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Abstract

Extreme events are responsible for huge material damage and are costly in terms of their

human and economic impacts. They strike all facets of modern society, such as physical

infrastructure and insurance companies through environmental hazards, banking and finance

through stock market crises, and the internet and communication systems through network

and server overloads. It is thus of increasing importance to accurately assess the risk of extreme

events in order to mitigate them. Extreme value theory is a statistical approach to extrapolation

of probabilities beyond the range of the data, which provides a robust framework to learn

from an often small number of recorded extreme events.

In this thesis, we consider a conditional approach to modelling extreme values that is

more flexible than standard models for simultaneously extreme events. We explore the sub-

asymptotic properties of this conditional approach and prove that in specific situations its

finite-sample behaviour can differ significantly from its limit characterisation.

For modelling extremes in time series with short-range dependence, the standard peaks-

over-threshold method relies on a pre-processing step that retains only a subset of obser-

vations exceeding a high threshold and can result in badly-biased estimates. This method

focuses on the marginal distribution of the extremes and does not estimate temporal extremal

dependence. We propose a new methodology to model time series extremes using Bayesian

semiparametrics and allowing estimation of functionals of clusters of extremes. We apply

our methodology to model river flow data in England and improve flood risk assessment by

explicitly describing extremal dependence in time, using information from all exceedances of

a high threshold.

We develop two new bivariate models which are based on the conditional tail approach,

and use all observations having at least one extreme component in our inference procedure,

thus extracting more information from the data than existing approaches. We compare

the efficiency of these models in a simulation study and discuss generalisations to higher-

dimensional setups.

Existing models for extremes of Markov chains generally rely on a strong assumption

of asymptotic dependence at all lags and separately consider marginal and joint features.

We introduce a more flexible model and show how Bayesian semiparametrics can provide
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viii Abstract

a suitable framework allowing simultaneous inference for the margins and the extremal

dependence structure, yielding efficient risk estimates and a reliable assessment of uncertainty.

Key words: Asymptotic independence; Clustering; Conditional extremes; Dirichlet pro-

cess mixture; Extreme value theory; Flood; Hierarchical Bayesian semiparametric inference;

Markov chain Monte Carlo; Penultimate analysis; Risk assessment; River flow; Threshold-

based extremal index; Time series extremes



Résumé

Les événements extrêmes causent de très importants dégâts matériels et ont un coûteux

impact tant humain qu’économique. Ils touchent toutes les facettes de la société moderne,

telles les infrastructures matérielles et les compagnies d’assurances par les catastrophes

naturelles, le secteur bancaire et le monde de la finance par les crises boursières, ainsi que

l’internet et les systèmes de communication par les surcharges des réseaux et des serveurs.

Il devient donc toujours plus important d’évaluer le risque d’événements extrêmes avec

précision, de manière à pouvoir les anticiper. La théorie des valeurs extrêmes est une approche

statistique permettant l’extrapolation de probabilités par-delà les données observées, et

fournissant un cadre robuste pour tirer parti d’un nombre souvent restreint d’événements

extrêmes enregistrés.

Dans cette thèse, nous considérons la modélisation des valeurs extrêmes par une approche

conditionnelle, plus flexible que les modèles standard portant sur les événements extrêmes

simultanés. Nous explorons les propriétés sous-asymptotiques de cette approche condition-

nelle et démontrons qu’un échantillon fini peut, dans certaines situations, se comporter très

différemment de sa caractérisation asymptotique.

Pour la modélisation des extrêmes de séries chronologiques avec de la dépendance à

court terme, la méthode usuelle des « pics au-dessus d’un seuil » repose sur un pré-traitement

des dépassements d’un seuil élevé qui n’en retient qu’un sous-ensemble et peut conduire

à des estimations particulièrement biaisées. Cette méthode se concentre sur la distribution

marginale des extrêmes et ne permet pas d’estimer la dépendance temporelle extrémale. Nous

développons une nouvelle méthodologie de modélisation des extrêmes de séries chronolo-

giques utilisant une approche bayésienne semi-paramétrique, et permettant l’estimation de

fonctionnelles de grappes de valeurs extrêmes. Nous appliquons notre méthodologie à la mo-

délisation du débit de rivières en Angleterre et améliorons l’évaluation du risque d’inondation

en décrivant explicitement la dépendance temporelle extrémale et en exploitant l’information

de tous les dépassements d’un seuil élevé.

Nous développons deux nouveaux modèles bivariés basés sur l’approche conditionnelle

pour les extrêmes et utilisant pour l’inférence toutes les observations possédant au moins

une composante extrême, permettant ainsi d’extraire plus d’information des données que

ix



x Résumé

les approches existantes. Nous comparons l’efficience de ces modèles par des simulations et

discutons la généralisation à des dimensions supérieures.

Les modèles de chaînes de Markov pour les extrêmes reposent généralement sur une

hypothèse forte de dépendance asymptotique entre tous les événements extrêmes de la

chaîne et considèrent les caractéristiques marginale et conjointe de manière distincte. Nous

présentons un modèle plus flexible et montrons comment une approche bayésienne semi-

paramétrique peut fournir un cadre adapté à l’inférence simultanée des structures extrémales

marginale et conjointe, produisant des estimations efficientes du risque et une évaluation

fiable de l’incertitude.

Mots-clefs : Analyse de risque ; Analyse sous-asymptotique ; Débit de rivière ; Extrêmes

conditionnels ; Extrêmes de séries chronologiques ; Indépendence asymptotique ; Indice extré-

mal sous-asymptotique ; Inférence semi-paramétrique bayésienne hiérarchique ; Inondation ;

Mélange de processus de Dirichlet ; Méthode de Monte Carlo par chaînes de Markov ; Mise en

grappes ; Théorie des valeurs extrêmes
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1 Introduction

1.1 Motivation

In Switzerland, floods are the most damaging natural hazards in terms of the costs incurred,

as is reported for the year 2007 by Hilker et al. (2008). Floods have also caused more than a

hundred deaths since the mid-20th century, but the number of fatalities dropped in the last few

decades (Badoux et al., 2016). The last three extremely damaging events which happened in

Switzerland were in October 2000, when Canton Valais experienced a major flood in which 16

people died and material damage amounted to CHF 600 million; in August 2005, a widespread

flood caused six deaths and cost more than CHF 3 billion; in August 2007, the River Aare and

its tributaries impacted regions in the Plateau, the Jura and the Chablais, with damages of

more than CHF 600 million (Spicher, 2017; Hilker et al., 2009; Pfister, 2009). Figure 1.1 shows

the inflation-adjusted costs due to floods, debris flows, landslides and rock falls, in Switzerland

during the period 1972–2016 (Swiss Federal Institute for Forest, Snow and Landscape Research

WSL, 2016); more than 90% of the costs over this period are due to floods and debris flows.

In the UK, the cost of flood damage exceeds £1 billion per year and is expected to rise

significantly in the coming decades (Bennett and Hartwell-Naguib, 2014), and 13 deaths due to

flooding have been reported since 2000 (Gummer and Leasom, 2016). Government spending

on maintenance and extension of flood defences represents more than £600 million a year

(Gummer and Leasom, 2016).

Switzerland and the UK are two examples of countries experiencing recurrent flood events,

but many other countries in the world endure much more severe flood damage. In order to

assign government spending adequately and to efficiently reduce the impacts of large-scale

flooding events, it is thus key to be able to model and predict the likelihood of these extreme

events.

Carbon dioxide and other pollutants released by human activity trap huge amounts of

energy in the atmosphere. Owing to this increasing surplus of energy, we can expect environ-

mental damage of greater magnitude and of wider extent than in the previous century. New

1
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Figure 1.1 – Costs (million CHF, inflation-adjusted) of damage caused by floods, debris flows, landslides
and rock falls in Switzerland from 1972 to 2016.

homes tend to be built closer to coastlines and flood areas, as safer points are already occupied

by existing buildings. The combined effect of demographics and climate change means that

more people and goods are at risk of natural catastrophes. Given these changes, it becomes

more and more critical to measure the risk of these extreme events in order to mitigate them.

The theory of extreme values can help better understand and estimate the frequency and

magnitude of extreme events and provides tools for assessing the risk of events that have

yet never been measured. Statistics of extreme events gives the necessary insight for making

appropriate decisions for risk mitigation.

Suppose we measure some phenomenon at regular intervals until we have n stationary

observations with finite variance, e.g., a river flow recorded every day in winter over a num-

ber of years. The central limit theorem would then suggest, for n sufficiently large, that the

distribution of the mean of the n observations approaches a Gaussian distribution at a n−1/2

rate. This theorem justifies the use of the Gaussian distribution in many situations, as diverse

as modelling random errors, constructing confidence intervals, and making prediction. The

Gaussian distribution is so widely used that it becomes a default distribution for many prac-

titioners. When the tail of a process is of interest, rather than its mean, using the Gaussian

distribution can yield underestimation of joint tail risks, as was experienced in the banking

sector in 2007 (Hartmann et al., 2004). The statistical theory of extreme events provides an

analogue to the central limit theorem, which establishes the limit distribution, as n →∞, of

the maximum of n independent observations. For the estimation of joint tail risks, it is thus
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appropriate to adopt an extreme value approach, since averages follow a very different process

from that of extremes.

After the first results of the statistics of extremes were established (Fisher and Tippett,

1928; von Mises, 1936; Gnedenko, 1943), applications of the theory appear in Gumbel and

Goldstein (1964), where the authors consider two data sets with different dependence proper-

ties, namely the oldest age at death for females and males in Sweden, and river discharges at

two gauges situated along the Ocmulgee River in Georgia (US). The study of life expectancy is

still relevant today, and has recently benefitted from the contributions of Einmahl et al. (2017)

and Rootzén and Zholud (2017), leading to different conclusions. River flooding has attracted

much attention in the extreme value literature and has been applied to high-dimensional and

spatial problems (Katz et al., 2002; Keef et al., 2009a,b; Asadi et al., 2015).

Other environmental applications of extreme value models include extreme rainfall (Coles

and Tawn, 1996a,b; Süveges and Davison, 2012; Huser and Davison, 2014; Sharkey and Tawn,

2017), extreme wind speeds (Coles and Walshaw, 1994; Fawcett and Walshaw, 2006a,b; Oesting

et al., 2017), wind storms (Coles, 1993; Northrop et al., 2017), wave height and extreme sea

surge (de Haan and de Ronde, 1998; Fawcett and Walshaw, 2007), heatwaves (Reich et al., 2014;

Winter and Tawn, 2016) and high concentrations of air pollutants (Smith, 1989; Heffernan and

Tawn, 2004; Eastoe and Tawn, 2009).

Many applications have contributed to the improvement of risk assessment in the insur-

ance and finance industries, in particular to dependence modelling of extreme stock market

losses (Poon et al., 2003), hedging strategies (Hilal et al., 2011), portfolio risk assessment (Hilal

et al., 2014), estimation of value-at-risk and expected shortfall (Chavez-Demoulin et al., 2005,

2014; Cai et al., 2015), and insurance losses (Embrechts et al., 1997; Rohrbeck et al., 2018).

1.2 Thesis outline

The thesis is structured as follows: the following two chapters review existing models,

the first being focused towards statistics of extreme values, and the second dealing with a

Bayesian approach to nonparametric modelling. The next three chapters cover various devel-

opments and contributions of the thesis, and the last chapter discusses potential extensions

and interesting future directions of research.

In Chapter 2, we review many methods developed in the literature of extreme value

modelling, and we explain how these methods tackle the problem of extrapolating probabilities

from moderately extreme sets, where data have been observed, to very extreme sets, typically

beyond the range of the data, and corresponding to risk levels of interest. We give a brief

introduction to univariate modelling of maxima and of excesses of a high threshold, followed

by extreme value modelling for time series, which often exhibit short-range dependence

at high levels. We then turn our attention to models for multivariate extreme events, in

particular those which can capture a dependence strength weakening as we move further
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into the joint tail. The conditional model for extremes (Heffernan and Tawn, 2004) has the

ability of covering many existing non-parametric and parametric models for extremes while

being parsimonious. Although the inference procedure advocated by Heffernan and Tawn is

very simple, its efficiency has room for improvement, and in Chapter 5 we develop a method

which tackles this issue. The conditional tail model is the main concern of this thesis and is

developed along different directions in Chapters 4, 5, 6 and 7.

In Chapter 3, we introduce the Dirichlet process as an approach to nonparametric mod-

elling in the Bayesian framework, and discuss extensions of it, namely Dirichlet process

mixtures. Two broad approaches exist for fitting these mixtures, both of which are illustrated

with specific algorithms. The code to fit these algorithms was developed and optimised for

the purpose of this thesis. The respective performances of these algorithms in terms of mixing

and computational cost are compared. An illustration with real data gives an insight into the

performance and flexibility of these methods. One of these algorithms is used and extended in

Chapter 5 and potential applications of Dirichlet process mixtures are explored in Chapter 7.

In Chapter 4, we delve into the subasymptotic properties of the conditional model intro-

duced in Chapter 2. Penultimate analysis was conducted by Smith (1987) and Gomes (1984,

1994) in the context of univariate extreme values, but consideration of the slow convergence

of the distribution of the maxima of a Gaussian distribution already appears in Fisher and

Tippett (1928). For the conditional model for extremes, the bivariate Gaussian distribution

given one of its margins is large is of particular interest, as its rate of convergence to the limit

conditional distribution is notably slow. The penultimate analysis of the conditional tail model

is helpful in simulations for evaluation purposes when using sample sizes similar to real data

sets. In this context, penultimate approximations of the parameters of the conditional tail

model, instead of their respective limit values, which can lie well away from the penultimate

true values, can be used as benchmarks. We shall use these penultimate approximations in

Chapter 6 to help evaluate the efficiency of one of the new approaches presented there.

In Chapter 5, we present a new approach to modelling the extremes of a stationary time

series. In this context, both marginal and dependence features must be described. There

are standard approaches to marginal modelling, but long- and short-range dependence of

extremes may both appear. In applications, an assumption of long-range independence

often seems reasonable, but short-range dependence, i.e., the clustering of extremes, needs

attention. The extremal index 0 < θ ≤ 1 is a natural limiting measure of clustering, but for wide

classes of dependent processes, including all stationary Gaussian processes, it cannot distin-

guish dependent processes from independent processes with θ = 1. Eastoe and Tawn (2012)

exploit methods from multivariate extremes to treat the subasymptotic extremal dependence

structure of stationary time series, covering both 0 < θ < 1 and θ = 1, through the introduction

of a threshold-based extremal index. Inference for their dependence models uses an inefficient

stepwise procedure that has various weaknesses and has no reliable assessment of uncertainty.

We overcome these issues using a Bayesian semiparametric approach. Simulations and the
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analysis of a UK daily river flow time series show that the new approach provides improved

efficiency for estimating properties of functionals of clusters.

In Chapter 6, we shall introduce a new constraint for the conditional tail model. Previously,

based on the initial formulation of Heffernan and Tawn (2004), Keef et al. (2013) derive con-

straints on the model parameters, which we shall present in Section 2.4.3 of Chapter 2. These

constraints help increase efficiency and remove inconsistency of probabilities extrapolated

from the model. Another issue remains which these constraints do not address, namely the

lack of identifiability of the model parameters in specific situations. We tackle this by adding a

new constraint to the model when positive or negative association can reasonably be assumed.

We also develop two models for fitting joint distributions for extremes based on the conditional

tail model. This gives a coherent framework for fitting multivariate extremes with at least

one component being extreme, whereas the method suggested by Heffernan and Tawn (2004)

uses an incorrect likelihood function. Our method adds censored data to the fit and makes

simultaneous inference for the extremal marginal and dependence features.

In Chapter 7, we return to the issue of fitting time series extremes of Chapter 5, and we

propose a model to fit the extremes of first order Markov chains, so that combined inference

can be made on extremal marginal and joint distributions, thus giving a full account of

uncertainty of the parameter estimates. We develop a semiparametric Bayesian approach to

avoid the strong assumptions needed in Chapter 6, and to give an account of uncertainty on

the estimated model and on probabilities derived from the model.

We conclude with a discussion of possible extensions of the results presented in the thesis,

and in particular potential future work on a generalisation of the approach of Chapter 5 to the

spatial context, which can be of great interest for modelling asymptotically independent data,

e.g., environmental data, which generally display decreasing strength in extremal dependence

between increasingly distant locations.





2 Modelling extremes

2.1 Extrapolation principle

2.1.1 Univariate setting

The study of extreme values is concerned with predicting the likelihood of potentially

damaging events at levels never previously recorded. Statistical methods for estimating the

probabilities of occurrence of these events help their users to learn from the history of the

most harmful events in order to extend information from these events of moderate intensity

towards others of higher magnitude for which information is incomplete or absent. More

formally, we need to carefully choose a non-empty moderately extreme set A on which we

can rely for extrapolation to a more extreme set B containing few or no data points.

In the univariate setting with X1, . . . , Xn
iid∼ F , this extrapolation paradigm appears clearly.

The founding limit theorem in extreme value theory (Fisher and Tippett, 1928; Gnedenko,

1943) states
Theorem 2.1 (Fisher–Tippett–Gnedenko)

Let X1, . . . , Xn , n ∈N, be independent and identically distributed random variables. Consider the

sequence of maxima Mn = max{X1, . . . , Xn}, n ∈N. If this sequence can be linearly renormalised

as (Mn − an)/bn by sequences of locations (an) and scales (bn) > 0 in order to converge to a

non-degenerate distribution G(x), then

G(x) = exp

{
−

(
1+ξx −µ

σ

)−1/ξ

+

}
, x ∈R, (2.1)

with c+ = max{c,0}, location parameter µ ∈R, shape parameter ξ ∈R and scale parameterσ> 0;

the case with ξ= 0 is interpreted as the limit as ξ→ 0.

This powerful result suggests modelling the distribution of the maxima of observations for

finite n using the single parametric family of distributions G(x) = G(x;µ,σ,ξ) in (2.1) as an

approximation of F n(x). When the distribution F converges to G in the terms of Theorem 2.1,

we say that F is in the domain of attraction of G and we denote it by D(G).

7
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The extrapolation strategy from set A to set B underlying inference of extreme values

and outlined at the beginning of this section is better explained through the point process

representation for extremes (Hsing et al., 1988). Consider the point process with points

Pn =
{(

i

n +1
,

Xi −an

bn

)
: i = 1, . . . ,n

}
. (2.2)

From Theorem 2.1 we have

Pr

(
Mn −an

bn
≤ x

)
= {F (bn x +an)}n →G(x), n →∞ (2.3)

with G(x) non-degenerate, or equivalently on the log scale,

n{1−F (bn x +an)} →− logG(x), n →∞. (2.4)

We get the intensity of the point process (2.2) if we consider the number of excesses of bn x+an ,

as in Leadbetter (1976). More precisely, we consider Nn(x) = ∑n
i=1 1(Xi > bn x + an), whose

distribution is Bin{n,1−F (bn x +an)}. The Poisson limit and (2.4) yield

Nn(x) → N (x) ∼ Pois{− logG(x)}.

We get the sizes of the excesses of an x +bn , i.e., the sizes of the marks of (2.2), through the

limit

Pr(X > bn x +an | X > an) = 1−F (bn x +an)

1−F (an)

= n{1−F (bn x +an)}

n{1−F (an)}

→ logG(x)

logG(0)

=
(
1+ξ x

σ−ξµ
)−1/ξ

+
, n →∞. (2.5)

As n →∞, an → xF , the upper endpoint of F , suggesting the approximation using the gener-

alised Pareto distribution

Pr(X > x +u | X > u) ≈ (1+ξx/σu)−1/ξ
+ , for large u, (2.6)

where σu > 0 is a scale parameter that is a function of the threshold u.

We can now depict how extrapolation underlies inference for very extreme sets, as we can

derive Pr(X ∈B) from Pr(X ∈A ) and (2.5),

Pr(X ∈B) =
(
1+ξv −u

σu

)−1/ξ

+
Pr(X ∈A ),

with A = [u,∞) and B = [v,∞), u < v .
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2.1.2 Bivariate and low-dimensional setting

Coles and Tawn (1994) consider structure variables of interest in practical design prob-

lems, reducing the dimension of the problem so that univariate methods of Section 2.1.1 can

easily be applied. If B is an extreme set of interest and X are observed data, the structure

variable S(X ) transforms the original multivariate problem into the much simpler problem of

estimating

Pr(X ∈B) = Pr{S(X ) > v}.

The authors give several examples of design settings where specific structure variables are of

interest. For example, offshore platform engineers are mainly interested in the force of waves

X1 and winds X2, and a typical structure variable in this context would be S(X ) = S(X1, X2) =
a1X 2

1 + a2X 2
2 ; in rainfall studies for which we have gauges at sites X1, . . . , Xd , a quantity of

interest is the cumulative rainfall measured over a whole region
∑d

j=1 w j X j , with w1, . . . , wd

being weights associated with the sites. This last structure variable could also be interpreted in

the financial context as a portfolio of d assets where the X j represent the negative returns and

for which we are interested in potential extreme losses. The main interest of such an approach

is that it only needs a univariate fit without needing to consider the dependence between

variables. On the other hand, the structure variable approach does not guarantee coherence

between probabilities extrapolated from different structure variables based on the same data;

it hides the connections between variables, and is unable to account for deterministic and

potentially abrupt changes in the structure of S beyond the data.

Consideration of extremes of bivariate and higher-dimensional data entails defining an

ordering in Rd , d ≥ 2. Barnett (1976) lists various orderings, a couple of which have been

considered in the literature. The structure variable is one. Standard approaches in extreme

value problems use componentwise maxima, which can combine either simultaneous events,

e.g., recorded on the same day, or events recorded at different time points. Stephenson and

Tawn (2005) raise this issue and suggest distinguishing the contributions depending on which

of these two types the observed maxima correspond to.

The univariate result in Theorem 2.1 can be generalised to the d-variate setting by con-

sidering componentwise maxima of n independent replicates X i = (Xi ,1, . . . , Xi ,d ), i = 1, . . . ,n.

The multivariate componentwise maximum is defined as

M n = (
Mn,1, . . . , Mn,d

)
, Mn, j = max

{
X1, j , . . . , Xn, j

}
, j = 1, . . . ,d .

In the following theorem, operations must be interpreted componentwise.

Definition 2.1 (Multivariate domain of attraction)

The multivariate distribution F of the d-variate independent replicates X 1, . . . , X n is in the

multivariate domain of attraction of the multivariate extreme value distribution G if there exist

normalising vectors of constants an and bn > 0 such that

Pr

(
M n −an

bn
≤ x

)
→G(x), n →∞,
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where G is non-degenerate in each margin.

Copulae (Joe, 2014) are a standard approach to modelling dependence between two ran-

dom variables X1 and X2. Copulae are multivariate distributions with uniform marginal

distributions, and any continuous multivariate distribution has its copula equivalent through

an appropriate marginal change of scale (Sklar, 1959). The study of bivariate extremes em-

braces copulae but considers margins on scales that better reveal the structure of dependence

at extreme levels. Figure 2.1 illustrates how modifying the marginal scale can display various

features in the extremes, and shows that uniform margins are poor at revealing features of the

extremes. In this figure and later in the text, we use X G, X U, X F and X L to refer to the random

variable X on Gaussian, uniform, Fréchet and Laplace scales.

The copula of bivariate maxima using Fréchet margins,

C F(x, y) =C
(
e−1/x ,e−1/y )= exp{−V (x, y)}, x, y > 0,

is identified by a function V (x, y) known as the exponent measure which satisfies

V (x,∞) = x−1, V (∞, y) = y−1, x, y > 0,

and a homogeneity property of order −1, i.e., V (t x, t y) = t−1V (x, y), t > 0. The exponent

measure can be characterised by

V (x, y) =
∫ 1

0
max{ωx−1, (1−ω)y−1}d H(ω), x, y > 0, (2.7)

where H(·) is a non-negative measure, termed the angular distribution, that satisfies the

moment constraints ∫ 1

0
ωd H(ω) =

∫ 1

0
(1−ω)d H(ω) = 1.

On Fréchet margins, the copula can be written as

C F(x, y) = exp{−V (x, y)} = exp

{
−

(
1

x
+ 1

y

)
A

(
x

x + y

)}
, x, y > 0, (2.8)

with A(ω), ω ∈ [0,1], termed Pickands’ dependence function (Pickands, 1981), which is convex

and satisfies A(0) = A(1) = 1 and max{ω,1−ω} ≤ A(ω) ≤ 1. A central quantity derived from

Pickands’ function is the coefficient of extremal dependence θ = 2A(1/2), θ ∈ [1,2], measuring

the effective number of independent variables, since

C F(x, x) = exp{−V (x, x)} = exp{−V (1,1)/x} = exp{−2A(1/2)/x} = {exp(−1/x)}θ,

using the homogeneity of V (·, ·) and (2.8). The boundary cases A(ω) ≡ 1 and A(ω) = max{ω,1−
ω} coincide with independence and complete dependence.
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Figure 2.1 – Data from a bivariate Gaussian copula on four different marginal scales, from left to right
and top to bottom: Gaussian, uniform, Fréchet and Laplace scales. Grey lines are density contours.
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The three different characterisations of multivariate extreme copulae through the expo-

nent measure V , the angular distribution H and Pickands’ function A give different perspec-

tives and each has contributed to the development of models for extremes. The literature

contains a vast choice of copula-type models for componentwise maxima (Smith et al., 1990),

with non-differentiable models (Tiago de Oliveira, 1980), the bivariate logistic (Gumbel, 1960),

its asymmetric version and the asymmetric mixed model (Tawn, 1988), the Coles and Tawn

(1991) Dirichlet model, the Hüsler–Reiss model (Hüsler and Reiss, 1989) and many others. This

abundance of models is explained by the fact that no closed-form distribution characterises

the limiting probabilities of extreme sets in two and more dimensions.

2.2 Extremes in time series

Consider a stationary time series (X t ) with marginal distribution F , for which we want

to derive probabilities of events that are more extreme than the observations recorded so

far. The univariate framework of Section 2.1.1 is directly applicable to this problem if we can

reasonably assume the X t to be independent. In practice, this is rarely the case, and departures

from independence have been explored in the literature.

Leadbetter (1974) showed that a weak mixing condition suffices for Theorem 2.1 to hold

for the stationary sequence (X t ).

Definition 2.2 (D(un ) condition)

The stationary sequence (X t ) satisfies the D(un) condition for a sequence (un), if for each n, l ,

and each choice of sequences 1 ≤ i1 < ·· · < ip and j1 < ·· · < jq ≤ n with j1 − ip ≥ l , we have

|Fi1,...,ip , j1,..., jq (un , . . . ,un)−Fi1,...,ip (un , . . . ,un)F j1,..., jq (un , . . . ,un)| ≤ εn,l ,

with εn,l → 0 as n →∞ and l = ln = o(n).

The D(un) condition ensures that long-range dependence remains small, but does not prevent

clustering of extreme values. The independence assumption in Theorem 2.1 can be replaced

by the much weaker assumption that the X t satisfy the D(un) condition for all sequences (un)

with un = bn x +an .

Consider the series (X?
t ) of independent variables with the same marginal distribution

F , and denote M?
n = max{X?

1 , . . . , X?
n }. A strong link connects the limiting distribution of M?

n

with that of Mn under the D(un) condition (Leadbetter, 1983).

Theorem 2.2 (Extremal index)

Let the D(un) condition hold for the stationary sequence (X t ). Then there exist sequences (a?n ),

(b?n ) > 0, and a non-degenerate distribution function G? such that

Pr

(
M?

n −a?n
b?n

≤ x

)
→G?(x), n →∞,
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if and only if there exist sequences (an), (bn) > 0, and a non-degenerate distribution function G

such that

Pr

(
Mn −an

bn
≤ x

)
→G(x), n →∞.

In addition, we have a?n = an , b?n = bn and G?(x) = {G(x)}θ, with θ ∈ [0,1] named the extremal

index.

As this result shows, the extremal index plays a key role when modelling time series with

short-range dependence, and it will be further detailed in Section 2.3. Independent times

series have θ = 1, but this case appears also in time series with some dependence, under

a condition on short-range dependence of (X t ) (Leadbetter, 1974; Leadbetter et al., 1983,

Chap. 3).

Definition 2.3 (D ′(un ) condition)

The stationary sequence (X t ) staisfies the D ′(un) condition for a sequence (un) if

lim
k→∞

limsup
n→∞

{
n

bn/kc∑
t=2

Pr(X1 > un , X t > un)

}
= 0.

While the D(un) condition ensures that long-range dependence decreases at an appropriate

rate, the D ′(un) condition ensures that short-range dependence remains sufficiently low, by

imposing that two observations have a small probability of exceeding un in any block of length

n.

In practice, the D(un) and D ′(un) conditions are hard to verify, but they support the

approach of making inference on time series even when weak dependence is observed at

finite levels. A typical approach is maximum likelihood estimation based on the conditional

distribution (2.6). Other methods for estimating the generalised Pareto distribution in this

context are reviewed in Kotz and Nadarajah (2000, Chap. 1). When short-range dependence

in (X t ) cannot be ignored, inference typically involves a pre-processing step that retains only

observations that can be considered independent (Davison and Smith, 1990), or requires

inflation of standard errors for estimates derived from all exceedances of a high threshold

(Fawcett and Walshaw, 2007, 2012).

The point process theory related to clustered stationary time series (X t ) (Hsing et al.,

1988; Leadbetter, 1995) describes the limit process of such series as a compound Poisson

process (Daley and Vere-Jones, 2003, Chap. 2), where the marks are the cluster sizes. Assuming

1−F (un) ∼ τ/n, n → ∞, τ > 0 and asymptotic cluster size distribution π, this compound

Poisson process has intensity θτ and mark size distribution π. This theory also establishes that

the distribution of cluster maxima is asymptotically identical to the marginal distribution of all

excesses (Pickands, 1975). Several declustering schemes exist, of which the most popular are

based on blocks (Leadbetter et al., 1989) and on runs (Smith, 1989). The former partitions the

series into nB blocks of the same length rB and picks the blocks with at least one exceedance
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of un as clusters; the latter picks clusters of exceedances which are separated by at least rR

non-exceedances of un . Having defined clusters, peaks over threshold analysis is based on the

maximum value in each of them. Both methods involve the choice of an arbitrary quantity

rB or rR, as well as the threshold un , which can affect subsequent inferences. An automatic

selection procedure is suggested by Ferro and Segers (2003) for a given un .

Fawcett and Walshaw (2007, 2012) showed, through extensive simulations and examples,

that the pre-processing of dependent time series may yield badly-biased estimates of tail

probabilities and return levels, which we shall define shortly. The authors suggest using all

exceedances of a threshold and computing uncertainty by inflating standard errors with a

sandwich method. Eastoe and Tawn (2012) take another approach, based on the idea that

the distributions of cluster maxima and of marginal exceedances coincide only in the limit.

Their model is a modified generalised Pareto distribution that better reflects the distribution

of cluster maxima at subasymptotic levels, with the additional benefit of using the information

contained in all exceedances of a threshold; this will be further developed in Chapter 5.

An important aspect in the field of extreme values is the communication of conclusions,

for example about an estimate of Pr(X ∈ B), which may be a very small quantity, in a way

that can be grasped by common sense and can serve as a basis for decisions. Return periods

are defined such that risk assessment is expressed in terms of a time span instead of tiny

probabilities. For a stationary series, we say that an extreme event of size xn has a return

period of n years if the probability of experiencing an event of size exceeding xn in a year is

1/n. The event size xn is called the n-year return level.

All the methods described so far in this section deal with the marginal distribution of X t

but do not consider modelling the joint distribution in time. This is of particular interest

when deriving functionals of extreme events, such as the duration of extreme events, e.g., the

duration of drought (Winter and Tawn, 2016), the cumulated intensity of an event, e.g., the

amount of rain over a period of extreme rainfall, the r th-largest statistic of a cluster, and many

others (Yun, 2000; Segers, 2003).

A natural approach to fitting the joint distribution of a series is to assume a Markov

property. Smith et al. (1997) were the first to consider this type of modelling for extremes, with

a likelihood of the form

`(x1, . . . , xn ;φ1,φ2) = f (x1;φ1)
n∏

t=2
f (xt | xt−1;φ1,φ2),

where φ1 and φ2 denote the parameters of the marginal and joint distributions respectively,

f (·) is the marginal density and f (· | x) is the conditional density given X = x. They use the

alternative formulation ∏n
t=2 f (xt , xt−1;φ1,φ2)∏n−1

t=2 f (xt ;φ1)
,
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where f (·, ·) is the bivariate joint density, so that models of Section 2.1.2 can be used for the

numerator. As we shall describe in the next section, these models can be very restrictive,

and a complementary approach was developed by Bortot and Tawn (1998). This formulation

was used, for example, in a study on wind speed data using a Bayesian framework (Fawcett

and Walshaw, 2006b). In the same vein, Sisson and Coles (2003) use a copula model (Coles

and Pauli, 2002) and Bayesian fitting procedures to give an account of the uncertainty in

the estimates. Bortot and Gaetan (2014) develop a model in which the observations are

independent given a latent process, along similar lines as Sang and Gelfand (2009). They

present processes that have a generalised Pareto marginal distribution and that deal with

temporal dependence but are restricted to cases with positive shape, i.e., ξ> 0 in (2.6).

For reviews of the modelling of time series extremes, see Chavez-Demoulin and Davison

(2012) or Beirlant et al. (2004, Chap. 10).

2.3 Modelling asymptotic independence

2.3.1 Classification of limit distributions

The copula models for componentwise maxima of Section 2.1.2 yield different descriptions

of the data at finite levels, but they all rely on a regular variation condition (Resnick, 1987,

Chap. 5; Basrak et al., 2002; Resnick, 2007, Chap. 6) on the cone [0,∞]2 \ {0}, which reduces

the scope of dependence structures that can be considered. Informally, in our problem of

extrapolation of probabilities from A to B, making this assumption when it is not appropriate

would typically yield an overestimate of Pr(X ∈B).

In order to distinguish broad classes of extremal dependence structures between two

random variables X and Y , or equivalently between X U and Y U on the uniform scale, we

define

χ= lim
u→1

χ(u) = lim
u→1

Pr(Y U > u | X U > u) = lim
u→1

Pr(X U > u | Y U > u), (2.9)

with χ ∈ [0,1]. When χ > 0, X and Y are termed asymptotically dependent; when χ = 0, X

and Y are said to be asymptotically independent. The models for maxima in Section 2.1.2

correspond to the former case, but the latter case is often met in practice. An example of an

asymptotically independent distribution is the Gaussian bivariate distribution which, with

correlation ρ < 1, shows dependence at any finite level, but has χ = 0 (Sibuya, 1960). In

the asymptotic dependence case, the measure χ ∈ (0,1] gives finer detail about extremal

dependence (Coles et al., 1999) than in the asymptotic independence case, where χ can take a

single value. An equivalent definition of χ uses a copula formulation, and is the limit as u → 1

of

χ(u) = 2− logPr
(
X U < u,Y U < u

)
logPr

(
X U < u

) , u ∈ (0,1). (2.10)



16 Chapter 2. Modelling extremes

To complement the measure χ and provide more information in cases of asymptotic

independence, Coles et al. (1999), by analogy with (2.10), define

χ= lim
u→1

χ(u) = lim
u→1

2logPr(X U > u)

logPr(X U > u,Y U > u)
−1,

with χ ∈ [−1,1]. When χ = 0, −1 ≤ χ < 1 describes the strength of extremal dependence in

the asymptotic independence class, with χ= 0, χ< 0 and χ> 0 corresponding respectively to

complete independence, negative association and positive association; when χ= 1, we are

in the case of asymptotic dependence, and we can use χ> 0 as a measure of the strength of

extremal dependence in this class.

The extremal index θ, introduced in Section 2.2 in the context of time series, also indicates

whether we are in a situation of asymptotic dependence, with θ ∈ (0,1), or asymptotic inde-

pendence, with θ = 1. In terms of the clustering of extremes, a constructive definition of the

extremal index is

θ = lim
u→1

Pr(X U
1 ≤ u, . . . , X U

m ≤ u | X U
0 > u), (2.11)

with m →∞ as u → 1 appropriately (O’Brien, 1987). The reciprocal of the probability (2.11)

counts the proportion of excesses with respect to the number of clusters; it can be inter-

preted as the asymptotic mean cluster size. In this perspective, asymptotic independence

corresponds to no clusters in the limit, whereas asymptotic dependence means some level of

clustering, and the limiting cluster size is θ−1. Chapter 5 gives more details about the extremal

index, its sub-asymptotic properties and methods of estimation.

We conclude with an illustration of a use of the extremal measures reviewed in this section.

We introduce an example involving financial data, where estimation of χ and χ is of great

importance, as standard dependence diagnostics fail to describe the degree of dependence at

an asymptotic level. We consider Roche and Novartis, two companies in the pharmaceutical

sector and listed on the Zurich stock exchange. We compute the returns from their stocks,

extracted from the daily closing prices from 1 November 2000 to 31 October 2017. The data

were downloaded from finance.yahoo.com, and missing data are filled using closing prices

from the previous day. Roche prices at the beginning of the series are incorrect and need to be

multiplied by 100. Figure 2.2 shows a strong link between the prices of the two companies, and

the scatterplot of the returns confirms this. This link also appears in the estimated correlation

of about 0.5.

