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Abstract

Investigating the effect of isotope substitution on equilibrium and kinetic properties of
molecules has become an important tool for estimating the importance of nuclear quantum
effects. In this work, we discuss calculating both equilibrium and kinetic isotope effects,
i.e., the isotope effects on a system’s partition function and a reaction’s rate constant.
With the help of Feynman’s path integral formalism, both quantities can be estimated
using standard Monte Carlo methods that scale favorably with system’s dimensionality;
improving efficiency of such approaches is the main focus of this work.

First of all, we developed a novel procedure for changing mass stochastically during an
equilibrium isotope effect calculation, and evaluated the numerical benefits of combining it
with two popular approaches for calculating isotope effects, using either direct estimators
or thermodynamic integration. We demonstrate that the modification improves statistical
convergence of both methods, and that it additionally allows to eliminate integration error
of thermodynamic integration. The improved methods are tested on equilibrium isotope
effects in a model harmonic system and in methane.

Then we turn our attention to kinetic isotope effect calculations with the quantum instanton
approximation, a method whose path integral implementation belongs among the most
accurate approaches for evaluating reaction rate constants in polyatomic systems. To
accelerate quantum instanton calculations of kinetic isotope effects, we combine higher-
order Boltzmann operator factorization with virial estimators, allowing us to speed up both
the convergence to the quantum limit and statistical convergence of the calculation. We
estimate the overall resulting acceleration using ·H + H2/·D + D2 as a benchmark system,
and then apply the accelerated method to several kinetic isotope effects associated with
the ·H + CH4 � H2 + ·CH3 exchange.

Last but not least, we explored ways to improve on the quantum instanton approximation
for reaction rate constants. To that end, we review quantum instanton and Hansen-
Andersen approximations, and propose a combined method, which, as the Hansen-Andersen
approximation, has the correct high-temperature behavior, and at the same time, as the
quantum instanton approximation, has more flexibility by allowing the dividing surface for
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Abstract

the reaction to split into two surfaces at low temperatures. The properties of the combined
method are tested on symmetric and asymmetric Eckart barrier.

Keywords: path integrals, isotope effects, chemical kinetics, quantum instanton, isotope
fractionation, reaction rate constant, transition state theory, Monte Carlo, thermodynamic
integration, free energy perturbation

vi



Résumé

L’étude de l’effet de la substitution isotopique sur l’équilibre et les propriétés cinétiques des
molécules est devenue un outil important pour estimer l’importance des effets quantiques
nucléaires. Dans cette thèse, nous examinons les calculs des effets isotopique d’équilibre et
cinétique, c’est-à-dire les effets isotopiques sur la fonction de partition d’un système et la
constante de vitesse de réaction. Avec l’aide du formalisme intégral de chemin de Feynman,
les deux quantités peuvent être estimées à l’aide de méthodes standard de Monte Carlo
qui se dimensionnent favorablement à la dimensionnalité du système; l’objectif principal de
cette thèse est d’améliorer l’efficacité de ces approches.

Tout d’abord, nous avons développé une nouvelle procédure pour changer les masses stochas-
tiquement lors d’un calcul d’effet isotopique en équilibre et évalué les avantages numériques
de la combiner avec deux approches populaires pour calculer les effets isotopiques, en
utilisant soit des estimateurs directs, soit l’intégration thermodynamique. Nous démontrons
que la modification améliore la convergence statistique des deux méthodes et qu’elle permet
en outre d’éliminer l’erreur d’intégration de l’intégration thermodynamique. Les méthodes
améliorées sont testées sur les effets isotopiques d’équilibre dans un système harmonique
modèle et dans le méthane.

Ensuite, nous nous focalisons sur les calculs d’effets isotopiques cinétiques avec l’approximation
de l’instanton quantique, une méthode dont l’implémentation intégrale de chemin est parmi
les approches les plus précises pour évaluer les constantes de vitesse de réaction dans
les systèmes polyatomiques. Pour accélérer les calculs quantiques quantitatifs d’effets
isotopiques cinétiques, nous combinons la factorisation de l’opérateur de Boltzmann d’ordre
supérieur avec des estimateurs viriels, ce qui nous permet d’accélérer à la fois la conver-
gence vers la limite quantique et la convergence statistique du calcul. Nous estimons
l’accélération globale résultante en utilisant H + H2/D + D2 comme système de référence,
puis appliquons la méthode accélérée à plusieurs effets isotopiques cinétiques associés à
l’échange H + CH4 � H2 + CH3.

Enfin, nous explorons les moyens d’améliorer l’approximation de l’instanton quantique pour
les constantes de vitesse de réaction. À cette fin, nous examinons les approximations de
quantum instanton et Hansen-Andersen et proposons une méthode combinée qui, comme
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Résumé

l’approximation de Hansen-Andersen, a le bon comportement à haute température, et
en même temps, comme l’approximation de l’instanton quantique, a plus de flexibilité
car il permet à la surface de séparation pour la réaction de se diviser en deux surfaces à
basse température. Les propriétés de la méthode combinée sont testées sur barrière Eckart
symétrique et asymétrique.

Mots-clés: intégrales du chemin, effets isotopiques, cinétique chimique, instanton quan-
tique, fractionnement isotopique, constante de vitesse de réaction, théorie de l’état de
transition, Monte Carlo, intégration thermodynamique, perturbation de l’énergie libre
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1 Introduction

Influence of nuclear quantum effects on molecular properties has been observed since as
early as the nineteenth century, when the equipartition theorem was found to be violated
in a number of substances; the phenomenon could only be explained in the beginning
of twentieth century using the notion of vibrational energy quantization and played an
important role in the formulation of quantum mechanics [8]. An important experimental
tool for studying nuclear quantum effects is isotope substitution [9], i.e., changing masses
of some atoms in the molecular system without changing its chemical composition. In the
framework of classical mechanics such a change does not affect the equilibrium constant,
while reaction rate constants are only changed by a small factor which rarely exceeds square
root of two. In the quantum picture, however, both quantities can change quite drastically,
and the resulting deviation from the classical picture can tell a lot about quantum effects
in the system. Developing computationally cheap methods for accurately predicting
equilibrium and kinetic isotope effects, i.e., the effects of mass change on equilibrium and
rate constants, is therefore the main focus of this work.

Calculating exact quantum equilibrium properties can be done up to an arbitrary accuracy
using Monte Carlo or molecular dynamics methods combined with the Feynman imaginary-
time path integral formalism [10, 11]; while the basics of the approach will be outlined
in Sec. 1.5, its application to equilibrium isotope effects will be discussed thoroughly in
Chapters 2 and 3. Calculating kinetic isotope effects is much more involved, as exact
evaluation of a rate constant is a daunting task for higher-dimensional systems, as will
be discussed in Sec. 1.4. In this work we considered quantum instanton approximation
to the rate constant [3], whose path integral implementation allows to use Monte Carlo
or molecular dynamics for the calculations [12]; applying the approach to kinetic isotope
effects is discussed in Chapter 4. Finally, we investigated whether it is possible to improve
accuracy of the quantum instanton approximation itself in Chapter 5. Some of the more
special notation used throughout the work is summarized in Table 1.1.
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Chapter 1. Introduction

Table 1.1: Summary of the notation used in this work for a system of N particles in a D-
dimensional Euclidean space. mi is the mass of particle i; v and w are vectors defined in the
DN -dimensional configuration space, while vi and wi are their D-dimensional components
corresponding to particle i; A is a Hermitian matrix defined over the configuration space,
and Aij is its D × D dimensional submatrix containing only the columns corresponding to
particle i and rows corresponding to particle j.

Expression Comment

∇i
gradient with respect to coordinates of par-
ticle i

vi · wi :=
∑D

j=1 vi,j · wi,j
standard dot product of vi and wi in the
D-dimensional Euclidean space

〈v,w〉s :=
∑N

i=1(mi)svi · wi

mass-weighted inner product of v and w
in the system’s configuration space, where
s ∈ {−1, 0, 1} on the right-hand side,
while on the left-hand side a corresponding
shorthand notation s ∈ {−, 0, +} is used

||v||s :=
√〈v,v〉s

mass-weighted norm of a configuration
space vector

〈v,A,w〉su :=
∑N

i=1
∑N

j=1 m
s
im

u
j vi · Aij · wj

matrix product of A with v and w; the
same shorthand notation is used for s and
u as in 〈v,w〉s

1.1 Equilibrium isotope effects and the Urey model

The equilibrium (or thermodynamic) isotope effect [9] is defined as the effect of isotopic
substitution on the equilibrium constant of a chemical reaction. More precisely, the
equilibrium isotope effect is the ratio of equilibrium constants,

EIE := K(B)

K(A) , (1.1)

where A and B are two isotopologues of the reactive system. Since an equilibrium
constant can be evaluated as the ratio of the product and reactant partition functions
(K = Qprod/Qreact), every equilibrium isotope effect can be written as a product of several
“elementary” isotope effects (IEs),

IE := Q(B)

Q(A) , (1.2)

given by the ratio of partition functions corresponding to different isotopologues (of either
the reactant or product).

This quantity is closely related to the important notion of isotope fractionation [9, 13],
which describes the distribution of isotopes in different substances or different phases.
While a large number of fractionation ratios observed in nature are caused, at least
partially, by kinetic factors [9], purely thermodynamic equilibrium isotope effects can also
be interesting tools, for example, for determining how a hydrogen atom is bound within a
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1.1. Equilibrium isotope effects and the Urey model

metal complex [14] or an enzyme system [15].

The classical estimate for an equilibrium isotope effect can be obtained from the classical
partition function Qcl

Qcl =

(∏N
i=1 mi

)D/2

σ(2πβ�2)DN/2

∫
exp[−βV (r)]dr, (1.3)

where β := (kBT )−1, kB is the Boltzmann constant, T the thermodynamic temperature, �
the reduced Planck constant, σ the symmetry factor, N the number of atoms, mi are masses
of atom i (i ∈ {1, . . . , N}), D the number of dimensions in Cartesian space (obviously
D = 3 for practical applications), r a vector in the system’s configuration space and V (r)
the system’s potential. The resulting classical equilibrium isotope effect estimate reads

IEcl = σ(A)

σ(B)

(
N∏

i=1

m
(B)
i

m
(A)
i

)D/2

(1.4)

and is valid for arbitrary potential energy V (r). The simplest and most common quantum
approach to evaluate Eq. (1.2), usually referred to as the “harmonic approximation” or “Urey
model,” assumes (i) separability of rotations and vibrations, (ii) rigid rotor approximation
for the rotations, and (iii) harmonic oscillator approximation for the vibrations [9, 13, 16].
Within this approximation, the partition function can be written as the product

QHA = QtransQrotQvib, (1.5)

where Qtrans, Qrot and Qvib are translational, rotational and vibrational partition functions.
If both the rotations and vibrations are treated classically then applying Teller–Redlich
product rule [17, 18] results in an expression identical to Eq. (1.4), even though Eq. (1.4)
cannot be applied directly to this problem as it takes into account rovibrational coupling,
which we neglect. To treat vibrations quantum mechanically, one “corrects” the factor
in QHA for each harmonic vibrational degree of freedom by multiplying it with the ratio
QqSHO/QcSHO of quantum and classical partition functions of a simple harmonic oscillator
with frequency ω:

QqSHO = 1
2 sinh(β�ω/2)

,

QcSHO = 1
β�ω

,

QqSHO
QcSHO

= β�ω

2 sinh(β�ω/2)
.

Inserting such corrections for each vibrational degree of freedom in the partition functions
for both isotopologues replaces Eq. (1.4) with the “harmonic approximation” expression

IEHA = σ(A)

σ(B)

(
N∏

i=1

m
(B)
i

m
(A)
i

)D/2 Nq∏
q=1

ω
(B)
q sinh(β�ω(A)

q /2)
ω(A) sinh(β�ω(B)

q /2)
, (1.6)
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Chapter 1. Introduction

where Nq is the number of vibrational degrees of freedom, and ω
(A)
q and ω

(B)
q (q ∈

{1, . . . , Nq}) are vibrational frequencies. It is clear that this expression allows to account,
at least partially, for zero-point energy effects in the system; it can also be further improved
with various corrections that incorporate the leading effects of rovibrational coupling,
nonrigidity of the rotor, or anharmonicity of the vibrations [19–21]. However, such a
perturbative approach is not always sufficient; indeed, there are examples of systems in
which these corrections can even yield worse results than the Urey model [16]. Using
Feynman path integral approach allows to treat the problem exactly, as will be discussed
properly in Sec. 1.5.

1.2 Reaction rate constant and classical transition state the-

ory

Reaction rate constant is a quantity central to chemical kinetics, and its accurate evaluation
is probably one of the most important goals of theoretical chemistry. To obtain a classical
value of the quantity, one starts by defining a reaction coordinate ξ(r) such that ξ(r) = 0
sets a dividing surface separating configuration space into reactant [ξ(r) < 0] and product
[ξ(r) > 0] regions. Classical transition state theory is based on two assumptions, which
will often resurface during discussions of other methods for calculating reaction rates.
First of all, one assumes that thermal distribution between the reactant region and the
dividing surface, or “transition state,” remains roughly unperturbed during the reaction.
Secondly, one assumes that there is no recrossing over the dividing surface, that is each
time the system crosses through the transition state into the product region it stays there
indefinitely. These approximations lead to the classical transition state theory reaction
rate kcTST being proportional to the probability of finding the system at the dividing
surface with the momentum pointed towards the product region. Substituting the classical
Boltzmann probability density and analytically evaluating the integral over momentum
leads to the final expression [22, 23]

kcTST = 1√
2πβ

〈Δ(r)〉cl
〈{1 − h[ξ(r)]}〉cl

= 1√
2πβ

〈Δ(r)〉cl
Qr

,

(1.7)

where 〈· · · 〉cl denotes an average over classical configuration space, h is the Heaviside
function, Qr is the reactant partition function, and the normalized delta function Δ(r) is
defined as

Δ(r) := ||∇ξ(r)||−δ[ξ(r)], (1.8)

|| · · · ||− being the norm of a covariant vector (see Table 1.1). Since we assumed the absence
of recrossing during the derivation, kcTST provides an upper bound on the true classical
reaction rate constant; therefore, in order to approach the true reaction rate, the dividing
surface should be chosen to minimize kcTST, a notion central to the variational transition
state theory [24].
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1.3. Kinetic isotope effects

The simplest quantum correction to Eq. (1.7) involves evaluating it with a harmonic
approximation analogous to the Urey model for the partition function and equilibrium
isotope effect, allowing to account for zero-point energy effects. The main difference is
that for 〈Δ(r)〉cl one assumes the main contribution to the average to come from the
neighborhood of a saddle point of V (r) between the reactant and product regions. The
result is often written as [25]

kcTST = σk
1

2πβ�
Q‡

Qr
e−βV ‡

, (1.9)

where Q‡ is a semiclassical partition function of the transition state which is the product
of translational, rotational, and vibrational partition functions, the latter being evaluated
for all internal degrees of freedom but for the unstable mode corresponding to motion
along the reaction coordinate, V ‡ is the activation energy, that is difference in the potential
between the saddle point and the reactant potential minimum, and σk is the symmetry
factor appearing if several equivalent saddle points need to be considered. Note the change
of dimensionality of the prefactor caused by, in a sense, integrating out Δ(r) to obtain
Q‡. In order to account for tunneling effects, several corrections have been proposed, the
simplest one being the Wigner correction [26]

kcTST,Wigner
kcTST

= 1 + (β�|ω‡|)2

24
, (1.10)

where ω‡ is the imaginary time frequency that corresponds to unstable motion along the
reaction coordinate. The more sophisticated quantum corrections [27–29] allow to achieve
an accuracy which is impressive for their minimal computational cost. However, having
classical transition state theory as the starting point puts an upper bound to a method’s
accuracy, motivating introduction of several inherently quantum and semiclassical methods
for calculating reaction rates. A brief review of these approaches is given in Sec. 1.4.

1.3 Kinetic isotope effects

In order to quantify the effect of isotope substitution on reaction rate constant the kinetic
isotope effect is introduced. If A and B are two isotopologues of the same reactive system
then the kinetic isotope effect is defined as

KIE := k(A)

k(B) , (1.11)

where k(A) and k(B) are reaction rate constants for A and B. The quantity is widely used
in chemical kinetics, for example, to obtain qualitative information on the role played by
the substituted atom in the rate limiting step of a complex mechanism [30, 31]; in this work
we will mainly consider its application to detecting nuclear quantum effects on reaction
rates.
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Chapter 1. Introduction

First of all, it is educative to write out classical transition state theory expression of the
kinetic isotope effect. If the motion along the reaction coordinate can be given an effective
mass m‡, then kcTST (1.7) takes the form

kcTST = 1√
2πβ

〈δ[ξ(r)]||∇ξ(r)||0/
√
m‡〉cl

〈{1 − h[ξ(r)]}〉cl
= 1√

m‡
1√
2πβ

〈δ[ξ(r)]||∇ξ(r)||0〉cl
〈{1 − h[ξ(r)]}〉cl

. (1.12)

It is obvious that if kinetic isotope effect (1.11) is evaluated from Eq. (1.12), then the
mass-independent classical averages will cancel out, leaving only

KIEcTST =

√
m‡(B)

m‡(A) . (1.13)

It is clear that in most cases the expression should be close to unity and independent of
temperature, therefore an anomalously large or small kinetic isotope effect indicates that
strong quantum effects are at play. Investigating temperature-dependent kinetic isotope
effects has been instrumental in studying several enzymatic systems [32, 33]. One of them,
namely soybean lipoxygenase, is also a good example of an anomalously large kinetic
isotope effect which is ∼ 80 for substitution of hydrogen with deuterium in the native
protein [34, 35], with even larger values being reported for some of its mutants [36]. Several
explanations for this behavior have been proposed, including tunneling [37] and change
of the effective donor-acceptor distance [38]. Kinetic isotope effects that are smaller than
unity are also quite common and are typically caused by zero-point energy effects. An
interesting example of such a kinetic isotope effect with an anomalously small value was
reported for rates of Mu + H2 and Heμ + H2 reactions, where Mu is the so-called muonium
atom and Heμ is the muonated helium atom [39, 40]; both atoms can be considered isotopes
of hydrogen with masses of 0.11 and 4.11 atomic mass units. Studies suggest that it is
caused by strong zero-point energy effect in Mu + H2, which not only increases the reaction
barrier, but also widens it, leading to a counterintuitively small tunneling contribution to
the reaction rate [41, 42]. There is also a number of rather exotic cases when changing the
isotope of an atom influences the reaction rate not through change of mass, but rather
through a change in magnetic properties, nuclear volume, or symmetry of the system; such
cases often lead to puzzling correlations between isotope mass and reaction rate and are
called “mass-independent kinetic isotope effects” [43]. As mentioned earlier, in this work
we mainly focused on quantum instanton approximation for the rate constant, which allows
to largely account for tunneling and zero-point energy effects; it should thus be sufficient
to accurately predict deviation of kinetic isotope effects from their classical values in most
instances.

1.4 Overview of quantum and semiclassical methods of cal-

culating rate constants

We now discuss different methods for calculating reaction rate constants that go beyond
classical transition state theory. For systems where Born-Oppenheimer approximation is
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1.4. Overview of quantum and semiclassical methods of calculating rate
constants

valid the reaction rate can be straightforwardly expressed in terms of barrier transition
probability at a given energy; for a bimolecular reaction the expression reads [44]

kQMQr = 1
2π�

∞∑
J=0

(2J + 1)
∫

P (E, J) exp(−βE)dE, (1.14)

where kQM is the exact quantum mechanical rate constant and P (E, J) is transition
probability for energy E and angular momentum J . Several algorithms that evaluate
Eq. (1.14) exactly are currently available [45, 46], but while they have provided invaluable
benchmark values for lower dimensional systems, the calculations become too computa-
tionally demanding as the dimensionality increases. This led to several approaches that
simplify the problem by separating out rotations [47, 48], reducing the number of degrees of
freedom that are treated quantum mechanically [49, 50], and expressing P (E, J) in terms
of quasiclassical trajectories [41, 51, 52]. A possible alternative is to rewrite Eq. (1.14) in a
way that avoids individual scattering states; such an expression was proposed in Ref. [53]
and reads

kQr = Tr[F̂ P̂e−βĤ ], (1.15)

where Ĥ is the reactive system’s Hamiltonian, P̂ is the projector on scattering states that
correspond to the forward reaction and F̂ is the operator of flux through a dividing surface
separating reactant and product regions. A more convenient form of this expression is the
Miller-Schwartz-Tromp [54] formula given by

k = 1
2Qr

∫ +∞

−∞
Cff(t)dt, (1.16)

where Cff(t) is the symmetrized flux-flux correlation function at time t,

Cff(t) := Tr[F̂ae
−(β/2−it/�)Ĥ F̂be

−(β/2+it/�)Ĥ ], (1.17)

F̂γ (γ ∈ {a, b}) is operator of flux through dividing surface γ. Equation (1.16) expresses the
reaction rate in terms of a correlation function, which in turn can be evaluated with several
standard approaches. The most accurate one is multi-configurational time-dependent
Hartree [55, 56], which is an important method for obtaining benchmark values. Another
notable example is linearized semiclassical initial value representation method [57], a
numerically efficient approach that combines exact quantum coordinate distribution with a
semiclassical approximation to the propagator. Alternatively, one can note that the form
of Eq. (1.16) implies that in the limit of t → ±∞ Cff(t) should approach zero, posing
the question whether it is possible to evaluate the integral over Cff(t) from the function’s
properties around its extrema [54]. This leads to a number of methods that involve
choosing dividing surfaces in such a way that Cff(t) is a maximum at t = 0 and decays
fast enough to allow accurate evaluation of Eq. (1.16) using properties of Cff(t) at t = 0.
Introducing a semiclassical approximation to the Boltzmann operator leads [58] to the
semiclassical instanton [44] formula [even though the original derivation of Ref. [44] started
from Eq. (1.15) rather than Eq. (1.16)]; treating the Boltzmann operator exactly leads to
a family of methods including Hansen-Andersen transition state theory [4, 5], quantum
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Chapter 1. Introduction

instanton approximation [3] and its extended version [59]. The latter three methods were
central to this work and will be given a more detailed discussion in Chapters 4 and 5.

It is educative to give a short summary of other expressions for reaction rate constant that do
not fall into the two categories outlined above, as well as how they are connected to Eq. (1.16).
First of all, one needs to note the application of quantum linear response theory [60] to
reaction rates [61]; the result is similar to Miller-Schwartz-Tromp formula (1.16), but
instead of Cff(t) one integrates C̃ff(t) defined as

C̃ff(t) = 1
β

∫ β

0
dλTr[F̂ae

iĤt/�e−λĤ F̂be
−(β−λ)Ĥe−iĤt/�] (1.18)

It has been shown in Ref. [54] that integrals of C̃ff(t) and Cff(t) are equal; however,
using Cff(t) is more convenient for practical purposes as its evaluation does not requite
integration over λ [54]. Secondly, several alternative approaches to instanton rate theory
have also been developed, the oldest one being the “Im F” instanton formalism based on
expressing the rate as imaginary part of free energy of a metastable state [62, 63]; the
“Im F” instanton approach has been shown to be equivalent to the semiclassical instanton
approach mentioned earlier [58, 64]. The accuracy of instanton-based approaches at low
temperatures and classical transition state theory at higher temperatures also inspired
two groups of methods aiming to accurately interpolate between the two limits. The first
group constitutes several relatively recent semiclassical instanton based approaches [65–67],
while the second group aimed to express the reaction rate in terms of Feynman imaginary
time path integrals [68–71]. Development of the latter methods eventually led to the ring
polymer dynamics transition state theory, which was originally introduced as application of
the more general ring polymer molecular dynamics [72] approach to calculating reaction rate
constants [73, 74] via Eq. (1.16). The resulting method was later shown to be connected to
semiclassical instanton approaches [75] and to be a short-time approximation of the Miller-
Schwartz-Tromp formula [76]; less computationally demanding methods that estimate ring
polymer molecular dynamics rate have also been developed [75].

1.5 Feynman imaginary time path integral formalism

We have already mentioned imaginary time path integral formalism [10, 11] as the basis
for calculating equilibrium properties exactly; it can also be used for easily evaluating
properties of symmetrized correlation functions at time zero, which we will later use to
calculate reaction rate constants via quantum instanton approximation. In this section, we
will demonstrate how these quantum problems can be reduced to classical ones, with details
specific for calculating equilibrium and kinetic isotope effects being left for Chapters 2, 3,
and 4.
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1.5. Feynman imaginary time path integral formalism

1.5.1 Basic path integral expressions

We start by rewriting the coordinate matrix element of the Boltzmann operator at inverse
thermodynamic temperature β as a matrix element of the product of P ∈ N Boltzmann
operators at a higher temperature inversely proportional to the integer parameter ε := β/P :

〈r(a)|e−βĤ |r(b)〉 = 〈r(a)|(e−εĤ)P |r(b)〉. (1.19)

We now proceed with a high-temperature factorization of the Boltzmann operator; in this
work we considered three that were most efficient:

1. The symmetrized version [77] of the Lie-Trotter factorization [78]:

e−εĤ = e−εV̂ /2e−εT̂ e−εV̂ /2 + O
(
ε3
)

. (1.20)

This second-order factorization, which we will for simplicity call Lie-Trotter factorization,
is the one most commonly used for discretizing the imaginary-time Feynman path integral.

2. The Takahashi-Imada factorization [79]:

Tr
(
e−εĤ

)
= Tr

(
e−εV̂TI/2e−εT̂ e−εV̂TI/2

)
+ O

(
ε5
)
, (1.21)

where
V̂TI := V̂ + 1

24
ε2[V̂ , [T̂ , V̂ ]], (1.22)

is an effective one-particle potential. This fourth-order factorization significantly accelerates
the convergence to the quantum limit of the path integral expression for the partition
function. However, it only behaves as a fourth-order factorization when it is used for
evaluating the trace of the Boltzmann operator. If one naively removes the Tr in Eq. (1.21),
and applies the resulting factorization

e−εĤ ≈ e−εV̂TI/2e−εT̂ e−εV̂TI/2 (1.23)

to correlation functions, one obtains only second-order convergence, and no numerical
advantage over the LT factorization. Since it will allow us to provide a single derivation of
many quantities for different factorizations, we will abuse terminology and refer to Eq. (1.23)
also as “Takahashi-Imada” factorization, keeping in mind that the original authors were
aware that their splitting is of the fourth order only in the context of Eq. (1.21).

3. The fourth-order Suzuki-Chin factorization (Ref. [80], motivated by Ref. [81]):

e−εĤ = e−εV̂e/6e−εT̂ /2e−2εV̂m/3e−εT̂ /2e−εV̂e/6 + O
(
ε5
)
, (1.24)
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where

V̂e := V̂ + α

6
ε2[V̂ , [T̂ , V̂ ]] and (1.25)

V̂m := V̂ + (1 − α)
12

ε2[V̂ , [T̂ , V̂ ]] (1.26)

are the “endpoint” and “midpoint” effective one-particle potentials. The dimensionless
parameter α can assume an arbitrary value, but evidence in the literature [82, 83] suggests
that α = 0 gives superior results in most path integral simulations, and hence it was also
the value used in this work.

Now we use one of the three path integral splittings for each of the P high-temperature
factors in Eq. (1.19), with the caveat that for the Suzuki-Chin factorization (only) we
replace P with P/2 (so P must be even) and ε = β/P with ε = 2β/P in Eq. (1.19). After
inserting (P − 1) resolutions of identity in the coordinate basis in front of every kinetic
factor (except the first one), we obtain

〈r(a)|e−βĤ |r(b)〉 = lim
P →∞

C

∫
dr(1) · · · dr(P −1)exp

[
−βΦ̃(r(a), r(1), ..., r(P −1), r(b))

]
, (1.27)

where the effective potential Φ̃ and prefactor C are defined as

Φ̃(r(a), r(1), ..., r(P −1), r(b)) := P

2β2�2

P∑
s=1

||r(s) − r(s−1)||2+ + 1
P

P∑
s=0

w̃sV
(s)

eff (r(s)), (1.28)

C :=
(

P

2πβ�2

)DNP/2
(

N∏
i=1

mi

)DP/2

. (1.29)

In the expression for Φ̃, we use the notation r(P ) := r(b), r(0) := r(a) for the boundary
points; mi is the mass of particle i, || · · · ||+ is the norm of a contravariant vector (see
Table 1.1), and V

(s)
eff is the effective one-particle potential,

V
(s)

eff := V +
(
β

P

)2
dsVgrad, (1.30)

where
Vgrad(r) = �

2||∇V (r)||2− (1.31)

is the coordinate representation of the commutator term in Eqs. (1.22), (1.25), and (1.26).
In the context of discretized path integrals, the integer P is often referred to as the Trotter
number.

