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Abstract
Imaging devices have become ubiquitous in modern life, and many of us capture an
increasing number of images every day. When we choose to share or store some of these
images, our primary selection criterion invariably is to choose the most visually pleasing
ones. Yet, quantifying visual pleasantness is a challenge, as image aesthetics not only
correlate with low-level image quality, such as contrast and blurriness, but also include
mid-level and high-level visual processes, like composition and context. For most users,
a considerable amount of manual e�ort and/or professional knowledge is required to
get aesthetically pleasing images. Developing automatic solutions thus bene�ts a large
community.

This thesis proposes several computational approaches to help users obtain the desired
images. The �rst technique aims at automatically measuring the aesthetics, which
bene�ts the users in selecting and ranking images. We form the aesthetics prediction
problem as a regression task and train a deep neural network on a large image aesthetics
dataset. The unbalanced distribution of aesthetics scores in the training set can result
in bias of the trained model towards certain aesthetics levels. Therefore, we propose
to add sample weights during training to overcome such bias. Moreover, we build a
loss function on the histograms of user labels, thus enabling the network to predict not
only the average aesthetics quality but also the di�culty of such predictions. Extensive
experiments demonstrate that our model outperforms the previous state-of-the-art by a
notable margin.

Additionally, we propose an image cropping technique that automatically outputs
aesthetically pleasing crops. Given an input image and a certain template, we �rst extract
a su�cient amount of candidate crops. These crops are later ranked according to the
scores predicted by the pre-trained aesthetics network, after which the best crop is output
to the users. We conduct psychophysical experiments to validate the performance.

Apart from cropping, we further present a keyword-based image color re-rendering
algorithm. For this task, the colors in the input image are modi�ed to be visually more
appealing according to the keyword speci�ed by users. Our algorithm applies local
color re-rendering operations to achieve this goal. A novel weakly-supervised semantic
segmentation algorithm is developed to locate the keyword-related regions where the
color re-rendering operations are applied. The color re-rendering process bene�ts from
the segmentation network in two aspects. Firstly, we achieve more accurate correlation
measures between keywords and color characteristics, contributing to better re-rendering
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results of the colors. Secondly, the artifacts caused by the color re-rendering operations
are signi�cantly reduced. The re-rendered images are visually more appealing according
to our psychophysical experiments.

To avoid the need of keywords when enhancing image aesthetics, we explore generative
adversarial networks (GANs) for automatic image enhancement. GANs are known for
directly learning the transformations between images from the training data. To learn the
image enhancement operations, we train the GANs on an aesthetics dataset with three
di�erent losses combined. The �rst two are standard generative losses that enforce the
generated images to be natural and content-wise similar to the input images. We propose
a third aesthetics loss that aims at improving the aesthetics quality of the generated
images. Overall, the three losses together direct the GANs to apply appropriate image
enhancement operations.

Keywords: aesthetics, image enhancement, color re-rendering, semantic segmentation,
neural networks, deep learning, GANs

iv



RØsumØ
Les appareils d�imagerie sont omniprØsents dans la vie moderne, et nombreux d�entre
nous prennent de plus en plus d�images chaque jour. Lorsque nous choisissons de partager
ou d�enregistrer certaines de ces images, notre critŁre de sØlection est invariablement de
choisir les plus visuellement plaisantes. Cependant, la quanti�cation de l�agrØment visuel
est un dØ�, comme l�esthØtique de l�image est non seulement corrØlØe avec les simples
mesures de qualitØ telles que le contraste et le �ou, mais aussi avec des processus visuels
plus complexes, comme la composition et le contexte. Pour la plupart des utilisateurs, un
considØrable e�ort et/ou une connaissance professionnelle est nØcessaire pour obtenir des
images esthØtiquement plaisantes. Le dØveloppement de solutions automatiques bØnØ�cie
une large communautØ.

Cette thŁse propose plusieurs approches computationnelles pour aider les utilisateurs à
obtenir les images souhaitØes. La premiŁre technique vise à mesurer automatiquement
la qualitØ esthØtique, qui assiste les utilisateurs dans la sØlection et le classement des
images. On formule le problŁme de prØdiction esthØtique comme une tâche de rØgression et
entraine un rØseau de neurones à l�aide d�une large base de donnØes d�esthØtiques d�images.
La rØpartition dØsØquilibrØe des scores esthØtiques dans l�ensemble d�entraînement peut
crØer un biais dans le model vers certains niveaux esthØtiques. Par consØquent, on propose
d�ajouter des poids d�Øchantillons pendant l�entraînement pour contrebalancer ce biais.
En plus, on construit une fonction de perte sur les histogrammes des Øtiquettes des
utilisateurs, permettant ainsi au rØseau de mesurer non seulement la qualitØ esthØtique
mais aussi la di�cultØ dans ces prØvisions. Des expØriences approfondies dØmontrent que
notre modŁle surpasse l�Øtat de l�art prØcØdent par une marge notable.

Additionnellement, on propose une technique de dØcoupage d�images qui gØnŁre au-
tomatiquement des rognages esthØtiquement plaisants. Étant donnØ une image et un
modŁle, on extrait tout d�abord une quantitØ su�sante de rognages candidats. Ensuite,
ceux-là sont arrangØs selon les scores prØdits par le rØseau dØjà entraînØ et le meilleur
rØsultat est produit pour l�utilisateur. On mŁne des tests psychophysiques pour valider la
performance.

En plus, on prØsente encore un algorithme pour redØ�nir les couleurs d�une image à partir
d�un mot clØ. Pour cette tâche, les couleurs de l�image d�entØe sont modi�Øes pour devenir
visuellement plus attrayantes selon le mot-clØ spØci�Ø par l�utilisateur. L�algorithme
applique les opØrations localement pour atteindre cet objectif. Un nouvel algorithme de
segmentation, faiblement supervisØ, est dØveloppØ pour repØrer les rØgions liØes aux mots
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clØs oø les opØrations de re-rendu de couleur prennent place. Le processus de rendu de
couleur bØnØ�cie du rØseau de segmentation en deux aspects. PremiŁrement, on obtient
une corrØlation plus prØcise entre le mot-clØ et les caractØristiques de couleur, contribuant
à une meilleure redØ�nition des couleurs. DeuxiŁmement, les artØfacts causØs par le
re-rendu de couleur sont considØrablement rØduits. Selon les expØriences psychophysiques,
les images rØsultantes sont visuellement plus attrayantes que les images d�entrØe.

Pour Øviter le besoin de mots-clØs dans l�amØlioration des images, on explore les
Generative Adversarial Networks (GANs) pour l�amØlioration automatique des images.
Les GANs sont connus leur capacitØ d�apprendre directement les transformations entre les
images à partir des donnØes d�entraînement. Pour apprendre les opØrations d�amØlioration
des images, on entraine les GANs sur un ensemble de donnØes esthØtiques avec trois
di�Ørentes fonctions de perte combinØes. Les deux premiŁres sont des pertes gØnØratives
normales qui forcent les images gØnØrØes à Œtre naturelles et avoir un contenu similaire
aux images d�entrØe. On propose une troisiŁme fonction de perte esthØtique qui vise à
amØliorer la qualitØ esthØtique des images produites. Ensemble, les trois pertes dirigent
les GANs pour appliquer les opØrations d�amØlioration adequates.

Mots-ClØs : esthØtiques, amØlioration d�images, redØ�nition des couleurs, segmentation
sØmantique, rØseaux de neurones, GANs
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1 Introduction

With the smartphone market thriving, imaging devices have become more prevalent than
ever before. Using images to record and share daily life has become a trendy habit for
many users, leading to a tremendous amount of images uploaded to social media platforms
every day. Flickr, a long-standing image-sharing platform, reports around 1.68 million
images uploaded per day in 2016 [1]. Instagram and Facebook claim even larger numbers,
reaching 80 million and 350 million, respectively [2].

When uploading and sharing these images, the primary selection criterion for many users
is to use visually pleasing images. The quality of imaging devices, such as smartphones
or DSLR cameras, have improved dramatically over the years, resulting in better and
better quality of the captured images. For instance, the resolution of images captured by
smartphones has increased several times in the past decade: Nokia N90, a smartphone
released in 2005, has a built-in camera with resolution of 2 million pixels, whereas the
resolution of the latest IPhone 8 camera can reach 12 million pixels.

However, good imaging devices do not necessarily lead to visually pleasing images.
Certain scene conditions, such as low lighting or high dynamic range scenes, can still cause
unpleasant visual artifacts in the captured images. Image aesthetics is the concept that
represents the overall visual appeal of images, which correlates with both low-level and
high-level image characteristics. Low-level image characteristics, such as image resolution
and noise level, are mainly determined by the imaging devices and the scene conditions;
high-level characteristics are those that relate to semantic understanding of images, such
as image composition and image content. As shown in Figure 1.1, two images with
similar content but di�erent composition are perceived as having di�erent visual appeal.
Since image aesthetics is determined by the combined set of both low-level and high-level
characteristics, to get an aesthetically pleasing image is challenging for many users.

To get an aesthetically pleasing image often requires certain level of professional
knowledge about photography, and/or a considerable amount of manual e�orts. A
common practice for many users is to take several images of the same scene with varying
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(a) (b)

Figure 1.1: Two images with similar content but di�erent composition. Image aesthetics
can be a�ected by the composition.

compositions and di�erent camera settings, after which they manually select the best one.
Such scenarios necessitate a great deal of time in order to go through every candidate
image and visually analyze its aesthetics quality. An automatic selection algorithm would
hence be bene�cial.

Additionally, many users tend to apply post-processing on the captured images to
further enhance their aesthetics. Certain image-editing softwares, such as Photoshop
and Lightroom, are widely used for this purpose. Figure 1.2 is the user interface for
Photoshop. Although equipped with sophisticated editing functions, Photoshop is known
to be complicated and tedious for non-professional users. It hence becomes increasingly
important to develop computational techniques that can ease users� e�orts in obtaining
aesthetically pleasing images.

In this thesis, we develop several such algorithms. These algorithms can be summarized
into two categories:

� To build a computational approach that automatically judges the aes-
thetics quality (in terms of aesthetics scores) of an input image. Image
aesthetics is a non-deterministic concept. Users hold various understandings and
preferences of image aesthetics. In this thesis, we focus on predicting the average
aesthetics scores labeled by the crowd, not on modeling personal preferences. Our
algorithm automates aesthetics judgment, which can be used in both image selection,
image ranking, and image enhancement.

� To develop several enhancement techniques that can automatically edit
images for better aesthetics. In this thesis, image enhancement is referred to
as all operations that improve the overall aesthetics, including operations that
focus on improving low-level image characteristics, such as color editing or super-

2



1.1. Computational Aesthetics

Figure 1.2: The user interface of Photoshop. As can be seen, the interface is �lled with
various operations, rendering it di�cult for amateur users to properly edit images.

resolution, and those that modify high-level characteristics, such as cropping and
image inpainting.

1.1 Computational Aesthetics

Currently, users perform image aesthetics judgment by visually evaluating the aesthetics
quality according to personal preferences and past experiences, which is time-consuming.
An automatic aesthetics predictor can thus bene�t users for e�ciently selecting images
when they try to upload and share them. We formulate the aesthetics prediction problem
as a regression task and solve it with a deep neural network. In recent years, neural
networks have been widely adopted for many computer vision and image processing
tasks, such as image classi�cation [3,4, 5], face recognition [6,7], image denoising [8,9],
and image super-resolution [10,11]. Although they achieve superior performance, deep
neural networks are also criticized for the requirement of massive amount of training
data. Thanks to the e�orts by Murray et al. [12], a large aesthetics dataset (AVA dataset)
was collected and made publicly available. 255,530 images are included in this dataset.
Each image has aesthetics labels from approximately 200 di�erent users. The collective
aesthetics labels indicate the average judgment of aesthetics by the crowd.

We train a deep neural network on the AVA dataset in order to predict the aesthetics
scores. Due to the unbalanced distribution of aesthetics scores in the AVA dataset, models
trained on this dataset are often biased towards certain aesthetics levels. To overcome
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this bias, we propose to use weighted samples during training. Two types of losses are
tested to supervise the aesthetics network. The �rst loss is a mean square loss built on
the average aesthetics scores, which directs the network to predict the average aesthetics
quality of an input image. The second loss focuses on predicting the histogram of the
collective aesthetics scores using a �2 loss. A histogram not only represents the average
aesthetics judgment, but also reveals the di�culty level of such judgment. Extensive
experiments demonstrate that our aesthetics networks produce state-of-the-art results for
the aesthetics prediction task. Figure 1.3 shows sample results of our aesthetics networks.

Figure 1.3: Sample results of our aesthetics networks. The aesthetics scores range from 1
to 10, where 1 represents the lowest aesthetics quality and 10 is the highest. In the �rst
row, the values in blue are the predicted aesthetics scores from our regression network.
The red values are the groundtruth scores provided by the AVA dataset. In the second
row are the predicted histogram and the groundtruth histogram of user labels by our
histogram prediction network.

1.2 Image Enhancement

As image aesthetics correlates with a wide range of image characteristics, there are
numerous types of techniques to enhance the image aesthetics. The spectrum ranges from
operations that enhance the low-level image characteristics, such as image denoising, to
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those that focus on high-level image characteristics, such as cropping (modi�es the image
composition) and image inpainting (alters the content of the image).

Among all possible techniques, we concentrate on the following three aspects:

� image cropping: automatically generate an aesthetically pleasing crop.

� keyword-based color re-rendering: re-render the colors of an image according to the
keywords speci�ed by users.

� GANs-based image enhancement: automatically adjust image tones using Generative
Adversarial Networks (GANs).

1.2.1 Image Cropping

When uploading or sharing images, users are often required to crop the image to �t into
a �xed template. For example, when creating a pro�le for Facebook, users are asked to
upload an image and crop it according to the Facebook template, as shown in Figure 1.4.
For many blogs and magazines, images are also cropped according to certain templates
for better composition of the whole page. Instead of using a random crop, users always
prefer to adjust the crop manually for better visual appearance. Such scenarios call for
an automatic cropping technique.

Figure 1.4: Cropping an image accord to a square template, in order to create a pro�le
image for Facebook.

We propose a cropping algorithm that can automatically output a visually pleasing
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crop to �t a template, as shown in Figure 1.5. Given an input image, our method �rst
extracts a stack of candidate crops, respecting the shape constraint of the template. These
candidate crops are then ranked according to the predicted aesthetics scores from our
pre-trained aesthetics predictor. The crop with the highest aesthetics score is returned as
the output crop. We conduct a psychophysical experiment to validate the performance of
this method.

1.2.2 Keyword-based Color Re-rendering

With the dramatic progress of consumer cameras, sophisticated in-camera processing
pipelines have been developed to improve the quality of the captured images. Certain
operations, such as white-balancing and tone-mapping, are designed to ensure the appeal
of the captured colors. However, due to the complex scenes or the miscon�guration of
cameras, the output images might still have unfaithful or unappealing colors. We design
a color re-rendering system to help users improve the colors if necessary.

When re-rendering colors, two problems need to be addressed: (1) What should the
target colors be like? and (2) Where are the source colors that need to be re-rendered?
Current algorithms [13,14,15,16] rely on supervision from users to solve these two problems.
Several types of supervision are adopted, such as color strokes or color palettes [15,16].
Among them, keywords serve as a simple and intuitive way for users to control the
re-rendering operations. Albrecht et al. [17] propose a statistical framework to tackle the
�rst problem. Their framework computes links between keywords and color characteristics,
thus it can be used to �nd the target colors of a keyword. However, the localization
problem (the second problem) is not fully considered in their approach, which leads to
noticeable artifacts in many cases. We propose to incorporate a semantic segmentation
algorithm into the pipeline. The segmentation masks can indicate the location of the
source colors that need to be re-rendered.

(a) Input image (b) Generated crop

Figure 1.5: Our method automatically generates an aesthetically pleasing square crop.
Here we use a square template.
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Traditional semantic segmentation algorithms [18, 19, 20, 21] often require pixel-wise
human annotations for training, as shown in Figure 1.6. Extending these algorithms to
arbitrary keywords is thus expensive and tedious. We develop a novel weakly-supervised
semantic segmentation algorithm that does not rely on pixel-wise human annotations
for training. Instead, we directly query images from the internet. Our segmentation
network progressively generates more and more accurate segmentation masks through a
three-stage training pipeline.

Figure 1.6: Sample images with their pixel-wise segmentation annotations. These images
are from the PASCAL VOC 2012 set [22].

Compared to the system in [17], we use the segmentation masks to achieve two bene�ts.
First, from the segmentation masks, we obtain more accurate correlations between
keywords and color characteristics, thus contributing to more pleasing target colors.
Second, the segmentation masks are also adopted to locate the source colors, which
results in locally applied re-rendering operations that reduce many artifacts. Through
our algorithm, the colors of an input image are modi�ed to be visually more appealing
according to a keyword, as shown in Figure 1.7.

1.2.3 GANs for Image Enhancement

Although keywords are considered to be an easy source of supervision, it is still preferable
to have a fully-automatic image enhancement system. In this thesis, we explore generative
adversarial networks (GANs) for this purpose. GANs are known for automatically
learning the appropriate operations from the training data. Therefore, GANs have been
widely adopted for many image-enhancement applications, such as image super-resolution
and image denoising. We use GANs for automatically enhancing image aesthetics by
performing mainly tone adjustment.

Training GANs often requires pairs of images, so as to indicate the enhancement
operations intuitively through the contrast between the pair of images. For image
aesthetics enhancement, building a pair of training images means to edit one image to be
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(a) Original image (b) Color re-rendering result

Figure 1.7: Sample result of our keyword-based color re-rendering system. Given a
keyword (�strawberry�), the colors of the strawberries in the original image are re-rendered
to be more visually appealing.

aesthetically more pleasing, which already requires a considerable amount of user e�ort.
It is tedious and expensive to collect a su�cient amount of such pairs, with varying
aesthetics qualities. To overcome this limitation, we propose a three-losses structure to
train the GANs. The �rst one is the standard loss from the discriminative network, which
forces the generated image to be natural. The second loss is the perceptual loss [23] that
ensures content similarity between the input image and the enhanced image. For the
third loss, we propose a novel aesthetics loss for improving the aesthetics of the generated
image. Given an input image, our GANs enhance it to be visually more pleasing while
still keeping the content, as shown in Figure 1.8.