In a risk assessment perspective, we are interested in the joint behaviour of these stocks

when one of them faces severe price drops, i.e., large negative returns. After transformation to

the uniform scale, we compute the empirical estimates corresponding to χ(u) and χ(u) for

u ∈ [0.8,0.99] on the negative returns and their respective 95% block bootstrap confidence

intervals. The results are shown in Figure 2.3. The estimates of χ(u) show evidence in favour

of χ ∈ (0,1), i.e., asymptotic independence with positive association. This is confirmed with

the confidence intervals for χ(u), which suggest that χ= 0 is reasonable .

finance.yahoo.com


2005 2010 2015

6
0

8
0

1
2
0

1
6
0

Year

S
ta

n
d
a
rd

is
ed

 d
a
il
y 

p
ri

ce

●

●● ●
●

●

●
●

●

●
●●●●

●

●
●
●
●●●
● ● ●

●
●
●
●

●

●●
● ●

●●● ●●●
●

●

● ●● ●

●

●
●

●
●

●
●

●
●●●

●

●
●● ●

●●

●
●●

●●

●

●
●●

●
●

●
●

●
●

● ●●● ● ●

●●

●

●

● ●

● ●
●

●
●

●

●●
●

●● ●

●

●
●

●
●

●

●
●

●

●
●●

●

●●●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●
●

●●●●●●● ●●

●

●
●

● ●●
●

●
●● ●● ● ●

●
●

●
●

●

●

●

● ●
●

● ●

●

●

●

●

● ●

●

●●
●

●
● ●●●

●
●

●●
●

●●
●

●●

●
●

●
●

●

●
●●

●

●

●

●
●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

● ●

● ●

●

●
●

●

●

●●
● ●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●●

●

●

●●●● ●●●●

●●

●

●●

●●
●

●
●●

●●

●
●

●

●

●
●

●
●

●●
●●

●●
●

●

●●
●●
●

●
●

●

●

●

●

●●
●

●
●
●● ●

●
●

●●

●

●

●
●
●

●●
●

●●●●●

●

●
●

●

●●

●
●

●

●

●

●

● ●
●

●

●
●●●●

●

●
●

●

●

●
●

●
●

●●

●●
●
●●●
●●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

● ●●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●
●

● ●
●●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●
● ●●●

●

●
●●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●●

●
●

●●

●

●

●

●●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●
●●

●

●●
●

●●

●

●

●

●

●

●●
● ●●

●

●

●●
●●

●

●

●

●

●

●
●

●● ●●●
●●●●

● ●
●

●
●

●
●

●● ●
●

●

●

●
●●●

●

●

●
●

●

● ●
●●

●

●

●

●

●
●●●●●

●

●●
● ●

●

●

●
●●

●

●●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
● ● ●●

●

● ●

●

●

●

●●
●

●●●●
●●●● ●

●
●●●●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●● ●

●
●●

●

●
●

●

●●
●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●● ●

●

● ●
● ●

●

●●

●

●
●

●

● ●

● ●

●

●●

●

●

●

●
●

●●●

●

●

●●
●●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●
●

●
●●

●

●

●

●
●

●
●●

●
●

●
●
●
●

●

●●

●●●

●

●●
●

●

●

●
●

●

●

●
●

●

●●●●

●

●●

●

●

●
●

●

●

●

●
●●
●

●

●

●●

●

●
●
●

●

●●

●
●

●●
●

●

● ●●●

●
●

●

●●
●

●
●

●

●●

●
●

●

●●
●●

●

● ●

●

● ●
●

●

●

●
●

●

●●

●

● ●

●
●

●●●
●●●●

●

●
●
●

●
●
●

●

●●

●●

●

●
●●●

●

●

●● ●

●●

●

●●●●●● ●●
●

●●●

●

●
●●●

●
●
●●●

●
●●●
●●

●

●

●
●

●●
● ●●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

● ●●

●

●●

●
●●
●

●●
●●

●●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●●●●
●●
●

●
●

●

●

●●

●●

●

●●●
●

●
●

●
●●●●

●●

●

●
●

●●
●

●
●●●●●

●
●●

●

●

●●
●●

●

●
●●
●

●●
●
●

●

●
●●●●●●●
●

●
●

● ●●
●
●●

●
●

●

●●● ●
●●● ●
●●

●

●

●
● ●

●

●

●

●
● ●

●
●

●

●
●

● ●●

●

●
●

●

● ●

●

●

●

●●●

●
●

●

●
●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●● ●●

●
●●

●
●●

● ●
●●

●●
●

●●
●

●
●●

●
●

●
●

● ●

●●

●●

●

● ●●

●

●
●

●
●

●

●

● ●

●

●●●

● ●

●

●
●

●

●●●
●
●

●
●

●

●

●
● ●

●

●
●
●

●

●
● ●

●● ●

●

●
● ●

●●

●
●

●

●

●●

●

●●

●

●●

●

●

●
●

●
●●

●

●
●
●

●
●

●
●

●

●
●
●●

●

● ●

●

●

●
● ●

●
●

●

●
●

●

●●

●

●

●

●●

●
●
●●

●●
●

●
●●

●
●●●

●●

●

●

●●

●

●
●

●●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

● ●

●

●

●
●

●
●●●

●

●●
●●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●

●●●
●
●
●

●● ●
● ●●

●
●

●●
●●● ●●

●

●

●
●

●●●

●
●

●

●●

●

●
●

●●●
●

●

●
●

●

●

●
●

● ●

●
● ●
●

●

●
●
●

●

●
●●

●

●
●

●
●

●

●

●
●● ●

● ●

●

●
●

●
●

●
●

●

●

●
●

●

●● ●

●
●

●

●
●● ●

●
●

●
●

●

●● ●

●

●●

●
● ●●

●

●●●●●
●

●
●●
●

●

●
●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

●
●
●

●
●

●

●●●●
●
●

●

●
●●● ●
●

●

●●●

●

●●●
●

●●●●

● ●

●●●
●

●
●●
●

●●

●
●

●

●

●
●
●●

●● ●
●●

●

●●●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●
●
●

●

●

●
●

●
●

●
●

●

●
●
●

●

●
● ●

● ●● ●
●
●●●●●
●
●●

●●

●

●
●

●
●●
●

●●●●

●

●●
●
●

●
●
●

●
●

●

●
●

●

●

●

●

●●
●

●
●●

●

●
●

●

●
●

●●

●

●

●
●

●
●●●

●●●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●
●●●

● ●

●

●

●

●
●

●

●●

●

●

●

●
● ●

●

●●

●

●
●
●●●●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

● ●

● ●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●●

●●

●
●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●
●●

●●

●

● ●

●

●

●
●●

●
●

●

●
●

●
●

●

●●●

●

●●

●●

●

●

●

●
●

●

●
●

●
●

●
●

● ●

●

●
●

●
●●
●●●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
● ●

●●
●

●

●

●
●

●

●
●●

●

●●

● ●

●
●●

●

●

●

●

●
●

●

●
●
●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●
● ●●

●

●
●

●
●

●
● ●●
●
●

●●
●●
●

●

●
●

●
●
●●

●

●
●
●●

●
●

●

●

●
●

●
●

●

●●

●
●
●

●●●
●●●
●●

●

●

●

●

●

●

●
● ●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●
●
●

●
●

●

●
●

●
●

●

●

●

●●● ●

●●
●●

●
●●

●

●
●

●
●

●
●●
●

●

●●

●

●

●

●●
●

●

●

●
●

●
●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●●

● ●
●

●

●
●●

●

●

●
●●

●

●

●

●●●●

●

●

●●●

●

●●
●

●

●

●

● ●

●●●

●

●

●●
●

●

●●● ●●●
●●

●
●

●

●●
●●

●
●●

●●●

● ●●

●

● ●●

● ●
●

● ●
●

●●
●

●

●

●
●

● ●
●●

●

●

●

●

●

●

●
●●

●
●

●●

●

●●

●

●

●●

●●

●
●

●●
●
●

●

●

●

●

● ●
● ●

●

●●

●

●
●

● ●●

●

●

●

●

●
●

●● ●
●

●
●

● ●

●
●

● ●
●●

●

●
●

●

●

●

● ●● ●

●

●

●

●

●●●
●●
●

●

●
●

●

●●

●●●
●●

●●
●

●

●

● ●

●●

●

●●
●

●

● ●
●

●
●

●

●

●

●
● ●

●
●●

●
●
●

●
●

●●

●

●
●

●●
●●

●

●

●

●

●

●

●

●
●

●
● ●

● ●
● ●●

●
●●

●

●

● ●

● ●
●
●

●
●

●

●
●

●

●

●
●

●

●
●
●

●
●

●●

●

●

●●

●
●●

●●●●
●

●

●

● ●●
●

●
●

●
●
●

●
●

●

●

●
●

●
●●●●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●●●●
●

●

●● ●
●

●
●

●

●

●
●
●
●

●
●●

●●
●

●

●
●

●●

●

●
●●

●
●●
●●

●●●● ●

●
●●

●

●

●●

●

●

●

●

●

●

●
●●

● ●

●

●
●

●

●

●●
●●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●
●

●●
●
●

●
●

●

●

●
●

●

●

●●
●●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●●
●
●

●

●●

●

● ●
●

●
●

●●

●

●

●●

●

●
●

●

● ●●●●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●●●●
●

●

●

●
● ●●●

● ●

●

●

●

●
●●
●

●● ●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

● ●

●
●
●

●●●

●

●

●
●

●

●
●●

●

●
●

●

●●●
●●●

●

●

●

●●●
●
●●● ●

●

●
●

●●

●

●●
●●●●●●
●●●
●
●
●

●
● ●

●
●

●

●

●

●●

●

●●

●

●
●
●●●

●
●●

●
●●●●

●

●
●●

●

●

●
●

●●

●

●
●●

●
●

●
●●
●

●

●
●

●

●

●

●

●●
●●●●

●

●●
●
●●
●

●

●

●

●●

●

●
●● ●

●●●

● ●
●●

●
●

●
●

●

●
●●
●● ●
●●

● ●●●
●●
●
●

●●

●

●

●●

●

●
●●

●

●●

●
●●

●

●

●
●

●

●

●●

●

●
● ●●

●

●

●
●

●

●

●

●

●●
●●●●
●●

●

● ●

●

●
●

●
●

●

●

●
●

●
●

●

●●
●

●●

●

●
●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●●
●
●

●
●

●
●

●

●

● ●

●

●

●
● ●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●●

●

●

●
●

●
●

●

●
●

●●
●
●
●

●●

●
●

●

●

●● ●
●●

●●

●●

●
●

● ●

●

●

●●●

●

●●

●

●

●
●●●

●
●
●●●

●

●● ●

●
●
●●●●●

●

●●●●
●

●
●

●
●●

●●

●
●●

●●●●●●●●

●

●

●
●●●●

●
●●

●
●
●● ●●●●
●●

●
●

●●

●●
●

● ●

●
●

●

●
●
●

●

●
●

●
●●

●
●

●
●

●●●●
●

●
●

●
●

●

●

●

●
●● ●

●

●

●●
●

●
●

●

●

●
●

●●●●
● ●

●

●

●●

●

●●
●
●

●
●

●
● ●

●

●

●

●●

●

●● ●
●

●

●
●●

●

●

●

●
●

●

●
●● ●●

●●

●
●●●
●●

●
●

●
● ●
●
●
●

●

●

●
●●●

●

●
●●
●

●

●●●
●●●
●

●●
●

●

●

●

● ●

●

●
●●● ●●

●

●
●

●
●

●

●

●●
●

●●
●●
●
●

●●
●●

●

●
●

●

●
●

●

● ●●●
●
●●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●
●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●
●

●●●●●
●●

●●
●

●●●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●
●●

●
●●

●
●

●●

●
●

●●
●

● ●

●

●

●●

●
●

●
●

●

●●●

●
●●

●
●

●●

●●

●

●

●●
●●●●

●

●
●

●

●
●

●

●
●

●●
●
●
●

●

●
●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●●

●
●●

●

●

●

●●●

●

●●●●

●●

●

●

●

●●

●

●
●

● ●

●
●●
● ●
●
●

●

●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●●

●

●●
●
●●

●

●●
●
●●●
●

●

●●
●

●
●

●
●●
●●
●

●

●●

●●

●
●

●

●

●
●●●●

●

●
●

●
●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●
●●●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●
●

● ●

●● ●

●

●
●●

●

●

●

●

●
●

●

●●●
●
●

●

●
●
●● ●●
●●
●●

●
●

●

●

●●
●●
●

●

●

●
●

●●

●

●
●

●
●●
●
●

●

●

●● ●

●
●

●

●

●●●

●

●

●
●

●
●
●
●
●
●

●●

●●●

●

●
●

●

●

●

●

●
●
●

●

● ●

●
●

●

●

●
●

●
●

●
●●●

●
●

●
●

●●
●

●
●

●

●●

●

●

●

●●●
●● ●

●

●
●

●
●

●

●
●● ●●●●●

●

●● ●

●

●

●●●●
●●●

●

●●●
●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●●

●

●

●●

●
●

●

●

●

● ●●●●●●
●●●●●

●
● ●

●●●

●
●

●

●
●

●

●

●
●
●

●

●
●

●
●

●

●

●
●●● ●●●

●

●
●●●
●

●●●●
●●

●

●

●

●
●●
●●

●●

●

●
●

●

●
●

●●●
●●

● ●●●

●
●●
●●

●
●

●
●●

●
●

●
●

●
●

●●
● ●

●

●

●

●
●
●

●●

●●
●●●
●●●●
●

●

●●
●●

●

●
●● ●

●●
●●

●
●●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●●
●● ● ●●●

●
●●●

● ●
● ●●

●
●●●

●

●

●
●●●●●
●

●
●

●
●●

●
●
●

●●●●
● ●

●
●

●
●

●
●●●

●

●●●
●●● ●●●●

●

●

●
●

●
●

●

●● ●
●

−0.10 0.00 0.05 0.10

−
0
.1

0
0
.0

0
0
.0

5
0
.1

0

Novartis

R
oc

h
e

Figure 2.2 – Novartis and Roche stock prices. Left panel: daily prices of Novartis (–) and Roche (–)
shares, standardised to start at 100 on the 1st of November 2000 for better interpretation. Right panel:
daily returns, using the daily share prices of the two companies.
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Figure 2.3 – Estimates of χ(u) and χ(u) (solid) with 95% confidence intervals (small dashes) for Roche
and Novartis negative returns. Values corresponding to asymptotic dependence (χ= 1) and asymptotic
independence (χ= 0) are shown as horizontal lines (dashed, grey).
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18 Chapter 2. Modelling extremes

2.3.2 From asymptotic dependence to asymptotic independence

Standard models for extreme values, such as those mentioned in Section 2.1.2, are based

on a max-stability assumption, or equivalently on an assumption of regular variation, which

entails either asymptotic dependence in the extremes or exact independence, both of which

are unlikely in practice. When χ= 0, these models can yield overestimation of joint risks, as

they misspecify the probability that extreme events will occur simultaneously.

Ledford and Tawn (1996) focus on a class of models that connects asymptotic dependence

and independence. Extrapolation from A to B under asymptotic dependence, using Pareto

or Fréchet marginal distributions, with A = {(x, y) : x > z, y > z} and B = tA = {(x, y) : x >
t z, y > t z}, has the form

Pr{(XF,YF) ∈B} = Pr{(XF,YF) ∈ tA } ∼ t−1Pr{(XF,YF) ∈A }, (2.12)

whereas complete independence between X F and Y F would yield

Pr{(X F,Y F) ∈B} = Pr(X F > t z)Pr(Y F > t z)

∼ t−2Pr(X F > z)Pr(Y F > z)

= t−2Pr{(X F,Y F) ∈A },

(2.13)

for large z. In order to bridge the gap between these two classes, Ledford and Tawn suggest

modelling the joint tail as

Pr(X F > z,Y F > z) ∼L (z)z−1/η, z > 0, (2.14)

with L (z) slowly varying at infinity and η ∈ (0,1] the coefficient of tail dependence. The

variables are negatively associated when η < 1/2 and positively associated otherwise, with

η= 1/2 meaning exact independence. Asymptotic dependence arises only when η= 1 and

L (z) 6→ 0, and asymptotic independence corresponds to all other cases. The coefficient of tail

dependence is linked with the theory outlined in Section 2.1.2, as χ= 2η−1.

The model (2.14) allows extrapolation from a moderately extreme set A to a more extreme

set B only along the diagonal x = y , as in equations (2.12) and (2.13). An extension is described

in Ledford and Tawn (1997), where directions for extrapolation consist of all rays emanating

from the origin in the first quadrant and indexed by ω ∈ (0,1), as in

Pr{X F >ωz,Y F > (1−ω)z} ∼L (z)g (ω)z−1/η,

where g (ω) describes the asymptotic ray dependence and is invariant to the rate of tail decay,

which is controlled by η.
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Figure 2.4 – Directions of extrapolation for probabilities of extreme sets on exponential (left) and Pareto
scales (right) using the Ledford–Tawn formulation.

Consider extrapolation of Pr{(X ,Y ) ∈ A } to Pr{(X ,Y ) ∈ B}, with B = tA , t > 0. The

Ledford–Tawn approach boils down to

Pr
{
(X F,Y F) ∈B

}= Pr
{
(X F,Y F) ∈ tA

}∼ t−1/ηPr
{
(X F,Y F) ∈A

}
,

which, with the factor t−1/η, generalises the cases illustrated in (2.12) and (2.13). If we consider

exponential margins instead of Fréchet margins, we have B = t +A = {(t + x, t + y) : (x, y) ∈
A , t > 0} and the extrapolation has the form

Pr{(X E,Y E) ∈B} = Pr{(X E,Y E) ∈ t +A } = exp(−t/η)Pr{(X E,Y E) ∈A }.

The extrapolation procedure depends on the marginal scale, as represented in Figure 2.4, with

rays being parallel to the diagonal in exponential margins and emanating from the origin in

Pareto margins, which correspond to Fréchet margins asymptotically. The exponential scale

plot illustrates the problem arising when B has elements with x À y for y large, needing A to

lie close to the x-axis, in a region with few or no data points. In order to reduce the variance

due to A falling in a region with little information, the extrapolation direction would need to

be modified. More specifically, for A to be situated in a region with enough observations, we

would need extrapolation rays emanating from the origin on the exponential scale.
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2.3.3 Regular variation along rays in exponential margins

The multivariate regular variation condition backing standard models for extreme values

arising in the context of Theorem 2.1 is restrictive, and in Section 2.3.1 we saw two complemen-

tary measures that describe two asymptotic classes of dependence and indicate when these

standard models are applicable. A limitation of bivariate regular variation is that it imposes

the same rate of tail decay over the whole cone [0,∞]2 \ {0}. Hidden regular variation was

introduced by Resnick (2002) to cope with different rates of tail decay in (0,∞]2 and on the

axes, a theory that can describe asymptotic independence.

Following a different path, Wadsworth and Tawn (2013) generalise the notion of multivari-

ate regular variation and suggest considering rays emanating from the origin in exponential

margins. In Fréchet margins, this corresponds to marginal growth rates along the rays that

vary depending on the ray direction. A similar approach can also be found in de Valk (2016).

For all (β,γ) ∈ [0,∞]2 \ {0}, Wadsworth and Tawn require that

Pr(X P > xβ,Y P > xγ) = Pr(X E >β log x,Y E > γ log x) =L (x;β,γ)x−κ(β,γ), (2.15)

with L (x) a slowly varying function as x →∞ for all (β,γ) ∈ [0,∞]2 \{0}. The function κ(β,γ) is

homogeneous of order 1 (Wadsworth and Tawn, 2013, Property 1). If we define a pseudo-radial

component r =β+γ and a pseudo-angle component ω=β/r , we can more simply focus on

the angular dependence function λ(ω) = κ(ω,1−ω),ω ∈ [0,1]. Under non-negative association

of X and Y , max(ω,1−ω) ≤ λ(ω) ≤ 1, with boundary cases corresponding to asymptotic

dependence and exact independence respectively. In all other cases, λ(ω) gives information

about the degree of dependence of asymptotically independent distributions. We observe the

relation between the angular dependence function λ(ω) and Pickands’ dependence function

A(ω), the first of which applies to asymptotically independent distributions, the latter being

used for asymptotically dependent distributions. Both λ(ω) and A(ω) lie within the same

boundaries, and both have a particular interpretation in extreme value theory when evaluated

atω= 1/2, with 2λ(1/2) = 1/η the inverse coefficient of tail dependence (2.14) and 2A(1/2) = θ,

the coefficient of extremal dependence (Smith, 1990; Coles and Tawn, 1994).

The Wadsworth–Tawn model entails assuming regular variation of order −λ(ω) along rays

emanating from the origin, when the standard approach to modelling extremes imposes a

single multivariate regular variation condition that is too rigid to take into account cases with

asymptotic independence and positive association.

2.4 Conditional extremes

2.4.1 Characterising the limit

Up to this point, we have mainly discussed the standard approach to extremes, which

focuses on probabilities of big events happening simultaneously and which fails to account
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for asymptotically independent distributions exhibiting dependence at subasymptotic levels,

an important example of which is the Gaussian distribution. This corresponds to χ= 0 and

χ 6= 0, a situation often met in practice. We have also mentioned alternative approaches

that can capture more subtle forms of decay in tail dependence, but all methods, except the

Wadsworth–Tawn approach, rely on limiting assumptions that require all variables to grow at

the same rate.

Heffernan and Resnick (2007) present a conditional approach that overcomes many of

the limitations of standard approaches. They give as the general framework a random vector

(X ,Y ) = (X ,Y1, . . . ,Yd ) with X used as the conditioning variable. For ease of exposition, we

take d = 1 and Y1 = Y in what follows. A natural assumption is that X is in the maximum

domain of attraction of a Fréchet distribution, in the sense of (2.3). For the joint structure,

the authors assume the existence of a Radon measure µ(·, ·) on [−∞,∞]× (0,∞] such that

µ([−∞, y]× (x,∞]) is not a degenerate function in y for each x > 0, and there exist aHR(·) and

bHR(·) > 0 such that

lim
t→∞ t ×Pr

{
Y −aHR(t )

bHR(t )
≤ y,

X

t
> x

}
=µ([−∞, y]× (x,∞]), y ∈R, x > 0. (2.16)

As Pr(X > x) ∼ x−1, x →∞, in terms of the conditional probability we have

Pr

{
Y −aHR(t )

bHR(t )
≤ y

∣∣∣∣ X > t

}
∼ t ×Pr

{
Y −aHR(t )

bHR(t )
≤ y,

X

t
> 1

}
(2.17)

→µ([−∞, y]× (1,∞]), t →∞.

Under these mild conditions, and in particular without assuming that (X ,Y ) has a density,

Heffernan and Resnick (2007) show that the scale function bHR(·) can be identified as regularly

varying with index ρ ∈R, i.e.,

lim
t→∞

bHR(ct )

bHR(t )
= cρ , c > 0,

and the location function aHR(·) can be either identically 0, or regularly varying with index ρ if

ρ 6= 0, up to a change of variable, and it is Π-varying (Resnick, 1987, p. 27; Bingham et al., 1987,

p. 158) with auxiliary function bHR(·) if ρ = 0. More specifically, requiring µ(·, ·) to be a product

measure, of the form

µ([−∞, y]× (x,∞]) = H(y)x−1, H(y) =µ([−∞, y]× (1,∞]), (2.18)

is equivalent to having, for any constant c > 0,

lim
t→∞

aHR(ct )−aHR(t )

bHR(t )
= 0, lim

t→∞
bHR(ct )

bHR(t )
= 1.

Compared to the general framework of (2.17), here we have ρ = 0, i.e., bHR(·) is slowly varying.
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To simplify the argument, consider (X P,Y P), obtained by rescaling (X ,Y ) onto the Pareto

scale. Then assumption (2.16) becomes

lim
t→∞ t ×Pr

{
Y P

bP(t )
≤ y,

X P

t
> x

}
=µ([1, y]× (x,∞]), x, y > 1,

and bP(·) > 0 is regularly varying with index ρ ≤ 1. Following Papastathopoulos et al. (2017),

we can consider the transformation from the Pareto to the exponential scale, from which we

can derive
Y P

bP(t )
≤ y ⇐⇒ Y P ≤ bP(t )y ⇐⇒ Y E ≤ logbP(t )+ log y.

Writing aE(·) = logbP{exp(·)}, we observe that this approach reduces to a location standardisa-

tion of Y E = logY P , i.e., Y on the exponential scale, so that in this case (2.16) becomes

lim
t→∞ t ×Pr

{
Y E −aE (

log t
)≤ y, X E − log t > x

}=µ([0, y]× (x,∞]), x, y > 0,

or equivalently,

lim
t→∞Pr

{
Y E −aE(t ) ≤ y

∣∣ X E > t
}=µ([0, y]× (0,∞]), y > 0. (2.19)

2.4.2 Heffernan–Tawn formulation

In our extrapolation problem, we want to infer the probability of an extreme set B given

that we are able to estimate the probability of a less extreme set A in a reliable fashion. A

natural assumption for B is that all its points have at least one extreme component. Inference

in such a multivariate framework with X = (X1, . . . , Xd ) is made separately on a partition of the

d-dimensional set B of interest. Assuming that all d marginal distributions are identically F ,

the partition is defined as B =∪d
i=1Bi , with Bi = {x ∈B : F (xi ) > F (x j ), j 6= i }. The inference

is then split according to

Pr(X ∈B) =
d∑

i=1
Pr(X ∈Bi | Xi > ui )Pr(Xi > ui ), (2.20)

with ui = inf{xi : x = (x1, . . . , xd ) ∈Bi }.

There are two building blocks in the estimation of Pr(X ∈B) in (2.20): the marginal sur-

vivor probabilities Pr(Xi > ui ) can be estimated using standard threshold methods related to

(2.5), details of which can be found in the literature (Coles, 2001, Chap. 3; de Haan and Ferreira,

2006, Chap. 4); the conditional probabilities in (2.20) need more careful attention, as stan-

dard extreme value approaches reduce to modelling all components as being asymptotically

dependent or exactly independent.

Heffernan and Tawn (2004) present a very flexible model where the asymptotic dependence

class can differ from one pair of variables to the other. Their formulation is similar to (2.17)



2.4 Conditional extremes 23

but assumes Gumbel margins for X = X G, which in practice necessitates fitting a marginal

model and applying the probability integral transform twice to each element of X . Another

difference is that their formulation uses random norming by the conditioning variable instead

of normalising by deterministic functions of the conditioning threshold u. This additional

information carried by the conditioning variable Xi and passed to the norming functions a(·)
and b(·) results in µ(·, ·) being a product measure (Heffernan and Resnick, 2007), which is key

for the extrapolation strategy. Assuming the same marginal distribution for all components of

X gives a characterisation of the normalisation functions, i.e., that a(·) is regularly varying with

index 1 and b(·) is regularly varying with index ρ < 1. Random norming also justifies separate

inference on marginal conditional distributions, e.g., X j | Xi > u, Xk | Xi > u, when X j and

Xk can be assumed conditionally independent given Xi , thus greatly reducing the burden of

estimating a potentially high-dimensional limiting distribution H (·) (Papastathopoulos, 2016).

In essence, we require existence of normalising functions a j |i (·) and b j |i (·) > 0 (i , j =
1, . . . ,d ; i 6= j ), such that

Pr

{
X G

j −a j |i
(
X G

i

)
b j |i

(
X G

i

) ≤ z j |i , X G
i −u > x, j = 1, . . . ,d , j 6= i

∣∣∣∣∣ X G
i > u

}
→ H|i (z |i )exp(−x), u →∞, i = 1, . . . ,d , (2.21)

where the z j |i are the d −1 components of z |i and the H|i (·) are non-degenerate and have no

mass at −∞. The assumption (2.21) refines (2.19) by introducing a scale function b j |i (·)
satisfying b j |i (t) = o{a j |i (t)} as t → ∞. This scale function allows consideration of joint

distributions that would be degenerate using formulations (2.16) or (2.19). For example, if we

consider (X G,Y G) with a bivariate normal copula, correlation ρ > 0, and Gumbel margins, we

need, after dropping the subscripts for clarity,

a(x) = ρ2x, b(x) = x1/2,

for (2.21) to hold with a non-degenerate H(·). If (2.19) was used instead of (2.21), we would

have aE(x) = ρ2x, but Y E −aE would not be normalised and the limit (2.19) would be degener-

ate.

A simple class of normalising functions arises from (2.21) and is based on the study of many

existing parametric models for extremes. The location function a j |i (·) reflects the asymmetry

of the upper and lower tails of the Gumbel distribution, namely,

a j |i (x) =α j |i x + (
γ j |i −δ j |i log x

)× 1(α j |i = 0,β j |i < 0
)

,

b j |i (x) = xβ j |i ,
(2.22)

where α j |i ,β j |i ,γ j |i ,δ j |i are parameters satisfying α j |i ∈ [0,1], β j |i ∈ (−∞,1), γ j |i ∈ R, δ j |i ∈
[0,1]. We follow Heffernan and Tawn and use this notation, since for positively associated
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variables we can write

x j =α j |i xi +x
β j |i
i z j |i , for large xi ,

similar to a regression model. We shall often call H|i the residual distribution function. In case

of negative association, the formulation for the location function b(·) is more involved, due to

the asymmetry between the upper and lower tails of the Gumbel distribution. Interpretation

of the parameters involved in (2.22) is tricky, and we postpone it to Section 2.4.3, where a

different formulation allows for simpler parametric forms of a j |i (·) and b j |i (·).

Inference is done in three steps; first, a marginal model is used, in the form of

F̂i (x) =

1− {1− F̃i (ui )}

(
1+ξi

x −ui

σi

)−1/ξi

+
, x > ui ,

F̃i (x), x ≤ ui ,
(2.23)

where F̃i denotes the empirical distribution function for margin i , and the ui are chosen

large enough for the approximation (2.6) to be adequate. Using the probability integral

transform twice, we get Gumbel margins by applying − log{− log F̂i (x)} to each margin of

X . The second step deals with dependence structure. Because the residual distribution

function H|i is of very general form, Heffernan and Tawn introduce a working assumption

that H|i is Gaussian with mean vector µ|i and covariance matrix Ψ|i . If we assume that

asymptotic conditional independence holds, then standard maximum likelihood estimation

can be performed separately on each margin of the conditional distribution. With pairs of

observations (x i , x j ) = {(x1,i , x1, j ), . . . , (xn,i , xn, j )}, the corresponding log-likelihood is

`
(
α j |i ,β j |i ,γ j |i ,δ j |i ,µ j |i ,ψ j |i ; x i , x j

)=
n∑

k=1
logϕ

{
xk, j −a j |i (xk,i )−b j |i (xk,i )µ j |i

b j |i (xk,i )ψ j |i

}
× 1(xk,i > ui

)
, (2.24)

where a j |i (·) and b j |i (·) are specified in (2.22), the covariance matrix Ψ|i reduces to the scalar

ψ2
j |i , and ϕ is the standard normal density function. The parameters γ j |i and δ j |i are first set

to zero in (2.24). If there is evidence in favour of α j |i = 0 and β j |i < 0, maximum likelihood

estimation is performed for all parameters; because α j |i is bounded below by 0, there is a

non-null probability that α̂ j |i = 0. In the final step, the maximum likelihood estimates α̂ j |i ,

β̂ j |i , γ̂ j |i and δ̂ j |i are used to compute the empirical distribution of the residuals, using

ẑk, j |i =
xk, j − α̂ j |i xk,i −

(
γ̂ j |i − δ̂ j |i log xk,i

)× 1(α̂ j |i = 0, β̂ j |i < 0
)

x
β̂ j |i
k,i

, k = 1, . . . ,ni .

Extrapolation from the moderately extreme set A to the more extreme set B requires

simulation from the empirical residual distribution Ĥ|i , i.e., no closed-form formula such as

(2.12) exists for the conditional tail model. A simple but robust method suggested by Heffernan

and Tawn is to simulate data points along the lines of Algorithm 2.1 and to count the proportion



2.4 Conditional extremes 25

Algorithm 2.1: Simulating pairs from the conditional model.

Input: parameter estimates α̂ j |i , β̂ j |i , empirical residuals ẑ |i , threshold ui

repeat
Sample Xi from a Gumbel distribution conditioned on exceeding ui

Sample Ẑ j |i uniformly from the elements of ẑ |i

Compute X j = α̂ j |i Xi +X
β̂ j |i
i Ẑ j |i

Keep (Xi , X j )

until enough pairs are sampled

of them that fall into Bi defined in (2.20). This gives an estimate of Pr(X ∈Bi | Xi > ui ). The

probabilities Pr(Xi > ui ) can be estimated using the marginal model (2.23).

2.4.3 Alternative formulation, extensions and additional constraints

Heffernan and Tawn (2004) assume X to be marginally on the standard Gumbel scale for

the conditional model to be applicable. The asymmetry of the lower and upper tails in the

Gumbel distribution yields the convoluted parametric expressions (2.22) for the normalising

functions a j |i (·) and b j |i (·). Keef et al. (2013) choose to consider X on the standard Laplace

scale, thus keeping the Gumbel upper tail decay and ensuring symmetry of the lower and

upper tails. This yields simpler forms for the location function a(·), whose characterisation is

valid for both tails of the conditional probability (2.21), specifically

a(x) =αx, α ∈ [−1,1],

b(x) = xβ, β ∈ (−∞,1).
(2.25)

The simple form of the normalising functions (2.25) covers a broad collection of standard

parametric copula models, not only extreme value models such as the asymmetric logistic, but

also asymptotically independent distributions arising from inverted extreme value models,

and other distributions poorly described by standard theory for extreme values, e.g., the mul-

tivariate Gaussian distribution. Specifically, asymptotic dependence corresponds to similar

decay rates of the conditional and the marginal distributions, i.e., α j |i = 1 and β j |i = 0, but

it also covers asymptotic negative dependence, when the variables are strongly negatively

associated, with α j |i =−1 and β j |i = 0; other values correspond to asymptotic independence.

Positive association corresponds to α j |i > 0 and negative association corresponds to α j |i < 0.

Examples of conditional distributions are shown in Figure 2.5, and correspond to three differ-

ent classes of dependence structures under asymptotic independence that are introduced in

Heffernan and Tawn (2004); Xi and X j are positive extremal dependent if conditional quantiles

of X j | Xi > ui tend to ∞ when ui →∞, i.e., α j |i > 0, they are negative extremal dependent if

conditional quantiles tend to −∞, i.e., α j |i < 0, and extremal near independent if conditional

quantiles have a finite limit, i.e., α j |i = 0 and β j |i ≤ 0.
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Figure 2.5 – Examples of dependence structures with asymptotic independence spanned by the con-
ditional model. From left to right: negative association, positive association, and extremal near
independence. Data are simulated using the parameters displayed in the top right corner of each panel
and a Gaussian distribution with mean 1 for the residual distribution. Plain lines indicate conditional
medians, dashed lines represent the 5% and 95% conditional quantiles.

The simplicity of the formulation (2.21) when using the parameterisation (2.25) has some

weaknesses, such as that conditional probabilities that do not agree with marginal probabilities

in general; Keef et al. (2013) introduce additional constraints that improve on the original

model. Limiting conditional probabilities such as χ correspond to a natural ordering, with

asymptotic independence, i.e., χ = 0, being smaller than any type of asymptotic positive

dependence, with χ> 0. The measure χ defined in (2.9) is well-suited for positively associated

variables, and we shall write χ+ = χ. For negatively associated variables, the bottom right

corner is of interest, leading Keef et al. (2013) to define

χ− = lim
u→1

Pr
(
Y U ≤ 1−u | X U > u

)
,

for which χ− > 0 defines asymptotic negative dependence, and χ− = 0 is asymptotic nega-

tive independence, from which we conclude that the same natural ordering property holds

between asymptotic negative independence and asymptotic negative dependence,

The objective of additional constraints is to guarantee that these orderings hold above a

sufficiently high threshold. In what follows, as a complement to Keef et al. (2013), we develop

an argument showing how this can be done formally. Using the subasymptotic versions of χ+

and χ−, we have for large u,

1−χ+(u) = Pr
(
Y U ≤ u | X U > u

)
,

χ−(u) = Pr
(
Y U ≤ 1−u | X U > u

)
.

(2.26)

Writing q(·) = qu(·) for the conditional quantile function, i.e., q{Pr(Y U ≤ p | X U = u)} = p, we

conclude that q{1−χ+(u)} = u and q{χ−(u)} = 1−u by inverting the probabilities in (2.26).
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We now write q+(·), q(·) and q−(·) for the conditional quantile functions of Y | X = x for x

large under the model of Heffernan and Tawn (2004) under asymptotic positive dependence,

asymptotic independence and asymptotic negative dependence, respectively. Using the

monotonicity of the quantile function, we derive, for large u,

q+(1) > q+(1−χ+(u)) = u = q(1−χ+(u)) ≈ q(1),

q−(0) < q−(χ−(u)) = 1−u = q(χ−(u)) ≈ q(0),
(2.27)

which suggests imposing a specific ordering on the conditional quantiles, namely, q(1) < q+(1)

and q(0) > q−(0).

Keef et al. (2013) give a more informal argument and claim that the ordering of χ+ and

χ− under the different asymptotic limits yields a natural ordering for all levels p ∈ [0,1] of the

conditional quantiles. They argue that for any given p ∈ [0,1], the pth conditional quantile

under asymptotic independence must be larger than under asymptotic negative dependence

and smaller than under asymptotic positive dependence. In terms of the conditional tail

model, this translates as, for large xi ,

−xi +
(
H−

|i
)←

(p) ≤α j |i xi +x
β j |i
i H←

|i (p) ≤ xi +
(
H+

|i
)←

(p), p ∈ [0,1], (2.28)

with H−
|i and H+

|i the residual distribution functions under asymptotic negative dependence

and asymptotic positive dependence. By imposing the condition (2.28) for all xi above a

very high threshold v > ui , Keef et al. (2013) derive conditions on α j |i and β j |i . They find

through a range of examples that these conditions are strongest for p ∈ {0}∪{1} in (2.28), which

matches (2.27). The threshold v must be chosen above the range of the data to give the fit

more flexibility; the fit is largely insensitive to the particular choice of v , as reported by the

authors and as we have also experienced in practice.

We illustrate how the constraints derived by Keef et al. (2013) work with an application

to negative returns of Goldman Sachs and Citigroup, two major actors in the US banking

sector, using the price of their stocks from 1 November 2000 to 31 October 2017. We apply the

marginal model (2.23) to transform the data to the Laplace scale. We focus on the negative

returns of the Goldman Sachs share given losses of the Citigroup share that exceed 3.9%, cor-

responding to the marginal empirical 95% quantile. A standard fit using the method described

in Section 2.4.2 gives α̂GS|Citi = 0.39 and β̂GS|Citi = 0.72. As shown in Figure 2.6, these estimates

do not satisfy the conditions on (α,β) derived from (2.28). Another fit, where the constraints

are enforced, gives α̂GS|Citi = 0.46 and β̂GS|Citi = 0.53. In terms of the model parameters, the

difference between the unconstrained and constrained fits is noticeable, and more impor-

tantly, conditional quantiles derived from the unconstrained fit show inconsistencies which

the constrained fit eliminates. For example, a 15% loss on Citigroup gives a conditional 95%

quantile of 14.1% on Goldman Sachs when the fit is unconstrained, when under asymptotic

positive dependence the conditional 95% value-at-risk would be 13.5%; the constrained fit

gives a consistent estimate of 13.1%.



−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

αGS|Citi

β G
S

|
C

it
i

−800

−700

−600

−500

Figure 2.6 – Constraints on the parameters of the conditional model based on the negative returns
of Goldman Sachs, conditioned on big negative returns of Citigroup. The solid curve surrounds the
set where values of (α,β) satisfy the constraints; dashed lines correspond to the unconstrained set.
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The parameterisation of the norming functions (2.25) allows simple inference and inter-

pretation, and can capture a very broad class of extremal dependence structures (Heffernan

and Tawn, 2004). This parameterisation is too general, however, and additional constraints

are needed for sensible risk estimates. On the other hand, this parameterisation does not

cover the dependence structure of some inverted max-stable processes asymptotically (Pa-

pastathopoulos and Tawn, 2016). Although this may seem restrictive from a theoretical

perspective, Papastathopoulos and Tawn show that when the interest is in subasymptotic

levels, the norming functions (2.25) perform well in practice.

The Heffernan–Tawn model (2.21) has been used in several applications, in particular for

the dependence modelling of extremes in space and time (Keef et al., 2009a,b; Winter and

Tawn, 2016). Winter and Tawn (2017) extend the original model to cover kth-order Markov

chains and derive the transition distribution

Xk | (X0 = x0, . . . , Xk−1 = xk−1) ,

based on the joint conditional distribution of (X1, . . . , Xk ) | X0 > u given by (2.21), with (X t ) a

stationary time series having a Laplace marginal distribution. With this formulation, the au-

thors are able to derive the probabilities associated with any heatwave duration and introduce

a hypothesis test to facilitate the choice of the order k of the Markov chain. Extending the

conditional model in a different direction, for a 1st order Markov chain, Papastathopoulos

et al. (2017) consider finite-dimensional distributions of{
X t −bt (X0)

at (X0)
: t = 1,2, . . .

} ∣∣∣∣ X0 > u ,

and characterise the distributions of the corresponding tail chains.

An issue raised by Heffernan and Tawn (2004) is the lack of self-consistency between

probabilities derived from the separate conditional models involved in (2.20). For a pair of

variables X ,Y on the Laplace scale, self-consistency would require joint densities to match in

regions where more than one conditional model applies, that is,

d

d x
Pr

(
X ≤αx|y y + yβx|y x

∣∣∣ Y = y
)

e−y = d

d y
Pr

(
Y ≤αy |x x +xβy |x y

∣∣∣ X = x
)

e−x , (2.29)

for all x > ux and y > uy , with ux and uy two suitably high thresholds used as an approximation

to the limit (2.21). The case of asymptotic dependence, withαx|y =αy |x = 1 andβx|y =βy |x = 0,

implies the following constraint on the residual distributions,

d

d z
H|x (z) = e−z d

d z
H|y (−z), z ∈R.

In the case of asymptotic independence, Heffernan and Tawn argue that the equality (2.29) is

trivial in the limit and it is too complex to apply at finite levels.
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Liu and Tawn (2014) explore self-consistency more thoroughly; they show that (2.29)

cannot hold for all x > ux , y > uy , with H|x and H|y twice differentiable. They define a weaker

version of self-consistency, termed diagonal self-consistency, for which (2.29) holds for all

x > u, y > u with x = y and u a high threshold. This definition is helpful in practice, and

the authors work out a parametric class of residual distributions that satisfy diagonal self-

consistency and covers many asymptotically independent distributions.

Following the theoretical developments of Heffernan and Resnick (2007), self-consistency

is studied by Das and Resnick (2011), who show that if convergence (2.17) holds when condi-

tioning on either X or Y , with potentially different norming functions a and b, then (X ,Y ) is

in the domain of attraction of a multivariate extreme value distribution. This does not help

from a practical point of view, as this result does not hold when µ(·, ·) is a product measure, of

the form (2.18), as we assumed in (2.21).

2.5 Summary

In this chapter, we have reviewed how the probability of very extreme sets can be inferred

from that of moderately extreme sets, in the univariate setting using maxima or exceedances

of a high threshold, and in the multivariate setting, where no natural ordering exists. We

have then focused on extremes in time series, where dependence in time prevents from using

standard inference procedures; the peaks-over-threshold approach is one of the methods

that deal with short-range dependence of extreme observations. In the two-dimensional case,

we have described how asymptotic dependence can be described and measured. We have

emphasised the importance of models for data that are asymptotically independent, with

dependence at subasymptotic levels.

The last section was dedicated to the conditional tail approach, and we have seen how it

can be used to estimate the probabilities of extreme events. In Laplace margins, this approach

is parsimonious and easy to use for inference on multidimensional data. It is very flexible

and covers a broad class of extremal structures of dependence, but lacks self-consistency for

extreme joint probabilities extrapolated from different conditional distributions. It is also

unclear to what extent the assumptions needed to make inference have an impact on the

estimation of extreme probabilities and on the assessment of uncertainty for risk estimates.

We suggest a new approach to fitting the conditional tail model in Chapter 5, but before

we do so, we introduce background material on the Bayesian nonparametric framework and

we explore finite-sample properties of the conditional model in Chapter 4.



3 The Dirichlet process

3.1 Formal definitions

3.1.1 The Dirichlet distribution

In Bayesian modelling, the Dirichlet distribution is a conjugate prior for the parameters of

a multinomial distribution. It is also a generalisation of the beta distribution to the (d −1)-

dimensional simplex S= {(x1, . . . , xd−1) : x j ≥ 0,
∑d−1

j=1 x j ≤ 1}. The Dirichlet density function

is

f (x1, . . . , xd−1 | γ1, . . . ,γd ) = Γ(γ1 +·· ·+γd )

Γ(γ1) · · ·Γ(γd )

(
1−

d−1∑
j=1

x j

)γd−1 d−1∏
j=1

x
γ j−1
j , (x1, . . . , xd−1) ∈S,

(3.1)

with γ j > 0, j = 1, . . . ,d . Ferguson (1973) uses a constructive approach that permits a more

general definition. Let Z1, . . . , Zd be independently gamma distributed Ga(1,γ j ) variables, with

shape parameters γ j ≥ 0, and γ j > 0 for some j , j = 1, . . . ,d . The distribution of (X1, . . . , Xd ),

with

X j =
Z j∑d

k=1 Zk

, j = 1, . . . ,d ,

is Dirichlet with parameter (γ1, . . . ,γd ), which we shall write Dir(γ1, . . . ,γd ). Any γ j = 0 implies

that X j ≡ 0; if γ j > 0 for all j = 1, . . . ,d , the density function of (X1, . . . , Xd−1) is exactly (3.1).