The coefficient ds for the fourth-order correction of an effective one-particle potential
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1.5. Feynman imaginary time path integral formalism

Table 1.2: Dependence of weights w̃s on the bead number s and Boltzmann factorization.

Splitting s = 1 or s = P s odd s even
Lie-Trotter, Takahashi-Imada 1/2 1 1

Suzuki-Chin 1/3 4/3 2/3

depends on the splitting used:

ds =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, Lie-Trotter splitting,

1/24, Takahashi-Imada splitting,

α/6, Suzuki-Chin splitting and s even,

(1 − α)/12, Suzuki-Chin splitting and s odd.

(1.32)

The weights w̃s in the sum over effective one-particle potentials also depend on the splitting,
their values are summarized in Table 1.2. Expression (1.27) becomes exact as P goes to
infinity.

1.5.2 Using path integral formalism to calculate equilibrium properties

Equation (1.27) allows to rewrite partition function Q as

Q = Tr(e−βĤ) =
∫

dr(P )〈r(P )|e−βĤ |r(P )〉

= lim
P →∞

QP ,
(1.33)

where QP path integral representation of Q which reads

QP =
∫

ρ({r(s)})d{r(s)}, (1.34)

where ρ({r(s)}) is the unnormalized probability density

ρ = C exp[−βΦ({r(s)})] (1.35)

and Φ({r(s)}) is the effective potential

Φ({r(s)}) = Φ̃(r(P ), r(1), ..., r(P −1), r(P ))

= P

2β2�2

P∑
s=1

||r(s) − r(s−1)||2+ + 1
P

P∑
s=1

wsV (r(s)),
(1.36)

where we use the notation r(0) := r(P ), wP = 2w̃P and ws = w̃s for s �= P . From now on
we will distinguish path integral representation of a quantity from its exact form by adding
subscript P .

We can now see that the quantum partition function is expressed as a classical partition
function of a system with an increased dimensionality. The expression makes it possible
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to evaluate free energy of the system [84], however, just as in classical thermodynamic
calculations, it is much more convenient to express needed quantities in terms of averages
that can be evaluated during a standard Monte Carlo or molecular dynamics simulation
with Φ({r(s)}) as the effective potential. Note that running such a simulation results in
each r(s) having a probability density of 〈r(s)| exp(−βĤ)|r(s)〉/Q, that is the exact quantum
distribution of r̂. Consequently, the simulation allows to recover probability distributions
of all coordinate dependent quantities [11, 85], one particular example being the reaction
coordinate in a reactive system, which can be used to calculate equilibrium constants [16].
We note that it is possible to evaluate momentum distribution as well [85, 86] using an
“open path integral” simulation; the method is based on the following equality

〈p|e−βĤ |p〉 =
∫

〈p|r(a)〉〈r(a)|e−βĤ |r(b)〉〈r(b)|p〉dr(a)dr(b)

=(2π�)−DN
∫

〈r(a)|e−βĤ |r(b)〉ei〈p,r(b)−r(a)〉0/�dr(a)dr(b)

=(2π�)−DN lim
P →∞

C

∫
dr(1) · · · dr(P −1)dr(a)dr(b)

× exp
[
−βΦ̃(r(a), r(1), ..., r(P −1), r(b))

]
ei〈p,r(b)−r(a)〉0/�,

(1.37)

where p is the system’s momentum vector. It is now easy to see that the system’s
momentum distribution can be obtained by running a simulation in (r(a), r(1), . . . , r(P ), r(b))
with Φ̃(r(a), r(1), . . . , r(P ), r(b)) as the effective potential and calculating Fourier transform
of the resulting distribution of r(b) − r(a).

An important class of system’s properties that can be calculated with path integral
methods are logarithmic derivatives of Q. A derivative of lnQP with respect to an
arbitrary parameter λ can be rewritten as

d lnQP

dλ
= dQP /dλ

QP
=
∫

[dρ({r(s)})/dλ]d{r(s)}∫
ρ({r(s)})d{r(s)}

=
∫

[d ln ρ({r(s)})/dλ]ρ({r(s)})d{r(s)}∫
ρ({r(s)})d{r(s)} .

(1.38)

To rewrite such relations in a more compact form, notion of an estimator is introduced.
We will denote an estimator for A as Aest, which is a function of {r(s)} that satisfies

A =
∫
Aestρ({r(s)})d{r(s)}∫
ρ({r(s)})d{r(s)} . (1.39)

In other words, A can be recovered by running a Monte Carlo or molecular dynamics
simulation with Φ({r(s)}) as the effective potential and calculating the average of Aest.
Therefore, using Eq. (1.38) we can write

(
d lnQP

dλ

)
est

= d ln ρ({r(s)})
dλ

= d lnC

dλ
− d[βΦ({r(s)})]

dλ
.

(1.40)
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1.5. Feynman imaginary time path integral formalism

If we, for example, consider β as the λ in question, then straightforward differentiation
of Eq. (1.40) leads to the “thermodynamic” estimator for energy [87], whose statistical
behavior can be improved by applying the virial theorem [88] or rewriting ρ({r(s)}) in
terms of β-scaled coordinates prior to the differentiation [89, 90]. (The latter approach has
proven to be the most effective and was also applied to calculations of heat capacity [91]).
Another problem where logarithmic derivatives are extensively used is finding free energy
differences between systems of the same dimensionality but different Hamiltonians. Suppose
the systems in question are A and B, while Q(A) and Q(B) are their partition functions,
whose path integral representations can be written as

Q
(A)
P =

∫
ρ(A)({r(s)})d{r(s)}, (1.41)

Q
(B)
P =

∫
ρ(B)({r(s)})d{r(s)}. (1.42)

In this case the ratio Q(A)/Q(B) can be found by setting dimensionless parameter λ ∈ [0, 1]
and introducing ρ(λ)({r(s)}) such that

ρ(1)({r(s)}) = ρ(B)({r(s)}), (1.43)

ρ(0)({r(s)}) = ρ(A)({r(s)}), (1.44)

and ρ(λ)({r(s)}) is continuous with respect to λ. Q
(B)
P /Q

(A)
P can be rewritten as

Q
(B)
P

Q
(A)
P

= exp
(∫ 1

0

d lnQ(λ)

dλ
dλ

)
, (1.45)

where we introduced
Q

(λ)
P =

∫
ρ(λ)({r(s)})d{r(s)}. (1.46)

Equation (1.40) allows to calculate d lnQ/dλ at any value of λ, making it possible to
evaluate the integral in Eq. (1.45) with a numerical scheme such as Simpson’s rule. Such
an approach is called “thermodynamic integration” [92, 93], and in Chapter 2 we will
discuss in detail how it can be applied to equilibrium isotope effects, when A and B are
two isotopologues and varying λ corresponds to a change of mass. Several alternatives
to thermodynamic integration have also been proposed; they are thoroughly discussed in
Chapters 2 and 3 in the context of equilibrium isotope effect calculations. Probably the
oldest one is the free energy perturbation method [94–96], which is based on rewriting
Q

(B)
P /Q

(A)
P as

Q
(B)
P

Q
(A)
P

=
∫
ρ(B)({r(s)})d{r(s)}∫
ρ(A)({r(s)})d{r(s)}

=
∫

[ρ(B)({r(s)})/ρ(A)({r(s)})]ρ(A)({r(s)})d{r(s)}∫
ρ(A)({r(s)})d{r(s)} ,

(1.47)

13



Chapter 1. Introduction

leading to the Zwanzig formula [94]

(
Q

(B)
P

Q
(A)
P

)
est

= ρ(B)({r(s)})
ρ(A)({r(s)})

, (1.48)

with the averaging taken over ρ(A)({r(s)}). The approach works best if ρ(A)({r(s)}) and
ρ(B)({r(s)}) do not differ much, as will also be discussed in Chapter 3.

It is necessary to note that all methods for computing isotope effects discussed in this work
are variations of either thermodynamic integration or free energy perturbation methods.
For the more general problem of calculating free energy differences, however, it is possible
to have a system where neither of these two approaches is suitable for the calculation. In
this case, a third option is to run a simulation which samples the distribution ρ(λ)({r(s)})
with respect to both {r(s)} and λ ∈ [0, 1] (for example, with an adiabatic free energy
dynamics simulation [97]), and then calculate Q

(B)
P /Q

(A)
P from the ratio of probability

densities at λ = 0 and λ = 1 [98, 99]. Unfortunately, approaches based on calculating
probability density ratios tend to suffer from inherent convergence problems [100], and are
therefore not considered here.

1.5.3 Path integral formalism and symmetrized correlation functions

While so far we have only considered applications of path integral formalism to equilibrium
properties, it can facilitate calculating dynamic properties as well. “Im F” instanton theory
and ring polymer molecular dynamics are two such examples and were already mentioned
in Sec. 1.4. In this work, we will use path integral formalism to estimate properties of
symmetrized correlation functions at time zero which, in turn, will be used to calculate
reaction rate constants via Miller-Schwartz-Tromp formula (1.16). The details of the
method will be discussed in greater detail in Chapters 4 and 5; here as an example we
will present path integral expression of a symmetrized correlation function CAB(t) of two
coordinate-dependent quantities A(r) and B(r)

CAB(t) := Tr[A(r̂)e−(β/2−it/�)ĤB(r̂)e−(β/2+it/�)Ĥ ]. (1.49)

At t = 0 the function can be written as

CAB(0) = Tr[A(r̂)e−βĤ/2B(r̂)e−βĤ/2]

=
∫

A(r(P/2))B(r(P ))〈r(P )|e−βĤ/2|r(P/2)〉〈r(P/2)|e−βĤ/2|r(P )〉dr(P/2)dr(P ).

(1.50)

Rewriting the off-diagonal Boltzmann operator elements analogously to Eq. (1.27) while
discretizing each β/2 into P/2 slices leads to

CAB(0) = lim
P →∞

CAB,P (0), (1.51)

14



1.5. Feynman imaginary time path integral formalism

where CAB,P (0) is the path integral representation of CAB(0) given by

CAB,P (0) =
∫

A(r(P/2))B(r(P ))ρ({r(s)})d{r(s)}. (1.52)

Let us now choose A = Δa and B = Δb, where a and b are two dividing surfaces defined
by ξa(r) = 0 and ξb(r) = 0, while Δa and Δb are normalized delta functions for dividing
surfaces a and b defined analogously to Eq. (1.8). The resulting CAB is known as delta-delta
correlation function Cdd and its path integral representation at t = 0 reads

Cdd,P (0) =
∫

ρ‡({r(s)})d{r(s)}, (1.53)

where ρ‡ is the “constrained” version of ρ

ρ‡({r(s)}) = ρ({r(s)})
∏

γ=a,b

Δγ(rγ), (1.54)

with ra := r(P/2) and rb := r(P ). Cdd,P (0) and ρ‡({r(s)}) will be often encountered in
Chapter 4, where we will discuss properly how the quantum instanton approximation
allows to rewrite the Miller-Schwartz-Tromp formula (1.16) in terms of Cdd(0)/Qr and
averages over ρ‡({r(s)}).

1.5.4 Details of numerical performance

All the formulas presented in this section were written in a manner general for three
different Boltzmann operator splittings most commonly used in path integral calculations.
The error terms in Eqs. (1.20), (1.21), and (1.24) show that using fourth-order splittings
instead of Lie-Trotter splitting accelerates convergence of path integral expressions to
their quantum limit with increasing P . Unfortunately, this improvement comes with an
additional computational cost, because if Lie-Trotter splitting is used then V

(s)
eff simply

equals the classical system’s potential V , but for a fourth-order splitting V
(s)

eff also includes
a gradient-dependent correction. If force is not needed during the simulation (which is most
often the case for Monte Carlo calculations), then the need to additionally calculate it in
order to evaluate the gradient correction can constitute a significant additional cost; whether
numerical benefits of using fourth-order splittings are worth the extra computational effort
depends on the system. If the gradient of the potential is calculated during the simulation,
as in the case of molecular dynamics, then an elegant numerical scheme [101] allows to use
fourth-order splittings at a cost comparable to the one of Lie-Trotter splitting. The idea is
to note that even though ∇Vgrad formally depends on the Hessian, it can be expressed in
terms of a finite difference containing just the gradient; the philosophy is similar to the
way we will avoid calculating the Hessian for Hessian-dependent quantities in Chapter 4.

Throughout this section, we have assumed that the Born-Oppenheimer approximation is
valid and that one needs to consider only one potential energy surface. Although situations
when this is not the case were beyond the scope of this work, let us mention that the
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Chapter 1. Introduction

partition function of a nonadiabatic system can be expressed in terms of a path integral
over continuous variables, some of which correspond to the change of electronic state [102].
This idea is also used in several ring polymer molecular dynamics methods that have been
proposed for treating nonadiabatic processes [103–105]. We have not discussed how to
evaluate V (r) in an optimal manner as the problem is mostly analogous to the case of
a classical simulation. However, one interesting trick which is specific to path integral
calculations is the ring polymer contraction method, which involves decomposing V (r) into
slowly- and rapidly-varying contributions and effectively using different values of P for the
two parts [106, 107]. While the idea was initially introduced for force field potentials, it
has been recently extended to ab initio calculations as well [108].
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2 Improving thermodynamic integra-

tion with respect to mass

2.1 Introduction

The results presented in this chapter have also been published in Ref. [2].

In the previous chapter, we mentioned two popular approaches for calculating isotope
effects: the relatively cheap harmonic approximation (1.6) and using the formally exact
Feynman path integral formalism to express isotope effect in terms of classical averages
over Φ({r(s)}), which can then be calculated with molecular dynamics or Monte Carlo
methods. To illustrate the benefits of the latter approach, in Figure 2.1 we plot the
relative error of CD4/CH4 IE calculated with the harmonic approximation (1.6) (the
values which are considered exact will be calculated in this chapter). In this example, the
harmonic approximation works rather well at higher temperatures, where the isotope effect
is small, but its error reaches as much as 60% at the low temperature of 200 K, where the
isotope effect becomes very large. Feynman path integral formalism avoids introducing
these systematic errors altogether, and in this chapter we focus on its combination with
thermodynamic integration [92, 109, 110] with respect to mass [93, 111–114]. Even though
the method is formally exact, a practical calculation contains errors that come from three
sources. The first is the path integral discretization error, which comes from using a
finite number P to obtain path integral representation of the partition function QP (1.33);
this problem can be made less pressing by employing higher-order Boltzmann operator
factorizations [83, 115–117], as was mentioned in Sec. 1.5. The second error is the statistical
error which is inherent to evaluating d lnQ

(λ)
P /dλ using a Monte Carlo method; this error

depends on the estimator used for the calculation, as will be discussed in Sec. 2.2.1. The
last type of error, which is the focus of this chapter, is the integration error, which appears
when the integral of logarithmic derivative of the partition function (1.45) is evaluated
with a numerical scheme; even though several elegant tricks reduce this integration error
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Figure 2.1: Temperature dependence of the relative error of the CD4/CH4 isotope effect
(IE) obtained with the harmonic approximation (see Sec. 1.1). The result of stochastic
thermodynamic integration (STI) serves as a reference; the relative error is defined as
IE(harmonic)/IE(STI) - 1.

significantly [96, 116], it can never be removed completely if the integral is evaluated
deterministically.

One way to bypass the problem is to use the free energy perturbation approach (1.48), a
possibility that will be thoroughly discussed in Chapter 3. In this chapter we focus on
eliminating integration error by allowing the mass to take a continuous range of values
during the simulation, which allows to avoid discretizing the mass integral [93]; this approach
is an example of a more general λ-dynamics method [118–120] for calculating free energy
differences. Not only do these techniques eliminate the integration error, but they also tend
to show faster statistical convergence than standard thermodynamic integration [121]; this
property is similar to the improvement achieved by parallel tempering [122–124]. In this
chapter, we present an approach that follows this philosophy, but introduces two additional
modifications. First, we introduce a Monte Carlo procedure which is applicable for the
specific case of the change of mass and enables a faster exploration of the λ dimension.
Second, we show that the integration error can be reduced to zero exactly by using a
piecewise linear umbrella biasing potential; the only remaining error of the calculated
isotope effect is due to statistical factors and discretization error of the Boltzmann operator.

To assess the numerical performance of the proposed methodology, we apply it to the isotope
effects in an eight-dimensional harmonic model and in a full-dimensional CH4 molecule.
Methane was chosen because the CH4 + D2 exchange is an important benchmark reaction
for studying catalysis of hydrogen exchange over metals [125] and metal oxides [126], and
because the polydeuterated species CH4−xDx are formed in abundance during the catalyzed
reaction.
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2.2. Theory

2.2 Theory

2.2.1 Thermodynamic integration with respect to mass

Our ultimate goal is evaluating the isotope effect (1.2), i.e., a ratio of partition functions
corresponding to two isotopologues. Although it is possible to evaluate partition functions
Q

(A)
P and Q

(B)
P themselves with a Monte Carlo procedure [84], it is more convenient to

calculate the ratio Q
(B)
P /Q

(A)
P directly. We now review the most common of such direct

approaches, based on thermodynamic integration [92] with respect to mass [111].

The basic expression for thermodynamic integration (1.45) has already been presented in
Sec. 1.5 for a general case of a free energy change; to apply this method to isotope effects
we need to introduce a continuous change of mass. Therefore we define, for each atom i, a
continuous function m

(λ)
i of λ such that

m
(0)
i = m

(A)
i , (2.1)

m
(1)
i = m

(B)
i . (2.2)

The simplest possible choice for the interpolating function is the linear interpolation

m
(λ)
i = (1 − λ)m(A)

i + λm
(B)
i , (2.3)

used in Refs. [111–113], but Ceriotti and Markland [96] showed that a faster convergence,
especially in the deep quantum regime, is often achieved by interpolating the inverse square
roots of the masses,

1√
m

(λ)
i

= (1 − λ) 1√
m

(A)
i

+ λ
1√
m

(B)
i

, (2.4)

which is therefore the interpolation used in the numerical examples in this chapter, unless
explicitly mentioned otherwise.

Letting Q(λ) denote the partition function of a fictitious system with interpolated masses
m

(λ)
i allows us to use the general thermodynamic integration expression (1.45), which is

often rewritten as

Q(B)

Q(A) = exp
[∫ 1

0

d lnQ(λ)

dλ
dλ

]
(2.5)

= exp
[
−β

∫ 1

0

dF (λ)
dλ

dλ

]
, (2.6)

where F (λ) is the free energy corresponding to the isotope change. As mentioned in
Sec. 1.5, for each λ one can calculate dFP (λ)/dλ by calculating thermodynamic average
of the corresponding estimator. Straightforwardly using the general expression for an
estimator of a logarithmic derivative of the partition function (1.40) leads to the so-called
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Chapter 2. Improving thermodynamic integration with respect to mass

thermodynamic estimator

[dF (λ)/dλ]th = − 1
β

N∑
i=1

dmi

dλ

[
DP

2mi
− P

2β�2

P∑
s=1

|r(s)
i − r(s−1)

i |2
]
. (2.7)

However, since it is a difference of two terms proportional to P , this estimator has a
statistical error that grows with the Trotter number P , further increasing the computational
cost. This drawback motivated the introduction [112] of the centroid virial estimator
[dF (λ)/dλ]cv whose statistical error is independent of P , a property mirroring the property
of an analogous centroid virial estimator for kinetic energy [89, 90, 127]. The centroid
virial estimator, derived in Appendix A, is given by

[dF (λ)/dλ]cv = −
N∑

i=1

1
2mi

dmi

dλ

{
D

β
+ 1

P

P∑
s=1

[
(r(s)

i − r(C)
i ) · ∇iV (r(s))

]}
, (2.8)

where

r(C) := 1
P

P∑
s=1

r(s) (2.9)

is the centroid coordinate of the polymer ring. All numerical examples in this chapter use
the centroid virial estimators, unless explicitly mentioned otherwise.

To summarize, using thermodynamic integration, the isotope effect (1.2) is evaluated as

Q
(B)
P

Q
(A)
P

= exp
{

−β

∫ 1

0
〈[dF (λ)/dλ]cv〉(λ) dλ

}
. (2.10)

The calculation of the isotope effect requires running simulations at different values of λ and
then numerically evaluating the integral in Eq. (2.10) using, for example, the trapezoidal,
midpoint, or Simpson rule.

2.2.2 Stochastic thermodynamic integration with respect to mass

It is evident that the method of thermodynamic integration introduces an integration error,
and therefore several approaches have been proposed to decrease it: While Ceriotti and
Markland [96] optimized the interpolation functions m

(λ)
i in order to make dFP (λ)/dλ

as flat as possible over the integration interval, and thus obtained Eq. (2.4), Maršálek
and Tuckerman [116] introduced higher-order derivatives of Q(λ)

P with respect to λ. Both
modifications decrease the integration error, but do not eliminate it completely. In this
subsection we show that including the λ variable as an additional dimension in the Monte
Carlo simulation allows to make the integration error exactly zero if an appropriate sampling
procedure is used.

To illustrate why it makes sense to evaluate the λ integral stochastically, let us consider
a “standard” thermodynamic integration protocol from the previous subsection, where
the integral in Eq. (2.5) is evaluated deterministically by discretizing the λ interval [0, 1]
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into J subintervals of the form Ij = [λj−1, λj ], typically with λj = j/J (j = 0, . . . , J). For
example, employing the midpoint rule for the integral, one would run a separate Monte
Carlo simulation for each λ̄j := (λj−1 + λj) /2 = (j − 1/2) /J ∈ Ij (j = 1, . . . , J) in order
to calculate dFP (λ)/dλ|λ=λ̄j

. Suppose we increase J while keeping the length of each
simulation inversely proportional to J . Then the total number of Monte Carlo steps used
will remain constant, the integration error will decrease, and the statistical error of the
evaluated isotope effect will be close to a limiting value as long as each individual simulation
is statistically converged. Unfortunately, for a fixed overall cost one cannot use arbitrarily
large values of J , since that would render the individual simulations so short that their
ergodicity would no longer be guaranteed. If ergodicity of an individual simulation requires
at least Merg Monte Carlo steps, the cost of the calculation will grow as O(J Merg), making
the limit J → ∞ unattainable in practice.

If, instead of J separate simulations for each λ̄j , one performs a single Monte Carlo
simulation in a configuration space with an extra dimension corresponding to λ, the average
of estimator [dF (λ)/dλ]cv over each subinterval Ij will give an estimate for dF (λ)/dλ|λ=λ̄j

,
and one can use much higher values of J (and therefore obtain smaller integration errors)
without sacrificing ergodicity of the simulation. This trick bears some resemblance to
umbrella integration [100, 128, 129] and adaptive biasing force [130–132] approaches used
to find the dependence of free energy on a reaction coordinate, but here the role of reaction
coordinate is taken by isotope masses. As in umbrella integration, decreasing the widths of
the λ intervals Ij decreases the integration error without affecting the statistical error of
the computed isotope effect.

Running a Monte Carlo simulation in a configuration space augmented by λ requires, first
of all, a correct sampling weight, ρ(λ)({r(s)}), which is nothing but ρ({r(s)}) with masses
m

(λ)
i evaluated at a given value λ. The second most important thing is a corresponding

Monte Carlo trial move together with an acceptance rule. The simplest possible trial move
with respect to λ changes the initial λ′ to any other λ′′ ∈ [0, 1] with equal probability, and
keeps the Cartesian coordinates {r(s)} of the ring polymer fixed. The resulting ratio of
probability densities corresponding to λ′′ and λ′ is

ρ(λ′′)({r(s)})
ρ(λ′)({r(s)})

=
(

N∏
i=1

m
(λ′′)
i

m
(λ′)
i

)P D/2

exp
[

P

2β�2

N∑
i=1

(m(λ′)
i − m

(λ′′)
i )

P∑
s=1

|r(s)
i − r(s−1)

i |2
]
,

(2.11)
which, as a function of λ′′, has a maximum that unfortunately becomes sharper with
larger P . A simple way to keep acceptance probability high even for large values of P is
to generate trial λ′′ such that |λ′′ − λ′| ≤ Δλmax. The following Monte Carlo procedure
satisfies this condition and also preserves the acceptance ratio given by Eq. (2.11):

Simple λ-move:
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1. Trial move:

λ′ 
→ λ′′ = λ′ + Δλ, where (2.12)

Δλ ∈ [−Δλmax,Δλmax] and distributed uniformly. (2.13)

2. Readjust the trial move to satisfy λ′′ ∈ [0, 1]:

if (λ′′ < 0) then λ′′ 
→ −λ′′, (2.14)

if (λ′′ > 1) then λ′′ 
→ 2 − λ′′. (2.15)

3. Accept the final trial move with a probability

min

⎧⎨
⎩1,

(
N∏

i=1

m
(λ′′)
i

m
(λ′)
i

)P D/2

exp
[

P

2β�2

N∑
i=1

(m(λ′)
i − m

(λ′′)
i )

P∑
s=1

|r(s)
i − r(s−1)

i |2
]⎫⎬
⎭ .

(2.16)

The procedure defined by Eqs. (2.12)-(2.16) is almost free in terms of computational time,
but at very large values of P , even with the restriction (2.13), it becomes ineffective at
sampling λ values far from the maximum of the probability ratio (2.11). This problem can
be bypassed if the trial move with respect to λ preserves the mass-scaled normal modes of
the ring polymer instead of the Cartesian coordinates, resulting in the following Monte
Carlo procedure derived in Appendix A:

Mass-scaled λ-move:

1. Trial move:

λ′ 
→ λ′′ ∈ [0, 1] and distributed uniformly, (2.17)

r(s) 
→ r(s)
λ′,λ′′ , (2.18)

where

r(s)
λ′,λ′′,i := r(C)

i +

√√√√m
(λ′)
i

m
(λ′′)
i

(r(s)
i − r(C)

i ). (2.19)

2. Accept the trial move with a probability

min

⎡
⎣1,
(

N∏
i=1

m
(λ′′)
i

m
(λ′)
i

)D/2

exp
{
β

P

P∑
s=1

[V (r(s)) − V (r(s)
λ′,λ′′)]

}⎤⎦ . (2.20)

When discussing Monte Carlo moves with respect to λ, we shall refer the procedure defined
by Eqs. (2.12)-(2.16) as the “simple λ-move”, and to that of Eqs. (2.17)-(2.20) as the
“mass-scaled λ-move”. If the centroid probability distribution starts to vary too much over
λ ∈ [0, 1], the acceptance probability for the mass-scaled λ-move can become too low; this is
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solved easily by restricting the trial λ′′ value to a smaller interval [λ′ − Δλmax, λ
′ + Δλmax]

using the procedure of Eqs. (2.12)-(2.15). [Yet, for all systems considered in this work,
Eqs. (2.17)-(2.20) led to sufficiently high acceptance probability without this modification.]
The main advantage of the mass-scaled λ-move is that its acceptance probability does not
depend on P . Its disadvantage is its requirement of P evaluations of V , which makes it
much more expensive than the simple λ-move. Nonetheless, as will be demonstrated in
Sec. 2.3, an occasional use of mass-scaled λ-moves can, in fact, accelerate convergence with
respect to λ.

The Monte Carlo procedure has one last shortcoming: Since the probability of finding
the system with λ = λ′ is proportional to Q(λ′), for very large isotope effects (the largest
isotope effect computed in this work was ∼ 108) most of the samples would be taken in
the region close to λ = 0, which would introduce a huge statistical error. This problem can
be solved by adding a biasing umbrella potential Ub(λ), resulting in a biased probability
density

ρ
(λ)
b ({r(s)}) = ρ(λ)({r(s)}) exp[−βUb(λ)]. (2.21)

In the case of a free particle, all trial moves defined by Eqs. (2.17)-(2.19) will be accepted
provided that the optimal biasing potential

Ub,free(λ) = D

2β

N∑
i=1

ln[m(λ)
i /m

(0)
i ] (2.22)

is chosen; in other words, if V ≡ 0, then including Ub,free(λ) in the acceptance probabil-
ity (2.20) will make it unity.