(a) Original image (b) Enhanced result

Figure 1.8: Sample result for image aesthetics enhancement through GANs.
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1.3 Thesis Outline

This thesis is structured as follows:

� Chapter 2: Related Work
We discuss the work relevant to this thesis, summarized into four sub-�elds: (1)
neural networks, (2) computational aesthetics, (3) semantic segmentation, and (4)
image enhancement

� Chapter 3: Computational Aesthetics
In this chapter, we introduce our neural networks for automatically measuring
image aesthetics. We also present the image cropping technique in this chapter, as
it is a direct application of the aesthetics network.

� Chapter 4: Semantic Segmentation
This chapter introduces the weakly supervised semantic segmentation algorithm,
which is used in our color re-rendering system. We discuss the training pipelines
of the segmentation network and validate its performance through qualitative and
quantitative experiments.

� Chapter 5: Local Color Re-rendering
We present the details of the color re-rendering system. The segmentation masks
are employed in two steps: (1) obtain accurate correlations between keywords and
colors, and (2) direct the color re-rendering operations to the related image regions.

� Chapter 6: GANs for Image Enhancement
We present the architecture of our domain encoding GANs for image enhancement
application. We compare this design with the traditional GANs and show the
advantage of our approach.

� Chapter 7: Conclusion
We conclude the thesis and discuss future work.

9



Chapter 1. Introduction

1.4 Summary of Contributions

Our contributions in this thesis can be summarized as follows:

� We train a deep neural network for the aesthetics prediction task. We propose to
use sample weights during training to overcome the bias in the training set. Our
algorithm achieves state-of-the-art performance.

� We present an image cropping technique that can automatically generate aestheti-
cally pleasing crops.

� We propose a novel weakly supervised semantic segmentation algorithm that learns
from web images. Our network is trained with a three-stage pipeline in order to
progressively re�ne the segmentation masks. Our algorithm outperforms the related
methods by a notable margin on the standard segmentation benchmark.

� We incorporate semantic segmentation into the color re-rendering pipeline. Our
method achieves satisfactory results compared to the baseline approach.

� We explore GANs for automatic image enhancement. We propose a novel architec-
ture, domain encoding GANs, that do not need image pairs for training.
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2 Related Work

The computational algorithms developed in this thesis cover several research �elds. As all
the algorithms involve neural networks to some extent, we start with an introduction of
neural networks in Section. 2.1. A great number of techniques have been proposed in this
�eld. In this chapter, we review mainly three types of networks that are most related to
this thesis: (1) Convolutional Neural Networks (CNNs), (2) Fully-Convolutional Neural
Networks (FCNs), and (3) Generative Adversarial Networks (GANs).

In Section 2.2, we discuss the algorithms for aesthetics prediction, covering both the
conventional approaches using handcrafted features and the recent ones based on neural
networks. In Section 2.3, we speci�cally analyze semantic segmentation algorithms,
because our color re-rendering technique relies on the segmentation masks. We �rst brie�y
explain the fully supervised semantic segmentation algorithms, then focus on discussing
the weakly supervised approaches. In Section 2.4, we review the state-of-the-art image
enhancement systems.

2.1 Neural Networks

The history of neural networks began in 1940s, when the functionality of neurons was
discovered by neurophysiologist [24]. After that, researchers developed various models with
multiple layers of neurons [25]. For many years, the performance of neural networks lagged
far behind the requirements of real-world applications, mainly because of the limitation
of datasets and the computing resources, However, due to recent progress in computing
hardware and dataset collection, training very deep neural networks is now feasible. In
2012, Krizhevsky et al. proposed a deep neural network [3] for an image classi�cation
task that achieved breakthrough performance. Since then, deep neural networks have
been widely adopted for many �elds, such as computer vision [4, 5, 26], natural language
processing [27,28,29] and robotics [30,31,32]. Various network architectures with increasing
complexity and performance have been published [4, 5, 26,33,34,35].
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In Section 2.1.1, we �rst inspect the convolutional neural networks developed for
classi�cation and regression tasks. We then discuss, in Section 2.1.2, the fully convolutional
neural networks that are mainly used for image segmentation. The details about generative
adversarial networks are reviewed in Section 2.1.3. In the last section, we describe the
useful techniques for training deep neural networks, including weights initialization, data
augmentation, optimizers, and over�tting prevention.

There are a few concepts in neural networks that transcend the di�erent models, as they
are the basic blocks to build a deep neural network, such as convolution layer, pooling
layer, and activation layer. For detailed de�nitions of these concepts, please refer to [36].
In this section, we focus on reviewing the network architectures.

2.1.1 Convolutional Neural Network

State-of-the-art Convulutional Neural Networks (CNNs) follow similar design rules. They
consist mainly of several types of layers, including convolution layers, activation layers,
pooling layers, normalization layers and fully connected layers. These layers are either
concatenated or juxtaposed, forming complex neural networks. We brie�y introduce four
classic network architectures here: AlexNet [3], VGG [4], ResNet [5] and InceptionNet [26].

The reintroduction of neural networks since 2012 can be attributed to the success of
AlexNet [3] for the ImageNet classi�cation task [37]. Figure 2.1 shows the structure
of AlexNet. This network takes an input image of 224× 224× 3 and applies the �rst
convolution with 96 kernels of size 11× 11× 3 with stride 4. The output passes through
another 4 layers of convolution before being fed into the fully connected layer. Relu
activation [38] and max pooling layers are inserted to add non-linearity and to reduce
dimensions. To compute the probability of each class, the output from the fully connected
layer is followed by a 1000-way softmax. This network, with 60 million parameters in
total, achieved top-1 and top-5 test-set error rate of 37.5% and 17.0%, which were more
than 10% better than the previous state-of-the-art [39].

Figure 2.1: The structure of AlexNet [3].
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After AlexNet, Simonyan et al. [4] propose a new architecture, called VGG, that further
boosts the performance. In their paper, they propose several variations of VGG networks
with di�erent numbers of layers. The architecture of VGG16, the most widely used one
of VGG family, is shown in Figure 2.2. VGG16 is designed with similar structure as
AlexNet with one major di�erence. Instead of using large convolution kernels, such as
11× 11 or 5× 5 as in AlexNet, VGG16 only uses small convolution kernels of size 3× 3.
They use the concatenation of several small-kernel convolutions to achieve a receptive
�eld that is similar to that of a large-kernel convolution. As a non-linear Relu activation
function is applied after each convolution, such concatenation of multiple convolutions
contributes to a better capability of modeling non-linear mappings. The VGG16 network
achieves superior performance on the ImageNet classi�cation task with the top-1 and
top-5 test error of 25.6% and 8.1%. Due to its simple structure and great performance,
the VGG16 model is used as the base model for many other applications [7, 40, 41, 42, 43].
Our aesthetics network in Chapter 3 is also based on the VGG16 model, with certain
modi�cations to adapt to the aesthetics regression task.

Figure 2.2: The structure of VGG16.

Endless e�orts have been made to explore new architectures that are both faster and
more powerful than VGG models. He et al. [5] propose to concatenate the residual blocks,
as shown in Figure 2.3a, to build up a very deep neural network, called �ResNet�. This
design ensures that information can e�ciently propagate through the network because
its input is a direct part of the output, which enables training very deep networks. The
residual network [5] achieves a top-5 error rate of 4.49% on the ImageNet classi�cation
task, already surpassing human performance of 5.1% [37].

Google develops the inception module [26], as shown in Figure 2.3b, for building
networks. In one inception module, there are four parallel pathways for the input.
Each pathway contains convolutions with di�erent receptive �elds. For instance, the
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concatenation of two 3× 3 convolutions contributes to an e�ective receptive �eld of 5× 5.
The concatenation of di�erent pathways produces robust features that �model� the image
in a multi-scale manner. Inception modules are sometimes combined with the residual
block to build more powerful networks [44].

(a) Residual block (b) Inception module

Figure 2.3: Residual block [5] and inception module [26]. These two are basic blocks that
can be concatenated to build a complex network.

2.1.2 Fully Convolutional Network

Many current CNNs are designed for image classi�cation tasks. They model an input
image into a 1D feature vector, rendering it di�cult to maintain the spatial information
(the local information at each position) from the input image to the feature vector.
However, for some applications, spatial information is critical. For instance, image
semantic segmentation aims at assigning a semantic label to each pixel in the input image.
The label of a pixel is determined mainly by the local information at that speci�c position.
Furthermore, the output of semantic segmentation is required to be a 3D image instead
of a 1D vector. In such a scenario, traditional CNNs are therefore not suitable.

Long et al. [18] modify the VGG network into a fully convolutional style, which can
handle inputs of various sizes and generate outputs of the same size as the inputs. Each
fully connected layer is transformed into a convolution layer with a kernel that covers the
entire input region. Transforming all the fully connected layers in a CNN leads to the
fully convolutional network (FCN), shown in Figure 2.4. FCN e�ectively performs image
classi�cation on every patch of the input image in a sliding window manner, generating
a probability value for each patch. The output from FCN is a 3D heatmap containing
probabilities of each class. Bilinear interpolation is then applied onto the heatmap to
generate a segmentation mask that is of the same size as the input image.

Spatial information is critical for segmentation. However, due to the pooling layers in
CNNs, spatial information is gradually thrown away as the network goes deep. Therefore,
it is bene�cial to incorporate features from early layers of the network in the �nal
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Figure 2.4: Transforming fully connected layers to convolution layers enables a classi�ca-
tion net to output a heatmap [18].

classi�cation stage, as these features better encode the spatial knowledge. Long et al.
propose to concatenate the features from internal layers with those from the last layer,
before being fed into the classi�cation stage, as illustrated in Figure 2.5. Depending on
which internal layer�s activations are extracted, the last classi�cation stage e�ectively
performs classi�cation on patches of di�erent sizes. The output heatmap is upsampled 8,
16 or 32 times to get back to the input size. The best FCN model in [18] achieves 62.2
mean Intersection-over-Union (mIoU) value on PASCAL VOC 2012 segmentation test
set [22], producing 20% relative improvement over the previous state of the art [45]. Our
semantic segmentation algorithm in Chapter 4 is inspired by this design.

2.1.3 Generative Adversarial Networks

Generative models aim at modeling the underlying distribution of a training set. Some
algorithms try to explicitly model the density of the distribution, such as Boltzmann
machine [46] and variational autoencoder [47]. Other algorithms implicitly model the
distribution by generating samples that are drawn from the same distribution as the
training set. A typical case is using Generative Adversarial Networks (GANs) [34] to
generate samples that follow the same distribution as the training set. Since their
publication, GANs have been explored for many applications with various extensions [48,
49,50,51,52].

The basic idea of GANs is to build up an adversarial game between two networks, as
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illustrated in Figure 2.6. One of them is called generator: it creates samples from latent
random variables with the intention of generating samples that are not distinguishable
from the real samples. The other network is called discriminator: it aims at examining
whether a sample is real or fake. The goal of the generator is to fool the discriminator,
and the discriminator tries to classify every generated sample as fake and every real
sample as real. During this counter game, both the generator and the discriminator are
becoming more and more accurate, until the generated samples are indistinguishable from
the real samples.

Formally, the generator de�nes a mapping function G from a latent variable z to a
generated sample x, with parameters � G. The discriminator de�nes a function D (with
parameters � D) that measures the probability of a sample x to be a real. For the
generator, the aim is to fool the discriminator, albeit endure D to output high probability
values for the generated samples. Therefore, the generator G tries to minimize the
following loss LG with respect to � G:

LG(� G) =
�

z
� logD

�
G(z)

�
(2.1)

Minimizing LG e�ectively equals maximizing the log-likelihood of the generated samples
G(z) to be real. The loss used for the discriminator is:

LD(� D) =
�

z

�

�x

�
1
2

log[D(�x)] �
1
2

log[1�D
�
G(z)

�
] (2.2)

Here �x represents the real sample from the training set. This is the standard cross-entropy

Figure 2.5: The Structure of FCN [18]. The outputs from the internal layers (pool3
or pool4) are combined with the output of the �nal layer (conv7) in order to generate
heatmaps of di�erent sizes. These heatmaps are then upsampled 8, 16, or 32 times to
map to the original input size.
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Figure 2.6: The structure of GANs that consists of a generator and a discriminator.

loss for binary classi�cation problem.

Optimizing the generator and discriminator together is di�cult. Goodfellow et al. [34]
design an optimization procedure as explained in Algorithm 1. m is the size of each
minibatch. k de�nes the number of steps to update the discriminator before updating
one time the generator. Assuming k equals 1, the generator and the discriminator are
then updated alternatively.

Algorithm 1: Training for GANs
for number of iterations do

for k steps do
Get: a minibatch of m noise samples {z1, ..., zm} from latent noise space.
Get: a minibatch of m samples {x1, ..., xm} from the training set.
Update: Update the parameters of the discriminator according to Eqn. 2.2

end
Get: a minibatch of m noise samples {z1, ..., zm} from latent noise space.
Update: Update the parameters of the generator according to Eqn. 2.1

end

The plain GANs in [34] show some di�culties in generating high-resolution images.
In [53], the authors �rst decompose an image in a Laplacian pyramid, and then use
multiple GANs to generate the details at di�erent levels of the pyramid. The algorithm
in [48], known as DCGANs, uses the concatenation of multiple convolutions to generate
high-resolution images in one shot. Figure 2.7 shows bedroom images generated by
DCGANs. Although they still have certain artifacts, the generated images are visually
quite similar to real bedroom images.
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Figure 2.7: Samples of bedroom images generated by DCGANs [48].

Later algorithms extend the designs of GANs and DCGANs to di�erent applications.
In [51], GANs are modi�ed to be conditioned on some extra information y by feeding y as
input to both the generator and the discriminator. Such structure can be used to generate
images of a certain class by specifying the class information as y. The conditioned GANs
are used in [54] for colorization of grayscale images. The authors use the grayscale image
as the extra information y. DCGANs are explored for single image super-resolution
in [49]. The authors modify the generator to be a convolutional network that takes in
a low-resolution image and generates the corresponding high-resolution image. Isola et
al. [55] use an autoencoder [56] style network as generator to tackle image translation
problems. Their algorithm, named as pix2pix, is able to perform several image translation
tasks, as shown in Figure 2.8 and Figure 2.9. Our DEGANs, proposed in Chapter 6, are
based on the pix2pix work. We re-design the network architecture to adapt to the image
enhancement problem.

Figure 2.8: Sample results of pix2pix [55] for edge � photo application. The network
transforms edge images to photos. In each pair, the left one is the edge image and the
right one is the generated photos.
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Figure 2.9: Sample results of pix2pix [55] for map translation. Here pix2pix network
learns to transform aerial photos to the corresponding satellite maps. The left are the
input images and the right are the results.

2.1.4 Training Neural Networks

Deep neural networks are computational models with millions of parameters. For example,
the VGG16 model [4] has 138 million parameters in total. Within such a high-dimensional
parameter space, it is di�cult to search for the optimal parameter set. Several useful
techniques have been proposed to e�ciently and e�ectively train deep neural networks.

2.1.4.1 Initialization

It is proven that a good initialization of parameters (also called weights) is a key factor to
the convergence speed and the performance of neural networks [57]. For training networks
from scratch, various methods [3, 57, 58, 59, 60, 61] have been tested to initialize the
network. Apart from these, using the pre-trained weights from the ImageNet classi�cation
task [37] is another e�ective way for initializing networks, which often leads to better
performance. Several classic networks achieve remarkable performance on ImageNet, as
explained in Section 2.1.1. The weights of the convolution kernels in these models are
shown to capture some meaningful patterns of natural images [62], thus being general to
other imaging tasks. Especially for tasks that do not have enough training data, using
the pre-trained weights for initialization would be bene�cial. Our aesthetics network, in
Chapter 3, therefore uses the VGG16 network with the pre-trained ImageNet weights.
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2.1.4.2 Data Augmentation

Deep neural networks are known to be data hungry. Training a model with millions of
parameters normally requires millions of training samples. This is expensive or even
impossible for some tasks. A useful technique for increasing the amount of training data
is to apply data augmentation. Various types of operations can be applied to augment the
dataset, as long as those operations do not alter the groundtruth labels of the augmented
results. For example, for the image classi�cation task, image resizing, random cropping,
random horizontal �ipping, random noise injection, and random color modi�cation are
common augmentation methods. By applying one or several of these operations together,
the quantity of the training data can be e�ectively increased by tens to hundreds times
larger.

2.1.4.3 Optimizer

Training a deep neural network is essentially optimizing an extremely complex and
non-convex loss function. Gradient descent is the most common optimization solution.
Gradient descent methods compute the gradients of the loss function with respect to its
parameters. These gradients are then used to update the parameters, based on di�erent
rules. Simple methods such as SGD directly remove the gradients, after being multiplied
by a �xed learning rate, from the weights. Momentum [63] is a technique that can
accelerate SGD during optimization. More advanced methods, such as Adagrad [64] and
Adam [65], use adaptive learning rates for di�erent parameters, thus often resulting in
faster convergence speed and better performance. Figure 2.10 shows a comparison of
di�erent optimizers for the MNIST recognition task [66] with the same multilayer fully
connected network. Although Adam shows the best performance for this task, the optimal
optimizer might vary over di�erent applications.

2.1.4.4 Over�tting Prevention

Deep neural networks often have signi�cantly larger number of parameters than that of
training samples, which can result in severe over�tting. Preventing these models from
over�tting to the training data is hence very important. Over�tting is the phenomenon
when the validation accuracy is notably lower than the training accuracy, as illustrated
in Figure 2.11. Data augmentation is an e�ective way to prevent over�tting, which is
already discussed in Section 2.1.4.2. Apart from this, there are also several other useful
techniques. Srivastava et al. [67] introduce the dropout layer that randomly drops part of
the activations during training. Dropout prevents the co-adaptation of neurons during
training, thus performing well in practice. Another approach for reducing over�tting is
to add a regularization term, such as L1 or L2 term, on the model weights. This is also
known as weight decay. Additionally, in [68], the authors propose to apply early stopping
during training. This method monitors training and validation losses after each epoch,
and stops training when validation loss no longer decreases.
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Figure 2.10: Comparison of di�erent optimizers [65]. This plot shows the progress of the
training losses for di�erent optimizers with respect to the number of iterations.

2.2 Computational Aesthetics

Image aesthetics is the concept that represents the overall visual appeal of images.
Automatically assessing image aesthetics is useful for many applications, which explains
the dozens of algorithms published over the years. In this section, we �rst clarify
the ambiguity between image aesthetics and image quality matrix. We then present
the common aesthetics datasets used for aesthetics prediction. At last, we review the
conventional methods using handcrafted features, followed by the recent deep learning
approaches.