The marginal expectation and variance are

E(X j ) = γ j∑d
k=1γk

, var(X j ) = γ j
(∑d

k=1γk −γ j
)

(∑d
k=1γk

)2 (∑d
k=1γk +1

) . (3.2)

An interesting property of the Dirichlet distribution is its updating of prior beliefs after

recording multinomial observations, building a useful link with the Pólya urn scheme devel-

oped in Section 3.1.3. If (X1, . . . , Xd ) have prior distribution Dir(γ1, . . . ,γd ) and observations

31
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are such that

Pr(Y = j | X1, . . . , Xd ) = X j , j = 1, . . . ,d ,

almost surely, then the posterior distribution becomes

(X1, . . . , Xd ) | {Y = j } ∼ Dir
(
γ1, . . . ,γ j +1, . . . ,γd

)
. (3.3)

3.1.2 Ferguson’s definition

Given a set P and its associated σ-field T , Ferguson (1973) gives the following definition

of a Dirichlet process:

Definition 3.1 (Dirichlet process)

Let ν(·) be a finite measure on (P ,T ). We say that P is a Dirichlet process on (P ,T ) with

parameter ν(·) and we write DP(ν) if, for every k = 1,2, . . . and measurable partition (C1, . . . ,Ck )

of P ,

{P (C1), . . . ,P (Ck )} ∼ Dir{ν(C1), . . . ,ν(Ck )}.

The joint probability of any measurable sets D1, . . . ,Dl , for any l = 1,2, . . ., can be derived from

the partition with sets

Ck1,...,kl =
l⋂

j=1
D

k j

j ,

where k j ∈ {0,1} and D1
j is interpreted as D j and D0

j as its complement Dc
j = X \ D j . The

marginal distribution of {P (D1), . . . ,P (Dl )} is given by

P
(
D j

)= ∑
{(k1,...,kl ):k j=1}

P
(
Ck1,...,kl

)
.

A more practical expression for the finite measure ν(·) is γP0(·) = ν(·), where γ= ν(P ) > 0 is

a constant termed the concentration parameter and P0(·) is a probability distribution termed

the baseline distribution. These terms can be understood from the expectation and variance

of the Dirichlet distribution (3.2), which yield, for any set C ∈T ,

E{P (C )} = P0(C ),

var{P (C )} = P0(C ){1−P0(C )}

γ+1
. (3.4)

The baseline distribution P0(·) can thus be interpreted as the prior belief for P (·), and the

concentration parameter γ as the assurance we have in this prior belief; the larger the value of

γ, the stronger the confidence.

In analogy with the Bayesian update of the Dirichlet distribution as a prior distribution

for multinomial data in (3.3), Ferguson shows that if X is a sample from the Dirichlet process
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P (·) = γP0(·), then P (· | X ) is the updated Dirichlet process DP{γP0(·)+δX (·)}, where δx (·) is

the measure on (P ,T ) such that δx (C ) = 1(x ∈C ), for any C ∈T .

3.1.3 Extension of the Pólya urn scheme

Blackwell and MacQueen (1973) give another definition of the Dirichlet process based on

a generalisation of Pólya urn schemes using a continuum of colours.

Definition 3.2 (Pólya sequence)

The sequence (Xn) of random variables taking values in P is a Pólya sequence with parameter

ν(·) if for every C ∈T , Pr(X1 ∈C ) = ν(C )/ν(P ) = P0(C ), and

Pr(Xn+1 ∈C | X1, . . . , Xn} = νn(C )/νn(P ),

with νn(·) = ν(·)+∑n
i=1δXi (·).

For finite P , this definition mimics the process of drawing a ball from an urn initially contain-

ing ν(x) balls of colour x and putting the ball drawn back into the urn with an additional ball

of the same colour. By extending this to the continuous setting as in Definition 3.2, Blackwell

and MacQueen show that νn(·)/νn(P ) converges with probability 1 to a discrete distribution

P (·) and P ∼ DP(ν). They also show that given P (·), the variables X1, . . . , Xn are independent

and

X1, . . . , Xn | P ∼ P.

As we shall see in Section 3.2, this is one of the building blocks of the Dirichlet process mixture

model.

3.1.4 Constructive definition

Similarly to the construction of a Dirichlet distribution using gamma-distributed random

variables described in Section 3.1.1, Ferguson (1973) introduces an alternative definition of the

Dirichlet process through a gamma process with independent increments. A more intuitive

approach is presented by Sethuraman (1994), who shows that a Dirichlet process with measure

γP0(·) can be represented as

P (·) =
∞∑

c=1
wcδXc (·), (3.5)

where the weights wc are constructed using the stick-breaking process as follows,

w1 =V1, V1 ∼ Beta(1,γ),

wc =Vc ×
c−1∏
k=1

(1−Vk ), Vc
iid∼ Beta(1,γ), c = 2,3, . . . ,

(3.6)

where the Vc are mutually independent and independent of the Xc , which are independent

and identically P0-distributed. The process outlined in (3.6) corresponds to breaking a stick of
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length 1 to get w1, then breaking the remainder of the stick to get w2, and so on. Notice that∑∞
c=1 wc = 1, since

N∑
c=1

wc =V1 +
N∑

c=2
Vc

c−1∏
k=1

(1−Vk ) = 1−
N∏

c=1
(1−Vc )

Pr−→ 1, N →∞,

where the convergence holds with P -probability 1, and the last equality is obtained using a

simple recursion argument.

The very simple representation offered by the stick-breaking process is widely used in the

conditional approach to fitting Dirichlet process mixtures, as we shall see in Section 3.3.2.

3.2 The Dirichlet process mixture

Using different approaches, Blackwell (1973) and Ferguson (1973) show that the Dirichlet

process introduced in Sections 3.1.2 and 3.1.3 almost surely has a discrete measure, and

this property appears explicitly in Sethuraman’s representation (3.5). Although the Dirichlet

process is a very flexible Bayesian approach to nonparametric problems, its discreteness limits

the range of applications in practice.

Antoniak (1974) introduces the Dirichlet process mixture model, which builds on the

attractive properties of the Dirichlet process and enriches the class of problems to which it

can be applied. This model features a mixture of a countably infinite number of distributions,

where the Dirichlet process is used as a mixing distribution for the parameters of the mixture

distributions. Given observations X1, . . . , Xn , the model is specified as

Xi | θi
ind∼ F (θi ), i = 1, . . . ,n,

θi | P iid∼ P, i = 1, . . . ,n

P ∼ DP(γP0),

(3.7)

where F (θ) belongs to a family of distributions indexed by a parameter θ, and conditional

independence is assumed to hold for the Xi given the θi and for the θi given P .

The introduction of an auxiliary variable which plays the role of an indicator variable

simplifies (3.7) and helps understand the clustering nature of the Dirichlet process mixture

model (Müller et al., 1996; MacEachern, 1994), namely taking the limit as N →∞ of

Xi | ci , (θ1, . . . ,θN ) ind∼ F (θci ), i = 1, . . . ,n,

ci | (w1, . . . , wN ) ind∼ Mult(w1, . . . , wN ), i = 1, . . . ,n,

θc
iid∼ P0, c = 1, . . . , N ,

(w1, . . . , wN ) ∼ Dir(γ/N , . . . ,γ/N ),

(3.8)
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where Mult(w1, . . . , wN ) denotes the multinomial distribution, with
∑N

c=1 wc = 1, and the ci

are the indicator variables, so that if ci = c j , Xi and X j share the same parameter θ and thus

belong to the same component in the mixture; the weights w1, . . . , wN have a symmetric

Dirichlet prior distribution with concentration parameter γ/N approaching 0 as N →∞.

Theoretical results establish the flexibility and the suitability of the Dirichlet process

mixture model in estimating a broad class of densities. Using various metrics on densities,

and under mild conditions, Ghosal et al. (1999) and Barron et al. (1999) develop consistency

results that guarantee that the posterior density of the Dirichlet process mixture can arbitrarily

closely approximate any density lying in the support of the Dirichlet process mixture prior.

Ghosal et al. (2000) derive convergence rates for infinite-dimensional Bayesian models, and in

particular for Dirichlet process mixture models. Good references for Dirichlet process mixture

models and Bayesian nonparametrics in general are Dey et al. (1998), Gosh and Ramamoorthi

(2003), Hjort et al. (2010), and Ghosal and van der Vaart (2017).

3.3 Algorithms

3.3.1 Marginal approach

The first approach to fitting a Dirichlet process mixture model is based on the generalised

Pólya urn scheme of Blackwell and MacQueen (1973), which gives the joint distribution of the

θi in (3.7) as the product of the conditional distributions

θi | θ1, . . . ,θi−1 ∼ γ

γ+ i −1
P0 + 1

γ+ i −1

i−1∑
j=1

δθ j .

This yields the following conditional prior probabilities for the indicator variables ci intro-

duced in the model (3.8), integrating over the weights w1, . . . , wN and taking the limit as

N →∞,

Pr(ci = c | c1, . . . ,ci−1) → n−i ,c

n −1+γ , c = c j , j = 1, . . . , i −1, (3.9)

Pr
(
ci 6= c j , j 6= i , j = 1, . . . ,n | c−i

)→ γ

n −1+γ , (3.10)

where n−i ,c =∑i−1
j=1 1(c j = c) corresponds to the number of observations among X1, . . . , Xi−1

assigned to component c. Given a state where all n observations are allocated to several com-

ponents, a new observation Xn+1 has thus more probability to join a component with many

observations assigned to it than a component with few observations assigned to it, but there

is a non-null probability γ/(n−1+γ) that Xn+1 will create a new singleton component. This is

another perspective of the role of the precision parameter γ, in addition to its importance in

the variance (3.4).
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A lot of research has been done to develop efficient algorithms to sample from the poste-

rior distribution of the Dirichlet process mixture, including MacEachern and Müller (1998)

and Escobar and West (1998). Neal (2000) reviews these techniques and develops more ad-

vanced methods with the objective of improving the mixing of the Markov chain Monte Carlo

procedure.

We now briefly present here Algorithms 5 and 8 of Neal (2000), more details being available

in Appendix A. We begin with the description of a fundamental sampling procedure in Bayesian

statistics. In the general case when the priors are non-conjugate, the Metropolis–Hastings

(1970) algorithm provides a rejection procedure from which posterior samples are drawn.

Given a current state θ, a proposal density q(· | ·) and a posterior density π(· | x) conditionally

on observing x, the procedure consists of the following steps: first, sample a candidate θ?

from q(· | θ); second, compute the acceptance ratio

a
(
θ?,θ

)= min

{
1,

q(θ | θ?)π(θ? | x)

q(θ? | θ)π(θ | x)

}
; (3.11)

finally, assign θ? to the new state with probability a(θ?,θ), otherwise assign θ to the new state.

In practice, π(· | x) is often unknown, and the product of the prior density π(θ) and the density

f (x | θ) is used instead, as the norming constant cancels in the acceptance ratio (3.11).

In the context of the Dirichlet process mixture, we can simplify the acceptance probability

of the indicator variable by using the limiting conditional prior probabilities (3.9) and (3.10)

as the proposal distribution. Instead of using a standard proposal distribution q(· | ci ) to draw

a new candidate c?i given the current state ci , the proposal distribution is of the form q(· | c−i ),

considering the i th observation as being the last in (3.9) and (3.10), giving

a
(
c?i ,ci

)= min

{
1,

q(ci | c−i ) f (xi | θc?i
)π(c?i | c−i )

q(c?i | c−i ) f (xi | θci )π(ci | c−i )

}

= min

{
1,

f (xi | θc?i
)

f (xi | θci )

}
, i = 1, . . . ,n,

(3.12)

as the prior and the proposal distributions cancel. This acceptance probability can be used

to sweep through the n observations and update the indicator variables according to the

Metropolis–Hastings scheme. Theoretically, we would not need to update the θi , as newly-

created components naturally introduce new values of θ, but much better mixing of the

Markov chain is achieved by implementing an update of the mixture parameters, along the

lines of Algorithm A.1 in Appendix A.

In order to improve mixing further, Neal (2000) introduces auxiliary variables in the form

of multiple empty component candidates in Algorithm 8. For some positive integer m ≥ 1, m

new components are drawn each time before a new candidate c?i is sampled, increasing the

chances of effectively creating a new component. Since the ordering of the observations is

arbitrary and the ci are exchangeable, we can assume that for a fixed ci , the c j 6= ci take values
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in {1, . . . ,k−i } and have conditional prior probabilities

Pr(ci = c | c−i ) = n−i ,c

n −1+γ , i = 1, . . . ,n, 1 ≤ c ≤ k−i , (3.13)

as we can use the probability (3.9) and consider ci as being the last of c1, . . . ,cn , since these

are exchangeable. The m new components are indexed by k−i +1, . . . ,k−i +m and have the

conditional prior probability (3.10), which is split between the m new components so that

Pr(ci = c | c−i ) = γ/m

n −1+γ , k−i < c ≤ k−i +m. (3.14)

From the conditional prior probabilities (3.13) and (3.14), the posterior probability given

observation xi follows from the Bayes rule, namely

Pr(ci = c | c−i , xi , θ1, . . . ,θk−i+m
)

∝ Pr
(
xi

∣∣ ci = c,c−i ,θ1, . . . ,θk−i+m
)×Pr

(
ci = c

∣∣ c−i ,θ1, . . . ,θk−i+m
)

= Pr(xi | θc )×Pr(ci = c | c−i ) ,

which is specified as

Pr
(
ci = c

∣∣ c−i , xi ,θ1, . . . ,θk−i+m
)=


κ

n−i ,c

n −1+γ f (xi | θc ) , 1 ≤ c ≤ k−i

κ
γ/m

n −1+γ f (xi | θc ) , k−i < c ≤ k−i +m,
(3.15)

where κ> 0 is a normalising constant ensuring that the probabilities sum to 1. This yields a

Gibbs sampler, or equivalently a Metropolis–Hastings algorithm where the acceptance proba-

bility is constantly 1, and the choice of m can be viewed as a trade-off between computational

cost and mixing. Algorithm A.2 in Appendix A provides more details.

3.3.2 Conditional approach

Another approach uses an approximation of the Dirichlet process closely related to (3.8) for

finite N . Ishwaran and Zarepour (2000) and Ishwaran and James (2003) consider Sethuraman’s

representation (3.5) and approximate the series by a finite sum, so that

P (·) =
N∑

c=1
wcδXc (·).

In practice, the value of N should not be interpreted as an upper bound for the number of

components in the mixture, and should be set to a value much larger than the a priori expected

number of components. The precise value of N generally does not impact on the inference, as

long as it is large enough; in particular, Ishwaran and James (2001, 2002) show that the joint

posterior distribution of the ci rapidly converges to its limit as N →∞. According to these

results, it is advisable to choose N > 50 for 1,000 observations and γ = 3. More details are



38 Chapter 3. The Dirichlet process

given in Section 5.6. If we believe that the number of components should be small, or large,

then the concentration parameter γ should reflect this prior belief, as the larger γ, the more

likely it is to have many components in the mixture, and vice versa.

The truncation of (3.5) is key in this approach, and conjugate priors can be used for

sampling the finite number of parameters in the model. Specifically, a generalised Dirichlet

distribution (Connor and Mosimann, 1969) corresponds to the prior distribution for the

weights, for which the truncation implies wN = 1−∏N−1
c=1 (1−Vc ), in contrast with (3.6). Because

the parameter space is finite, (θ1, . . . ,θN ) are sampled in one block from the joint posterior;

this may seem as a waste of computational time, since potentially most of the N components

will remain empty during the sampling process, but the cost is bearable, as empty components

only imply sampling from the prior distribution.

Extensions and improvements have been suggested, e.g., Papaspiliopoulos and Roberts

(2008) develop a retrospective sampling scheme that does not need truncation of Sethuraman’s

representation (3.5), Walker (2007) introduces a latent variable that also does not involve

approximation of (3.5) and Papaspiliopoulos (2008) brings these two approaches together in a

better-mixing and computationally less expensive algorithm.

3.4 Example: 3-year bond yields

We now illustrate the three algorithms presented in Section 3.3 with data from the sovereign

bond market. We consider 3-year bond yields across 53 countries and their respective rating

published by Moody’s. More details about the data are available in Appendix C. Our goal is to

examine whether the Dirichlet process can capture any structure in the yields corresponding

to Moody’s ratings. We look at cross-sectional data at a given time point, since our objective is

to illustrate the different Dirichlet process algorithms rather than give a complete study of the

evolution of yield spreads and ratings across time.

Figure 3.1 shows different perspectives of the data; the default histogram produced by R (R

Core Team, 2017) hides its clustered nature, and a thinner bin width gives more insight. We do

not expect the rating of a country to be directly linked with its bond yield, as the rating does

not cover all aspects that are important in explaining the yield, such as the lending rates of the

central bank. Another reason partially explaining the difficulty in linking rating and yield is

the time lag needed by the agency to update its rating. Mexico, for example, borrows money

on a 3-year horizon at around 7% and is rated A. However, its exact rating is A3 with a negative

perspective, meaning that it is likely to be attributed a Baa rating soon.

We run Algorithms 5 and 8 of Neal (2000), corresponding to the marginal approach to

fitting a Dirichlet process mixture, and the blocked Gibbs algorithm of Ishwaran and James

(2002), following the conditional approach. I implemented the code for all three algorithms,

the last of which is available in my R package tsxtreme.



3.4 Example: 3-year bond yields 39

3−Year bond yield

F
re

q
u

en
cy

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

0% 5% 10% 15%

●

Aaa Aa A Baa Ba B Caa

Moody's rating
3
−
Y
ea

r 
b
on

d
 y

ie
ld

0
%

5
%

1
0
%

1
5
%

Figure 3.1 – Bond yields for 53 countries for a 3-year horizon. Left panel: histograms of the yields with
bin width 2 (white) and 1 (grey). Right panel: boxplots of the yields stratified by rating; Ukraine is the
only country with a Caa rating and is represented with a single line.

We use the same vague but well-defined priors for the three algorithms, in particular a

gamma distribution with scale and shape equal to 2 for the hyperprior of the concentration

parameter γ, thus having prior expectation equal to 4, and prior variance equal to 8. The

update procedure for the concentration parameter in Algorithm 5 and Algorithm 8 is detailed

in Appendix B. For Algorithm 5 of Neal, we update the ci only once per sweep, corresponding

to R = 1 in Algorithm A.1, thus not trying to reduce autocorrelation between consecutive

samples. For Algorithm 8 of Neal, we use m = 1, meaning that we propose only one new

component when ci = c j for some j , or none if ci belongs to a singleton. We compute 20,000

iterations after a burn-in period of 1,000 iterations.

The computing times for each algorithm were in the following proportions, compared

to the conditional approach: Algorithm 5 takes about twice the time and Algorithm 8 takes

more than eight times longer. Additional computing time comes with some benefits, namely a

reduction in the autocorrelation of successive samples. A particular quantity of interest is the

autocorrelation time (Robert and Casella, 2004, Chap. 12), which is defined for any function h

evaluated at posterior samples θ(1), . . ., specifically

τ(h) = 1+2
∞∑

t=2
corr

{
h

(
θ(1)) , h

(
θ(t ))} ,

which can be estimated by truncation of the infinite sum in practice. A more explicit measure

of the information carried by n consecutive posterior samples θ(1), . . . ,θ(n) from a Markov

chain, compared to independent posterior samples, is the effective sample size (Kish, 1965,
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Chap. 8; Kass et al., 1998)

ESS(n) = n

τ(h)
.

Another definition is (Gong and Flegal, 2016)

ESS(n) = n
λ2

σ2 ,

where σ2 stands for the variance of the mean of the dependent samples h(θ(1)), . . . ,h(θ(n)),

typically estimated with batch means (Jones et al., 2006; Geyer, 2011), and λ2 is the posterior

variance of h(θ(1)), . . . ,h(θ(n)), for which a standard estimator can be used.

Because of the lack of identifiability of the components in the Dirichlet process mixture, the

Markov chains for the means and variances cannot be considered for computing an estimate

of the effective sample size. The precision parameter is a better candidate for this purpose.

We use the R routine of Flegal et al. (2017) to compute effective sample sizes on the three

algorithms mentioned above, plus variants of Algorithms 5 and 8. These variants consist in

setting R = 5 for Algorithm 5, i.e., we compute a nested Markov chain of length 5 for the ci and

only store the last sample; for Algorithm 8, we set m = 5, i.e., we create 4 or 5 new candidate

components at each iteration, depending on whether ci or not corresponds to a singleton.

Both variants improve the mixing of the output compared to the base cases where R = 1 or

m = 1, either by repeated updates of the component assignments of which 1 in 5 is saved, or by

proposing more than one new component at each update. We standardise the effective sample

sizes and computing times and plot them in Figure 3.2 for comparison. It appears that the

blocked Gibbs algorithm used for the conditional approach is best in terms of computing time;

the algorithm can overcome relatively poor mixing by computing longer chains. For a given

computational time available, with the current implementation, the conditional approach

seems to be the best choice, along with Algorithm 5 with R = 1.

Going back to our sovereign bond data, we plot the distribution of the distributions fitted

to the 3-year yield, for which the three algorithms give similar outputs. An example with

the conditional approach is shown in Figure 3.3, where sample densities are compared to a

histogram of the data and shows how bumps in the tail are well-captured by the algorithm.

The distribution of the yields with a pointwise 90% coverage interval is also constructed from

1,000 posterior distribution samples and shows a good fit of the empirical distribution.

A feature of interest of the Dirichlet process mixture is the distribution of the number of

components containing at least one observation (right panel of Figure 3.4). The conditional

approach and Algorithm 8 give similar results and higher probabilities for larger numbers of

non-empty components than Algorithm 5. We do not expect the algorithms to capture the

structure in terms of Moody’s ratings, but we observe that the respective posterior medians

(8,7,6) are close to the 7 grades in the sample.

The Bayesian approach to fitting a mixture of distributions provides a broad range of

statistics that can be calculated from posterior traces. Figure 3.4 shows (left panel) an example
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Algorithm 8 (light red). Right panel: posterior number of non-empty components in the mixture using
the same colour code, with Algorithm 5 superimposed (blue).

of this richness, when we are interested in how Switzerland, rated Aaa by Moody’s, positions

itself among countries with similar yields. In this figure, we condition on the mixture having

seven non-empty components and we compute the posterior quantile of Switzerland’s yield

in the component it belongs to. Algorithms 5 and 8 give similar results, and only the latter is

displayed, along with the conditional approach. Since there are seven countries rated Aaa

and Switzerland is the least generous borrower among them, an empirical estimate would be

12.5%, while all three algorithms seem to indicate the range 5% to 10% as more likely, which

we can explain since many countries rated Aa and A enjoy similar 3-year yields as countries

rated Aaa, thus having a non-negligible probability to belong to the same mixture component

as Switzerland.

3.5 Summary

In this chapter, we reviewed several definitions and properties of the Dirichlet process.

Because Dirichlet processes are not appropriate to fitting continuous distributions, we have

presented an extension in the form of Dirichlet process mixtures, which are very flexible

and powerful tools for fitting density functions with unknown shapes, including multimodal

densities.

We then presented two different kinds of approaches to make inference on Dirichlet

process mixtures. The marginal approach uses a type of Pólya urn scheme to assign an

observation to a component in the mixture, while the conditional approach approximates the

Dirichlet process so as to deal with a finite sample space, thus allowing successive conditional

updates of the model parameters. An illustration with real data highlighted the performances

of algorithms stemming from the marginal and conditional approaches to fitting Dirichlet



3.5 Summary 43

process mixtures, and showed how the output from these algorithms can be used to answer a

very broad class of questions.

If we can take advantage of this Bayesian nonparametric framework in the context of the

conditional tail model introduced in Section 2.4.2 of Chapter 2, then we may be able to derive

an efficient methodology for modelling extremes. This will be the topic of Chapter 5, but we

shall first look into the penultimate properties of the conditional tail model, which the next

chapter is about.





4 Penultimate analysis of the condi-
tional tail model

4.1 Related research

4.1.1 Univariate case

The founding theorem in the theory of extreme values that we introduced as Theorem 2.1

in Chapter 2 characterises the extreme value distribution G(x) which arises as the limit of

the distribution of suitably normalised independent maxima F n(an x +bn). This asymptotic

distribution G(x) is useful in practice, i.e., when a finite amount of data is available, and

usually, the tail of F n(x) is identified to its limit distribution and inference is conducted using

G{(x −bn)/an}, with an and bn two parameters to be estimated.

Fisher and Tippett (1928) raised the question of the accuracy of this approximation in

the Gaussian case, i.e., F (x) =Φ(x), for which they prove that the limit distribution G(x) is

Gumbel. They show experimentally that Φn(an x +bn) would be better approximated at finite

levels by a distribution belonging to the Weibull class, corresponding in our notation to a

generalised extreme value distribution with shape parameter ξ< 0. The default approximation

of F n(an x + bn) by G(x) in extreme value applications is thus of great concern when the

convergence of the former towards the latter is particularly slow.

The study of rates of convergence of |F n(an x+bn)−Gξ(x)| towards 0, where we emphasise

that G(x) =Gξ(x) is parametrised by ξ, has a long history. The first attempts at characterising

this rate of convergence for any value of ξ date to Gomes (1984, 1994) and an unpublished

report by Smith (1987). Smith considers convergence in Hellinger distance, which implies

uniform convergence of the distribution functions, and for this he assumes existence of the

density f (x) = F ′(x) and its derivative f ′(x). If F (·) has support on [xF , xF ], we can write

− logF (x) = exp

{
−

∫ x

xF

d t

h̃(t )

}
, x ∈ [xF , xF ],

45
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where h̃(x) =−F (x) logF (x)/ f (x); it is convenient to use the equivalent characterisation for x

large, namely

F (x) = exp

{
−

∫ x

xF

d t

h(t )

}
, x → xF ,

where h(x) = {1−F (x)}/ f (x) is the hazard function, and F (x) = 1−F (x) is the survival distribu-

tion function.

Assume

lim
x→xF

h′(x) = ξ, ξ ∈R,

which is one of the von Mises (1936) conditions and is necessary for F (·) to be in the domain

of attraction of an extreme value distribution. Pickands (1986) shows that this condition is

necessary and sufficient for convergence of F n in Theorem 2.1, and related convergences for

f and f ′. For X ∼ F , Smith elegantly shows that

Pr(X > u +xh(u) | X > u) = 1−F {u +xh(u)}

1−F (u)
= {

1+xh′(y)
}−1/h′(y) , (4.1)

for some fixed y ∈ [u,u + sh(u)]. Substituting bn = u, an = h(bn) and 1−F (bn) = 1/n in (4.1),

this yields

− logF n(an x +bn) ∼ n {1−F (an x +bn)} ∼ (1+xξn)−1/ξn , n →∞,

or equivalently

F n(an x +bn) ∼ exp
{
− (1+xξn)−1/ξn

}
, n →∞,

where Smith defines ξn = h(bn), effectively choosing y = u in (4.1). The details of this develop-

ment are explained in Appendix D.

Using the above expressions for an , bn and ξn , Gomes and Pestana (1987) and Gomes

(1994) show that

F n(an x +bn)−Gξ(x) =O(ξn −ξ), n →∞, (4.2)

and give the structure of the remainder term on the right-hand side for a broad class of

distribution functions F (·), including the Gaussian distribution (Anderson, 1971). For this

class, Gomes (1994) also gives

F n(an x +bn)−Gξn (x) =O{(ξn −ξ)2}, (4.3)

thus showing that the subasymptotic approximation for the shape parameter greatly improves

the rate of convergence.

In order to illustrate the properties stated above in equations (4.2) and (4.3), consider

the standard Gaussian distribution with F (·) =Φ(·) and f (·) = ϕ(·). Mills’ ratio can be used

to derive the approximation to the survival distribution function F (x) ≈ ϕ(x)
{
1/x −1/x3

}
,

from which we get the approximate hazard function h(x) ≈ 1/x − 1/x3 and its derivative
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h′(x) ≈−1/x2 +3/x4. We also know (Leadbetter et al., 1983, p. 14) that bn =√
2logn +o(1) in

the Gaussian case, so that ξn = h′(bn) =−1/(2logn)+O{1/(logn)2}. The convergence rate (4.2)

is O(1/logn) using the limit shape parameter, and it improves to O{1/(logn)2} when using ξn

instead of ξ, as in (4.3). In this development, we observe that the penultimate shape parameter

is negative for any finite n, which is consistent with the analysis by Fisher and Tippett (1928)

of a Weibull-type distribution yielding better approximations at finite levels.

4.2 Bivariate case

4.2.1 Componentwise maxima

Marshall and Olkin (1983) derive the general form of the norming sequences (an) > 0

and (bn) in the bivariate context, extending the univariate results of Gnedenko (1943). They

also give examples of bivariate distributions and show whether they belong to a domain of

attraction.

Only a few studies have focused on the penultimate properties of bivariate maxima. Among

these are Bofinger and Bofinger (1965), who derive the correlation of componentwise maxima

in samples with n = 2, . . . ,50 replicates from a bivariate Gaussian distribution. This study gives

the penultimate form of this correlation, which is more subtle than the limit correlation, which

we know from Sibuya (1960) is always zero. In a subsequent article, Bofinger (1970) extends

this analysis to non-Gaussian bivariate distributions, in particular the bivariate Gamma and

Morgenstern (1956) distributions. This analysis sheds light on the form of the penultimate

correlation for small n, in contrast with the asymptotic correlation being always zero, e.g., for

the Morgenstern distribution, whatever the dependence at finite levels.

In a different context, Ledford and Tawn (1996) use penultimate properties of Pr(X F >
z,Y F > z) on Fréchet margins to derive their model, which we introduced in Section 2.3.2.

A better understanding of the subasymptotic tail behaviour yields a model that smoothly

connects perfect dependence and complete independence.

4.2.2 Conditional extremes

The conditional model for extremes covers a broad class of extremal dependence struc-

tures, and in particular most of the parametric models of Section 4.2.1. It is also interesting

in that it can capture positive association for random variables that are asymptotically in-

dependent, in contrast with standard theory for multivariate extremes in which asymptotic

independence can only arise under complete independence.

In our analysis, we focus on the bivariate case, as it yields clearer notation, and extension

to the general multivariate case is straightforward when conditional independence holds in

the limit. We consider marginally Laplace-distributed (X ,Y ) and look at pairs for which X

exceeds a high threshold u.
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The conditional model for extreme values (Heffernan and Tawn, 2004) introduced in

Section 2.4.2 is based on the assumption that there exist norming functions a(·) and b(·) > 0

such that

lim
x→∞Pr

{
Y −a(X )

b(X )
≤ z

∣∣∣∣ X = x

}
= H(z), (4.4)

where the distribution H(·) is non-degenerate and has no mass at ∞.

Recall from Section 2.4.2 that Heffernan and Resnick (2007) consider an equivalent setup

with aHR(·) and bHR(·) > 0 that are deterministic functions of the modelling threshold u, that

is,

lim
u→∞Pr

{
Ỹ −aHR(u)

bHR(u)
≤ z

∣∣∣∣ X F > u

}
=µ([−∞, z]× (1,∞]) =: H?(z),

where H?(·) is a non-degenerate distribution function and the marginal distribution of Ỹ

is unknown. We do not consider this formulation here, as in practice we have information

about the exact values of the observations X F, and this additional information guarantees

factorisation of the measure µ(·, ·), which is key for extrapolation of probability of extreme sets

from the model (4.4).

By considering a broad class of parametric models, Heffernan and Tawn derive parametric

forms for a(·) and b(·) that yield a parsimonious model and cover a broad range of extremal

dependence structures not described by models arising from the standard theory for multi-

variate extremes. In our penultimate analysis, we interpret these parametric forms of a(·) and

b(·) as the first order behaviour of the norming functions, and we write

a(x) ∼αx := a0(x), α ∈ [−1,1],

b(x) ∼ xβ := b0(x), β ∈ (−∞,1).
(4.5)

Our goal is to characterise the behaviour of the remainder terms defined as

a(x)−a0(x) ∼ ra(x),

b(x)−b0(x) ∼ rb(x).

We can now consider the second-order normalisation for a(·) and b(·), with

a1(x) = a0(x)+ ra(x),

b1(x) = b0(x)+ rb(x).
(4.6)

With these penultimate forms, we are able to refine the normalisation of Y in (4.4), yielding

the subasymptotic conditional distribution

Pr

{
Y −a1(x)

b1(x)
≤ z

∣∣∣∣ X = x

}
= Hx (z), x > u, (4.7)

with Hx (z) → H(z) as x →∞.
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Heffernan and Tawn (2004) give the rate of convergence of the conditional distribution for

data arising from various copula models in terms of the order of convergence towards zero, as

x →∞, of

Pr

{
Y −a0(X )

b0(X )
≤ z

∣∣∣∣ X = x

}
−H(z), (4.8)

with (X ,Y ) on the Gumbel scale, and transform the marginal scale in order to have Pr(X >
x) = n−1, so that rates are invariant to the specific choice of marginal distribution.

We compute these rates on the Laplace scale and also use a marginal transform in order to

have Pr(X > x) = n−1. We consider how much we can improve on these rates when using the

penultimate norming, by studying the rate of convergence to zero of

Pr

{
Y −a1(X )

b1(X )
≤ z

∣∣∣∣ X = x

}
−H(z). (4.9)

We also want to quantify the subasymptotic remainder, using

sup
x>u

∣∣∣∣Pr

{
Y −a1(x)

b1(x)
≤ z

∣∣∣∣ X = x

}
−Hx (z)

∣∣∣∣ , (4.10)

along the lines of Gomes (1994) in the univariate context.

The subasymptotic norming functions a1(·) and b1(·) are of particular interest when

conducting simulation studies, as the rate of convergence of (4.8) towards zero can be slow, so

that estimates of a0(·) and b0(·) can misleadingly suggest a poor fit.

In the next sections, we consider three examples of copula structures. We first consider

the Gaussian copula for which the convergence of (4.8) to zero was reported by Heffernan and

Tawn to be the slowest in the examples they considered, namely O{log(logn)/(logn)1/2}; it is

thus of great interest to derive the subasymptotic remainder size ra(x) and rb(x). Second, we

consider another example with asymptotic independence; the inverted logistic dependence

structure has a faster convergence rate than the Gaussian copula, and we shall see that it is

harder to determine a subasymptotic behaviour. Heffernan and Tawn reported the rate to

be O(1/logn) in this case. Third, the logistic dependence structure represents the case of

asymptotic dependence, and this is also a situation where convergence is known to be fast,

with O(1/n).

4.3 Gaussian distribution

We now turn our attention to the first data structure, the bivariate Gaussian copula, and

show that in this case, similarly to what was first observed by Fisher and Tippett (1928) in

the univariate context, penultimate approximations of the normalising parameters differ

significantly from their limit form.
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Theorem 4.1

Let (V ,W ) have a bivariate standard normal distribution with correlation parameter ρ 6= 0 and

let (X ,Y ) = (V L,W L) be its marginal transform to the Laplace scale, with

X =
− log2{1−Φ(V )}, V > 0,

log2Φ(V ), V ≤ 0,

and similarly for Y as a function of W . Then, the ultimate and penultimate normings (4.5) and

(4.6) for Y | X = x, with x large, are

a0(x) = ρ2x, b0(x) = x1/2,

a1(x) = ρ2x + (1−ρ2)

2
log(x), b1(x) = x1/2−1/(4x).

The limit distribution H (z) in (4.4) is a centred Gaussian with variance 2ρ2(1−ρ2), and the

penultimate distribution (4.7) is

Hx (z) ∼N

{
0, 2ρ2(1−ρ2)

(
1+ log x

2
√

2ρ2x

)2}
.

If we write n−1 = Pr(X > u), the rates of convergence to the limit distribution are as follows:

O{log(logn)/
√

logn} using the ultimate norming in (4.8), which is not improved using the

penultimate norming in (4.9). The subasymptotic remainder (4.10) behaves like O(1/
√

logn).

Proof The details of the proof for the asymptotic quantities a0(·), b0(·) and H(z) can be

found in Heffernan and Tawn (2004). We follow a similar path to derive the penultimate

approximations and use Mill’s ratio to get a tail approximation for v and x on the normal and

Laplace scales, respectively. Since the Laplace distribution is symmetric, we focus on the right

tail:

x ∼− log

{
2
ϕ(v)

v

}
=− log2+ log v + 1

2
log(2π)+ 1

2
v2, (4.11)

v ∼p
2x,

for large x and v . In order to get a second-order approximation for v , we define a small

quantity ε> 0 and set v ∼p
2x(1+ε); plugging this back in (4.11), we get

x ∼− log2+ log
{p

2x(1+ε)
}
+ 1

2
log(2π)+ 1

2

{p
2x(1+ε)

}2

∼− log2+ 1

2
log

(p
2x

)
+ 1

2
log(2π)+x +2xε (4.12)

=⇒ v =p
2x + 2log2− log(2x)− log(2π)

2
p

2x
+O

{
(log x)2

x3/2

}
. (4.13)
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We want the conditional distribution of W | V = v to be well-behaved in its upper tail

when v →∞. We have Pr(W −ρV ≤ z | V = v) = Φ(z/
√

1−ρ2). On the Laplace scale, W is

transformed to

Y = a1(x)+b1(x)Z , (4.14)

with a1(x) and b1(x) > 0 norming functions to be determined, and Z a random variable with a

fixed distribution non-degenerate at +∞. We derive these penultimate norming functions by

writing a1(x) = a0(x)(1+ε) = ρ2x(1+ε) in (4.14), and using (4.13). We get the second-order

approximation by first expanding

W ∼
√

2ρ2x(1+ε)+2b(x)Z − logπ+ log{ρ2x(1+ε)+b(x)Z }

2
√

2ρ2x(1+ε)+2b(x)Z

∼ρ
√

2x(1+ε)

{
1+ b(x)Z

2ρ2x(1+ε)

}
−

[
logπ+ log

{
ρ2x(1+ε)

}+ b(x)Z

ρ2x(1+ε)

]
1

2
√

2ρ2x(1+ε)

{
1− b(x)Z

2ρ2x(1+ε)

}
.

(4.15)

We can use this expression for W in W −ρV |V = v , in which we keep only the terms that are

not functions of Z , as they are disconnected from a1(·), and we get

ρ
√

2x(1+ε)− log
{
ρ2x(1+ε)

}
2
√

2ρ2x(1+ε)
−ρp2x +ρ log x

2
p

2x
+O

(
x−1/2) .

Expanding further, we arrive at

ρ
p

2x
(
1+ ε

2

)
− log(ρ2x)+ε

2
√

2ρ2x

(
1− ε

2

)
−ρp2x +ρ log x

2
p

2x
+O

(
x−1/2) ,

and cancellation of the leading term yields

ε= (1−ρ2) log x

2ρ2x
, (4.16)

or equivalently a1(x) = ρ2x + (1−ρ2)
2 log x.

The penultimate scale function b1(·) stems from the Z -terms in (4.15), namely

b(x)Z

ρ
p

2x(1+ε)
+ log

{
ρ2x(1+ε)

}
b(x)Z

2
{
2ρ2x(1+ε)

}3/2
− b(x)Z{

2ρ2x(1+ε)
}3/2

, (4.17)



52 Chapter 4. Penultimate analysis of the conditional tail model

which we expand as follows,

b(x) ∼ ρ
√

2x(1+ε)

[
1+ log{x(1+ε)}

4ρ2x(1+ε)
− 1

2ρ2x(1+ε)

]−1

∼ ρp2x
(
1+ ε

2

){
1− log x

4ρ2x
(1−ε)

}
∼ ρp2x − log x

2ρ
p

2x
+ρp2x

ε

2
.

Substituting ε into (4.16) gives

b(x) ∼ ρp2x − log x

2ρ
p

2x
+ (1−ρ2) log x

2ρ
p

2x
∼ x1/2−1/(4x) = b1(x).

We now compute the penultimate distribution Hx (z) by substituting the expression for ε

in (4.16), writing A(x)+B(x)Z ∼ Hx (z), with

ρ
p

2x
(1−ρ2) log x

4ρ2x
− log(ρ2x)

2
√

2ρ2x
− (1−ρ2) log x

4ρ2x
√

2ρ2x
+ (1−ρ2) log(ρ2x) log x

4
√

2ρ2x(2ρ2x)
+ρ log x

2
p

2x
,

which equals

− log(ρ)√
2ρ2x

− (1−ρ2) log(x)

2(2ρ2x)3/2
+ (1−ρ2)(log x)2

4(2ρ2x)3/2
+ (1−ρ2) log(ρ)

2(2ρ2x)3/2
∼− log(ρ)√

2ρ2x
= A(x), (4.18)

and
b(x)Z√

2ρ2x

{
(1−ε/2)+ log(ρ2x)+ε

2
√

2ρ2x
(1−ε)− 1−3ε/2

2ρ2x

}
,

which equals

b(x)Z√
2ρ2x

{
1− ε

2
+ log x

2
√

2ρ2x
(1−ε)+ ε

2
√

2ρ2x
+ logρ√

2ρ2x
(1−ε)− 1

2ρ2x
+O(ε2)

}

= Z +Z
log x

2
√

2ρ2x
+Z

logρ√
2ρ2x

+Z ×O

(
log x

x

)
. (4.19)

Taking the leading and penultimate terms in (4.18) and (4.19), which corresponds to setting

B(x) = 1+ (8ρ2x)−1/2 log x, we find that Hx (z) = H (1)
x (z) is a centred normal distribution with

variance

2ρ2(1−ρ2)

(
1+ log x

2
√

2ρ2x

)2

,
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i.e., it has larger variance than the asymptotic H (z) found in Heffernan and Tawn (2004). If we

consider the antepenultimate terms in (4.18) and (4.19), we get Hx (z) = H (2)
x (z) as

N

{
− log(ρ)√

2ρ2x
, 2ρ2(1−ρ2)

(
1+ log x +2logρ

2
√

2ρ2x

)2}
.

