

The chronoscopy of photoemission is a fundamental topic in modern physics [22]. Time-

resolved photoemission experiments show that the time scale of the process is in the attosec-

ond (10−18 s) domain, which is the natural time scale of atomic processes. In order to grasp the

meaning of 18 orders of magnitude in time, one can consider the following. By calling U the

estimated age of the universe (13.8 billion years [187]), one second corresponds to 2.3 attoU .

Back to the atomic scale, in 20 as a photon travels for 6 nm, and an electron of Ek = 125 eV

classically travels over a distance that corresponds to the copper atomic radius in the metallic

state (1.28 Å , defined as half of the nearest neighbor distance of the f cc lattice). Also, one

period of electromagnetic radiation with hν= 130 eV correspond to 32 as. On a much shorter

time scale, i.e. with much less than one cycle, the electromagnetic wave that interacts with the

electrons of a solid would not even be well defined.

An intrinsic characteristic of time-resolved experiments is that the time delay of a photoelec-

tron beam from a certain state is measured with respect to a different photoelectron beam,

which can be from a reference gas system [47], or a different level of the same system [36, 161],

or the very same state but under different experimental geometry [42]. Clearly, the measure-

ment of a finite relative time delay suggests the existence of a finite absolute time delay of

photoemission for each beam, even though this issue has been experimentally addressed only

recently and still relies on comparison with theoretical calculations [38, 48].

A different, complementary approach to the chronoscopy of photoemission has been sug-

gested to be through the spin polarization of the photoelectrons [67]. In fact, attosecond

time delays in the photoemission process and the spin polarization of photoelectrons are
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both related to the phase information in the matrix elements 1 . The aim of this Thesis was to

investigate the relationship between spin polarization and time delay in photoemission from

solid state targets, with particular focus on dispersive spin-degenerate states. Both quantities

can been modeled by considering the photoemission process as an electron half-scattering

process, which highlights the central role of the phase shifts. In particular, in Chapter 4 the

relationship between the two phase terms has been shown: φ, corresponding to the full matrix

element, and φs =φ2−φ1, corresponding to the relative shift between two interfering channels.

Correspondingly, the two time delays τEWS and τs
EWS have been introduced. In particular, in

Chapter 4 it has been shown how to estimate, under certain assumptions, these two quantities

for a dispersive band from the measurement of Ṗ , the variation of spin polarization with

binding energy, and with an accurate description of the experimental geometry.

Two points need to be clarified about the applicability of this methodology. First, if in a

particular case no interference occurs in the matrix element (for example, r → 0 or r →+∞),

then no spin polarization is produced in the photoemission process. The phase term φs would

not be well defined, and therefore τs
EWS neither. However, a time delay might still take place,

just it would not be accessible by spin-resolved ARPES. Second, whereas this Thesis has dealt

mainly with the case of spin-degenerate initial states, it is possible to extend this approach to

the case of spin-polarized states. Interference effects will be concealed though, since they will

contribute only to a small degree of polarization when a spin quantization axis is well defined

by the physics of the initial state. This remark explains why, whereas SARPES measurement

very often confirm on a qualitative level the theoretical predictions made on the physics of the

initial state, still a a small rotation of the measured spin polarization away from the expected

one is quite common. This situation has been outlined in Section 4.6.

Another important comment about the methodology presented in Chapter 4 is that it al-

lows to extract the time information also from non-time-resolved calculations, as long as

spin-resolved one-step photoemission calculations are considered. In fact in this case the

photoemission matrix elements are fully described, and therefore the phase information is

calculated and processed. This can be very powerful when employed on systems that are exper-

imentally difficult to probe with time-resolved or spin-resolved ARPES, and shows in general

that it is possible to improve the understandings of photoemission calculation outputs. This

approach could prompt further advances in photoemission theory, and experts in one-step

photoemission calculations are currently refining their code to access this information [163].