2.2.1 Image Aesthetics vs Image Quality

Image aesthetics is often associated with the concept of image quality, as both of them
represent the perceived quality of an image. There exists a large body of research work
on modeling and predicting image quality. Many successful image quality matrices, such
as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Visual
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Figure 2.11: Over�tting phenomenon of neural networks. The gap between the training
accuracy and the validation accuracy indicates the degree of over�tting. The blue line
represents severe over�tting and the green line indicates slight over�tting. This �gure is
taken from the cs231n course from Stanford.

Information Fidelity (VIF), are widely used in many applications. Early approaches
in this �eld use handcrafted features, such as natural scene statistics (NSS) [69], in
the wavelet [69], sparse [70] or spatial domains [71] to derive a mathematical model for
evaluating the image quality. Later methods employ deep neural networks to replace the
need for handcrafted features [72,73,74].

Although related, image aesthetics is also intrinsically di�erent from image quality.
Image quality measures the perceived quality of images with respect to certain distortions,
such as blur or noise, whereas image aesthetics is the perceived appeal level of an image,
which is more related to the understanding and appreciation of beauty and harmony. In
this sense, a non-distorted image may have high values in the image quality assessment
while not necessarily being an aesthetically pleasing image. Therefore, existing image
quality matrices, such as PSNR and SSIM are not suitable for evaluating image aesthetics.
In this thesis, we focus on building computational models for predicting image aesthetics.
Note that, for simplicity, in the following chapters we use high/low quality to represent
high/low aesthetics quality.
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2.2.2 Aesthetics Datasets

Aesthetics datasets are the basis for many computational aesthetics algorithms. Some
early work [75,76] rely on their private collections of images, which are not made public
to the community. Many e�orts have been made to build publicly available large-scale
aesthetics datasets.

2.2.2.1 CUHK-PQ Dataset

In [77], the authors release this CUHKPQ dataset containing 17,673 images, which are
organized in 7 categories based on visual content: �animal�, �plant�, �static�, �architecture�,
�landscape�, �human�, and �night�. Each image is manually labeled with a binary label:
high quality or low quality. Sample images from the CUHKPQ dataset are shown in
Figure 2.12.

(a) landscape (b) plant (c) animal (d) night

(e) human (f) static (g) architecture

Figure 2.12: Sample images from CUHKPQ dataset [77]. For each category, the top one
is a high-quality image and the bottom one is a low-quality image.
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2.2.2.2 AADB Dataset

Kong et al. [78] build up the AADB dataset that contains not only aesthetics labels
but also attributes labels. They select eleven attributes that are highly correlated with
image aesthetics: interesting content, object emphasis, good lighting, color harmony, vivid
color, shallow depth-of-�eld, motion blur, rule of thirds, balancing element, repetition,
and symmetry. In total 10,000 images are collected from Flickr and labeled using
Amazon Mechanical Turk1. Each image is labeled by 5 individual annotators for its
overall aesthetics quality (using a score between 1 to 5), as well as each attribute quality
(choosing a label between -1, 0, and 1). The annotator�s ID is also released, which
enables the study of personal preferences of aesthetics. We show some sample images in
Figure 2.13.

Figure 2.13: Sample images of AADB dataset [78].

2.2.2.3 AVA Dataset

Previous aesthetics datasets all contain less than 100K images, rendering them insu�cient
for learning deep neural networks. Thanks to Murray et al. [12], a large-scale aesthetics
dataset has been made available to the community. This dataset contains approximately
250,000 images natural and synthetic images obtained from the DPChallenge website2.
Each of these image receives from 78 to 549 votes for its aesthetics quality, in the range
of 1 to 10. 10 represents the highest aesthetics quality and 1 is the lowest. Figure 2.14
show some sample images from AVA dataset. Due to its large scale, AVA dataset is often
used to train deep neural networks for aesthetics-related tasks.

1www.mturk.com
2www.dpchallenge.com
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Figure 2.14: Sample images from AVA dataset [12]. The �rst row are images that have
aesthetics scores larger than 5, the second row are images with aesthetics scores smaller
than 5.

2.2.3 Conventional Methods

Conventional approaches for image aesthetics assessment follow a two-step framework.
The �rst step is to build features to computationally model the photographic quality of
the images. Some algorithms [77,79,80,81,82] design handcrafted features to explicitly
model the photographic qualities that are related to image aesthetics, such as the lighting
condition, contrast, color distribution and composition. Other algorithms [12,83,84,85]
use generic vision features, such as SIFT [86] descriptors, combined with Bag-of-Visual-
Words (BOV) [87] or Fisher Vector (FV) [88]. These features are then passed through a
learning step to generate the aesthetics labels, either as binary labels or continuous scores.
Standard machine learning algorithms, such as Support Vector Machine (SVM) [89] or
support vector regression [90], are employed at this stage.

2.2.4 Neural Network Based Methods

Neural networks are able to learn the proper feature representations from the data itself,
thus signi�cantly surpassing the capability of handcrafted features. Recent works propose
to use deep neural networks for automatic aesthetics assessment. Generic features learned
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from the ImageNet classi�cation task are explored in [91] for predicting aesthetics. They
use the features from AlexNet [3] and train a SVM on top. As AlexNet is not �ne-tuned
for aesthetics, its features are not adapted to the aesthetics prediction task, thus leading
to unsatisfactory performance.

Wang et al. [92] modify the AlexNet architecture with 7 parallel convolution layers,
where they collect images of seven di�erent classes and train a convolution layer for each
class. Lin et al. [93] propose to train a CNN to predict aesthetics for each randomly
sampled image patch. A statistical aggregation structure is designed to aggregate the
predictions from each patch. In [94], the authors propose to train a double column
network. One column models the global view of the image and the other one models the
local patch. Mai et al. [95] extend [94] by using 5-columns of VGG-type networks with
an adaptive pooling layer. Each column has di�erent receptive �elds, hence modeling
multi-scale image information. Kao et al. [96] propose to train three category-speci�c
CNNs, aiming for three di�erent classes: object, scene and texture. Depending on the
category, the corresponding CNN takes di�erent type of input, such as local patches or
the whole images. A multi-task network is proposed in [97]: it learns to predict aesthetics,
as well as the semantic category. The design of this network is based on the assumption
that semantics information could help in the prediction of aesthetics. Depending on how
to combine aesthetics labels with semantic labels, four types of architectures are proposed
in [97], as shown in Figure 2.15.

Figure 2.15: The structures of multi-task networks [97]. These networks try to predict
aesthetic scores as well as semantic labels. Purple block: convolution layer + max pooling;
gray block: convolution layer; yellow block: fully connected layer.

All the algorithms above model aesthetics assessment as a binary classi�cation task.
They split AVA dataset into two sets by thresholding the aesthetics scores. The network
is trained to classify an image as either high quality or low quality. However, such setting
discards the di�erences within a class, rendering these models less applicable for some
real-world appliations. For instance, image ranking tasks need to measure the aesthetics
on multiple levels, instead of on binary classes.
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Kao et al. [98] propose a CNN regression model that provides continuous aesthetic
scores. Following this line, our method also treats aesthetics prediction as a regression
problem, which will be described in Chapter 3.

2.3 Semantic Segmentation

Semantic segmentation algorithms aim at generating pixel-wise masks that segment out
the semantic objects in the images, as illustrated in Figure 2.16. It has been a long-
standing problem in computer vision with multitudes of algorithms published. In this
section, we focus on reviewing the neural-network-based algorithms, as the performance
of these methods are signi�cantly better than the traditional approaches. Depending on
the level of supervision, semantic segmentation algorithms can be categorized as fully
supervised, weakly supervised and unsupervised methods. We discuss the fully supervised
and weakly supervised methods here, as our semantic segmentation method, which is
presented in Chapter 4, can be viewed as a weakly supervised approach that borrows
some techniques from fully supervised methods.

Figure 2.16: Sample results for semantic segmentation. These images are from the
PASCAL VOC segmentation set [22]. In the segmentation masks, each color represents
one class of object.

2.3.1 Fully Supervised Semantic Segmentation

Before reviewing the algorithms, we �rst introduce the datasets used for this task. The
most widely used dataset is the PASCAL VOC 2012 segmentation set [22]. There are
a total of 9,993 images covering 20 classes: aeroplane, bicycle, bird, boat, bottle, bus,
car, cat, chair, cow, diningtable, dog, horse, motorbike, person, potted plant, sheep,
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Figure 2.17: Sample images and annotations from Microsoft COCO dataset [99].

sofa, train, and tv/monitor. The authors in [100] further augment this dataset with
extra annotations, resulting in an augmented training set of 10,582 images, a validation
set of 1,449 images and a reserved test set of 1,456 images. Sample images with the
corresponding segmentation masks are shown in Figure 2.16. Another useful set for
training segmentation networks is the Microsoft COCO dataset [99] that covers 91 classes
with 65k images. Figure 2.17 shows sample images and annotations from the Microsoft
COCO dataset. The segmentation performance is often measured by the IoU (intersection
over union) metric, i.e. the size of the intersection between the generated and the
groundtruth segmentation masks divided by the union of the two. Therefore, IoU is a
percentage value.

The breakthrough of semantic segmentation comes from the fully convolutional network
(FCN), as discussed in Sec. 2.1.2. Following the design of FCN, later algorithms propose
several techniques to improve the segmentation performance. Dense Conditional Random
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Fields (CRFs) are adopted in [20] to re�ne the boundaries in the �nal segmentation output.
To approximate the optimization of CRFs, the authors in [19] design a recurrent neural
network that enables end-to-end training of FCN and CRFs together. Lin et al. [101]
propose a pyramid structure with a Re�neNet at each scale, as shown in Figure 2.18a.
The Re�neNet fuses the high-resolution features with the features from the low-resolution
level, contributing to better details in the segmentation masks. Figure 2.18b illustrates
the PSPNet proposed in [21]. This algorithm incorporates dilated convolution [102] into a
Resnet architecture, followed by a pyramid pooling module that aggregates the context of
di�erent scales. Although achieving superior segmentation performance, fully supervised
methods all require pixel-wise human annotations for training.

(a) Re�neNet

(b) PSPNet

Figure 2.18: The architectures of Re�neNet [101] and PSPNet [21].

2.3.2 Weakly Supervised Semantic Segmentation

Annotating images with pixel-wise labels is both time-consuming and expensive to
obtain. As reported in [103], the average annotation time was 239.7 seconds per image in
the PASCAL VOC 2012 dataset. Therefore, a considerable amount of research e�orts
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have shifted to weakly supervised algorithms, in which researchers explore other types
of annotations that are easier and faster to collect, such as tags, points, scribbles or
bounding boxes.

As no pixel-wise masks are available, the challenge for weakly supervised algorithms
is to infer the location of each class from weak annotations. Bearman et al. [103] build
a novel loss function that measures loss at the point level. They further incorporate
objectness [104] into the loss to help stretch keypoints to the whole contour of objects.
In [105], the authors combine scribbles and the segmentation network�s output in a
CRFs-type optimization problem, where they iteratively optimize the CRFs and the
segmentation network. The authors of [106] replace the CRFs in [105] by a random-
walk [107] label propagation algorithm, which enables learning the label propagator,
jointly with the segmentation network. Some other work [108,109] use bounding boxes as
supervision. Grabcut algorithm [110] is employed to extract segments inside the boundary
boxes.

Among all types of weak supervisions, an image tag is the easiest type of supervision to
collect, but the most di�cult one to use for supervising segmentation algorithms. This is
because image tags reveal little information about the location and shape of the objects.
Early works [111, 112, 113] extend the multiple-instance learning [114] framework for
weakly supervised semantic segmentation. The loss functions are directly built on the
image-tag level. Di�erent approaches, e.g., maximum pool [112] or log-sum-exp [111],
are explored in order to pool pixel-level probability predictions into tag-level losses. No
object-location information is considered in these frameworks, thus resulting in coarse
segmentation masks. Recent methods [115,116,117,118,119,120,121] build up location
priors by applying traditional computer vision algorithms or by investigating the pre-
trained networks. [115] and [116] both build their location cues by backpropagating
through the pre-trained classi�cation network [4]. The di�erence lies in that [115] builds
general objectness measure for all classes, whereas [116] focuses on class-speci�c saliency
maps. Similar location priors are used in [117] in the form of the seed loss. They further
integrate the seed loss with another two losses that encode more location information. The
bottom-up segment proposals, such as (MCG) [122] and BING [123], are used in [118,119]
as another approach to obtain location information. [120] extracts rough estimations of
object locations from a classi�cation network. These estimations are then combined with
saliency maps to �nd the contours of the whole objects. A novel technique is proposed
in [121] where they �rst crawl videos according to the image tags, and then extract
the common patterns across frames. The underlying assumption is that videos crawled
according to a keyword should contain the corresponding object in a majority of frames.

We report the performance and the annotation types of di�erent algorithms in Table 2.1.
Although they do not require human interactions during testing, algorithms such as
MCG [122] and BING [123] still use human annotations for training. In this sense,
methods using these algorithms indirectly rely on additional supervision. In general,
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algorithms with stronger supervision, such as scribbles or bounding boxes, perform
better than algorithms that use weaker supervision, e.g., only tags. However, tag-based
algorithms have better extensibility to more classes, thus are more usable in real-world
applications.

Table 2.1: Comparison of weakly supervised semantic segmentation algorithms on the
PASCAL VOC 2012 validation and test set. The performance is measured as mIoU value.

Methods val test Supervision
PointSup [103] 46.1 - points

ScribbleSup [105] 63.1 - scribbles
RAWKS [106] 61.4 - scribbles
BoxSup [108] 62.0 64.6 boxes

SimpleSeg [109] 65.7 67.5 boxes
MIL-bb [111] 37.8 37.0 tags + BING [123]
MIL-seg [111] 42.0 40.6 tags + MCG [122]

MIL-FCN [112] 25.66 - tags
DCSM [116] 44.1 45.1 tags
SEC [117] 50.7 51.7 tags
SN B [119] 41.9 43.2 tags + MCG

CCCN-size [113] 42.4 45.1 tags + size estimation
CheckMask+CRF [115] 51.5 52.9 tags + mask selection

AFSeg [118] 54.34 55.5 tags + MCG
SSSeg [120] 55.7 56.7 tags + saliency

Webvideo [121] 58.1 58.7 tags + videos

2.4 Image Enhancement

This section presents an overview of di�erent image enhancement methods that are
categorized into �ve groups: (1) rule-based methods, (2) methods based on sample
images, (3) interactive methods, (4) keyword-based methods, and (5) methods using
neural networks.

2.4.1 Rule-Based Methods

This group of algorithms pre-de�ne a set of rules or operations according to expert
knowledge. For example, Hummel et al. [124] de�ne a histogram equalization process
that balances the color histogram of an image. This operation can improve the contrast
of images. An image sharpening operation is de�ned in [125], where the high-frequency
components of the input image is extracted and added back in order to enhance the
details. [126, 127] de�ne several harmonization rules to adjust the colors of the input
image. [128,129] modify the colors of an image according to prede�ned color palettes or
color themes, as shown in Figure 2.19. In [130], the authors propose to detect objects
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such as human eyes and sky, and associate a heuristic enhancement function with each
object. Because these enhancement operations are manually designed, methods in this
category lack the �exibility to adapt to di�erent types of images.

Figure 2.19: Sample color re-rendering results from [129]. The bar at the bottom of each
image indicates the color palette used for this image.

2.4.2 Methods Based on Sample Images

These algorithms require at least one sample image in order to supervise the enhancement
process. [131,132] propose to globally transfer the color of the sample image to the target
image. [133, 134] extend the idea to local adjustment. Wang et al. [135] learn implicit
color and tone adjustment rules from example images and apply those on the input image.
Kang et al. [136] ask users to create personal example images, from which the parameters
of the enhancement operation are learned. Figure 2.20 shows three di�erent enhancement
results created by three users.

(a) Input image (b) User #1 (c) User #2 (d) User #3

Figure 2.20: Results of the personal enhancement method [136]. Three users created
di�erent sample images that lead to di�erent enhancement results.

2.4.3 Interactive Enhancement Methods

Methods [13, 14,15, 16] in this category rely on the interactive inputs from users in order
to direct the enhancement process. In [13], users are asked to indicate the regions that
need to be enhanced. Laput et al. [14] combine two types of interaction together. They
use speech recognition to associate tags with image regions and use sliders to enable users
to adjust the colors. [15,16] use stroke input from users to indicate the foreground and
background regions, and to apply di�erent processes accordingly, as shown in Figure 2.21.
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Figure 2.21: Sample results from the interactive image enhancement method [16]. Users
draw strokes in di�erent color to indicate the foreground and background, and to assign
the colors to the corresponding parts.

2.4.4 Keyword-Based Methods

Compared to the interactive methods, keyword-based approaches require much less human
intervention and are more �exible. Wang et al. [137] �rst associate a color theme to each
emotion keyword and apply color adjustment accordingly. Lindner et al. [17] generalize
to more keywords by statistically analyzing the correlations between keywords and color
characteristics, as shown in Figure 2.22. We will discuss the details of [17] in Chapter 5,
as our keyword-based image enhancement algorithm is closely related to [17].

(a) Input image (b) Result

Figure 2.22: Sample result of the keyword-based image enhancement method [17]. The
image is enhanced with keyword �sky �.
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2.4.5 Neural Networks Based Methods

Since the breakthrough of AlexNet [3], neural networks have been applied to many tasks,
including image enhancement. Xie et al. [138] propose an autoencoder style network
for image denoising. [49,139] adopt CNNs and GANs for single image super-resolution.
Yan et al. [140] propose an automatic color adjustment operation, which is de�ned as
a quadratic mapping function. The multi-layer neural network is used to compute the
coe�cients of the mapping function. They still use heuristic image features as input to the
network. We show the example results of [140] in Figure 2.23. Compared to this method
that still heuristically de�nes the enhancement functions, our GANs-based enhancement
algorithm automatically learns the enhancement operations from the training data, as
presented in Chapter 6.

Figure 2.23: Image enhancement result from Yan et al. [140]. The �rst row are the input
images and the second row are the enhanced results.

34



3 Computational Aesthetics

In this chapter, we �rst present an aesthetics assessment algorithm based on neural
networks. We also present the automatic cropping technique in Section 3.4, as it is a
direct application of the aesthetics networks.