We now give the order of convergence of (4.10) with the penultimate approximations a1(·)
and b1(·) that we derived. After a marginal transform in order to get n−1 = Pr(X > u), we

get the rate of convergence for H (1)
x (z), namely O(1/

√
logn), which improves on the version

of H(z) with first-order approximation for the normalising functions, for which the rate of

convergence is of order loglogn/
√

logn. Taking H (2)
x (z) improves even more on H(z), as its

rate of convergence in (4.10) is of order O(loglogn/logn). �

The penultimate norming a1(·), b1(·) can be used to assess the goodness-of-fit at a finite

level. By replacing x by the threshold u in (4.16), we derive a second-order approximation for

α= a1(x)/x of the form

α1 = ρ2 + (1−ρ2) logu

2u
. (4.20)

Similarly, we derive a second-order approximation for β= log{b1(x)}/ log(x),

β1 = 1

2
+ log

{
1− logu/(4u)

}
logu

≈ 1

2
− 1

4u
. (4.21)

Convergence of the second-order approximations for α1 and β1 towards their respective

limits is illustrated in Figure 4.1 with correlation ρ = 0.5, and for values of x corresponding to

the 97.5% up to the 99.998% Laplace quantile. It appears that convergence is very slow and it

makes sense to consider second-order approximations when measuring the goodness-of-fit

of finite-sample estimates. In order to give an idea of the amount of data needed to reach such

quantiles, we change the scale of the abscissa to the return period scale, using

1

1−F (xL)
× 1

nY
,

with F (·) the Laplace distribution function, xL any quantile on the Laplace scale and nY =
365.25 the number of observations per year. In Figure 4.1, we observe that even with the

equivalent of 120 years of daily data, the location and scale parameters differ significantly

from their asymptotic values.
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Figure 4.1 – Comparison of first- (black) and second-order (blue) approximations to the Heffernan–
Tawn parameters α and β for a Gaussian copula with covariance parameter ρ = 0.5. Top line: abscissa
on Laplace scale; bottom line: abscissa on the return period scale, assuming daily observations.
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4.4 Inverted logistic distribution

In this section, we consider the bivariate random vector (X ,Y ) with inverted logistic

distribution and Laplace margins. Its joint survival distribution function is

Pr(X > x,Y > y) = exp

[
−V

{
−1

log
(1

2 e−x
) ,

−1

log
(1

2 e−y
)}]

, x, y > 0,

where V (z, w) = (z−1/γ+w−1/γ)γ, 0 < γ≤ 1, is the exponent measure function of the logistic

distribution.

Theorem 4.2

Let (X ,Y ) have a bivariate inverted logistic distribution with dependence parameter 0 < γ≤ 1

and Laplace margins. Then the ultimate and penultimate normings (4.5) and (4.6) for Y | X = x,

with x large, are
a0(x) ≡ 0, b0(x) = x1−γ,

a1(x) ≡− log2, b1(x) = x1−γ,

so no penultimate form for b1(·) exists in the standard location and scale norming formulation.

The limit distribution H(z) in (4.4) is Weibull, specifically H(z) = exp(−γz1/γ), and the

penultimate distribution Hx (·) in (4.7) is such that

− log H x (z) = γz1/γ+



(1−γ)(1− log2)

x
z1/γ− γ(1−γ)

2x
z2/γ, 0 < γ< 2/3,

1− log2

3x
z3/2 − 1

9x
z3 − (log2)2

8x

(
4− 13log2

3

)
z−3/2, γ= 2/3,

− (log2)2

6γ2 (1−γ)
{
6γ+ (1−8γ) log2

}
x3γ−3z1/γ−3, 2/3 < γ< 1.

(4.22)

When 0 < γ< 2/3, Hx (·) has finite support[
0,

{
x

1−γ + 1− log2

γ

}γ]
−→R+, x →∞,

and Hx (zH ) ∼ 1−exp{−γx/(2−2γ)} as x →∞. When γ = 2/3, Hx (·) has approximate finite

support [
(12−13log2)1/3

(
log2

4

)2/3

x−1/3, 91/3x2/3

]
→R+, x →∞,

and Hx (zH ) ∼ 1−exp(−x) as x →∞. When 2/3 < γ< 1, Hx (·) has approximate finite support[
(log2)2/3

γ

(
1−γ

6

)1/3 {
6γ+ (1−8γ) log2

}1/3 xγ−1, +∞
)
→R+, x →∞.

If we write n−1 = Pr(X > u), the rates of convergence to the limit distribution are as follows:

O{(logn)−1} using the ultimate norming in (4.8), O{(logn)γ−1} using the penultimate norming
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in (4.9); the subasymptotic remainder (4.10) behaves like

O
{
(logn)α−2} , α ∈ (0,1/2], O

{
(logn)3α−3} , α ∈ (1/2,2/3),

O
{
(logn)−4/3} , α= 2/3, O

{
(logn)−1} , α ∈ (2/3,1).

(4.23)

Proof We start by computing the conditional survival distribution of Y | X = x for large x and

deriving a tail approximation to it. We have, for non-negative x and y ,

Pr(Y > y | X = x)

= 2ex × ∂Pr(X > x, Y > y)

∂x

=−2exp

{
x −V

(
1

x + log2
,

1

y + log2

)}
V1

(
1

x + log2
,

1

y + log2

)
(x + log2)−2,

where the partial derivative of the exponent measure is

V1(x, y) =−(
x−1/γ+ y−1/γ)γ−1

x−1/γ−1.

To ease the following developments, we examine the log-survival conditional probability

logPr
(
Y > y | X = x)

= log2+x −
[{

x(1+x−1 log2)
}1/γ+{

y(1+ y−1 log2)
}1/γ

]γ
+ (γ−1)log

[{
x(1+x−1 log2)

}1/γ+{
y(1+ y−1 log2)

}1/γ
]

+ 1−γ
γ

log
{

x(1+x−1 log2)
}

≈ log2+x −x

[
1+ log2

γx
+ 1−γ

2γ2

(log2)2

x2 +
( y

x

)1/γ
{

1+ log2

γy
+ 1−γ

2γ2

(log2)2

y2

}]γ
+ (γ−1)

[
1−γ
2γ2

(log2)2

x2 +
( y

x

)1/γ
{

1+ log2

γy
+ 1−γ

2γ2

(log2)2

y2

}]
,

for large x and y . We can expand further, using the fact that x and y are positively associated

and asymptotically independent, so large values of x occur with large values of y with large

ratio x/y , so the log conditional probability can be approximated as follows,

−x

[
1−γ

2γ

(log2)2

x2 +
( y

x

)1/γ
{
γ+ log2

y
+ 1−γ

2γ

(log2)2

y2

}
+ γ(γ−1)

2

{
log2

γx
+

( y

x

)1/γ
(
1+ log2

γy

)}2]
− (1−γ)2

2γ

(log2)2

x2 − (1−γ)
( y

x

)1/γ
{

1+ log2

γy
+ 1−γ

2γ2

(log2)2

y2

}
.

For Y = a(x)+b(x)Z , the first order behaviour is cancelled by choosing a0(x) ≡ 0 and

b0(x) = x1−γ (Heffernan and Tawn, 2004). We find a1(·) by setting a1(x) = ε, with ε= ε(x) =
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o(x1−γ), namely with Y = ε+x1−γZ ,

logPr(Y > y | X = x)

≈− 1−γ
2γ

(log2)2x−1 −x1−1/γ (
ε+x1−γz

)1/γ

×
{
γ+ (log2)

(
ε+x1−γz

)−1 + 1−γ
2γ

(log2)2 (
ε+x1−γz

)−2
}

− (γ−1)(log2)2

2γx
− γ(γ−1)

2
x1−2/γ (

ε+x1−γz
)1/γ

{
1+ log2

γ

(
ε+x1−γz

)−1
}

+ (1−γ)(log2)x−1/γ (
ε+x1−γz

)1/γ
{

1+ log2

γ

(
ε+x1−γz

)−1
}
− (1−γ)2

2γ
(log2)2x−2

− (1−γ)x−1/γ (
ε+x1−γz

)1/γ
{

1+ log2

γ

(
ε+x1−γz

)−1 + 1−γ
2γ2 (log2)2 (

ε+x1−γz
)−2

}
=− z1/γ

{
1+ ε

γ
xγ−1z−1 + 1−γ

2γ2 ε
2x2γ−2z−2 + (1−γ)(1−2γ)

6γ3 ε3x3γ−3z−3 +O
(
x4γ−4)}

×
{
γ+ (log2)

(
xγ−1z−1 −εx2γ−2z−2 +ε2x3γ−3z−3)

+ 1−γ
2γ

(log2)2 (
x2γ−2z−2 −2εx3γ−3z−3)+O

(
x4γ−4)}

+ γ(1−γ)

2
z2/γx−1 + (1−γ)(log2)x−1z1/γ− (1−γ)x−1z1/γ+O

(
xγ−2) .

Expanding this expression and rearranging the terms yields

−γz1/γ− (log2+ε)xγ−1z1/γ−1 +
{

(1−γ)(log2−1)z1/γ+ γ(1−γ)

2
z2/γ

}
x−1

+
{

(log2)εz1/γ−2 − ε log2

γ
z1/γ−2 − 1−γ

2γ
ε2z1/γ−2 − 1−γ

2γ
(log2)2z1/γ−2

}
x2γ−2

−
{
ε2 − 1−γ

γ
(log2)2ε− ε2

γ
+ 1−γ

2γ2 (log2)2ε+ 1−γ
2γ2 (log2)ε2 + (1−γ)(1−2γ)

6γ2 ε3
}

z1/γ−3x3γ−3

+O
(
xmax{γ−2,4γ−4}) .

(4.24)

We obtain ε=− log2, or equivalently a1(x) ≡− log2, cancelling the leading term in x in (4.24).

Higher-order terms imply different powers of Z , hence making any further approximation of

the norming functions not feasible because of the linearity in Z stemming from the location-

scale norming.

Plugging a1(x) into (4.24) results in

−γz1/γ+ (1−γ)
{

log2−1+ γ

2
z1/γ

}
z1/γx−1

+ (1−γ)(log2)2

6γ2

{
6γ+ (1−8γ) log2

}
z1/γ−3x3γ−3 +O

(
xmax{γ−2,4γ−4}) .

The various expressions for Hx (·) depending on the value of γ directly follow.
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We now derive the support of Hx (·) when 0 < γ< 2/3. A necessary condition for Hx (·) to

be well-defined is that the density hx (·) = H ′
x (·) is non-negative, that is

H x (z)

{
z1/γ−1 + (1−γ)(1− log2)

γx
z1/γ−1 − 1−γ

x
z2/γ−1

}
≥ 0

=⇒ 1−γ
x

z2/γ ≤ z1/γ
{

1+ (1−γ)(1− log2)

γx

}
=⇒ z ≤

(
x

1−γ + 1− log2

γ

)γ
,

and the upper bound is also the upper endpoint zH ; the value of Hx (zH ) follows directly. The

lower endpoint is attained when the exponent in (4.22) vanishes, in other terms when

z1/γ
(
2

1− log2

γ
+ 2x

1−γ − z1/γ
)
= 0,

for which the root of interest is z = 0, which concludes this part of the proof.

The case γ = 2/3 is treated similarly, as we require the derivative of Hx (z) to be non-

negative,

1

3x
z2 − z1/2 − 3

16x
(log2)2

(
4− 13

3
log2

)
z−5/2 ≤ 0

=⇒ w3 − (3x +a)w2 − c ≤ 0, z > 0, x > 0, (4.25)

with w = z3/2, a = 3(1− log2)/2 and c = 3(log2)2(12− 13log2)/16. When x → ∞, we have

w →∞, and a leading term is given by

w − (3x +a) ≤ 0 =⇒ w ≤ 3x +a.

In order to ensure that we are not missing a term in this approximation, we consider (4.25)

with w = 3x +a +δ, 0 < δ= δ(x) =O(x), as follows,

(3x +a +δ)3 − (3x +a)(3x +a +δ)2 − c = δ(3x +a)2 +2δ2(3x +a)+δ3 − c ≤ 0, x > 0.

For this inequality to hold, we need at least 9x2δ≤ c, x > 0, i.e., δ=O(x−2). We conclude that

zH = {3x +3(1− log2)/2}2/3 is an approximation of the upper endpoint when γ= 2/3, with

H x
(
zH )= exp

{
−1

x

(
x + 1− log2

2

)2

+O
(
x−2)}∼ exp(−x) → 0, x →∞.

The lower endpoint is computed by finding an approximation to the root of interest of the

exponent in (4.22), or equivalently with w = z3/2,

w3 −{
3(1− log2)+6x

}
w2 + 3

8
(log2)2(12−13log2) = 0,
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for which we know w → 0 when x →∞, leading to the approximation

(3x +a)w2 + c = 0 =⇒ w =
( c

3x +a

)1/2
≈p

c

{
1p
3x

− a

2(3x)3/2

}
, w > 0, x > 0. (4.26)

Consider w = p
c/(6x +a)+δ, 0 < δ = δ(x) = O(1/

p
x), in order to confirm that (4.26) is a

sensible approximation as follows,( c

3x +a

)3/2
+3

cδ

3x +a
+3

( c

3x +a

)1/2
δ2 +δ3 − (3x +a)

{
2δ

( c

3x +a

)1/2
+δ2

}
= 0,

and expanding the expressions in brackets yields

c3/2 (3x)−3/2 + cδx−1 +p
3cδ2x−1/2

(
1− a

6x

)
+δ3

−2
p

3cδx1/2
(
1+ a

6x
− a2

72x2

)
−δ2a −6δ2x +O

(
x−5/2)= 0.

From this we observe that we require δ= o(x−1/2) for the equality to hold as x →∞, so we can

simplify further and get

δ2 (3x +a)+δ
(

2
p

3cx1/2 + a
p

3c

3
x−1/2

)
− c3/2 (3x)−3/2 = 0,

which we solve in δ. We get an approximate square root discriminant

x1/2

(
2
p

3c + a
p

3c

3
x−1 + c

3
x−3/2

)
,

from which we compute the approximate root of interest

δ= c

6
x−1 (6x +2a)−1 ∼ c

36
x−2.

This ends the proof for the support of Hx (z) when γ= 2/3.

In the case when γ ∈ (2/3,1), we require

∂H x (z)

∂z
= H x (z)

[
−z1/γ−1 +

(
1

γ
−3

)
(log2)2

6γ2 (1−γ)
{
6γ+ (1−8γ) log2

}
x3γ−3z1/γ−4

]
≤ 0,

which is true for all z > 0 and x > 0. The density is well-defined and we can verify that the

upper endpoint of Hx (z) is +∞. We work out the lower endpoint by considering the exponent
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in (4.22), with

γz1/γ− (log2)2

6γ2 (1−γ)
{
6γ+ (1−8γ) log2

}
x3γ−3z1/γ−3

= γz1/γ
[

1− (log2)2

6γ3 (1−γ)
{
6γ+ (1−8γ) log2

}
x3γ−3z−3

]
,

which vanishes when z = 0, and

z = (log2)2/3

γ

[
1−γ

6

{
6γ+ (1−8γ) log2

}]1/3

xγ−1, x > 0. (4.27)

The root of interest is (4.27), giving the desired result.

We now give the convergence rate of (4.10) using the penultimate approximation a1(·).

The convergence rate is linked with the value of the dependence parameter γ and can be

found from (4.24). The powers of x of interest appearing in (4.24) are −1, 3γ−3, γ−2, 4γ−4,

depending on the precise value of γ. For γ ∈ (0,1/2], convergence is the fastest, as subtraction

of Hx (z) in this case removes terms in x−1, so we conclude that (4.10) has a leading term in

xγ−2. Similarly we conclude that the order of convergence for γ ∈ (1/2,2/3) is x3γ−3. For γ= 2/3,

the γ−2 and 4γ−4 powers coincide and give x−4/3 as the leading term. When γ ∈ (2/3,1),

convergence is slowest with x−1 as the leading term. �

4.5 Logistic distribution

Consider (X ,Y ) having a bivariate logistic distribution with Laplace margins. Its joint

distribution for (x, y), x, y > 0, is

Pr(X ≤ x, Y ≤ y) = exp

[
−V

{
−1

log
(
1− 1

2 e−x
) ,

−1

log
(
1− 1

2 e−y
)}]

,

with

V (z, w) = (
z−1/γ+w−1/γ)γ , γ ∈ (0,1].

Theorem 4.3

Let (X ,Y ) have a bivariate inverted logistic distribution with dependence parameter 0 < γ≤ 1

and Laplace margins. Then, the ultimate normings (4.5) for Y | X = x, with x large, are

a0(x) = x, b0(x) = 1,

and no penultimate normings (4.6) exist.
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Proof We now focus on the conditional probability

Pr(Y ≤ y | X = x) = 2exp

[
x −V

{
−1

log
(
1− 1

2 e−x
) ,

−1

log
(
1− 1

2 e−y
)}]

×
[
−V1

{
−1

log
(
1− 1

2 e−x
) ,

−1

log
(
1− 1

2 e−y
)}]

d

d x

{
− 1

log
(
1− 1

2 e−x
)}

.

(4.28)

We can approximate the last term in (4.28), for large x,

d

d x

{
− 1

log
(
1− 1

2 e−x
)}

= 1{
log

(
1− 1

2 e−x
)}2

1(
1− 1

2 e−x
) 1

2
e−x

≈
(

1

2
e−x + 1

8
e−2x

)−2 (
1

2
e−x + 1

4
e−2x

)
≈ 2ex − 1

8
e−x .

(4.29)

The partial derivative of V (·, ·) in (4.28) can be approximated as

V1

{
− 1

log
(
1− 1

2 e−y
)}

≈−
{(

1

2
e−x + 1

8
e−2x

)1/γ

+
(

1

2
e−y + 1

8
e−2y

)1/γ
}γ−1 (

1

2
e−x + 1

8
e−2y

)1/γ+1

≈− 1

4

{
e−x/γ+ 1

4γ
e−x(1+1/γ) + 1−γ

32γ2 e−x(2+1/γ) +e−y/γ+ 1

4γ
e−y(1+1/γ) + 1−γ

32γ2 e−y(2+1/γ)
}γ−1

×e−x(1+1/γ)
(
1+ 1

4
e−x

)1+1/γ

,

(4.30)

for large x. From (4.29) and (4.30), the conditional probability (4.28) on the log scale is

log{Pr(Y ≤ y | X = x)}

= log2+x −
{(

1

2
e−x

)1/γ (
1+ 1

4γ
e−x

)
+

(
1

2
e−y

)1/γ (
1+ 1

4γ
e−y

)}γ

− log4− (1−γ) log

{
e−x/γ+ 1

4γ
e−x(1+1/γ) +e−y/γ+ 1

4γ
e−y(1+1/γ)

}
− 1+γ

γ
x + 1+γ

4γ
e−x + log2+x +O

(
e−2x)

,

(4.31)

where the constant terms cancel with each other. Imposing Y = a0(x)+b0(x)Z , with a0(x) = x

and b0(x) = 1 in (4.31) removes the linear terms in x.
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We now try and remove the next-order terms by using a1(x) = (1+ε)x, ε= ε(x) = o(1), and

b1(x) = 1+δ, δ= δ(x) = o(1). Starting from (4.31), we get

− 1

2
e−x

{
1+ 1

4γ
e−x +e−{εx+(1+δ)Z }/γ

(
1+ 1

4γ
e−{(1+ε)x+(1+δ)Z }

)}γ
− (1−γ) log

{
1+ 1

4γ
e−x +e−{εx+(1+δ)Z }/γ

(
1+ 1

4γ
e−{(1+ε)x+(1+δ)Z }

)}
+ 1+γ

4γ
e−x +O

(
e−2x)

=− 1

2
e−x

(
1+e−{εx+(1+δ)Z }/γ

)γ{
1+ e−x+{εx+(1+δ)Z }/γ

4
(
e{εx+(1+δ)Z }/γ+1

) + e−{(1+ε)x+(1+δ)Z }

4
(
e{εx+(1+δ)Z }/γ+1

)}

− (1−γ)

{
log

(
1+e−{εx+(1+δ)Z }/γ

)
+ e−x+{εx+(1+δ)Z }/γ

4γ
(
e{εx+(1+δ)Z }/γ+1

) + e−{(1+ε)x+(1+δ)Z }

4γ
(
e{εx+(1+δ)Z }/γ+1

)}

+ 1+γ
4γ

e−x +O
(
e−2x)

,

(4.32)

We deduce from the leading order term −(1−γ) log(1+exp[−{εx+(1+δ)Z }/γ]) that ε can only

be 0 as it cannot help remove any other term and comply with ε= o(1). For δ, there is no terms

involving both Z and x in (4.32), that would need to be cancelled, thus δ= 0. We conclude that

it is impossible to find a penultimate norming of the distribution of {Y −a0(x)}/b0(x) | X = x

for the logistic dependence structure. �

4.6 Summary

In this chapter, we first considered, in the univariate case, the problem of the speed of

convergence of F n(an x +bn) towards G(x) in Theorem 2.1. Penultimate analyses in the 1990’s

showed that using a penultimate version ξn of the shape parameter ξ in G(·) can provide a

much better approximation to F n(·), such as when F (·) is the Gaussian distribution, in which

case the convergence of F n(·) towards G(·) is especially slow.

We reviewed penultimate analyses in the bivariate case, but the results are not as general

as in the univariate case. Focusing on a different approach to bivariate extremes, we then

considered the conditional tail approach and various measures that can be used to describe

penultimate properties. We investigated three parametric bivariate models, illustrating the

cases of asymptotic independence and asymptotic dependence. The bivariate Gaussian

distribution given one of its margins is large shows interesting subasymptotic features of the

conditional tail model; the conditional inverted logistic distribution has a faster convergence

towards its limit, but we saw that Hx (·) can have finite support depending on the precise value

of the dependence parameter γ; we were not able to extract a penultimate behaviour for the

bivariate logistic distribution, which has a fast rate of convergence towards its limit.

In the next chapter, we propose a Bayesian methodology for making inference on the

conditional tail model, naturally summarising uncertainty of functions of the model parame-

ters. We show how this new methodology can be used to derive efficient estimates of cluster

functionals in the context of time series extremes.



5 Bayesian uncertainty management in
temporal dependence of extremes

5.1 Foreword

This chapter was published in the journal Extremes under the same title (Lugrin et al.,

2016). The body of the text is reproduced here, with some minor changes, and Section 5.6.4

and Appendix F are additions to the paper. The code used to perform the simulation studies

and the real data analysis was developed in R (R Core Team, 2017) and C and is available under

a public licence in the tsxtreme package on the Comprehensive R Archive Network (CRAN)

repository.

5.2 Introduction

Extreme value theory provides an asymptotically justified framework for the statistical

modelling of rare events. In the univariate case with independent variables there is a broadly-

used framework involving modelling exceedances of a high threshold by a generalised Pareto

distribution (Coles, 2001). For extremes of stationary univariate time series, standard proce-

dures use marginal extreme value modelling but consideration of the dependence structure

between the variables is essential when assessing risk due to clusters of extremes. Leadbetter

et al. (1983) and Hsing et al. (1988) described the roles of long- and short-range dependence

on extremes of stationary time series. Typically an assumption of independence at long range

is reasonable, with Ledford and Tawn (2003) giving diagnostic methods for testing this. In prac-

tice independent clusters are often identified using the runs method (Smith and Weissman,

1994), which deems successive exceedances to be in separate clusters if they are separated

by at least m consecutive non-exceedances of the threshold; Ferro and Segers (2003) provide

automatic methods for the selection of m.

Short-range dependence has the most important practical implications, since it leads to

local temporal clustering of extreme values. Leadbetter (1983) and O’Brien (1987) provide

different asymptotic characterisations of the clustering though the extremal index 0 < θ ≤ 1,

the former with θ−1 being the limiting mean cluster size. The case θ = 1 corresponds to there
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being no more clustering than if the series were independent, and decreasing θ corresponds

to increased clustering.

Although the extremal index is a natural limiting measure for such clustering there is a

broad class of dependent processes with θ = 1, including all stationary Gaussian processes.

Thus the extremal index cannot distinguish the clustering properties of this class of dependent

processes from those of white noise. Furthermore, many other functionals of clusters of

extremes may be of interest (Segers, 2003), so for practical modelling of the clusters of extreme

values above a high threshold, the restriction to θ < 1 is a major weakness.

Smith et al. (1997), Ledford and Tawn (2003), Eastoe and Tawn (2012) and Winter and

Tawn (2016) draw on methodology for multivariate extremes to provide models for univariate

clustering, and thereby enable the properties of a wide range of cluster functionals to be

estimated. The focus of this paper is the improvement of inference techniques for the most

general model for these cases, namely the semiparametric conditional extremes model of

Heffernan and Tawn (2004). Our ideas can be applied to any cluster functional, but we focus

here primarily on the threshold-based extremal index introduced by Ledford and Tawn (2003).

Given the strong connections between multivariate extreme value and clustering mod-

elling, here and in Section 5.4 we present the developments of the model in parallel for the two

situations. Examples of applications for multivariate cases include assessing the risk of joint

occurrence of extreme river flows or sea-levels at different locations (Keef et al., 2009b; Asadi

et al., 2015), the concurrent high levels of different pollutants at the same location (Heffernan

and Tawn, 2004), and simultaneous stock market crashes (Poon et al., 2003). For the time series

case, applications include assessing heatwave risks (Reich et al., 2014; Winter and Tawn, 2016),

modelling of extreme rainfall events (Süveges and Davison, 2012) and wind gusts (Fawcett and

Walshaw, 2006a).

For the stationary time series (X t ), Ledford and Tawn (2003) define the threshold-based

extremal index

θ(x,m) = Pr(X1 ≤ x, . . . , Xm ≤ x | X0 > x) , (5.1)

where x is large, which is the key measure of short-range clustering of extreme values, with

1/θ(x,m) being the mean cluster size when clusters of exceedances of the threshold x are

defined via the runs method of Smith and Weissman (1994) with run length m. Furthermore

θ(x,m) converges to the extremal index θ as x → xF and m →∞ appropriately (O’Brien, 1987;

Kratz and Rootzén, 1997). Many studies have focused on estimating the limit θ (Ferro and

Segers, 2003; Süveges, 2007; Robert, 2013), but in applications, all these consider a finite level

u as an approximation to the limit xF . This is equivalent to assuming θ(x,m) to be constant

above u, which is generally not the case in applications (see Figure 5.1). Additionally Eastoe

and Tawn (2012) find that θ(x,m) is fundamental to modelling the distributions of both cluster

maxima, i.e., peaks over threshold, and block maxima, e.g., annual maxima. See Section 5.5

for more on the relevance of θ(x,m) for time series extremes.
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When considering asymptotically motivated models for the joint distribution of X−0 =
(X1, . . . , Xm) given that X0 > x for the estimation of θ(x,m), it is helpful to have a simple char-

acterisation of extremal dependence. The standard pairwise measure of extremal dependence

for (X0, X j ) is

χ j = lim
x→xF

Pr
(
X j > x | X0 > x

)
, j = 1, . . . ,m, (5.2)

with the cases χ j > 0 and χ j = 0 respectively termed asymptotic dependence and asymptotic

independence at lag j . A plot of χ j against j has been termed the extremogram (Davis

and Mikosch, 2009), by analogy with the correlogram of time series analysis. When χ j = 0

for all j ≥ 1, the extremogram fails to distinguish between different levels of asymptotic

independence, but the rate of convergence to zero of Pr(X j > x | X0 > x) determines the key

characteristics of the tail of the joint distribution (Ledford and Tawn, 1996). Ledford and Tawn

(2003) propose using such a measure at each time lag j when the variables are asymptotically

independent. An alternative is to combine both approaches by studying a threshold-based

version of χ j ,

χ j (x) = Pr
(
X j > x | X0 > x

)
, j = 1, . . . ,m, (5.3)

for a range of large values of x.

In Section 5.3, we review classical multivariate extreme models, which all entail χ j (x) =χ j ,

x > u for some high threshold u, and often even χ j > 0. Instead we consider the conditional

formulation of Heffernan and Tawn (2004) that has been subsequently studied more theoreti-

cally by Heffernan and Resnick (2007), Das and Resnick (2011), and Mitra and Resnick (2013).

This class of models covers χ j ≥ 0 and χ j (x) changing with large x ( j = 1, . . . ,m) through

modelling dependence within the asymptotic independence class. This model gives estimates

of θ(x,m) that can be constant or vary with x, x > u. This additional flexibility comes at a

price: inference is required for up to 2m parameters, and for an arbitrary m-dimensional

distribution G .

The asymptotic arguments for the Heffernan–Tawn model are given in Section 5.4, for an

(m+1)-dimensional variable with Laplace marginal distributions. Suppose that the monotone

increasing transformation T = (T0, . . . ,Tm) transforms X = (X0, . . . , Xm) to Y = (Y0, . . . ,Ym), with

Yi = Ti (Xi ) (i = 0, . . . ,m), so that Y has Laplace marginal distributions. In applications the

Heffernan–Tawn model corresponds to a multivariate regression with

Y−0 | {Y0 = y} =αy + yβZ =αy +µyβ+ψyβZ∗ (5.4)

where here, and subsequently, the arithmetic is to be understood componentwise, with

α ∈ [−1,1]m , β ∈ [−∞,1]m , µ ∈ Rm , ψ ∈ Rm+ , and Z an m-dimensional random variable with

Z ∼G , with G corresponding to H in the rest of the thesis; Z∗ has zero mean and unit variance

for all marginal variables, with Z∗ = (Z −µ)/ψ. We require that (5.4) holds for all y > u, where

u is a high threshold on the Laplace marginal scale. The parameters (α,β,µ,ψ) determine the
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conditional mean and variance through

E(Y−0 | Y0 = y) =αy +µyβ, var(Y−0 | Y0 = y) =ψ2 y2β.

Thus (α,β,µ,ψ) can be estimated by multivariate regression. The complication for inference

is that the error distribution G is in general unknown and arbitrary, apart from the first two

moment properties mentioned above. One exception to this is whenα= 1 and β= 0, in which

case the Heffernan–Tawn model reduces to known asymptotically-dependent models with G

directly related to the angular distribution H , as detailed in Section 5.4.

Heffernan and Tawn (2004) and Eastoe and Tawn (2012) used a stepwise inference pro-

cedure, estimating (α,β,µ,ψ) under a working assumption that Z∗ are independent normal

variables. After obtaining parameter estimates, they estimated G nonparametrically using the

empirical joint distribution of the observed standardised multivariate residuals, i.e., values of

Z for Y0 > u. There are weaknesses in this approach, which loses efficiency in the estimation

of (α,β,µ,ψ) and G and in subsequent inferences due to the generally incorrect working

assumption of normality. Moreover, as noted by Peng and Qi (2004), the empirical estimation

of G leads to poor estimation of the upper tail of the conditional distribution of Y−0 | {Y0 = y},

so it would be preferable to have a better, yet general, estimator of G . Furthermore, the uncer-

tainty of the parameter estimation is unaccounted-for in the estimation of G and of cluster

functionals such as θ(x,m).

Cheng et al. (2014) proposed a Bayesian approach to estimating the Heffernan–Tawn

model in a single stage, but their estimation procedure involves changing the structure of

the model and adding a noise term in (5.4), thereby allowing the likelihood term to be split

appropriately. They also need strong prior information extracted from the stepwise inference

method in order to get valid estimates for the model parameters, so this procedure does not

really tackle the loss of efficiency of the stepwise estimation procedure.

We propose to overcome these weaknesses by using Bayesian semiparametric inference

to estimate the model parameters and the distribution G , simultaneously performing the

entire fitting procedure for the dependence model. This gives a new model for G , namely, a

mixture of Gaussian distributions, which provides estimates of the conditional distribution

of Y−0 | Y0 = y beyond the range of the current estimator and which in theory provides an

arbitrary good approximation for G (Marron and Wand, 1992). The Bayesian approach also

provides a coherent framework for fitting a parsimonious parametric model; joint estimation

of the model parameters enables the imposition of structure between them. For example,

in multivariate problems the context may suggest that different components of α may be

identical. In the context of time series extremes, for first-order Markov models, it can be

shown that α and β involve at most two unknown parameters (Papastathopoulos et al., 2017).

Furthermore, when the X−0 are known to be asymptotically dependent on X0, this method

provides a new approach to modelling.
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We show the practical importance of the new approach by applying it to the daily mean flow

time series of the River Ray at Grendon Underwood in north-west London, with observations

from October 1962 to December 2008. We consider only flows from October to March, as

this period typically contains the largest flows and forms an approximately stationary series.

An empirical estimate of θ(x,m), with m = 4, is shown in Figure 5.1 with bootstrap-derived

95% confidence intervals. A major weakness with this estimate is that it cannot be evaluated

beyond the range of the data, so a model is needed to evaluate θ(x,m) for larger x. We select

our modelling threshold u to be the empirical 98% marginal quantile of the data. Using the

methods in Eastoe and Tawn (2012) we have an estimate of θ(x,4) for all x > u using the

stepwise estimation method. As seen in Figure 5.1, this estimate converges to 1 as x → xF but

we have no reliable method for deriving confidence intervals. Figure 5.1 also shows posterior

median estimates and 95% credibility intervals obtained using our Bayesian semiparametric

method. These show broad agreement with both of the other estimates within the range

of the data, but with tighter uncertainty intervals and statistically significant differences in

extrapolation of θ(x,4), indicating that the new method has the potential to offer marked

improvement for estimating θ(x,m) and other cluster functionals.

The chapter is structured as follows. We first briefly present the standard approaches

to multivariate extremes in Section 5.3. We introduce the conditional model of interest in a

multivariate framework in Section 5.4, followed by a section about modelling of dependent

time series. Section 5.6 explains the Bayesian semiparametric inference procedure, which is

used in Section 5.7 to illustrate the efficiency gains of this new inference method on simulated

data. In Section 5.8 we fit our model to the River Ray flow data and show its ability to estimate

functionals of time series clusters other than the threshold-based index.

5.3 Multivariate setup and classical models

Both multivariate and time series extremes involve estimating the probability of events that

may never yet have been observed. Suppose that X = (X0, . . . , Xm) is an (m +1)-dimensional

variable with joint distribution function FX and marginal distribution functions F0, . . . ,Fm . We

need to estimate the probability Pr(X ∈ A), where A ⊂Rm+1 is an extreme set, i.e., a set such

that for all x ∈ A, at least one component of x = (x0, . . . , xm) is extreme. To do this we must

model FX(x) for all x ∈ B , where B is an extreme set that contains A. Let Ai be the subset of A

for which component i is largest on a quantile scale, i.e.,

Ai = A∩{
x ∈Rm+1 : Fi (xi ) > F j (x j ), j ∈ {0, . . . ,m}\{i }

}
, i = 0, . . . ,m,

and let vi = inf{xi : x ∈ Ai }, so that we can write

Pr(X ∈ A) =
m∑

i=0
Pr(X ∈ Ai | Xi > vi )Pr(Xi > vi ). (5.5)
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Figure 5.1 – Comparison of the empirical, stepwise and Bayesian semiparametric estimates of θ(x,4)
described in Sections 5.4 and 5.6 respectively. Empirical estimate (black) with bootstrap-derived 95%
confidence interval (dashed lines), stepwise estimate (light red) and Bayesian semiparametric estimate
(blue) with its 95% pointwise coverage interval (shaded), estimated on winter flows (m3s−1) of the River
Ray from 1962 to 2008.

Thus estimates of marginal and dependence features are required for estimating the condi-

tional probabilities in the sum and marginal distributions determine the second terms of the

products in the sum.

Although our approach applies to any form of set A, to focus our arguments we restrict

ourselves to identical marginal distributions F with upper endpoint xF and we set

A = A0 = {X0 > x, X1 ≤ x, . . . , Xm ≤ x},

so v0 = x and we estimate only the conditional probability term in (5.5), i.e., θ(x,m), as defined

in (5.1).

Early approaches to modelling the conditional distribution appearing in (5.1) assumed

that X lies in the domain of attraction of a multivariate extreme value distribution (Coles and

Tawn, 1994; de Haan and de Ronde, 1998) and applied these asymptotic models above a high

threshold. Unlike in the univariate case, there is no finite parametrisation of the dependence

structure; it can only be restricted to functions of a distribution H on the m unit simplex Sm

with
∫

Sm
wi d H(w) = (m +1)−1 (i = 0, . . . ,m), where w = (w0, . . . , wm). Both parametric and

non-parametric inference for this class of models has been proposed. Numerous parametric

models are available (Kotz and Nadarajah, 2000, Ch. 3; Cooley et al., 2010; Ballani and Schlather,

2011). Nonparametric estimation is also widely studied, mostly based on empirical estimators
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(de Haan and de Ronde, 1998; Hall and Tajvidi, 2000; Einmahl et al., 2001; Einmahl and Segers,

2009).

A major weakness of these early methods is that for these models either χ j > 0 or (X0, X j )

are independent for all j = 1, . . . ,m, whereas there are distributions, such as the multivariate

Gaussian, with χ j = 0 but (X0, X j ) dependent. If χ j > 0 for any j = 1, . . . ,m, these models give

estimates of θ(x,m) → cm as x → xF , where cm < 1. This class of models is not flexible enough

to cover distributions that are dependent at finite levels, but asymptotically independent for

all pairs of variables.

5.4 Threshold-based model for conditional probabilities

5.4.1 Heffernan–Tawn model

In order to provide a model characterising conditional probabilities, such as those which

describe the clustering behaviour, we need a model for multivariate extreme values, and in

particular we require a model for the joint distribution of X1, . . . , Xm given that X0 > x. In this

section we suppose that the marginal distributions of X are not identical, and that X0 ∼ F0

is in the domain of attraction of a generalised Pareto distribution, i.e., there exists a function

σu > 0 such that as u → xF0 , (X0 −u)/σu , conditional on X0 > u, converges to a generalised

Pareto variable with unit scale parameter and shape parameter ξ.

The joint distribution is modelled via the marginal distributions F j and a copula for the

dependence structure. To study the conditional behaviour of extremes, the copula formulation

is most transparent when expressed with Laplace marginals. Let T j denote the transformation

of the marginal distribution of X j to the Laplace scale, i.e.,

T j (X j ) =
log

{
2F j

(
X j

)}
, X j < F−1

j (1/2),

− log
[
2
{
1−F j

(
X j

)}]
, X j > F−1

j (1/2);
j = 0, . . . ,m,

the specification of the F j is discussed in Section 5.4.2. Assume there exist m-dimensional

functions a(x) = {a1(x), . . . , am(x)} and b(x) = {b1(x), . . . ,bm(x)} > 0 for which

Pr

[
T j

(
X j

)−a j {T0 (X0)}

b j {T0 (X0)}
≤ z j , j = 1, . . . ,m

∣∣∣∣∣ X0 > u

]
→G(z), u → xF0 , (5.6)

where all marginal distributions of G are non-degenerate and z = (z1, . . . , zm) ∈Rm . Hereafter

we write the standardised X j , or residual, as

Z j =
T j

(
X j

)−a j {T0 (X0)}

b j {T0 (X0)}
, X0 > u, j = 1, . . . ,m.
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Under assumption (5.6), the rescaled conditioning variable (X0 −u)/σu is asymptotically

conditionally independent of the residual Z = (Z1, . . . , Zm) given X0 > u, as u → xF0 . That is,

Pr{Z ≤ z , (X0 −u)/σu > x | X0 > u}

= Pr{Z ≤ z | (X0 −u)/σu > x}Pr{(X0 −u)/σu > x | X0 > u}

→G(z)K (x), u → xF0 , (5.7)

where K is the generalised Pareto distribution survivor function (5.12) with scale and shape

parameters (1,ξ) and G is the limit distribution of the residuals.

Equation (5.6) can be illustrated through the particular case when X is a centred multi-

variate Gaussian distribution with correlation matrix elements ρi j , i , j = 0, . . . ,m, i 6= j . In this

case we can derive a j (x) = sign(ρ0 j )ρ2
0 j x and b j (x) = x1/2, and G(z) is a centred multivariate

Gaussian distribution with variances ρ2
0 j (1−ρ2

0 j ) and correlation matrix elements

ρ′
i j =

ρi j −ρ0iρ0 j√(
1−ρ2

0i

)(
1−ρ2

0 j

) , i 6= j .

Heffernan and Tawn (2004) and Keef et al. (2013) showed that under broad conditions, the

component functions of a(x) and b(x) can be modelled by

a j (x) =α j x, b j (x) = xβ j , −1 ≤α j ≤ 1, −∞<β j ≤ 1, j = 1, . . . ,m.

In terms of the dependence structure, α j and β j reflect the flexibility of the model. It turns

out that (X0, X j ) are asymptotically dependent only if α j = 1, β j = 0, and then

χ j = lim
x→xF0

Pr
{
T j (X j ) > x | T0(X0) > x

}= ∫ ∞

0
G j (−z)e−z d z;

with G j the j th marginal survivor function of G ; if −1 <α j < 1, then (X0, X j ) are asymptotically

independent, with positive extremal dependence if α j > 0, negative extremal dependence if

α j < 0, and with extremal near-independence if α j = 0 and β j = 0.