1 The interconnection between time, phase and spin triggers some sort of chicken-or-egg philosophical question.
On one side, one could consider the absolute time delay of photoemission as a fundamental property of the process,
since it is necessary to have some finite time lag between the initial and the final state, even in the one-step model
picture. Then the time delay requires a certain dependence of phases on energy according to Eq. (1.5), and as
a consequence they determine a certain spin polarization according to Eqs.(4.1) and (3.32). On the other hand,
one could think of the phase term of the matrix element describing the transition to be the fundamental quantity
determined by the process, and then, as a consequence, time can be considered as an emergent property, at
the same level as the spin polarization. This second view, even if less intuitive, has some similarities with other
descriptions of the nature of time in different fields [5].
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It is important to underline the nature of the interfering transitions responsible for the spin

polarization. In the case of atomic photoionization, they correspond to the two final partial

waves with orbital quantum number �→ �±1. In solids, on the other hand, they are given

by two 2 mixed spatial symmetries of the considered state in the double group symmetry

representation, both in the initial and final states [147, 150], that are selected by the in-plane

and out-of-plane components of the electric field of the light [152]. In any case, the inter-

fering transitions are different photoemission channels which do not correspond to different

photoelectrons, as in the case of time-resolved experiments, but they together build up the

photoelectron wavefunction. As analogy, one could think of the well-known double slit experi-

ment: also in this case the interference does not occur for two different particles, but each

single particle has a behaviour that is result of the interference of the different possible paths.

An interesting point of view on time delays in photoemission is given by the so-called time-

dependent configuration-interaction with single excitations (TDCIS) calculations [188]. It has

been shown that the coherence of the hole configurations in atomic attosecond photoioniza-

tion is strongly affected by pulse duration and energy, as well as by the interaction of the ion

with the outgoing electron [189]. This is because the so-called interchannel coupling mecha-

nism [190], i.e. the interference of different ionization channels mediated by the Coulomb

interaction with the electron, results in a enhanced entanglement between photoelectron

and ionic system, which last for a time delay in the attosecond domain [189]. An equivalent

coupling mechanism should occur in dispersive states of a solid, where in addition intrinsic

plasmonic satellites [162] might play a role. The interchannel coupling mechanism seems to be

a model that goes beyond the sudden approximation of photoemission. However, as discussed

in Section 3.1.2, this approximation intervenes only when the photoelectron wavefunction is

already formed, or in other words when the photoelectron is not anymore entangled to the

system left behind.

At this point it is necessary to discuss the physical meaning of time delay in photoemission,

and in particular the two quantities τs
EWS and τEWS. In the three-step model of photoemission,

it is easy to identify at least one step where a time delay takes place, that is in the second

one. The travel time of the electron during the transport to the surface [161, 162], however,

should not be considered in the model for the EWS time delays presented in this Thesis. In

fact, the additional logarithmic correction term corresponding to Δtln in Eq. (1.7) strongly

depends on the length traveled by the electron (see Fig. 3.3), however it does not give any

contribution to the interfering channels since it takes place only once the photoelectron is

formed. This is reflected in the fact that the measured Ṗ does not change for different kinetic

energies of the electrons, at least within the experimental capabilities, as it is shown in Fig. 5.7

where different photon energies have been used to measure P (Eb) for the sp bulk band of

Cu(111). The interpretation of time delays in photoemission is often made in terms of particle

2 A more complex scenario can be considered where more than two channels interfere in the photoemission
process. This situation has not been investigated in this Thesis, and it would require the use of Eq. (1.6) instead of
Eq. (1.5) for the definition of the time delay, and a modification of Eqs. (4.1) and (3.32) for the description of the
phases and the spin polarization, respectively. See also the footnote 1 in Section 4.1.
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trajectories, since the description of EWS time delays can be made in close analogy with

classical mechanics [46, 191]. Whereas this approach elucidates the meaning of the EWS

formalism, ultimately one should consider that the three-step model and classical trajectories

are just a simplification, and as such they should be extended to a fully quantum description.

In this sense, the one-step model is a better candidate, even though it has only been developed

for the description of the energetics of the photoemission process and not its dynamics. In fact,

it is difficult to tell which process among photon absorption, electron virtual transition and

actual photoelectron emission might occur in a finite time. Indeed the influence of the time

evolution of the E field on the phase shifts is under debate [192–194] and there might exist a

time-threshold for light absorption. A finite decoherence time required by the wavefunction to

be formed in the final state might also be an issue to consider [195]. Lastly, once the final state

wavefunction is formed above the vacuum level the electron could spend a finite "sticking"

time before reaching the free-particle state. In other words, the final state wavefunction will

evolve in time such that the density of probability will move from the absorber site towards the

outside of the crystal (in analogy with the tunneling process, where the particle wavefunction

is already present on both sides of a potential barrier). The last part seems to be the one

that better matches the half-scattering picture, but this separation is only artificial, since the

process takes place as a whole.