3.1 Introduction

Automatically assessing image aesthetics is useful for many applications. To name a few,
aesthetics can be adopted as one of the ranking criteria for image retrieval systems or
one of the objectives for image enhancement systems. Users can also manage their image
collections based on aesthetics. Various algorithms [12, 77, 79, 81, 82, 83, 84, 85, 98, 141]
have been proposed over the past few years for aesthetics assessment.

In this thesis, we train convolutional neural networks (CNNs) for aesthetics assessment.
Our model is trained on the AVA dataset [12] that contains more than 250,000 images,
as introduced in Chapter 2. Each image has around 200 user ratings about its aesthetics
quality, with each rating being an integer between 1 and 10 (1 implies the lowest quality
and 10 means the highest quality). We show two sample images and their corresponding
histograms of user ratings in Figure 3.1. The average of user ratings is taken as the
aesthetics score for each image. It represents the perceived aesthetics quality of that
image.

The distribution of aesthetics scores in the AVA dataset is extremely unbalanced, as
shown in Figure 3.3 (a), which introduces bias into all the previous CNN models that
are trained on this dataset [98,141]. As there are more images with medium aesthetics
quality in the training set and few images with very high or low quality, the range of the
predicted scores by these models are thus limited and biased towards the middle values.
To reduce such bias, we propose to use sample weights during training. The sample
weights are �rst computed according to the occurrences of the aesthetics scores and later
incorporated into a weighted loss function for training. This loss function is balanced

35



Chapter 3. Computational Aesthetics

Figure 3.1: (a) and (b) are two images of the AVA dataset [12], (c) and (d) are their
corresponding histograms of user ratings. In image (a), most of the user ratings fall
within the middle aesthetics level ( scores of 4, 5, and 6) while the ratings of image (b) is
distributed over the whole range.

over images with di�erent aesthetics scores, thus enabling the trained CNNs to work for
images of di�erent aesthetics quality. Using sample weights, we train a regression model
that can achieve a larger prediction range and better accuracy than previous methods.

Additionaly, all previous methods [12, 82, 98, 141] directly use the average aesthetics
scores for training while discarding the distribution of user ratings. As pointed in [142],
the Mean Opinion Score (MOS) is only one statistic to describe the distribution, which
implicitly assumes homogeneity among the annotators. In [143], the authors show that
predicting the histogram of user ratings instead of the MOS can better model user
preferences. As a matter of fact, the distribution of the ratings reveals not only the
average aesthetics score, but also how much users agree with each other when aesthetically
assessing the image. Therefore, the distribution is an indicator of the di�culty for
performing an aesthetics assessment of a given image. For instance, the two histograms
in Figure 3.1 clearly indicate that Figure 3.1(a) is agreed by the majority of users to be
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of average quality, thus being easy to judge, whereas Figure 3.1(b) is less conclusive and
more di�cult to assess. To estimate the level of di�culty, we train a histogram prediction
CNN model that can predict the normalized histogram of user ratings. Our experiments
show that this model reliably estimate the histograms of user ratings.

Once we obtain CNN models to automatically assess the aesthetics quality of images,
these models can then be directly used for many applications. In Section 3.4, we present
an automatic cropping application that uses the trained aesthetics network. The cropping
system can automatically generate a visually pleasing crop from the input image.

To summarize, our contributions in this chapter are:

� We use sample weights during training, which helps to overcome the bias in the
training set of the AVA dataset and extend the prediction capability of the trained
CNN models.

� We train a regression CNN model that achieves a larger prediction range and better
accuracy than the state-of-the-art methods.

� We train a histogram prediction model that reliably estimates the aesthetics scores,
as well as the di�culty of aesthetics assessment.

� We build an image cropping application that outputs an aesthetically pleasing crop
of an input image by using the results of the trained CNN model.

3.2 Methods

In this section we �rst explain how we derive the sample weights for the training set,
followed with two CNN models that we propose in order to predict aesthetics. We explain
the regression model in Section 3.2.2 and the histogram prediction model in Section 3.2.3.

3.2.1 Sample Weights

Assume the histogram of the aesthetics scores in the training set is {bi, i = 1 ,2...B}. B
is the number of bins that evenly cover the range of the aesthetics scores. We set B to
90 for the aesthetics score range of 1 to 10. bi is the occurrence number of the ith bin,
namely the number of images assigned with the aesthetics scores within the ith bin�s
range. The histogram for the training set is shown in Figure 3.3(b).

It is obvious that the distribution of aesthetics levels in the training set is extremely
unbalanced. The medium quality images signi�cantly outnumber the others. When
forming the mini-batches to train neural networks, the medium quality images appear
more frequently in each batch, contributing to the major part of the loss function.
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Minimizing such loss function causes the predicted aesthetics scores center around the
medium value. Therefore, the networks trained on this dataset tend to produce large
errors for the very high quality or low quality images. However, the primary focus for
many real-world applications, such as image ranking or image �ltering, is to �nd these
edge-case images accurately.

In this chapter, we propose to use weighted samples to tackle this problem. As the
source of this problem is the uneven contribution to the loss function, we propose to
add a weight to each sample to re-balance their contributions. The design of the weight
function reveals the occurrence numbers of each aesthetics level, speci�cally assigning
larger weights to the less frequent classes and vise versa. The sample weight wi for the
ith bin in the histogram is computed as:

b�
i =

bi
� B

i=1 bi
; wi =

1
b�
i

(3.1)

Images within the same bin share the same sample weights. The sample weight is inversely
proportional to the normalized occurrence number. Consequently, images with rare scores
are assigned larger sample weights than images with more frequent scores. Note that
sample weights are only computed for the training set and only used during training, not
during testing.

3.2.2 Regression Model

The architecture of our regression CNN model is the same as the VGG16 network [4], as
this network architecture has shown superior performance on image classi�cation. This
network contains 13 convolutions layers, 5 max pooling layers followed by three fully
connected layers. The last fully connected layer of the network is modi�ed to have only
one output neuron for predicting a single aesthetics score. We remove the last softmax
activation function as the output is only one value. The network architecture is shown in
Figure 3.2.

The training of this model is done by minimizing the following Weighted Mean Squared
Error (WMSE) loss function:

WMSE =
1

� N
i=1 wi

N�

i=1

wi • (yi � �yi)2 (3.2)

Here wi is the sample weight computed according to Equation 3.1. yi is the predicted
aesthetics score and �yi is the groundtruth aesthetics score. N is the number of images in
the training set.

Note that images with large sample weights do not occur very often. As a result, the
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overall contribution to the loss function is balanced across images with varying aesthetics
scores. In this way, the sample weights help to reduce the bias in the training set.

3.2.3 Histogram Prediction Model

The histogram prediction model predicts the normalized histogram of user ratings for
an input image. The output of the model is a vector with 10 bins, as user ratings are
integers between 1 to 10. We adjust the last layer of VGG16 network [4] to have 10
output neurons, followed by a normalization step to output a normalized histogram. The
structure is similar to that in Figure 3.2, except the last output layer. The loss function
for training is the Weighted Mean �2 Error (WMCE):

WMCE =
1

� N
i=1 wi

N�

i=1

wi • �2(hi, �hi) (3.3)

where wi is the sample weight for image i. hi is the output histogram from the network
and �hi is the groundtruth normalized histogram. �2 represents the chi-square distance
computed as in Equation 3.4.

�2 =
n�

i=1

(Oi � Ei)2

Ei
(3.4)

Based on the output histogram, two values are derived: the aesthetics score, which
is the mean of user ratings, and the standard deviation (std) of user ratings. This std
value represents the di�culty of aesthetics assessment. A small std means the consensus
and simplicity of aesthetics assessment as user ratings concentrate around the average
score. One image with a high std value indicates that users hold various opinions about
its aesthetics quality, thus being more di�cult for our model to predict the aesthetics
scores. By comparing the std values, we can evaluate whether one image is more di�cult
to aesthetically assess than another.

3.3 Experiments

3.3.1 Training and Test Sets

We split the AVA dataset into three parts: training set, test set 1 (RS-test) and test set
2 (ED-test). The distributions of the aesthetics scores in these three sets are shown in
Figure 3.3(b)-(d). RS-test contains 3000 Random Sampled images, which is similar to the
test set in [98] that contains 5000 random sampled images. ED-test is built to have 3000
images Evenly Distributed among three categories: the low quality images (aesthetics
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H

Figure 3.2: Architecture of our regression model for predicting average aesthetics scores.
The network takes color images of 224 by 224 as input and outputs a single aesthetics
score.
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Figure 3.3: The distribution of the average aesthetics scores for (a) the whole AVA dataset
(b) the training set, (c) the Random Sampled test set (RS-test), (d) the Evenly Distributed
test set, which has an equal number of images from three categories: low, average, and
high quality.

score < 4), the average quality images (4 � aesthetics score � 7) and the high quality
images (aesthetics score > 7), as shown in Figure 3.3 (d). The other 249530 images of
the AVA dataset are used for the training set.

3.3.2 Pre-process

As many aspects of an image can a�ect its aesthetics, such as composition and saturation,
it is not recommended to apply data augmentation methods. During training, we only
apply random horizontal �ipping, which is believed to not signi�cantly alter the perceived
aesthetics. Since VGG16 network takes input images of 224 by 224, we directly resize the
whole image to 224× 224, which is then fed into the network. Although this operation
might change the aspect ratio of the image, we have experimentally found that it produces
the best results as opposed to cropping the images, which is corroborated in [141]. Both
models are initialized with the pre-trained ImageNet weights [3], except the last layer
which is randomly initialized. The CNNs are �ne-tuned for 20 epochs on the whole
training set. The learning rate is set to 0.00001, and divided by 10 when the training loss
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stops decreasing. The weight decay is set as 0.0005. The algorithm is implemented using
the theano package, and it took around 4 days for each model to �nish 20 epochs on a
single NVIDIA TITAN X GPU.

3.3.3 Regression Model Results

For the regression task, we use the Mean Squared Error (MSE) as the evaluation metric,
which is the same as in [98]:

MSE =
1
M

M�

i=1

(yi � �yi)2 (3.5)

Here, yi and �yi are the predicted and the groundtruth aesthetics scores, respectively, for
the ith image. M is the number of images in the test set. Note that sample weights are
not applied in the evaluation metric.

Two regression CNN models with the same architecture are trained: a Regression model
with Sample Weights (SWR) and a Regression model with No Sample Weights (NSWR).
For the model without sample weights, we use the same network architecture and set the
sample weights of all images to 1. The performance is shown in Table 3.1.

Table 3.1: MSE of di�erent regression models for aesthetics prediction on the AVA dataset.
Results of the top 5 methods are taken from [98].

RS-test ED-test
GIST linear-SVR 0.5222 NA
GIST rbf-SVR 0.5307 NA

BoVW SIFT linear-SVR 0.5401 NA
BoVW SIFT rbf-SVR 0.5513 NA

Kao et al. [98] 0.4510 NA
No SW regression (NSWR) 0.3373 1.3951

SW regression (SWR) 0.4847 0.9754

The top four methods in Table 3.1 combine the generic image descriptors, GIST [144],
SIFT [86] and Bag-of-Visual-Words (BoVW) [87], together with the Support Vector
Regression (SVR) with a linear or rbf kernel [145]. Refer to [85, 98] for the details of
these methods. Note that none of the previous methods were evaluated on a test set with
balanced distribution, namely the ED-test we created.

Our regression model without sample weights (NSWR) outperforms all the state-of-
the-art methods on the RS-test, while the model with sample weights (SWR) further
outperforms NSWR on the ED-test, demonstrating the e�ectiveness of our regression
model to predict aesthetics for images of a variety of aesthetics qualities. Note that
SWR produces larger MSE than NSWR and the method in [98] on the RS-test. This
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is because the RS-test and training set have similar unbalanced distributions. Hence,
the bias introduced by the training set actually bene�ts these two models with better
performance on the RS-test.

However, such bias limits the prediction range of the models. Using sample weights
during training enlarges this range, making it more practical for real-world applications.
The minimum and maximum values of the aesthetics scores predicted by the NSWR
model on both test sets combined are 3.54 and 6.46. For the SWR model, these two values
are 2.06 and 7.53. We further illustrate this e�ect in Figure 3.4, which shows the mean
MSE for di�erent ranges of aesthetics scores. Using sample weights clearly contributes to
reducing the MSE for images with aesthetics scores higher than 6 or lower than 4.

Figure 3.4: Mean MSE for di�erent ranges of aesthetics scores on the (a) RS-test, the
Random Sampled set (b) ED-test, the Evenly Distributed set where images are evenly
distributed into three categories: low, average, and high quality. Note that there are no
bars in the range of 1-2, 8-9, 9-10 in (a) and 1-2, 9-10 in (b). This is because the lack of
image in those ranges in the two datasets. The number of images with these extreme
scores is quite small in the whole AVA dataset.

Some algorithms model aesthetics estimation as a classi�cation task. They predict
one image as either high quality or low quality. For further evaluation, we also map our
regression results to the classi�cation task. The groundtruth labels for all test images
are set as either high quality or low quality, by comparing the aesthetics scores with two
thresholds, 5� �/2, 5 + �/2, and discarding the images in between. Through increasing �,
we eliminate the ambiguous images and increase the gap between the two classes, thus
simplifying the classi�cation task. The predicted labels are created by thresholding at the
score of 5 [98]. We show the accuracy in Table 3.2. The NSWR model achieves state-of-
the-art accuracy on RS-test whereas the SWR model notably outperforms NSWR model
on ED-test, again demonstrating the e�ectiveness of the sample weights for overcoming
the bias of the training set.
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Table 3.2: Accuracy (%) of di�erent aesthetics prediction models for the classi�cation
task. � indicates the aesthetics scores margin between the low quality class and the high
quality class. The larger � is, the easier the classi�cation is.

� 0 0.1 0.5 1.0 1.5 2.0

RS-test
Lu et al. [141] 74.46 NA NA NA NA NA
Kao et al. [98]. 71.42 72.26 76.92 82.21 85.49 89.31

NSWR 75.73 76.91 82.20 86.84 90.82 94.12
SWR 72.4 73.22 77.66 82.28 85.41 89.87

ED-test
NSWR 82.73 83.18 85.11 86.62 87.21 86.95
SWR 83.46 83.95 86.09 88.24 89.62 89.96

Figure 3.5 and Figure 3.6 show qualitative results of the SWR model. Our SWR model
makes an accurate assessment for images in a wide range of aesthetics quality. In the last
row of Figure 3.5 are typical failure cases where large gaps exist between the predicted
scores and the groundtruth scores. Such failure cases happen mainly on images of very
high quality or very low quality. This is because of the lack of such samples in the training
set. Applying large sample weights on high quality or low quality images is e�ectively
similar to duplicating these images multiple times in the training set. Therefore, the lack
of variety in these images still results in less accuracy for these images. As shown in
Figure 3.4, the mean errors for the two edge cases are larger than those in the middle
bins.

3.3.4 Histogram Prediction Model Results

Two values can be extracted from the output of the histogram prediction model, the mean
aesthetics score and the standard deviation (std) of the predicted user ratings. MSE in
Equation 3.5 is used to evaluate the aesthetics score and the Root Mean Square Error
Ratio (RMSER) is used for evaluating the standard deviation:

RMSER =

�
1
M

� M
i=1 (stdi � �stdi)2

1
M

� M
i=1

�stdi
(3.6)

where stdi is the std of the predicted user ratings for image i and �stdi is the std of the
groundtruth histogram.

We train a Histogram prediction model with Sample Weights (SWH ) and another model
without sample weights (NSWH ). Table 3.3 shows the results. The comparison between
SWH and NSWH shows similar trends to that of the regression models. SWH achieves
comparable performance to SWR for predicting the aesthetics scores on the ED-test, and
produces less than 20% RMSER. Hence, the di�culty of aesthetics assessment for an
image is also reliably estimated.
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We use the Weighted Mean �2 Error as the loss function to train the histogram
prediction model. There are other functions that can measure the distance between two
distributions, such as the Eculidean distance, the cross-entropy, the Kullback-Leibler
divergence [146] and the Jensen-Shannon divergence [147]. Although each has a di�erent
de�nition of distance, these functions all try to push the predicted distribution to be
similar to the groundtruth one. Please refer to a recent work [148] for a complete analysis
of di�erent loss functions for aesthetics prediction problem.

Table 3.3: MSE and RMSER for the histogram prediction models SWH and NSWH.

NSWH SWH
MSE RMSER MSE RMSER

RS-test 0.3730 16.62% 0.6358 26.75%
ED-test 1.6568 28.73% 1.0109 19.57%

Figure 3.5: Qualitative results of the aesthetics regression model SWR (using sample
weights). The numbers in blue are the predicted average aesthetics scores, and the red
numbers are the groundtruth scores.
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Figure 3.6: Qualitative results of the aesthetics regression model SWR (using sample
weights). The numbers in blue are the predicted average aesthetics scores, and the red
numbers are the groundtruth scores.
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Figure 3.7 and Figure 3.8 show samples results from the SWH model. We can see
that the predicted histograms and the groundtruth histograms are quite similar, for both
high quality images and low quality images. Images in the last row of Figure 3.8 have
relatively large std values, indicating that users have less consensus on their aesthetics
qualities, hence it is more di�cult to determine their aesthetics scores.

Figure 3.7: Qualitative results of the histogram prediction model SWH (using sample
weights). On the right side of each image are the prediction histogram of user labels
(blue) and the groundtruth histogram of user labels (red). The histograms have ten bins
as users are asked to give an integer score between 1 to 10.
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Figure 3.8: Qualitative results of the histogram prediction model SWH (using sample
weights). On the right side of each image are the prediction histogram of user labels
(blue) and the groundtruth histogram of user labels (red). The histograms have ten bins
as users are asked to give an integer score between 1 to 10.

48



3.4. Cropping Application

3.4 Cropping Application

The aesthetics prediction models can be used in many applications. We present a simple
application where our SWR model is used to automatically choose an aesthetically pleasing
crop from the input image in order to �t into a target window. For many applications,
users are required to �t an image into a �xed-sized window, such as creating the pro�le
for Facebook or arranging images in an album. An automatic cropping application is
useful to save users e�ort.

For an input image, we randomly take 1000 �xed-sized crops, with respect to the
window template. The selection of crops should respect two aspects so that the crops can
encode the major content of the original image. First, the crop should cover at least 40%
of the original image. Second, the center of the original image must be included in the
crop. These crops are then fed into the SWR model for aesthetics assessment. Although
all four models proposed in this chapter could accomplish this task, we choose the SWR
model for its superior performance in predicting the mean aesthetics scores. The one
with the highest score is chosen as the output.