With this final modification in place, the proposed method can be summarized as running
a Monte Carlo simulation in the augmented configuration space and then evaluating the
isotope effect with the formula

Q
(B)
P

Q
(A)
P

= lim
J→∞

exp

⎧⎨
⎩−β

J

J∑
j=1

〈[dF (λ)/dλ]cv〉Ij

⎫⎬
⎭ , (2.23)

where 〈· · · 〉Ij is an average over all λ ∈ Ij . The integration error associated with having a
finite number J of λ intervals depends strongly on the choice of the umbrella potential
Ub(λ). As we prove in Appendix B, this error is exactly zero for a piecewise linear umbrella
potential satisfying

dUb(λ)
dλ

= −〈[dF (λ)/dλ]cv〉Ij for all λ ∈ Ij . (2.24)

It is also clear that the resulting Ub(λ) will follow fairly closely the ideal biasing potential
β−1 lnQ(λ), and therefore the estimator samples will be distributed more or less equally
among different intervals Ij , which, in turn, will minimize the statistical error of Eq. (2.23).

It is obvious that in general systems, Ub(λ) from Eq. (2.24) cannot be known a priori.
As this is typical for biased simulations, numerous methods, including adaptive umbrella
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sampling [133–135], metadynamics [136, 137], and adaptive biasing force method [130, 131],
have been introduced to solve this problem. In our calculations, the biasing potential Ub(λ)
was obtained from a short simulation employing the adaptive biasing force method. The
resulting Ub(λ) was then used in a longer simulation in which the isotope effect itself was
evaluated.

2.3 Numerical examples

In this section the proposed stochastic procedure for evaluating isotope effects is tested on
a model harmonic system and on deuteration of methane. The results of the new approach
are compared with results of the usual thermodynamic integration and with the analytical
result for the harmonic system. From now on, for brevity we will refer to the traditional
thermodynamic integration with respect to mass (Subsec. 2.2.1) simply as “thermodynamic
integration” (TI), and to the thermodynamic integration with stochastic change of mass
(Subsec. 2.2.2) as “stochastic thermodynamic integration” (STI). In all cases, we compare
STI with TI both for the linear [Eq. (2.3)] and the more efficient [Eq. (2.4)] interpolation
of mass.

2.3.1 Computational details

As mentioned in Sec. 2.2, the λ interval [0, 1] was divided into J subintervals Ij = [λj−1, λj ]
(j = 1, . . . , J) with λj = j/J (j = 0, . . . , J). The TI used, in addition, a reference point λ̄j

from each interval, which was always taken to be the midpoint λj = (j − 1/2)/J ∈ Ij . This
midpoint was used for evaluating the thermodynamic integral with the midpoint rule as

∫ 1

0

d lnQ(λ)

dλ
dλ = 1

J

J∑
j=1

d lnQ(λ)

dλ

∣∣∣∣∣
λ=λ̄j

+ O
(
J−2

)
. (2.25)

(Assuming that each logarithmic derivative is obtained with the same statistical error, this
choice of λ̄j ’s and integration scheme minimizes the statistical error of the logarithm of the
calculated isotope effect.) To estimate the integration error of TI and to verify that the
integration error of STI is zero, we compared the calculated isotope effects with the exact
analytical [138] values for the harmonic system with a finite Trotter number P and with
the result of STI using a high value of J = 8192 for the deuteration of methane.

The second type of error is the statistical error inherent to all Monte Carlo methods;
this error was evaluated with the “block-averaging” method [139] for correlated samples,
which was applied directly to the computed isotope effects instead of, e.g., the free energy
derivatives, thus avoiding the tedious error propagation. Since the average isotope effect
depends on the block size, one has to make sure not only that the statistical error reaches
a plateau, but also that the average reaches an asymptotic value as a function of the block
size.
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The third type of error is the Boltzmann operator discretization error due to a finite value
of P ; for harmonic systems it is available analytically [138], while for the CD4/CH4 isotope
effect we made sure that it was below 1% by repeating the calculations for the lowest and
highest temperatures with twice larger P .

2.3.2 Isotope effects in a harmonic model

A harmonic system was used as the first, benchmark test of the different approaches to
compute the isotope effects, since most properties of a harmonic system can be computed
exactly analytically. To simulate a realistic system with a range of vibrational frequencies,
we used an eight-dimensional harmonic system with frequencies

ωq = ω0 × 2−q/2 (q = 0, . . . , 7). (2.26)

The computed isotope effect corresponded to doubling masses of all normal modes, and
therefore to reducing each ωq by a factor of

√
2.

Computational details

To analyze the dependence of the computed isotope effect on the number J of λ intervals
used in different methods, we first ran several calculations with β�ω0 = 8. Then we
investigated the behavior of the different methods at several temperatures and hence for
dramatically different isotope effects, by taking β�ω0 ∈ {1, 2, 4, 8, 16, 32} (here we used
J = 8 for TI and J = 4096 for STI). For each ω0 the Trotter number P was taken to be
12 × β�ω0, the resulting discretization error of the isotope effect (i.e., not of its logarithm)
was always below 1%.

To explore the ring polymer coordinates {r(s)}, we used the normal mode path integral
Monte Carlo method [88, 140], which in a harmonic model allows to generate uncorrelated
samples with no rejected Monte Carlo steps. This method involves rewriting Φ({r(s)}) in
terms of normal modes of the ring polymer (see Appendix A), thus transforming ρ({r(s)})
into a product of Gaussians that can be sampled exactly. In all TI calculations the total
number of Monte Carlo steps was 225 ≈ 3.4×107. In all STI calculations we used a mixture
of 9×222 ≈ 3.7×107 Monte Carlo moves with respect to {r(s)}, 222 ≈ 4.2×106 mass-scaled
λ-moves, and 5 × 223 ≈ 4.2 × 107 simple λ-moves with Δλmax = 0.1; first 20% of a STI
calculation were used only to obtain the biasing potential Ub(λ), but not for evaluating
the isotope effect. Note that the unequal numbers of Monte Carlo steps used in TI and
STI result in a fair comparison of the two methods; the simple λ-moves are almost free in
terms of computational effort, and, due to warmup, the total number of the other Monte
Carlo moves for STI is 20% larger than for TI, which is not an issue, since generally (i.e., in
anharmonic systems in which the sampling procedure would generate correlated samples)
one would need to discard a certain warmup period also in TI calculations.
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Results and discussion

The numerical results are presented in Fig. 2.2. Panel (a) of the figure shows that analytical
values of the isotope effect (at a finite value of P ) are reproduced accurately by STI for
several values of β�ω0, confirming that the proposed Monte Carlo procedure, which changes
stochastically not only coordinates but also masses of the atoms, is correct.

Panel (b) displays the integration error dependence on temperature, and confirms that this
error is decreased both by linearly interpolating the inverse square roots of the masses instead
of the masses themselves, and by performing the thermodynamic integration stochastically.
The fact that the stochastic change of mass can eliminate the thermodynamic integration
error is the main result of this paper. As the figure shows, this happens regardless of the
type of interpolation used. Note that at high temperatures, the improved interpolation
does not prevent TI from exhibiting a certain integration error, an issue that does not
occur for STI. The statistical error dependence on temperature, depicted in panel (c),
is a reminder of the well-known importance of using the centroid virial instead of the
thermodynamic estimator in efficient calculations. In the harmonic system, which can be
sampled exactly, the statistical errors of STI and TI are comparable.

Panels (d) and (e) of Fig. 2.2 display the dependence of integration and statistical errors
of different methods on the number J of integration subintervals for β�ω0 = 8. For TI one
can clearly see the J → ∞ limit where integration error becomes zero and statistical error
approaches a plateau. Note that the integration error [panels (b) and (d)] does not depend
on the estimator, which provides an additional check of the implementation. The centroid
virial estimator significantly lowers the statistical error and using the square root of mass
interpolation given by Eq. (2.4) instead of linear interpolation [Eq. (2.3)] significantly
decreases the integration error. As expected, STI exhibits an error which is only due to
statistical factors. Here the TI and STI exhibit similar behavior in the J → ∞ limit,
namely the integration error is zero and the statistical error approaches a limit which is
comparable for both methods. However, in this system the limit J → ∞ was achievable for
TI because the normal mode path integral Monte Carlo procedure used for exploring {r(s)}
generated uncorrelated samples; reaching J → ∞ would be more difficult in more realistic,
anharmonic systems, where even the TI procedure requires correlated sampling. Yet, as
will be shown below on methane, large values of J can be used easily in STI calculations.
Also note that the statistical error of STI decreases with J and approaches its limit faster
when the square root of mass interpolation [Eq. (2.4)] is used. This behavior is expected
as the statistical error of 〈[dF (λ)/dλ]cv〉Ij from Eq. (2.23) is partly due to a variation of
the average 〈[dF (λ)/dλ]cv〉(λ) over λ ∈ Ij ; the resulting contribution to the statistical error
of the isotope effect is reduced by increasing J or using an improved mass interpolation
function that makes 〈[dF (λ)/dλ]cv〉(λ) flatter over each Ij .
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Figure 2.2: Isotope effect (IE) calculations in an eight-dimensional harmonic model from
Subsec. 2.3.2. Unless explicitly stated in the label, all results use the centroid virial
estimator (2.8) and improved mass interpolation (2.4). Results labeled “lin. interp.” use
linear interpolation (2.3) and those labeled “th. est.” the thermodynamic estimator (2.7).
Several versions of thermodynamic integration (TI) are compared with exact analytical
values (for the same finite Trotter number P ). The proposed method is “stochastic
thermodynamics integration” (STI). Panels (a)-(c) show the temperature dependence of
(a) the isotope effect, (b) its integration errors, and (c) its statistical root mean square
errors (RMSEs). Panels (d)-(e) display the dependence of integration errors and RMSEs
on the number J of integration subintervals at a temperature given by β�ω0 = 8.
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2.3.3 Deuteration of methane

Computational details

The methane calculations used the potential energy surface from Ref. [141] and available in
the POTLIB library [142]. The force field is the product of least square fitting of an ansatz
to ab initio data; the ansatz was written in terms of coordinates based on five-atom Radau
coordinates [143], guaranteeing its invariance with respect to hydrogen atom permutations.
The number of λ integration intervals was J = 4 for TI and J = 4096 for STI.

TI calculations used a total of 2 × 108 Monte Carlo steps which sampled {r(s)}, for STI
the number of {r(s)} Monte Carlo steps was 1.8 × 108; in both cases 14% were whole-chain
moves and 86% were multi-slice moves performed on one sixth of the chain with the staging
algorithm [144, 145] (this guaranteed that approximately the same computer time was spent
on either of the two types of moves). For STI we additionally used 0.2 × 108 mass-scaled
λ-moves and 2 × 108 simple λ-moves with Δλmax = 0.1. As the simple λ-moves are almost
free in terms of computational time, the cost of both calculations was still roughly the
same. To avoid the unnecessary cost of evaluating correlated samples, all virial estimators
were evaluated only after every ten Monte Carlo steps for TI and after every twenty Monte
Carlo steps for STI (since STI calculations had twice as many Monte Carlo steps the
number of virial estimator samples was still the same), while thermodynamic estimators
were evaluated after each step since the computational time required for their calculation is
negligible. The first 20% Monte Carlo steps of each calculation were discarded as “warmup”;
as discussed in Subsec. 2.3.1, in the simulations employing the stochastic change of mass,
the same warmup period was also used to generate the biasing potential Ub(λ) needed for
the rest of the calculation. The path integral discretization error, estimated by running
simulations with a twice larger P at the highest and lowest temperatures (T = 1000 K and
T = 200 K), was below 1%; for other temperatures P was obtained by linear interpolation
with respect to 1/T .

Of course, in practice much shorter simulations would be sufficient, but we used over-
converged calculations in order to analyze the behavior of different types of errors in
detail.

Results and discussion

The results of the calculations of the CD4/CH4 isotope effect are presented in Fig. 2.3.
Panel (a) shows that the isotope effects calculated with the different methods agree. Yet,
a more detailed inspection reveals the improvement provided by the STI compared with
the TI. This is done in panel (b), showing the integration errors of the different methods;
the STI result with a twice larger value of J (i.e., J = 8192) is considered as an exact
benchmark. In the case of TI the integration error depends strongly on the type of mass
interpolation: If the linear interpolation is used, the integration error is even much larger
than the statistical error [see panel (c)], while, for this particular system, the improved
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Table 2.1: Values of the CD4/CH4 isotope effect (IE) obtained with several versions
of thermodynamic integration (TI). Corresponding statistical errors are shown as well.
Unless explicitly stated in the label, all results use the centroid virial estimator (2.8) and
improved mass interpolation (2.4). The proposed methodology is stochastic thermodynamic
integration (STI).

T P
ln(IE) (CD4/CH4) with statistical error

TI (lin. interp. TI (lin. interp.) TI STI (lin. interp.) STI+ thermod. est.)
200 360 19.67 ± 0.02 19.683 ± 0.002 19.785 ± 0.002 19.783 ± 0.002 19.789 ± 0.002
300 226 13.61 ± 0.01 13.602 ± 0.001 13.671 ± 0.002 13.676 ± 0.001 13.673 ± 0.002
400 158 10.61 ± 0.01 10.612 ± 0.001 10.665 ± 0.001 10.666 ± 0.001 10.667 ± 0.001
500 118 8.876 ± 0.005 8.866 ± 0.001 8.908 ± 0.001 8.910 ± 0.001 8.910 ± 0.001
600 90 7.740 ± 0.003 7.743 ± 0.001 7.778 ± 0.001 7.779 ± 0.001 7.779 ± 0.001
700 72 6.977 ± 0.003 6.974 ± 0.001 7.004 ± 0.001 7.006 ± 0.001 7.006 ± 0.001
800 58 6.413 ± 0.003 6.423 ± 0.001 6.449 ± 0.001 6.451 ± 0.001 6.451 ± 0.001
900 46 6.020 ± 0.003 6.013 ± 0.001 6.037 ± 0.001 6.039 ± 0.001 6.039 ± 0.001
1000 36 5.703 ± 0.003 5.702 ± 0.001 5.723 ± 0.001 5.725 ± 0.001 5.726 ± 0.001

interpolation (2.4) of the inverse square root of mass allows to obtain quite accurate results,
even though a small integration error remains visible above the statistical noise at higher
temperatures. In the case of the STI, on the other hand, no integration error is observed,
which was one of the main goals of this work. Finally, panel (c) shows that if the same
estimator is used the STI exhibits comparable statistical errors to those of TI, which
confirms that employing the STI can easily lower the integration errors without increasing
the computational cost.

For reference, the plotted values together with their statistical errors are listed in Table 2.1.
From this table it is clear that STI calculations with both types of mass interpolation
agree within their statistical errors, while TI, particularly with linear interpolation, retains
a significant integration error.

To better understand the benefit of the STI, recall that stopping a Monte Carlo simulation
after obtaining only a finite number of samples introduces two types of errors. The first is
the statistical error, which has been analyzed in all calculations so far; the second type is
a systematic error, and appears if the sampling procedure yields correlated samples and
Monte Carlo trajectories are too short to guarantee ergodicity. This systematic error has
not appeared yet since all our calculations were too well converged; however, it becomes
important when computational resources are limited, and therefore deserves additional
consideration. Indeed, one of the main motivations behind this work was the expectation
that equilibrating a single STI simulation should consume fewer computational resources
than equilibrating J simulations required in a standard TI calculation. To illustrate this
point we ran several much less converged calculations of the CD4/CH4 isotope effect at
T = 200 K. The number of Monte Carlo steps used during the simulations was doubled
from one calculation to the next; for example, for TI there were 1280, 2560, ..., 1310720
Monte Carlo steps partitioned in the same way as for the more converged calculations.
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Figure 2.3: Calculations of the CD4/CH4 isotope effect (IE) from Subsec. 2.3.3. Labels are
explained in the caption of Fig. 2.2. The three panels show the temperature dependence of
(a) the isotope effect, (b) its integration errors, and (c) its statistical root mean square
errors (RMSEs).
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The only difference was that this time no part of the simulation was discarded as warmup.
Moreover, to be sure that the error observed for smaller numbers of Monte Carlo steps is
the systematic error due to non-ergodicity and not the “true” statistical error, the value
obtained with 1280 Monte Carlo steps was averaged over 4096 independent calculations,
2560 - over 2048 calculations, etc.; this averaging ensured that each result had roughly the
same statistical error. The STI calculations were performed with or without the mass-scaled
λ-moves and with or without the simple λ-moves to compare the efficiency of the resulting
methods.

Isotope effects obtained with these much cheaper calculations are compared in Fig. 2.4,
where the converged STI result ln IE = 19.789 from Fig. 2.3 and Table 2.1 serves as the
exact reference; for a completely fair comparison the results are plotted as a function of
the number of potential energy evaluations required to obtain them. As expected, the
results of shorter simulations exhibit a significant error due to non-ergodicity of underlying
simulations, yet this nonergodicity error is much smaller for the proposed STI than for the
TI, making the STI more practical in situations where computational resources are limited.
Even though the mass-scaled λ-moves are quite expensive, their addition accelerates the
convergence of the integral. The much cheaper simple λ-moves appear to also contribute
to convergence, as the results obtained without them are not as well converged as results
with both types of λ-moves.

2.4 Conclusions

We have introduced a new Monte Carlo procedure that involves changing atomic masses
stochastically during the simulation and allows to eliminate the integration error of
thermodynamic integration, thus significantly speeding up isotope effect calculations. The
proposed methodology relies on a set of new tools: One of these tools is the introduction
of mass-scaled λ-moves that permit drastic changes of λ in a single Monte Carlo step;
as shown in Subsec. 2.3.3 their addition can significantly contribute to the convergence
of the thermodynamic integral. Another tool is the piecewise linear umbrella biasing
potential Ub(λ) that guarantees a zero integration error of the thermodynamic integral for
any number J of integration subintervals; this trick is general and can be used regardless
of the type of free energy change one may want to evaluate.

It is possible, as in metadynamics, to facilitate convergence with respect to λ by additionally
biasing the simulation with a history-dependent potential that pushes the system into less
explored regions of configuration space; this addition can become important if the change
of isotope masses m

(λ)
i is so drastic that one has to impose an upper bound Δλmax for

the change of λ in a single step even for the mass-scaled λ-moves. However, this did not
occur in systems considered in this work, where mass-scaled λ-moves yielded acceptance
probabilities above 70% in all calculations. As a result, the mass-scaled λ-moves allowed
large changes of λ in a single step, leading to a fast convergence over the λ dimension
without additional modifications of the Monte Carlo procedure.
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isotope effect (IE) at T = 200 K. Panel (a) presents the convergence of the IE as a
function of the simulation length, while panel (b) shows the corresponding error of the
IE (in logarithmic scale) relative to a converged STI result. Labels TI and STI are as
in the caption of Fig. 2.2; “STI (no simple λ-moves)” were obtained without the simple
λ-moves defined by Eqs. (2.12)-(2.16), while “STI (no mass-scaled λ-moves)” were obtained
without mass-scaled λ-moves defined by Eqs. (2.17)-(2.20). The horizontal line in panel
(a) labeled “STI (converged)” is the converged STI result ln(IESTI) = 19.789 from Fig. 2.3
and Table 2.1; the same value was used as a reference in panel (b).
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In this work we relied heavily on the fact that λ values can be sampled without repercussions
even if they are placed far away from the endpoints λ = 0 and λ = 1 that correspond to
physically meaningful systems. This is true for isotope effects, as also found in Ref. [93],
but may not be so for other calculations of free energy differences. As a result, several
variants of λ-dynamics bias the sampling of λ towards the endpoints, and then calculate
the free energy difference from the ratio of probability densities at λ = 0 and λ = 1 [98, 99].
Indeed, our STI approach would also allow obtaining a well converged result by sampling
mainly in the regions of λ close to the endpoints λ = 0 and λ = 1 if one used a modified
partition function

Q̃(λ) = Q(λ)e−βVbarr(λ), (2.27)

where Vbarr(λ) is a potential that biases the Monte Carlo chain towards the end points.
Running an STI calculation with J = 1 will lead to an exact partition function ratio and at
the same time use mainly samples from values of λ close to the endpoints. Although such
an approach would avoid the problem of choosing an optimal bin width for the weighted
histogram analysis method (WHAM), an issue discussed in Ref. [100], it would, just as
WHAM, require equilibration over the entire λ interval [0, 1] instead of only over each
subinterval Ij , which would make it less convenient than the simple STI presented.

We conclude this chapter by noting that the stochastic thermodynamic integration can
be combined with Takahashi-Imada or Suzuki fourth-order factorizations [79–82] of the
Boltzmann operator, which would allow lowering the path integral discretization error of
the computed isotope effect for a given Trotter number P , and hence a faster convergence to
the quantum limit. The combination of higher-order path integral splittings with standard
thermodynamic integration has been discussed elsewhere [83, 115–117]; as for the extension
to stochastic thermodynamic integration, the main additional change consists in replacing
the potential V in the acceptance probability in Eq. (2.20) with an effective potential
depending on mass and, in the case of the fourth-order Suzuki splitting, in an additional
factor depending on the imaginary time-slice index s.
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3 Improving equilibrium isotope

effect calculations with direct

estimators

3.1 Introduction

The results of this work are contained in Ref. [146].

In the previous chapter, we discussed integration error of thermodynamic integration
and how it can be eliminated by changing particles’ masses during the simulation and
choosing an appropriate biasing potential. This goal, however, can be achieved with another
method that avoids introducing an integration error altogether by using the so-called “direct
estimators” for equilibrium isotope effects [1], this approach can be regarded as a free energy
perturbation technique [94–96, 147] optimized for equilibrium isotope effect calculations.
Unfortunately, as mentioned in Subsec. 1.5.2, free energy perturbation methods work best
for smaller changes of the free energy, causing the original approach of Ref. [1] to exhibit a
statistical error which grows with the magnitude of the equilibrium isotope effect. Obviously,
the problem can be bypassed if the isotope effect (1.2) is partitioned into several smaller
“intermediate” isotope effects which can be easily calculated with direct estimators; the
resulting “stepwise” approach will be similar to thermodynamic integration as it will also
involve a certain discretization with respect to mass. The method can be further improved
after recalling that changing λ during the simulation improves statistical convergence of
thermodynamic integration, as was already discussed in the previous chapter; it is therefore
natural to investigate whether a “stepwise” implementation of direct estimators would
benefit from changing mass during the simulation as well. It is necessary to note that such
a combination with direct estimators is only possible for a mass sampling procedure that
allows finite steps with respect to mass; this makes the Monte Carlo procedure described
in the previous chapter suitable for the task, but disqualifies the more common λ-dynamics
algorithms based on molecular dynamics.

As in the previous chapter, we will test numerical performance of the proposed methodology
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on an eight-dimensional harmonic model and in a full-dimensional CH4 molecule. This
time, however, for CH4 we will calculate not only the large CD4/CH4 isotope effect, but
also all CH4−xDx/CH4 isotope effects (x = 1, . . . , 4).

3.2 Theory

3.2.1 Free energy perturbation and direct estimators for equilibrium iso-

tope effects

Free energy perturbation method for calculating free energy differences was already men-
tioned in Subsec. 1.5.2 and for the case of change of mass will take the form

Q
(1)
P

Q
(0)
P

=
∫
ρ(1)({r(s)})d{r(s)}∫
ρ(0)({r(s)})d{r(s)} =

∫ Z0,1ρ(0)({r(s)})d{r(s)}∫
ρ(0)({r(s)})d{r(s)} =

〈
Z0,1

〉(0)
, (3.1)

where we introduced a direct estimator for the isotope effect Z0,1 := ρ(1)({r(s)})/ρ(0)({r(s)}).
Straightforward substitution of ρ({r(s)}) (1.35) leads to the so-called “thermodynamic
direct estimator” for an isotope effect [1, 93]

Z0,1
th =

[
N∏

i=1

m
(1)
i

m
(0)
i

]DP/2

exp
(

P

2β�2

N∑
i=1

{
[m(0)

i − m
(1)
i ]

P∑
s=1

|r(s)
i − r(s−1)

i |2
})

. (3.2)

Statistical error of this estimator grows with P due to reasons similar to the ones discussed
for the thermodynamic estimator for the logarithmic derivative [dF (λ)/dλ]th. The issue is
avoided if the so-called mass-scaled direct estimator [1] is used

Z0,1
sc =

[
N∏

i=1

m
(1)
i

m
(0)
i

]D/2

exp
{
β

P

P∑
s=1

[
V (r(s)) − V (r(s)

0,1)
]}

. (3.3)

This estimator can be easily derived using the mass-scaled normal mode coordinates {u(s)}
which were discussed in Appendix A; namely one has to rewrite Q(0) and Q(1) in Eq. (3.1)
in terms of {u(s)}. This leads to a direct estimator which equals ρ̃(1)({u(s)})/ρ̃(0)({u(s)}),
leading to Eq. (3.3) once one goes back to standard Cartesian coordinates {r(s)}.

3.2.2 Stepwise implementation of the direct estimators

We mentioned in Sec. 1.5 that free energy perturbation methods work best if ρ(0)({r(s)}) and
ρ(1)({r(s)}) are close to each other; as a result for isotope effects of greater magnitude both
Z0,1

th and Z0,1
sc yield larger statistical errors. A straightforward way to bypass the issue is

performing the calculation stepwise by factoring the large isotope effect into several smaller
isotope effects between virtual isotopologues. For that purpose, one can, analogously to
thermodynamic integration, introduce a set of J + 1 intermediate values λj (j = 0, . . . , J)
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such that λ0 = 0, λJ = 1, and write [93, 148]

Q(1)

Q(0) =
J∏

j=1

Q(λj)

Q(λj−1) . (3.4)

For J large enough, Q(λj)/Q(λj−1) will be sufficiently close to unity, and hence can be
evaluated with direct estimators. It will prove useful to write Eq. (3.4), expressed in terms
of direct estimator averages, in a more general manner as

Q
(1)
P

Q
(0)
P

=
J∏

j=1

〈Zλj ,λj
sc 〉(λj)

〈Zλj ,λj−1
sc 〉(λj)

, (3.5)

by using an arbitrary λj from the interval Ij = [λj−1, λj ] as the λ-value of the sampling
weight used in the jth factor of the isotope effect. In numerical calculations, however,
we always used intervals of equal size (i.e., λj = j/J for j = 0, . . . , J) and midpoints
λj = (j − 1/2) /J (j = 1, . . . , J) of those intervals, in agreement with the notation
introduced above for thermodynamic integration.

In what follows, we will sometimes refer to the just described stepwise application of
direct estimators, which is only a slight generalization of the original method [1] of direct
estimators, simply as “direct estimators.”

3.2.3 Combining direct estimators with the stochastic change of mass

There are several reasons it seems advantageous to combine the stepwise direct estimators
approach with the stochastic change procedure discussed in the previous chapter. The first
argument is completely analogous to the one presented in Subsec. 2.2.2, namely that it
takes less computational resources to converge one Monte Carlo simulation rather than
J simulations; therefore it is computationally cheaper to obtain a converged result from
Eq. (3.5) if all the factors in the right hand side are obtained from one simulation rather
than J separate simulations. The second argument is that the original implementation of
direct estimators made it possible to calculate several equilibrium isotope effects with one
simulation by calculating the average of several direct estimators at once; this would be
no longer possible if each factor of Eq. (3.5) is obtained with a separate simulation. Last
but not the least, the stochastic change of λ can lead to a decrease of statistical error of
the calculated equilibrium isotope effect. Consider J sets of correlated samples obtained
from J independent simulations using the method of direct estimators and run at different
values of λ̄j ; reshuffling the samples between simulations should make samples inside each
simulation less correlated between each other, thus lowering statistical error of averages
obtained from them. The proposed method can be regarded as such a “shuffling,” and in
this respect it resembles the parallel tempering or replica exchange Markov chain Monte
Carlo techniques [122–124], but for the latter approaches the value of J that can be used
in practice will depend on the number of simulation replicas one can run simultaneously.
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With this motivation in mind, it is easy to see that to change λ value between different
λj values one can use the same procedure as that described in Subsec. 2.2.2, the only
difference being that the trial λ value should be restricted to a discrete set of values {λj},
j = 1, . . . , J ; some more tedious details are found in Appendix C. The overall isotope effect
is again obtained from Eq. (3.5).

3.3 Numerical examples

To test the two proposed procedures (i.e., stepwise and stochastic implementation of the
direct estimators) for evaluating isotope effects, we applied them to a model harmonic
system and to several isotopologues of methane. In addition we compared the results of the
new approaches with results of the thermodynamic integration with either deterministic
or stochastic change of mass, and with the original method of direct estimators [1].
From now on, for brevity we will refer to the five methods as follows: thermodynamic
integration with respect to mass (Subsec. 2.2.1) will be simply referred to as “thermodynamic
integration” (TI), thermodynamic integration with stochastic change of mass (Subsec. 2.2.2)
as “stochastic thermodynamic integration” (STI), Cheng and Ceriotti’s method of direct
estimators (Subsec. 3.2.1) as “original direct estimators” (ODE), stepwise application of
direct estimators (Subsec. 3.2.2) as “direct estimators” (DE), and stepwise application
of direct estimators with stochastic change of mass (Subsec. 3.2.3) as “stochastic direct
estimators” (SDE).