We set β j ≥ 0, as when β j < 0 all the conditional quantiles for X j converge to the same

value as X0 increases, which is unlikely in most environmental contexts. If the conditioning

threshold u is high enough that the conditional probability on the left of (5.6) is close to its

limit, then the Heffernan–Tawn model can be stated as

T j (X j ) =α j T0(x)+ {T0(x)}β j Z j , X0 = x > u, j = 1, . . . ,m, (5.8)

where (Z1, . . . , Zm) ∼G is independent of X0, and G can be any distribution with non-degenerate

margins.
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5.4.2 Existing inference procedure

We now outline the approach to inference suggested by Heffernan and Tawn (2004). Con-

sider a vector (X0, . . . , Xm) whose marginal distributions F0, . . . ,Fm each lie in the domain of

attraction of a generalised Pareto distribution. We estimate them using the semiparametric

estimator of Coles and Tawn (1994),

F̂ j (x) =


F̃ j (x), x < u,

1−{
1− F̃ j (u)

}(
1+ ξ̂ j

x −u

σ̂u, j

)−1/ξ̂ j

+
, x ≥ u,

(5.9)

where F̃ j is the empirical marginal distribution function of X j . Here σ̂u, j and ξ̂ j are maximum

likelihood estimates based on all exceedances of u, ignoring any dependence; their variances

can be evaluated by a sandwich procedure (Fawcett and Walshaw, 2007) or by a block bootstrap.

The margins F j are transformed to the Laplace scale through the transformation T̂ j
(
X j

)
.

Estimation of the probability of any extreme set of interest involves inference for model (5.8)

with the estimators of parameters of the dependence model assumed independent of the

parameter estimators of the marginal distribution. This assumption has been found not to be

restrictive in other copula inference contexts (Genest et al., 1995). Heffernan and Tawn (2004)

proposed a stepwise inference procedure for estimating the extremal dependence structure,

based on the working assumption that the residual variables Z1, . . . , Zm are independent and

Gaussian with means µ1, . . . ,µm and variances ψ2
1, . . . ,ψ2

m . This assumption allows likelihood

inference based on the assumed marginal densities,

T j
(
X j

) | {T0(X0) = x} ∼N
(
α j x +xβ jµ j , x2β jψ2

j

)
, x > u, j = 1, . . . ,m.

The first step of their procedure consists of a likelihood maximisation performed separately

for each j , giving estimates of α j , β j and the nuisance parameters µ j and ψ j . Additional

constraints, arising from results of Keef et al. (2013), lead to the likelihood function being zero

for certain combinations of parameters (α j ,β j ). Thus the maximisation is over a subset of

[−1,1]×[0,1] for these two parameters. These constraints ensure that the conditional quantiles

of T j (X j ) | T0(x) are ordered in a decreasing sequence for all large x under fitted models

corresponding to positive asymptotic dependence, asymptotic independence and negative

asymptotic dependence respectively. For details of these constraints see Keef et al. (2013),

who show that imposing these additional constraints improves inference of the conditional

extremes model; Section 5.6.4 explains how these constraints are implemented in our Bayesian

framework. Given model (5.8) and the estimates α̂ j and β̂ j , the second step of the estimation

procedure involves multivariate residuals Z for each data point, using the relation

Ẑ j =
T̂ j

(
X j

)− α̂ j T̂0 (X0){
T̂0 (X0)

}β̂ j

, j = 1, . . . ,m, X0 > u,
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and hence constructing the joint empirical distribution function Ĝ (z).

An estimator for Pr(A | X0 > x) for any extreme set A is obtained as follows: sample R

independent replicates X (1)
0 , . . . , X (R)

0 of X0 conditional on X0 > x from a generalised Pareto

distribution with threshold x; independently sample Z (1), . . . , Z (R) from the joint empirical

distribution function Ĝ ; compute

X (r )
−0 = T̂

−1
[
α̂T̂0(X (r )

0 )+
{

T̂0(X (r )
0 )

}β̂
Z (r )

]
, r = 1, . . . ,R,

where vector arithmetic is to be understood componentwise and T̂
−1 = (T −1

1 , . . . ,T −1
m ) is a

componentwise back-transformation to the original scale; then the estimator for Pr(A | X0 > x)

is
1

R

R∑
r=1

1
{(

X (r )
0 , X (r )

−0

)
∈ A

}
,

where 1 is the indicator function.

In the rest of the paper, we are interested in estimating the conditional probability θ(x,m),

corresponding to A = {X0 > x, X1 < x, . . . , Xm < x}, for which the Heffernan–Tawn model

provides a characterisation. Under the assumption that the limit (5.6) approximately holds for

some subasymptotic u, Eastoe and Tawn (2012) obtain

θ(x,m) =
∫ ∞

x
G{z(x, y)}kx (y)δy, x > u, (5.10)

where kx (y) is the generalised Pareto density for threshold x, with scale parameter 1+ξ(x −u)

and shape parameter ξ, and z(x, y) is an m-dimensional vector with elements

z j
(
x, y

)= T j (x)−α j T0
(
y
)

{
T0

(
y
)}β j

, j = 1, . . . ,m. (5.11)

A Monte Carlo approximation to the integral (5.10) gives the estimator

θ̂(x,m) = 1

R

R∑
r=1

Ĝ
{

z
(
x, X (r )

0

)}
,

where z(x, X (r )
0 ) is given by expression (5.11) with α and β replaced by estimates. Monte Carlo

variability can be reduced by using the same pseudo-random sequence when generating

samples for different values of x. Eastoe and Tawn (2012) use a bootstrap method to get

confidence bounds for θ̂(x,m), but de Carvalho and Ramos (2012) found this to be unreliable.

Four main weaknesses of this inference procedure justify developing a more comprehen-

sive approach. First, the working assumption needed for the likelihood maximisation is that

the residuals have independent Gaussian distributions, and it is hard to quantify how this

affects inference. Second, ignoring the variability of α̂, β̂ estimated in the first step leads

to underestimation of the uncertainty in the estimate for the residual distribution G and
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hence also for θ(x,m). Third, the empirical estimation of G restricts estimates of extremal

conditional probabilities, as simulated Z values provide no extrapolation over observed values

of Z . Fourth, the inability to impose natural constraints on (α1, . . . ,αm) and
(
β1, . . . ,βm

)
leads

to inefficiency.

5.5 Modelling dependence in time

Consider a stationary time series {X t } satisfying appropriate long-range dependence

properties and with marginal distribution F . The threshold-based extremal index θ(x,m) sum-

marises the key extremal dependence in time series. In the block-maxima context, the distri-

bution of the block maximum Mn = max{X1, . . . , Xn} at a level x is approximately {F (x)}nθ(x,m)

for large x, n and m (O’Brien, 1987; Kratz and Rootzén, 1997). The associated independent

series {X ∗
t }, having the same marginal distribution as {X t } but independent observations, has

M∗
n = max{X ∗

1 , . . . , X ∗
n } with distribution function {F (x)}n . So Pr(Mn < x) ≈ {Pr(M∗

n < x)}θ(x,m),

with θ(x,m) accounting for the dependence.

The most popular approach to dealing with short-range dependent in such series is the

peaks over threshold (POT) approach formalised by Davison and Smith (1990). This approach

consists of selecting a high threshold u, identifying independent clusters of exceedances

of u, picking the maximum Y of each cluster, and then fitting to these cluster maxima the

generalised Pareto distribution

Pr(Y < x | Y > u) = 1−
(
1+ξx −u

σu

)−1/ξ

+
, x > u. (5.12)

The limiting results are used as an approximation for data at subasymptotic levels with limit

distribution (5.12) taken as exact above a selected value of u.

Alternatives to the POT approach include modelling the series of all exceedances, for

example using a Markov chain (Smith et al., 1997; Winter and Tawn, 2016), but they depend

heavily on the validity of the underlying modelling assumptions and so may be inappropriate.

Eastoe and Tawn (2012) consider the threshold-based extremal index as part of a model

for the distribution of cluster maxima. Specifically they show that, for a given high threshold

u, the cluster maxima, defined by the runs method with run-length m, have approximate

distribution function

1− θ(x,m)

θ(u,m)

(
1+ξx −u

σu

)−1/ξ

+
, x > u, (5.13)

where the parameters ξ and σu > 0 determine the marginal distribution of the original series,

and x+ = max(x,0). Eastoe and Tawn (2012) show how using the information in θ(x,m) can

improve over the POT approach. Distribution (5.13) reduces to the generalised Pareto model

asymptotically as u → xF , and more generally when θ(x,m) = θ(u,m) for all x > u. When
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estimates of θ(x,m) vary appreciably above u, this equality condition for θ(x,m) provides a

diagnostic for situations where the POT method is inappropriate.

In our approach, when a Markov property can reasonably be assumed for a time series, the

α j and β j have a structure that we want to exploit. Papastathopoulos et al. (2017) and Kulik

and Soulier (2015) characterise the form of a j (x) and b j (x) under very weak assumptions. If

the conditions needed for the Heffernan–Tawn simplification — a1(x) =α1x and b1(x) = xβ1

— hold, then for positively associated first order Markov processes, Papastathopoulos et al.

(2017) show that either (α j ,β j ) = (1,0), or (0,β j ) or (α j ,β) for some α ∈ [0,1) and β = [0,1).

The first case corresponds to asymptotic dependence at all time lags, and the other two to

different forms of decaying dependence under asymptotic independence. If {X t } follows an

asymptotically dependent Markov process, then no parameters need be estimated, rather than

2m. If the process is well-approximated by an asymptotically independent Markov process

then either of the last two cases applies, and the number of parameters in the parametric

component of the model reduces from 2m to 1 or 2. In the case of a Gaussian AR(1) process

(X t ) with standard Gaussian margins

X t+1 = ρX t +εt , εt
iid∼ N

(
0,1−ρ2) , ρ ∈ (−1,1),

Heffernan and Tawn (2004) get normalising parameters α j = sign(ρ)ρ2 j and β j = 1/2, j =
1, . . . ,m; the distribution G(z) is a centred multivariate Gaussian with variances ρ2 j (1−ρ2 j )

and correlation matrix elements

ρ′
i j =

sign(ρi+ j )ρ j−i
√

1−ρ2i√
1−ρ2 j

, i < j .

See Papastathopoulos et al. (2017) for many more examples of first order Markov processes

and their resulting forms for α j , β j and G .

5.6 Bayesian Semiparametrics

5.6.1 Overview

Since the m-dimensional residual distribution G in the Heffernan–Tawn model (5.8) is

unknown, the approach described in Section 5.4.2 uses the joint empirical distribution func-

tion, which cannot model the tails of the conditional distribution of X j in (5.8). Our proposed

Bayesian approach instead takes G to be a mixture of a potentially infinite number of mul-

tivariate Gaussian distributions through the use of a Dirichlet process. This approach can

model any G and capture its tails, and has the major benefit of allowing joint estimation of α,

β and G .

Below we introduce Dirichlet processes and describe an approach to approximate Monte

Carlo sampling from them. We then describe Bayesian semiparametric inference and the spec-
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ification of prior distributions, and discuss implementation issues. Throughout we assume

that we have n observations from the distribution of (X1, . . . , Xm) | X0 > u, or equivalently from

Z = (Z1, . . . , Zm) if α and β were known.

5.6.2 Dirichlet process mixtures for the residual distribution

Consider a bivariate problem, m = 1; with known α and β. If we are to estimate the

distribution function of X1 | X0 > u this is equivalent to estimating the distribution function

G of the univariate random variable Z1 ∼ G . If G is estimated nonparametrically, its prior

must be a distribution over a space of distributions. In this context, a widely used prior is the

Dirichlet process (Ferguson, 1973) mixture. A simple model structure takes G to be a mixture

of an unknown number of distributions Qk having parameters λk , k = 1,2, . . ., so that the

Dirichlet process boils down to a distribution on the space of mixture distributions P for {λk }.

Ifλk | P ∼ P , then the distribution of P is the Dirichlet process DP
(
γP0

)
, where P0 is the centre

distribution and γ> 0 the concentration parameter (Hjort et al., 2010).

The definition of a Dirichlet process states that for any p = 1,2, . . ., and any finite measur-

able partition {B1, . . . ,Bp } of the space of the λk ,{
P (B1), . . . ,P (Bp )

}∼ Dirichlet{γP0(B1), . . . ,γP0(Bp )}.

The interpretation of the Dirichlet process parameters stems from the properties

E{P (Bi )} = P0(Bi ), var{P (Bi )} = P0(Bi ){1−P0(Bi )}

γ+1
, i = 1, . . . , p,

so the DP(γP0) prior is closer to its mean P0 and less variable for large values of γ. A construc-

tive characterisation of the Dirichlet process is the stick-breaking representation (Sethuraman,

1994)

P (·) =
∞∑

k=1
wkδλk (·), (5.14)

where δλ denotes a distribution concentrated on λ, and λ1,λ2, . . . are independent, P0-

distributed, and independent of the random weights wk ≥ 0, which satisfy
∑∞

k=1 wk = 1. The

stick-breaking process takes its name from the computation of the weights: define V1,V2, . . . as

the breaks independently sampled from a Beta(1,γ) distribution. The weights are then

w1 =V1, wk =Vk

k−1∏
i=1

(1−Vi ), k = 2,3, . . . . (5.15)

Ishwaran and Zarepour (2000) use formulation (5.14) to express the Dirichlet process

in terms of the random variables wk and λk . They also introduce index variables c1, . . . ,cn

that describe the components of the mixture in which the observations z1, . . . , zn lie, giving
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a stick-breaking representation in terms of the index variables ci rather than the random

variables λk .

A key step in deriving a posterior distribution is the truncation of the sum in the stick-

breaking representation, i.e., replacing the infinite sum in (5.14) by a sum up to N . This is

achieved by imposing VN = 1 in (5.15). The accuracy of the stick-breaking approximation

improves exponentially fast in terms of the L1 error (Ishwaran and James, 2001), as

‖MN −M∞‖1 ≤ 4

[
1−E

{(
N−1∑
k=1

wk

)n}]
≈ 4n exp

(
−N −1

γ

)
,

where MN is the marginal density

∫ n∏
i=1

{
N∑

k=1
wkQk (d Zi |λi )

}
DP(dPN ) .

For example, the error is smaller than 10−29 when truncating the stick-breaking sum represen-

tation at N = 150 as in our real data analysis (Section 5.8) for which γ≤ 2 and n = 154.

Taking into account the transformations discussed above, a simple model for G involving

the Dirichlet process prior is

Z | c,Λ ind∼ Qc =Q(·;λc ),

c | PN
iid∼ PN =

N∑
k=1

wkδk (·),

(Λ, w ) ∼πΛ(·)πw (·),

(5.16)

where Λ is the matrix with rows λ1, . . . ,λN , and w = (w1, . . . , wN ), with
∑N

k=1 wk = 1 for some

suitably large N . To lighten the notation we write Z1 |λc instead of Z1 | c,Λ in what follows.

Taking the Qk (k = 1, . . . , N ) to be normal distributions with means µ1,k and variances ψ2
1,k

leads toΛ being a 2×N matrix, with rowsλk = (µ1,k ,ψ2
1,k ). Model (5.16) is made more flexible

by adding a hyperprior for the concentration parameter γ.

5.6.3 Multivariate semiparametric setting

We now specify the features of our algorithm, finally yielding model (5.18). We must

add a further element to (5.16): covariates, i.e., the parametric part of the Heffernan–Tawn

model (5.8), to recognise that α and β are unknown. This is achieved using a covariate-

dependent Dirichlet process, and it can be formulated in terms of the truncated stick-breaking

representation as

P|x (·) =
N∑

k=1
wkδλk (x)(·), (5.17)
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so that a single output of the stick-breaking procedure gives rise to a whole family of distribu-

tions indexed by x. Our data are the n observations from m-dimensional variables X −0, given

X0 is large. We assume that, conditional on T (X0) > u, T (X −0) has a mixture of multivariate

normal distributions,
∑∞

k=1 wkNm , where the mean vector Mk (x) and the covariance matrix

Ψk (x) of the kth normal component depend on the value x of T (X0). For parsimony, the

variance matrix Ψk (x) is taken to be diagonal with diagonal elements {Ψ1,k (x), . . . ,Ψm,k (x)},

as the mixture structure is considered flexible enough to capture the dependence between the

elements of X −0.

As we use the truncated version of the stick-breaking representation (5.14), the conditional

distribution for the weights wi is a generalised Dirichlet distribution (Connor and Mosimann,

1969), written as GDirichlet. This gives the final form of our semiparametric model:

T (X j ) | {T (X0) = x, α j , β j , M j ,c (x), Ψ j ,c (x)
} ind∼ N

{
M j ,c (x),Ψ j ,c (x)

}
, j = 1, . . . ,m, x > u,

M j ,c (x) =α j x +µ j ,c xβ j , Ψ j ,c (x) = x2β jψ2
j ,c , (5.18)

c | w ∼
N∑

k=1
wkδk (·),

where the prior for (α,β,µk ,ψk ), with µk = (µ1,k , . . . ,µm,k ) and ψk = (ψ1,k , . . . ,ψm,k ), takes

the form

w | γ∼ GDirichlet
(
1,γ, . . . ,1,γ

)
,

γ∼ Gamma
(
η1,η2

)
,

α j
iid∼ U (0,1), β j

iid∼ U (0,1), j = 1, . . . ,m,

µ j ,k
ind∼ N

(
0,ψ2

(µ)

)
, ψ2

j ,k
iid∼ Inv-Gamma

(
ν1, j ,ν2, j

)
, j = 1, . . . ,m, k = 1, . . . , N ,

with positive hyper-parameters (η1,η2,ψ2
(µ),ν1,ν2). The Keef et al. (2013) conditions men-

tioned in Section 5.4.2 are built into the likelihood terms for α j and β j , so the Metropolis–

Hastings scheme systematically rejects proposals outside the support of the posterior.

5.6.4 Implementation of existing constraints in the Bayesian framework

In this section, we give more details about how the constraints of Keef et al. (2013) are

dealt with in the Bayesian framework. We state the form of the constraints, which hold if

Conditions A and B are both satisfied in Definition 5.1, for conditional quantiles evaluated at

p = 0 and p = 1, as we have shown in Section 2.4.3 of Chapter 2. We recall here that we define

the conditional quantile functions for x large

q−
j (p) =−x + z−

j (p), q j (p) =α j x +xβ j z j (p), q+
j (p) = x + z+

j (p),
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under asymptotic negative dependence (χ−j > 0), asymptotic independence (χ−j =χ+j = 0) and

asymptotic positive dependence (χ+j > 0) respectively, with

χ+j = lim
x→xF

Pr
(
X j > x | X0 > x

)
, χ−j = lim

x→xF
Pr

(
X j ≤ x | X0 > x

)
, j = 1, . . . ,m,

and

G−
j

{
z−

j (p)
}
=G j

{
z j (p)

}=G+
j

{
z+

j (p)
}
= p,

where G−
j (·) and G+

j (·) correspond to the residual distributions of the normalised limit of

X j | X0 = x for x large under asymptotic negative and positive dependence respectively.

Definition 5.1 (Keef et al. (2013))

The constraints of Keef et al. are satisfied if Conditions A and B both hold, with v > u and

p ∈ {0}∪ {1}.

Condition A Either

α j ≤ min
{

1, 1−β j z j (p)vβ−1, 1− vβ j−1z j (p)+ v−1z+
j (p)

}
,

or

1−β j z j (p)vβ j−1 <α j ≤ 1 and
(
1−β−1

j

){
β j z j (p)

}1/(1−β j ) (1−α j )−β j /(1−β j )+z+
j (p) > 0.

Condition B Either

−α j ≤ min
{

1, 1+β j vβ j−1z j (p), 1+ vβ j−1z j (p)− v−1z−
j (p)

}
,

or

1+β j vβ j−1z j (p) <−α j ≤ 1 and
(
1−β−1

j

){−β j z j (p)
}1/(1−β j ) (1+α j )−β j /(1−β j )−z−

j (p) > 0.

From a Bayesian point of view these constraints do not represent prior knowledge, as

they depend on the data, which are used to compute z j (0) and z j (1) from the maximum

and minimum value of the residuals z j = {T j (x j )−α j T j (x0)}/{T j (x0)}β j . The constraints of

Definition 5.1 correspond to constraints on the support of the likelihood function for α j

and β j , so that any candidate α?j or β?j not satisfying the constraints can be rejected before

computing the acceptance ratio in a Metropolis–Hastings scheme, thus saving computational

time. Because the constraints cannot be expressed in closed form, it would require a lot

of effort to shape a proposal distribution which would sample only candidates satisfying

the constraints, and we do not explore this further here. We suggest an approach to more

efficiently sample from the proposal distribution of (α j ,β j ) in Appendix F, using a state-

dependent proposal distribution.
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5.6.5 Implementation issues

The semiparametric multivariate Bayesian model (5.18) has the added benefit of allowing

us to structure the parametric component of the model. Assuming X to be a first order Markov

process yields different structures discussed in Section 5.5. For example, the different forms of

decaying dependence in the class of asymptotic independence can be modelled by setting the

priors to be α∼U (0,1) and β∼U (0,1), independently. The appropriate structure of model

(5.18) can be determined using standard diagnostics, and if adopted in the modelling will

lead to substantially improved efficiency. Imposing continuous priors on α and β induces

a restriction to the class of asymptotically independent series, but both parameters can be

arbitrary close to the boundaries of their support, ensuring that the behaviour of θ(x,m) and

the extremal structure of dependence of the series are not affected at the high levels of interest.

A reversible jump procedure (Green, 1995) could be added to the current algorithm in order to

enable α and β to have prior masses on the support boundaries to ensure positive posterior

probability of asymptotic dependence; see Coles and Pauli (2002) for an example of this type

of construction.

The shape and scale for the prior variances of the components ψ2
j ,k are taken to be ν1 =

ν2 = 2 to make the model prefer numerous components with smaller variances to a few

dispersed components. The posterior distribution for γ depends on the logarithm of the

last weight in the truncation (cf. Appendix E) and can be numerically unstable, so a vague

gamma prior truncated at small values is needed to ensure convergence. Conjugacy of the

prior densities allows analytical calculation of the posterior distributions for all parameters

in model (5.18) except α and β, for which a Metropolis–Hastings step is needed. We use a

regional adaptive scheme in Roberts and Rosenthal (2009) to avoid the choice of specific

proposal variances. The posterior densities are mainly derived from Ishwaran and James

(2002), and are given in Appendix E.

As noticed by Porteous et al. (2006), the Gibbs sampler used for model (5.18) leads to a

clustering bias, because the weights do not satisfy the weak ordering E(w1) ≥ ·· · ≥ E(wN−1).

Papaspiliopoulos and Roberts (2008) suggested two different label switching moves to improve

the mixing of the algorithm. Components cannot be simply swapped, as this would change

the joint distribution of the weights. Label switching is not to be understood in its exact sense

within this framework: if a switch between two mixture components is proposed and accepted,

then only their means and variances are swapped and the index variables ci of the data points

belonging to these components are renumbered accordingly. We use this approach and adapt

it to our semiparametric framework.

The results presented in Sections 5.7 and 5.8 are promising, but two aspects would benefit

from improvement. Bayesian semiparametric inference provides a valuable approach to

uncertainty in the Heffernan–Tawn model, but the procedure is not fully Bayesian, since the

marginal distribution is fitted using maximum likelihood estimation. With further work we

could include the fit for the marginal distribution within the fit for the dependence structure,
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but we would have to account for the temporal dependence between observations in order

not to introduce bias. The second possibility for improvement pertains to the sampling of

α j and β j in (5.8): the special cases corresponding to the boundaries of their support should

correspond to Dirac masses, so reversible jump Markov chain Monte Carlo sampling (Green,

1995) could be used.

5.7 Simulation study

5.7.1 Bivariate data

We start by showing how the Bayesian semiparametric approach to inference can improve

over the stepwise approach in a bivariate setting. The working assumption of Gaussianity for

the residual variable Z is key to the stepwise process, and if it fails badly then the stepwise

approach may perform poorly relative to the Bayesian semiparametric approach. To illustrate

this we take Z to have a bimodal density, either a mixture of Gaussian densities, or a mixture

of Laplace densities. As the former is a special case of the structure of the mixture components

in the dependent Dirichlet process, we may expect a clear improvement in that case, but it is

less clear what to expect in the latter case.

We generated data (X ,Y ) directly from the Heffernan–Tawn model with parameters (α,β)

subject to X > u, for large u > 0, as follows:

1. Simulate X as u +Exp(1);

2. Independently simulate Z from the required mixture model;

3. Let Y =αX +X βZ .

We selected the mixture for the bimodal distribution of Z such that the simulated (X ,Y ) data

are split into two clear clusters for large X (see left panel of Figure 5.2 for an example).

We simulated 1000 data sets each with 400 points, roughly twice the number of ex-

ceedances available in our river flow application, and fitted the conditional model using

the stepwise and the Bayesian semiparametric approaches. We compare the methods through

the relative efficiency, measured as the ratio of the root mean squared error (RMSE) for the

Bayesian approach to the RMSE of the stepwise approach. The estimators we consider in

order to compute the efficiency are the mode, the mean, and the median of the posterior

distribution of α and β for the Bayesian approach and the maximum likelihood estimators of

α and β for the stepwise approach.

The benefits of the Bayesian semiparametric approach are clearly found, with similar

relative efficiencies whether Z is simulated with a Gaussian or Laplace mixture. The relative

efficiency is broadly 0.6 for α and in the range 0.5−0.65 for β depending on which of the

three summary measures of the posterior distribution is chosen. The posterior number of
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Figure 5.2 – Results for the simulation study based on the Heffernan–Tawn model with a bimodal
residual distribution with two Laplace components. Left panel: simulated data, with the two compo-
nents shown as squares and circles. Right panel: kernel density estimate based on 1000 estimates of
(α,β) from the stepwise method (grey) and from the Bayesian semiparametric method (black) using
the posterior medians as the summary statistic. The same contour levels are used for both density
estimates. The true value is shown as a cross.

components in the mixture is concentrated around 2 and 3, so the Bayesian semiparametric

approach seems to capture the distribution of Z well. Figure 5.2 shows the joint sampling

distribution of the estimators of (α,β) based on the two inference methods. The contours are

similar, but suggest that the Bayesian approach estimates the true (α,β) more precisely.

Of key importance is the practical implication of this improvement, which is more naturally

measured in terms of improved performance for estimating the threshold-based extremal

index. Specifically we estimate θ(x,1) = Pr(Y < x | X > x), which requires accurate estimation

of the distribution of Z as well as of α and β. The relative efficiency for θ(x,1) is computed,

where the true value for θ(x,1) is obtained from a huge simulation from the true model. The

relative efficiency varies over x, with values of 0.95 and 0.90 for the 99% and 99.9% quantiles,

suggesting slight improvements within the range of the data. The relative efficiency reduces to

0.69 at the 99.99% quantile, suggesting that the real benefits in the Bayesian semiparametric

approach arise when we extrapolate.

5.7.2 AR(1) process

We now compare the performances of the empirical, the stepwise and the Bayesian semi-

parametric inference procedures in estimating the threshold-based extremal index of a station-

ary time series. The data are generated from a first-order Markov process with Gaussian copula

and exponential margins. This is equivalent to having a standard Gaussian AR(1) process

and using the probability integral transform to obtain exponential marginal distributions. In

Gaussian margins this process has lag τ autocorrelation ρτ = ρτ, where we consider the set

of {−0.75,−0.5, . . . ,0.5,0.75} for the true value of ρ. For each of these values of ρ, the process
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is asymptotically independent, with extremal index θ = 1, but it exhibits dependence at any

subasymptotic threshold when ρ 6= 0. The true value for θ(x,m) is evaluated by computing the

ratio of multivariate normal integrals

θ(x,m) = Pr(X0 > x, X1 < x, . . . , Xm < x)/Pr(X0 > x). (5.19)

using the methods of Genz and Bretz (2009) and Genz et al. (2014). The use of exponential

margins ensures that the GPD marginal model is exact for all thresholds, so any bias in the

estimation of θ(x,m) can be attributed to inference for the dependence structure. A similar

approach was taken by Eastoe and Tawn (2012).

The three methods are applied to 1000 data sets of length 8000, approximately the length

of the winter flow data studied in Section 5.8. This procedure is repeated for each value of ρ in

the range {−0.75, . . . ,0.75}. The empirical method simply estimates each of the probabilities in

expression (5.19) empirically. Often called the runs estimate (Smith and Weissman, 1994), this

is not defined beyond the largest value of the sample, whereas the other two methods do not

suffer this weakness. In each case the marginal threshold u for the modelling and inference is

fixed at the 95% empirical quantile of each series. Unlike the stepwise procedure, the Bayesian

semiparametric approach enables us to constrain {(α j ,β j ) : j = 1, . . . ,m}, and this allows us to

exploit our knowledge of the Markovian structure of the process to impose the constraints on

the α j and β j discussed in Section 5.5, thus reducing the number of parameters from 2m to 1

or 2.

We estimate θ(x,m) for a range of high quantiles x and for declustering run-lengths m = 1

and 4. Table 5.1 shows the ratios of RMSEs of the posterior median of θ(x,m) from the Bayesian

semiparametric approach and the empirical and the stepwise estimators in the particular

case when ρ = 0.5. The Bayesian semiparametric estimator is always superior to the empirical

estimator, with the advantage improving as x increases. For the stepwise approach the results

are similar to those in Section 5.7.1: the two estimators are similar at low levels but the

Bayesian semiparametric estimator performs better at higher levels. Figure 5.3 summarises

the results for all values of ρ, showing a major improvement of our method over the stepwise

approach for negative autocorrelation and short run-length, with increased gain at higher

levels. The particularly good performance of our estimator for negative values of ρ stems

from the constraint on {(α j ,β j ) : j = 1, . . . ,m}, which dramatically improves identifiability

of the parameters in the conditional tail model; more details on this topic are provided in

Section 6.6.5. In order to assess the effectiveness of imposing the Markovian structure in

the Bayesian semiparametric approach, we also fitted the 1000 simulated time series with

unconstrained α and β in the case ρ = 0.5. The efficiency of the unconstrained approach only

declines relative to the constrained approach at high quantiles. For example the 57% in the

bottom right of Table 5.1 increases to 75%.

We expect the Bayesian approach to gain accuracy in terms of frequentist coverage of

θ(x,m), as it fits the data in one stage and thus provides a better measure of uncertainty. To
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m=1 m=4

Level Empirical Stepwise Empirical Stepwise

98% 88 101 88 100

99% 68 92 71 98

99.99% – 59 – 57

Table 5.1 – Ratios (%) of RMSEs computed with estimates of θ(x,m); the numerator of these efficiencies
is always the RMSE estimate derived from the posterior median in the Bayesian semiparametric
approach, and the denominator is either the RMSE corresponding to the runs estimate (Empirical) or
to the stepwise estimate (Stepwise). Empty cells correspond to high levels of x for which estimates of
θ(x,m) cannot be evaluated.
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Figure 5.3 – Ratios (%) of RMSEs computed with estimates of θ(x,m), the numerator being the RMSE
derived from the posterior median in our approach and the denominator being the RMSE correspond-
ing to the stepwise estimate. The cases m = 1 (circles) and m = 4 (diamonds) are illustrated for x at the
99% (empty symbols) and 99.99% (filled symbols) levels.

assess this we considered bootstrap confidence intervals for the stepwise method and credible

intervals for the Bayesian method, both of the type [Lα,∞). Here Lα is the αth quantile of the

distribution of the estimator, considering bootstrap estimates for the former and posterior

samples for the latter. Using the same 1000 simulated data sets as earlier in this section, we

computed the proportion of times that the true value of θ(x,m) would fall in these confidence

or credible intervals, for a range of α-confidence levels from 5% to 95%, different run-lengths

m, and several levels x for θ(x,m). The coverage performance is summarised in Figure 5.4,

which shows the difference between the calculated and the nominal coverageα. Zero coverage

error means perfect uncertainty assessment; positive and negative errors mean one-sided

over- and under-coverage respectively. The stepwise approach over-estimates coverage for

both levels of x and all α. At relatively low x-levels of θ(x,m), the gain in coverage accuracy
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Figure 5.4 – Coverage error for θ(x,m) computed for confidence levels 0.05,0.1, . . . ,0.95, for x = 98%
(empty symbols) and x = 99.999% (filled symbols), with m = 1, for the stepwise approach (circles) and
the Bayesian semiparametric approach (diamonds).

by the Bayesian approach is remarkable in particular at mid-coverage levels, but it shows no

marked improvement for larger x.

5.8 Data analysis

River flooding can badly damage properties and have huge insurance costs. Large-scale

floods in the UK since the year 2000 have caused insurance losses of £5 billion, and more

than £400 million is spent each year on flood defences. Modelling the dependence of extreme

water-levels is key to accurate prediction of flood risk.

Our application uses daily flows of the River Ray at Grendon Underwood, north-west of

London, for the 47 winters from 1962 to 2008. We assume stationarity of the series over the

winter months. River flows in this catchment are typically short-range dependent: after heavy

rainfall the flow can reach high values before decreasing gradually as the river returns to its

baseflow regime. We thus expect the flow to be dependent at extreme levels and at small lags,

so a small run length m is required. For illustration we take m = 1, 7, with the former being the

more appropriate.

Standard graphical methods (Coles, 2001) were used to choose the 95% empirical quantile

as the marginal threshold. A sensitivity analysis on a range of thresholds gave results similar to

those below. The Heffernan–Tawn model was then fitted to the data transformed to Laplace

margins, with u as the 98% empirical quantile and m = 1, 7. A higher threshold was selected

for the dependence modelling to ensure the independence of X0 and Z in approximation

(5.8).



5.8 Data analysis 85

1 2 3 4 5 6 7

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

j

χ j
(x

)

Figure 5.5 – Posterior summaries for χ j (x), j = 1, . . . ,7, with x the 95% (grey), 99% (blue), and 99.99%
(red) marginal quantiles of the River Ray data. The different shades of colour indicate the 95%, 80%,
and 50% highest density regions of the posterior densities. The black segments indicate the posterior
medians.

We first investigate the asymptotic structure of the data at different lags. We use χ j (x) =
Pr(X j > x | X0 > x), j = 1, . . . ,m, whose limit χ j (cf. Section 5.2) either measures the degree

of association within the asymptotic dependence class when χ j > 0 or indicates asymptotic

independence when χ j = 0. A Monte Carlo integration similar to that used for estimating

the posterior distribution of θ(x,m) is applied to get the posterior distribution of χ j (x) for

selected values of x and j = 1, . . . ,7 depicted in Figure 5.5, where the posterior densities are

summarised using highest density regions (Hyndman, 1996). Convergence of χ j (x) to 0 at

all lags is supported by the model. As expected we observe a monotone decay in extremal

dependence over time lag. The flexibility of the conditional model is well illustrated here, as

the procedure establishes positive dependence at any finite level but anticipates asymptotic

independence of successive daily flows.

From the estimates of χ j (x) we expect θ = 1 but θ(x,m) < 1 for x < xF . We computed

estimates of θ(x,m) for several values of x based on the posterior distribution fitted with the

Bayesian semiparametric approach and compared them with the stepwise approach and

the empirical estimates. We give block bootstrap confidence intervals for the stepwise and

empirical estimates, with a block length ensuring that winters are not split between blocks.

Figure 5.1 shows estimates of θ(x,4) obtained with the three methods, with m = 4 to show

an intermediate estimate, as θ(x,7) ≤ θ(x,4) ≤ θ(x,1). The three methods broadly agree at

historical levels, with wider confidence intervals for the runs estimate. For higher x, the

stepwise estimate predicts stronger dependence than does the Bayesian estimate.
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m = 1 m = 7

Level Empirical Stepwise Bayesian Empirical Stepwise Bayesian

95% 62(58,68) 62(61,70) 62(57,66) 35(33,41) 36(33,42) 33(27,38)

99% 90(83,95) 87(83,91) 88(83,91) 80(70,88) 69(66,79) 76(71,80)

99.9% – 96(93,99) 97(94,99) – 90(86,96) 98(96,99)

99.99% – 99(96,100) 100(98,100) – 98(93,100) 100(99,100)

Table 5.2 – Estimation of the threshold-based extremal index θ(x,m) (%) for four different levels of x
and m = 1,7 on the Ray River winter flow data, with 95% confidence intervals (CI) given as subscripts.
Empirical: runs estimator (block bootstrap CI); Stepwise: Heffernan–Tawn method (block bootstrap
CI); Bayesian: posterior median from the Bayesian semiparametric approach (quantiles of the posterior
distribution).

Table 5.2 shows that the three methods agree closely for m = 1, with the posterior distri-

bution giving slightly tighter credible intervals than the two other methods. For m = 7, the

Bayesian approach seems to improve a little on the stepwise estimates when compared to the

empirical estimates at low levels, partly because of the Markov constraints on the α j and β j ,

which also reduce the uncertainty. In terms of convergence of θ(x,m) to the extremal index θ,

we observe that at very high levels and for both values of m, the estimates of θ(x,m) tend to

the same values, which indicates coherence in the approach. This also illustrates the lesser

concern of the choice of the run-length when we are interested in tail probabilities, typically

when estimating cluster maxima distributions.

The Bayesian semiparametric approach appears to offer a more coherent basis for the ex-

trapolation to the required levels and uncertainty quantification for design purposes than does

the stepwise method. We assessed the performance of Bayesian semiparametric estimates of

θ(x,m), but other conditional probabilities could also be estimated using this approach.

5.9 Summary

In this chapter, we reviewed the finite-sample clustering properties in stationary time

series, as measured by the subasymptotic extremal index θ(x,m) and by χ j (x), defined in (5.1)

and (5.2) respectively. We observed that the subasymptotic versions of θ and χ j can converge

very slowly to their respective limits, leading classical methods to overestimate clustering of

extremes when extrapolating beyond the range of the data.

We then devised a Dirichlet process mixture appropriate for our approach, introducing

a semiparametric model which allows estimation of the conditional tail model in a single

stage, thus improving efficiency. We improved the mixing of successive posterior samples
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by introducing label switching moves in the algorithm. Another benefit of the Bayesian

semiparametric approach is to provide posterior distributions for the model parameters

and for the conditional distribution G , thus naturally giving estimates of uncertainty for

functions of the model parameters. Our new approach brings additional structure for fitting a

parsimonious model, e.g., in time series, when a Markov property is a reasonable assumption.

We showed the multiple benefits of the Bayesian approach on simulated data, namely

the efficiency improved compared to the stepwise inference procedure of Eastoe and Tawn

(2012) and good coverage properties. We concluded with an illustration on river flow data

and we showed, with the example of χ j (x), how the Bayesian approach can naturally provide

estimates of cluster functionals other than θ(x,m).

In the next chapter, we shall begin with the description of a new constraint for the condi-

tional tail model, followed by the development of a joint likelihood for bivariate observations

based on the conditional tail model, and completing the thesis with a contribution to fitting

the extremes of first order Markov chains.





6 New improvements to the conditional
tail model

6.1 Joint likelihood for bivariate extremes

Consider a bivariate random vector (X ,Y ) with marginal and joint distributions functions

FX (·) and FY (·), and FX ,Y (·, ·), respectively. A standard modelling approach, supported by

the representation theorem of Sklar (1959), is to consider the marginal and joint features

separately. In this setting, the dependence structure is often represented using a copula, as we

saw in Section 2.1.2, which suggests fitting FX (·) and FY (·) first, and then using the probability

integral transform in order to convert the marginal distributions to the uniform scale, using

X U = F̂X (X ) and Y U = F̂Y (Y ), with F̂X (·) and F̂Y (·) estimates of FX (·) and FY (·) respectively.

A similar methodology exists for modelling bivariate componentwise maxima, with marginal

distributions often transformed from generalised extreme value to a particular subclass of

distributions, such as Fréchet or Gumbel, instead of the uniform distribution used in the

standard copula approach. The joint extremal structure is fitted with models that are justi-

fied asymptotically. Many parametric and non-parametric models have been derived from

Pickands’ function A(·), from the spectral measure V (·, ·) or from the angular distribution H(·)
(Section 2.1.2). When bivariate excesses of a threshold are considered, models such as the

generalised Pareto distribution are used to transform the marginal distributions to a specific

distribution, e.g., Fréchet, exponential, or Pareto. The key aspect of all these procedures is

that they transform the problem of modelling (X ,Y ) with general margins to one where the

margins are on the same scale, so that joint features are easier to model.

Standard inference for threshold methods for bivariate extremes involves generalised

Pareto marginal distributions above a high threshold. In this approach, the margins are also

considered as fixed when fitting the dependence structure. Uncertainty of the parameters

of the joint structure is generally reported assuming known marginal distributions, which

can yield standard errors that are too small. The work of Genest et al. (1995) suggests that a

single-step procedure, i.e., fitting the marginal and joint features simultaneously, can yield

moderate efficiency gains in the case of Clayton’s copula (Clayton, 1978).

89
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Max-stable bivariate distributions, stemming from the limit of normalised componentwise

maxima, display complete independence or asymptotic dependence, meaning that the max-

ima of X and Y occur simultaneously with a positive probability (Section 2.3.1). Wadsworth

and Tawn (2012) introduce the class of inverted max-stable distributions, whose copula’s

upper joint tail corresponds to the lower joint tail of the corresponding max-stable distri-

bution: (X E,Y E), with X E = 1/X F and Y E = 1/Y F, has an inverted max-stable distribution

with exponential margins if (X F,Y F) has a max-stable distribution with Fréchet margins. In-

verted max-stable distributions display asymptotic independence in their upper tails, with a

dependence strength that depends on the magnitude of the events considered.