Example cropping results are shown in Figure 3.9 and Figure 3.10, where we use a
square template in this experiment. Other templates in di�erent shapes are also possible.
Our system automatically outputs pleasing square crops from the original images. One
typical failure case is the last row in Figure 3.10, where the group of three people are not
all included in the generated crop. Our cropping system models mainly image aesthetics
while not incorporating the semantic understanding of the images. Consequently, the
generated crops are not ensured to respect the semantic completeness of objects and might
cut through them. Combining semantic understandings with our aesthetics rules could
contribute to a better performance. Another possible solution is to teach the aesthetics
engines to avoid half-cut images by including those half-cut images in the training set for
aesthetics learning.

To quantitatively prove the e�ectiveness of this cropping approach, we conduct a
psychophysical experiment on 50 images on a crowd-sourcing website1, where we ask
users to compare the crops chosen by our model with random crops. The interface of the
crowd-sourcing experiment is shown in Figure 3.11. Among the three crops, one of them
is the best crop predicted by our SWR model, another one is the worst crop by the model,
and the last one is a random crop. On each page we show the original image as well
as the three crops and ask users to choose the one they prefer. Note that we randomly
adjust the order of the three crops so that no bias is introduced as the progressing of the
experiment. In total, 40 users participated in the experiment, with each labeling all 50
images. The results show that for 31 out of 50 images, users prefer the best crops chosen
by our model over the other crops.

1http://www.shorttask.com/
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Figure 3.9: Outputs from our automatic cropping system. We assume a square crop for
this experiment. In each row, the left image is the original and the right side is the square
crop output from our algorithm.

50



3.4. Cropping Application

Figure 3.10: Outputs from our automatic cropping system. We assume a square crop
for this experiment. In each row, the left image is the original and the right side is the
square crop output from our algorithm.
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Figure 3.11: Interface for the psychophysical experiment to validate the automatic
cropping technique.

3.5 Conclusion

In this chapter, we propose to use sample weights while training CNN models on the
AVA dataset for aesthetics assessment. Our experiments demonstrate the e�ectiveness of
the sample weights for reducing the bias in the training set. We train two CNN models
with sample weights, a regression model and a histogram prediction model. Our CNN
models can output not only accurate aesthetics scores, but also a reliable estimate of
the di�culty of the aesthetics assessment. Using the results of our aesthetics prediction
model, we further show an image enhancement application that automatically crops the
input image for a better aesthetics quality.

Our algorithm focuses on reducing the bias caused by the unbalanced distribution of
aesthetics scores, using the sample weights technique. This is essentially just one aspect of
training CNNs for aesthetics prediction. Other techniques like multi-column or multi-task
training framework [149] can be combined with ours to further improve the aesthetics
prediction performance.

Moreover, after carefully analyzing the results of our CNNs, we discover that our
networks mainly model low-level image features, such as colorfulness and blurriness, while
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missing the semantics, which explains many failure cases in our cropping application, as
discussed in Section 3.4. We attribute this to the lack of training samples, especially low
quality and high quality images. Training CNNs to understand image tags already requires
more than 1 million images [37]. We think image aesthetics is a more complex concept
than image tags, as it relates to both low-level image features, such as colorfulness, and
high-level image features, such as semantics and composition. Therefore, to fully model
image aesthetics, it is necessary to build a much larger and more complete aesthetics
dataset.
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In this chapter and Chapter 5, we present an image enhancement system that re-renders
image colors more appealing. This approach applies local color modi�cations based on
keywords speci�ed by users. We use semantic segmentation in the pipeline to locate the
keyword-related regions, where the color modi�cations are then applied. We �rst discuss
our weakly supervised semantic segmentation algorithm in this chapter, followed by the
details of the color-rendering system in Chapter 5.

4.1 Introduction

Semantic segmentation, which refers to accurately assigning semantic labels to the
corresponding pixels in an image, is a challenging task actively studied in computer vision.
Recent breakthroughs [18,19,150,151,152,153] in semantic segmentation are mainly due
to fully supervised algorithms that apply Convolutional Neural Networks (CNNs) on
datasets that contain images and their pixel-wise annotations, e.g., PASCAL VOC [22]
and Microsoft COCO [99]. These algorithms report excellent performance on the limited
amount of classes covered by the datasets. The PASCAL VOC segmentation set contains
20 object classes with 500 images per class; the Microsoft COCO 91 object classes with
3.5K images per class, respectively, as introduced in Chapter 2. Extending fully supervised
algorithms to more object classes, however, requires collecting massive amounts of pixel-
wise annotations, which is both time-consuming and expensive. As reported in [103],
the average annotation time was 239.7 seconds per image in the PASCAL VOC 2012
dataset. Therefore, other annotations that are less precise but faster to collect, such
as points, scribbles, or bounding boxes, have also been employed to supervise semantic
segmentation [103,105,108,154].

Our proposed semantic segmentation algorithm uses only image tags for supervision.
Image tags indicate which object class(es) are present in the image. They are usually
much easier and faster to obtain than the other human annotations described above,
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Figure 4.1: To supervise semantic segmentation, we extract three sets of web images:
images with white background {Wk}, images that contain common background scenes
C, and realistic images {Rk}. {Wk} and C sets are used for initial training of the
segmentation models. Later, these models are iteratively re�ned on the realistic image
set {Rk}. Finally {Rk} is adopted again to train an end-to-end semantic segmentation
network.

hence have been explored in many weakly supervised semantic segmentation methods [111,
112,113,115,116,117,118,119,155,156], as discussed in Chapter 2. However, as opposed
to the segmentation masks obtained by the pixel-wise annotations, image tags do not
indicate the location of the object(s) in the image, making semantic segmentation much
more challenging.
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In our framework, we take advantage of the enormous amount of images and their rich
context on the Internet. Through cleverly querying and exploiting web images, we build
a pipeline to automatically generate segmentation masks for each class. We then train a
deep convolutional neural network to segment multiple classes by using the generated
masks. We only use image tags to query the web images and to train the network. No
additional human annotations or interactions are required.

To supervise semantic segmentation, we extract three sets of images, as shown in Figure
4.1, covering the objects on white background, the common backgrounds, and the realistic
scenes of the classes. We propose a novel three-stage procedure to progressively train our
semantic segmentation model, as illustrated in Figure 4.3. In the �rst stage, a Shallow
Neural Network (SNN) is initially trained to predict class-speci�c segmentation masks,
using the hypercolumn features [41] from images with white background and images
with common backgrounds. We then iteratively re�ne the SNN of each class on a set of
realistic images of that class to generate better segmentation masks. In the last stage, the
SNNs of all classes are assembled into one Deep Convolutional Neural Network (DCNN)
by training the DCNN with the predicted multi-label segmentation masks from the SNNs.
The DCNN, after the last training stage, outperforms current state-of-the-art weakly
supervised semantic segmentation algorithms on the PASCAL VOC 2012 segmentation
benchmark [22] by a notable margin.

In summary, our main contributions in this chapter are:

� We propose to collect three sets of useful web images for supervising segmentation.
The �rst set contains images with a white background, the second set contains
images with common background scenes, and the third set contains realistic images
of each class.

� We present a novel three-stage pipeline for training semantic segmentation models us-
ing the three collected web image sets. The segmentation performance progressively
improves following the training pipeline.

� Our DCNN, after the three training stages, achieves state-of-the-art performance
on the PASCAL VOC 2012 segmentation benchmark, outperforming the previous
weakly supervised semantic segmentation algorithms by more than 3 percent.

� The SNNs from the �rst two training stages produce state-of-the-art results in an
object segmentation application.

4.2 Web Image Sets

Billions of images have been published online with rich context information. By clever
querying, analyzing, and extracting images from this giant collection, we propose a novel
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pipeline that learns semantic segmentation models with only image tag supervision. In
this section, we describe how we query the web image collection and what types of web
images we retrieve to supervise semantic segmentation.

For a class k, three sets of web images are collected that cover the visual appearance of
the objects of that class and the backgrounds. A white background set (denoted as Wk) is
built by querying the text-based image search engine, e.g., Google or Microsoft Bing, with
the query �<class> on white background". Images retrieved with this query mostly have
salient objects in front of a clean background, hence are easy to segment. We segment
these images with dense Conditional Random Fields (CRFs) [157], using saliency maps
from [158] as the unary term and the standard color and spatial distance as the pairwise
term. Sample images from the Wk set and the corresponding segmentation masks are
shown in Figure 4.2. Note that no human annotations are involved when generating these
foreground masks. As images from Wk are relatively easy to segment, the quality of
the segmentation masks, which are generated by saliency and CRF algorithms without
using human annotations, is acceptable. Other simple segmentation methods such as
grabcut [110] could also be used here to generate the masks. Experiments in Section. 4.4
show that starting from these auto-generated masks, our segmentation networks achieve
reliable segmentation performance.

Figure 4.2: Sample images from the white-background set Wcar and the corresponding
segmentation masks generated from saliency combined with dense CRFs.

Images in the Wk set encode the foreground information of class k while the backgrounds
are missing. We thus collect another set of images C that is unlikely to contain the classes
of interest but contains common background scenes, such as sky, sea, grass, etc. C can
be built by retrieving images from image sharing websites, e.g., Flickr or Imgur1, with
common background keywords. Another approach is to use existing online datasets that

1www.�ickr.com and www.imgur.com
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contain mostly common background scenes, such as the Holiday dataset [159].

The third set Rk contains images of class k, depicting realistic scenes. Rk can be
constructed by crawling image-sharing websites with the given class name or using existing
datasets that already cover the class. Example images for these three sets are shown in
Figure 4.1. Note that each class has a separate Wk and Rk set but shares the same C
set since the C set contains the common backgrounds for most classes.

4.3 Training the network

Using the three sets of web images, we propose a novel three-stage training pipeline to
learn the semantic segmentation models, as illustrated in Figure 4.3. For each class k, a
Shallow Neural Network (SNN) is initially trained to output class-speci�c segmentation
masks, using the hypercolumn features from Wk (images with clean foreground) and
C (images with common background information). The SNN is then iteratively re�ned
on the realistic images in Rk. In the last stage, a DCNN is trained using the multi-
label segmentation masks generated by the SNNs of all the classes. The �rst stage are
class-speci�c where we train and re�ne a SNN for each keyword, whereas the last stage
combines all SNNs into one DCNN to cover all classes.

Figure 4.3: The proposed three-stage training pipeline. (a) Stage one: initial training of
the SNN using hypercolumn features from Wk and C. (b) Stage two: iterative re�nement
of the SNN on realistic images Rk. (c) Stage three: all SNNs are assembled into one
DCNN for end-to-end training and testing.
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4.3.1 Stage 1: Initial Training

We denote � = {1,2, ..., N} as the set of class names where N is the number of classes.
For each class k � � , a SNN, whose parameters are denoted as � k, is trained using the
images in Wk and C. As objects in Wk are surrounded by a white background, the
foreground pixels from Wk, denoted as Wf

k, represent the visual appearance of class
k. Correspondingly, the pixels in C represent the visual appearance of the common
backgrounds. We use hypercolumn features [41] that are extracted from the pre-trained
VGG16 network [4] to encode the visual appearance. For each pixel xki from Wf

k or C,
we compute its hypercolumn feature:

hki = H(xki ) (4.1)

Here H represents the operation of computing hypercolumn features. We then use the
hypercolumn features from C and Wf

k to train the SNN, as shown in Figure 4.3(a).

� k is trained to minimize the binary crossentropy loss:

min
�k

�

i

�
�
tki log

�
f (hki , �k)

�
+ (1 � tki ) log

�
1� f (hki , �k)

� �
(4.2)

Here f (hki , �k) represents the SNN output. The SNN takes in the hypercolumn feature
hki and outputs the probability of xki belonging to class k.

tki =

	
0, if xki is from C

1, if xki is from Wf
k

(4.3)

An equal number of hypercolumn features are randomly extracted from C and Wf
k,

forming a balanced set for training the SNN. After initial training, the SNN of class
k can predict the probability of a pixel belonging to class k, e�ectively outputting a
class-speci�c mask for an image.

The combination of hypercolumn features and the SNN is similar to the functionality
of the Fully Convolutional Network (FCN) [18] introduced in Chapter 2. We separate
these two steps to easily balance the class distribution and to parallelize the training
for di�erent classes. Moreover, as the network for extracting hypercolumn features is
pre-trained and shared, we only need to store � k for a new class. � k is relatively small for
a shallow network (around 3.6 MB per class in our experiment), which enables e�cient
storage and retrieval for a large number of classes.
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4.3. Training the network

4.3.2 Stage 2: Re“nement

� k is initially trained to separate the objects of class k from the common backgrounds.
However, the realistic background of class k may be di�erent from the scenes in the
common backgrounds sets C. Therefore, we further iteratively re�ne � k on realistic
images, as shown in Figure 4.3(b). We make use of multiple CRF (Conditonal Random
Fields [157]) iterations to improve our SNNs. CRF has been shown to be helpful for
semantic segmentation as it recovers missing parts and re�nes the boundaries in the
segmentation masks [115,117,150]. Unlike most methods that apply CRF once as post-
processing, we apply CRF in each re�nement iteration and learn to update the SNNs
according to the CRF-re�ned masks. Consequently, the SNNs are forced to gradually
learn to generate more complete segmentation masks with better boundaries.

Assume xki represents the ith pixel in the collection of pixels from the realistic image
set Rk. hki and yki are its corresponding hypercolumn feature and label (0 for background
and 1 for foreground). We re�ne � k by minimizing the loss:

min
�k

�

i

�
�
yki log

�
f (hki , �k)

�
+ (1 � yki ) log

�
1� f (hki , �k)

� �
(4.4)

Given the parameters � k of the SNN, the labels {yki } are predicted by minimizing the
dense CRF energy function:

min
{ yk

i }

�

i

�k
i (yki ) +

�

i,j

�k
i,j(y

k
i , y

k
j ) (4.5)

where the SNN�s output is adopted for the unary term:

�k
i (yki ) = � log

�
yki f (hki , � k) + (1 � yki )

�
1� f (hki , � k)

� �
(4.6)

The pairwise term is set to be the standard color and spatial distance as in [157]. An
Expectation-Maximization (EM) algorithm is adopted to iteratively optimize Equation
4.4 and Equation 4.5. In each iteration, we �rst update the labels of all pixels {yki } by
minimizing Equation 4.5 using the method in [157]. Then we update the parameters
� k by minimizing Equation 4.4 using back propagation. The new parameters � k are
used in Equation 4.5 to obtain the new {yki } as the beginning of a new iteration. Figure
4.4 shows the evolution of the labels {yki } through iterations. We can clearly see that
the segmentation masks predicted by the SNNs progressively improve over iterations,
recovering missing parts and producing better boundaries. We found that 2 re�nement
iterations already signi�cantly boost the performance while still being e�cient in training
time. More iterations result in minor performance gains but longer training time.
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Chapter 4. Semantic Segmentation

Figure 4.4: Improved segmentation masks by evolving the labels {yki } through iterations.
Through several iterations of dense CRFs, the generated masks are getting re�ned over
iterations with more missing parts recovered.

4.3.3 Stage 3: Assembling of Classes

The SNNs are trained independently for each class. To perform semantic segmentation for
multiple classes in one shot, in this stage we assemble all SNNs into one Deep Convolution
Neural Network (DCNN), as shown in Figure 4.3(c).

We use the DCNN architecture proposed in [150] due to its outstanding performance
and good documentation. The DCNN is a fully convolutional neural network that takes
in an image and directly predicts a multi-label segmentation mask. We train the DCNN
on all realistic images in {Rk}. Since no pixel-wise human annotations are provided for
training, we use the SNNs to automatically generate multi-label segmentation masks as
supervision. Speci�cally, if one image in {Rk} is labeled with tags C � � , the predicted
label yi for the ith pixel is:

yi = argmax
k�{ 0}� C

f (hki , � k) (4.7)

f (h0
i , � 0) = 1 � max

k� C
f (hki , � k) (4.8)

E�ectively, the combined multi-label segmentation mask is produced by taking the pixel-
wise maximum of the probability maps across all labels, including background (represented
as label 0). The background probability is set as one minus the maximum foreground
probability.
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After generating the multi-label segmentation masks using the SNNs, we treat them as
the groundtruth segmentation masks and perform an end-to-end training of the DCNN.
These multi-label segmentation masks are not human annotations, but automatically
generated masks from our SNNs, which only require image tags during training. Therefore,
the fully supervised DCNN training in [150] is transformed to weakly supervised in our
framework.

4.4 Experiments

4.4.1 Setup

Datasets

We validate our algorithm on the standard PASCAL VOC 2012 segmentation bench-
mark [22]. Following [111,112,113,115,116,117,118,119], we augment it with the extra
annotations from [100], resulting in an augmented training (trainaug) set of 10,582 images,
a validation set of 1,449 images, and a test set of 1,456 images, covering 20 classes. We
report the standard Intersection over Union (IoU) value on both the validation and test
sets.

For the three-stage training, we build {Wk} by querying Google with the 20 classes
(using the strategy explained in Section 4.2) and obtain on average 340 images per class
(6807 images in total). The Holiday dataset [159], which contains 1491 holiday images,
serves as the C set since these images cover some common background scenes, e.g., sky,
mountains, grass. We use the trainaug set of PASCAL VOC 2012 as {Rk}, as they are all
realistic images of the 20 classes. The pixel-wise annotations of the trainaug set are not
used. During the �rst two stages of training, all images are resized such that the larger
dimension equals 340. In stage three, images are used in their original size according
to [150].

Training and Testing

The hypercolumn features during training are extracted from the conv1_2 (64 channels),
conv2_2 (128 channels), conv3_3 (256 channels), conv4_3 (512 channels) and conv5_3
(512 channels) layers of the pre-trained VGG16 model, resulting in a 1472 dimensional
vector. In the �rst training stage, each image of Wk contributes 1000 randomly selected
hypercolumn features. An equal number of hypercolumn features are randomly selected
from C, forming a balanced set for initial training. In the re�nement stage, 1000
hypercolumn features are randomly selected from both the foreground and the background
regions of each image in Rk.