3.3.1 Computational details

The calculations presented in this Section were done with parameters mostly identical
to the ones already described in the previous chapter, namely Sec. 2.3. For TI and STI
calculations the only difference is that for CD4/CH4 a different mass switching function
m

(λ)
i was used to allow calculating all isotope effects of the form CH3−xDx+1/CH4−xDx with

x = 0, 1, 2, 3, it is described in detail in Subsubsec. 3.3.3. DE and SDE calculations were
done with the same number of steps and frequency of estimators’ evaluation as TI and STI
respectively; for SDE we additionally modified simple λ-moves used in STI calculations in
a way described in Appendix C. For ODE, the total number of different Monte Carlo steps
was again the same as for TI, as was the frequency of estimators’ evaluation; for methane
we calculated direct estimators corresponding to all ratios of the form CH3−xDx+1/CH4

with x = 0, 1, 2, 3, while for the harmonic system we only calculated the direct estimator
corresponding to the total equilibrium isotope effect. Path integral simulations used in
ODE always corresponded to the isotopologue with the smallest atom masses. The way
the λ interval was divided into subintervals was also the same as in Sec. 2.3.

As discussed in Sec. 2.2, results obtained with TI contain integration error; it was estimated
by comparing the calculated isotope effects with the exact analytical [138] values for a
harmonic system with a finite Trotter number P and with the result of SDE for methane.
(Recall that ODE, DE, and SDE have no integration error by definition, while for STI
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the absence of integration error for a proper choice of biasing potential was proven in
Appendix B; in any case the integration error is basically transformed into a statistical
error.) Statistical errors were evaluated with the “block-averaging” method [139] for
correlated samples the same way as in Sec. 2.3. Last but not the least, Boltzmann
operator discretization error was estimated from relative analytic expressions for harmonic
systems [138], while for the CD4/CH4 isotope effect we estimated it using a novel procedure
presented in Appendix D.

3.3.2 Isotope effects in a harmonic model

The numerical results are presented in Fig. 3.1 and correspond to a harmonic system
completely identical to the one used in Subsec. 2.3.2. Panel (a) of Fig. 3.1 shows that
analytical values of the isotope effect (at a finite value of P ) are reproduced accurately by
all five methods for several values of β�ω0, confirming, in particular, that the proposed
stepwise and stochastic implementation of the direct estimators are correct.

Panel (b) of Fig. 3.1 displays dependence of thermodynamic integration error on tem-
perature. (Remember that the integration error is zero for STI, ODE, DE, and SDE
by construction). The figure is a reminder of the fact that, despite the improved mass
interpolation scheme (2.4), TI is the only of the five presented methods that exhibits a
significant integration error, especially noticeable at higher temperatures since the mass
interpolating function Eq. (2.4) was designed to be most effective in the deep quantum
regime.

Panel (c) of Fig. 3.1 compares statistical errors of the five methods considered. The first
evident trend is that ODE exhibits a larger statistical error compared to the other methods,
especially at lower temperatures; it illustrates the need to use DE or SDE instead in such
cases. Secondly, similar statistical errors are exhibited by TI and DE, as well as STI and
SDE. Here it is necessary to note that in the limit of large J TI becomes equivalent to
DE and STI becomes equivalent to SDE; to see this one can recall that [dF (λ)/dλ]est is
related to the derivative of Zλ′,λ′′

sc with respect to λ′′ and compare Eq. (3.5), Eq. (2.25)
and Eq. (2.23). It is therefore reasonable to expect that for large values of J or small
isotope effects statistical errors of TI and DE or STI and SDE will be quite close; in this
case J = 8 is apparently enough to enforce this tendency over a wide temperature range.

Panel (d) of Fig. 3.1 displays integration error of TI as a function of the number J of λ
intervals. Clearly, for TI, the integration error approaches zero only in the J → ∞ limit,
which can be approached in this particular case since the Monte Carlo procedure produces
uncorrelated samples. Note, however, that in most practical calculations, this is impossible
and the limit is unattainable.

Finally, panel (e) of Fig. 3.1 shows the dependence of statistical errors on J , demonstrating
that the statistical errors of the four methods approach their limiting values for J → ∞.
As already mentioned earlier, similar statistical errors for TI and DE or STI and SDE in
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the J → ∞ limit are expected. We can see that in this case, however, the tendency is
already observed at surprisingly small values of J , namely J = 1 for TI and DE and J = 2
for STI and SDE.

3.3.3 Deuteration of methane

Computational details

As mentioned above, most calculation parameters used in this Subsection are identical
to the ones described in Sec. 2.3.3, with appropriate modifications for DE, SDE, and
ODE described in the beginning of this section; here it is sufficient to mention that the
computational time spent on TI, STI, SDE, DE, and ODE calculations was approximately
the same. The main difference is that the mass interpolation formula (2.4) was slightly
modified in order to calculate in one simulation not only the CD4/CH4 isotope effect, but
also all intermediate isotope effects of the form CH3−xDx+1/CH4−xDx with x = 0, 1, 2, 3;
this was achieved by changing, one by one, the masses of the four hydrogens to deuteriums.
The inverse of the square root of the mass of the first atom was changed over the interval
λ ∈ [0, 1/4], of the second atom over λ ∈ [1/4, 2/4], etc.

For each temperature we also ran calculations at λ = 0 and λ = 1 to estimate discretization
error with the method explained in Appendix D which uses estimators W1/2 and W2 for
QP/2/QP and Q2P /QP . These simulations were 107 Monte Carlo steps long, 14% were
whole-chain moves and 86% were multi-slice moves performed on one sixth of the chain with
the staging algorithm [144, 145] (this guaranteed that approximately the same computer
time was spent on either of the two types of moves).

Results and discussion

The results of the calculations of the CD4/CH4 isotope effect are presented in Fig. 3.2.
Panel (a) shows that the isotope effects calculated with the five different methods described
in Sec. 3.2 agree, again confirming that the proposed methods based on stochastically
changing masses during the simulation are implemented correctly. However, a more detailed
inspection reveals the improvement provided by the stepwise and stochastic implementation
of the direct estimators. The integration error of TI is plotted in panel (b), where the SDE
result is considered exact; note that the TI exhibits a significant integration error at higher
temperatures. (Recall again that the integration errors for STI, ODE, DE, and SDE are
zero by construction.) It may seem surprising that the integration error is larger for smaller
isotope effects, but one should remember that the interpolation (2.4) was derived with the
goal of lowering the integration error in harmonic systems in the low temperature regime.

Finally, panel (c) of Fig. 3.2 shows that the STI and SDE exhibit smaller statistical errors
than the TI and DE. For SDE, this was predicted in Subsec. 3.2.3 and justified by the
decrease of the effective correlation length of samples corresponding to a particular value
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Figure 3.1: Isotope effect (IE) calculations in an eight-dimensional harmonic model from
Subsec. 3.3.2. Thermodynamic integration (TI), stochastic thermodynamic integration
(STI), stepwise direct estimators (DE), stochastic direct estimators (SDE), and original
direct estimator approach from Ref. [1] are compared with exact analytical values (for the
same finite Trotter number P ). The proposed method is “stochastic direct estimators”
(SDE), “direct estimators” (DE) has not been used before either. Panels (a)-(c) show the
temperature dependence of (a) the isotope effect, (b) its integration errors, and (c) its
statistical root mean square errors (RMSEs). Panels (d)-(e) display the dependence of
integration errors and RMSEs on the number J of integration subintervals at a temperature
given by β�ω0 = 8.
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of λ (or rather, a particular λ interval); the explanation for the case of STI is completely
analogous. It is important to note that such an effect was not observed for TI and STI in
Chapter 2, where we used a mass interpolating function that changed masses of all atoms
at once. A likely reason is that this mass interpolating function resulted in a ρ(λ)({r(s)})
which was invariant to hydrogen atom permutations for each λj ; it is evident that this
property was not shared by the mass interpolating function used in this chapter. Also
note that at lower temperatures ODE demonstrates the highest statistical error of the five
methods considered in this chapter, which is consistent with our discussion in Sec. 3.2;
surprisingly, at higher temperatures it yields smaller statistical errors than TI and DE,
which seems to be caused by the estimator being invariant to hydrogen permutations. The
last interesting trend is similarity of statistical errors exhibited by TI and DE, as well as
STI and SDE, which was also observed for the model harmonic system in Subsec. 3.3.2.

For reference, the plotted values together with statistical and discretization errors are listed
in Table 3.1. From this table it is clear that DE, SDE, STI, and ODE agree within their
statistical errors, while TI exhibits a significant integration error at high temperatures.
Table 3.1 also contains estimates of the discretization error of the isotope effect obtained
with the method described in Appendix D. Note that the discretization error only depends
on P and not on the method used for the isotope effect calculation, and that our method
for estimating this discretization error exhibits favorable statistical behavior.
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(a) the isotope effect, (b) its integration errors, and (c) its statistical root mean square
errors (RMSEs). For integration errors SDE values were used as the reference.
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Table 3.2: Temperature dependence of the CH4−xDx/CH4 isotope effect for x = 1, 2, 3.
The results were obtained with “stochastic direct estimators”.

T
ln(IE) (CH4−xDx/CH4)

x=1 x=2 x=3
200 4.882 ± 0.002 9.810 ± 0.002 14.778 ± 0.003
300 3.389 ± 0.001 6.800 ± 0.002 10.227 ± 0.002
400 2.652 ± 0.001 5.314 ± 0.001 7.985 ± 0.001
500 2.220 ± 0.001 4.445 ± 0.001 6.673 ± 0.001
600 1.940 ± 0.001 3.884 ± 0.001 5.830 ± 0.001
700 1.748 ± 0.001 3.499 ± 0.001 5.251 ± 0.001
800 1.611 ± 0.001 3.222 ± 0.001 4.835 ± 0.001
900 1.509 ± 0.001 3.018 ± 0.001 4.529 ± 0.001
1000 1.431 ± 0.001 2.862 ± 0.001 4.294 ± 0.001

Finally, as mentioned in the beginning of this section, modifying the interpolation formula
for m

(λ)
i allowed us to calculate the relative free energies of all deuterated methane species

in a single STI or SDE simulation, just as in the case of an ODE calculation. For future
reference the values of all the intermediate IEs are presented in Table 3.2.

As mentioned in the previous chapter, benefits of stochastically changing mass become
most apparent when computational resources to run a simulation are limited. We therefore
compared isotope effects obtained with TI, STI, and SDE using simulations of different
length, starting with very short and nonergodic simulations. The results of these calcula-
tions, performed according to a prescription detailed in the previous chapter, are plotted in
Fig. 3.3. The first observation is that calculations using only simple λ-moves cannot obtain
a converged result of a SDE calculation. In Appendix C we explain why simple λ-moves
are inefficient in making large changes of λ at lower temperatures, and in the converged
CD4/CH4 isotope effect calculations the acceptance probability of a simple λ-move is of
the order of only 10−7. (This is because in SDE, the number J of λ intervals is only J = 4,
making each interval rather large, unlike in STI, where J is typically much larger and
simple λ-moves are much more likely.) On the other hand, adding some simple λ-moves
appears to accelerate convergence in comparison to simulations using only mass-scaled
λ-moves. This is probably because at initial times, the simple λ-moves turn out to be
much more likely than when convergence is being approached and also because the cost of
a simple λ-move is negligible (since it does not require potential energy evaluation and
since we measure the cost in terms of number of potential energy evaluations). A similar
acceleration of STI calculations by adding simple λ-moves is also clearly visible in Fig. 3.3
and was already observed in Ref. [2]. If no simple λ-moves are used then STI and SDE
exhibit approximately equal rates of convergence. However, if simple λ-moves are used
then at some point STI becomes more efficient than SDE.
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Figure 3.3: The impact of nonergodicity appearing in shorter calculations of the CD4/CH4
isotope effect (IE) at T = 200 K. Panel (a) presents the convergence of the IE as a function
of the simulation length, while panel (b) shows the corresponding error of the IE (in
logarithmic scale) relative to a converged STI result. Labels TI, STI and SDE are as in
the caption of Fig. 3.1; “STI (no simple λ-moves)” and “SDE (no simple λ-moves)”were
obtained without the simple λ-moves proposed in Ref. [2]; while “SDE (no mass-scaled
λ-moves)” were obtained without mass-scaled λ-moves proposed in Ref. [2]. The horizontal
line in panel (a) labeled “SDE (converged)” is the converged SDE result ln(IESDE) = 19.788
from Fig. 3.2 and Table 3.1; the same value was used as a reference in panel (b).
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3.4 Conclusion

We have investigated a stepwise implementation of direct estimators approach [1] and how
it can be combined with a Monte Carlo procedure which was proposed in Chapter 3 for
changing λ during the simulation. We found that stepwise implementation of the direct
estimators exhibits an error which is very close to the one exhibited by thermodynamic
integration in a wide range of conditions, however, unlike the latter approach, it does
not introduce an integration error. It was already discussed in the previous chapter that
changing λ during the simulation allows to decrease computational time required to obtain
a converged result; in this work we observed a decrease of statistical error due to reduced
effective correlation length of samples used to calculate the isotope effect.

As the original method of direct estimators [1], our Monte Carlo procedure allows to
calculate several different isotope effects from a single simulation, with the advantage that
larger isotope effects are determined with a smaller statistical error; this was demonstrated
on the deuteration of methane in Subsec. 3.3.3.

It also appears that SDE and STI both exhibit quite similar numerical behavior in a
wide range of situations. While SDE has a zero integration error by construction, it can
exhibit large statistical errors if J is too small and the “intermediate” isotope effects are
poorly suited for evaluation with direct estimators. Since the latter situation cannot be
encountered in STI by definition, either of the methods can become the method of choice
depending on the system.

We would like to note that the large magnitude of the isotope effects considered in numerical
examples of this work lead to SDE and STI being more effective than the original direct
estimators approach proposed in Ref. [1]. However we need to note that for smaller isotope
effects original direct estimators approach can be more effective, for example if the isotope
effect is associated with changing mass of one of a large number of interchangeable particles.

Finally, let us mention that the proposed methodology can be combined with Takahashi-
Imada or Suzuki-Chin fourth-order factorizations [79–82] of the Boltzmann operator,
which would allow lowering the path integral discretization error of the computed isotope
effect for a given Trotter number P , and hence a faster convergence to the quantum
limit [83, 115–117].
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4 Combining virial estimators with

higher-order Boltzmann operator

splittings

4.1 Introduction

The results presented in this chapter have been published in Ref. [117].

In Sec. 1.4 we already mentioned quantum instanton approximation [3] to the rate constant.
This approach is motivated by the semiclassical instanton theory [53, 54, 149, 150] and, as
the name suggests, takes into account only the zero-time properties of the reactive flux-flux
correlation function; however, in contrast to the semiclassical instanton, the quantum
instanton approximation treats the Boltzmann operator exactly quantum mechanically.
This improvement makes quantum instanton quite accurate as verified in many previous
applications of the method [151–156]. Quantum instanton theory expresses the reaction
rate in terms of imaginary-time correlation functions, which, in turn, can be evaluated
by path integral Monte Carlo methods [12]; as for kinetic isotope effects, the problem
can be simplified further by using thermodynamic integration with respect to mass [111].
The resulting approach exhibited errors that were already discussed in Chapter 2 for
path integral equilibrium isotope effect calculations: statistical error, Boltzmann operator
discretization error, and integration error of thermodynamic integration. The goal of this
work is to accelerate quantum instanton kinetic isotope effect calculations by decreasing their
statistical and discretization errors; to that end, we combined the following two approaches.
The first approach employs Boltzmann operator factorizations of higher order of accuracy,
which were briefly mentioned in Sec. 1.5. The resulting path integral representations of
relevant quantities exhibit faster convergence to the quantum limit, allowing to reduce
the value of P used in the calculation [82, 83, 115, 116, 127, 157]. The second approach
uses improved estimators with lower statistical errors, which permit shortening the Monte
Carlo simulation [112, 158]. In addition to combining these two strategies, we also propose
several new estimators. We then test the resulting method on two systems: the model
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·Hα + HβHγ → HαHβ + ·Hγ rearrangement, for which we also evaluate the resulting gain in
computational efficiency, and the reaction CH4 + ·H � ·CH3 + H2, a process whose kinetic
isotope effects have been studied in detail both experimentally [159–162] and theoretically,
with classical transition state theory, several of its corrected versions [163, 164], reduced
dimensionality quantum dynamics [165], and ring polymer molecular dynamics [166].

4.2 Quantum instanton formalism

Quantum instanton approximation is derived by applying steepest descent approximation
to the exact [54] Miller-Schwartz-Tromp formula (1.16). The derivation which was first
proposed in Ref. [111] assumes that Cff(t) is a fast decaying function and the main
contribution to the integral in the right hand side of Eq. (1.16) comes from the neighborhood
of t = 0; it also assumes that Cff(t)/Cdd(t) does not change much over the time interval
relevant to integration. This allows one to write

∫ ∞

−∞
Cff(t)dt =

∫ ∞

−∞
Cff(t)
Cdd(t)

Cdd(t)dt

≈ Cff(0)
Cdd(0)

∫ ∞

−∞
Cdd(t)dt

≈ Cff(0)
Cdd(0)

�
√
π

2
Cdd(0)

ΔH
,

(4.1)

obtaining the quantum instanton expression for the rate constant

kQI = �
√
π

2
Cdd(0)
Qr

Cff(0)/Cdd(0)
ΔH

, (4.2)

where

ΔH = �

√
− C̈dd(0)

2Cdd(0)
(4.3)

is a certain energy variance. For reasons that will become clear below, we keep Cdd(0)
in Eq. (4.2), even though it may seem to cancel out. While this derivation will suffice
for now, we note in advance that in Chapter 5 we will demonstrate that for some one-
dimensional systems quantum instanton approximation can stay remarkably accurate even
when stationarity of Cff(t)/Cdd(t) is violated.

The last question to be addressed is how to choose positions of the optimal dividing surfaces.
From semiclassical considerations it follows that the best choice is to require that Cdd(0)
be a saddle point with respect to ξa and ξb [3]; if ξγ are controlled by a set of parameters
{η(γ)

k }, the stationarity condition becomes

∂Cdd

∂η
(γ)
k

= 0. (4.4)
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4.3 General path integral implementation

In this section we will discuss how path integral formalism and Eq. (4.2) allows to calculate
kinetic isotope effect using only classical Metropolis algorithm. Path integral expressions
for Qr and Cdd have already been presented in Sec. 1.5, and have been shown to be classical
partition functions that correspond to ensembles defined by ρ({r(s)}) and ρ‡({r(s)}), and
we will show how all the other quantities appearing in quantum instanton expression of
kinetic isotope effect can be expressed in terms of thermodynamic averages over ρ({r(s)})
and ρ‡({r(s)}). Expressions for the corresponding estimators will be presented in a general
way valid for all Boltzmann operator splittings considered in this work and as such will
contain the main part common for all splittings and a part which corresponds to the
fourth-order corrections and is only non-zero if a splitting other than LT is used; since this
additional part depends on the gradient of the potential energy we will denote it by adding
“grad” subscript to the name of the estimator. Although it is one of the main results of this
work, for clarity the derivation of the parts associated with the fourth-order factorizations
will be left for Appendix E.

4.3.1 Estimators for constrained quantities

We start with the path integral representation of C̈dd(0) and ΔH2, and to this end it is
convenient to perform the Wick rotation and define a new function

Cdd(ζ) := Cdd

(
− iζ�

2

)
(4.5)

of a complex argument ζ. Supposing that Cdd(t) is analytic,

C̈dd(t) = − 4
�2

∂2

∂ζ2Cdd (ζ)
∣∣∣∣∣
ζ=2it/�

. (4.6)

The path integral representation of Cdd(ζ) is obtained analogously to the one of Cdd(0)
and reads

Cdd,P (ζ) = C

∫
d{r(s)}Δa(r(P/2))Δb(r(P )) exp

(
−β+Φ̃+ − β−Φ̃−) , (4.7)

with

β+ = β + ζ, (4.8)

β− = β − ζ, (4.9)

prefactor

C =
(

P

2�2π
√
β2 − ζ2

)NDP/2( N∏
i=1

mi

)DP/2

, (4.10)
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and two “partial” effective potentials

Φ̃+ = P

2�2(β+)2

P/2∑
s=1

||r(s) − r(s−1)||2+ + 1
P

P/2∑
s=0

˜̃wsV
(s)

eff (r(s)), (4.11)

Φ̃− = P

2�2(β−)2

P∑
s=P/2+1

||r(s) − r(s−1)||2+ + 1
P

P∑
s=P/2

˜̃wsV
(s)

eff (r(s)), (4.12)

where ˜̃ws = w̃s for all s except for s = P/2, for which ˜̃wP/2 = w̃P = w̃0. The effective
potentials Φ̃+ and Φ̃− in Eq. (4.7) are obtained in a similar manner as Φ̃ was obtained
in Eq. (1.27). The difference is that instead of the matrix element of the Boltzmann
operator exp(−βĤ) one considers an element of exp(−β+Ĥ/2) or exp(−β−Ĥ/2), and
the exponential operators are discretized into P/2 rather than P parts. As a result,
expressions (4.11)-(4.12) for Φ̃+ and Φ̃− can be obtained from the one for Φ̃ [Eq. (1.28)]
if β is replaced with β+/2 and β−/2, respectively, and P is replaced with P/2. After
differentiating expression (4.7) with respect to ζ, using Eq. (4.6) to go from C

′′
dd,P (ζ) back

to C̈dd(t), and noting that dζ = dβ+ = −dβ−, one obtains

C̈dd,P (0) = − 1
�2C

∫
d{r(s)}

(
G + F 2

)
ρ‡({r(s)}), (4.13)

with

G = 4
[
d2lnC
dβ2 − d2(β+Φ̃+)

d(β+)2 − d2(β−Φ̃−)
d(β−)2

]
, (4.14)

F = 2
[

d(β+Φ̃+)
dβ+ − d(β−Φ̃−)

dβ−

]
. (4.15)

After the substitution of expressions (1.53) and (4.13) for Cdd,P and C̈dd,P into the
definition (4.3) of ΔH2, the estimator for ΔH2 takes the form

(ΔH2)P,est = G + F 2

2
(4.16)

if ρ‡({r(s)}) is used as the weight function. From now on, we will denote estimators that
are used with ρ‡({r(s)}) the same way we denoted the ones used with ρ({r(s)}); we shall
not denote explicitly the probability density used as it will be clear from the context.

Explicit differentiation in Eqs. (4.14) and (4.15) leads to the so-called thermodynamic
estimator [12],

Gth = 2NDP

β2 − 4P
�2β3

P∑
s=1

||r(s) − r(s−1)||2+ + Gth,grad, (4.17)

Fth = 2
P

⎛
⎝P/2−1∑

s=1
−

P −1∑
s=P/2+1

⎞
⎠wsV

(s)
eff (r(s)) − P

�2β2

⎛
⎝P/2∑

s=1
−

P∑
s=P/2+1

⎞
⎠ ||r(s) − r(s−1)||2+ + Fgrad.

(4.18)
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The ratio Cff/Cdd can be computed by the Metropolis algorithm as well (from now on
we will omit the argument of Cdd and Cff if it equals 0). To obtain the corresponding
estimator we first note that the flux operator can be expressed as

F̂γ = 1
2

{δ[ξγ(r̂)]〈∇ξγ(r̂), p̂〉− + 〈∇ξγ(r̂), p̂〉−δ[ξγ(r̂)]} . (4.19)

Combining F̂γ with the path integral representation of the Boltzmann operator, one
obtains [12]

Cff,P = C

∫
d{r(s)}fvρ

‡({r(s)}), (4.20)

where fv is the so-called velocity factor,

fv =�
2

4

⎧⎨
⎩β2 ∏

γ=a,b

〈
∇ξγ(rγ),

(
∂Φ̃+

∂rγ
− ∂Φ̃−

∂rγ

)〉
−

− β

〈
∇ξa(r(P/2)), ∂

2(Φ̃+ + Φ̃−)
∂r(P/2)∂r(P ) ,∇ξb(r(P ))

〉
−−

⎫⎬
⎭

/{
∏

γ=a,b

||∇ξγ(rγ)||−},

(4.21)

ra = r(P/2), rb = r(P ), 〈·, ·〉− is the inner product of two covariant vectors, and 〈·, ·, ·〉−−
the matrix product of a covariant matrix with two covariant vectors (see Table 1.1). Taking
the ratio of path integral representations (4.20) and (1.53) of Cff and Cdd immediately
yields the estimator for the ratio Cff/Cdd:

(
Cff
Cdd

)
P,est

= fv. (4.22)

The thermodynamic estimator takes the form [12]

fv,th = −
(

P

2�β

)2 ∏
γ=a,b

{〈
∇ξγ(rγ), (r(+1)

γ − r(−1)
γ )

〉
0
/||∇ξγ(rγ)||−

}
, (4.23)

where 〈·, ·〉0 is the inner product of a covariant and contravariant vectors (see Table 1.1),
and we defined

r(+1)
γ :=

⎧⎨
⎩r(P/2+1), γ = a,

r(1), γ = b,
(4.24)

r(−1)
γ :=

⎧⎨
⎩r(P/2−1), γ = a,

r(P −1), γ = b.
(4.25)

4.3.2 Thermodynamic integration with respect to mass applied to the

delta-delta correlation function

The last ingredient needed for evaluating the quantum instanton rate constant (4.2) is
the ratio Cdd/Qr, which, unfortunately, cannot be calculated by the standard Metropolis
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algorithm. However, in the case of kinetic isotope effect, one can circumvent this problem
by employing the so-called thermodynamic integration with respect to mass [111], which is
easy to understand from the explicit quantum instanton expression for the kinetic isotope
effect,

KIEQI =
k

(A)
QI

k
(B)
QI

= Q
(B)
r

Q
(A)
r

C
(A)
dd

C
(B)
dd

ΔH(B)

ΔH(A)
C

(A)
ff /C

(A)
dd

C
(B)
ff /C

(B)
dd

, (4.26)

where A and B are different isotopologues of otherwise the same system. Application of
thermodynamic integration to Q

(B)
r /Q

(A)
r has already been discussed in Subsec. 2.2.1; we

use the same m
(λ)
i (λ ∈ [0, 1]) that were used for thermodynamic integration of Qr and

define C
(λ)
dd as the Cdd corresponding to masses m

(λ)
i , allowing us to write

C
(B)
dd

C
(A)
dd

= exp
(∫ 1

0

dlnC(λ)
dd

dλ
dλ
)

. (4.27)

The difference from Q
(B)
r /Q

(A)
r is that one needs to keep track of the possible change of ξγ

during the course of the integration,

dlnC(λ)
dd

dλ
= ∂lnC(λ)

dd
∂λ

+
∑

γ=a,b

∑
k

dη(γ)
k

dλ
∂lnCdd

∂η
(γ)
k

. (4.28)

In Ref. [111] the authors proposed to choose {η(γ)
k (λ)} that satisfy Eq. (4.4) at each λ

integration step, making the second term in Eq. (4.28) exactly zero and leaving only
∂lnCdd/∂λ to be considered. Here we take an alternative and more numerically stable
approach: By introducing new accurate estimators for ∂lnCdd/∂η

(γ)
k , we can avoid having

to find the optimal values of η(γ)
k (λ) for all λ. Instead, we only find optimal η(γ)

k (λ) at
the boundary points λ ∈ {0, 1}, obtain other, not necessarily optimal, η(γ)

k (λ) by linear
interpolation, and evaluate both terms of Eq. (4.28) for each λ.

The estimator for dlnQr/dλ/β was already introduced in Subsec. (2.2.1) for the Lie-Trotter
splitting and will be denoted as Fr to simplify the following discussion; for ∂lnCdd/∂λ/β

the estimator reads (
1
β

∂lnC(λ)
dd

∂λ

)
P,est

= F ‡ = Fr + Fds, (4.29)

where Fds is the contribution that comes from differentiating the mass-dependent normal-
ization factor in the normalized delta function (1.8):

Fds = − 1
β

N∑
i=1

dmi

dλ
∑

γ=a,b

|∇iξγ(rγ)|2
2m2

i ||∇ξγ(rγ)||2−
. (4.30)

Here ∇i is the gradient with respect to coordinates of particle i (see Table 1.1).