The conditional approach to extremes is not restricted to events that are simultaneously

extreme in X and Y , and covers a broad class of max-stable and inverted max-stable distri-

butions (Heffernan and Tawn, 2004; Papastathopoulos and Tawn, 2016). It is based on the

assumption that there exist normalising functions a(·) and b(·) > 0 such that, for (X L,Y L) in

Laplace margins,

lim
u→∞Pr

{
Y L −a

(
X L

)
b

(
X L

) ≤ z, X L −u > x

∣∣∣∣∣ X > u

}
= H(z)exp(−x), x > 0, (6.1)

with H(·) a non-degenerate distribution with no mass at infinity. Recall from Section 2.4.2,

that the conditional tail model arising from (6.1) uses a(x) = αx and b(x) = xβ, so that the

model takes the form

Y L | {X L = x} =αx +xβZ , X L > u, (6.2)

for some large threshold u, with α ∈ [−1,1], β ∈ (−∞,1] and Z ∼ H independent of X L. Infer-

ence for the conditional tail model is easy to implement even in high-dimensional settings,

but in the approach suggested by Heffernan and Tawn (2004) it involves multiple steps, where

estimates computed in one step are considered as fixed in the next step, thus losing efficiency.

In the first step, the marginal distribution is transformed to the Laplace scale using a rank

transform or the semiparametric model (5.9) of Coles and Tawn (1994). In the second step, the

norming parameters α and β are estimated by maximising a likelihood function, temporarily

assuming the conditional tail distribution H(·) to be Gaussian. In the final step, H(·) is esti-

mated by the empirical distribution function of the fitted residuals Ẑi = (Y L
i − α̂X L

i )/(X L
i )β̂,

X L
i > u, and (X L

i ,Y L
i ) (i = 1, . . . ,n) represent independent replicates of (X L,Y L).

In Chapter 5, we developed a methodology which yields more efficient inference for the

conditional tail model, but which still relies on a first step where the marginal distributions are

fitted separately. This approach does not permit uncertainty of the marginal fit to be accounted

for when fitting the dependence structure, thus potentially impacting the assessment of

uncertainty for probability estimates of extreme sets, leading to a loss in efficiency.

Another important aspect is that this approach only considers one conditional distribu-

tion, i.e., Y | X with X large, without looking at X | Y with Y large at the same time. In the

approach of Heffernan and Tawn (2004), the two conditional models are fitted as if they were
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independent, since the likelihood function was taken as∏
(xi ,yi ):xi>u

fY |X (yi | xi )× ∏
(xi ,yi ):yi>u

fX |Y (xi | yi ), (6.3)

for some large threshold u, observations (xi , yi ) (i = 1, . . . ,n) transformed to the Laplace scale,

and where fY |X is the conditional density based on the model (6.2) with H(·) being Gaussian,

and similarly for fY |X with X and Y flipped. Another incorrect aspect of the joint density

(6.3) is its double-counting of observations (xi , yi ) having min(xi , yi ) > u, thus over-weighting

jointly extreme events. In Section 6.2, we shall give two different approaches to a correct

likelihood formulation.

The lack of self-consistency in the joint tail between each conditional distribution was

recognised by Heffernan and Tawn (2004), since the formulation of the conditional model does

not guarantee equality of estimates of, e.g., Pr(X L > v,Y L > v), for any v > u, extrapolated from

X | Y > u and from Y | X > u, for large u. Heffernan and Tawn suggest imposing weak pairwise

exchangeability, i.e., α|x = α|y and β|x = β|y , or strong pairwise exchangeability, i.e., weak

pairwise exchangeability and H|x (·) ≡ H|y (·), where the subscripts refer to the conditioning

variables used in the corresponding models. When X and Y are not exchangeable, these

assumptions lead to biased estimates. Liu and Tawn (2014) explore self-consistency and

consider the densities

h|x (z) = d

d z
H|x (z), h|y (z) = d

d z
H|y (z).

Self-consistency of the conditional models Y | X = x, with x large, and X | Y = y , with y large,

requires

fY |X (y | x) fX (x) = fX |Y (x | y) fY (y),

for all x and y large, which implies

h|x
(

y −α|x x

xβ|x

)
e−x = h|y

(
x −α|y y

yβ|y

)
e−y , (6.4)

for all x and y large. Liu and Tawn show that (6.4) cannot be satisfied for all points in the set

{(x, y) : x > u, y > u}, assuming the densities h|x (·) and h|y (·) to be differentiable. They show

that a weaker version of self-consistency holds, termed diagonal self-consistency, in which

equality of the densities is imposed only on {(x, y) : x = y > u}, if and only if

h|x (z) = 1−α|x
z

h0

{(
1−α|x

z

)1/(β|x−1)
}

, z > (1−α|x )u1−β|x ,

h|y (z) = 1−α|y
z

h0

{(
1−α|y

z

)1/(β|y−1)
}

, z > (1−α|y )u1−β|y ,

with h0(·) : (u,∞) → [0,∞). Liu and Tawn (2014) propose the parametric family

h0(z) =ω1zω2 e−ω3z , ωi > 0, i = 1,2,3,
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as a means to enforce diagonal self-consistency while covering several known asymptotically

independent parametric families of distributions. This approach is interesting in that it can

improve self-consistency across several conditional tail models applied to the same set of

multivariate observations, but it is restricted by a stepwise fitting procedure not giving a full

account of uncertainty for the model parameters, and by the incorrect likelihood based on

(6.3).

In this chapter, we introduce a new methodology to jointly fit the two conditional tail

models for Y | X and X | Y , while setting a proper density for observations for which both

conditional models are valid. This methodology allows the sharing of information between the

two conditional models, thus improving the consistency of estimates of joint tail probabilities,

while carrying the benefits of the conditional tail approach, and in particular its flexibility and

its ability to fit asymptotically independent distributions. We censor non-extreme observations

in order to add information to the fit and to capture extremal dependence better. In a second

part, we also aim at reducing inconsistency of the conditional tail model, following a different

route than Liu and Tawn. We tackle the issue of multi-stage inference and the loss of efficiency

that it implies, and present a method to fit the marginal distributions of X and Y and their

joint extremal dependence structure in a single stage. This offers a reliable and complete

assessment of uncertainty for the model parameters and for risk estimates extrapolated from

the fit. We also introduce new constraints for the conditional model under the hypothesis

of positive or negative association, thus reinforcing the robustness of the fit in cases of weak

identifiability of the model parameters.

6.2 New methodology for modelling extremes in one component

6.2.1 General framework

In order to simplify the following developments, we first assume strong exchangeability of

the parameters and of the residual distributions for the conditional tail models corresponding

to X | Y and Y | X , i.e., we set α=α|x =α|y , β=β|x =β|y , and H(·) ≡ H|x (·) ≡ H|y (·). We leave

extensions where weak or no exchangeability is assumed to Section 6.3.3. We define several

regions used in the subsequent developments, namely

R01 =
{
(x, y) ∈R2 : x ≤ u, y > u

}
, R11 =

{
(x, y) ∈R2 : x > u, y > u

}
,

R00 =
{
(x, y) ∈R2 : x ≤ u, y ≤ u

}
, R10 =

{
(x, y) ∈R2 : x > u, y ≤ u

}
,

R|x = {
(x, y) ∈R2 : x > u, y ≤ x

}
, R|y =

{
(x, y) ∈R2 : y > u, x < y

}
,

(6.5)

and we show an illustration of them in Figure 6.1.

A joint fit of models M|x , in which Y | X = x, X > u, corresponding to region R10 ∪R11, and

M|y , in which X | Y = y , Y > u, corresponding to region R01 ∪R11, requires careful attention

for data lying in R11, where both X and Y are large, as these data influence the fit of both M|x
and M|y . In their inference procedure, Heffernan and Tawn (2004) consider M|x and M|y as
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X

Y

R00

u

u

R01

R10

R11

X

Y

R00

u

u
R|x

R|y

Figure 6.1 – Regions where likelihood contributions differ. Left panel: setup used when contributions
from Y | X and X | Y are averaged; right panel: setup used when contributions are split along the
diagonal where x = y . The grey areas represent regions where the observations are censored.

separate models, yielding a log-likelihood of the form

`HT
(
θHT
|x ,θHT

|y ; xi , yi i = 1, . . . ,n
)

=
n∑

i=1
1(xi > u) log fY |X

(
yi | xi ; θHT

|x
)
+ 1(yi > u) log fX |Y

(
xi | yi ; θHT

|y
)

, (6.6)

where θHT
|x = (α|x ,β|x ,µ|x ,ψ|x ) and θHT

|y = (α|y ,β|y ,µ|y ,ψ|y ) are the vectors of parameters for

M|x and M|y respectively. The log-likelihood formulation (6.6) entails using the observations

in R11 twice; non-extreme observations in R00 are not considered.

Our approach deals more carefully with the observations lying in R11, where both M|x and

M|y are valid, and as a consequence also incorporates information about the number of data

points in R00. Given (X ,Y ) with Laplace marginal distributions, the general form of our model

is based on the joint distribution

F (x, y) =


FX ,Y (x, y), max(x, y) > u,

F̃X ,Y (x, y)
FX ,Y (u,u)

F̃X ,Y (u,u)
, max(x, y) ≤ u,

(6.7)

where u is a large threshold on the Laplace scale, F̃X ,Y (·, ·) is a nonparametric estimate of

the joint distribution of (X ,Y ), and FX ,Y (·, ·) is a semiparametric estimate of F (·, ·) which we

shall detail later. The term FX ,Y (u,u)/F̃X ,Y (u,u) ensures continuity of the joint distribution at

(u,u), which is key in our approach, although discontinuity may occur on the half-lines (x,u),

x ≤ u and (u, y), y ≤ u. From (6.7), we derive the joint density, specifically

f (x, y) =


fX ,Y (x, y), max(x, y) > u,

f̃X ,Y (x, y)
FX ,Y (u,u)

F̃X ,Y (u,u)
, max(x, y) ≤ u,

(6.8)

so that the parametric contribution of an observation in R00 to the likelihood function reduces

to FX ,Y (u,u), thus the information for data points in R00 is censored and is limited to the fact

that these points lie below the bivariate threshold (u,u). Formulation (6.8) yields a bivariate
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log-likelihood for observations (xi , yi ), i = 1, . . . ,n, assuming Laplace margins, specifically

`
(
θx,y ; xi , yi , i = 1, . . . ,n

)
=

n∑
i=1

[
1
{
(xi , yi ) 6∈ R00

}
log fX ,Y

(
xi , yi ; θx,y

)]+n00 logFX ,Y
(
u,u;θx,y

)
,

where θx,y is the vector of parameters for the joint distribution; n00 = ∑n
i=1 1{(xi , yi ) ∈ R00}

is the number of censored observations and fX ,Y (·, ·) and FX ,Y (·, ·) are the joint density and

distribution functions of (X ,Y ).

We now model the joint density function fX ,Y (·, ·) in the L-shaped region R10 ∪R11 ∪R01.

We suggest a first approach where the likelihood contributions from the two conditional

models M|x and M|y are averaged out in R11, M|x is used in R10 and M|y is used in R01. This

setup corresponds to the left panel of Figure 6.1. An alternative setup is to split R11 along

the diagonal where x = y , i.e., to consider contributions from M|x and M|y only when x > y

and y < x respectively. This setup corresponds to the regions depicted in the right panel

of Figure 6.1. This setup may seem to resemble the extrapolation procedure of Heffernan

and Tawn (2004) outlined in Section 2.4.2, where probabilities in R|x and R|y are estimated

separately to form an estimate of a joint tail probability in R11. In effect, after having fitted

the incorrect log-likelihood (6.6), Heffernan and Tawn post-process probabilities estimated

from M|x and M|y to compute extrapolations. In contrast, our proposal is to use the correct

likelihood from the start. We take a fundamentally different approach to that of Heffernan and

Tawn, as we consider splitting R11 in order to construct a model and likelihood function that

are coherent in R11.

In the following developments, we shall use the terms average and split to refer to the two

models arising from the two different setups pictured in Figure 6.1.

6.2.2 Likelihood contributions averaged in R11

In the average likelihood setup, we need to define the different likelihood contributions

in the four regions R11, R00, R10 and R01. Note that the threshold u in Figure 6.1 is chosen

large enough such that u > 0. We first consider pairs of observations (x, y) ∈ R11, where we

construct a coherent likelihood which we derive as follows,

FX ,Y (x, y) = Pr
(
X ≤ x,Y ≤ y

)
= 1

2
Pr

(
Y ≤ y | X ≤ x

)
Pr(X ≤ x)+ 1

2
Pr

(
X ≤ x | Y ≤ y

)
Pr

(
Y ≤ y

)
= 1

2

∫ x

−∞
Pr

(
Y ≤ y

∣∣ X = s
) 1

2
e−|s|d s + 1

2

∫ y

−∞
Pr(X ≤ x | Y = t )

1

2
e−|t |d t .

(6.9)

By differentiating both sides of (6.9), we get

fX ,Y (x, y) = 1

4

{
fY |X (y | x)e−x + fX |Y (x | y)e−y}

. (6.10)
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Since both x and y are extreme in R11, we can model the conditional densities fY |X (· | ·)
and fX |Y (· | ·) using the conditional tail approach. We shall describe the detailed inference

procedure in Section 6.3.

The likelihood contribution of any of the censored observations (xi , yi ) ∈ R00 is

FX ,Y (u,u) = 1−F X (u)−F Y (u)+F X ,Y (u,u) = 1−e−u +F X ,Y (u,u), (6.11)

where the last term corresponds to Pr{(X ,Y ) ∈ R11} and can be derived from

F X ,Y (u,u) = Pr(X > u,Y > u)

= 1

2

∫ ∞

u
Pr(Y > u | X = x)

1

2
e−x d x + 1

2

∫ ∞

u
Pr(X > u | Y = y)

1

2
e−y d y.

(6.12)

Similarly to the modelling of the likelihood contribution (6.10), the conditional probabilities

in (6.12) can be modelled using M|x and M|y respectively.

The likelihood contributions of observations (xi , yi ) in R10 and R01, i.e., when exactly

one of xi and yi exceeds the threshold u, can be directly modelled using the conditional tail

approach, using the formulation

fX ,Y (x, y) =
 fY |X (y | x) 1

2 e−x , (x, y) ∈ R10,

fX |Y (x | y) 1
2 e−y , (x, y) ∈ R01,

(6.13)

so that the conditioning variable in the conditional density terms corresponds to an threshold

excess in both situations.

6.2.3 Likelihood contributions split in R11

In this alternative setup, we need to define likelihood contributions in the three regions

R00, R|x and R|y . We first consider (x, y) ∈ R00, for which we write (6.11) as

FX ,Y (u,u) = 1−Pr{max(X ,Y ) > u} = 1−Pr
{
(X ,Y ) ∈ R|x ∪R|y

}
, (6.14)

where the probability of (X ,Y ) being in the L-shaped region R|x ∪R|y is

Pr
{
(X ,Y ) ∈ R|x ∪R|y

}= Pr
{
(X ,Y ) ∈ R|x

}+Pr
{
(X ,Y ) ∈ R|y

}
=

∫
R|x

fY |X (y | x)
1

2
e−x d yd x +

∫
R|y

fX |Y (x | y)
1

2
e−y d xd y

=
∫ ∞

u
Pr(Y ≤ x | X = x)

1

2
e−x d x +

∫ ∞

u
Pr(X ≤ y | Y = y)

1

2
e−y d y.

(6.15)

Compared to the survival distribution (6.12) for which integrals are averaged over R11, expres-

sion (6.15) builds on separate calculations of probabilities in the region where at least X or Y

is extreme.
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The likelihood contributions of observations in R|x and R|y in the split likelihood setup

are identical to those in R10 and R01 for the average likelihood setup, but differ in R|x \ R10 and

R|y \ R01. These contributions are

fX ,Y (x, y) =
 fY |X (y | x) 1

2 e−x , (x, y) ∈ R|x ,

fX |Y (x | y) 1
2 e−y , (x, y) ∈ R|y .

(6.16)

Although we do not consider a conditional likelihood here, we now give the density of

observations (x, y) conditional on (x, y) ∈ R|x , namely

fX ,Y |X>Y (x, y) = fY |X (y | x) 1
2 e−x∫

R|x fY |X (t | s) 1
2 e−sd td s

= fY |X (y | x)e−x∫ ∞
u Pr(Y < s | X = s)e−sd s

, (6.17)

and similarly, the density of (x, y) conditional on (x, y) ∈ R|y is

fX ,Y |X<Y (x, y) = fX |Y (x | y) 1
2 e−y∫

R|y fX |Y (s | t ) 1
2 e−t d sd t

= fX |Y (x | y)e−y∫ ∞
u Pr(X < s | Y = s)e−sd s

, (6.18)

thus conditioning implies dividing the likelihood contributions (6.16) by the terms in the

denominator of (6.17) and (6.18).

6.2.4 Full methodology including the margins

We now present the methodology for fitting the marginal and joint distributions simulta-

neously, without assuming particular common marginal distributions for (X ,Y ) in the first

place. We need the mappings TX (x) : x 7→ xL and TY (y) : y 7→ yL to transform x and y from the

original marginal scales of (X ,Y ) to the Laplace scale, with

TX (x) =
log{2FX (x)} , FX (x) ≤ 1/2,

− log[2{1−FX (x)}] , FX (x) > 1/2,

TY (y) =
log

{
2FY (y)

}
, FY (y) ≤ 1/2,

− log
[
2
{
1−FY (y)

}]
, FY (y) > 1/2.

(6.19)

We use the semiparametric model of Coles and Tawn (1994) for FX (·) and FY (·) for given high

thresholds ux and uy respectively, assuming X and Y are in the domain of attraction of the
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generalised Pareto distribution, namely

FX (x) =


F̃X (x), x ≤ ux ,

1−{
1− F̃X (ux )

}(
1+ξx

x −ux

σu,x

)−1/ξx

+
, x > ux ,

FY (y) =


F̃Y (y), y ≤ uy ,

1−{
1− F̃Y (uy )

}(
1+ξy

y −uy

σu,y

)−1/ξy

+
, y > uy ,

(6.20)

with ξx ,ξy the shape parameters, σu,x ,σu,y > 0 the scale parameters of the generalised Pareto

distribution (GPD) and F̃X (·), F̃Y (·) the empirical distribution functions associated with X and

Y respectively.

We can work out a joint likelihood function for the marginal parameters θx = (σu,x ,ξx )

and θy = (σu,y ,ξy ) and for the vector of dependence parameters θx,y which can be used for a

joint fit, detailed in Section 6.3. This joint likelihood can be derived using either the average or

split likelihood approach joined with (6.19) and (6.20), and it has the form

`
(
θx ,θy ,θx,y ; xi , yi , i = 1, . . . ,n

)
= `(

θx ,θy ,θx,y ; xL
i , yL

i , i = 1, . . . ,n
)+ n∑

i=1

{
log JX (xi ; θx )+ log JY

(
yi ; θy

)}
,

where xL
i = TX (xi ;θx ), yL

i = TY (yi ;θy ), and JX (·) and JY (·) are the Jacobians of the transforma-

tions TX (·) and TY (·). Keeping only terms depending on the likelihood parameters θx ,θy ,θx,y ,

we get

`
(
θx ,θy ,θx,y ; xi , yi , i = 1, . . . ,n

)∝ n∑
i=1

[
1
{
(xi , yi ) 6∈ R00

}
log f L

X ,Y

(
xL

i , yL
i ; θx ,θy ,θx,y

)
+ 1(xi > ux ) log JX (xi ; θx )+ 1(yi > uy ) log JY

(
yi ; θy

)]
+n00 logF L

X ,Y

(
uL,uL;θx,y

)
,

(6.21)

where uL = TX (ux ) = TY (uy ), assuming for simplicity that the thresholds ux and uy correspond

to the same quantile, and F L
X ,Y (·, ·) and f L

X ,Y (·, ·) represent the joint distribution and density

functions of (X L,Y L). Assuming ux ,uy > 0, we have

JX (x) = ∂TX (x)

∂x
= 1

1−FX (x)

1− F̃X (ux )

σu,x

(
1+ξx

x −ux

σu,x

)−1/ξx−1

+

= 1

σu,x

(
1+ξx

x −ux

σu,x

)−1

+
, x > ux ,

JY (y) = ∂TY (y)

∂y
= 1

σu,y

(
1+ξy

y −uy

σu,y

)−1

+
, y > uy ,

(6.22)
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and JX (x) and JY (y) are constant in the GPD parameters for x ≤ u and y ≤ u respectively, thus

when maximising the log-likelihood (6.21) we only need to compute expressions in (6.22) on

the subset of observations in the L-shaped region R10 ∪R11 ∪R01 = R|x ∪R|y .

In the log-likelihood (6.21), the exact forms of the joint density f L
X ,Y (·, ·) and of the joint

distribution F L
X ,Y (·, ·) depend on whether the average or split setup is used, implying a different

treatment of observations in R11, which are extreme in both X and Y . We develop the inference

procedures for these two approaches in more details in the next section.

6.3 Inference

6.3.1 Strong exchangeability and Gaussian residuals

Here we consider a simplified setup of the model developed in Section 6.2. We assume

strong exchangeability of (X ,Y ), and normality of H(·) in (6.1), with mean µ and variance ψ2,

so that α|x = α|y = α, β|x = β|y = β, H|x (·) ≡ H|y (·) ≡ H(·). Using the notation of Section 6.2,

the vector of parameters for the joint structure is θX ,Y = (α,β,µ,ψ2). Assuming a Gaussian

conditional distribution for the residuals, we get simple expressions for the different likelihood

contributions for the average likelihood of Section 6.2.2; contribution (6.10) becomes

fX ,Y (x, y) = 1

4

{
e−x

ψxβ
ϕ

(
y −αx −µxβ

ψxβ

)
+ e−y

ψyβ
ϕ

(
x −αy −µyβ

ψyβ

)}
, (x, y) ∈ R11,

where φ(·) is the standard normal density function; the survival distribution in contribution

(6.11), corresponding to observations in Rc
00, becomes

F X ,Y (u,u) = 1

2

∫ ∞

u
Φ

(
u −αx −µxβ

ψxβ

)
1

2
e−x d x + 1

2

∫ ∞

u
Φ

(
u −αy −µyβ

ψyβ

)
1

2
e−y d y

= 1

2

∫ ∞

u
Φ

(
u −αs −µsβ

ψsβ

)
e−sd s,

(6.23)

thanks to the strong exchangeability of X and Y , where Φ(·) = 1−Φ(·) is the survival function

of the standard normal distribution; for the contributions in R10 and R01 discussed generally

in (6.13), we have

fX ,Y (x, y) =


e−x

2ψxβ
ϕ

(
y−αx−µxβ

ψxβ

)
, (x, y) ∈ R10,

e−y

2ψyβ
ϕ

(
x−αy−µyβ

ψyβ

)
, (x, y) ∈ R01.

(6.24)
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Similarly, for the split likelihood described in Section 6.2.3, contribution (6.14) for observa-

tions in R00 needs the computation of the probability (6.15) in Rc
00, which is

Pr
{
(X ,Y ) ∈ R|x ∪R|y

}= ∫ ∞

u
Φ

{
(1−α)x −µxβ

ψxβ

}
1

2
e−x d x +

∫ ∞

u
Φ

{
(1−α)y −µyβ

ψyβ

}
1

2
e−y d y

=
∫ ∞

u
Φ

{
(1−α)s −µsβ

ψsβ

}
e−sd s, (6.25)

thanks to the strong exchangeability of X and Y ; contributions for observations in R|x and R|y
are identical in form to those in (6.24) for R10 and R01 respectively, except over the extended

sets R|x ⊃ R10 and R|y ⊃ R01, namely

fX ,Y (x, y) =


e−x

2ψxβ
ϕ

(
y−αx−µxβ

ψxβ

)
, (x, y) ∈ R|x ,

e−y

2ψyβ
ϕ

(
x−αy−µyβ

ψyβ

)
, (x, y) ∈ R|y .

The expressions for the likelihood contributions presented in this section offer a way to

estimate joint tail probabilities using the flexibility of the conditional approach of Heffernan

and Tawn (2004) while correctly characterising the joint tail of X and Y . The integrals (6.23)

and (6.25) have no closed form even if H(·) is assumed to be Gaussian. Many statistical

packages and computer libraries for general-purpose languages offer routines that compute

Φ(x) = ∫ x
−∞ϕ(s)d s very efficiently, and also routines that compute univariate integrals using

quadratic approximations, such as the QUADPACK library in FORTRAN, which has been

ported to R (Piessens et al., 1983). Even if such routines give accurate and fast approximations

and are very helpful in practice, we give results that help understand the behaviour of this

type of integral as u approaches infinity.

We start with a simplified setup corresponding to independence of X and Y and standard

Gaussian residuals, i.e., α=β=µ= 0 and ψ= 1.

Theorem 6.1

The following asymptotic expansion holds as u →∞,∫ ∞

u
Φ(x)e−x d x = e−u −e1/2ϕ(u +1)

u2 +o

{
ϕ(u +1)

u2

}
. (6.26)

Proof An approximation of the left-hand side of (6.26) for large u can be derived using Mill’s

ratio, i.e., 1−Φ(x) ∼ϕ(x)/x as x →∞, giving∫ ∞

u
e−x

{
1− ϕ(x)

x

}
d x = e−u −

∫ ∞

u

1

x
p

2π
e−(x2+2x)/2d x

= e−u −e1/2
∫ ∞

u

1

x
p

2π
e−(x+1)2/2d x

= e−u −e1/2
∫ ∞

u+1

ϕ(y)

y −1
d y,
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where y = x +1. Integration by parts yields∫ ∞

u+1

ϕ(y)

y −1
d y =

{[
− ϕ(y)

y(y −1)

]∞
u+1

−
∫ ∞

u+1

(2y −1)ϕ(y)

y2(y −1)2 d y

}
= ϕ(u +1)

u(u +1)
+o

{
ϕ(u +1)

u(u +1)

}
,

hence the result. �

In the case of the average likelihood and assuming strong exchangeability of X and Y , the

probability mass in R00 can be derived from Theorem 6.1 and is approximately

Pr{(X ,Y ) ∈ R00} ≈ 1−e−u +e1/2ϕ(u +1)

u2 = 1−e−u

(
1− e−u2/2

p
2πu2

)
.

Theorem 6.2

If (X ,Y ) have Laplace marginal distributions and are asymptotically independent (α< 1) and

strongly exchangeable in the sense of the conditional tail approach, i.e.,

Y | {X = x} =αx +xβZx , x > u, X | {Y = y} =αy + yβZy , y > u,

for large u and Gaussian residuals Zx , Zy ∼N (µ,ψ2), then, with

µ(x) =αx +µxβ, ψ(x) =ψxβ,

we have as u →∞,

e−u −
∫ ∞

u
Φ

{
x −µ(x)

ψ(x)

}
e−x d x

∼ 1p
2π

ψ3

(1−α)3(1−β)
u3β−2 exp

[
−u2 −2u

{
µ(u)+ψ(u)2

}+µ(u)2

2ψ(u)2

]
,

provided β< 1/2.

Proof The proof is detailed in Appendix G. �

Theorem 6.2 assumes that (X ,Y ) are asymptotically independent. For (X ,Y ) on the

Laplace scale and asymptotically dependent, we have α= 1 and β= 0, thus∫ ∞

u
Φ

{
x −µ(x)

ψ(x)

}
e−x d x =

∫ ∞

u
Φ

(−µ/ψ
)

e−x d x

=Φ(−µ/ψ
)

e−u .

A numerical approach to estimating the type of integrals of Theorem 6.2 was suggested by

Hugo Winter in his Ph.D. thesis (Winter, 2015, Chap. 2), and we discuss the approximations

implied by his approach and improve it in Appendix H, where we present other approaches to

numerical integration which can prove useful in higher dimensions.
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6.3.2 Estimation of conditional quantiles

In this section, we detail the procedure to estimate conditional quantiles using the split

approach. In this section, we assume that (X ,Y ) have Laplace margins to simplify notation.

We show how to sample replicates from the conditional distribution Y | X = x with x large;

any conditional quantile given X = x can then be derived using the empirical distribution of

these replicates.

For a given value x, we can compute the probability that y ∼ Y | X = x belongs to R|x ,

namely Φ{(x −αx −µxβ)/(ψxβ)}. With probability p, we sample in R|x using a N (αx +
µxβ,ψ2x2β) truncated on (−∞, x]. With probability 1− p, we sample in R|y by sampling

L(r ) from a Laplace distribution truncated on [x,∞) and by solving∫ y

−∞
fY |X (t | x)d t = L(r ) (6.27)

in y , using

1−
∫ ∞

y
fY |X (t | x)d t = 1−

∫ ∞

y
fX |Y (x | t ) f (t )/ f (x)d t

= 1−
∫ ∞

y
Φ

(
x −αt −µtβ

ψtβ

)
ex−t d t , (6.28)

where f (·) denotes the Laplace density function. Since (6.28) is only applicable for y > x, we

reject L(r ) if y < x solves (6.27) and we sample L(r ) again. The detailed procedure is described

in Algorithm 6.1, where we use FL(·) to denote the Laplace distribution function.

6.3.3 Generalisations and extensions

In the developments of Section 6.3.1, we assumed strong exchangeability of (X ,Y ) for

clarity, but relaxation of this assumption and consideration of weak exchangeability or no

exchangeability of X and Y only imply that some simplifications are not possible. Under weak

exchangeability and without exchangeability, we have respectively

θx,y =


(
α,β,µ|x ,µ|y ,ψ2

|x ,ψ2
|y

)
,(

α|x ,α|y ,β|x ,β|y ,µ|x ,µ|y ,ψ2
|x ,ψ2

|y
)
.

Without exchangeability, (6.23) becomes

F X ,Y (u,u) = 1

2

∫ ∞

u
Φ

(
u −α|x x −µ|x xβ|x

ψ|x xβ|x

)
1

2
e−x d x + 1

2

∫ ∞

u
Φ

(
u −α|y y −µ|y yβ|y

ψ|y yβ|y

)
1

2
e−y d y,

with µ|x = µ|y and ψ|x =ψ|y under weak exchangeability. Similar conclusions apply to the

formulation of Pr{(X ,Y ) ∈ R|x ∪R|y } in (6.23), and conditional densities (6.24).
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Algorithm 6.1: Sampling from the conditional distribution given X = x with x extreme.

Input: α,β,µ,ψ, x, ñ

Set µ(x) ←[αx +µxβ

Set ψ(x) ←[ψxβ

# Differentiate regions R|x and R|y

Set p ←[Φ
(

x −µ(x)

ψ(x)

)
for r = 1 to ñ do

Sample B from Bernoulli(p)
if B = 1 then # sample in R|x

Sample U (r ) from U (0, p)
Set Y (r ) ←[Φ← (

U (r )
)

else # sample in R|y
repeat

Sample U (r ) from U (p,1)
Set L(r ) ←[ F←

L

(
U (r )

)
Find y such that (6.27) holds

until y > x
Set Y (r ) ←[ y

end
end

Earlier in this section, we assumed the distribution of the residuals to be Gaussian, i.e.,

H|x (z) = Φ{(z −µ|x )/ψ|x }, H|y (z) = Φ{(z −µ|y )/ψ|y }, but this is a restrictive assumption that

can yield badly-biased estimates. In practice, ideas developed in Chapters 3 and 5 can be

useful for removing restrictions on the specific form of H|x (·) and H|y (·), using the flexibility

of Dirichlet process mixtures not only as a way to alleviate prior assumptions, but also as a

means for quantifying uncertainty for the model fit and for extrapolation of risk measures

through Bayesian posterior analysis. We develop this approach in the context of extremes of

Markov chains in Chapter 7.

Previous developments have focused on (X ,Y ) in the bivariate setup, but both the aver-

age and the split likelihood functions of Sections 6.2.2 and 6.2.3 can be extended to higher-

dimensional setups, provided a sufficiently flexible model such as a Dirichlet process mixture

is used for the residual distributions H|1(·), . . . , H|d (·) corresponding to (d −1)-dimensional

distributions conditioned on X1, . . . , Xd respectively. The 2-dimensional regions defined in

Figure 6.1 can be extended to this d-dimensional setup, and we give an example with d = 3 in
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Figure 6.2 – Regions where likelihood contributions differ, in a 3-dimensional setup. Left panel: setup
used when contributions from (X2, X3) | X1, (X1, X3) | X2 and (X1, X2) | X3 are averaged; right panel:
setup used when contributions are split along half-planes defined by x1 = x2 with x3 ≤ x1, x2 = x3

with x1 ≤ x2 and x1 = x3 with x2 ≤ x3. The grey volumes represent regions where the observations are
censored.

Figure 6.2 corresponding to the regions

R000 =
{
(x1, x2, x3) ∈R3 : max(x1, x2, x3) ≤ u

}
, R001 =

{
(x1, x2, x3) ∈R3 : max(x1, x2) ≤ u, x3 > u

}
,

R010 =
{
(x1, x2, x3) ∈R3 : max(x1, x3) ≤ u, x2 > u

}
, R100 =

{
(x1, x2, x3) ∈R3 : x1 > u, max(x2, x3) ≤ u

}
,

R011 =
{
(x1, x2, x3) ∈R3 : x1 ≤ u, min(x2, x3) > u

}
, R101 =

{
(x1, x2, x3) ∈R3 : min(x1, x3) > u, x2 ≤ u

}
,

R110 =
{
(x1, x2, x3) ∈R3 : min(x1, x2) > u, x3 ≤ u

}
, R111 =

{
(x1, x2, x3) ∈R3 : min(x1, x2, x3) > u

}
,

for the average approach, and

R|1 =
{
(x1, x2, x3) ∈R3 : x1 > max(u, x2, x3)

}
, R|2 =

{
(x1, x2, x3) ∈R3 : x2 > max(u, x1, x3)

}
,

R|3 =
{
(x1, x2, x3) ∈R3 : x3 > max(u, x1, x2)

}
,

for the split approach. As it appears in this list of regions and in the figure, the number of

regions to consider in the average approach increases like 2d as d increases, whereas in the

split approach, the number of regions to consider is linear in d . This does not mean that the

split approach is more parsimonious than the average approach, but the increased complexity

of the likelihood function of the latter not only impacts inference, but also extrapolation and

prediction.

6.4 New constraints for the conditional tail model

6.4.1 Existing fitting procedure

In the conditional tail approach, the parametric model (6.2) arising from the limit (6.1)

has (α,β) ∈ [−1,1]× (−∞,1], which Keef et al. (2013) have shown to be too general, i.e., not all

combinations of (α,β) yield consistent joint probabilities. In Section 2.4.3, we detailed the
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informal approach of Keef et al. for deriving new constraints that tackle this issue. We recall

here the main aspects leading to these constraints, for which Keef et al. introduce, on the

uniform scale,

χ+ = lim
u→1

Pr
(
Y U > u | X U > u

)
, χ− = lim

u→1
Pr

(
Y U ≤ 1−u | X U > u

)
,

which define asymptotic positive and negative dependence when χ+ > 0, χ− > 0 respectively,

and asymptotic positive and negative independence when χ+ = 0, χ− = 0 respectively. The

orderings of each of these two measures χ+ and χ− under different asymptotic regimes imply

an ordering on the conditional quantiles of Y | {X = x}. In Section 2.4.3, we have formally

shown that these orderings are satisfied when imposing constraints only for some specific

conditional quantiles of Y | {X = x} for large x.

As Figure 2.6 shows, the implementation of the constraints when fitting the conditional

tail model can cut off large portions of [−1,1]× (−∞,1], thus reducing the space in which

(α,β) live and improving the consistency of estimates of joint tail probabilities. Based on the

conditional model (6.2), the conditional mean of Y | {X = x} is

E(Y | X = x) =αx +µxβ, E(Z ) =µ. (6.29)

It appears from this conditional mean that when β approaches 1, i.e., E(Y | X = x) ≈αx+µx, µ

and α become unidentifiable, which can greatly hamper inference and derived risk estimates.

By shrinking the space of (α,β), the constraints of Keef et al., help reduce this identifiability

issue in some cases, but in practice they are not as restrictive as in Figure 2.6. This lack of

identifiability can yield parameter estimates for which the model fits the data well but gives

bad extrapolations of probabilities at moderately extreme levels.

6.4.2 New constraints under positive and negative association

In many situations, it is reasonable, after collecting observations or as a prior belief, to

assume positive or negative association of bivariate data (Sibuya, 1960; Lehmann, 1966).

Standard extreme value theory induces models that only cover the former case, but the

conditional approach to extremes provides enough flexibility to cover both. In particular, the

sign of the α parameter in the model (6.2) reflects the type of association present in the data.

In practice, because of the identifiability issue described in Section 6.4.1, the estimate for α

can be negative and the mean of the residual µ overestimated even in the presence of positive

association.

We suggest new constraints to cope with this identifiability issue and force the conditional

tail model to reflect the structure of the data. The positive, respectively negative, association

property implies that the conditional mean (6.29) has positive, respectively negative, slope in
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Figure 6.3 – Minimum values of µ satisfying the conditional mean constraint as a function of α and β
under positive association, for a threshold u equal to the 95% Laplace quantile. Negative values of α
are not shown as they do not satisfy the constraint.

x, for all large x. In order for this to hold, we require under positive association that

α+βxβ−1µ≥ 0, x > u, (6.30)

for some large threshold u, and similarly with the inequality sign reversed under negative

association. As in Chapter 5, we restrict our attention to β ≥ 0, as negative values of this

parameter are unlikely in most environmental contexts, since it implies convergence of all

conditional quantiles of Y | {X = x} to a single value as x →∞. With β ∈ [0,1], we derive the

new constraints, equivalent to (6.30) but easier to verify,

α+βuβ−1µ≥ 0, α≥ 0,

by taking the limits of (6.30) as x → u and x →∞ respectively; negative association implies

similar constraints with the inequality signs reversed. Figure 6.3 illustrates the case of positive

association by showing the lower bound implied onµ for given values ofα andβ for a threshold

u set at the 95% Laplace quantile. The constraint takes effect mainly when β≈ 1, e.g., β= 0.8

in this case yields µ>−1.5, and smaller values of α imply larger values of µ.

6.5 Improving self-consistency of the conditional tail model

Liu and Tawn (2014) tackled the lack of self-consistency of the conditional tail models M|x
and M|y by using a parametric family of distributions to model H|x (·) and H|y (·) such that their
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corresponding densities h|x (·) and h|y (·) coincide along the upper diagonal {(x, y) ∈R2 : x =
y > u}, with u a high threshold. We aim to impose a less restrictive structure on H|x (·) and

H|y (·). The main idea behind the following proposals is to penalise differences in probability

estimates in R11, where both M|x and M|y are valid.

A first approach uses a penalisation based on the Hellinger distance over R11 between the

joint density functions derived from M|x and M|y , specifically

1

2

∫ ∞

u

∫ ∞

u

{√
f (y) fX |Y (x | y) −

√
f (x) fY |X (y | x)

}2
d xd y

= 1−
∫ ∞

u

∫ ∞

u

√
f (x) f (y)

√
fX |Y (x | y) fY |X (y | x)d xd y

= 1−8
∫ ∞

u

∫ ∞

u
g (x)g (y)

√
fX |Y (x | y) fY |X (y | x)d xd y,

(6.31)

where f (x) = 1
2 e−|x| and g (x) = 1

4 e−|x|/2 are the Laplace density functions with parameter 1

and 1/2 respectively. A similar approach is used by Wu and Hooker (2013) and Hooker and

Vidyashankar (2014) in a different context, where they combine density functions based on

a parametric family and on a nonparametric estimator to derive a robust density estimator.

In a Bayesian context, Shemyakin (2014) defines prior functions using a Hellinger distance.

An approximation of (6.31) can be calculated by Monte Carlo integration or using quadratic

approximations. The Hellinger distance is bounded above by 1, so we suggest the penalisation

λ

{∫ ∞

u

∫ ∞

u
g (x)g (y)

√
fX |Y (x | y) fY |X (y | x)d xd y

}−1

, λ> 0, (6.32)

in order to penalise density functions that are more distant more strongly. According to results

in Liu and Tawn (2014), there exist no smooth conditional density functions for which the

penalty term (6.32) would vanish, so we must relax the equality condition for the joint density

functions so that it holds on a subset of R11.

We propose to use a penalisation based on a discrete version of the Hellinger distance,

K∑
k=1

{
Pr(Y > vk | X > vk )1/2 −Pr(X > vk | Y > vk )1/2}2

, vK > ·· · > v1 > u, (6.33)

with u the conditional threshold used in M|x and M|y . Penalisation (6.33) can be incorporated

in the likelihood function of the original procedure of Heffernan and Tawn (2004). It corre-

sponds to weighting the difference between the kth joint survival probability by 2evk , thus

more encouraging self-consistency of M|x and M|y in the tail. The use of the penalty (6.33) is

delicate, as small joint survival probabilities are favoured, thus artificially reducing the risk of

simultaneous extremes extrapolated from the fit.
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An interesting penalisation that would cope with this issue is

K∑
k=1

∣∣∣∣log
Pr(Y > vk | X > vk )

Pr(X > vk | Y > vk )

∣∣∣∣ , vK > ·· · > v1 > u,

and we leave further investigations for future work.

6.6 Simulation study

6.6.1 Simulation processes

We consider four different simulation processes featuring asymptotic independence and

asymptotic dependence. In each cases, the series of bivariate random variables are indepen-

dent and identically distributed. We shall simulate pairs of observations from the conditional

tail model as a benchmark. We also consider observations simulated from a Gaussian bivariate

distribution, which is a classic example of a distribution not covered by standard extreme

value models, and also features a Gaussian residual distribution H(·) in the conditional tail

model. The last two simulation processes are the inverted logistic distribution, for which we

know the assumption of Gaussian residuals is incorrect, and the logistic distribution, which is

asymptotically dependent.