The SNN is a fully connected network with 4 layers (1472 � 512 � 256 � 64 � 1).
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Chapter 4. Semantic Segmentation

We set Relu activation in between hidden layers and Sigmoid activation after the last
layer. The network is trained with the Adam optimizer (lr = 0.0002) for 50 epochs in the
initial training stage and 20 epochs in each re�nement iteration. The CRF parameters are
set through cross-validation on 100 separate validation images [150]. The segmentation
performance is robust to the CRF parameters. All the experiments are conducted on a
NVIDIA TITAN X GPU with 12GB memory. Training each SNN takes approximately
10 minutes for initial training and 20 minutes per re�nement iteration. This part is
implemented in the Theano framework [160]. The third training stage is performed
using Deeplab code [150] that is based on the Ca�e framework [161]. The parameters of
Deeplab training are set according to [150].

4.4.2 Performance of Each Stage

Since we use Web images to supervise semantic Segmentation, we call our method WebS.
Table 4.1 illustrates the performance of our method at di�erent training stages on the
validation set of the PASCAL VOC 2012 dataset.

To properly evaluate the semantic segmentation performance for all classes, the third
stage of assembling all SNNs into a DCNN is always applied. WebS-i represents the model
that directly combines stage one with stage three, bypassing the re�nement stage. WebS-
i1 and WebS-i2 are the models trained through all three stages, with one re�nement
iteration and two re�nement iterations, respectively. The WebS-i model�s mIoU of
46.4% is already comparable with several state-of-the-art weakly supervised semantic
segmentation methods [111, 112, 113, 116, 154]. This demonstrates the e�ectiveness of
our collected web images ({Wk} and C) for semantic segmentation. The performance
progressively improves after each re�nement iteration. The �rst iteration increases
the performance by 5.2% to 51.6%, already producing the best performance for weakly
supervised semantic segmentation. The WebS-i2 model further improves the performance
by 1.8% to a mIoU value of 53.4%. This fact clearly demonstrates the bene�ts of adopting
CRFs in our re�nement stage.

Qualitative results of the three models are shown in Figure 4.5 and Figure 4.6. We can
observe that the WebS-i model produces rough locations of the objects while missing
some parts. Each re�nement iteration reveals more details of the objects. The WebS-i2
model produces accurate segmentation masks with �ne-grained boundaries, even for some
non-trivial objects such as the partially occluded dog in the 1st row and the hands of
the person in the 2nd row of Figure 4.6. This is attributed to the fact that during each
iteration, the CRF recovers missing parts of the objects based on the low-level statistics,
like color, and produces better boundaries. Consequently, the SNNs learned from the
CRF-re�ned masks also produce more accurate predictions. In the last row of Figure 4.6,
our method fails to segment the train from the rail because these two objects often occur
together. This is a typical failure case for most weakly supervised methods, as also
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discussed in [117].

4.4.3 Number of Images in W k and R k

We further evaluate the e�ect of the number of images in {Wk} and {Rk} on the
segmentation performance. In Table 4.3, we present the performance of the WebS-i2
model with di�erent numbers of training images. With only 2,000 images for the {Wk}
and 2,000 images for the {Rk} (100 images per class), our method achieves a mIoU
of 45.9%, already better than [112, 113, 116, 154], which are supervised with the whole
trainaug set of the PASCAL VOC (10,582 images). It is even 9.3% better than [111],
refer to Table 4.1, which uses an additional 700K images from ILSVRC [37]. Clearly by
adding more images for supervision, the performance of our method improves. We project
that our performance can be further improved by collecting more web images. Using only
6,807 Google images2, 1,491 Holiday images and the 10,582 PASCAL VOC images, our
method outperforms all the state-of-the-art methods by a notable margin. Compared
to [156], which also uses web images to supervise semantic segmentation, our method
requires substantially less images ( [156] uses 41K Flickr images as well as the trainaug
set of PASCAL VOC), but still produces better results on both the validation set (+3 .6%
mIoU) and the test set (+4 .1% mIoU).

Table 4.3: Performance on the PASCAL VOC 2012 validation set of the WebS-i2 model
using di�erent numbers of training images. WebS-i2 represents our model with 2

iterations of re�nement during the second stage.

#images in {Wk} #images in {Rk} mIoU
2,000 2,000 45.9
2,000 10,582 48.9
4,000 10,582 51.5
6,807 2,000 50.6
6,807 6,000 51.0
6,807 10,582 53.4

4.4.4 Comparison with Weakly Supervised Methods

In this subsection, we compare our method with other CNN based weakly supervised
semantic segmentation algorithms. Table 4.1 and Table 4.2 show the performance on the
PASCAL VOC 2012 validation and test set, respectively. Here we only compare with
methods that require no additional human annotations except image tags [111,112,113,
115, 116, 117, 154, 156]. Our method produces excellent results on both the validation
and test set of the PASCAL VOC, outperforming all state-of-the-art weakly supervised
semantic segmentation methods. On the validation set, we improve over the previous

2due to Google search limit and copyright protection.

68



4.4. Experiments

state-of-the-art SEC [117] method by 2.7% and achieve best scores on 12 out of 21 classes
(including background) among all methods. Similar results are observed on the test set,
where the evaluation is performed by the PASCAL VOC evaluation server. Our method
achieves 3.6% higher mIoU than the state-of-the-art approaches, producing best scores
on 14 out of 21 classes.

4.4.5 Object Segmentation Using SNNs

We also investigated the performance of our class-speci�c SNNs in an object segmentation
task, where the user provides the labels of the classes they want to segment in an image.
Note that this task is di�erent from typical semantic segmentation where the labels of
the images are not given during testing. We evaluate the performance on the Object
Discovery (OD) dataset [162], a dataset containing three classes (airplane, car, horse)
with 100 images per class. The SNNs are applied to generate segmentation masks by
using the strategy explained in Section 4.3.3. The labels of the images are used to retrieve
the correct SNN while generating the masks, as shown in Figure 4.3(c).

We compare the mIoU values with state-of-the-art object segmentation methods [162,
163,164,165] in Table 4.4. SNN-i, SNN-i1 and SSN-i2 are our SNNs after the initial
training, the �rst re�nement iteration, and the second re�nement iteration, respectively.
Our SNN-i2 method improves over the previous state-of-the-art method by a large
margin (7.5%). Even the SNN-i model already achieves state-of-the-art performance,
again demonstrating the e�ectiveness of our three-stage training pipeline that uses web
images.

Table 4.4: Comparison between our SNNs and other object segmentation methods on the
Object Discovery dataset for the object segmentation task. The performances are

measured by the mean intersection-over-union (mIoU) metric.

Method Car Horse Airplane mIoU
Joulin et al. [163] 37.2 30.2 15.4 27.6
Joulin et al. [164] 35.2 29.5 11.7 25.5

Rubinstein et al. [162] 64.4 51.7 55.8 57.3
Chen et al. [165] 64.9 33.4 40.3 46.2

SNN-i 67.7 52.4 53.8 58.0
SNN-i1 74.5 59.6 55.4 63.2
SNN-i2 76.1 61.7 56.5 64.8

We show sample results of our SSN-i2 model compared with previous approaches in
Figure 4.7 and Figure 4.8. While previous approaches either miss parts of the objects or
segment some background regions as the objects, our SNNs successfully segment out the
whole objects with accurate boundaries.
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Inputs [163] [164] [162]

[165] SNN-i2 Groundtruth

Inputs [163] [164] [162]

[165] SNN-i2 Groundtruth

Inputs [163] [164] [162]

[165] SNN-i2 Groundtruth

Figure 4.7: Sample results of our method and other state-of-the-art approaches on the
OD dataset.
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Inputs [163] [164] [162]

[165] SNN-i2 Groundtruth

Inputs [163] [164] [162]

[165] SNN-i2 Groundtruth

Inputs [163] [164] [162]

[165] SNN-i2 Groundtruth

Figure 4.8: Sample results of our method and other state-of-the-art approaches on the
Object Discovery dataset.
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4.5 Conclusion

We propose a novel three-stage training pipeline to progressively learn the semantic
segmentation model from three sets of web images. We demonstrate that our method
outperforms the previous state-of-the-art weakly supervised semantic segmentation algo-
rithms on the PASCAL VOC 2012 benchmark. The class-speci�c shallow neural networks
(SNNs) learned in the �rst two training stages also produce excellent results when used
in object segmentation. Note that when learning the SNNs, no pixel-wise human anno-
tations are used. Therefore, the segmentation models proposed in this chapter can be
used in many application to locate objects, as will be discussed in Chapter 5. Moreover,
adopting these SNNs, many fully supervised computer vision methods, such as semantic
segmentation [18,19,150,153] and object detection [166], can be easily transformed into a
weakly supervised framework.

The initial supervisions for our networks are the crawled images from image search
engine with query �<class> on white background". This leads to certain limitations.
Our segmentation networks are reliable for concrete objects but produce inferior results
for scenery keywords or vague concepts, such as sky, water, blue, happy. The images
queried using these keywords cannot be segmented by our saliency and dense CRFs in
the �rst stage of our pipeline, thus leading to errors in the �nal results. Parsing these
types of keywords in a weakly supervised manner is a challenging task that needs further
exploration. We also found that the crawled images(Wk) for �ne-grained classes often
contain a considerable amount of mislabels between classes that can lead to errors in SNNs.
The corresponding Rk crawled from image sharing platforms are also less accurate for
�ne-grained classes. Therefore, our segmentation algorithm is less suitable for �ne-grained
classes segmentation. Furthermore, some keywords can represent several di�erent objects.
For instance, �mouse� can present an animal as well as a digital device. The crawled
images hence encode two types of objects in one category, making it hard for our networks
to learn an accurate segmentation mask.

72



5 Local Color Re-rendering

In this chapter, we present a local color re-rendering system that modi�es the colors of
certain objects in an input image to be more appealing, according to a keyword input
from users. Our system is based on the color re-rendering algorithm in [17]. We propose
to incorporate our semantic segmentation algorithm, presented in Chapter 4, in the
pipeline, which brings two bene�ts. First, the segmentation masks help us to better
model the correlations between keywords and colors, as will be discussed in Section 5.2.2.
Second, in Section 5.2.3, we show that the segmentation masks can be used to locate the
keyword-related regions, where the colors are re-rendered. Qualitative comparisons and a
psychophysical experiment in Section 5.3 con�rm of the performance of this system.

5.1 Introduction

In most consumer cameras, the in-camera processing pipeline contains tone-mapping and
color enhancement algorithms to render the captured image visually pleasing. However,
the resulting images can still contain unnatural or unsatisfactory colors, due to scene
composition, mixed light sources, or other elements that confuse the automatic algorithms.
Image color re-rendering, which aims at modifying the image colors for better visual
appearance, is therefore a popular image enhancement step, especially for images shared
on multimedia platforms.

Keyword-based image color re-rendering is a convenient technique for this, as users
only need to specify a keyword to modify the colors. The state-of-the-art keyword-
based color re-rendering algorithm [17] proposes to �rst learn the statistical correlations
between keywords and color characteristics, and then to modify the colors of the input
image according to the learned correlations. This approach has the advantage of easy
extensibility to many keywords, with little human intervention. However, it ignores the
semantic meaning of di�erent regions in the image, which can result in unnatural artifacts
in the re-rendered image. As shown in Figure 5.1b, with the keyword strawberry, [17]
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(a) Input image (b) [17] (c) Ours

Figure 5.1: Example color re-rendering result for the keyword strawberry. Our method
renders the strawberry colors to be more reddish while not a�ecting the other regions.
Noticeable artifacts can be observed in the result of [17] as the whole image is tuned
toward red color, which looks unnatural.

re-renders the color of the strawberry to be more vivid, but also makes the other regions to
more reddish, such as the yellow cake and the white background, which looks unnatural.

We propose to incorporate semantic information into the color re-rendering pipeline
through semantic segmentation. Following [17], we �rst compute the statistical corre-
lations between keywords and color characteristics. During this process, we use our
semantic segmentation algorithm to locate the keyword-related regions and to compute
the correlations using only those regions. Color characteristics computed on the located
regions, rather than on the whole imagea as in [17], are more accurate representations of
the keyword, thus leading to more accurate correlation measures. When applying the
color re-rendering, we again use the segmentation masks to indicate where to modify
the colors, resulting in visually better results with fewer artifacts. As shown in Fig-
ure 5.1c, our method enhances the colors of the strawberries while not a�ecting the
non-strawberry regions, as opposed to that of [17]. Both the qualitative comparisons and
the psychophysical experiment validate the superior performance of our system, compared
to the state-of-the-art approach [17].

In summary, our contributions in this chapter are:

� We incorporate a semantic segmentation algorithm into the color re-rendering
pipeline. The segmentation masks help us to achieve better performance than the
previous method.
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� We achieve more accurate correlation measures between keywords and color charac-
teristics using semantic segmentation masks.

5.2 Method

Figure 5.2 shows the pipeline of our algorithm that mainly consists of two phases. We
�rst analyze the correlations between keywords and color characteristics with signi�cance
scores, resulting in a keyword-feature database containing such signi�cance scores. Given
a keyword and a color characteristic, we can retrieve the corresponding signi�cance values
from the database. We then modify the colors of the input image according to the
pre-computed signi�cance values. Semantic segmentation is used in both phases to learn
accurate correlations and to locate the keyword-related regions for local color re-rendering.

Figure 5.2: Pipeline of our keyword-based color re-rendering algorithm.

5.2.1 Semantic Segmentation

Semantic segmentation algorithms segment an image into regions with labels, indicating
the regions that are related to the input keyword. We use the weakly supervised semantic
segmentation algorithm in Chapter 4, for its easy extensibility to numerous keywords. As
we only search for keyword-related regions, we use the SNN models. Figure 5.3 shows
an example of the segmentation mask.
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(a) Input image (b) Segmentation mask

Figure 5.3: Semantic segmentation result for the keyword banana.

5.2.2 Keyword-Color Correlation

Following [17], we statistically analyze the correlations between keywords and color
characteristics1 using a large image-tags database. Such correlations indicate which color
characteristic is mostly related to an input keyword, thus indicating how to re-render the
image colors according to the keyword. The process can be illustrated in Figure 5.4.

Figure 5.4: Computing the correlations between keywords and color characteristics.

We learn the correlations between keywords and color characteristics on the MIR
Flickr dataset [167], a large image-tags database containing one million images, each
with multiple annotated tags. Given this database of image-tags pairs {Ii, Ai}, where
Ii represents the ith image and Ai is the set of the corresponding tags, the goal is to
measure the correlation between a keyword k and a color characteristic j. For each image
in the database, Lindner et al. [17] propose to �rst compute its color characteristic vector:

1Such as hue angle, chrome and CIEL histograms. Refer to [17] for all the color characteristics

76



5.2. Method

Cj
i = Fj(Ii) (5.1)

where Fj represents the function for computing the characteristic j, and Cj
i is the color

characteristic vector for image Ii. A keyword k splits the MIR Flickr database into two
distinct subsets, I k = {Ii|k � Ai} and I k = {Ii|k /� Ai}, which leads to two separate color
characteristic sets, Cj

k = {Cj
i |Ii � I k} and Cj

k
= {Cj

i |Ii � I k}.

Cj
k is the set of feature vectors of color characteristic j for images that contain the tag

k, and Cj
k

is the corresponding set for images that do not carry the tag k. Therefore, to
assess how a keyword k would in�uence the color characteristic j, we can compare Cj

k
and Cj

k
against each other. The di�erence between them implies the correlation between

k and j. However, since Cj
i is computed on the whole image, which also encloses regions

that do not correspond to k, the computed correlation is not as accurate due to the noise
introduced from those unrelated regions. For example, for the image in Figure 5.3a with
keyword banana, the Cj

i computed on the whole image not only describes the color of the
banana but also the sky and the grass, which introduces noise to the Cj

k set.

We propose to use semantic segmentation to improve the accuracy of the keyword-color
correlations. Assume Mk

i is the semantic segmentation mask of image Ii for keyword k,
like in Figure 5.3b. The new color characteristic vector �Cj

i for image Ii is computed as:

�Cj
i = Fj(Mk

i • Ii) (5.2)

Because of the mask M j
k , the color characteristic vector �Cj

i now mainly encodes the color
information for the regions that correspond to the keyword k with signi�cantly less noise
from the unrelated regions. A new characteristic set for I k is built as �Cj

k = { �Cj
i |Ii � I k},

which represents the color of keyword k better than Cj
k used in [17]. Hence, the dissimilarity

between �Cj
k and Cj

k
is a more accurate indication of the correlation between k and j. We

do not apply semantic segmentation on I k because images in I k do not carry keyword k.

As in [17], we apply the Mann-Whitney-Wilcoxon (MWW) ranksum test [168] to
measure the dissimilarity between �Cj

k and Cj
k
. The union set �Cj

k � Cj
k

is �rst sorted to
obtain the positional indexes for each element. The ranksum T is de�ned as the sum
of these indexes for all the elements in �Cj

k. Note that we are not computing the direct
sum of elements in �Cj

k. Instead, the sum is computed on the rank index of each element.
Another two statistics are also derived as:

µT =
Nk(Nk + Nk + 1)

2
(5.3)

�2
T =

NkNk(Nk + Nk + 1)
12

(5.4)

where Nk and Nk are the number of elements in �Cj
k and Cj

k
, respectively. µT and �T are
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basically the expected mean and variance of the ranksum.

According to MWW test, we compute the standardized zk,j value to represent the
correlation between k and j:

zk,j =
T � µT

�T
(5.5)

The magnitude of z re�ects the strength of the correlation, and its sign shows the direction
of the correlation.
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Figure 5.5: z values between the hue angle characteristic and keywords strawberry and
sun�ower.

In Figure 5.5, we show two typical examples of z values computed by our method
and [17]. In the examples, we use the hue angle color characteristic that is categorized
into 16 bins. Each bin is treated as a color feature, with a z value computed accordingly.
We show the corresponding color of each bin at the bottom line of the �gure. For
keyword strawberry, the z values computed using our method show a stronger peak
around the red hues with smaller values for the other colors than that from [17], thus
demonstrating that our method calculates more accurate keyword-color correlations
than [17], as strawberry is only strongly correlated with the red color. We achieve this
by using semantic segmentation in the process to �lter out the unrelated regions for
strawberry, resulting in a stronger signal of red color and less other colors in �Cj

k. A similar
trend is observed for the keyword sun�ower.

5.2.3 Local Color Re-rendering

Keyword-based image color re-rendering system takes an input image Ii and a keyword k,
and modi�es the colors of Ii to be visually more appealing according to the keyword k.
To determine how to modify the colors, we refer to {zk,j |j � J}, where J represents the
set of all color characteristics, and we choose to enhance the color characteristic j that
has the largest zk,j value. For instance, if j is the hue angle histogram, we modify the
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hue channel of Ii in LCH color space and convert it back to RGB.