Direct evaluation of Eq (4.29) yields [111] the thermodynamic estimator for ∂ lnCdd/∂λ

F ‡
th = Fr,th + Fds, (4.31)
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where Fr,th is thermodynamic estimator for d lnQr/dλ/β given by Eq. (2.7). Note that
Eq. (2.7) was derived for the case of Lie-Trotter splitting (1.20), so for the fourth-order
splittings considered in this work one needs to add the gradient correction Fr,grad presented
in Appendix E. Derivation of the estimator for ∂lnCdd/∂η

(γ)
k involves a rather tedious

algebra and is therefore presented in Appendix F; the result is
(
∂lnCdd

∂η
(γ)
k

)
P,est

= Bk(γ) = ∂ξγ(rγ)
∂η

(γ)
k

{
β
〈

∇ξγ(rγ),∇(γ)Φ({r(s)})
〉

− − B
k(γ)
ds

}
/||∇ξγ(rγ)||2−,

(4.32)
where ∇(γ) is the gradient with respect to rγ and

B
k(γ)
ds = 〈∇,∇ξ〉− − 1

||∇ξ||2−

〈
∇ξ,

∂2ξ

(∂rγ)2 ,∇ξ

〉
−−

(4.33)

is the term associated with the change of configuration space volume satisfying the constraint.
Obtaining the thermodynamic estimator for Bk(γ) is straightforward and yields

B
k(γ)
th =∂ξγ(rγ)

∂η
(γ)
k

{
P

�2β

〈
∇ξγ(rγ), (2rγ − r(−1)

γ − r(+1)
γ )

〉
0

+ wγ

〈
∇ξγ(rγ),∇V

(s)
eff (rγ)

〉
− − B

k(γ)
ds

}

/||∇ξγ(rγ)||2−.
(4.34)

4.3.3 Virial estimators

So far we have only considered thermodynamic estimators, which are obtained via direct
differentiation of the Boltzmann operator matrix elements. However, as was already
seen for d lnQ(λ)/dλ in Subsec. 2.2.1, an estimator for a given quantity is not unique; it
is often possible to obtain an estimator with smaller statistical error. Two of the five
virial estimators used in this work, namely the estimators for ΔH2 and dlnQr/dλ had
been proposed previously [112, 158]; however, neither had been used in combination with
the Suzuki-Chin factorization. To derive an expression for centroid virial estimator for
dlnQr/dλ/β that would be valid not only for Lie-Trotter, but also for fourth-order Suzuki-
Chin and Takahashi-Imada splittings, one takes steps analogous to the ones described in
Chapter 2 to obtain

Fr,cv =
N∑

i=1

1
2mi

dmi

dλ

{
D

β
+ 1

P

P∑
s=1

ws

[
(r(s)

i − r(C)
i ) · ∇iV

(s)
eff (r(s))

]}
+ Fr,grad. (4.35)

From now on we will refer to this estimator as “virial” for short.

For ΔH2, one starts [158] by rewriting Eq. (4.7) using the coordinates

x(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ř(s) +
√

β
β+ (r(s) − ř(s)), 0 < s < P/2,

ř(s) +
√

β
β− (r(s) − ř(s)), P/2 < s < P,

r(s), s = 0, P/2, P,

(4.36)
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where ř(s) is the reference point given by

ř(s) = ř(P −s) = r(P ) + (r(P/2) − r(P )) s

P/2
(0 < s < P/2). (4.37)

The kinetic parts of Φ̃± are rewritten in the new coordinates; e.g., for Φ̃+, one uses the
relation

1
β+

P/2∑
s=1

||r(s) − r(s−1)||2+ = 1
β

P/2∑
s=1

||x(s) − x(s−1)||2+ +
( 1
β+ − 1

β

) ||x(P/2) − x(P )||2+
P/2

. (4.38)

By substituting transformed Φ̃± and C into Eqs. (4.14) and (4.15), one obtains the desired
G and F terms of the virial estimator:

Gv =4ND

β2 − 16
�2β3 ||r(P/2) − r(P )||2+

− 1
βP

P∑
s=1

ws

[
3
〈

(r(s) − ř(s)),∇V
(s)

eff (r(s))
〉

0

+
〈

(r(s) − ř(s)), ∂
2V

(s)
eff (r(s))

(∂r(s))2 , (r(s) − ř(s))
〉

00

]

+ Gv,grad,

(4.39)

Fv = 2
P

⎛
⎝P/2−1∑

s=1
−

P −1∑
s=P/2+1

⎞
⎠ws

[
V

(s)
eff (r(s)) + 1

2

〈
(r(s) − ř(s)),∇V

(s)
eff (r(s))

〉
0

]
+ Fgrad,

(4.40)

where 〈·, ·, ·〉00 is the matrix product of a covariant matrix with two contravariant vectors
(see Table 1.1).

Now let us turn to the derivation of the new estimators promised in the Introduction. In
particular, we propose new virial estimators for ∂lnCdd/∂λ/β, Cff/Cdd, and ∂lnCdd/∂η

(γ)
k .

For ∂lnCdd/∂λ/β we use a coordinate rescaling

x(s)
i = ř(s)

i +
√
mi/m′

i(r
(s)
i − ř(s)

i ), (4.41)

which is similar to Eq. (4.36) and yields the virial estimator

F ‡
cv =

N∑
i=1

dmi

dλ

{
D

βmi
− 2

(β�)2 (r(P/2)
i − r(P )

i )2 + 1
2Pmi

P∑
s=1

ws

[
(r(s)

i − ř(s)
i ) · ∇iV

(s)
eff (r(s))

]}

+ Fds + Fr,grad.

(4.42)

For Cff/Cdd, we introduce new coordinates

x(s) = r(s) − ř(s) (4.43)
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and employ the identity

P/2∑
s=1

||r(s) − r(s−1)||2+ =
P/2∑
s=1

||x(s) − x(s−1)||2+ +
||r(P/2) − r(P )||2+

P/2
. (4.44)

Rewriting Φ̃± in terms of {x(1), ..., x(P/2−1), r(P/2), x(P/2+1), ..., x(P −1), r(P )} and inserting
them into Eq. (4.21) leads to the virial estimator

fv,v = (β2vavb − gab)/{
∏

γ=a,b

||∇ξγ(rγ)||−}, (4.45)

vγ = �

P 2

⎛
⎝P/2−1∑

s=1
−

P −1∑
s=P/2+1

⎞
⎠ e(s)

γ ws

〈
∇ξγ(rγ),∇V

(s)
eff (r(s))

〉
− , (4.46)

gab = �
2β

P 3

P∑
s=1

e(s)
a e

(s)
b ws

〈
∇ξa(r(P/2)), ∂

2V
(s)

eff (r(s))
(∂r(s))2 ,∇ξb(r(P ))

〉
−−

−
〈

∇ξa(r(P/2)),∇ξb(r(P ))
〉

−
β

,

(4.47)

where we introduced coefficients

e(s)
γ =

⎧⎨
⎩min(s, P − s), γ = a,

|s − P/2|, γ = b.
(4.48)

Using the same rescaling as for fv,v, we can also derive the virial estimator for ∂lnCdd/∂η
(γ)
k ,

Bk(γ)
v = ∂ξγ

∂η
(γ)
k

{
4

�2β

〈
∇ξγ(rγ), (rγ − r(P/2)

γ )
〉

0

+ 2β
P 2

P∑
s=1

e(s)
γ

〈
∇ξγ(rγ),∇V

(s)
eff (r(s))

〉
− − B

k(γ)
ds

}

/||∇ξγ ||2−,

(4.49)

where r(P/2)
γ stands for r(P ) if γ = a and for r(P/2) if γ = b.

We would like to comment on the cost of using the estimators described in this subsection.
While thermodynamic estimators require little numerical effort, their virial counterparts
depend on the gradient and Hessian of the effective potential. (Note that although B

k(γ)
th

also depends on the force, it depends only on the force acting on a single bead, and
hence its cost is negligible for large P .) It should be emphasized, however, that gradient-
and Hessian-dependent parts of virial estimators can be calculated by finite difference,
without the need to evaluate the gradient or Hessian explicitly. For example, 〈w,∇V 〉0 and
〈w, ∂2V/∂r2,w〉00 are first and second derivatives of V in the direction of w, and therefore
can be evaluated by finite difference using just one and two additional evaluations of V ,
respectively. As a result, the effective cost is only one extra potential evaluation per bead
for Fr,cv, one per unconstrained bead for F ‡

cv, two per unconstrained bead for (Gv +F 2
v )/2,
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and three for fv,v. Calculating B
k(γ)
th will require exactly one potential evaluation and

calculating B
k(γ)
v will require P − 1 evaluations unless it is computed at the same time

as fv,v (in this case it would require just one extra potential evaluation, other numerical
ingredients being shared with fv,v).

It should be emphasized that it is not necessary to evaluate these estimators after each
Monte Carlo step due to finite correlation lengths inherent to Monte Carlo simulations.
This realization frequently allows one to make the additional cost of evaluating even the
more expensive estimators small compared with the cost of the random walk itself.

Finally, we would like to point out that, while authors of Refs. [112] and [127] used
finite differences with respect to mass and β, respectively, to calculate virial estimators
of interest, we found this approach less convenient since it requires introducing two
parameters (finite difference steps) that must be adjusted for each new isotopologue and
for each temperature. We therefore only used finite differences with respect to coordinates
in the system’s configuration space, with a single finite difference step which is the same
for all isotopologues and all temperatures.

4.4 Applications

In summary, to compute the kinetic isotope effect on a reaction one must:

1. Estimate the Trotter number P that is sufficient to adequately describe the system. For
this purpose we made several preliminary calculations to estimate the P necessary for the
lowest and highest temperature; for other temperatures we used the empirical rule that
1/P stays approximately linear with respect to T .

2. Choose the two dividing surfaces. We chose ξγ(r) of the form

ξγ(r) = ξ(r) − η‡
γ . (4.50)

For reactions where atom X breaks its bond with atom Y and forms a bond with atom Z,
we used as a reaction coordinate the difference of the “bond” lengths, i.e.,

ξ(r) = RXY − RXZ , (4.51)

where RXY is the distance between X and Y. Optimal values of η‡
γ were found by running

test simulations to find the sign of ∂lnCdd/∂η
‡
γ at different values of (η‡

a, η
‡
b).

3. Run simulations at different values of λ in order to obtain the corresponding logarithmic
derivatives of Qr and Cdd, as well as Cff/Cdd and ΔH for λ = 0 and λ = 1, then
evaluate Eqs. (2.5) and (4.27) using, e.g., Simpson’s rule. For many systems dlnCdd/dλ

and dlnQr/dλ are quite smooth functions and nine intermediate points were sufficient
to accurately evaluate the thermodynamic integrals (i.e., the discretization error of the
λ integral was smaller than the already small statistical error). We used linear mass
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interpolation for this work, because we were not aware about the inverse square root
interpolation (2.4) at that point and were also mainly focused on decreasing errors other
than integration error. After this, evaluating the kinetic isotope effect using Eq. (4.26) is
straightforward.

For each value of λ one has to run two Monte Carlo simulations in {r(s)}: a “constrained
simulation” with two slices constrained to their respective dividing surfaces and a standard
(“unconstrained”) simulation. Since treating exact constraints is not straightforward in
Monte Carlo methods, we approximated the delta constraint with a “smeared” delta
function δsm,

δ[ξγ(r)] ≈ δsm[ξγ(r)] = 1√
2πσ

1
|∇ξγ(r)| exp

⎧⎨
⎩− 1

2σ2

[
ξγ(r)

|∇ξγ(r)|

]2
⎫⎬
⎭ . (4.52)

In contrast with the approximation used in Ref. [12], the width σ of our Gaussian δm does
not depend on temperature or mass. The approximate constraint converges to the exact
delta function as σ → 0. Presence of δsm[ξγ(r)] can be easily simulated by adding an extra
constraining potential to two of the slices. For Monte Carlo sampling, we employed the
staging algorithm [144, 145, 167] with multislice moves in combination with whole-chain
moves. For constrained simulations, we also made extra single-slice moves of slices P/2
and P , since these slices are more rigid than others due to the presence of the constraining
potential.

4.4.1 ·H + H2 rearrangement

Recall that the errors of path integral Monte Carlo calculations come mostly from two
sources: the path integral discretization error (due to P being finite) and the statistical
error inherent to Monte Carlo methods. (As for quantities evaluated with thermodynamic
integration, there is an additional discretization error of the thermodynamic integral due
to taking a finite number of λ steps.) To verify the improvements outlined in Sec. 4.3 we
studied their influence on the behavior of the two main types of errors when applied to
the model ·Hα + HβHγ → HαHβ + ·Hγ rearrangement using the BKMP2 potential energy
surface [168] at the temperature of 200 K. The BKMP2 potential used in this work was
designed to be accurate for a wide range of geometries, including both the reactant and
transition state regions. The behavior of the logarithmic derivatives was studied on the
kinetic isotope effect ·H + H2/ · D + D2.

Computational details

Statistically converged simulations (paralleled over 64 trajectories, 4 × 107 Monte Carlo
steps each) were run with different values of the Trotter number (from P = 8 to 64 with
step 4 and from 64 to 352 with step 16) and different Boltzmann operator factorizations.
Virial estimators were evaluated only after every 25 Monte Carlo steps, whereas the
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thermodynamic - after every step, because the additional cost was negligible. To estimate
statistical errors of the results we calculated root mean square deviations of averages over
different trajectories. [Having a relatively high number (64) of uncorrelated trajectories,
we could thus avoid a more tedious block-averaging procedure [139], but we did check in
several cases that the two approaches gave very similar statistical error estimates.] As for
the positions of the dividing surfaces, for calculating the kinetic isotope effect choosing
η‡

a = η‡
b = 0 was quite satisfactory even at T = 200 K (in this case Cdd is stationary

from symmetry considerations) for analyzing numerical behavior of ∂lnCdd/∂λ, ΔH2 and
Cff/Cdd. For ∂lnCdd/∂η

‡
a, however, we used η‡

a = −0.5 and η‡
b = 0.5 in order to make the

logarithmic derivative statistically relevant.

For this particular setup the increase of central processing unit (CPU) time associated
with evaluating all virial estimators at once was about 15% for constrained and 3.5% for
unconstrained simulations. The increase of CPU time associated with the use of higher-
order splittings was negligible for constrained simulations; for unconstrained simulations it
was 2.5% and 5% for Suzuki-Chin and Takahashi-Imada splittings, respectively.

Results

Convergence of different quantities to their quantum limits as a function of the Trotter
number P is shown in Fig. 4.1. As expected, the Suzuki-Chin factorization allows to
lower the Trotter number significantly in comparison with the Lie-Trotter factorization. In
the case of dlnQr/dλ the Suzuki-Chin splitting is slightly outperformed by the Takahashi-
Imada factorization, which has a smaller prefactor of the error term, possibly because the
Takahashi-Imada splitting leads to an expression invariant under cyclic bead permutations.

Statistical errors of different estimators are presented in Fig. 4.2. Note that they do
not depend much on the factorization used. In contrast, the decrease of statistical errors
associated with using virial estimators is remarkable for all quantities.

To compare the speedups achieved by different combinations of splittings and estimators
we estimated the relative CPU times needed to converge the quantities ΔH, Cff/Cdd,
Q

(B)
r /Q

(A)
r , and C

(B)
dd /C

(A)
dd to 1% discretization and statistical errors.1 To estimate the

speedup associated with calculating the overall kinetic isotope effect with 1% statistical and
discretization errors we ran a separate set of simulations with λ = 1 in addition to those
for λ = 0; the statistical and discretization errors of the kinetic isotope effect calculated
with different combinations of estimators and factorizations were then approximated with
the corresponding errors obtained if thermodynamic integration of Qr and Cdd had been
performed using a single step trapezoidal rule (i.e., based just on the two boundary points
λ = 0 and λ = 1).

1Note that the 1% error for ΔH translates into a 2% error for ΔH2 and that 1% relative error for
Qr and Cdd ratios translate into 0.01 absolute error for ∂ lnQr/∂λ and ∂ lnCdd/∂λ. As for ∂ lnCdd/∂η

‡
a,

as will be shown later, when we calculate the kinetic isotope effect ·H+H2/ ·D+D2 at T = 200K with
properly optimized dividing surfaces, ∂ lnCdd/∂η

‡
a is integrated over an interval of the length 0.59 a. u.,

implying that the target error should be 0.01/0.59(a. u.)−1.
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Figure 4.1: Convergence of various quantities required in the quantum instanton approx-
imation of the kinetic isotope effect to the quantum limit as a function of the Trotter
number P : (a) dlnQr/dλ, (b) ∂lnCdd/∂λ, (c) ΔH2, (d) Cff/Cdd, (e) ∂lnCdd/∂η
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shown were obtained with the virial estimators and correspond to the kinetic isotope effect
·H + H2/ · D + D2 at 200 K.
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Figure 4.2: Statistical root mean square errors (RMSE) obtained with different estimators at
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Results correspond to the kinetic isotope effect ·H + H2/ · D + D2 at 200 K. “v” stands for
“virial”, “th” - for “thermodynamic”.
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Let us assume the CPU time of a simulation to be approximately proportional to P and
the number of Monte Carlo steps. Then for a given combination of factorization and
estimator the cost of achieving the target discretization and statistical errors is proportional
to the product P̃ σ2

P̃
, where P̃ is the value of the Trotter number that yields the target

discretization error and σP̃ is the statistical error exhibited by the estimator at this value of
P . These estimates of CPU cost are then corrected by the increase in CPU time associated
with using the fourth-order splittings and virial estimators. The final results are presented
in Tab. 4.1, which confirms that the combination of virial estimators and fourth-order
splittings leads to a significant speedup of the calculation.

One may be surprised that the value of P necessary to achieve 1% convergence of Cff/Cdd

appears to be roughly independent of the splitting used; this is probably because the
discretization errors of Cdd and Cff cancel to a larger extent for the Lie-Trotter than the
Suzuki-Chin splitting. Taking the discretization error to be 0.5% rather than 1% makes
the difference in the required value of P even more pronounced: P = 40 for the Lie-Trotter
and P = 80 for the Suzuki-Chin splitting.

Note that even though the values of P required to converge individual quantities are quite
large (up to P = 336 for d lnQr/dλ if Lie-Trotter splitting is used), the Trotter number
P necessary to converge the final kinetic isotope effect result is significantly lower due
to the cancellation of discretization errors between individual quantities and especially
between the two isotopologues. However, our P value required for the kinetic isotope
effect computed with the Lie-Trotter splitting is still larger than, for instance, those used
in Ref. [12], where the authors obtained the final result by extrapolating to the P → ∞
limit.2

It is also interesting to relate our results to those of Ref. [157], where the authors compared
efficiencies of the Lie-Trotter, Takahashi-Imada, and fourth-order Chin [169, 170] factoriza-
tions for finding different quantities associated with the ring polymer molecular dynamics
expression for the reaction rate. The authors found that for dynamical properties the
Takahashi-Imada splitting gives little improvement over the standard Lie-Trotter factoriza-
tion, which is consistent with our explanation presented in Subsec. 1.5; both factorizations
are outperformed by the fourth-order Chin factorization, which is in agreement with the
Suzuki-Chin outperforming Lie-Trotter splitting in Tab. 4.1. For equilibrium properties,
the authors found that the efficiencies of the Chin and Takahashi-Imada factorizations are
similar, and that both fourth-order factorizations significantly outperform the standard
Lie-Trotter splitting, again in agreement with our results and explanation.

We mentioned earlier that we had calculated virial estimators by finite difference, making
the computational cost of their evaluation independent of dimensionality. To employ
fourth-order splittings, however, one must know the potential gradient for all P replicas

2Since thermodynamic estimators were used in Ref. [12], reducing the discretization error directly using
very large P was not feasible—increasing P not only decreased discretization error, but also increased the
statistical error. Introducing virial estimators for each relevant quantity allows avoiding this issue because
it permits improving convergence with respect to P without encountering problems with statistical error.
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Table 4.1: Estimated speedups of the quantum instanton calculations achieved by the use of
various combinations of path integral factorizations and estimators (th = thermodynamic,
v = virial). Speedup “1” (i.e., no speedup) corresponds to the standard method employing
a combination of the Lie-Trotter factorization and thermodynamic estimators. Results
correspond to the kinetic isotope effect (KIE) ·H + H2/ · D + D2 at 200 K.

Factorization Lie-Trotter (LT) Suzuki-Chin (SC) Takahashi-Imada (TI)
Estimator P th v P th v P th v
dlnQr/dλ 336 1 220 96 10 850 64 44 1200
∂lnCdd/∂λ 240 1 19 64 13 160 _ _ _

ΔH2 128 1 170 48 14 380 _ _ _
Cff/Cdd 36 1 2.7 32 1.3 3.0 _ _ _

∂lnCdd/∂η
‡
a 80 1 1.7 16 3.6 3.8 _ _ _

KIE 128 1 34 40 12 971 _ _ _
1 All quantities except for d lnQr/dλ are calculated with the SC factorization. For
d lnQr/dλ TI factorization is used.

(for the Takahashi-Imada splitting) or at least for P/2 replicas (for the Suzuki-Chin splitting
if α = 0 or α = 1). In general, if evaluating the gradient becomes too expensive compared
to the potential energy itself, it may be advantageous to use the Lie-Trotter instead of
the fourth-order splittings. For example, as shown in Tab. 4.1, using the fourth-order
splittings decreased the necessary P approximately four times; therefore, for this particular
system it is reasonable to use the Takahashi-Imada factorization if the cost of evaluating
the gradient is smaller than three times the cost of evaluating the potential alone. For
the Suzuki-Chin factorization the corresponding factor is around six, since one needs only
P/2 force evaluations. This upper bound for efficiency may be pushed further using the
reweighting-based techniques [82, 83, 127]; this approach, however, is known to increase
the statistical errors of the final result in high-dimensional systems [171].

Lastly, we verified the modified methodology by comparing our result for the kinetic
isotope effect ·H + H2/ · D + D2 with those of Ref. [111], obtained both with the quantum
instanton approximation and with an exact quantum method. For each temperature we
calculated ΔH and Cff/Cdd by path integral Monte Carlo simulations with 1.28 × 108

steps at λ = 0 and λ = 1. Ratios of Qr and Cdd were evaluated by rewriting them as in
Eqs. (2.5) and (4.27) respectively and finding the integral over λ using Simpson’s rule with
integration step Δλ = 0.1. At T = 200 K we also ran calculations with Δλ = 0.05 to
verify that the integration error of the final result is lower than the statistical error. Values
of ∂lnCdd/∂λ within the integration interval were obtained by running simulations with
6.4 × 107 Monte Carlo steps (i.e., fewer steps than for the λ-endpoint simulations because
∂lnCdd/∂λ and dlnQr/dλ tend to converge faster than Cff/Cdd and especially than ΔH).
These conditions ensured that the total relative error of the final KIE caused by statistical
noise was below 1%. We chose P in such a way that the relative error due to P being
finite was less than the statistical one. At the lowest temperature T = 200 K we chose
P = 64, while for T = 2400 K P = 12 turned out to be appropriate; for other temperatures
we estimated the necessary P by interpolation assuming that the 1/P is a linear function
of T . To verify that the chosen values of P were sufficient we ran additional simulations
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Table 4.2: Kinetic isotope effect ·H + H2/ · D + D2 at different temperatures. “QI” stands
for “quantum instanton.”

T (K) optimal η‡
a = −η‡

b QI QM1 % error2 QI1
λ = 0 λ = 1 no surface optimization optimized surfaces

200 1.00 0.41 22.3 ±0.2 22.6 ±0.3 22.53 < 1 23.15
250 0.62 0 10.91±0.08 9.92±0.09 10.40 −5 10.98
300 0.01 0 7.38±0.05 7.35±0.05 6.97 5 7.41
400 0 0 _ 4.87±0.03 4.74 3 4.84
600 0 0 _ 3.29±0.02 3.42 −4 3.25
1000 0 0 _ 2.23±0.01 2.61 −15 2.22
1500 0 0 _ 1.81±0.01 2.27 −20 1.83
2400 0 0 _ 1.55±0.01 _ _ 1.56

1 Ref. [111]. QM denotes exact quantum-mechanical results from this reference.
2 The error is defined as (KIEQI − KIEQM)/KIEQM × 100% for the optimized dividing
surfaces’ case.

at temperatures 200 K, 1000 K, and 2400 K with λ = 0 and λ = 1 with a doubled value
of P . If two kinetic isotope effects calculated with Δλ = 1 at the two different values of
P differed by a value that was lower then the sum of their statistical errors, the lower
value of P was deemed sufficient for the calculation. The statistical errors, i.e., root mean
square errors (RMSE) were estimated with the “block-averaging” method [139] in order to
remove the effect of correlation length of the random walk in the Metropolis Monte Carlo
simulation.

In Ref. [111], η‡
γ were taken to be 0 for all temperatures and all values of λ. Even though

this choice of dividing surfaces’ positions leads to Cdd being stationary, it is a local minimum
rather than a saddle point. We therefore also checked the result for the case when the
proper optimal dividing surfaces’ positions are found. Since from symmetry considerations
the optimal dividing surfaces’ parameters satisfy η‡

a = −η‡
b , simple bisection was sufficient

to calculate the values up to 0.01 a.u. The results are presented in Table 4.2. Intermediate
results of the calculations are presented separately in Table G.1 in Appendix G. We can
see that the values obtained with η‡

γ = 0 agree well with those of Ref. [111], validating
our modifications. It can also be seen that full dividing surfaces’ optimization improves
agreement of the quantum instanton results with the exact quantum result, making the
method remarkably accurate at low temperatures.

4.4.2 CH4 + ·H � ·CH3 + H2 exchange

As mentioned, the kinetic isotope effects on the CH4 + ·H � ·CH3 + H2 exchange had been
studied by various numerical methods, but not by the quantum instanton approximation.
We therefore decided to test the accelerated quantum instanton method on this reaction
using the potential energy surface published in Ref. [7]. The surface is a global one obtained
by fitting ab initio potential values. Using invariant polynomial methods [172–174] for
the fit ensured that the resulting force field is invariant with respect to hydrogen atom
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permutations.

Computational details

We first ran a series of trial simulations to roughly determine the value of P and the number
of Monte Carlo steps ensuring that at the lowest temperature the relative statistical error
of the kinetic isotope effect is below 1% and that the discretization error with respect to P

is even smaller. The target statistical error was guaranteed by running 6.4×107 step Monte
Carlo simulations at λ = 0 and λ = 1, and 3.2 × 107 simulations at other values of λ. The
target discretization error was achieved with P = 80 for the Lie-Trotter and P = 20 for the
combination of fourth-order splittings at T = 400 K; at other temperatures P was chosen
such that the ratio β/P stayed approximately constant. We chose Δλ = 0.1 as for the case
of ·H + H2/ · D + D2; to be completely sure that the thermodynamic integration error was
negligible to the statistical one, we also ran calculations with Δλ = 0.05 at T = 400K for
the equilibrium isotope effect ·CH3/ · CD3 and kinetic isotope effect ·CH3 + D2/·CD3 + D2,
as these cases exhibited the most drastic changes of properties during thermodynamic
integration.

To determine the stationary positions of the dividing surfaces ({η‡
γ}) we ran several short

(8 × 106 steps) simulations to find the sign of ∂ lnCdd/∂η
‡
γ at different positions of the

dividing surfaces; the saddle points were found with accuracy of 0.01 a.u. The difference
between η‡

a and η‡
b turned out to be negligible at all temperatures considered, in accordance

with what is expected at “high” temperatures [151]. The calculated values of η‡ are
presented in Tab. G.2 in Appendix G; as expected, they are quite close to the position of
the classical transition state at η‡ = −0.94.

Results

Next, we compared results obtained by the accelerated method (employing a combination
of fourth-order splittings and virial estimators) and by the standard method (employing a
combination of Lie-Trotter splitting and thermodynamic estimators). The corresponding
numerical results are labeled as “accel.” and “std.,” respectively, “QI” stands for “quantum
instanton.” For further comparison, we calculated the same kinetic isotope effects also
with the conventional transition state theory (TST) [175–177] and TST with Wigner
tunneling correction [26] (in the tables the corresponding columns are denoted as “TST”
and “TST + Wigner” respectively), both methods having been discussed in Sec. 1.2. Since
the conventional TST expression captures the changes of zero-point energy as well as of
the rotational and translational partition functions due to the isotopic substitution, one
may expect that the difference between the quantum instanton and conventional TST
should be largely due to the difference between the extent of tunneling present in the two
isotopologues. The results are presented in Tables 4.3-4.9.