Mathematically, the two EWS time delays τs
EWS and τEWS should correspond to the time delay

between the interfering channels and the time delay of the scattering process in the sense of

EWS, respectively. However, as already mentioned, the two interfering partial channels do

not correspond to two separate events, but they together form the final photoelectron, and

thus the interfering time delay should be associated to the time scale of the whole process. In

Refs. [196,197] it is discussed how an EWS time delay in photoemission only takes into account

the pure scattering delay when the whole phase term is considered. Thus τEWS corresponds

to tEWS+C of the scattering model [see Eq. (1.7)]. On the other hand, if an interference phase

term is considered, then the time delay can be seen as a formation/release time and not only

as a scattering delay. In Refs. [196, 197] the interference is considered between two photon

transitions. It is speculated in this Thesis that the same idea holds for the interfering partial

channels of the matrix elements. Therefore, τEWS accounts for a time delay that is purely due to

the (half-)scattering part, whereas τs
EWS is the time delay of the actual photoemission process

as a whole. This argument can explain why, in the model of Chapter 4, |τs
EWS| is actually

always larger than |τEWS| for φs within the chosen range
[−π

2 ,+π
2

]
. On the other hand, as

mentioned in Section 4.4, there exist the possibility that |τEWS| > |τs
EWS| for certain values

of ṙ �= 0, therefore the relationship between the two time delays certainly deserves further

theoretical investigations.

The fact that both τs
EWS and τEWS refer to an absolute time scale can be also understood by

considering that in Eq.(4.1) the choice φ1 = 0 has been made. Both φ and φs are thus defined

with respect to the same reference. This reference is such that φs =φ2, which shows that the

associated τs
EWS is an intrinsic property of the interfering transitions that together build up the

92



final photoelectron. The possible different signs of all the phases lead to time delays that can

be positive or negative. In the electron scattering model, the time delay can indeed be negative,

meaning that the process is such that the actually scattered electron leaves the sticking region

earlier than an electron that would not feel the scatterer potential. In Section 1.3, however, it

has been pointed out that this is true only in the formalism developed by F. Smith, whereas in

the approach of L. Eisenbud the choice of the references is always such that the time delays are

positive. Anyway this would be certainly correct for the quantity τEWS, whereas τs
EWS should

always be positive given the interpretation presented here. In fact the meaning of τs
EWS < 0

is just that φ2 <φ1, which does not have a direct physical significance. Because of this, and

because of the difficulties of carefully determining all the possible sources of a positive or

negative sign of the phases in the model and in the experiment, in Chapter 4 only the absolute

value of the EWS time delays has been considered.

The main experimental findings of this Thesis, presented in Chapters 5-6, are the following:

• In Cu(111), the sp bulk-derived band has been considered. The measurement of spin

polarization from this spin-degenerate state gives the following estimates of time delays:

26 as≤ ∣∣τs
EWS

∣∣≤ 134 as and 11 as≤ |τEWS| ≤ 115 as. Furthermore, under the assumption

that the ratio of the radial term of the interfering matrix elements r is given by the

different projection of the electric field vector of the light onto the sample’s surface

r = E∥/Ez , one finds
∣∣τs

EWS

∣∣ ≈ 26 as and |τEWS| ≈ 11 as. The spin polarization from

the d bands and from the 3p core levels has also been investigated. The results on

Cu(111) highlight the presence of a double polarization feature (DPF) in dispersive

states, contrary to localized states, which could be interpreted in the lights of self-energy

corrections and photoelectron-photohole interaction (see Section 5.2.1).

• The measurements on BSCCO, on the other hand, despite the difficulties of the experi-

ment lead to EWS time delays that are at least three times higher than in Cu(111). The

band under consideration was the CuO2-derived state, which is the relevant one for the

superconductivity of the material.