The strength of the color re-rendering operations are conditioned on two factors: (1)
the correlation level between the keyword and the color characteristic, namely zk,j ; and
(2) whether the color characteristic in the current image is too strong or too weak. We
measure the second term by the di�erence �jIi ,k between the Ii�s color characteristic vector
�Cj
i and those in �Cj

k:

�jIi ,k =

	
max[0, Q75%( �Cj

k) � �Cj
i ] if zk,j � 0

max[0, �Cj
i �Q25%( �Cj

k)] if zk,j < 0
(5.6)

where Qp(.) is a set�s pth quantile value. Conceptually, zk,j indicates whether k and j are
correlated, �jIi ,k (rewrite as � for simplicity) indicates how much the color characteristic
of Ii, namely �Cj

i , is di�erent from the majority in �Cj
k. Hence �zk,j together implies the

strength to enhance the colors of Ii, according to the keyword k.

The color re-rendering operation is de�ned as a nonlinear tone-mapping function that is
the same as in [17]. The strength of the re-rendering operations �zk,j is used to compute
the derivatives m of the tone-mapping function.

m =

	
max[1/mmax , 1/(1 + S�zk,j)] if �zk,j � 0
min[mmax , 1 + S|�zk,j |] if �zk,j < 0

(5.7)

where S is a constant that controls the strength of the nonlinearity. The derivatives
are clipped to [1/mmax,mmax] to reduce extreme enhancement artifacts. The mapping
function is obtained by integration over the derivatives. Conceptually, such a mapping
function enhances the color characteristic �Cj

i if �zk,j is positive and suppresses �Cj
i if �zk,j

is negative.

To determine where to apply the mapping function, Lindner et al. [17] build a weight
map for the input image, as shown in Figure 5.6c. The re-rendering operation is then
weighted by the weight map. Conceptually the re-rendering operations are thus applied to
the regions with high weights. The weight values are derived directly as the z value between
each pixel�s color characteristic and the input keyword. In this sense, the computed weight
values only capture the color information, whereas no semantic information is considered,
which often mis-identi�es the keyword-related regions. For instance, for the keyword
�Ferrari�, any objects with red color would be assigned with a high weight according
to [17]. Moreover, due to the unrelated regions used to compute �Cj

k, the z values obtained
by [17] are already less accurate and encode certain amount of noisy colors, thus resulting
in more errors in the weight map. As illustrated in Figure 5.6c, the green leaves in the
background are also captured in the weight map.

We propose to use semantic segmentation in this step, where we can better locate
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(a) Input image
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Figure 5.6: Local color re-rendering example for orchid. We show both our result and the
result of [17].
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the keyword-related regions than the weight map in [17]. As shown in Figure 5.6e,
our segmentation mask is signi�cantly more accurate in locating the orchid. Given a
segmentation mask, we �rst smooth it with a Gaussian �lter with � = 0 .02

�
h2 + w2,

where h and w are the image�s height and width. This is because the binary mask, as
in Figure 5.3b, might introduce artifacts near the edges. The color re-rendering is then
weighted according to the smoothed segmentation mask, which results in visually better
results than [17]. As illustrated in Figure 5.6d and 5.6f, [17] changes the colors of the
orchid as well as the green background due to the errors in the weight map. Our method
enhances the color of the orchid while leaving the background unchanged. Figure 5.6b
shows the corresponding �zk,j values of our method, which clearly indicate that the
orchids in the input image need to be enhanced to be more purple and red.

5.3 Experiments

We use the MIR Flickr dataset [167] for computing the keyword-color correlations. This
dataset contains one million images, each with multiple annotated tags. The same as
in [17], the parameter S in Equation 5.7 is set to 2. mmax is set to 5 as a compromise to
allow visible changes while reducing the extreme artifacts.

5.3.1 Qualitative Results

We show a qualitative comparison between our method and [17] in Figure 5.7. Clearly our
method generates visually more appealing results than [17] with much fewer artifacts. For
instance, in Figure 5.7a, Lindner et al. [17] modify the color of the banana to be unnatural
cyan, whereas ours correctly re-renders the color of the banana to yellow. This can be
attributed to our more accurate keyword-color correlations that use semantic segmentation
to �lter out non-related regions. Similar observations can be made for Figure 5.7b and
Figure5.7c. The colors of strawberries and tulips in our results are clearly more vivid
and appealing than those from [17] for the same reason. In addition, in Figure 5.7d
and Figure5.7e, our method enhances the colors of the Ferrari and sun�ower to be more
appealing while not a�ecting the background, because our segmentation masks accurately
locate these objects. Lindner et al. [17] also modify the colors of the background due to
the errors of the weight maps, resulting in unnatural artifacts. Figure 5.7f is a failure
case of both methods, as our semantic segmentation algorithm segments part of the table
as cheese. Such errors can be improved with the development of better segmentation
algorithms.
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Figure 5.7: Qualitative comparisons between the results of [17] and our method. In (a)
to (e), our methods produce more pleasing colors than [17] with much fewer artifacts. (f)
is a failure case for both methods.
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5.3.2 Psychophysical Experiment

We further validate our color re-rendering method by a psychophysical experiment on a
crowd-sourcing website2. The interface for this experiment is shown in Figure 5.8. For
this experiment, we choose 50 images that cover di�erent keywords. For each image, the
participant is shown the original image, and the two re-rendered results from [17] and
our method, and is asked to choose the more appealing one among the two re-rendered
results. In total 50 users participate in the experiment with each of them labeling all 50
images.

Figure 5.8: Interface of the psychophysical experiment for validating our color re-rendering
algorithm.

We show the results of the experiment in Table 5.1. For 35 out of the 50 images, our

2www.clickworker.com
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color re-rendering results are preferred over the counterpart from [17], which means a
70% preference rate of our results compared to 30% of [17]. Moreover, our method is
favored on all keywords, further proving that our method is independent of keywords.

� � � � � � � � ��

keywords
(# images)

# preference
[17] Ours

strawberry(12) 4 8
banana(11) 3 8
desert(13) 4 9
sun�ower(6) 1 5
tulip(5) 2 3
orchid(3) 1 2
all(50) 15 35

Table 5.1: Results of the psychophysical experiment.

5.4 Conclusion

We propose to integrate semantic segmentation with the keyword-based image color
re-rendering pipeline. The semantic segmentation is �rst employed to improve the calcu-
lation of the keyword-color correlations, where the segmentation masks help to remove
the in�uence of the non-keyword-related regions and lead to more accurate correlation
measures. We also use semantic segmentation to locate the keyword-related regions in
the input image, and to re-render their colors according to the computed correlations. By
incorporating semantic segmentation, our keyword-based color re-rendering method gener-
ates notably better results than the state-of-the-art approach [17]. This is demonstrated
by both the qualitative comparisons and the psychophysical experiment.
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6 GANs for Image Enhancement

In this chapter, we present an automatic image enhancement algorithm that uses gener-
ative adversarial networks. This algorithm is data-driven: no heuristic rules or human
interactions are required. The enhancement functions are directly learned from the train-
ing data. We design novel Domain Encoding Generative Adversarial Networks (DEGANs)
for this purpose.

In Section 6.1, we introduce the automatic image enhancement problem and explain
the limitation of current GANs for this task. In Section 6.2, we present our DEGANs
architecture and describe the details about each component of DEGANs. We provide
qualitative comparisons with the state-of-the-art method in Section 6.3, where we also
analyze the e�ect of each component on the generated results. Finally, we conclude this
chapter in Section 6.4.

6.1 Introduction

Many tasks in computational imaging can be viewed as source-to-target image translation
problems, such as image colorization [169] and style transfer [170]. The goals of these
tasks can be summarized as building translation functions from the source image domain
to the target image domain, under certain constraints that are application-speci�c. Image
enhancement is a typical case where the goal is to transform an image from the low quality
domain to the high quality domain. Current approaches to achieve such transformations
mainly rely on human e�orts and expertise. For instance, users can hire professional
photographers to take photographs and apply post-processing with tools such as Photoshop
or Gimp. In Chapter 5, we introduced a semi-automatic approach for re-rendering image
colors, where users are asked to input keywords to direct the enhancement functions.
Our focus in this chapter is the development of a fully automatic algorithm for image
enhancement.

The recently proposed Generative Adversarial Networks (GANs) [34] and conditional

85



Chapter 6. GANs for Image Enhancement

(a) Input images (b) Our results

Figure 6.1: Example results of our DEGANs for automatic image aesthetics enhancement.
Our method produces results that are visually more pleasing than the input images.

GANs [51] enable us to tackle such source-to-target image translation problems [52,55,
171,172,173,174,175] in a fully-automatic manner. However, pairs of images are always
required to train the conditional GANs. For example, for image super-resolution, each
pair of a training sample should contain a low-resolution image and a corresponding
high-resolution image (the groundtruth). Without the groundtruth images, conditional
GANs cannot learn the proper transformation functions.

For image enhancement, it is very di�cult to collect a large set of such pairs of images.
Processing one image for better visual quality could take a professional user several
minutes, if not more, with an image editing software such as Photoshop. Therefore, it is
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very time-consuming and expensive to build thousands of such pairs. Additionally, as
�better visual quality� is a subjective concept, there can be a large number of possible
operations to enhance a low quality image. Building a complete set of groundtruth images
is thus very di�cult, if not impossible.

To overcome such limitations on the training data, we propose a novel framework to
train GANs without using paired images. Our framework includes two steps. First, we
train a domain encoder network on a separate aesthetics prediction task, where the domain
encoder learns what type of images are aesthetically of high quality. Training this network
is explained in Chapter 3. Second, the pre-trained domain encoder is incorporated into
a novel Domain Encoding GANs (DEGANs) architecture; the encoder supervises the
DEGANs to learn the proper enhancement operations that improve image aesthetics. The
enhancement functions should obey the constraint that the content and the semantics
of the generated images need to stay the same as the original images. Therefore, the
changes are usually subtle, and the transformation functions include only operations
such as color and lightness alterations and contrast adjustments (see Figure 6.1). Note
that we do not focus on operations like denoising or super-resolution, nor do we allow
hanges in composition or style. The learned enhancement functions essentially resemble
the tone-mapping functions used for high dynamic range imaging, like those in [176, 177].
Unlike those functions that are based on heuristically de�ned rules, our enhancement
operations are directly learned from the training data. Our DEGANs achieve similar
e�ects to the color re-rendering operations in Chapter 5, whereas no user interactions or
keywords are required.

In summary, our main contributions in this chapter are:

� We propose Domain Encoding Generative Adversarial Networks (DEGANs) that
learn the image enhancement functions in a fully-automatic manner. Training these
DEGANs does not require pairs of images.

� We propose to use a domain encoder network pre-trained on an aesthetics prediction
task to encode knowledge about image aesthetics, thus removing the need for
groundtruth images in training GANs.

� Our DEGANs automatically enhance the input image to be visually more pleasing,
without any user interaction.

6.2 Our Framework

In this section, we introduce our framework for training GANs for image enhancement. We
use a pre-trained domain encoder network to encode the knowledge about image aesthetics.
The pre-trained domain encoder network is then incorporated into the DEGANs to provide
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one of the supervision signals. These DEGANs, as shown in Figure 6.2, are trained to
generate natural images that are more aesthetically appealing than the input.

���������	����������
����������������

����

���������������������
����

��������

�������������������������������� ��

����

����

��������

Figure 6.2: The DEGANs consist of a generator G, a domain encoder E, a discriminator
D, and a feature extractor F .

6.2.1 Domain Encoder Pre-training

The domain encoder is designed to be a regression network. We train it on an image-
aesthetics regression task as described in Chapter 3. We modify the Xception network [178],
as this architecture produces state-of-the-art results for image classi�cation tasks and is,
in training and testing, much faster than VGG [4]. The top layer is replaced with a fully
connected layer that maps to one value (for regression), followed by a sigmoid activation
before output. The output aesthetics score is in the range of [0,1], where 1 represents the
highest visual quality and 0 is the lowest.

Sample results are shown in Figure 6.3. This Xception model achieves the Mean
Square Errors of 0.0043 on the RS-test and 0.0091 on the ED-test. Compared to the
network presented in Chapter 3, the domain encoder network in this chapter achieves
comparable performance while being faster in the forward pass, thus being more suitable
to be incorporated in the training of DEGANs. The domain encoder learns the knowledge
about what type of images are aesthetically pleasing. Such knowledge is used to supervise
the DEGANs in order to apply image enhancement operations.

6.2.2 DEGANs

The structure of DEGANs is shown in Figure 6.2. It consists of an image-conditioned
generator G, a pre-trained domain encoder E, a discriminator D and a feature extractor
F . The image-conditioned generator G maps a low quality image to an enhanced result.
The domain encoder E measures the aesthetics score for the generated image, while
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Figure 6.3: Sample results from the pre-trained domain encoder for image aesthetics
assessment task. The green value under each image represents the predicted aesthetics
score and the red value is the groundtruth score from [12].

the discriminator D judges whether the generated image looks realistic. We speci�cally
add the feature extractor F into the architecture to adapt to the image enhancement
application. A perceptual loss [23] is built on top of the feature extractor to ful�ll the
constraint of content similarity between the input image and the generated result.
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6.2.2.1 Generator

The generator maps an input image x and an aesthetics score v to a generated image y:
G : {x, v} � y. G is supervised by the weighted sum of three losses:

LG(x, v) = wE • LE(y, v) + wD • LD(y, 1)

+wF • LF (x, y) (6.1)

LE , LD, LF represent the losses from the domain encoder E, the discriminator D and
the feature extractor F , respectively, which will be explained in Section 6.2.2.2, 6.2.2.3
and 6.2.2.4. wE , wD, wF are their corresponding weights.

To increase the stochasticity of the generator, we add an aesthetics score v at the
bridging layer, similar to the noise vector used in the traditional GANs [34], as theoretically
one input image has an in�nite number of aesthetically enhanced target images. v is
concatenated with the encoder output before fed into the decoder. Ideally v should serve as
an indicator to G, directing G to produce an enhancement result that has the corresponding
aesthetics score of v. However, minor stochasticity is observed during experiments with
di�erent aesthetics scores, which is consistent with several other techniques that try to
improve stochasticity of the generative model [53,55]. How to increase stochasticity of the
generator in GANs remains an open problem for future research. Therefore, we set v to 1
for all images during testing. During training, v is set as the corresponding aesthetics
scores of the high-quality images.

6.2.2.2 Domain Encoder

The weights of E carry the knowledge about image aesthetics. To use such knowledge to
supervise the generator, the loss of the domain encoder LE is set as:

LE(y, v) = ( E(y) � v)2 (6.2)

where v is the target aesthetics score and E(y) is the predicted aesthetics score for an
input image y. When trying to minimize LE in Equation 6.2, the generator is enforced
to produce an output image that meets the aesthetics standard set by v. In this sense,
the generator learns about the aesthetics knowledge in E, and is supervised to build the
proper mapping function to the high quality image domain. E�ectively, the generator
learns how to enhance the input image to make it visually more appealing.
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6.2.2.3 Discriminator Network

The discriminator D, following the standard GANs protocol [34], distinguishes real images
from the generated ones. The loss function LD is de�ned as the binary cross-entropy:

LD(y, t) = �t • log[D(y)] � (1 � t) • log[1�D(y)]

s.t. t =

	
1 if y is a real image

0 if y is a generated image
(6.3)

Note that when training the discriminator, the label for the generated image is 0. This
is di�erent when optimizing Equation 6.1, where the label for the generated image is set
to 1. Such adversarial training setting [34] pushes the generator to produce more realistic
images, along with the improvement of the discriminator.

6.2.2.4 Feature Extractor

The feature extractor is incorporated to constrain the content similarity between the input
image and its enhancement result. A simple choice for incorporating such a constraint is
to use a L2 di�erence between the input image and the output image. But, it is known
that L2 loss is prone to produce blurry images. Therefore, we adopt the recent proposed
perceptual loss [23], which is demonstrated to be e�ective in preserving the image content
and not blurring the images.

The perceptual loss LF is de�ned as:

LF (y, �y) =
1

HWC
||F (y) � F (�y)||22 (6.4)

where y, �y represents the source image and the target image, respectively. F (y) extracts
the feature representations from a certain layer of a pre-trained deep neural network.
H,W,C represent the corresponding size of the feature representations. Minimizing LF

in Equation 6.4 encourages the output image to share the same content as the input
image, while allowing for image enhancement operations like color, contrast and texture
modi�cations [23].

6.2.2.5 Network Architecture

The generator is an encoder-decoder style generative network. The encoder part consists
of eight blocks of Convolution-BatchNormalization-ReLu [179], except that batch normal-
ization is not used in the �rst block. The output from the encoder is a 512-dimensional
vector, which is then concatenated with the aesthetics score, forming the input to the
decoder. The decoder architecture is the reverse of the encoder network, in which the
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convolution layers are replaced with deconvolution. The �nal layer of the decoder is a
deconvolution that maps to three channels, followed by a tanh activation. Inspired by
the the �U-Net" architecture [180] and pix2pix network [55], we add additional skip con-
nections between the encoder and decoder, as shown in Figure 6.4. Such skip connections
help share information between the input image and the output image. The discriminator
architecture is similar to the encoder of G, with the last convolution layer mapping to
a single output, followed by a sigmoid activation. For the feature extractor, we extract
feature representations from the relu3_3 layer of the VGG-16 network [4] pre-trained on
ImageNet [181].

Figure 6.4: The �U-net" architecture with skip connections between the encoder and the
decoder. The blue blocks are the encoding layers, and the green blocks are the decoding
layers.

6.2.2.6 Training Protocol

In the network architecture, E and F are pre-trained networks. G and D are trained
according to the standard adversarial training procedure [34]. Between every iteration
of the D optimization, we train two iterations of G, as G needs to minimize the sum of
three losses and is hence harder to train. Training D and G only requires a set of low
aesthetics quality images, a set of high aesthetics quality images and their corresponding
aesthetics scores. v in Equation 6.1 are the aesthetics scores of the high aesthetics quality
images. This directs the generator to produce similar aesthetics levels as the real-world
high aesthetics quality images. The whole training procedure is described in Algorithm 2.