First of all, it can be seen that for kinetic isotope effects due to mass changes not
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Table 4.3: Kinetic isotope effect CH4 + ·H/CH4 + ·D.

T (K) TST TST
+Wigner

QI TST1 CVT/ RDQD2 RPMD3 Expt.4accel. std. μOMT1

400 0.56 0.56 0.60±0.01 0.62±0.07 0.54 0.58 0.64 0.745

500 0.66 0.66 0.70±0.01 0.65±0.08 0.65 0.67 1.03 0.65 0.845

600 0.74 0.74 0.78±0.01 0.7 ±0.1 0.73 0.74 1.23 0.915

700 0.79 0.79 0.84±0.01 0.9 ±0.1 0.78 0.79 1.33 0.80 0.975

1 Ref. [164]
2 Ref. [165]
3 Ref. [166]
4 Ref. [159]
5 Values taken from Ref. [164].

Table 4.4: Kinetic isotope effect ·CH3 + D2/·CD3 + D2.

T (K) TST TST+Wigner QI TST1 CVT/μOMT1 Expt.2accel. std.
400 0.73 0.74 0.76±0.01 0.7±0.1 0.75 0.74 0.593

500 0.82 0.82 0.83±0.01 0.9±0.1 0.83 0.82 0.723

600 0.87 0.88 0.88±0.01 0.8±0.2 0.88 0.88 0.823

700 0.91 0.91 0.90±0.01 0.8±0.2 0.92 0.91 0.903

1 Ref. [164]
2 Based on data from Refs. [160–162]
3 Values taken from Ref. [178].

Table 4.5: Kinetic isotope effect ·CH3 + H2/·CD3 + H2.

T (K) TST TST+Wigner QI TST1 CVT/μOMT1 Expt.2accel. std.
400 0.74 0.74 0.80±0.01 0.78±0.08 0.75 0.81 0.853

500 0.82 0.83 0.86±0.01 0.9±0.1 0.83 0.88 0.863

600 0.87 0.88 0.90±0.01 1.0±0.2 0.88 0.92 0.873

700 0.91 0.91 0.92±0.01 1.0±0.2 0.92 0.95 0.883

1 Ref. [164]
2 Ref. [160]
3 Values taken from Ref. [179].

Table 4.6: Kinetic isotope effect ·CH3 + HD/·CH3 + DH.

T (K) TST TST+Wigner QI TST1 CVT/μOMT1 Expt.2accel. std.
467 1.51 1.86 2.10±0.02 2.5±0.4 1.50 1.83 2.1±0.53

531 1.48 1.76 1.84±0.02 2.0±0.3 1.47 1.71 1.9±0.33

650 1.44 1.64 1.59±0.02 1.4±0.3 1.43 1.56 1.2±0.33

1 Ref. [164]
2 Ref. [160]
3 Values taken from Ref. [179].

66



4.4. Applications

Table 4.7: Kinetic isotope effect ·CD3 + HD/·CD3 + DH.

T (K) TST TST+Wigner QI TST1 CVT/μOMT1 Expt.2accel. std.
400 1.56 1.99 2.52±0.02 2.3±0.3 1.55 1.91 1.853

500 1.50 1.80 1.95±0.02 1.9±0.3 1.49 1.60 1.613

600 1.46 1.68 1.65±0.02 1.3±0.3 1.45 1.56 1.473

700 1.43 1.60 1.52±0.01 1.6±0.3 1.42 1.49 1.383

1 Ref. [164]
2 Ref. [160]
3 Values taken from Ref. [164].

Table 4.8: Kinetic isotope effect ·CD3 + H2/·CD3 + D2.

T (K) TST TST+Wigner QI TST1 CVT/μOMT1 Expt.2accel. std.
400 3.45 4.39 5.60±0.04 5.0±0.8 3.22 4.13 3.333

500 2.98 3.57 3.92±0.03 3.9±0.5 2.83 3.21 2.883

600 2.64 3.04 3.15±0.03 2.6±0.6 2.54 2.73 2.613

700 2.40 2.68 2.75±0.02 2.5±0.4 2.33 2.43 2.433

1 Ref. [164]
2 Ref. [160]
3 Values taken from Ref. [164].

Table 4.9: Kinetic isotope effect ·CH3 + H2/·CH3 + D2.

T (K) TST TST+Wigner QI TST1 CVT/μOMT1 Expt.2accel. std.
400 3.45 4.41 5.93±0.05 5.8±0.8 3.22 4.57 4.8±0.43

500 2.97 3.58 4.09±0.04 4.0±0.6 2.83 3.43 3.5±0.23

600 2.64 3.05 3.21±0.03 3.1±0.5 2.54 2.86 2.8±0.23

1 Ref. [164]
2 Ref. [160]
3 Values taken from Ref. [179].
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affecting the transferred atom (see Tables 4.3-4.5) the quantum instanton values are close
to those obtained by conventional TST. This can be understood qualitatively from the
expression (1.10) for Wigner tunneling correction for reaction rates. The main contribution
to μ‡ appearing in the expression for ω‡ comes from the transferred atom, therefore if its
mass does not change, the Wigner tunneling corrections for different isotopologues will
have similar values and largely cancel out in the kinetic isotope effect.

Second, note that, in agreement with the usual difference in magnitudes of secondary and
primary isotope effects, replacing ·CH3 with ·CD3 leads to a much smaller rate change
than does replacing H2 with D2 (compare Tables 4.4-4.5 and 4.8-4.9) This consideration
also explains why the kinetic isotope effects corresponding to ·CH3 + H2/·CH3 + D2 and
·CD3 + H2/·CD3 + D2 are quite close to each other (see Tables 4.9 and 4.8). For some
kinetic isotope effects presented in Tables 4.7-4.9 it appears that results obtained with
TST or TST with Wigner tunneling correction are in better agreement with experimental
values than those obtained with the quantum instanton, probably indicating that a large
cancellation takes place between the errors of the TST and of the potential energy surface
(PES).

In order to estimate the influence of the used force field on the final result we also ran
calculations with the PES published in Ref. [6] for CH4 + ·H/CH4 + ·D. As was the case
with the force field in Ref. [7], this PES was obtained by fitting ab initio data, however
in this case the hydrogens inside methane are equivalent to each other, but not to the
abstracted hydrogen atom. After finding the optimal dividing surfaces’ positions (see
Table G.2 in Appendix G), we compared the quantum instanton values of this kinetic
isotope effect obtained with the two PES’s from Refs. [6] and [7] (see Table 4.10), finding
that the choice of the PES affects the kinetic isotope effect value by as much as 10%. In
contrast, comparison of the kinetic isotope effects computed with the same PES, but with
two different accurate quantum methodologies [ring polymer molecular dynamics (RPMD)
and quantum instanton] results in a remarkable agreement, within the statistical error of
less than 2%. Finally, note that the quantum instanton kinetic isotope effect is in much
better agreement with experiment if computed with the PES of Ref. [7] than with the PES
of Ref. [6], suggesting that the former PES, which was used for most of the calculations in
this paper, was the appropriate choice.

As for the performance of the fourth-order splittings, since an analytical gradient was not
available for the CH4 + ·H system, the gradient had to be calculated numerically using
finite differences. For constrained simulations this made the force twelve times (once per
each internal degree of freedom) as expensive as the potential itself, leading to a seven-fold
increase in CPU time for a given P and number of Monte Carlo steps when the Suzuki-Chin
splitting was used. Since the fourth-order splitting decreased the necessary P by a factor
of four, the final increase in CPU time for a given discretization error and number of
Monte Carlo steps was 75%. For unconstrained simulations employed to find ·CH3/ · CD3

equilibrium isotope effect the force was six times as expensive as the potential; since the
use of the TI factorization allowed to decrease P four times, the final increase in CPU time
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Table 4.10: Influence of the potential energy surface (PES) on the kinetic isotope effect
CH4 + ·H/CH4 + ·D. Comparison of the quantum instanton (QI) kinetic isotope effects
calculated using the PES’s of Refs. [6] and [7]. Note also the remarkable agreement between
the kinetic isotope effects computed with ring polymer molecular dynamics (RPMD) and
QI on the same PES.

T (K) PES of Ref. [6] PES of Ref. [7] Expt.2TST TST+Wigner RPMD1 QI QI
400 0.52 0.52 0.54±0.01 0.60±0.01 0.743

500 0.63 0.63 0.65 0.64±0.01 0.70±0.01 0.843

600 0.71 0.71 0.73±0.01 0.78±0.01 0.913

700 0.77 0.77 0.80 0.79±0.01 0.84±0.01 0.973

1 Ref. [166]
2 Ref. [159]
3 Values taken from Ref. [164].

was also 75% for a given number of Monte Carlo steps and discretization error.

In summary, the kinetic isotope effects were reproduced in a reasonable agreement with
experiment. The differences are probably due to both the error of the potential energy
surface used and the large experimental error. Note that our accelerated methodology
again drastically reduced both the discretization and statistical errors of the calculations.

4.5 Conclusions

In conclusion, we have accelerated the methodology from Ref. [111] for computing kinetic
isotope effects with the quantum instanton approximation. In particular, we have combined
virial estimators (several of which have been derived for the first time here) with high-order
factorizations of the quantum Boltzmann operator, and shown that this combination
significantly accelerates the quantum instanton calculations of the kinetic isotope effects in
systems with prominent quantum effects. We have also proposed and demonstrated the
utility of a new method for the thermodynamic integration of the delta-delta correlation
function Cdd, which is a convenient alternative to the approach employed in Ref. [111]. Our
accelerated methodology has been tested on the CH4 + ·H � ·CH3 + H2 model exchange,
obtaining results that agree reasonably well with published experimental values.

We must note that since the publication of the results presented in this chapter [117] we have
introduced a more convenient procedure to optimize the necessary dividing surfaces, namely
by running an adaptive biasing force [130–132] calculation that reconstructs dependence
of Cdd on {η‡

γ} using the virial estimators of derivatives of Cdd with respect to η‡
γ (4.49).

This modification of the method was used in Ref. [180].

In this work we did not discuss integration error of thermodynamic integration with respect
to mass, which contrasts our treatment of equilibrium isotope effect calculations in the
previous chapters; this is mainly due to our focus on other types of errors at the time this
work was performed. The approaches of Chapters 2 and 3 can be trivially extended to
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operator splittings

the problem of calculating the ratio of delta-delta correlation functions corresponding to
different particles’ masses, but to the same dividing surfaces; the main difference would be
that while evaluating the corresponding direct estimators or performing the mass-scaled
Monte Carlo moves we would need to rescale r(s)

i − ř(s)
i with mass rather than r(s)

i − r(C)
i .

This extension, however, is no longer possible once the positions of the dividing surfaces
change with changing masses. A possible way to bypass the problem could be to calculate
the ratio C

(1)
dd /C

(0)
dd with both dividing surfaces placed on top of the reaction barrier, and

then run two adaptive biasing force calculations to find dependence of Cdd on the dividing
surfaces’ positions for the two isotopologues. The latter two calculations would combine
finding dividing surfaces’ positions optimal for the quantum instanton calculation with
accounting for not using these dividing surfaces during thermodynamic integration; they
can be made relatively cheap as for each isotopologue they would only need to cover a
range of dividing surfaces that includes the point corresponding to both dividing surfaces
being on top of the reaction barrier and the (estimated position of the) saddle point of Cdd.
Such a combined approach may introduce additional statistical errors to the calculation,
but is still a possibly more convenient alternative to the method used in this work and
therefore should be investigated in the future.
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5 Limitations of quantum instanton

approximation

5.1 Introduction

The results presented in this chapter are currently being prepared for publication.

The original goal of the work presented in this chapter was to propose a way to correct the
wrong high-temperature limit of the quantum instanton approximation, and to that end
we considered the closely related Hansen-Andersen transition state theory [4, 5], which
agrees with classical transition state theory in the high temperature limit, but was found to
exhibit large errors at low temperatures for asymmetric barriers. Since Hansen-Andersen
transition state theory involves choosing a single dividing surface that minimizes the
flux-flux correlation function, and quantum instanton approximation has been shown to
be less accurate if a single dividing surface is used [3], using two dividing surfaces instead
of one for a Hansen-Andersen calculation is a logical way to improve on the method’s
performance and obtain a quantum instanton-like method that would have the correct high
temperature limit. Unfortunately, we have found that while the resulting new method does
improve performance of Hansen-Andersen transition state theory in some cases, it does
not solve its problem with asymmetric barriers at low temperatures. In this case, we have
found that neither the new approach, nor quantum instanton approximation can give an
accuracy comparable to the one of ring polymer molecular dynamics. The implications of
these results are summarized in Sec. 5.6.

5.2 An alternative derivation of the quantum instanton ap-

proximation

While presenting the quantum instanton formalism of Ref. [111] in Sec. 4.2, we noted that
it does not explain why the quantum instanton approximation can be accurate in situations
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Chapter 5. Limitations of quantum instanton approximation

where Cff(t)/Cdd(t) changes drastically in the neighborhood of t = 0, a situation we will
encounter in Sec. 5.5. We therefore present an alternative derivation that largely follows
the philosophy of Ref. [3], but which we find to employ more intuitive approximations than
the original one. In the spirit of the quantum instanton derivation of Ref. [3] we will also
consider systems where reaction coordinate is separable.

We now introduce reaction coordinates that depend on time as a parameter and have the
form

ξ̃γ(r, t) = ξ(r) − η̃γ(t) − η‡
γ , (5.1)

where ξ(r) is a standard reaction coordinate. For a fixed t, ξ̃γ(r, t) = 0 (γ ∈ {a, b}) defines
two dividing surfaces, and we choose η̃γ(t) to be such that at η‡

γ = 0 these two dividing
surfaces satisfy

∫ 〈
∇ξ(rγ′), ∂

∂rγ′

〉
〈ra|e−β+Ĥ/2|rb〉

∏
γ=a,b

Δγ(rγ)drγ = 0 (5.2)

for each γ′ ∈ {a, b}. Note that for a separable reaction coordinate, at t = 0 Eq. (5.2) will
be equivalent to Cdd(0) being stationary with respect to dividing surfaces’ positions. As
will be discussed properly in Appendix H, we can also write

Cff(t) = �
2

4m‡
∂2Cdd(t)
∂η‡

a∂η
‡
b

, (5.3)

where m‡ is the mass corresponding to motion along the reaction coordinate, as was
mentioned in Sec. (1.3). The choice for η̃γ(t) is not unique, but it is possible to define
the functions in a way that makes them continuous and differentiable. It is reasonable
to assume that η̃γ(t) is bound, a fact that can be easily proven for a separable reaction
coordinate case if one assumes that 〈∇ξ(r),∇V (r)〉− = 0 for all |ξ(r)| above some “cutoff”
value. Also note that η̃γ(t) is an even function of time, which can be verified by taking the
conjugate of Eq. (5.2). Let us now consider the following equation which is equivalent [54]
to Miller-Schwartz-Tromp formula (1.16)

k = 1
Qr

lim
t→∞Cfs(t), (5.4)

where Cfs(t) is the flux-side correlation function

Cfs(t) := Tr{F̂ae
−(β/2−it/�)Ĥh[ξb(r̂)]e−(β/2+it/�)Ĥ}. (5.5)

Cfs(t) is an odd function of t and, since its time derivative Cff(t) is invariant with respect
to permutation of the two dividing surfaces, Cfs(t) is invariant to permutation of the two
dividing surfaces as well. We now consider Cfs[t, {η̃γ(t)}] which is Cfs(t) corresponding
to dividing surfaces set by ξ̃γ(r, t) = 0. Since the limit appearing in Eq. (5.4) does not
depend on dividing surfaces’ positions and we assume that η̃γ(t) is a bound function, then
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5.2. An alternative derivation of the quantum instanton approximation

Cfs[t, {η̃γ(t)}] should also exhibit a limiting behavior given by

k = 1
Qr

lim
t→∞Cfs[t, {η̃γ(t)}]. (5.6)

We now proceed to rewrite Eq. (5.6) in a way analogous to the Miller-Schwartz-Tromp
formula (1.16)

k = 1
2Qr

∫ ∞

−∞
dCfs[t, {η̃γ(t)}]

dt
dt

= 1
2Qr

∫ ∞

−∞
C̃ff(t)dt,

(5.7)

where we introduced C̃ff(t) as

C̃ff(t) :=dCfs[t, {η̃γ(t)}]
dt

(5.8)

=∂Cfs[t, {η̃γ(t)}]
∂t

+
∑

γ=a,b

∂η̃γ(t)
∂t

∂Cfs[t, {η̃γ(t)}]
∂η̃γ

. (5.9)

Let us now consider the behavior of ∂Cfs[t, {η̃γ(t)}]/∂ηγ as t → 0. Since flux-side function
is an odd function of time, while {η̃γ(t)} is even, ∂Cfs[t, {η̃γ(t)}]/∂ηγ should be an odd
function of time as well. Its time derivative equals

d

dt

∂Cfs[t, {η̃γ(t)}]
∂η̃γ

= ∂2Cfs[t, {η̃γ(t)}]
∂t∂η̃γ

+
∑

γ′=a,b

∂η̃γ′(t)
∂t

∂2Cfs[t, {η̃γ(t)}]
∂η̃γ∂η̃γ′

. (5.10)

Since η̃γ(t) is an even function of time dη̃γ′(t)/dt|t=0 = 0, resulting in

∂Cfs[t, {η̃γ(t)}]
∂η̃γ

= ∂2Cfs[t, {η̃γ(t)}]
∂t∂η̃γ

t + O(t3). (5.11)

We now combine Eqs. (5.3), (5.9), and (5.11) to obtain

C̃ff(t) :=dCfs[t, {η̃γ(t)}]
dt

=Cff [t, {η̃γ(t)}] +
∑

γ=a,b

∂η̃γ(t)
∂t

∂Cff [t, {η̃γ(t)}]
∂η̃γ

t + O(t4)

= �
2

4m‡
∂2

∂η‡
a∂η

‡
b

⎧⎨
⎩Cdd[t, {η̃γ(t)}] +

∑
γ=a,b

∂η̃γ(t)
∂t

∂Cdd[t, {η̃γ(t)}]
∂η̃γ

t

⎫⎬
⎭+ O(t4),

(5.12)

where Cff [t, {η̃γ(t)}] and Cdd[t, {η̃γ(t)}] are the flux-flux and delta-delta correlation functions
corresponding to dividing surfaces set by ξ̃γ(r, t) = 0. For brevity, we rewrite the expression
as

C̃ff(t) = �
2

4m‡
∂2C̃dd(t)
∂η‡

a∂η
‡
b

, (5.13)
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where we introduced

C̃dd(t) = Cdd[t, {η̃γ(t)}] +
∑

γ=a,b

∂η̃γ(t)
∂t

∂Cdd[t, {η̃γ(t)}]
∂η̃γ

t + O(t4). (5.14)

The nature of the O(t4) term is irrelevant for the following discussion, we just need to note
that

C̃dd(t) =Cdd[t, {η̃γ(t)}] +
∑

γ=a,b

∂η̃γ(t)
∂t

∂Cdd[t, {η̃γ(t)}]
∂η̃γ

t + O(t4)

=Cdd[t, {η̃γ(0)}] +
∑

γ=a,b

∂η̃γ(t)
∂t

×
{
∂Cdd[t, {η̃γ(t)}]

∂η̃γ
+ ∂Cdd[t, {η̃γ(0)}]

∂η̃γ

}
t + O(t4)

=Cdd[t, {η̃γ(0)}] + O(t4).

(5.15)

In the last equality we used that C̃dd(t) is an even function of time, and that all terms
besides Cdd[t, {η̃γ(0)}] appear to be at least O(t3) due to stationarity of Cdd[0, {η̃γ(0)}]
with respect to dividing surfaces’ positions.

Combining Eqs. (5.7) and (5.13) yields

k = 1
2Qr

∫ ∞

−∞
�

2

4m‡
∂2C̃dd(t)
∂η‡

a∂η
‡
b

dt

= 1
2Qr

�
2

4m‡
∂2

∂η‡
a∂η

‡
b

∫ ∞

−∞
C̃dd(t)dt.

(5.16)

Evaluating the integral with steepest descent and keeping in mind Eq. (5.15), which implies
that d2C̃dd(t)/dt2|t=0 = d2Cdd(t)/dt2|t=0, leads to

k ≈
√
π

2Qr

�
2

4m‡
∂2

∂η‡
a∂η

‡
b

Cdd(0)√
C̈dd(0)/Cdd(0)/2

= �
√
π

2Qr

�
2

4m‡
∂2

∂η‡
a∂η

‡
b

Cdd(0)
ΔH

(5.17)

The last step is to compare path integral expressions for Cdd(0) [Eq. (1.53)] and ΔH

[Eqs. (4.39) and (4.40)]. Since Cdd(0) depends exponentially on the potential it is reasonable
to assume that it would change much more drastically with dividing surfaces’ positions than
ΔH, an assumption that should be especially accurate for low temperatures. Assuming
ΔH to be almost stationary and using Eq. (5.3) after differentiating Cdd(0) with respect
to the dividing surfaces’ positions one obtains the quantum instanton expression for the
rate constant (4.2).

Last but not the least, we already mentioned that for Eq. (5.2) to hold at t = 0 we should
choose dividing surfaces that make Cdd(0) stationary with respect to their positions. We
also recall that of all factors appearing in Eq. (4.2) Cdd(0) changes most drastically with
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dividing surfaces; therefore, if we choose Cdd(0) to be a minimum with respect to dividing
surfaces’ positions then kQI would be a minimum as well, thus minimizing recrossing
contributions to the calculated reaction rate. We also note that the Miller-Schwartz-
Tromp formula (1.16) suggests that the integral of Cff(t) does not depend on dividing
surfaces’ positions; if we assume that Cff(t) is close to a Gaussian with a maximum at
t = 0, then the larger Cff(0) is the sharper is the maximum. Therefore, maximizing Cff(0)
should lead to a greater contribution of the t = 0 neighborhood to the integral over time
in the Miller-Schwartz-Tromp formula (1.16); recalling the path integral expression for
Cff(0)/Cdd(0) (4.45) we conclude that Cff(0) will be close to a maximum if Cdd(0) is a
maximum as well. As a result the optimal dividing surfaces should make Cdd(0) both a
maximum and a minimum with respect to their positions, thus it should be a saddle point.

The weakest point of the derivation presented in this section is that it assumes separability
of the reaction coordinate, which is necessary for Eq. (5.3) to hold. The authors of
Ref. [3] encountered similar problems with their derivation, and they introduced additional
approximations that allow to extend their result to the nonseparable case. We note that
in the future it may be interesting to test how nonseparability of the reaction coordinate
affects accuracy of the quantum instanton approximation, however in this work we focused
on simple one-dimensional systems, and this derivation is for now sufficient without a
proper multidimensional generalization.

5.3 Drawbacks of quantum instanton formalism and possible

corrections

A major issue with the quantum instanton expression [Eq. (4.2)] is that in the high
temperature limit its reaction rate is larger than the classical transition state theory result
by a factor of

√
π/2 [3]. The reason for this disagreement is the limiting high temperature

behavior of delta-delta and flux-flux correlation functions

lim
β→0

Cff(t)
Cff(0)

= 1[
1 +

(
2t
β�

)2
]3/2 , (5.18)

lim
β→0

Cdd(t)
Cdd(0)

= 1√
1 +

(
2t
β�

)2
(5.19)

(these limits are valid if the two dividing surfaces are merged, which is true for a quantum
instanton calculation at high temperatures). Evidently, in this limit the integral of Cff(t)
appearing in the Miller-Schwartz-Tromp formula (1.16) exists, while the integral of Cdd(t)
appearing in both quantum instanton derivations described above [Eqs. (4.1) and (5.16)]
does not, making the successive algebra invalid.

Probably the only way to bypass the issue while still dealing with an integral over Cdd(t) is
to separate dividing surfaces far enough from each other in order to make Cdd(t) decay faster,
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Chapter 5. Limitations of quantum instanton approximation

leading to the steepest descent approximation becoming more accurate [181]. Unfortunately,
this approach also leads to the maximum of Cdd(t) being shifted from t = 0 to a certain
tmax; as a result the steepest descent approximation no longer leads to a rate expression
in terms of correlation functions at t = 0, making a Monte Carlo implementation of the
method much more challenging. Alternatively, the following ad hoc expression was found
to work well enough [3]

kQI,mod = �
√
π

2
Cdd(0)
Qr

Cff(0)/Cdd(0)
ΔHmod

, (5.20)

where ΔHmod is the modified ΔHQI

ΔHmod = �

√
− C̈dd(0)

2Cdd(0)
+

√
π − √

2
β

. (5.21)

Another way to avoid the problem is to evaluate Miller-Schwartz-Tromp formula (1.16)
directly by estimating dependence of flux-flux correlation function on time. The first possible
strategy is to evaluate Cff(t) dependence for imaginary values of time and construct an
analytic continuation into real time axis [182–185]; the second one, which we will focus
on, involves reconstructing Cff(t) from its value and derivatives at t = 0, which was shown
to be theoretically possible in Ref. [186], provided an infinite number of derivatives is
known. In practice, of course, one has to choose an approximate ansatz for Cff(t), and the
expression proposed in Ref. [59] reads

Cff(t)
Cff(0)

≈ exp
{

−b0 ln
[
1 +

( 2t
�β

)2
]

−
L∑

l=1
blt

2l

}
, (5.22)

where bl are coefficients determined from time derivatives C
(2n)
ff (0)/Cff(0) (n ∈ Z;n ≥ 1),

that can be straightforwardly evaluated using path integral Monte Carlo or molecular
dynamics [158]. The expression allows to smoothly interpolate between low-temperature
behavior of Cff(t) as a fast-decaying function and the high-temperature behavior given by
Eq. (5.18), provided one calculates at least C

(2)
ff (0)/Cff(0) and C

(4)
ff (0)/Cff(0). The authors

of Ref. [59] proposed to determine the optimal dividing surfaces by maximizing the highest
order coefficient bL, thus maximizing the contribution from the neighborhood of t = 0 to
the integral over time in the Miller-Schwartz-Tromp formula (1.16) and making the steepest
descent approximation as accurate as possible; the resulting method is often referred to as
“extended quantum instanton approach.”

5.4 Hansen-Andersen formalism and its modified version

The downside of using extended quantum instanton formalism is the necessity to deal with
higher-order time derivatives of Cff(t), which are quite expensive to calculate. A cheaper
alternative that involves calculating just C̈ff(0) is the Hansen-Andersen transition state
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theory [4, 5], which uses the following ansatz for Cff(t)

Cff(t)
Cff(0)

≈ exp(−αt2)[
1 +

(
2t
β�

)2
]3/2 , (5.23)

where α is evaluated as
α = − C̈ff(0)

2Cff(0)
− 6

β2 . (5.24)

The authors proposed to use a single dividing surface for both a and b, which should
corresponds to a minimum of Cff(0) in order to minimize recrossing contribution to the
reaction rate. Several alternatives to Eq. (5.23) have also been proposed [5], but since all
of them give similar results, in this work for the sake of simplicity we will only consider
Eq. (5.23).

The deeper meaning of the ansatz (5.23) is that it accounts for behavior of Cff(t) at
imaginary time values, namely that, if the two dividing surfaces are merged, then one
has [187]

lim
t→±iβ�/2

Cff(t) = c[
1 +

(
2t
β�

)2
]3/2 , (5.25)

where c is some constant.

In this work we decided to test whether the accuracy of Hansen-Andersen approximation
can be improved by using dividing surfaces’ positions that make Cff(0) a saddle point
rather than a minimum. The motivation is analogous to the argument made in Sec. 5.2:
increasing Cff(0) should make its maximum at t = 0 sharper, thus making the neighborhood
of t = 0 contribute more to the time integral in Miller-Schwartz-Tromp formula (1.16). If
the dividing surfaces are split, however, Cff(t) no longer obeys Eq. (5.25), thus making the
ansatz (5.23) invalid. However, even if Eq. (5.23) is incorrect, the integral of the resulting
approximate Cff(t) over t still yields a valid approximation to the reaction rate. This can
be shown using algebra which is analogous to the one as in Sec. 5.2, but follows ˜̃ηγ(t) that
make Cff(t) a saddle point with respect to dividing surfaces’ positions. The argument is
straightforward, but also quite lengthy, and therefore was left for Appendix I.