The fact that the EWS time delays are larger in the correlated system BSCCO 2212 than in the

Fermi liquid system Cu(111) could be due to the enhanced electron correlations in the copper

oxide planes of BSCCO. As a coarse explanation, it might be the case that the photoemission of

strongly correlated electrons requires a longer "sticking" time before they may enter into quasi-

free particle states than those in a simple Fermi liquid system. Further more systematic studies

are necessary in order to understand if time delays are indeed affected by correlations. If this

would be the case, then the methodology presented in this Thesis will allow to shed light on

possible asymmetries of correlations, for example when going from the nodal to the antinodal

direction in cuprate superconductors, providing a qualitatively new kind of information in

the study of correlated materials and unconventional high-TC superconductivity. Also the

influence of the phase of matter on the time delays needs to be investigated, for example by

systematically varying temperature and stoichiometry of the samples.
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Chapter 7. Discussion on EWS time delays in photoemission and concluding remarks

As a note, self-energy corrections due to electron-quasiparticles coupling might cause an

EWS time delay variation within the band, as presented in Appendix B for measurements on

a quasi-free-standing monolayer of graphene, which also deserves further more systematic

studies.

A clear limit of the indirect access to time delay presented in this Thesis is the necessity of

having quantitative information about the spin polarization for possibly all the three spatial

components. Given the extremely low efficiency of spin detectors, the required experiments

are highly time-consuming, and therefore a systematic approach will become possible only

with the next generation of high efficiency spin detectors [113, 198].

Finally, a possible future development of the project presented in this Thesis is the following.

By combining time-resolved techniques with the measurement of spin polarization, one

could cross-compare the different estimates of time delays and have a reliable reference

for time-zero. An attosecond- and spin-resolved photoemission experiment could allow to

time the formation of the spin polarization during the photoemission process, tackling the

entanglement of the photoelectron with the photohole left in the system, and thus shedding

light on the meaning of time delays in quantum mechanics on a very fundamental level.
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A Explicit formulas for the estimate of
time delays

A.1 Atomic photoionization

In atomic photoionization with linearly polarized light, the spin polarization along the direc-

tion n perpendicular to the reaction plane is given by Eq. (3.31). The explicit expressions of

the dynamical parameters β and ξ are the following [127]:

β� =
(�−1)+ (�+2)r 2 +6

�
�(�+1)r cosφs

(2�+1)(r 2 +1)
, ξ�, j =

3(−1) j−�−1/2��(�+1)r sinφs

(2 j +1)(r 2 +1)
. (A.1)

It has to be mentioned that ξ differs by a factor of −2 when compared to other references [64].

If one would apply the model presented in Chapter 4 in order to estimate EWS time delays in

atomic photoionization, it would be necessary to evaluate the expression dP
dφs

and dP
dr . They

are given by

dP�, j (r,φs ,γ)

dφs
=Υ

j
φs

Nφs

D
,

dP�, j (r,φs ,γ)

dr
=Υ

j
r

Nr

D
, (A.2)

with the following substitutions:

Nφs = (2�+1)r sin2γ
{
cos2γ

[√
�(�+1)(�+(�+2)r 2−1)cosφs +6�(�+1)r

]
+
√
�(�+1)

[
3�+(3�+2)r 2+1

]
cosφs +2�(�+1)r

}
,

Nr = (2�+1)sin2γsinφs

{
cosγ2

[
1−�+ (�+2)r 2

]
+�(r 2 −1)−1

}
,

D =
{
�+cosγ2

[
�+ (�+2)r 2 +6

√
�(�+1)r cosφs −1

]
+�r 2 −2

√
�(�+1)r cosφs +1

}2
,

Υ�−1/2
φs

=− 1

2�
,

Υ�+1/2
φs

=+ 1

2(�+1)
,

Υ�−1/2
r =+

�
�(�+1)

�
,

Υ�+1/2
r =− ��

�(�+1)
.
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Appendix A. Explicit formulas for the estimate of time delays

A.2 Solid state photoemission

In Chapter 4 several functions have been defined but not calculated, since they are lengthy

and not very insightful in their explicit form. For completeness, they are reported in the

following. By deriving Eq. (4.1) with respect to kinetic energy one obtains eq. (4.13), where the

two functions w(r,φs) and w ′(r,φs) are given by:

w(r,φs)
.= r (r +cosφs)

1+2r cosφs + r 2 , w ′(r,φs)
.= sinφs

1+2r cosφs + r 2 . (A.3)