When testing, an input image is fed into the generator, together with a random
aesthetics score (we use 1 in all experiments as there is little di�erence in results as
explained in Sec. 6.2.2.1). One forward pass of the generator produces the enhanced
images.
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Algorithm 2: Training for DEGANs
Data: a set of low aesthetics quality images {xl}, a set of high aesthetics quality

images {xh} and their aesthetics scores {vh}.
Init: initialize G and D with Gaussian weights, E and F with pre-trained weights.
for number of epochs do

for number of batches per eopch do
Get: get a low aesthetics quality batch {xl}B , a high aesthetics quality batch

{xh}B together with the aesthetics scores batch {vh}B

Enhance: produce a generated batch { �xg}B from {xl}B with current G
Update: label { �xg}B as 0, {xh}B as 1, update D according to LD in

Equation 6.3
Update: label { �xg}B as 1, update G according to LG in Equation 6.1
Get: get a new low aesthetics quality batch {�xl}B, a new high aesthetics

quality batch {�xh}B together with the aesthetics scores batch {�vh}B

Enhance: produce a generated batch { �xg}B from {�xl}B with current G
Update: label { �xg}B as 1, update G according to LG in Equation 6.1

end
end

6.3 Experiments

6.3.1 Setup

Datasets

The training data for DEGANs are collected from the AVA dataset [12], as introduced
in Chapter 2. As the image enhancement operations might di�er for di�erent types of
images [82], we train a separate generator for each of the following �ve categories: animal,
cityscape, landscape, nature, and portrait. We choose these �ve categories as they are
the most frequent �ve classes in the AVA dataset.. We rank the images according to
their aesthetics scores in descending order, where the �rst 4000 images are taken as the
high aesthetics image set and the last 4000 images as the low aesthetics set. We do not
experiment on categories that have less than 8000 images. A random 80%� 20% split is
performed to form the training data and the test data. We show sample high aesthetics
quality and low aesthetics quality images in Figure 6.5.

Implementation Details

Training the domain encoder for an aesthetics regression task is explained in Chapter 3.
For training DEGANs, all the images are resized to 256 × 256 and trained with a batch
size of 1. With batch size 1, the batch normalization inside our network becomes �instance
normalization� [182], which is demonstrated to be e�ective for image generation tasks.
The DEGANs are trained with the Adam optimizer with a learning rate of 0.001 for 50
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Figure 6.5: Sample images from AVA: the �rst row are the high aesthetics quality images,
the second row are the low aesthetics quality ones. Note that we resize these images to
be square due to the input constraint of neural networks.

epochs. The weights for LD, LE , LF are set to 1, 10, 0.0003, considering the di�erent
scales of the losses. The algorithm is implemented in Keras with Tensor�ow backend [183].
Training DEGANs takes 16 hours per category on a single GTX Titan X GPU.

6.3.2 Qualitative Comparison

For the image aesthetics enhancement task, the goal is to produce an image that has a
better aesthetics quality, i.e., is visually more appealing. Full reference image quality
metrics, such as PSNR or SSIM, are not suitable for evaluating the enhancement results
as no groundtruth results are available. Furthermore, as discussed in Chapter 2.2.1, our
model is trained to improve image aesthetics, while metrics like PSNR and SSIM focus on
modeling image quality. Therefore, we judge the aesthetics enhancement results through
qualitative comparisons.

Image enhancement operations can be treated as translation functions from the source
domain (low quality) to the target image domain (high quality). In this sense, we compare
with the state-of-the-art image translation method, pix2pix [55], as discussed in Chapter 2.
Input-groundtruth image pairs are needed for training the original pix2pix network, but
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Figure 6.6: Qualitative comparison between the pix2pix [55] results and our aesthetics
enhancement results, best viewed on screen.
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Figure 6.7: Qualitative comparison between the pix2pix [55] results and our aesthetics
enhancement results, best viewed on screen.
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(a
)

(b
)

Original Pix2pix Ours

Figure 6.8: Qualitative comparison between the pix2pix [55] results and our aesthetics
enhancement results, best viewed on screen.

they are not available. Hence, we modify the content loss in pix2pix to be computed with
respect to the input image, which potentially models the content similarity between the
input image and the result image. This is similar to the perceptual loss in our DEGANs.
The generator and discriminator architectures in pix2pix are set the same as those in our
model. Figure 6.6, Figure 6.7 and Figure 6.8 show the qualitative comparisons between
the pix2pix results and our results (on the test set).

Our network has the domain encoder to learn the image aesthetics knowledge, whereas
the pix2pix model does not. Therefore, it fails to perform image enhancement operations.
Moreover, the pix2pix uses L1 loss to model content similarity, which leads to noticeable
artifacts in the results, like the black dots on almost every result and the white bar
artifacts in Figure 6.6b. Our DEGANs, using the domain encoder to transfer the aesthetics
knowledge to the generator, produces results that have an aesthetics quality better than
the input images, as well as signi�cantly less artifacts than pix2pix.

In Figure 6.6a and 6.7b, our DEGANs modify the sky to be more blue, as well as make
the color of the ground to be more saturated, resulting in visually more pleasing images.
The lighting e�ect in Figure 6.6b is enhanced to increase the contrast of the buildings
with respect to their background. In Figure 6.6c, our method signi�cantly brightens the
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bird, rendering the details of the main object more visible. The color of the sky and the
sunset glow are modi�ed to be more vivid in Figure 6.6d and Figure 6.7c, resulting in
better visual quality. In Figure 6.7a, our DEGANs reduce the lightness of the image since
the original image is over-exposed. In Figure 6.7d and 6.8a, the images are improved to
have more pleasing colors. For Figure 6.8b, our method darkens the surroundings of the
image and brightens the center, thus enhancing the contrast for the main object. In all
examples, our method edits the input image to achieve a better aesthetics quality without
using groundtruth images for training. The proper image enhancement operations are
automatically inferred and applied, according to the input image.

(a) Input images (b) Pix2pix (c) Ours

Figure 6.9: Sample failure cases of our DEGANs.

We also show some failure cases in Figure 6.9. In the �rst row, our DEGANs make
the center window colorful, which appears to be unnatural. For the second row, both
our result and the pix2pix result are almost the same as the input image, which implies
that the DEGANs do not know what operations to apply to enhance this image. Note
that certain level of ringing artifacts can be observed in both pix2pix and our results.
For example, in the �rst row of Figure 6.6, obvious �lter artifacts can be observed in
the cloud regions in both pix2pix and our results. This is a common problem for many
generative models, as the generative models need to produce high-resolution images
using deconvolution layers. Since the training set contain a wide variety of images with
di�erent textures and shapes, the deconvolution layers need to model and store all these
information, rendering it di�cult for the deconvolution kernels to converge. Including
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more data or improve the network architecture may be required to reduce the artifacts.

6.3.3 E�ect of Di�erent Losses

Our DEGANs use the sum of three losses to supervise the generator. In this section,
we investigate the e�ect of each individual loss on the output results. By setting the
weight of a loss in Equation 6.1 to 0, we compute the performance di�erence against the
full-model results in order to analyze its in�uence.

6.3.3.1 The E�ect of D

By setting wD to 0 in Equation 6.1, the generator G is trained to produce results that
have the target aesthetics quality, as well as the content of the input images. Ringing
artifacts can be observed from the results without D, as seen in Figure 6.10c and 6.10h.
These artifacts (Refer to the inceptionism e�ect [184]) manage to fool the domain encoder
to produce high aesthetics scores [185]. Incorporating the discriminator network would
signi�cantly reduce the amount of such artifacts, as these artifacts make it easy for D
to distinguish between real and generated images. Through adversarial training, the
generator learns to avoid generating these artifacts, hence is pushed to learn the actual
aesthetics knowledge from E.

6.3.3.2 The E�ect of E

The domain encoder E carries the knowledge about aesthetics. Without E, the GANs
cannot learn how to enhance the input image for better aesthetics quality. As shown in
Figure 6.10d and 6.10i, the output image is almost identical to the input image. Note
that this result is similar to the result that uses only the perceptual loss. However, as
pointed out in Sec. 6.3.3.1, the discriminator D is needed to suppress the artifacts in the
results and to ensure that G learns the actual aesthetics knowledge.

6.3.3.3 The E�ect of F

We build the perceptual loss on top of the feature extractor F to ensure the content
similarity between the input image and the output image. Without F , the input image and
the output image are not linked in content, rendering the output image unrecognizable,
as shown in Figure 6.10e and 6.10j. Note that Figure 6.10e and 6.10j are almost identical.
This is known as the mode collapse [186] problem of GANs, where all input images map to
the same output image and the optimization fails to make progress. The feature extractor
F is thus needed to prevent such problem.
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(a) Input Image (b) Ours_fullmodel

(c) Ours_noD (d) Ours_noE (e) Ours_noF

(f) Input image (g) Ours_fullmodel

(h) Ours_noD (i) Ours_noE (j) Ours_noF

Figure 6.10: E�ects of di�erent loss functions on the enhancement results.100
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6.3.4 Comparison with Traditional Method

As can be seen in Figure 6.6, 6.7 and 6.8, our network is trained to perform relatively
subtle modi�cations to the input image for better aesthetics, such as color and contrast
adjustment. In this sense, we further compare with a traditional color enhancement
method [124] (Histeq), which de�nes a histogram equalization process that balances the
color histogram of an image. The corresponding results can be seen in Figure 6.11. Since
Histeq applies histogram equalization operations to all images with no understandings
of the image content, the corresponding results thus often contain certain artifacts. For

(a) Original (b) Histeq [124] (c) Ours

Figure 6.11: Comparison with traditional color enhancement methods.
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instance, in the �rst row of Figure 6.11, our method enhances the lighting e�ect of the
buildings without a�ecting the dark background. Histeq instead increases the brightness
of the whole image, resulting in over-exposure of the buildings. In the second row, our
network makes the sky more blue and the �ower more yellow, while not a�ecting the
green mountains. The result of Histeq modi�es the colors of the whole image but does
not improves its aesthetics.

6.3.5 Quantitative Comparison

Our DEGANs focus on improving the aesthetics level of the input image. Quantitatively
evaluation of aesthetics is a di�cult problem as explained in Chapter 3. There are
no existing metrics suitable for this task. Therefore, we use the pre-trained aesthetics
predictor from Chapter 3 to evaluate the aesthetics. In fact, we use the domain encoder
network as described in Section 6.2.1 for its superior performance and high speed. We
build a random test set with 800 low aesthetics images and generate the corresponding
enhanced results using our generator (v is set to 1 for all test images). We also generate
the results for Histeq and pix2pix We then measure the average aesthetics score of each
set, as shown in Table 6.1. The average aesthetics score for the original images is 0.45.
The traditional color enhancement method (Histeq) only slightly improves this score by
0.2, because Histeq has no understanding of the content of the image, thus often resulting
in noticeable artifacts as shown in Fig. 6.11. Pix2pix achieves better enhancement results
than Histeq but worse results than our method, because they do not have domain encoder
network that implicitly model the aesthetics knowledge. Our method has the highest
gain in the average aesthetics score. Note that the average aesthetics score for the
enhanced results is still not very high. We think the main reason is the large variety of
aesthetically appealing images, rendering it di�cult for the GANs to learn the complete
set of enhancement operations. Our network learns to apply subtle changes to the images
that can result in limited improvement of aesthetics. It requires further research e�orts
to incorporate more sophisticated operations into the system.

Table 6.1: Average aesthetics score of the enhanced results from di�erent methods. The
aesthetics score is predicted by the domain encoder network, which is in the range of 0

(low aesthetics) to 1 (high aesthetics).

Original images Histeq Pix2pix Ours
0.45 0.47 0.50 0.58

6.4 Conclusion

In this chapter, we use generative adversarial networks for automatic image enhancement.
Due to the lack of paired training samples, we propose a novel DEGANs framework in
order to learn image enhancement operations. Our framework �rst trains a domain encoder

102



6.4. Conclusion

for an image aesthetics prediction task, where only aesthetics scores are required. This
task enriches the domain encoder of knowledge about image aesthetics. Such knowledge
is then used in the DEGANs to supervise the generator. The generator thus learns the
proper image enhancement functions that edit the input images to make them visually
more appealing.

Our DEGANs are the �rst attempt to learn image enhancement operations in a fully-
automatic manner from the training data. Although producing promising results, we
observe several problems with the current system. Due to the lack of training data,
our high quality images cannot cover the whole range of the aesthetics domain. Many
rarely seen or unseen objects and scenes can lead to noticeable artifacts in the generated
results. Building a larger set of training images for each category could bene�t this task.
Furthermore, our DEGANs can only perform tone adjustment to the images, such as color
and contrast modi�cation. It is desirable to have an automatic system that can perform
more sophisticated operations, such as content removal or composition adjustment.
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7 Conclusion

7.1 Thesis Summary

In this thesis, we developed several useful techniques to ease users� e�orts in obtaining
aesthetically pleasing images, including an aesthetics predictor that helps rank images, and
three image enhancement algorithms that edit images to be visually more appealing. All
the proposed algorithms involve neural networks to some extent. Therefore, in Chapter 2,
we �rst reviewed several well-known neural network architectures, including CNNs, FCN
and GANs, and their corresponding training techniques. Afterwards, we introduced the
�eld of computational image aesthetics. Early algorithms in this �eld use handcrafted
features or heuristic rules to estimate image aesthetics, whereas recent approaches all
adopt neural networks. Furthermore, we inspected the related algorithms for semantic
segmentation and image enhancement, respectively, in the last two sections.

In Chapter 3, we presented the details about our aesthetics predictor. By analyzing the
most widely used aesthetics dataset, we revealed the unbalanced distribution of aesthetics
scores in the training set, which would introduce bias to the networks. Therefore, we
introduced sample weights into our loss function to reduce the in�uence of such bias.
Furthermore, we proposed to predict the histograms of user labels, in addition to the
average labels. The predicted histogram not only reveals the average aesthetics quality
of an image, but also indicates the di�culty of such an estimation. The quantitative
comparison on the AVA dataset proved the state-of-the-art performance of our algorithm.
Using our aesthetics predictor, we built an automatic image cropping algorithm as
described in Chapter 3.4. Our cropping algorithm automatically extracts an aesthetically
pleasing patch from the input image, according to a size template. We validated the
performance by a pyschophysical experiment.

We described another image enhancement algorithm for color re-rendering, in Chapter 4
and Chapter 5. Users specify a keyword for an input image and our algorithm edits
the corresponding colors to be visually more pleasing. To locate the keyword-related
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regions, we �rst developed a weakly supervised semantic segmentation algorithm. Our
segmentation algorithm does not require pixel-wise human annotations for training. In-
stead, three sets of web images are collected to supervise our segmentation networks.
Through a three-stage training pipeline, our segmentation networks are progressively
re�ned, achieving state-of-the-art performance on the semantic segmentation benchmark.
After obtaining the keyword-related regions, we then applied color re-rendering operations
on these regions. The color re-rendering operations are de�ned as tone-mapping func-
tions, which are derived from the pre-learned correlations between keywords and colors.
Qualitative comparisons and a pyschophysical experiment demonstrate the performance
of our color re-rendering system.

In Chapter 6, we developed a fully-automatic image enhancement algorithm using
GANs. We proposed a novel DEGANs architecture to learn the proper enhancement
functions, without using the groundtruth images. The image aesthetics knowledge is
pre-encoded into a domain encoder network through the aesthetics prediction task. Such
knowledge is then used to supervise the generator of the DEGANs, together with another
two networks that force the generated images to be natural and content-wise similar to
the input images. Given an input image, this algorithm automatically enhances it to be
visually more appealing.

7.2 Future Work

In this thesis, we proposed one aesthetics predictor and three image enhancement tech-
niques. More explorations can be conducted both in computational aesthetics and in
image enhancement.

In Chapter 3, to obtain the �xed size input to the neural networks, we used a simple pre-
processing method (global resizing). More sophisticated methods could be incorporated
to improve the performance. For example, it is shown in [93,141] that the combination of
multiple views of an image (global resizing result and multiple local patches) could bene�t
the aesthetics prediction task. Additionally, image aesthetics are also highly correlated
with several image attributes [78], such as depth-of-�eld and rule-of-thirds. It would be
advantageous to integrate these attributes with the aesthetics predictor. Attempts have
been made in this direction [78,97,149], where the attributes are combined with aesthetics
in a multi-task learning framework. However, multi-task learning is very label-hungry
as each image needs to have not only aesthetics labels but also image attributes labels.
Developing a more e�cient method to use image attributes for aesthetics estimation could
be bene�cial.

Our aesthetics network focuses on modeling the average aesthetics scores of the crowd.
However, as image aesthetics is a relatively subjective concept, modeling personal pref-
erences of aesthetics can also be very useful in real-world applications. One example
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would be recommendation systems that can adjust their content based on users� aesthetics
preferences. Relatively few research e�orts have been devoted in this area.

For image enhancement, our cropping algorithm mainly considers the aesthetics point-of-
view. Typical failure cases were observed during our experiments, as shown in Figure 7.1.
The main objects of the images are either excluded or partially cut in the generated
crops. This is due to the fact that semantics, such as completeness of objects and saliency,
are not considered during the cropping procedure. Designing systems that integrate
aesthetics with semantics could be a promising research direction that might produce
better cropping results.

(c) Original images (d) Cropping results

Figure 7.1: Failure cases of the cropping technique. The main object is either cut out for
cut through in the result crop.

From our keyword-based color re-rendering algorithm, several interesting research
directions can be derived. One possibility is to extend keyword supervision to phrases,
or even sentences. Further exploration in this line could be to incorporate speech in
the pipeline, thus being more interactive and user-friendly for real-world applications.
Although the current speech recognition system [187] produces reliable results, how to
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interpret the recognized phrases/sentences, instead of keywords, for image editing and
enhancement still remains unsolved. This is a challenging task because the system needs to
semantically understand the phrases or sentences, then build computational models that
map the semantic meanings to image features. Advances in natural language processing,
such as word2vec [188], might help achieve this goal.

Another possible direction is to extend the image enhancement operations from color
re-rendering to more sophisticated ones, such as image composition adjustment and
image inpainting. Using keywords/phrases/sentences to supervise other image-related
operations, such as organizing or archiving images, are also worth investigation. In
general, many interesting projects can be conducted to bridge the gap between natural
language processing and image processing/computer vision.

For fully-automatic image enhancement, our DEGANs can perform subtle changes to
the images, such as color and contrast adjustment. It requires further research e�orts to
incorporate more sophisticated operations into the system. To achieve this, building a
larger set of images with varying aesthetics quality might be useful as the �rst step.
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