We now describe how to simulate bivariate replicates that are consistent with the condi-

tional tail model. The simulation procedure requires careful attention in order to preserve

both marginal and joint distributions. To sample data points in the L-shaped region R|x ∪R|y ,

we use a rejection procedure which we describe in Algorithm 6.2, yielding approximately

exponential marginal distributions for a large enough threshold u. We sample ñ data points

that are extreme in one of their components using this procedure. For data points in R00,

we only need to sample the number of data points falling in this region, since censoring will

be used in the fitting procedure. We derive the number of censored data points n00 using a

negative binomial distribution with probability of success Pr{(X ,Y ) ∈ R|x ∪R|y } and number of

successes ñ, i.e., the number of observations sampled in R|x ∪R|y . The probability of success

can be computed using (6.25).

In the other three cases, for the Gaussian, inverted logistic and logistic bivariate distribu-

tions, we also set the number of extreme observations in R|x ∪R|y to a fixed number ñ so that

the information available is equivalent in all cases considered.

We developed the code used in the following simulation studies in R (R Core Team, 2017).

In particular, we compute parameter estimates with an optimiser using several different

initial values for the parameters in order to improve convergence to the global maxima of the

likelihood functions used in the simulation studies.
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Algorithm 6.2: Sampling with rejection from multiple conditional models.

Input: α,β,µ,ψ2,u, ñ
repeat

Sample K from Bernoulli(1/2)
Sample X from Exp(1)
Set X ←[ X +u
Sample Z from N (µ,ψ2)

Set Y ←[αX +X βZ
if X > Y then

if K = 0 then
Keep (X ,Y )

else if K = 1 then
Swap X ↔ Y
Keep (X ,Y )

else
Reject the pair (X ,Y )

end
else

Reject the pair (X ,Y )
end

until ñ pairs are sampled

6.6.2 Fixed margins

In this first setup, we consider replicates of the pair (X L,Y L) in Laplace margins for all

four simulation processes, so that marginal features are known and we can focus on the joint

features. This setup also permits comparison with the original method of Heffernan and

Tawn (2004), which assumes fixed margins. These comparisons must be taken with caution,

as inference and extrapolation in our approaches are performed under the simplifying but

restrictive assumption of normality of the residuals. As described in Section 6.6.1, the margins

are approximately on the correct scale when using Algorithm 6.2; for the three other cases,

namely Gaussian, inverted logistic and logistic bivariate distributions, we transform the

margins using the probability integral transform to obtain exponential margins above u, and

we set u to the 98% Laplace quantile.

In each of the four cases, we sample 1,000 data sets with ñ = 1,000 uncensored data points.

We tried different combinations of the parameters, with all 54 combinations of α=−0.6,0,0.4,

β= 0,0.3,0.9, µ=−1,0,0.5 and ψ2 = 1,3 for the conditional model, ρ =−0.8,−0.3,0,0.3,0.8 for

the correlation of the Gaussian distribution, and γ= 0.2,0.5,0.8 for the inverted logistic and

logistic dependence parameter.

Table 6.1 gives the bias and relative efficiency of α̂ and β̂ for representative cases, namely

(α,β,µ,ψ2) = (0.4,0.3,0.5,1), ρ = 0.3, and γ= 0.5, where the relative efficiency is the ratio of
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variance ×1000 bias ×1000 rel. efficiency

avg spl std avg spl std avg spl

conditional
α 5.3 7.4 7.3 22.1 3.3 3.9 0.9 1.0

β 16.1 19.3 13.6 −57.8 0.7 −54.1 1.1 1.1

Gaussian
α 12.8 6.1 18.9 14.3 −57.0 −95.1 0.7 0.6

β 21.0 19.0 28.5 −10.5 −71.1 −250.7 0.5 0.5

inverted logistic
α 17.6 17.6 5.7 341.1 200.7 170.1 2.0 1.3

β 13.9 15.1 21.8 82.2 94.6 −138.9 0.7 0.8

logistic
α 2.5 2.0 1.6 −9.2 −11.7 −22.7 1.1 1.0

β 19.2 16.6 12.1 241.7 191.6 155.1 1.5 1.2

Table 6.1 – Bias×1000, variance×1000 and relative efficiency for α̂ and β̂, with the average (avg) and split
(spl) approach compared to the standard (std) approach of Heffernan and Tawn (2004). For the relative
efficiency, values smaller than 1 indicate a better performance of one of our approaches. From top to
bottom: conditional tail model with rejection, with (α,β,µ,ψ2) = (0.4,0.3,0.5,1); Gaussian bivariate
distribution with Laplace margins and correlation ρ = 0.3; inverted logistic bivariate distribution
with Laplace margins and dependence parameter γ= 0.5; logistic bivariate distribution with Laplace
margins and dependence parameter γ= 0.5.

root mean squared errors (RMSE) derived from one of our approaches in the numerator, and

the approach of Heffernan and Tawn (2004) in the denominator. Values smaller than 1 indicate

a better performance of one of our approaches, but values larger than 1 may only indicate a

bias due to assuming H|x (·) ≡ H|y (·) to be Gaussian, which can be more restrictive in our joint

models than in the setup of Heffernan and Tawn in which (6.3) wrongly specifies the joint

density. The Bayesian setup described in Chapter 7 could be used to remove the Gaussian

assumption in our approaches. We use the penultimate approximations forα and β developed

in Chapter 4 in the Gaussian case, as convergence of (6.1) is particularly slow in this case. The

fits producing Table 6.1 had no constraints implemented, i.e., (α,β) ∈ [−1,1]× [0,1).

As expected, the model performs poorly on the data simulated from the inverted logistic

and the logistic distributions, as assuming the residual distributions H|x (·) ≡ H|y (·) to be Gaus-

sian is a misspecification which causes badly-biased estimates of α and β. In their inference

procedure, Heffernan and Tawn (2004) also assume normality of the residual distributions

to construct a likelihood function, but then compute the empirical residuals of the form

ẑ = (y − α̂x)/xβ̂, thus Ĥ|x (·) and Ĥ|y (·) are not Gaussian.

For data simulated with Algorithm 6.2, the split approach has less bias than the aver-

age approach, as the rejection sampling of the algorithm mimics the structure of the split

likelihood. In the Gaussian case, the average approach appears to perform similarly to the

split approach, but for data with more correlation, the split approach performs better, i.e., it
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Figure 6.4 – Diagram of the method of proportions for computing joint tail probabilities of the type
Pr(X > vx ,Y > vy ). Left panel: vx = vy > u; right panel: vx = u ¿ vy . The dotted areas correspond to
the probability to be estimated, and the models M|x and M|y are used to sample points in the regions
shaded in blue and red respectively.

better captures the behaviour of jointly extreme events, corresponding to data points in R11.

Assessing the performance of our new methods based on α and β solely is insufficient, due to

their inter-dependence, so it is more appropriate to consider tail probabilities.

We assess the performance of our approaches on two types of tail probabilities Pr(X >
vx ,Y > vy ) = p, with fixed p and either vx = vy or vx = u ¿ vy . Here, we explain how we

compute these joint probabilities using the approach of Heffernan and Tawn (2004), and

we give details about how to tackle this problem using our approaches in Section 6.6.3. The

procedure of Heffernan and Tawn considers the joint probability Pr(X > vx ,Y > vy ) as the

sum

Pr
(
X > Y ,Y > vy

∣∣ X > vx
)

Pr(X > vx )+Pr
(
Y > X , X > vx

∣∣ Y > vy
)

Pr
(
Y > vy

)
, (6.34)

where the conditional probabilities are estimated by computing the empirical estimates

based on simulated data, and the marginal probabilities are Laplace. For example, the first

probability in (6.34) is estimated by first independently sampling R replicates of X | X >
vx from an exponential distribution and R replicates of Z from the empirical distribution

Ĥ|x (·), then computing the corresponding Y replicates using the relation (6.2), in order to

the proportion of the R points (X ,Y ), X > vx , in the region {(x, y) ∈ R2 : x > y, y > vy }. The

proportions used in this procedure are illustrated in Figure 6.4, where the number of replicates

of (X ,Y ) in the dotted regions are divided by R , the number of replicates in the shaded regions.

For data sampled with Algorithm 6.2, the relative efficiency for estimating Pr(X > vx ,Y >
vy ) is 81% when vx = vy and 85% when vx = u ¿ vy for the split approach, and 107% and

162% respectively for the average approach. The better performance of the split approach

is due to its model matching exactly the simulation process. For data sampled from the

other three processes, our methods show a relatively poor performance in estimating Pr(X >
vx ,Y > vy ) compared to the method of Heffernan and Tawn (2004), but this is expected as, for

extrapolation, H(·) in our approaches is a Gaussian distribution function, but in their method
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it is an empirical estimate, thus being more flexible. If we use a Gaussian distribution for

extrapolation from the original method of Heffernan and Tawn, relative efficiency is below

50% in all cases except for the Gaussian distribution when vx ¿ vy for which it is below 85%,

and the split approach beats the average approach in all cases except for the logistic when

vx = vy . As emphasised in Section 6.1, the likelihood used by Heffernan and Tawn is incorrect

and their approach does the marginal and joint fit in several steps. In the next section, we

perform a simulation study where we use the average and split likelihoods to simultaneously

fit the marginal and dependence features of processes with different asymptotic behaviours.

6.6.3 Joint fit

In this section, we use the same four simulation setups as in Section 6.6.2, but we transform

the marginal distribution above u to GPD with scale σu = 1 and shape ξ = 0.1. We fit the

likelihood (6.21), covering both average and split forms, to each of the 1,000 data sets in each

case, and we report the bias and relative RMSE of the marginal parameters in Table 6.2. For

comparison, we fit a univariate GPD to all exceedances of u, falsely assuming independence of

X and Y , thus treating the pairs (x1, y1), . . . , (x1000, y1000) as a set of independent observations

z1, . . . , z2000. Table 6.2 gives the bias and relative RMSE of the scale and shape parameters

estimated in each of the four cases.

For data simulated with Algorithm 6.2, the marginal distribution is only approximately

GPD above u, so the results are harder to interpret. In general, the split approach beats the

average approach, with reduced bias and relative RMSE, and it has the same efficiency as the

GPD marginal fit for the first two cases displayed in the table, for which assuming normality of

H (·) is reasonable. The misspecification of the dependence model for the inverted logistic and

logistic distributions has an impact on the marginal fit, and biases in the joint and marginal

structures compensate each other.

To supplement the comparison between the methods, and since we are interested in

estimating probabilities in the joint tail, we compare joint probabilities Pr(X > vx ,Y > vy ) in

two cases, namely vx = vy > u and vx = u ¿ vy (Table 6.3). In these two cases, we ensure that

the joint probability is equal to a fixed p ∈ (0,1) so that comparisons between all different

simulation setups are easier. In both cases, we compute the theoretical vy , under the condition

that the joint survival probability equals p, and we set either vx = vy or vx = u depending on

which case we are considering. In what follows, we add a superscript L to denote quantities on

the Laplace scale. For the split likelihood, the condition is

Pr
(

X L > vL
x ,Y L > vL

y , X L > Y L
)
+Pr

(
X L > vL

x ,Y L > vL
y ,Y L > X L

)
= p. (6.35)

We deal with the two probabilities on the left-hand side of (6.35) separately. We have

Pr
(

X L > vL
x , Y L > vL

y , X L > Y L
)
= Pr

(
X L > vL

x , X L > Y L)−Pr
(

X L > vL
x ,Y L ≤ vL

y , X L > Y L
)

,



bias ×100 variance ×100 RMSE

scale shape scale shape scale shape

conditional tail

average 1.49 3.20 0.20 0.13 1.50 15.09

split 0.29 −0.28 0.20 0.11 1.40 10.39

marginal 1.18 −0.90 0.21 0.11 1.49 11.00

Gaussian

average 4.24 0.19 0.24 0.13 2.06 11.29

split 2.91 −0.59 0.23 0.12 1.79 11.17

marginal 0.18 −0.19 0.22 0.11 1.48 10.73

inverted logistic

average 6.56 1.38 0.23 0.13 2.58 12.37

split 3.68 −0.62 0.22 0.12 1.87 11.03

marginal 0.10 −0.18 0.21 0.11 1.44 10.57

logistic

average −5.18 −5.22 0.15 0.09 2.04 19.12

split −4.14 −2.90 0.15 0.08 1.80 12.88

marginal 0.10 −0.21 0.22 0.14 1.47 11.66

Table 6.2 – Bias ×100, variance ×100 and relative RMSE of the GPD scale and shape parameters. From
top to bottom: conditional tail model with rejection, with (α,β,µ,ψ2) = (0.4,0.3,0.5,1); Gaussian
distribution with Laplace margins and correlation ρ = 0.3; inverted logistic and logistic distributions
with Laplace margins and dependence parameter γ= 0.5. Each setup has a line for the average and
split approach, and for a marginal fit of the exceedances of u.

112
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bias ×104 variance ×108 RMSE

vx = vy vx ¿ vy vx = vy vx ¿ vy vx = vy vx ¿ vy

conditional tail
avg 1.08 1.03 1.27 0.71 4.93 4.20

spl −0.07 −0.04 1.08 0.42 3.29 2.04

Gaussian
avg −4.7 −4.6 1.3 1.3 15.3 14.9

spl −3.5 −3.0 1.9 2.0 11.9 10.5

inverted logistic
avg −1.9 −2.3 1.3 0.8 7.1 7.7

spl −1.2 0.4 2.1 1.5 5.9 4.1

logistic
avg −0.7 1.5 0.1 0.2 2.5 5.0

spl −1.9 −0.6 0.3 0.3 6.2 2.6

Table 6.3 – Bias ×104 and relative RMSE of joint probabilities of the type Pr(X > vx ,Y > vy ) when
simultaneously fitting the marginal and joint distributions, with data simulated from the conditional
tail model with parameters (α,β,µ,ψ) = (0.4,0.3,0.5,1), the Gaussian copula (ρ = 0.3), the inverted
logistic distribution (γ= 0.5), and the logistic distribution (γ= 0.5). In all cases the true probability is
0.001.

which can be expressed as∫ ∞

vL
x

{
Pr

(
Y L < X L

∣∣ X L = x
) 1

2
e−x −Pr

(
Y L ≤ vL

y ,Y L < X L
∣∣∣ X L = x

) 1

2
e−x

}
d x

=
∫ ∞

vL
y

{
Pr

(
Y L < X L

∣∣ X L = x
)−Pr

(
Y L ≤ vL

y ,Y L < X L
∣∣∣ X L = x

)} 1

2
e−x d x

+
∫ vL

y

vL
x

{
Pr

(
Y L < X L

∣∣ X L = x
)−Pr

(
Y L ≤ vL

y ,Y L < X L
∣∣∣ X L = x

)} 1

2
e−x d x.

(6.36)

In the last integral of (6.36), we have

Pr
(
Y L ≤ vL

y ,Y L < X L
∣∣∣ X L = x

)
= Pr

(
Y L < X L

∣∣ X L = x
)

, x ≤ vL
y .

We conclude that the last integral in (6.36) vanishes, and we are left with∫ ∞

vL
y

{
Pr

(
Y L < x

∣∣ X L = x
)−Pr

(
Y L ≤ vL

y

∣∣∣ X L = x
)} 1

2
e−x d x. (6.37)

For the second term in the left-hand side of (6.35), we follow the same path to get

Pr
(

X L > vL
x , Y L > vL

y , Y L > X L)
= Pr

(
Y L > vL

y ,Y L > X L
)
−Pr

(
X L ≤ vL

x ,Y L > vL
y ,Y L > X L

)
=

∫ ∞

vL
y

{
Pr

(
X L < y

∣∣ Y L = y
)−Pr

(
X L ≤ vL

x

∣∣ Y L = y
)} 1

2
e−y d y.

(6.38)



114 Chapter 6. New improvements to the conditional tail model

In terms of the conditional tail model with Gaussian residuals, (6.35) becomes, using (6.37)

and (6.38) and assuming strong exchangeability,

∫ ∞

vL
y

{
2Φ

(
x −αx −µxβ

σxβ

)
−Φ

(
vL

y −αx −µxβ

σxβ

)
−Φ

(
uL −αx −µxβ

σxβ

)}
1

2
e−x d x = p,

for the case vx = u ¿ vy , and reduces to

∫ ∞

vL

{
Φ

(
x −αx −µxβ

σxβ

)
−Φ

(
vL −αx −µxβ

σxβ

)}
e−x d x = p,

when vx = vy = v > u.

For the likelihood with averaged contributions in R11, we have

Pr
(

X L > vL
x ,Y L > vL

y

)
= 1

2

∫ ∞

vL
x

Pr
(
Y L > vL

y

∣∣∣ X L = x
) 1

2
e−x d x + 1

2

∫ ∞

vL
y

Pr
(
X L > vL

x

∣∣ Y L = y
) 1

2
e−y d y,

which in terms of the conditional tail model with Gaussian residuals takes the form

1

2

∫ ∞

vL
y

Φ

(
vL

x −αx −µxβ

σβ

)
1

2
e−x d x + 1

2

∫ ∞

vL
x

Φ

(
vL

y −αx −µxβ

σβ

)
1

2
e−x d x.

These integrals are used with the estimates α̂, β̂, µ̂, σ̂ of the parameters of the conditional

model in order to derive estimates p̂ of p for the four different dependence structures used for

the simulations. We set p = 0.001 and derive the bias and relative RMSE for the average and

split approaches and the four simulation setups. The results are shown in Table 6.3. Except

for the logistic case, the split approach performs much better than the average approach,

especially in the situation where vx ¿ vy .

6.6.4 Conditional quantile constraints

We now investigate the improvements of imposing the constraints of Keef et al. (2013) to

the joint fit of Section 6.6.3. The first two rows of Figure 6.5 show the effect of imposing the

constraints for the estimates (α̂, β̂) estimated on Gaussian data with correlation ρ = 0.3,0.8. For

the higher correlation, the gain appears to be significant, as it helps remove the overestimated

values of α, which may be an effect of the weak identifiability of α and µ. This improvement

in estimating α and β is not seen in the estimation of the joint probabilities Pr(X > vx ,Y >
vy ) = p, vx = vy and vx = u ¿ vy , as shown by the small gains in efficiency in Table 6.4. In the

table, we show the relative efficiency of estimates of the joint probability with and without the

constraints of Keef et al., with values smaller than 100 indicating a better performance of the

fits incorporating the constraints.
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Gaussian (ρ) inv. logistic (γ) logistic (γ)

−0.8 −0.3 0.3 0.8 0.2 0.5 0.8 0.2 0.5 0.8

vx = vy 103 99 100 78 99 99 100 73 100 100

vx = u ¿ vy 100 100 100 101 96 97 100 82 98 100

Table 6.4 – Efficiency gain (%) on (α,β) from using the constraints of Keef et al. (2013). From left to right:
data simulated from the Gaussian copula (ρ = −0.8,−0.3,0.3,0.8), the inverted logistic distribution
(γ = 0.2,0.5,0.8), and the logistic distribution (γ = 0.2,0.5,0.8). Values smaller than 100 indicate a
performance improved by imposing the constraints, using the split likelihood approach.

6.6.5 Conditional mean constraint

We now explore how efficiency is improved by adding the conditional mean constraint.

In the Gaussian case, for which we know that the asymptotic value for β is 0.5 for ρ 6= 0,

we observe that for any ρ = −0.8,−0.3,0.3,0.8, estimates of α and β are unchanged when

adding the new constraint to the fit. When identifiability issues are expected, specifically

when β is close to 1, efficiency can be gained by adding the conditional mean constraint. We

consider data simulated from the conditional model using Algorithm 6.2 with parameters

(α,β,µ,ψ2) = (0,0.9,0.5,1), and we investigate efficiency gains using the average and split

forms of the likelihood (6.21) for estimating the joint probability Pr(X > vx ,Y > vy ) = p. We

define relative efficiency by the ratio of RMSE of 1,000 joint tail probability estimates, using the

fit under the constraint at the numerator and the fit without the constraint at the denominator.

Values lower than 1 indicate the improvement of the fit due to imposing the new constraint.

We fix the joint tail probability to p = 0.001, and consider vx = vy in one case and vx = u ¿ vy

in the other case, and we get efficiency gains of 82% and 93% respectively.

We illustrate the Gaussian case in Figure 6.5, with ρ = 0.3,0.8, thus data show positive

association, justifying the use of the mean constraint. We compare the estimates of (α,β)

with and without the mean constraint, so we have four different setups. Inference for all four

includes the marginal features, partly explaining the variation in (α̂, β̂). Without the constraint,

the estimates α̂ tend to be more erratic when β̂ ≈ 1, and are more concentrated for lower

values of β̂. Adding the constraint to the fit removes those inconsistent estimates. Figure 6.5

also shows the penultimate and ultimate values of (α,β), which are known in the case of

bivariate Gaussian data (4). When ρ = 0.3, the estimates tend to lie at least as close to the

penultimate value as they do to the ultimate value, illustrating the slow convergence of the

Gaussian distribution in the conditional limit (6.1).

The conditional mean constraint also restricts the space in which α, β and µ live, so that

optimisation of the likelihood function is easier. As we explained at the end of Section 6.6.1,

the optimisation needs to be run with several different initial parameter values to reach a

global optimum, and adding the new constraints permits fewer runs of the optimiser, hence

a gain in computational time. In a multivariate problem, when maximising the likelihood
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Figure 6.5 – Joint fit of the marginal and dependence features for bivariate Gaussian simulated data.
Top row: 1,000 estimates of (α,β) without any constraints; middle row: 1,000 estimates of (α,β) with
the conditional quantile constraints; bottom row: 1,000 estimates of (α,β) with the conditional mean
constraint assuming positive association. The 1,000 data sets are simulated with correlation ρ = 0.3
in the left column, and ρ = 0.8 in the right column. The blue symbols represent the ultimate (�) and
penultimate (N) values of (α,β).
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over a high-dimensional parameter space, imposing this additional constraint could improve

convergence of the optimiser and could be more beneficial than in the bivariate case studied

in this chapter.

6.7 Summary

In this chapter, we reviewed the weaknesses of the conditional tail model and the fitting

procedure introduced by Heffernan and Tawn (2004), with two main weaknesses being the

lack of self-consistency of estimates of joint tail probabilities from different conditional dis-

tributions, and the multi-stage estimation procedure, which makes it hard to measure the

uncertainty of the model parameters and of probabilities extrapolated from the model. We

mentioned the work of Liu and Tawn (2014), which tackled the self-consistency, and the ap-

proach developed in Chapter 5, which tackles the multi-stage estimation, but both approaches

adopt the incorrect likelihood function of Heffernan and Tawn (2004).

We then introduced two new approaches which combine the flexibility of the conditional

tail model with the ability of fitting the extremal joint distribution of a bivariate pair (X ,Y ) with

Laplace margins, assuming a Gaussian residual distribution H(·) and strong exchangeability

of (X ,Y ). These approaches permit information to be shared between the two conditional

distributions Y | X and X | Y , and the introduction of censored non-extreme observations

help better capture the extremal dependence structure. We generalised this setting to arbitrary

margins for (X ,Y ) and we described the likelihood function for fitting the marginal and joint

features simultaneously.

We presented how this bivariate methodology can be extended to model d-dimensional

data, with d > 2, and we observed that the split likelihood approach scales better than the

average likelihood approach as d grows, where the former splits Rd in d +1 regions, whereas

the latter needs 2d regions, thus the split approach is in general preferable to the average

approach. Another aspect that makes the split approach more appealing than the average

approach is its simple procedure to estimate conditional quantiles. We also presented how

the model can be generalised to cover weak exchangeability or no exchangeability of (X ,Y ).

We suggested a more general approach to avoid the strong assumption that H(·) is Gaussian,

and we shall give more details about this in the next chapter.

We introduced new constraints that tackle the issue of parameter identifiability when

β ≈ 1, provided it is reasonable to assume either positive or negative association of (X ,Y ).

These new constraints also help the optimiser by shrinking the parameter space.

We compared the performance of the different approaches presented in this chapter

with the original approach of Heffernan and Tawn (2004), and we observed that assuming

Gaussian residuals generally is too strong and can yield badly-biased estimates. The split

approach performs better than the average approach in many cases, and extends more easily

to high-dimensional setups. We saw that the constraints of Keef et al. (2013) can improve the
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parameter estimates, but has little effect on probability estimates derived from the model; the

new constraints help specifically when identifiability issues are expected, without impacting

fits where this is not the case.

In the next chapter, we shall present how we can take advantage of this new approach

to fitting bivariate extreme values and use it in the context of time series with short-range

dependence, introducing a Bayesian framework which enables relaxation of the assumption

of Gaussian residuals used throughout this chapter.



7 Modelling extremes of Markov chains

7.1 Background

7.1.1 Existing approaches

The first approach to fitting exceedances of a threshold for time series was a marginal

fit, where a pre-processing step selects exceedances that can be considered independent,

thus enabling inference using a maximum likelihood method (Davison and Smith, 1990).

Smith et al. (1997) deal with the problem of estimating the joint structure of the extremes

in a time series by assuming a first order Markov property. This allows for using bivariate

parametric models, namely bilogistic (Joe et al., 1992), negative bilogistic (Coles and Tawn,

1994), Dirichlet and asymmetric logistic (Tawn, 1988), for modelling the transition distribution.

Other contributions to modelling extremes of Markov chains of arbitrary order exist (Yun,

2000; Fawcett and Walshaw, 2006b; Ribatet et al., 2009), but they all rely on an assumption of

asymptotic dependence, e.g., for stationary Markov chains of order 1 and marginal distribution

F (·) with upper endpoint xF ,

lim
x→xF

Pr(X t+1 > x | X t > x) > 0.

As noted by Winter and Tawn (2017), assuming that a first order Markov chain has asymptotic

dependence between X t and X t+1 implies asymptotic dependence between X t and X t+h

(h = 1, . . .). This can be restrictive in applications, where asymptotic independence is expected

between observations that are distant in time. Reich et al. (2014) present a Bayesian framework

in which extremal dependence in time is modelled using a hidden structure with a sliding

window modelling neighbouring dependence, but in their approach asymptotic dependence

also holds between X t and X t+h (h = 1, . . .).

Bortot and Tawn (1998) use the model of Ledford and Tawn (1997) for the transition

distribution, thus being able to fit processes from the asymptotic independence class, but

they rely on an assumption that requires consecutive observations to be simultaneously large.

119
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u
t
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×××
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×××

×××
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Figure 7.1 – Multiple use of data points occurring when fitting dependence structures of the type
X1, . . . , Xm | X0 = x for x extreme in time series, using the standard conditional tail model approach.

Their method separately fits the marginal distribution and the extremal dependence structure,

and does not provide a measure of uncertainty for the derived cluster functionals.

7.1.2 Modelling time series extremes with the conditional tail approach

Winter and Tawn (2017) use a heuristic approach based on the conditional tail model to

fit the transition distribution of kth-order Markov chains. Multiple steps are used to fit the

marginal distribution, the parametric part and the non-parametric part of the conditional tail

distribution. As a consequence, they need a computationally intensive algorithm to estimate

cluster functionals, and they base their block bootstrap confidence intervals on very few

replicates, namely 20 in their application (Winter, 2015, Chap. 4). Their inference procedure

considers only observations in a neighbourhood of an exceedance of a high threshold, whereas

the method developed in the following takes advantage of all observations through a censoring

approach.

In Chapter 5, we developed a new methodology to estimate cluster functionals with

uncertainty, using Bayesian semiparametrics as a coherent and more efficient approach to

fitting the conditional tail model. Although this method provides a consistent approach

to modelling the dependence structure of X1, . . . , Xm | X0 = x for x extreme, it relies on an

incorrect likelihood function which can make multiple use of the same data points, as sketched

in Figure 7.1. Another weakness in this approach is that the marginal distribution is fitted

separately, thus potentially giving overly optimistic uncertainty measures of cluster functionals

estimated from the posterior distributions.

7.2 Bayesian semiparametrics for modelling first-order Markov chains

7.2.1 General

We consider observations xt (t = 1, . . . ,n+1) of a stationary first order Markov chain, so that

we have pairs of consecutive observations (xt , xt+1) (t = 1, . . . ,n). We use the split approach of
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Chapter 6, so we define the regions

R|t =
{
(xt , xt+1) ∈R2 : xt > max(u, xt+1)

}
, R|t+1 =

{
(xt , xt+1) ∈R2 : xt+1 > max(u, xt )

}
,

R00 =
{
(xt , xt+1) ∈R2 : max(xt , xt+1) ≤ u

}
.

Since all pairs in R00 are censored, we can re-number the observations in R|t ∪R|t+1 such that

the first n> pairs have at least one extreme component, i.e., (xt , xt+1) 6∈ R00 (t = 1, . . . ,n>) and

n00 censored pairs, with n00 +n> = n.

We use the generalised Pareto distribution above a high threshold u with shape and scale

parameters ξ and σu > 0 to model the marginal tail of (xt ). To transform (xt ) to the Laplace

scale, we use the semiparametric model (6.20) (Coles and Tawn, 1994).

We consider a semiparametric Bayesian approach to model the residual distributions H f (·)
and Hb(·) arising from the conditional limits of the forward and backward chains, namely

lim
u→∞Pr

{
X L

t+1 −α f X L
t(

X L
t

)β f
≤ z

∣∣∣∣∣ X L
t ≥ u

}
= H f (z),

lim
u→∞Pr

{
X L

t −αb X L
t+1(

X L
t+1

)βb
≤ z

∣∣∣∣∣ X L
t+1 ≥ u

}
= Hb(z),

(7.1)

where the superscript L denotes a quantity transformed to the Laplace scale. Previously, in

the approaches of Winter and Tawn (2017) and Chapter 6, H f (·) and Hb(·) were modelled as

Gaussian distributions. Here, we use a mixture of a potentially infinite number of Gaussian

components to model H f (·) and Hb(·) in (7.1). As we saw in Chapter 3, we can define auxiliary

index variables that link observations with components in the mixture. In the split likelihood

setup, each (xt , xt+1) (t = 1, . . . ,n>) is considered only once, thus we attach an index variable

ct to each pair (xt , xt+1) 6∈ R00, indicating which component in the mixture it belongs to.

In Chapter 5, we used a Gibbs sampler based on an approximation of the Dirichlet process,

and posterior sampling was possible thanks to the closed-form of the likelihood function that

we were considering. Since we shall base our proposal on the split model of the previous

chapter, which features analytically intractable integrals, we cannot derive a similar Gibbs

sampler here. In Appendix I, we discuss how we can use approximate posterior distributions as

state-dependent proposal distributions in a Metropolis–Hastings scheme, however it appears

to mix poorly and we do not explore this alley further. In the following, we suggest using a

different approach to fitting Dirichlet processes, which has the advantage of not requiring any

approximation to the process.

7.2.2 Pólya urn scheme

Algorithm A.2 of Neal (2000) is more appealing than the approach of Ishwaran and Zare-

pour (2000) in the context of this chapter, as it will appear in the following developments. We
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recall from Chapter 3 that, for the update of the ct , the algorithm not only proposes candi-

date components among those to which observations are already attached, but also newly

created components, according to a fixed parameter m ≥ 1. Iterating through each observa-

tion (xt , xt+1), we write k−t for the number of different components to which observations

(xs , xs+1) (s = 1, . . . ,n>, s 6= t ) are attached, and we re-number these components 1, . . . ,k−t . If

ct 6∈ {1, . . . ,k−t }, the algorithm creates m −1 new components and retains the component ct as

an additional candidate, so that there is a non-null probability for ct to remain unchanged;

otherwise, if ct = c for some c ∈ {1, . . . ,k−t }, it creates m new components, so that the number

of candidate components in any iteration is always k−t +m.

According to the generalised Pólya urn scheme of Section 3.1.3, the prior probabilities

associated with existing components are

Pr(ct = c | c−t ,γ) = n−t ,c

n>−1+γ , t = 1, . . . ,n>, 1 ≤ c ≤ k−t , (7.2)

where n−t ,c =∑n>
s=1,s 6=t 1(cs = c) is the number of observations assigned to component c, with-

out counting (xt , xt+1), and those associated with newly created components are

Pr(ci = c | c−i ,γ) = γ/m

n>−1+γ , k−i < c ≤ k−i +m. (7.3)

From the conditional prior probabilities (7.2) and (7.3), the posterior probability of an index

variable ct given observation (xt , xt+1) ∈ R|t is

Pr(ct = c | c−t , xt , xt+1, θ1, . . . ,θk−t+m ,γ
)

∝ Pr
(
xt+1

∣∣ xt , ct = c,c−t , θ1, . . . ,θk−t+m ,γ
)×Pr

(
ct = c

∣∣ c−t , θ1, . . . ,θk−t+m ,γ
)

= Pr
(
xt+1

∣∣ xt , ct = c,c−t , θ1, . . . ,θk−t+m ,γ
)×Pr

(
ct = c

∣∣ c−t ,γ
)

, (7.4)

where the index variables and the parameters θk in the conditioning provide information

about the size of each component, since nk =∑n
t=1 1(ct = k) is the number of pairs of observa-

tions attached to component k.

We now need to detail the likelihood function used to build our model for extremes of

Markov chains, so that we can give the exact form of the first conditional probability in the

right-hand side of (7.4).

7.2.3 Likelihood function

From the two approaches presented in Chapter 6, the split approach (Section 6.2.3) seems

to be the more promising, because of the better efficiency of its tail probability estimates and

its ability to generalise nicely to higher dimensions. We use xL
t to denote the transformation of

xt to the Laplace scale, and Θ represents the set of all θc = (µc ,ψ2
c ) in a given iteration. The
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general form of the likelihood where (xt ) has unknown marginal distribution is

L (Θ,ξ,σu ; x1, . . . , xn+1) = L
(
Θ,ξ,σu ; xL

1 , . . . , xL
n+1

)n+1∏
t=1

J (xt ;ξ,σu)

∝
∏n

t=1 ft ,t+1
(
xL

t , xL
t+1;Θ,ξ,σu

)
∏n

t=2
1
2 e−|xL

t |
n+1∏
t=1

J (xt ;ξ,σu)1(xt > u),

(7.5)

for some joint density function ft ,t+1(·, ·), a high threshold u > 0 on the marginal scale of (xt ),

transformed to uL on the Laplace scale, and

J (x; ξ,σu) = 1

σu

(
1+ξx −u

σu

)−1

+
, x > u,

corresponding to the Jacobian of the marginal transformation of x to xL; see Chapter 6. For

the split likelihood approach, (7.5) becomes

e−|x
L
1 |
{

Ft ,t+1
(
uL , uL ;Θ

)}n00
n>∏
t=1

ft+1|t
(
xL

t+1

∣∣ xL
t ;Θ,ξ,σu

) n∏
t=1

J (xt ;ξ,σu)

∝e−|x
L
1 | {Ft ,t+1

(
uL ,uL ;Θ

)}n00
∏

t :(xt ,xt+1)∈R|t
ft+1|t

(
xL

t+1

∣∣ xL
t ;Θ,ξ,σu

)
× ∏

t :(xt ,xt+1)∈R|t+1

ft |t+1
(
xL

t

∣∣ xL
t+1;Θ,ξ,σu

)
e |x

L
t |−|xL

t+1|
n∏

t=1
J (xt ;ξ,σu) ,

(7.6)

using the Bayes rule. If x1 < u, the first term can be removed from (7.6) since the marginal

transform xt 7→ xL
t is nonparametric below u.

Removing the parameterisation for clarity, the likelihood contributions for observations

(xt , xt+1) ∈ R|t in a given iteration are

ft+1|t
(
xL

t+1

∣∣ xL
t

)= k−t+m∑
k=1

w f ,k(
xL

t

)β f ψ f ,k

ϕ

 xL
t+1 −α f xL

t −
(
xL

t

)β f µ f ,k(
xL

t

)β f ψ f ,k

 , (7.7)

where the subscript f stands for forward and denotes the parameters of the conditional tail

model where X t+1 | X t = x, x > u. The weights correspond to the proportion of observations

in R|t attached to component k, with

w f ,k =
∑n>

t=1 1(ct = k)× 1{(xt , xt+1) ∈ R|t
}∑n>

t=1 1
{
(xt , xt+1) ∈ R|t

} , k = 1, . . . ,k−t +m.

Similarly, likelihood contributions for observations (xt , xt+1) ∈ R|t+1 in a given iteration are

ft+1|t
(
xL

t+1

∣∣ xL
t

)= ft |t+1
(
xL

t

∣∣ xL
t+1

)
exL

t −xL
t+1

=
k−t+m∑

k=1

wb,k(
xL

t+1

)βb ψb,k

ϕ

{
xL

t −αb xL
t+1 −

(
xL

t+1

)βb µb,k(
xL

t+1

)βb ψb,k

}
,

(7.8)
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where b stands for backward and denotes the parameters of the conditional tail model where

X t | X t+1 = x, x > u, and

wb,k =
∑n>

t=1 1(ct = k)× 1{(xt , xt+1) ∈ R|t+1
}∑n>

t=1 1
{
(xt , xt+1) ∈ R|t+1

} , k = 1, . . . ,k−t +m.

For censored observations (xt , xt+1) ∈ R00, we have

Ft ,t+1(uL,uL) = 1−Pr
{
max

(
X L

t , X L
t+1

)> uL}= 1−Pr
{(

X L
t , X L

t+1

) ∈ RL
|t ∪RL

|t+1

}
, (7.9)

where the probability equals

∫
RL
|t

k−t+m∑
k=1

w f ,k

xβ f ψ f ,k
ϕ

(
y −α f x −xβ f µ f ,k

xβ f ψ f ,k

)
1

2
e−x d yd x

+
∫

RL
|t+1

k−t+m∑
k=1

wb,k

yβbψb,k
ϕ

(
x −αb y − yβbµb,k

yβbψb,k

)
1

2
e−y d xd y, (7.10)

where RL
|t and RL

|t+1 correspond to R|t and R|t+1 on the Laplace scale. Expression (7.10) equals

1

2

k−t+m∑
k=1

w f ,k

∫ ∞

uL
e−xΦ

(
x −α f x −xβ f µ f ,k

xβ f ψ f ,k

)
d x

+ 1

2

k−t+m∑
k=1

wb,k

∫ ∞

uL
e−yΦ

(
y −αb y − yβbµb,k

yβbψb,k

)
d y. (7.11)

If we assume strong exchangeability of the forward and backward chains, i.e.,α f =αb ,β f =βb ,

and {(µ f ,k ,ψ2
f ,k ) : k = 1, . . .} = {(µb,k ,ψ2

b,k ) : k = 1, . . .}, (7.11) becomes

k−t+m∑
k=1

wk

∫ ∞

uL
e−xΦ

(
x −αx −xβµk

xβψk

)
d x,

with wk =∑n>
t=1 1(ct = k)/n>.

7.2.4 Posterior assignment probabilities

With the three different likelihood contributions in R|t , R|t+1 and R00 based on (7.7), (7.8)

and (7.11) respectively, we can compute the posterior probabilities (7.4) for the index variables

ct (t = 1, . . . ,n>). In the following, we assume strong exchangeability for clarity, but assuming
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no exchangeability is a straightforward generalisation. We have

Pr
(
ct = c

∣∣ c−t , xL
t , xL

t+1,α,β,θ1, . . . ,θk−t+m
)

= κ̃



n−t ,c

n −1+γ

 ft+1|t
(
xL

t+1

∣∣ xL
t ,α,β,θc

)
, c ≤ k−t , (xt , xt+1) ∈ R|t ,

ft |t+1
(
xL

t

∣∣ xL
t+1,α,β,θc

)
e |x

L
t |−|xt+1|, c ≤ k−t , (xt , xt+1) ∈ R|t+1,

γ/m

n −1+γ

 ft+1|t
(
xL

t+1

∣∣ xL
t ,α,β,θc

)
, c > k−t , (xt , xt+1) ∈ R|t ,

ft |t+1
(
xL

t

∣∣ xL
t+1,α,β,θc

)
e |x

L
t |−|xt+1|, c > k−t , (xt , xt+1) ∈ R|t+1,

(7.12)

where κ̃= κ̃(uL,c−t ,ct = c, α,β, θ1, . . . ,θk−t+m), with

κ̃
(
uL,c−t ,ct = c, α,β, θ1, . . . ,θk−t+m

)= κ×Ft ,t+1
(
uL,uL

∣∣ c−t ,ct = c, α,β, θ1, . . . ,θk−t+m
)

with κ> 0 a normalising constant ensuring that the probabilities in (7.12) sum to 1.

For updates of θc , α and β, we use a Metropolis–Hastings scheme, since the likelihood

function (7.6), and in particular (7.9), has no closed form.

7.3 Summary and future work

In this chapter, we reviewed the weaknesses of current methods for modelling extremes of

Markov chains, which until recently were using models from the standard extreme value theory

which entail assuming asymptotic dependence at all lags of the series. The method of Winter

and Tawn (2017) does not rely on this assumption, but uses a heuristic approach to construct

the transition probability and a multi-step inference procedure for which computationally

intensive bootstrap methods are needed.

We developed a model for extremes of first-order Markov chains based on our new method-

ology of Chapter 6 and showed how Bayesian semiparametrics can be used to efficiently

sample from the posterior distribution of the model. This is ongoing work, and preliminary

results are promising.