5.5 Numerical tests

The calculations presented in this section were done with the Eckart barrier [188], which is
a model one-dimensional system characterized by the following potential

Veck(x) = V1 − V2
1 + exp(−2πx/Δ)

+ (V 1/2
1 + V

1/2
2 )2

4 cosh2(πx/Δ)
, (5.26)

where V1, V2 and Δ are parameters that specify the barrier and x is the particle’s coordinate.
The barrier exhibits a maximum at xmax = Δ ln(V1/V2)/(4π) with Veck(xmax) = V1; if
x → −∞ corresponds to the reactant region then the classical activation energy is V1,
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Chapter 5. Limitations of quantum instanton approximation

otherwise it is V2. We will consider the tunneling correction Γ defined as the ratio of
classical and quantum reaction rates

Γ = kquantum
kclassical

, (5.27)

which for the Eckart barrier can be shown to depend on just three dimensionless parame-
ters [5]

ξ = πβ�

Δ(V 1/2
1 + V

1/2
2 )

√
8V1V2
m

, (5.28)

α1 = 2πβV1
ξ

, (5.29)

α2 = 2πβV2
ξ

, (5.30)

where m is the mass of the particle. The parameter ξ is often rewritten as β�|ω‡|, where
ω‡ is the imaginary frequency corresponding to movement along the reaction coordinate
on top of the reaction barrier. An important property of the system is that the exact
quantum reaction rate constant can be obtained with the one-dimensional version of the
exact reaction rate expression (1.14)

kQM = 1
2π�Qr

∫ +∞

0
N(E) exp(−βE)dE, (5.31)

where N(E) is the transition probability, which is available analytically from Ref. [188]

N(E) = cosh[2π(a + b)] − cosh[2π(a − b)]
cosh[2π(a + b)] + cosh[2πc]

, (5.32)

a = Δ
π

√
(E − V1 + V2)m

2
, (5.33)

b = Δ
π

√
Em

2
, (5.34)

c = 1
2

√
2mΔ2(V 1/2

1 + V
1/2

2 )2

�2π2 − 1. (5.35)

In this work we ran calculations for two Eckart barriers that have been widely used as
benchmark systems for rate calculations: a symmetric Eckart barrier with α1 = α2 = 12
and an asymmetric one with α1 = 12 and α2 = 48, with temperature being changed via ξ.

5.5.1 Symmetric barrier performance

Relative errors of reaction rates obtained with quantum instanton approximation, as well
as Hansen-Andersen transition state theory and its modified version, are plotted in Fig. 5.1.
For quantum instanton approximation, one can see the characteristic ~20% error mentioned
in Sec. 5.3 appearing in the high temperature limit; at lower temperatures, however, the
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Figure 5.1: Errors of symmetric Eckart barrier (α1 = α2 = 12) reaction rates, denoted
kcalc., calculated with quantum instanton approximation [3], as well as Hansen-Andersen
transition state theory [4, 5] and its modified version proposed in this work. The exact
rate kQM was obtained from Eq. (5.31).

method demonstrates remarkable accuracy. Interestingly, for ξ > 18 we observed C̈ff(t)
to be positive for the choice of dividing surfaces used in a quantum instanton calculation,
indicating that in this case Cff(t) is no longer a maximum with respect to time. C̈dd(t),
however, was still negative; as a result one cannot assume Cff(t)/Cdd(t) to be approximately
constant over the neighborhood of t = 0 that contributes most to the integral in Miller-
Schwartz-Tromp formula (1.16). This observation was our main motivation for introducing
quantum instanton derivation in Sec. 5.2 as an alternative to the derivation of Ref. [111]
outlined in Sec. 4.2.

For Hansen-Andersen transition state theory and its modified version we observe that
both methods give identical results for ξ as large as 12; as expected we can see that both
approaches exhibit the correct high temperature limit. For larger ξ the dividing surfaces
are split for modified Hansen-Andersen formalism, and the method becomes slightly more
accurate than standard Hansen-Andersen transition state theory for a range of ξ values;
however in the low temperature limit both methods yield almost identical reaction rates.
The latter phenomenon is due to a surprising fact that for low temperatures both Cff(0) and
C̈ff(0) did not change much with the choice of dividing surfaces. The differences in Cff(0)
and C̈ff(0) also further canceled out, which is quite intuitive considering the invariance of
the integral of Cff(t) and the accuracy of short-time approximation at lower temperatures.

For reference, we present tunneling corrections obtained with the three methods in Tab. 5.1;
we also compare them to values reported for ring polymer molecular dynamics and semi-
classical instanton theory [75]. Both methods exhibit characteristic errors in the high
temperature or low temperature limit; semiclassical instanton is extremely accurate in the
low temperature limit, but cannot be used at temperatures above crossover temperature,
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Chapter 5. Limitations of quantum instanton approximation

Table 5.1: Tunneling correction values [Eq. (5.27)] obtained for the symmetric Eckart
barrier (α1 = α2 = 12). “SCI” stands for “semiclassical instanton.”

ξ SCI1 QI Hansen-Andersen RPMD2 exactstandard modified
2 _ 1.48 1.29 _ 1.9 1.22
4 _ 2.50 2.21 _ 2.7 2.07
6 _ 6.33 5.61 _ 4.4 5.20
8 2.20·101 2.55·101 2.36·101 _ 17 2.18·101

10 1.36·102 1.68·102 1.68·102 _ 100 1.62·102

12 1.61·103 2.00·103 1.90·103 _ 1100 1.97·103

16 6.04·105 7.44·105 6.52·105 6.60·105 _ 7.40·105

18 1.54·107 1.88·107 1.63·107 1.66·107 _ 1.88·107

20 4.37·108 5.29·108 4.58·108 4.64·108 _ 5.34·108

24 4.43·1011 5.24·1011 4.55·1011 4.60·1011 _ 5.37·1011

28 5.44·1014 6.32·1014 5.48·1014 5.50·1014 _ 6.55·1014

32 7.55·1017 8.63·1017 7.47·1017 7.48·1017 _ 9.00·1017

36 1.14·1021 1.28·1021 1.11·1021 1.11·1021 _ 1.34·1021

48 5.25·1030 5.60·1030 4.84·1030 4.84·1030 _ 5.96·1030

1 Using the formula presented in Ref. [66].
2 Ref. [75]

while ring polymer molecular dynamics agrees with classical transition state theory in the
high temperature limit, but also exhibits a limiting error at low temperatures [75].

5.5.2 Asymmetric barrier performance

Relative errors of reaction rates obtained with the quantum instanton approximation, as
well as Hansen-Andersen transition state theory and its modified version, are plotted in
Fig. 5.2. For reference, the plotted values are also presented in Tab. 5.2. Behavior of
all three methods in the high temperature limit is analogous to the one observed for the
symmetric Eckart barrier; in the low temperature limit, however, we can see that all three
methods exhibit large errors, a notion already reported for Hansen-Andersen transition
state theory [5]. The apparent reason for this is that for all values of ξ the dividing surfaces
used by all three methods ended up being chosen on one side of the reaction barrier, and the
lower the temperature was the deeper they moved into the reactant region corresponding
to higher potential energy; this must have led to a large recrossing contribution. Splitting
of dividing surfaces was not observed for modified Hansen-Andersen transition state theory,
consequently the method yielded results identical to the ones of standard Hansen-Andersen
approach.

Similar problems for asymmetric barriers have been reported for several other transition
state theories [69, 71, 189]; for the Voth-Chandler-Miller transition state theory [69] the
issue has been discussed extensively in Ref. [75] and has led the authors to conclude that
if a path-integral based transition state theory involves defining a dividing surface that
depends on just the centroid, then it would break down for asymmetric barriers in the
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Figure 5.2: Errors of asymmetric Eckart barrier (α1 = 12, α2 = 48) reaction rates, denoted
kcalc., calculated with quantum instanton approximation [3], as well as Hansen-Andersen
transition state theory [4, 5] and its modified version proposed in this work. The exact
rate kQM was obtained from Eq. (5.31).

Table 5.2: Tunneling correction values [Eq. (5.27)] obtained for the asymmetric Eckart
barrier (α1 = 12, α2 = 48).

ξ SCI1 QI Hansen-Andersen RPMD2 exactstandard modified
2 _ 1.48 1.24 _ 1.2 1.20
4 _ 2.50 1.95 _ 2.0 2.01
6 _ 7.38 5.13 _ 5.3 5.32
8 2.8 · 101 7.26·101 3.82·101 _ 28 2.61·101

10 2.3 · 102 3.25·103 1.07·103 _ 310 2.52·102

12 3.7 · 102 3.93·105 8.66·104 _ 5900 4.07·103

24 2.9 · 1012 5.99·1018 5.73·1017 _ _ 3.20·1012

1 Ref. [75], the value for ξ = 24 is from Ref. [190].
2 Ref. [74]

low temperature limit, as the optimal dividing surface will migrate away from the barrier.
A similar phenomenon appears to be taking place in this case for two dividing surfaces
that depend on two ring polymer coordinates; even though choosing stationary points of
Cff(0) rather than Cdd(0) appears to decrease the recrossing contribution, the improvement
is not enough to yield an accuracy comparable to ring polymer molecular dynamics or
semiclassical instanton methods.

5.6 Conclusions

We have introduced a modification of Hansen-Andersen transition state theory which was
motivated by quantum instanton formalism, and we have demonstrated that the resulting
method is more accurate than both approaches. However, we have also found that all three
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Chapter 5. Limitations of quantum instanton approximation

methods exhibit large errors for asymmetric barriers in the low temperature limit, making
them much less accurate than ring polymer molecular dynamics in this case. A possible
solution to the problem is to use a more sophisticated method which would follow the
philosophy of extended quantum instanton formalism [59], however it is evident that the
resulting method’s path integral implementation would be too expensive to be competitive,
hence the possibility was not considered in this work.

We plan to further investigate whether it is possible to improve the accuracy of the quantum
instanton and modified Hansen-Andersen formalisms by using an ad hoc semiclassical
criterion for choosing dividing surfaces. However, care should be taken that the ad hoc
modifications do not decrease the methods’ range of validity: An example can be found in
Subsec. 5.5.1, where combining the Hansen-Andersen ansatz (5.23) with dividing surfaces
that make Cdd(0) a saddle point, which is a reasonable approximation to a saddle point of
Cff(0), was found to yield a diverging rate at low temperatures. Even though modified
Hansen-Andersen formalism performed badly for asymmetric barriers at low temperatures,
a semiclassical approximation to this transition state theory may lead to a method that
would naturally agree with classical transition state theory in the high temperature limit
and would demonstrate a semiclassical instanton-like behavior in the low temperature limit.
Such a possibility is also worth investigating in the future.

In this chapter we focused on one-dimensional problems and presented a derivation for the
quantum instanton approximation for the separable case; however, additional difficulties
can appear in non-separable multidimensional problems. Consider the case of a reaction
that has two classical transition states separated far enough from each other. In principle,
adding reaction rates obtained separately for the two transition states should give the
same result as calculating the reaction rate through both transition states at once. This
intuitive criterion is satisfied, for example, by the linearized semiclassical initial value
representation and by the ring polymer molecular dynamics, but not by the quantum
instanton approximation or any methods based on a short-time approximation to the
Miller-Schwartz-Tromp formula that were discussed in this chapter. The fact that the
quantum instanton approximation and related methods do not treat fluxes through different
parts of the transition state in an “additive” way is not entirely negative as it partially
accounts for diffraction effects on the reaction rate. However, the case of two separated
transition states shows that these effects can be overestimated in some systems and this is
another problem that should be addressed in the future.
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6 Conclusions and outlook

In this thesis, we have implemented several methods that accelerate path integral calcula-
tions of equilibrium and kinetic isotope effects. We have also explored ways to improve
accuracy of the quantum instanton approximation, as it was the method of choice for
calculating kinetic isotope effects.

For equilibrium isotope effects, we have introduced a novel Monte Carlo procedure that
allows to change mass drastically during the calculation, and we have investigated numerical
benefits of combining it with either thermodynamic integration or the method of direct
estimators. We have demonstrated that combining both methods with the new Monte
Carlo procedure improves their statistical convergence; for thermodynamic integration
the modification also allows to eliminate integration error provided a piecewise linear
mass-dependent biasing potential is used during the simulation. The numerical benefits
of the new approach have been demonstrated on equilibrium isotope effects associated
with the change of particle mass in a model harmonic system and with the deuteration
of methane. It would be interesting to apply the method to more complex systems, as
they will be likely to both decrease the efficiency of our procedure for sampling λ values
and increase its possible benefits for statistical convergence. Our expression for the special
biasing potential that makes integration error exactly zero has also lead us to the algorithm
outlined in the end of Sec. 2.4, which may prove viable for calculating free energy differences
in cases when neither thermodynamic integration, nor free energy perturbation approaches
are applicable. It would be interesting to investigate whether this is indeed the case.

We have also accelerated the quantum instanton evaluation of kinetic isotope effects by
combining virial estimators and higher-order Boltzmann operator splittings, which allowed
us to significantly decrease statistical errors and Boltzmann operator discretization errors
of the calculation. In addition, we have introduced a more convenient procedure for
optimizing dividing surfaces during the calculation. The numerical benefits of the new
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Chapter 6. Conclusions and outlook

method were demonstrated on the model ·H + H2 rearrangement; the approach was then
applied to several kinetic isotope effects associated with forward and backward reactions in
CH4 + ·H � ·CH3 + H2 reaction system. Unlike our treatment of the equilibrium isotope
effects, we have not addressed the issue of integration error; however, we have outlined
possible strategies to eliminate it in Sec. 4.5, and it would be interesting to explore them
in the future.

In Chapter 5 we have investigated ways to go beyond the quantum instanton approximation
in calculating both kinetic isotope effects and absolute reaction rates. The end result can
be considered as a quantum instanton-inspired modification of Hansen-Andersen transition
state theory, and the new method has been shown to be more accurate than both original
approaches. Unfortunately, the quantum instanton approximation as well as both standard
and modified versions of Hansen-Andersen transition state theory appear to exhibit large
errors for asymmetric barriers at low temperatures. Even though the three methods
considered in this work seem to be, in general, less reliable than the ring polymer molecular
dynamics, a semiclassical approximation to the modified Hansen-Andersen transition state
theory may provide an interesting variation of the semiclassical instanton theory that will
agree with the classical transition state theory in the high temperature limit. We also plan
to investigate whether it is possible to improve the quantum instanton approximation and
modified Hansen-Andersen transition state theory with a semiclassically-motivated choice
of dividing surfaces.
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A Mass-scaled normal modes of the

ring polymer

In this appendix we outline how transforming from Cartesian coordinates to mass-scaled
normal modes of the ring polymer [140, 191] leads to simple derivations of the centroid
virial estimator [dF (λ)/dλ]cv [Eq. (2.8) from Subsec. 2.2.1] and the mass-scaled trial move
with respect to the mass parameter λ [Eqs. (2.17)-(2.20) from Subsec. 2.2.2].

The mass-scaled normal mode coordinates {a(k)} and {b(l)} can be obtained as

a(k)
i =

√
mi

P

P∑
s=1

r(s)
i cos

(2πsk
P

)
, k ∈ {1, 2, . . . , P/2} (A.1)

b(l)
i =

√
mi

P

P∑
s=1

r(s)
i sin

(2πsl
P

)
, l ∈ {1, 2, . . . , P/2 − 1}, (A.2)

where a(k)
i and b(l)

i are components of a(k) and b(l) corresponding to particle i. This set
of coordinates becomes complete after adding the centroid r(C) = P−1∑P

s=1 r(s), which
can also be thought of as the zero-frequency normal mode, and we will refer to the triple
({a(k)}, {b(l)}, r(C)) simply as {u(s)}. Note that, for convenience, we have not mass-scaled
r(C). For simplicity, we only consider even values of the Trotter number P since the case
of odd P differs in minor details but is otherwise completely analogous.

The original coordinates {r(s)} are recovered from the normal mode coordinates {u(s)} via
the inverse transformation

r(s)
i = r(C)

i + 1√
mi

⎧⎨
⎩(−1)sa(P/2)

i + 2
P/2−1∑

k=1

[
a(k)

i cos
(2πsk

P

)
+ b(k)

i sin
(2πsk

P

)]⎫⎬
⎭ (A.3)

with the Jacobian
J = PNDP/2 · 2ND(P/2−1)(∏N

i=1 mi

)D(P −1)/2 . (A.4)
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Appendix A. Mass-scaled normal modes of the ring polymer

These two expressions can be obtained easily starting from properties of the real version of
the Discrete Fourier Transform [192].

Rewriting the path integral representation of the partition function in terms of the normal-
mode coordinates leads to

QP =
∫

d{u(s)}ρ̃({u(s)}), (A.5)

ρ̃ = C̃ exp
[
−βΦ̃({u(s)})

]
, (A.6)

where the new effective potential Φ̃({u(s)}) and normalization constant C̃ are given by

Φ̃ := 2P 2

β2�2

⎧⎨
⎩|a(P/2)|2 +

P/2−1∑
k=1

(|a(k)|2 + |b(k)|2)
[
1 − cos

(2πk
P

)]⎫⎬
⎭

+ 1
P

P∑
s=1

V
[
r(s)({u(s)}, {mi})

]
, (A.7)

C̃ :=
(

P 2

β�2π

)NDP/2
(∏N

i=1 mi

)D/2

2ND
. (A.8)

Note that the only term of Φ̃({u(s)}) depending on mass is the average of V (r(s)) over the
P beads.

With this setup, the centroid virial estimator (2.8) can be obtained immediately by
differentiating the right-hand side of Eq. (A.6) with respect to λ. To derive the mass-scaled
λ-move described by Eqs. (2.17)-(2.20), we consider making a trial move with respect to λ

with ρ̃(λ)({u(s)}) as the probability density while keeping {u(s)} constant. Transforming
the corresponding ratio of probability densities

ρ̃(λ′′)({u(s)})
ρ̃(λ′)({u(s)})

=
[

N∏
i=1

m
(λ′′)
i

m
(λ′)
i

]D/2

× exp
(
β

P

P∑
s=1

{V [r(s)({u(s)}, {m(λ′)
i })] − V [r(s)({u(s)}, {m(λ′′)

i })]}
)

(A.9)

back to Cartesian coordinates {r(s)} will immediately yield Eq. (2.20).

Finally, let us remark that the algorithm used in Subsec. 2.3.2 for sampling the harmonic
system also uses normal modes of the ring polymer, albeit not scaled by mass.
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B Dependence of the error of

stochastic thermodynamic inte-

gration on the choice of umbrella

biasing potential
In this appendix we discuss how one may minimize the numerical errors appearing if
the isotope effect is evaluated with STI [via Eq. (2.23)] by an appropriate choice of the
umbrella potential. The two errors introduced by the procedure are the statistical error
and integration error due to a finite value of J . To estimate the integration error, we note
that Ub(λ) is independent of {r(s)} and rewrite 〈[dF (λ)/dλ]cv〉Ij as

〈[dF (λ)/dλ]cv〉Ij =
∫ λj

λj−1
dλ
∫
d{r(s)}ρ(λ)({r(s)})[dF (λ)/dλ]cv exp[−βUb(λ)]∫ λj

λj−1
dλ
∫
d{r(s)}ρ(λ)({r(s)}) exp[−βUb(λ)]

=
∫ λj

λj−1
dλ exp[−βUb(λ)]

∫
d{r(s)}ρ(λ)({r(s)})[dF (λ)/dλ]cv∫ λj

λj−1
dλ exp[−βUb(λ)]

∫
d{r(s)}ρ(λ)({r(s)})

= −
∫ λj

λj−1
dλ exp[−βUb(λ) + lnQ(λ)]d lnQ(λ)/dλ

β
∫ λj

λj−1
dλ exp[−βUb(λ) + lnQ(λ)]

.

(B.1)

Now let us consider several possible choices for the umbrella potential; an impatient reader
should skip the section on a piecewise constant umbrella potential since we show that the
most useful in practice is the piecewise linear umbrella potential.

B.1 Exact umbrella potential

Suppose that one can find the ideal, “exact” umbrella potential

Ub,exact(λ) := β−1 lnQ(λ). (B.2)
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Appendix B. Dependence of the error of stochastic thermodynamic
integration on the choice of umbrella biasing potential

Using this exact umbrella potential amounts to the substitution Ub(λ) = Ub,exact(λ) in
Eq. (B.1) and gives

〈[dF (λ)/dλ]cv〉Ij = − lnQ(λj) − lnQ(λj−1)

β(λj − λj−1)
. (B.3)

Since λj − λj−1 = J−1, in this ideal situation Eq. (2.23) will yield the exact partition
function ratio at any value of J .

B.2 Piecewise constant umbrella potential

Unfortunately, in a realistic calculation this ideal potential Ub,exact(λ) is not available and
one must make do with an approximation. The simplest choice is a piecewise constant
potential

Ub,p.const.(λ) := Ub,j for λ ∈ (λj , λj−1). (B.4)

To simplify the following algebra we introduce a symbol

Δ(λ) := lnQ(λ) − lnQ(λj) (B.5)

and note that after the substitution Ub(λ) = Ub,p.const.(λ) the constant factor exp[−βUb,j +
lnQ(λj)] will cancel out between the numerator and denominator of Eq. (B.1), leading to a
simplified expression

〈[dF (λ)/dλ]cv〉Ij = −
∫ λj

λj−1
dλ exp[Δ(λ)]d lnQ(λ)/dλ

β
∫ λj

λj−1
dλ exp[Δ(λ)]

. (B.6)

Although it was not important for the derivation of the last equation, it is worthwhile to
mention that the constants Ub,j are determined in the simulation from the equation

Ub,j+1 = Ub,j + 〈[dF (λ)/dλ]cv〉Ij + 〈[dF (λ)/dλ]cv〉Ij+1

2J
. (B.7)

Upon changing variables from λ to Δ(λ), the numerator of Eq. (B.6) becomes

∫ Δ(λj)

Δ(λj−1)
eΔ(λ)dΔ(λ) = eΔ(λj) − eΔ(λj−1), (B.8)

hence
〈[dF (λ)/dλ]cv〉Ij = − f(λj) − f(λj−1)

β
∫ λj

λj−1
[1 + f(λ)]dλ

, (B.9)

where we defined a function
f(λ) := eΔ(λ) − 1, (B.10)

whose Taylor series expansion about λj ,

f(λ) = f ′(λj)(λ − λj) + f ′′(λj)
2

(λ − λj)2 + f ′′′(λj)
6

(λ − λj)3 + O[(λ − λj)4], (B.11)
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B.3. Piecewise linear umbrella potential

will be used in the following. To see how good an approximation the piecewise constant
potential gives, let us compare the numerators and denominators of Eqs. (B.3) and (B.9).
The difference of the denominators is

β

∫ λj

λj−1
[1 + f(λ)]dλ − β(λj − λj−1) = βf ′′(λj)

24J3 + O(J−4). (B.12)

Noting that f(λ) = O(λ − λj) and Taylor expanding the logarithm, we find the difference
of the numerators to be

f(λj) − f(λj−1) − ln[1 + f(λj)] + ln[1 + f(λj−1)]

=f(λj)2 − f(λj−1)2

2
− f(λj)3 − f(λj−1)3

3
+ O(J−4)

=[f(λj) − f(λj−1)][f(λj) + f(λj−1)]
2

− f ′(λj)3(λj − λj−1)3

12
+ O(J−4)

=f ′(λj)f ′′(λj)
8J3 − f ′(λj)3

12J3 + O(J−4).

(B.13)

Since both the numerator and denominator of Eq. (B.3) are O(J−1), and since the errors
in Eq. (B.9) of both the denominator [Eq. (B.12)] and numerator [Eq. (B.13)] are O(J−3),
the overall error is O(J−2), that is, for an umbrella potential constant over each Ij

〈[dF (λ)/dλ]cv〉Ij = − lnQ(λj) − lnQ(λj−1)

β(λj − λj−1)
+ O(J−2). (B.14)

In conclusion, for the piecewise constant biasing potential Eq. (2.23) will have an error
O(J−2):

exp

⎧⎨
⎩−β

J

J∑
j=1

〈[dF (λ)/dλ]cv〉Ij

⎫⎬
⎭ = Q

(B)
P

Q
(A)
P

+ O(J−2). (B.15)

As discussed in Subsec. (2.2.2), it is easy to use really large values of J during the calculation,
therefore an O(J−2) error is not an issue. Yet, it is still worthwhile to try to optimize the
procedure in order to go beyond an O(J−2) error.

B.3 Piecewise linear umbrella potential

The obvious “first” improvement is introducing a piecewise linear potential. A remarkable
fact about the resulting procedure is that it yields an exactly zero integration error, and
this is true to all orders in J . Indeed, if we introduce a Ub(λ) = Ub,p.lin.(λ), where

Ub,p.lin.(λ) := Ub,j − 〈[dF (λ)/dλ]cv〉Ij (λ − λj), (B.16)
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integration on the choice of umbrella biasing potential

then the constant factor exp(−β{Ub,j − 〈[dF (λ)/dλ]cv〉Ijλj}) will cancel between the
numerator and denominator of Eq. (B.1), giving

〈[dF (λ)/dλ]cv〉Ij = −
∫ λj

λj−1
dλ exp{β〈[dF (λ)/dλ]cv〉Ijλ + lnQ(λ)}d lnQ(λ)/dλ

β
∫ λj

λj−1
dλ exp{β〈[dF (λ)/dλ]cv〉Ijλ + lnQ(λ)}

. (B.17)

Multiplying both sides of the equation by the denominator and rearranging yields an
identity

0 =
∫ λj

λj−1
exp{β〈[dF (λ)/dλ]cv〉Ijλ + lnQ(λ)}{β 〈[dF (λ)/dλ]cv〉Ij dλ + d lnQ(λ)} (B.18)

=
∫ g(λj)

g(λj−1)
dg(λ)eg(λ) = eg(λj) − eg(λj−1), (B.19)

where we have introduced a function g(λ) := β〈[dF (λ)/dλ]cv〉Ijλ+lnQ(λ). The last equality
means g(λj) = g(λj−1), leading to

〈[dF (λ)/dλ]cv〉Ij = − lnQ(λj) − lnQ(λj−1)

β(λj − λj−1)
, (B.20)

which is, remarkably, the same as Eq. (B.3) for the exact umbrella potential.

Of course, the definition of the piecewise linear umbrella potential in Eq. (B.16) is recursive,
and therefore can only be evaluated by an iterative algorithm, but this should not cause a
great concern since any biasing potential Ub(λ), regardless of its type, cannot be known a
priori (in particular, even the piecewise constant umbrella potential must be constructed
iteratively).

As already mentioned in Subsec. (2.2.2), making Ub(λ) not only piecewise linear [by
satisfying Eq. (B.16)] but also continuous [by choosing the constants Ub,j from Eq. (B.7)]
allows to approach an optimal statistical error. An analytical analysis of the statistical
error is more involved; instead, in the following section we show numerically that the
statistical error is approximately independent of the choice of the umbrella potential and
converges to a limit as J is increased—in particular, the piecewise linear umbrella potential
permits reducing the integration to zero without increasing the statistical error.

B.4 Numerical tests

As the piecewise linear umbrella potential Ub,p.lin.(λ) defined by Eq. (2.24) yields a zero
integration error and can be obtained iteratively in any system, it was this potential that
was used in the production runs in the rest of the paper. To clearly demonstrate the
advantages of Ub,p.lin.(λ), in this section we compare the different choices of the umbrella
potential on the harmonic system from Subsec. 2.3.2, for which which even the exact
umbrella potential (B.2) is available since Q

(λ)
P is known analytically.
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Figure B.1: Impact of the umbrella biasing potential on the numerical errors of a simulation.
The figure shows the dependence of integration errors [(a) with linear, (b) with logarithmic
scale] and statistical errors [panel (c)] on the number J of λ intervals used in the standard
thermodynamic integration (TI) and stochastic thermodynamic integration (STI) employing
various types of umbrella potentials mentioned in parentheses: “piecewise constant” uses an
umbrella potential (B.4) constant over each of the J intervals, “piecewise linear” potential
is given by Eqs. (2.24) or (B.16), and “exact” corresponds to the unrealistic situation when
one knows the exact, ideal umbrella potential (B.2).

The results are presented in Fig. B.1, which shows the dependence of integration and
statistical errors on J . [Note that all methods employed the linear interpolation of mass
given by Eq. (2.3) and that the values obtained with TI and with STI with a piecewise
linear potential are the same as those already presented in Subsec. 2.3.2.]