In Eq. (4.7) the function c(r, t ) has been defined, such that P = c(r, t )sinφs . In the expressions

for the estimates of the EWS time delays, it is necessary to evaluate the derivatives dP/dφs

and dP/dr . They are given by:

dP

dφs
= c (r, t )

d sinφs

dφs
= −4t

(
1− t 2

)
r

4t 2 + r 2
(
1− t 2

)2 cosφs , (A.4)

dP

dr
= dc (r, t )

dr
sinφs =

−4t
(
1− t 2

)[
4t 2 − r 2

(
1− t 2

)2
]

[
4t 2 + r 2

(
1− t 2

)2
]2 sinφs . (A.5)

The function m
.= (dP/dφs

)
/w is introduced in Eq. (4.11) for the estimate of |τEWS|. Its full

expression is given by:

m(r,φs , t ) = −4t cosφs
(
1− t 2

)(
1+2r cosφs + r 2

)
(
r +cosφs

)[
4t 2 + r 2

(
1− t 2

)2
] . (A.6)

Finally, Eqs. (4.9) and (4.13) give the expressions for τs
EWS and τEWS. By combining all the

previous equations, one obtains the following explicit forms:

τs
EWS = �Ṗ

4t 2 + r 2 (1− t 2)2
4r t

(
1− t 2

) secφs +�ṙ
4t 2 − r 2 (1− t 2)2

r
[

4t 2 + r 2
(
1− t 2

)2] tanφs , (A.7)

τEWS =
[

4t 2 + r 2 (1− t 2)2](r +cosφs
)

secφs

4t
(
1− t 2

)(
1+2r cosφs + r 2

)
⎧⎪⎨
⎪⎩�Ṗ +�ṙ

4r t
(
1− t 2)[4t 2 − r 2 (1− t 2)2 −2r

(
1− t 2)2 cosφs

]
sinφs(

r +cosφs
)[

4t 2 + r 2
(
1− t 2

)2]2

⎫⎪⎬
⎪⎭ , (A.8)

where the dependence on Ṗ and ṙ has been highlighted. As an example, for t = 0.28, r = 0.67

and φs = 0.1 these last two equations yield τs
EWS ≈ �Ṗ −0.01�ṙ and τEWS ≈ 0.4τs

EWS, as plotted

in Fig. 4.4(b) for Ṗ = 0.04 eV−1.
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B Further studies: quasi-free-standing
graphene monolayer

In this Appendix further studies of the spin polarization from spin-degenerate states will

be briefly presented for another model system: a monolayer of graphene. Graphene is a

well-known bidimensional material which has become the paradigm for studying low dimen-

sionality in condensed matter physics [199]. From the perspective of photoemission, it is a

gapless semiconductor with conical conduction and valence bands, which meet at the Fermi

energy at the six K points of the Brillouin Zone. This results in the famous Dirac cone-like

linear dispersion with vanishing density of states at Fermi. The photoemission intensity in

graphene is known to be strongly dependent on light polarization and photon energy, because

of an interference process between the two equivalent atomic site in the honeycomb lattice.

This results in the so-called dark corridor of graphene, for which only one part of the cone is

visible [200].

The sample measured at COPHEE was a H intercalated quasi-free-standing monolayer of

graphene on SiC substrate, which has been provided by Florian Speck and Thomas Seyller

from the Technische Universität of Chemnitz. The results are summarized in Fig. B.1. In

panel (a) the photoemission intensity measured at COPHEE is shown for π polarized light

of hν = 56 eV. Only the portion of the cone at k < kD is visible, whereas the other half is

completely suppressed. In panels (c)-(e) the spin polarization plots of the bandmap for the x,

y and z spatial directions are shown respectively, multiplied by the total intensity to better

display the features. Also in this case, a DPF is observed in the spin signal. To be noted how

the step size in binding energy is much smaller than the other measurements presented in

this Thesis, thanks to the extremely high cross-section of graphene at this photon energy. Also,

it has to be mentioned that the asymmetry for the yM component is not the one measured

by the dedicated detectors at COPHEE but is obtained from Eq. (3.25). In panel (b) the total

spin polarization is shown, where red lines indicate the cuts of the bandmap that are shown

in the stacked plot in panel (f). These curves (which are neither EDCs nor MDCs) show the

spin polarization through the band (i.e. along lines that are parallel to the linear dispersion

of the band), so that they can be directly used for an estimate of
∣∣τs

EWS

∣∣≥ �
∣∣Ṗ ∣∣ according to

Eq. (4.10).
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Appendix B. Further studies: quasi-free-standing graphene monolayer