Generalisations to modelling extremes of higher-order Markov chains is possible, and we

could use the formulation of Section 6.3.3 to build a model for kth-order Markov chains with a

likelihood function of the form

L (Θ,ξ,σu ; x1, . . . , xn+k ) = L
(
Θ,ξ,σu ; xL

1 , . . . , xL
n+k

)n+1∏
t=1

J (xt ; ξ,σu)

∝
∏n

t=1 ft :t+k
(
xL

t , . . . , xL
t+k ;Θ,ξ,σu

)∏n
t=2 ft+1:t+k

(
xL

t+1, . . . , xL
t+k ;Θ,ξ,σu

) n+1∏
t=1

J (xt ; ξ,σu)1(xt > u),

(7.13)



126 Chapter 7. Modelling extremes of Markov chains

where fs:t (xs , . . . , xt ) (s < t ) denotes the joint density of Xs , . . . , X t . Writing (7.13) as

1

2
e−|x

L
1 |

∏n
t=1 ft+1:t+k|t

(
xL

t+1, . . . , xL
t+k

∣∣ xL
t ;Θ,ξ,σu

)∏n
t=2 ft+2:t+k|t+1

(
xL

t+2, . . . , xL
t+k

∣∣ xL
t+1;Θ,ξ,σu

) n+1∏
t=1

J (xt ; ξ,σu)1(xt > u),

we can then use the split approach of Chapter 6 to model the conditional densities fs:t |s−1

(s < t ) of Xs , . . . , X t | Xs−1.



8 Discussion and extensions

This thesis has two main facets. The first contributes to research in extreme value theory

by investigating and developing a conditional tail approach, and the second explores Bayesian

nonparametric inference in order to provide algorithms that are well-suited for our new

extreme value methodology. Chapter 2 introduces and reviews the first facet, supplemented by

Chapter 4, which presents a detailed analysis of the conditional tail approach with new findings

on its subasymptotic characteristics, and by Chapter 6, which develops the conditional tail

model in many new directions. Chapter 3 gives an overview of the second facet. The two facets

meet in Chapters 5 and 7 to provide new approaches for modelling time series extremes.

In Chapter 1, we motivated our research by presenting how extreme events strike all

aspects of modern society. We emphasised how important it is to be able to evaluate the risk

of catastrophic events by estimating their frequency and magnitude.

In Chapter 2, we reviewed many models that are suited for the class of asymptotic indepen-

dent processes, which are often encountered in environmental data and incorrectly specified

as completely independent or asymptotically dependent by standard extreme value models.

It would be interesting to investigate the performance of the models covering asymptotic

independence relative to the new models of Chapter 6 with Bayesian semiparametric inference

in an extensive and systematic simulation study. For the models covering both asymptotic

independence and asymptotic dependence, it would be interesting to evaluate their ability to

distinguish the two classes in simulated data.

In Chapter 3, we defined the Dirichlet process and described how it can be used in Bayesian

nonparametric inference to estimate continuous densities using a Dirichlet process mixture.

Two different approaches for inference exist, namely the marginal approach reviewed by

Neal (2000), and the conditional approach introduced by Ishwaran and Zarepour (2000),

which approximates the Dirichlet process by truncating the infinite sum of the stick-breaking

representation. The method developed by Papaspiliopoulos and Roberts (2008) avoids ap-

proximation of the conditional approach to fitting Dirichlet process mixtures through the use

of a retrospective sampling algorithm. We did not consider this algorithm, and it would be
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interesting to examine its performance relative to the algorithm of Ishwaran and Zarepour

(2000) so as to measure the impact of the truncation on simulated and real data sets. Exten-

sions of the Dirichlet process exist, e.g., the Beta two-parameter and the Pitman and Yor (1997)

processes, and would be flexible candidates to consider for the methodology of Chapter 5. We

did not investigate reversible-jump algorithms (Green, 1995; Richardson and Green, 1997), as

they require the delicate construction of transition probabilities across parameter spaces of

different dimensions, but this could be a potential path for future research.

In Chapter 4, we conducted an analysis that sheds light on the penultimate properties

of the conditional approach for extremes, which has formerly been carried out only in the

univariate and, to some extent, the bivariate theory of extremes. Extreme value models are

based on approximations of asymptotic results, and can require a significant amount of data

for this approximation to be reasonable for deriving accurate risk measures. In the univariate

setup, asymptotic models may poorly describe finite-sample behaviour, it is important to

better understand the subasymptotic behaviour of extreme value models in general. We

analysed the subasymptotic properties of the conditional tail model for a few parametric

copulae with various asymptotic properties; it would be interesting to investigate the many

other examples scrutinised by Heffernan and Tawn (2004), who give their limit forms, and to

try to develop a general formulation giving the nature of the penultimate behaviour.

Standard modelling of extremes in time series is considered to be a univariate problem, and

corresponds to modelling the marginal tail distribution of the series above a high threshold. It

needs a pre-processing step to select approximately independent excesses of the threshold,

so that maximum likelihood inference can be used. In Chapter 5, we modelled the extremal

dependence in time series, improved on existing inference procedures and gave an assessment

of uncertainty for the conditional tail model. We used Bayesian nonparametric tools to

construct a semiparametric Dirichlet process mixture. We developed a hierarchical Bayesian

procedure incorporating stochastic label-switching moves and a regional adaptive scheme

that automates the laborious procedure of choosing appropriate proposal variances. The

Bayesian framework has the additional benefit of being able to structure the decay in extremal

dependence through time, which the original method of Heffernan and Tawn (2004) did not

provide. Unlike standard models for extremes, the conditional approach can capture the

decay of extremal dependence strength as we move further into the tail, thus enabling the

quantification of risk to be based on subasymptotic measures of extremal dependence. An

interesting direction of research would be to adapt the methodology of this chapter to data

sets of moderately high dimension, perhaps using the state-dependent proposal distribution

discussed in Appendix F and adding more structure in the covariance matrices of the mixture

components.

The conditional approach to modelling extremes of Heffernan and Tawn (2004) is appropri-

ate for modelling asymptotically independent and asymptotically dependent data, but it lacks

an adequate characterisation of the joint tail distribution, and currently inference is carried

out using a wrongly-specified likelihood function. It also fails to guarantee self-consistency of
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joint tail probabilities derived from different conditional distributions of the same random

vector. Lastly, it does not permit simultaneous inference on the marginal and dependence

features, so that uncertainty evaluation relies on bootstrap methods. In Chapter 6, we tackled

these various issues by developing two new approaches based on the conditional tail approach,

but using a coherent likelihood function where non-extreme observations are censored. These

approaches permit efficient inference by combining the marginal and dependence fits. We in-

troduced new constraints under positive or negative association of the extremes, and showed

how penalisation can improve the original method of Heffernan and Tawn (2004). The sim-

ulation study shows that the new methodology of this chapter is promising, as it performs

relatively well compared to the existing incorrect inference even with a strongly simplifying

assumption of normality. Using a Dirichlet process mixture would remove the need to make

this assumption, and would naturally provide a measure of uncertainty. Further investigation

would be needed to study the methodology of this chapter in a multivariate setting. Another

potential area of future research is the extension of this multivariate setting to a spatial model

that would require a generalised spatial Dirichlet process (Gelfand et al., 2005; Agarwal and

Gelfand, 2005; Duan et al., 2007). The model could assume the existence of spatial norming

functions α(s) and β(s) > 0 such that, for all points s in the space of interest,

lim
u→∞Pr

{
X (s)−α(s)X (s0)

X (s0)β(s)
≤ z(s)

∣∣∣∣ X (s0) > u

}
= Hs0 {z(s)},

where X (s) is the observed spatial process, s0 is a location where an extreme event is observed,

and Hs0 (·) is a distribution function with no mass at infinity.

Current methods for modelling extremes of Markov chains assume asymptotic dependence

of data at lag 1, thus implicitly assuming asymptotic dependence at all lags. In Chapter 7,

we explained the weakness of the approach of Chapter 5 and of the approach of Winter and

Tawn (2017), where the same data can be used multiple times in the likelihood function. We

developed a model for extremes of first-order Markov chains based on the new bivariate

model of Chapter 6, allowing simultaneous inference on the marginal and joint features, and

demonstrate how the marginal approach to fitting Dirichlet process mixtures can be used to

build an algorithm. We would need to perform simulation studies in order to validate this

approach, but ongoing work, under the strong assumptions of Chapter 6, shows promising

results. Extending this methodology to higher-order Markov chains would be possible and

interesting to develop.

To conclude, this thesis brings new improvements and developments for the modelling of

extreme values, combining the flexibility of the conditional tail approach with the adaptability

of Bayesian nonparametric inference, thus providing a coherent and efficient framework

that naturally enables an assessment of uncertainty. It demonstrates the ability of Bayesian

inference, combined with extreme value statistics, to evaluate the risk of rare events, and many

paths for extensions and improvements remain to be explored.
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A Marginal approach to fitting Dirichlet
process mixtures

We briefly outline two algorithms from Neal (2000) that constitute examples of the marginal

approach to fitting the Dirichlet process mixture model (3.7). Neal presents algorithms num-

bered from 1 to 8 in order of increasing complexity and efficiency in exploring the parameter

space. We focus on Algorithm 5 and Algorithm 8. The former improves on the estimation

method suggested by MacEachern and Müller (1998) and introduces an update step on the

mixture parameters that is not present in Algorithm 6; Algorithm 8 is the most complex al-

gorithm in Neal’s paper and generalises and improves on simpler samplers such as those of

MacEachern and Müller (1998) and Bush and MacEachern (1996).

Mixing is improved in Algorithm A.1 by increasing the value of R ≥ 1. In order to save

computational time, it is possible to store the value of the likelihood corresponding to the

accepted state and used in the acceptance ratio, so that it can be used in the next sweep of the

r -loop. Thus only R +1 likelihoods need to be calculated for each i = 1, . . . ,n.
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Algorithm A.1: Partial Gibbs sampler for the Dirichlet process.

Current state: {c1, . . . ,cn}, {θc : c ∈ {c1, . . . ,cn}}
# update on the components

for i = 1 to n do
for r = 1 to R do

Sample a candidate c?i according to the probabilities (3.13) and (3.14)
if c?i 6∈ {c1, . . . ,cn} then

Sample a new θc?i
from P0

end
Compute the acceptance probability a(c?i ,ci ) (3.12)
Set ci ←[ c?i with probability a(c?i ,ci ), otherwise leave ci unchanged

end
end
# update on the parameters

foreach c ∈ {c1, . . . ,cn} do
Sample a new value for θc from the conditional distribution θc | {xi : ci = c}

end

Algorithm A.2: Gibbs sampler with auxiliary parameters for the Dirichlet process.

Current state: {c1, . . . ,cn}, {θc : c ∈ {c1, . . . ,cn}}
# update on the components

for i = 1 to n do
Label {c j : j 6= i } from 1 up to k−i

if ci = c j for some j = 1, . . . ,n then
Sample values from P0 for θc , k−i < c ≤ k−i +m

else if ci 6= c j for all j = 1, . . . ,n then
Set ci ←[ k−i +1
Sample values from P0 for θc , k−i +1 < c ≤ k−i +m

end
Sample a new index ci from the probabilities in (3.15)
Clear all θc corresponding to empty components
# update on the parameters

forall c ∈ {c1, . . . ,cn} do
Sample a new value for θc from the conditional distribution θc | {xi : ci = c}

end
end
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B Concentration parameter update

The concentration parameter γ > 0 in the Dirichet process mixture (3.7) controls the

prior belief of the expected number of components in the mixture. The smaller γ, the fewer

components, and vice versa. In order to lessen the impact of choosing a precise value for

γ, a hyperprior can be set on the concentration parameter. Escobar and West (1995) use

a gamma hyperprior distribution, for which they provide an update mechanism using an

auxiliary variable.

Assuming a continuous hyperprior on γ, we have

Pr(k | n) = E{Pr(k | γ,n)}, k = 1, . . . ,n,

with n the number of observations and k the number of non-empty components in the

mixture. From Antoniak (1974), Escobar and West derive

Pr(k | γ,n) = cn(k)n!γk Γ(γ)

Γ(γ+n)
, k = 1, . . . ,n,

where Γ(x) = ∫ ∞
0 sx−1e−sd s and

cn(k) = Pr(k | γ= 1,n)

does not depend on γ.

The posterior distribution for the concentration parameter is

Pr(γ | k,n) ∝ Pr(γ | n)×Pr(k | γ,n) = Pr(γ)×Pr(k | γ,n),

using a gamma prior distribution for the concentration parameter that does not depend on n,

with shape and scale parameters η1 > 0 and η2 > 0 respectively. Since

Γ(γ)

Γ(γ+n)
= (γ+n)β(γ+1,n)

γΓ(n)
∝ (γ+n)β(γ+1,n)

γ
,
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where β(·, ·) is the beta function. We obtain

Pr(γ | k,n) ∝ Pr(γ)γk−1(γ+n)β(γ+1,n)

= Pr(γ)γk−1(γ+n)
∫ 1

0
sγ(1− s)n−1d s,

which can be interpreted as the marginal probability of

Pr(γ,δ | k,n) ∝ Pr(γ)γk−1(γ+n)δγ(1−δ)n−1, δ ∈ (0,1).

We can now derive the posterior distributions corresponding to Pr(γ | δ,k,n) and Pr(δ |
γ,k,n), with

Pr(γ | δ,k,n) ∝ γη1−1γk−1e−γ/η2 eγ logδ(γ+n)

= γη1+k−2e−γ(1/η2−logδ)(γ+n)

∝ γη1+k−1e−γ(1/η2−logδ) +nγη1+k−2e−γ(1/η2−logδ),

from which we conclude that

γ | (δ,k,n) ∼πδ×Γ
(
η1 +k,

η2

1−η2 logδ

)
+ (1−πδ)×Γ

(
η1 +k −1,

η2

1−η2 logδ

)
, (B.1)

with

πδ =
Γ

(
η1 +k

)(
1/η2 − logδ

)η1+k
. (B.2)

The posterior distribution for the auxiliary variable δ is given by

Pr(δ | γ,k,n) ∝ δγ(1−δ)n−1,

thus

δ | (γ,k,n) ∼ Beta(γ+1,n). (B.3)

The update mechanism for the concentration parameterγproceeds by first sampling a new

value for δ from (B.3), then drawing a binomial replicate with probability of success (B.2), and

finally using δ to sample a new value for γ from the component in the mixture distribution (B.1)

selected through the binomial draw.



C List of bond yields and ratings by
country

The data from the 53 countries used in Section 3.4 are summarised in Table C.1.

The 3-year bond yield refers to the figures available on the 20th of November 2017 at

https://www.investing.com/rates-bonds/world-government-bonds on the previous

traded day, which is 19 November in most cases, but can be earlier that month for the least

liquid bonds.

Moody’s latest credit ratings are available at https://en.wikipedia.org/wiki/List_

of_countries_by_credit_rating. Moody’s ratings are Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C,

from the least likely to the most likely to default. A number from 1 to 3 is sometimes appended

to these ratings and fines down the rating within each of the nine categories, but this additional

information was not considered in our example. The ratings reported in Table C.1 are those

known on the 20th of November 2017, and most of them date back to the summer of 2017, but

some of them date back to one or two years before.
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Country Yield MCR Country Yield MCR

Argentina 5.73 B Latvia 0.1 A

Australia 1.956 Aaa Lithuania 0.05 A

Austria −0.539 Aa Malaysia 3.549 A

Belgium −0.651 Aa Malta 0.004 A

Botswana 2.2 A Mauritius 2.538 Baa

Brazil 8.94 Ba Mexico 7.08 A

Bulgaria −0.05 Baa Namibia 9.045 Ba

Canada 1.511 Aaa Netherlands −0.656 Aaa

Chile 3.7 Aa Philippines 4.08 Baa

China 3.771 A Poland 1.981 A

Croatia 0.518 Ba Portugal −0.043 Ba

Czech Republic 0.687 A Romania 3.391 Baa

Denmark −0.529 Aaa Russia 7.4 Ba

Egypt 15.88 B Slovakia −0.36 A

Finland −0.571 Aa South Africa 8.29 Baa

France −0.472 Aa South Korea 2.158 Aa

Germany −0.637 Aaa Spain −0.194 Baa

Hong Kong 1.258 Aa Sri Lanka 9.94 B

Hungary 0.65 Baa Switzerland −0.766 Aaa

India 6.722 Baa Thailand 1.61 Baa

Indonesia 6.175 Baa Turkey 13.27 Ba

Ireland −0.516 A Uganda 11.679 B

Israel 0.181 A Ukraine 15.3 Caa

Italy −0.042 Baa United Kingdom 0.521 Aa

Japan −0.158 A United States 1.831 Aaa

Jordan 4.748 B Vietnam 4.236 B

Kenya 12.2 B Vietnam 4.236 B

Table C.1 – List of countries with 3-year sovereign bond yield (percentage) in mid-November 2017 and
Moody’s credit rating (MCR) at that same time.
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D Penultimate approximation in the
univariate case

This appendix presents the proof outlined in Smith (1987), with additional details. We

are interested in the convergence of the distribution function F n(an x +bn) towards its limit

G(x) with the appropriate norming an > 0 and bn , as described in Theorem 2.1. Assuming

existence of the density f (·) = F ′(·) and its derivative f ′(·), we start with the representation of

the survival distribution for x large, namely

F (x) = exp

{
−

∫ x

xF

d t

h(t )

}
,

where h(t) is the reciprocal hazard function {1−F (x)}/ f (x). Assuming h′(x) → ξ as x → xF ,

for some fixed ξ ∈R, we can write, for x > 0,

1−F {u +x ×h(u)}

1−F (u)
= exp

{
−

∫ u+x×h(u)

xF

d t

h(t )
+

∫ u

xF

d t

h(t )

}
= exp

{
−

∫ u+x×h(t )

u

d t

h(t )

}
.

With the change of variable t 7→ u + s ×h(u), we obtain

1−F {u +x ×h(u)}

1−F (u)
= exp

{
−

∫ x

0

h(u)

h{u + s ×h(u)}
d s

}
. (D.1)

The mean value theorem guarantees the existence of y(u, s) = y ∈ [u,u + s ×h(u)], for any

s ∈ (0, x], such that

h{u + s ×h(u)}

h(u)
= 1+

∫ s

0
h′{u + t ×h(u)}d t = 1+ s ×h′(y),

thus there exist y ∈ [u,u +x ×h(u)] such that∫ x

0

[
h(u)

h{u + s ×h(u)}
− 1

1+ s ×h′(y)

]
d s = 0.
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140 Appendix D. Penultimate approximation in the univariate case

We can now make a substitution in (D.1),

1−F {u +x ×h(u)}

1−F (u)
= exp

{
−

∫ x

0

d s

1+ s ×h′(y)

}
= exp

(
−

[
1

h′(y)
log

{
1+ s ×h′(y)

}]s=x

s=0

)
= {

1+x ×h′(y)
}−1/h′(y) .

Since, for x close to xF ,

1−F {u +x ×h(u)}

1−F (u)
≈ logF {u +x ×h(u)}

logF (u)
,

we have, by substitution of u = bn , h(bn) = an , and − logF (bn) = 1/n,

F n(an x +bn) = exp
{
− (1+ξn x)−1/ξn+

}
,

with ξn = h′(bn) → ξ as n →∞. Smith justifies the approximation of h′(y) by h′(u), by observ-

ing that in the case where ξ= 0, u +x ×h′(u) is much closer to u than to xF for any fixed x. He

also develops an argument justifying the same approximation when ξ 6= 0.



E Posterior densities for the semipara-
metric model

Posterior density forµk : The posterior density for µk = (µ1,k , . . . ,µm,k ) is multivariate Gaus-

sian with independent margins, i.e.,

µ j ,k | X j , X 0,ψ2
j ,k ,α j ,β j

ind∼ N
(
M(µ j ,k ),S2

(µ j ,k )

)
, j = 1, . . . ,m, k = 1, . . . , N ,

with posterior mean and variance

M(µ j ,k ) = S2
(µ j ,k )

 1

ψ2
j ,k

∑
i∈Ck

X j ,i −α j X0,i

X
β j

0,i

 , S2
(µ j ,k ) =

(
nk

ψ2
j ,k

+ 1

ψ2
(µ), j

)−1

,

where X j = (X j ,1, . . . , X j ,n) are the observations at the j th lag, Ck = {i : ci = k}, and nk = |Ck |
is the number of observations in component k; the ψ2

(µ), j are the variance parameters of the

prior for the components’ means.

Posterior density forψ2
k : The multivariate posterior density for the components’ variances

can be split into independent parts,

ψ2
j ,k | X j , X 0,µ j ,k ,α j ,β j

ind∼ Inv-Gamma
(
N1, j ,k , N2, j ,k

)
, j = 1, . . . ,m, k = 1, . . . , N ,

with parameters

N1, j ,k = nk

2
+ν1, j , N2, j ,k = 1

2

∑
i∈Ck

(
X j ,i −α j X0,i −µ j ,k X

β j

0,i

)2

X
2β j

0,i

+ν2, j .

Posterior density for c : The posterior density is such that

ci | X ,µ,ψ2,α,β, w ind∼
N∑

k=1
Wk,iδk , i = 1, . . . ,n,
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142 Appendix E. Posterior densities for the semiparametric model

where here for convenience X , µ and ψ2 are the matrices with rows (X 0, . . . , X m), (µ1, . . . ,µN ),

and (ψ2
1, . . . ,ψ2

N ) respectively; the stick-breaking weights are defined as

Wk,i =
wk

W i

m∏
j=1

 1

X
β j

0,iψ j ,k

exp

−1

2

(
X j ,i −α j X0,i −µ j ,k X

β j

0,i

)2

X
2β j

0,i ψ
2
j ,k


 ,

with W i =∑N
k=1 Wk,i (i = 1, . . . ,n) constants that make the weights sum to 1.

Posterior density for w : The posterior density for w is generalised Dirichlet,

w | c , γ∼ GDirichlet(a1,b1, . . . , aN−1,bN−1),

where

ak = 1+nk , bk = γ+
N∑

j=k+1
n j , k = 1, . . . , N −1.

Posterior density for γ: The posterior density for the concentration parameter γ is

Gamma

(
N +η1 −1,

η2

1−η2 log wN

)
1[ε,∞),

with ε> 0, typically ε= 0.5, and 1 is the indicator function.



F State-dependent proposal distribution
for (α,β)

We suggest a joint proposal distribution for (α,β) in the conditional tail model whose

form depends on the current state (α,β). This state-dependent proposal distribution (Roberts

and Rosenthal, 2009; Rosenthal, 2011) aims at reducing the number of candidates proposed

outside the boundaries defined by the constraints of Keef et al. (2013), thus improving the

efficiency of the Markov chain Monte Carlo algorithm.

We consider a bivariate Gaussian proposal distribution with fixed standard deviations ψα

andψβ and centred at the current state (α,β). In the following, we need to consider a particular

iso-density contour as in Figure F.1, e.g., corresponding to the 2.5% and 97.5% marginal

quantiles, defining an ellipse with semi-minor and semi-major axes of lengths ψαqz (0.975)

and ψβqz (0.975), with qz (·) the quantile function of a standard Gaussian distribution.

The posterior distribution of (α,β) has a support boundary which cannot be expressed in

closed form, and pointwise computations are needed to define an approximate boundary. In

Figure F.1, we illustrate how the proposal density can be adapted to maximise the probability

mass in the interior of the boundary, showing a particular contour of the proposal density. We

use a bisection method to find points on the boundary with arbitrary precision. Given that the

current state (α,β) lies in [0,1]× [0,1] to simplify the discussion, the details of the procedure

are shown in Figure F.2 and are as follows:

1. find P = (α,β′), β′ > β, and Q = (α′,β), α′ > α, on the boundary (• in the left panel of

Figure F.1);

2. the segment PQ joining P to Q is approximately tangent to the boundary; compute the

perpendicular T to PQ going through (α,β);

3. find the point R at the intersection of T with the boundary;

4. find the point S at the intersection of T with a fixed isodensity contour (black ellipse in

the right panel of Figure F.1);

143



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

α

β

●

(1)

● (2)
●(3)

● (4)●(5)●

●

●

distance = 0.087

●

(1)

● (2)
●(3)

● (4)●(5)

●

●

●

distance = 0.19

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

α

β

Figure F.1 – Construction of the state-dependent proposal distribution from a bivariate Gaussian distri-
bution with independent margins. Left panel: definition of an approximate tangent to the boundary
(•–•) and calculation of the approximate shortest distance (×–•) from the current state (×) to the
boundary, where the point on the boundary is found by a bisection method whose successive iterations
are shown (•) and numbered; right panel: adapting the bivariate Gaussian proposal distribution by
rotation (–) and, if needed, reshaping (–), showing ellipsoids corresponding to the same iso-density
curve.
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×
(α,β) Q

P

T

R

S

ω

Figure F.2 – Details of the construction of the approximate tangent to the boundary and distance of the
current state (α,β) to the boundary. The points P , Q, and S are found using a bisection method along
T and the dashed lines (− −). The dotted segments show the top-right boundary of the set [0,1]× [0,1]
and the ellipse represents the contour of interest of the proposal distribution centred in (α,β).

5. if S is further away from (α,β) than R, denote by d the distance from (α,β) to R and

define a new covariance matrix such that the corresponding standard deviations are

qz (0.975)ψαψβ/d and d/qz (0.975);

6. rotate the new covariance matrix byω, the angle formed by T and the line going through

(α,β) and P .

In order to stop the proposal distribution from converging to a degenerate form, we need

to define δ> 0 and d ′ = max(δ,d) in step 5., so that the probability of sampling a candidate

(α?,β?) in the interior of the boundary remains always non-negligible, even when the current

state (α,β) is arbitrarily close to the boundary. In order for the state-dependent proposal

distribution to be efficient, we assume that the boundary of the support of (α,β) is smooth, so

that the approximation PQ to the tangent of the boundary is reasonably accurate.

An adaptive scheme (Haario et al., 2001) for the proposal standard deviations ψα and ψβ

can be used with the state-dependent proposal distribution. The standard deviations would

be adapted depending on the mean acceptance rate computed on a batch of past iterations of

the algorithm. A typical condition for the convergence of the sampler is that the size of the

adaptation vanishes as the number of iterations increases.





G Proof of Theorem 6.2

In this appendix, we show how to derive an approximation to the integral

∫ ∞

u
Φ

{
x −αx −µxβ

ψxβ

}
e−x d x, (G.1)

for large u, and we defineµ(x) =αx+µxβ andψ(x) =ψxβ, withα< 1 since (X ,Y ) are assumed

asymptotically independent.

We can follow the procedure used for the proof of Theorem 6.1 to get

1−Φ
{

x −µ(x)

ψ(x)

}
=

∫ ∞
x−µ(x)
ψ(x)

ϕ(y)d y (G.2)

∼ϕ
{

x −µ(x)

ψ(x)

}
ψ(x)

x −µ(x)
, x > u, (G.3)

for large u, and because X and Y are assumed asymptotically independent, this ensures that

{x−µ(x)}/ψ(x) is strictly increasing in x, so the integral on the right-hand side of (G.2) vanishes

when x →∞. From (G.3), it follows that (G.1) can be approximated as

e−u −
∫ ∞

u
e−x ψ(x)

{x −µ(x)}
p

2π
exp

[
−1

2

{
x −µ(x)

ψ(x)

}2]
d x

= e−u −
∫ ∞

u

ψ(x)

{x −µ(x)}
p

2π
exp

[
−1

2

{
x −µ(x)+ψ(x)2

ψ(x)

}2]
exp

{
−µ(x)+ ψ(x)2

2

}
d x, (G.4)

where the integral can be further expanded by integration by parts, giving∫ ∞

u
p(x)ϕ{q(x)}d x =

∫ ∞

u

p(x)

q̃(x)
ϕ

{
q(x)

}
q̃(x)d x

=
[
−p(x)

q̃(x)
ϕ

{
q(x)

}]∞
u
+

∫ ∞

u

d

d x

{
p(x)

q̃(x)

}
ϕ

{
q(x)

}
d x, (G.5)
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148 Appendix G. Proof of Theorem 6.2

with

p(x) = ψ(x)

x −µ(x)
exp

{
−µ(x)+ ψ(x)2

2

}
,

q(x) = x −µ(x)+ψ(x)2

ψ(x)
,

q̃(x) = 1

2

d

d x
q(x)2.

(G.6)

From (G.5) and using (G.6), we derive the approximation∫ ∞

u
p(x)ϕ{q(x)}d x ∼ p(u)

q̃(u)
ϕ{q(u)}, (G.7)

for large u, provided d{p(x)q̃(x)−1}/d x = o{p(x)} as x → ∞, to ensure that the remaining

integral term in (G.5) is of smaller order than the left-hand side of (G.7).

The approximation in (G.7) only holds forβ< 1/2, as we shall see below, and can be written

as

− 1

2
p

2π

ψ3u3β{
u(1−α)−µ(u)β

}{
u(1−α)−µ(u)β+ψ2(u)2β

}{
(1−β)(1−α)+βψ2(u)2β−1

}
×exp

[
−u2 −2u

{
µ(u)+ψ(u)2

}+µ(u)2

2ψ (u)2

]
,

where the fraction behaves like

− 1

2
p

2π

ψ3

(1−α)3(1−β)
u3β−2,

which proves the theorem.

In order to show that d p(x)q̃(x)−1/d x = o{p(x)}, we first note that

q̃(x) =
{

x −µ(x)+ψ(x)2
}{

(1−β)(1−α)+βψ2x2β−1
}

ψ(x)2 .
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From here we can compute the ratio p(x)/q̃(x) and differentiate it to get

d

d x

{
p(x)

q̃(x)

}
=exp

{
−µ(x)+ ψ(x)2

2

}([
(1−α)(β−1){

x −µ(x)
}2 − α+βµxβ−1 −βψ2x2β−1

x −µ(x)

]
q̃(x)ψ(x)2

−
[

(1−α)(1−β)
{
1−α−βµxβ−1 +2βψ(x)2

}
x −µ(x)

+ 2βψ2x2β−1
{
β(1−α)− (3β−1)µxβ−1/2+ (2β−1/2)ψ2x2β−1

}
x −µ(x)

−
(
1−α−µxβ−1 +ψ2x2β−1

){
(1−α)(1−β)+βψ2x2β−1

}
2β

x −µ(x)

])

× ψ(x)3{
x −µ(x)+ψ(x)2

}2 {
(1−β)(1−α)+βψ2x2β−1

}2 .

(G.8)

We conclude from expression (G.8) that convergence to 0 only holds for β < 1/2, with rate

O(x4β−2). For β≥ 1/2 we cannot use the approximation (G.7) and we are left with the integral

form (G.4).





H Numerical approach to estimating
joint tail probabilities

A standard approach to evaluation of the integral of Theorem 6.2, needed in (6.23) and

(6.25), is by simulation of (x, y) pairs, with x above the conditional threshold u, and compu-

tation of the proportion of these pairs falling into the set of interest, namely {(x, y) ∈R2 : x >
u, y ≤ u}, as detailed in Heffernan and Tawn (2004). Monte Carlo integration can help reduce

the large computational cost incurred by this standard approach; comparison of RMSE for

probabilities of extreme sets with data simulated from a logistic distribution shows that the

standard approach needs at least 104 simulations to reach an accuracy similar to a Monte

Carlo-type integration using less than 100 replicates (Winter, 2015, Chap. 2).

In his Ph.D. thesis, Winter treats the residuals ẑi = (yi − α̂xi )/xβ̂i (i = 1, . . . ,n) as a given

fixed sample of the Gaussian distribution on the left-hand side of (H.1). He then evaluates

the exponential density on the left-hand side of (H.1) using the order statistics ẑ(1) < ·· · < ẑ(n),

allowing for a computationally efficient procedure to not include residuals that would not

contribute to the integral. For further details and an illustration of this methodology, see

Winter (2015, Section 2.6.5). This approach relies on an informal argument and is shown to

work well in practice. We develop here a more formal argument and show that more careful

attention is needed, depending on the exact values of α̂ and β̂.

Winter’s approach corresponds to a Monte Carlo integration with fixed samples, as we can

write ∫ ∞

uL
Φ

(
uL −αx −µxβ

ψxβ

)
e−x d x =

∫ ∞

uL

∫ ∞
uL−αx−µxβ

ψxβ

ϕ(y)e−x d yd x (H.1)

=
∫ ∞

inf
x≥uL

(
uL−αx−µxβ

ψxβ

) {
e−A(y) −e−B(y)}ϕ(y)d y, (H.2)

where A(y),B(y) are the roots in x of y = (uL −αx −µxβ)/(ψxβ), except in some special cases,

with

A(y) ≡ uL, y ≥ uL(1−α)− (uL)βµ

(uL)βψ
,
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and

α=β= 0 =⇒ A(y) ≡ uL,

α≥ 0 or β= 1 =⇒ B(y) ≡+∞.

We can derive the following forms for the lower bound of integral (H.2),

inf
x≥uL

(
uL −αx −µxβ

ψxβ

)
=



−α+µ
ψ

, β= 1 or α= 0,

−∞, α> 0, β< 1,

uL(1−α)− (uL)βµ

(uL)βψ
, α< 0, β< 1, uL > uLβ

α(β−1)
,

−uL{α(β−1)}β+ (β−1)(uLβ)βµ

(β−1)(uLβ)βψ
, otherwise.

In Winter’s approach, the case α < 0 is considered only when u is large enough so that

(uL −αx −µxβ)/(ψxβ) can be considered monotonic, but no condition is given that ensures

monotonicity; samples from ϕ(y) are fixed and given by the model fit.

As the integration involved in Φ is handled by R, it is easier to consider the left-hand side

of (H.2) in our approach to estimate F (uL,uL) in (6.23). A Monte Carlo approach is easy to

implement, and typically a shifted exponential with density exp{−(x −uL)} can be used as an

instrumental distribution to avoid sampling replicates outside the limits of the integral. This

importance sampling approach boils down to computing

1

R

R∑
r=1

Φ

{
uL −αx(r ) − (x(r ))βµ

(x(r ))βψ

}
e−uL

, (H.3)

with the x(r ) sampled from the shifted exponential distribution. Because the integral is one-

dimensional, a more efficient technique is Riemannian simulation (see for example Philippe

(1997) or Robert and Casella (2004, Chap. 3)),

R−1∑
r=1

(
x(r+1) −x(r ))Φ{

uL −αx(r ) − (x(r ))βµ

(x(r ))βψ

}
e−x(r ) =

R−1∑
r=1

(
x(r+1) −x(r ))d(x(r )), (H.4)

which has a variance of order O(R−2), compared to O(R−1) for the classical Monte Carlo

integration estimator in (H.3). Yakowitz et al. (1978) show that we can improve the Riemannian

estimator by symmetrising (H.4), giving

R−1∑
r=1

(
x(r+1) −x(r )) d(x(r ))+d(xr+1)

2
,
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which has variance of order O(R−4). Riemann sum estimators handle importance sampling

nicely, as they do not involve evaluation of the instrumental distribution.

In this appendix, we have illustrated approaches to estimating integrals of the type of the

left-hand side of (H.2) in a bivariate setup for simplicity, but as mentioned in Section 6.3.1, a

quadratic approximation is much faster and accurate in two dimensions. In higher dimensions

however, Monte Carlo estimation can be more efficient and the methods described here can

be used to get reliable estimates of the integral in (H.2).





I State-dependent proposal distribution
for batch updates

In Chapter 5, we were able to construct a Gibbs sampler by truncating the infinite sum of

the stick-breaking representation (5.14), so that the likelihood function could be expressed as

the product of a finite number of Gaussian densities. In Chapter 7, the likelihood function (7.6)

is analytically intractable, so that Gibbs sampling is not possible. In this appendix, we detail

an attempt at taking advantage of the Gibbs sampler of Chapter 5 in the context of Chapter 7.

To simplify notation, we assume strong exchangeability of (X t , X t+1) with Laplace marginal

distribution, but the argument follows the same lines without exchangeability and with a

general marginal distribution. Since we use the setup of Ishwaran and Zarepour (2000), we

deal with a mixture of Gaussian distributions with K components, where K is sufficiently large

for the truncated stick-breaking representation to well approximate the Dirichlet process,

and we consider the means µk and the variances ψ2
k (k = 1, . . . ,K ) of the components. We

sample the means and variances using blocked updates, following the terminology of Ishwaran

and Zarepour (2000), but here we need a Metropolis within Gibbs approach as the posterior

distributions have no closed form. A standard kernel proposal distribution is possible but

would be inefficient. We develop a proposal distribution whose candidates are more likely to

be accepted.

We suggest using the posterior distributions derived in the context of Chapter 5 for the

conditional models M|t , where X t+1 | X t > x with x extreme, and M|t+1, where X t | X t+1 = x

with x extreme, as state-dependent proposal distributions. This simplifies the acceptance ratio

and the computations involved in the Metropolis update, and proposes parameter candidates

that improve mixing.

As in Chapter 5, we take independent normal priors for the means of the mixture compo-

nents, so that the joint prior is

πµ
(
µ

)=πµ (
µ1, . . . ,µK

)∝ K∏
k=1

1

ψµ
ϕ

(
µk

ψµ

)
,
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with ψµ > 0 a standard deviation reflecting our prior knowledge, and ϕ(·) the standard normal

density function.

Writing Di j = {(xt , xt+1) ∈ Ri j } and Ti j = {t ∈ 1, . . . ,n : (xt , xt+1) ∈ Ri j }, the joint posterior

density for points in D11 ∪D10 is

πGibbs
µ

(
µ

∣∣ D11 ∪D10
)∝ ∏

T11∪T10

ft+1|t
(
xt+1 | xt ,µt

)
πµ

(
µ

)
, (I.1)

according to model M|t , and similarly the joint posterior density for points in D11 ∪D01 is

πGibbs
µ

(
µ |D11 ∪D01

)∝ ∏
T11∪T01

ft |t+1
(
xt

∣∣ xt+1,µt
)
πµ

(
µ

)
, (I.2)

according to model M|t+1.

The posterior densities (I.1) and (I.2) are used as proposal densities for the model of

Chapter 7, so that, for a current state µ and a candidate state µ?, the acceptance ratio is

e−|x1|
∏

i , j∈{0,1}
∏

Ti j
ft ,t+1

(
xt , xt+1

∣∣µ?)
e |xt |πµ

(
µ?

)∏
i , j∈{0,1}

∏
Ti j

ft ,t+1
(
xt , xt+1

∣∣µ)
e |xt |πµ

(
µ

)
×

πGibbs
µ
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)
πGibbs
µ

(
µ

∣∣ D11 ∪D01
)

πGibbs
µ

(
µ?

∣∣ D11 ∪D10
)
πGibbs
µ

(
µ? |D11 ∪D01

) , (I.3)

where ∏
i , j∈{0,1}

∏
Ti j

ft ,t+1
(
xt , xt+1

∣∣µ)∝{
Ft ,t+1

(
u,u;µ

)}n00
∏
T|t

ft+1|t
(
xt+1

∣∣ xt ;µt
)

e−|xt |

× ∏
T|t+1

ft |t+1
(
xt

∣∣ xt+1;µt
)

e−|xt+1|,
(I.4)

with T|t = {t : (xt , xt+1) ∈ R|t } and T|t+1 = {t : (xt , xt+1) ∈ R|t+1}. From (I.4), we conclude that

the exponential terms cancel in (I.3), the conditional density terms cancel with the same terms

in the proposal densities (I.1) and (I.2) for data points in R|t and R|t+1, and the prior density

terms cancel with the same terms in (I.1) and (I.2), giving the simplified acceptance ratio

e−|x1|
{
Ft ,t+1

(
u,u

∣∣µ?)}n00{
Ft ,t+1

(
u,u

∣∣µ)}n00

∏
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(
xt+1 | xt ; µt
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(
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T11∩T|t+1

ft+1|t
(
xt+1 | xt ; µ?t

) ∏
T11∩T|t ft |t+1

(
xt | xt+1; µ?t

) . (I.5)

A similar argument can be used to simplify the acceptance ratio for the variances ψ2
k

(k = 1, . . . ,K ) of the mixture components.

The posterior distribution for the weights of the components w = (w1, . . . , wK ) needs care,

as these are used in the censored contributions in the likelihood (7.6). The posterior density
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function for the weights in M|t and Mt+1 is

πGibbs
w (w | c) ∝ fc|w (c | w )πw (w ) , (I.6)

where c = (c1, . . . ,cn) is a vector of auxiliary variables storing the component indices for each

pair of data points, fc|w (c | w ) is a multinomial density, and πw (w ) is generalised Dirichlet.

With (I.6) and for current and candidate states w and w? respectively, the acceptance ratio for

the model of Chapter 7 is{
Ft ,t+1

(
u,u

∣∣ w?
)}n00 fc|w

(
c | w?

)
πw

(
w?

)
πGibbs

w (w | c){
Ft ,t+1 (u,u | w )

}n00 fc|w (c | w ) πw (w ) πGibbs
w (w? | c)

=
{
Ft ,t+1

(
u,u | w?

)}n00{
Ft ,t+1 (u,u | w )

}n00
. (I.7)

In the bivariate context of this appendix, the integrals involved in (I.5) and (I.7) can be

estimated accurately and quickly using quadratic approximations. In higher-dimensional

setups, a pseudo-marginal approach can be used, involving Monte Carlo integration at each

iteration, termed Monte Carlo within Metropolis by O’Neill et al. (2000), or the data augmen-

tation approach of Beaumont (2003), which does not yield approximation of the posterior

distribution (Andrieu and Roberts, 2009). Doucet et al. (2015) give general guidance for dealing

with approximation of likelihood functions within Metropolis algorithms.
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