Interestingly, the dependence of P (Eb) is not simply linear for different cuts, but can be split

into two different lines with opposite slope, as indicated by an arrow in the cut shown in red in

panel (f), which corresponds to the maximum of the photoemission intensity peak. In this cut,

for example, the part deeper in energy gives a slope of 0.05 eV−1. This value is very similar to

the one found for the free-electron-like sp bulk band of Cu(111) in Chapter 5. On the other

hand, the part closer to the Dirac point has a much higher absolute slope of 0.24 eV−1, which

corresponds to
∣∣τs

EWS

∣∣≥ 160 as. Further systematic studies are required to understand this

change of slope at about Eb = 400 meV, but this could be interpreted in the light of the different

energy scale of electron-electron, electron-plasmon and electron-phonon coupling [201]. Also,

this observation might help to better understand the nature of the DPF.
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Figure B.1: (a) Linear dispersion of graphene, probed with π polarized light of hν= 56 eV. (b)
Total spin polarization P of the bandmap. The corresponding spin polarization components
along the x, y and z directions are shown in (c)-(e), respectively. (f) Total spin polarization P
evaluated along the red lines of (b), where the curves from bottom to top correspond to the
lines from left to right. The curve in red corresponds to the line passing through the maximum
of the photoemission intensity peak. The sharp peak at ≈ 0.9 eV is a measurement glitch, as
can be seen in (c)-(e). The arrow indicates a change of slope.
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J. H. Dil, Observation of a two-dimensional electron gas at CaTiO3 film surfaces, Applied

Surface Science, 432A, 41 (2018)

9. C. Brand, S. Muff, M. Fanciulli, H. Pfnür, M. C. Tringides, J. H. Dil and C. Tegenkamp,

Spin-resolved band structure of a densely packed Pb monolayer on Si(111), Physical

Review B 96, 035432 (2017)

10. M. Fanciulli, S. Muff, A. P. Weber, and J. H. Dil, Spin polarization in photoemission from

the cuprate superconductor Bi2Sr2CaCu2O8+δ, Physical Review B 95, 245125 (2017)

11. E. Razzoli, T. Jaouen, M.-L. Mottas, B. Hildebrand, G. Monney, A. Pisoni, S. Muff,

M. Fanciulli, N. C. Plumb, V. A. Rogalev, V. N. Strocov, J. Mesot, M. Shi, J. H. Dil, H. Beck

and P. Aebi, Selective Probing of Hidden Spin-Polarized States in Inversion-Symmetric

Bulk MoS2, Physical Review Letters 118, 086402 (2017)

12. M. Fanciulli, H. Volfová, S. Muff, J. Braun, H. Ebert, J. Minár, U. Heinzmann, and J. H.

Dil, Spin Polarization and Attosecond Time Delay in Photoemission from Spin Degenerate

States of Solids, Editors’ suggestion, Physical Review Letters 118, 067402 (2017)

13. J. Krempaský, S. Muff, F. Bisti, M. Fanciulli, H. Volfová, A. P. Weber, N. Pilet, P. Warnicke,

H. Ebert, J. Braun, F. Bertran, V. V. Volobuev, J. Minár, G. Springholz, J. H. Dil and V.

N. Strocov, Entanglement and manipulation of the magnetic and spin–orbit order in

multiferroic Rashba semiconductors, Nature Communications, 7, 13071 (2016)

14. S.-K. Mo, C. Hwang, Y. Zhang, M. Fanciulli, S. Muff, J. H. Dil, Z.-X. Shen and Z. Hussain,

Spin-resolved photoemission study of epitaxially grown MoSe2 and WSe2 thin films, J.

Phys. Cond. Matt. 28,454001 (2016)

15. A. Amorese, G. Dellea, M. Fanciulli, S. Seiro, C. Geibel, C. Krellner, I. P. Makarova, L.

Braicovich, G. Ghiringhelli, D. V. Vyalikh, N. B. Brookes, and K. Kummer, 4f excitations

in Ce Kondo lattices studied by resonant inelastic x-ray scattering, Physical Review B 93,

165134 (2016)

112