As predicted above, the integration error of STI appears to be zero for both the ideal, exact
umbrella potential (B.2) and for the piecewise linear umbrella potential (B.16) [panels (a)
and (b)], whereas both TI with the midpoint rule and STI with the piecewise constant
umbrella potential (B.4) exhibit an O(J−2) integration error [panel (b)]. Note that for a
given J the integration error of STI with the piecewise constant potential is even larger
than the error of TI using the midpoint rule; however, this does not imply that STI is less
efficient than TI since in realistic calculations STI can be used with much larger values of
J than TI, without increasing the statistical error or the computational cost. Finally, note
that the different choices of the umbrella potential do not significantly affect the statistical
error [see panel (c)].
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C Details of combining direct esti-

mators with stochastic change of

mass

The procedure for changing mass between discrete values of λ for SDE is mostly the same
as the one described in Subsec. 2.2.2 but for two important differences. The first one is
that the umbrella potential Ub(λ) is now updated in such a way that it satisfies for all
j ∈ [1, J − 1]

exp{β[Ub(λj) − Ub(λj+1)]} = 〈Zλj+1,λj
sc 〉(λj+1)

〈Zλj ,λj
sc 〉(λj)

(C.1)

in order to minimize statistical error of the calculated isotope effect. Secondly, for the
simple λ-move [Eqs. (2.12)-(2.16)] we note that since the acceptance ratio appearing in
Eq. (2.16) is computationally cheap and we only need to consider a finite (and usually small)
number of λ-values. It is therefore possible to numerically include acceptance probability
into trial distribution, leading to the following procedure:

Simple λ-move:

1. For each j ∈ 1, . . . , J calculate:

pj =
(

N∏
i=1

m
(λj)
i

)
exp

[
− P

2β�2

N∑
i=1

m
(λj)
i

P∑
s=1

|r(s)
i − r(s−1)

i |2 − βUb(λj)
]

(C.2)

p̃j =
∑j

j′=1 pj′∑J
j′=1 pj′

(C.3)

2. Choose random number Δ distributed uniformly over [0, 1].

3. Choose j′ which is the smallest integer satisfying

Δ < p̃j′ . (C.4)
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Appendix C. Details of combining direct estimators with stochastic change
of mass

4. Set j = j′, λ = λj′ .

It was mentioned in Subsec. 2.2.2 that in the case of STI simple λ-moves cannot lead
to large changes of λ as the acceptance ratio of Eq. (2.11) exhibits a maximum which
becomes sharper with larger values of P . We note that the SDE variant of the procedure
outlined above cannot address this issue, as the smallest λ step one can make is limited by
J , and therefore should become less effective at lower temperatures, as will be observed
in Subsec. 3.3.3. For the mass-scaled λ-move the only difference is that during the trial
move (2.17) the trial λ values are picked not from the entire [0, 1] interval, but from among
the λj values.
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D Estimate of the relative path

integral discretization error

To estimate the discretization error of the path integral representation QP of the partition
function we start from the identity,

QP = Q + O
( 1
Pn

)
= Q + c

Pn
+ o

( 1
Pn

)
, (D.1)

where c is independent of P and the integer n depends on the splitting used to derive
QP (in particular, n = 2 for the Lie-Trotter and n = 4 for Takahashi-Imada [79] and
Suzuki-Chin [80, 81] factorizations). As usual, the little-o symbol is defined by the relation
f(x) = o[g(x)] if g(x) �= 0 in some neighborhood of x = 0 and limx→0 f(x)/g(x) = 0. We
proceed to rewrite the relative discretization error of QP as

QP − Q

Q
= c/Pn + o(P−n)

Q
= 1

1 − 2−n

Q + c/Pn − Q − c/(2P )n + o(P−n)
QP + O(P−n)

= 1
1 − 2−n

QP − Q2P + o(P−n)
QP + O(P−n)

= 1
1 − 2−n

QP − Q2P

QP
+ o(P−n).

(D.2)

It follows that we can estimate the discretization error of QP if we can estimate the ratio
Q2P /QP . We shall therefore derive a direct estimator for Q2P /QP ; for simplicity, we will
do this explicitly only for the special case of Lie-Trotter splitting (n = 2). The derivation,
which resembles that presented in Ref. [193] for the direct estimator of QP /Q1, starts by
expressing Q2P as

Q2P =
(

P

πβ�2

)DNP
(

N∏
i=1

mi

)DP ∫
d{r′(s)}d{r(s)}

× exp
{

− P

β�2

P −1∑
s=0

(
||r′(s) − r(s)||2+ + ||r′(s) − r(s+1)||2+

)
− β

2P

P∑
s=1

[
V (r′(s)) + V (r(s))

]}
,

(D.3)
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Appendix D. Estimate of the relative path integral discretization error

where both {r(s)} and {r′(s)} are sets of P vector variables in the system’s configuration
space. Since || · · · ||+ is a norm induced by an inner product, it satisfies the parallelogram
law

||r′(s) − r(s)||2+ + ||r′(s) − r(s+1)||2+ = 1
2

(||2r′(s) − r(s+1) − r(s)||2+ + ||r(s) − r(s+1)||2+), (D.4)

which allows to rewrite Q2P as

Q2P = C

∫
W2d{r(s)}ρ({r(s)}), (D.5)

where W2, defined as

W2 =
∫

exp
{

β

2P

P∑
s=1

[V (r(s)) − V (r′(s))]
}

×
P∏

s=1

⎡
⎣( N∏

i=1
mi

)D/2 ( 2P
πβ�2

)DN/2
exp

⎛
⎝− 2P

β�2

∣∣∣∣∣
∣∣∣∣∣r′(s) − r(s) + r(s+1)

2

∣∣∣∣∣
∣∣∣∣∣
2

+

⎞
⎠ dr′(s)

⎤
⎦ ,

(D.6)

is obviously the direct estimator for Q2P /QP . W2 can be evaluated by generating r′ with
the Box-Muller method and averaging the resulting exponential factor; the procedure is in
a way reminiscent of the last step of bisection path integral sampling method [194, 195].
Note that for large values of P the Gaussians from which {r′(s)} are sampled are quite
narrow, making the sum

∑P
s=1[V (r(s)) − V (r′(s))] approach 0, which should in turn lead to

a reasonably fast statistical convergence of the estimator.

Incidentally, one can express the discretization error of QP by evaluating a direct estimator
for QP/2/QP , which we therefore denote W1/2. This estimator can be derived completely
analogously, with the result

W1/2 = exp

⎧⎨
⎩ β

P

P/2∑
s=1

[
V (r(2s−1)) − V (r(2s))

]⎫⎬
⎭ . (D.7)

Unlike W2, W1/2 does not require additional evaluations of the potential energy; however,
estimating discretization error from QP /QP/2 would typically yield less accurate results
than estimating it from Q2P /QP .

As for the discretization error of the isotope effect itself, one can similarly obtain the
estimate

IEP

IE
− 1 = 1

1 − 2−n

(
1 − IE2P

IEP

)
+ o(P−n) = 1

1 − 2−n

(
1 − 〈W2〉(1)

〈W2〉(0)

)
+ o(P−n). (D.8)

In this case it is necessary to calculate two averages at λ = 0 and λ = 1 to obtain the
discretization error estimate.

To make sure that our estimates are correct we ran test calculations for one-dimensional
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harmonic oscillator with β�ω = 8 (T = 1 K) at several P values, with the isotope effect
corresponding to the doubling of the mass. The results, presented in Fig. D.1, show that
our method for estimating the discretization error becomes very accurate with increasing P ,
and in fact could, in principle, be used to decrease the discretization error of the calculation
from O(P−n) to o(P−n) (by subtracting the error estimate from the result). Unfortunately,
a practical Monte Carlo calculation also has a statistical error, which decreases only as
an inverse square root of the total number of Monte Carlo steps, while Eq. (D.1) implies
that the discretization error decreases approximately as P−n. Since the total cost of the
calculation is approximately proportional to the product of the number of Monte Carlo
steps and P , it is clear that in a practical calculation the statistical error will be much
harder to decrease than the discretization error. Therefore, in this manuscript, we opted
to use the discretization error estimate (D.8) only to make sure that the discretization
error of the isotope effect is smaller than statistical error. However, it is also possible to
subtract these discretization error estimates from the calculated value of ln(IE) in order to
obtain a result that will be closer to the quantum limit, but whose discretization error can
no longer be estimated. Thus the data presented in Table 3.1 for the CD4/CH4 isotope
effect allows two different ways to interpret the results, the choice is left to the reader.

Finally, note that expressions analogous to Eqs. (D.6) and (D.7) can also be derived for
the fourth-order Takahashi-Imada (1.21) and Suzuki-Chin (1.24) splittings. One needs
to be careful, however, since both fourth-order factorization replace V with an effective
potential Veff that, unlike V , depends on P . As for the Suzuki-Chin factorization, the
matter is further complicated by the fact that the weight of this effective potential depends
on the bead s at which it is evaluated.
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Appendix D. Estimate of the relative path integral discretization error
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Figure D.1: Comparison of exact analytical values of the path integral discretization error
of (a) the partition function Q and (b) isotope effect with their estimates [Eqs. (D.2) and
(D.8)], which were evaluated either analytically or numerically using the estimator (D.6).
The figure shows the dependence of the discretization error on the Trotter number P in a
one-dimensional harmonic oscillator with β�ω = 8, and the isotope effect corresponds to
the doubling of the mass.
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E Derivation of the fourth-order

corrections for different estimators

When one of the fourth-order factorizations is used, V (s)
eff (r(s)) has an explicit dependence

on mass and β; as a result one needs to add appropriate “corrections” to the estimators
arising from the differentiation with respect to these quantities.

For dlnQr/dλ/β and ∂lnCdd/∂λ/β, it follows from Eqs. (1.40) (when applied to change of
mass) and (4.29) that the correction Fr,grad is

Fr,grad = − β

P 3

N∑
i=1

dmi

dλ

P∑
s=1

wsds
∂Vgrad(r(s))

∂mi
= �

2β

P 3

P∑
s=1

wsds

N∑
i=1

1
m2

i

dmi

dλ
|∇iV (r(s))|2.

(E.1)
Note that when a coordinate rescaling is used to obtain an estimator (e.g., for centroid
virial estimators), the correction remains the same due to the following equality:

dV (s)
eff [r(s)(mi),mi]

dmi
=
〈
∂r(s)

∂mi
,
∂V

(s)
eff

∂r(s)

〉
0

+ ds

(
β

P

)2 ∂Vgrad
∂mi

. (E.2)

As for Fth and Fv, since
∂V

(s)
eff (r(s))
∂β

= 2ds
β

P 2Vgrad(r(s)), (E.3)

the gradient correction to be added is

Fgrad = 4β2

P 3

⎛
⎝P/2−1∑

s=1
−

P −1∑
s=P/2+1

⎞
⎠wsdsVgrad(r(s)). (E.4)

Again, this correction is the same for the virial and thermodynamic variants.

Since the G factor involves the second derivatives with respect to β, the corrections will be
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Appendix E. Derivation of the fourth-order corrections for different
estimators

different for Gth and Gv. While Gth,grad is obtained easily as

Gth,grad = −24β
P 3

P∑
s=1

wsdsVgrad(r(s)), (E.5)

to find Gv, one needs to take advantage of the following relations:

dV (s)
eff [r(s)(β), β]

dβ
=
〈
∂r(s)(β)

∂β
,
∂V

(s)
eff (r(s))
∂r(s)

〉
0

+ ∂V
(s)

eff (r(s))
∂β

, (E.6)

d2V
(s)

eff [r(s)(β), β]
dβ2 =

〈
∂2r(s)(β)

∂β2 ,
∂V

(s)
eff (r(s))
∂r(s)

〉
0

+
〈
∂r(s)(β)

∂β
,
∂2V

(s)
eff (r(s))

(∂r(s))2 ,
∂r(s)(β)

∂β

〉
00

+ 2
〈
∂r(s)(β)

∂β
,

∂

∂r(s)

[
∂V

(s)
eff (r(s))
∂β

]〉
0

+ ∂2V
(s)

eff (r(s))
∂β2 ,

(E.7)

d2{βV (s)
eff [r(s)(β), β]}

dβ2 =2dV (s)
eff (r(s))
dβ

+ β
d2V

(s)
eff (r(s))
dβ2

=
〈(

2∂r(s)(β)
∂β

+ β
∂2r(s)(β)

∂β2

)
,
∂V

(s)
eff (r(s))
∂r(s)

〉
0

+ β

〈
∂r(s)(β)

∂β
,
∂2V

(s)
eff (r(s))

(∂r(s))2 ,
∂r(s)(β)

∂β

〉
00

+ 2β
〈
∂r(s)(β)

∂β
,

∂

∂r(s)(β)

[
∂V

(s)
eff (r(s))
∂β

]〉
0

+ β
∂2V

(s)
eff (r(s))
∂β2 + 2∂V

(s)
eff (r(s))
∂β

,

(E.8)

The only terms for which the explicit β dependence plays a role are the last three. As a
result we get:

Gv,grad = − 4
P

P∑
s=1

ws

{
2β
〈
∂r(s)(β)

∂β
,

∂

∂r(s)(β)

[
∂V

(s)
eff (r(s))
∂β

]〉
0

+ β
∂2V

(s)
eff (r(s))
∂β2 + 2∂V

(s)
eff (r(s))
∂β

}
.

(E.9)

This expression can be rewritten as

Gv,grad = − 8β
P 3

P∑
s=1

wsds

[
3Vgrad +

〈
(r(s) − ř(s)),∇Vgrad(r(s))

〉
0

]
. (E.10)
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F Derivation of Bk(γ)

The present derivation is just a slight generalization of the estimators generally employed
in adaptive biasing force approaches [130, 131]. We start by transforming to mass-scaled
coordinates,

x(s)
i :=

√
mir(s)

i ,

xγi :=
√
mirγi,

ξγ(xγ) := ξγ(rγ),

(F.1)

which will simplify the subsequent algebra due to the equality

||∇ξγ(rγ)||− = |∇ξγ(xγ)|. (F.2)

In mass-scaled coordinates, the path integral representation (1.53) of the delta-delta
correlation function can be rewritten as

Cdd,P =
∫

ρ({x(s)})Δ[ξγ(xγ)]d{x(s)}, (F.3)

where the second normalized delta function has been absorbed into ρ in order to simplify
the following derivation. Differentiation of Cdd,P with respect to the dividing surfaces’
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Appendix F. Derivation of Bk(γ)

parameters yields

∂Cdd,P

∂η
(γ)
k

= ∂

∂η
(γ)
k

∫
ρ({x(s)})Δ

[
ξγ(xγ , η

(γ)
k )
]

d{x(s)}

=
∫ 〈∇ξγ(xγ),∇ξγ(xγ)〉

|∇ξγ(xγ)| ρ({x(s)})
∂ξγ(xγ)

∂η
(γ)
k

d
dξγ

{
δ
[
ξγ(xγ , η

(γ)
k )
]}

d{x(s)}

+
∫

∂ln|∇ξγ(xγ)|
∂η

(γ)
k

ρ({x(s)})Δ
[
ξγ(xγ , η

(γ)
k )
]

d{x(s)}

=
∫

∇
{
δ
[
ξγ(xγ , η

(γ)
k )
]} ∂ξγ(xγ)

∂η
(γ)
k

∇ξγ(xγ)∣∣∣∇ξγ(xγ)
∣∣∣ρ({x(s)})d{x(s)}

+
∫ 1

|∇ξγ(xγ)|2
〈

∇ξγ ,∇
∂ξγ(xγ)

∂η
(γ)
k

〉
ρ({x(s)})Δ

[
ξγ(xγ , η

(γ)
k )
]

d{x(s)}.

(F.4)

After integrating by parts with respect to xγ in the first integral, we get

∂

∂η
(γ)
k

∫
ρ({x(s)})Δ

[
ξγ(xγ , η

(γ)
k )
]

d{x(s)} = −
∫

∂ξγ(xγ)

∂η
(γ)
k

[〈
∇ξγ(xγ),∇(γ)lnρ({x(s)})

〉
0

+|∇ξγ(xγ)|
〈

∇,
∇ξγ(xγ)

|∇ξγ(xγ)|

〉
0

]
/|∇ξγ(xγ)|2

× Δ
[
ξγ(xγ , η

(γ)
k )
]
ρ({x(s)})d{x(s)}.

(F.5)

Equation (4.32) is obtained by substituting the explicit expression for ρ and transforming
back to Cartesian coordinates.
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G Additional numerical results

In this appendix we present some additional numerical results that were moved from the
main text of Chapter 4 for the sake of clarity. Figure G.1 depicts the logarithmic plots of
the discretization errors of various ingredients of the quantum instanton approximation as
functions of the Trotter number P . The discretization error for a quantity A is defined
as |AP − A∞|, where A∞ was estimated by averaging AP over several highest values
of P , for which the discretization error was considered negligible. The averaging was
performed in order to reduce the statistical error. The plots in Fig. G.1 demonstrate the
faster convergence to the quantum limit achieved with higher-order factorizations: indeed,
especially for the logarithmic derivative of Qr, one can see that the discretization error
dependence approaches the asymptotic behavior O(P−2) for the Lie-Trotter and O(P−4)
for the Suzuki-Chin and Takahashi-Imada factorizations. In addition, in all panels, it is
clear for which value of P the discretization error becomes smaller than the statistical
error, since for higher values of P the smooth dependence of the discretization error on P

is obscured by statistical noise.

Table G.1 contains values of various factors used to obtain the results in Table 4.2 for the
quantum instanton kinetic isotope effect on the reaction ·Hα + HβHγ → HαHβ + ·Hγ with
optimized dividing surfaces. Finally, Table G.2 contains optimized dividing surfaces’ posi-
tions that were used for calculating kinetic isotope effects on the CH4 + ·H � ·CH3 + H2.
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Figure G.1: Absolute discretization error (DE) of different quantities as a function of
P : (a) dlnQr/dλ, (b) ∂lnCdd/∂λ, (c) ΔH2, (d) Cff/Cdd, (e) ∂lnCdd/∂η

‡
a. Results shown

were obtained with the virial estimators and correspond to the kinetic isotope effect
·H + H2/ · D + D2 at 200 K.

Table G.1: Values of the factors entering the quantum instanton expression (4.26) for
the kinetic isotope effect ·H + H2/ · D + D2 with optimized dividing surfaces’ positions,
displayed in Table 4.2. All quantities as well as their statistical errors are in atomic units.

T (K) ΔH2 × 106 Cff/Cdd × 103
Cdd ratio Qr ratio

λ = 0 λ = 1 λ = 0 λ = 1
200 3.68±0.03 4.27±0.02 1.33±0.01 2.03±0.01 43.8 ±0.3 1404 ±1
250 4.87±0.04 4.95±0.03 2.01±0.01 2.10±0.01 55.8 ±0.3 572.9 ±0.3
300 7.40±0.04 5.10±0.03 2.73±0.01 1.97±0.01 49.5 ±0.1 316.1 ±0.2
400 7.92±0.05 6.27±0.04 2.49±0.01 2.01±0.01 33.96±0.06 149.5 ±0.1
600 12.0 ±0.1 10.7 ±0.1 2.77±0.01 2.44±0.01 23.11±0.04 70.92±0.03
1000 26.8 ±0.1 24.5 ±0.1 3.82±0.03 3.55±0.02 18.15±0.02 39.42±0.01
1500 54.3 ±0.2 50.3 ±0.2 5.29±0.04 5.05±0.02 16.78±0.02 30.11±0.01
2400 124.6 ±0.4 117.1 ±0.4 7.98±0.05 7.80±0.03 16.36±0.01 25.51±0.01
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Table G.2: Optimal positions of the dividing surfaces along the reaction coordinate [see
Eq. (4.51)] for transition states of several isotopic variants of the CH4 + ·H � ·CH3 + H2
exchange at several temperatures.

Potential energy surface of Ref. [7]
TS 400 K 500 K 600 K 700 K

H3C · · · H · · · H -0.91 -0.90 -0.88 -0.86
H3C · · · H · · · D -0.88 -0.87 -0.85 -0.84
D3C · · · H · · · D -0.89 -0.88 -0.86 -0.85
D3C · · · D · · · H -0.93 -0.91 -0.89 -0.86
H3C · · · D · · · D -0.89 -0.87 -0.86 -0.85
D3C · · · D · · · D -0.90 -0.89 -0.87 -0.85
D3C · · · H · · · H -0.92 -0.90 -0.89 -0.87

467 K 531 K 650 K
H3C · · · H · · · D -0.87 -0.86 -0.84
H3C · · · D · · · H -0.90 -0.89 -0.87

Potential energy surface of Ref. [6]
TS 400 K 500 K 600 K 700 K

H3C · · · H · · · H -1.03 -1.00 -0.97 -0.95
H3C · · · H · · · D -1.00 -0.97 -0.94 -0.92
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H Connection of flux-flux and delta-

delta correlation functions for the

separable case

In this appendix we will prove that the relation between Cdd(t) and Cff(t) (5.3) holds for a
separable system if the stationarity condition (5.2) is satisfied. We start by writing Cdd(t)
for one-dimensional case as

Cdd(t) = 1
m‡ |〈xa|e−β+Ĥ/2|xb〉|2, (H.1)

where xa and xb are positions of dividing surfaces a and b. Straightforward differentiation
allows us to write

∂2Cdd(t)
∂xa∂xb

= 2
m‡ Re

[
∂2

∂xa∂xb
(〈xa|e−β+Ĥ/2|xb〉)〈xa|e−β−Ĥ/2|xb〉

+ ∂

∂xa
(〈xa|e−β+Ĥ/2|xb〉) ∂

∂xb
(〈xa|e−β−Ĥ/2|xb〉)

]
,

(H.2)

where Re is the real part of a complex number.

We now recall the expression for the flux operator (4.19) and write Cff(t) for a one
dimensional system as

Cff(t) =1
2

(
�

m‡

)2
Re
[

∂2

∂xa∂xb
(〈xa|e−β+Ĥ/2|xb〉)〈xa|e−β−Ĥ/2|xb〉

− ∂

∂xa
(〈xa|e−β+Ĥ/2|xb〉) ∂

∂xb
(〈xa|e−β−Ĥ/2|xb〉)

]
.

(H.3)

Comparing Eqs. (H.2) and (H.3) and keeping in mind the stationarity condition (5.2) leads
to

Cff(t) = �
2

4m‡
∂2Cdd(t)
∂xa∂xb

. (H.4)

This equation leads directly to Eq. (5.3) once we recall our choice for dividing surfaces’
positions (5.1). The case of a many-dimensional system with a separable reaction coordinate
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Appendix H. Connection of flux-flux and delta-delta correlation functions
for the separable case

can be easily reduced to the one-dimensional problem.
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I Justification of using Hansen-

Andersen ansatz for the flux-flux

correlation function with split

dividing surfaces
In this appendix, we elaborate two statements made in Sec. 5.4. The first one is that as
t → ±iβ�/2 the flux-flux correlation function Cff(t) will exhibit a singularity of the order
3/2 if the two dividing surfaces are merged or will approach zero if the two dividing surfaces
are split (as we mentioned before, the former fact has been know for a long time [187];
however, unlike Ref. [187], we will prove it without assuming separability of the reaction
coordinate). The second one is that if the dividing surfaces are split and the resulting
Cff(0) is stationary with respect to their positions, than even though the Hansen-Andersen
ansatz (5.23) is no longer applicable to Cff(t) due to wrong imaginary-time behavior, it is
still valid to use its integral to estimate Miller-Schwartz-Tromp formula (1.16).

I.1 Imaginary time behavior of flux-flux correlation function

We will first discuss the difference of imaginary-time behavior of Cff(t) with merged and
split dividing surfaces, and to that end we introduce ε = t − iβ�/2 and write out the
limiting expression for Cff(t) as ε → 0. In order to simplify the algebra we define

∂γ :=
〈

∇ξγ(rγ), ∂

∂rγ

〉
−

(I.1)
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and proceed to rewrite Cff(t) as

Cff(t) =Tr[F̂ae
−(β−ε)Ĥ F̂be

−εĤ ],

= − �
2

4

∫ [
∂a〈ra|e−εĤ |rb〉∂b〈ra|e−(β−ε)Ĥ |rb〉

+∂b〈ra|e−εĤ |rb〉∂a〈ra|e−(β−ε)Ĥ |rb〉
+∂a∂b〈ra|e−εĤ |rb〉〈ra|e−(β−ε)Ĥ |rb〉
+〈ra|e−εĤ |rb〉∂a∂b〈ra|e−(β−ε)Ĥ |rb〉

] ∏
γ=a,b

δ[ξγ(rγ)]drγ .

(I.2)

If one recalls Lie-Trotter splitting (1.20) of the Boltzmann operator, then one realizes
that in the limit ε → 0 〈ra|e−εĤ |rb〉 will approach δ(||rb − ra||+) and will lead to Cff(t)
approaching zero if ra and rb are constrained to different surfaces. If the two dividing
surfaces are merged, however, Cff(t) will go to infinity instead. To show that we start by
writing

lim
ε→0

〈ra|e−εĤ |rb〉
∏

γ=a,b

δ[ξγ(rγ)] = lim
ε→0

(∏N
i=1 mi

)D/2

(2π�2ε)DN/2 exp
(

−||rb − ra||2+
2�2ε

) ∏
γ=a,b

δ[ξγ(rγ)]

= lim
ε→0

(∏N
i=1 mi

)D/2

√
2π�2ε

Δa(ra)δ(ra − rb),

(I.3)

proving that the term containing 〈ra|e−εĤ |rb〉 is O(ε−1/2). We also have

lim
ε→0

∂a〈ra|e−εĤ |rb〉
∏

γ=a,b

δ[ξγ(rγ)] = lim
ε→0

(∏N
i=1 mi

)D/2

(2π�2ε)DN/2
〈∇ξa(ra), ra − rb〉0

�2ε

× exp
(

−||rb − ra||2+
2�2ε

) ∏
γ=a,b

δ[ξγ(rγ)].

(I.4)

Since both ra and rb are constrained to ξa(ra) = ξb(rb) = 0, the expression is exactly zero
if the dividing surface has no curvature. However, if the dividing surface is curved then it
can be easily shown that

〈∇ξa(ra), ra − rb〉0 = O(||rb − ra||+), (I.5)

leading to the following estimate

lim
ε→0

∂γ〈ra|e−εĤ |rb〉
∏

γ=a,b

δ[ξγ(rγ)] = O(ε−1) × Δa(ra)δ(ra − rb). (I.6)
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The last expression we need to consider is

lim
ε→0

∂a∂b〈ra|e−εĤ |rb〉
∏

γ=a,b

δ[ξγ(rγ)] = lim
ε→0

[〈∇ξa(ra),∇ξb(rb)〉−
�2ε

−〈∇ξa(ra), ra − rb〉0〈∇ξb(rb), rb − ra〉0
�4ε2

]

×
(∏N

i=1 mi

)D/2

(2π�2ε)DN/2 exp
(

−||rb − ra||2+
2�2ε

) ∏
γ=a,b

δ[ξγ(rγ)],

(I.7)

which is O(ε−3/2) × Δa(ra)δ(ra − rb), as seen from Eqs. (I.3) and (I.5). These estimates
prove that Cff(t) is O(ε−3/2) as well.

I.2 Hansen-Andersen ansatz and the split dividing surfaces’

case

For reasons outlined above it is difficult to account for imaginary time behavior of Cff(t),
as it changes too drastically if dividing surfaces are split or merged, making it natural to
instead consider a function resembling C̃ff(t) introduced in Sec. 5.2. To that end, we will
consider reaction coordinates of the form

˜̃ξγ(r, t) = ξ(r) − ˜̃ηγ(t), (I.8)

where ξ(r) is a reaction coordinate and ˜̃ηγ(t) is such that ˜̃ξγ(r, t) = 0 defines dividing
surfaces that make Cff(t) a saddle point with respect to their positions. Arguments
analogous to the ones in Sec. 5.2 allow us to write

k = 1
Qr

lim
t→∞

˜̃Cfs(t) (I.9)

= 1
2Qr

∫ ∞

−∞
˜̃Cff(t)dt, (I.10)

where we introduced ˜̃Cfs(t) as the flux-side correlation function corresponding to dividing
surfaces set by ˜̃ξγ(r, t) = 0 and ˜̃Cff(t) is given by

˜̃Cff(t) := d ˜̃Cfs(t)
dt

(I.11)

= Cff [t, {˜̃ηγ(t)}] +
∑

γ=a,b

∂ ˜̃ηγ(t)
∂t

∂Cfs[t, {˜̃ηγ(t)}]
∂ ˜̃ηγ

(I.12)

Again, analogously to the relation between C̃dd(t) and Cdd(t) of Eq. (5.15), we can write

˜̃Cff(t) = Cff(t) + O(t4). (I.13)
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We now consider behavior of ˜̃Cff(t) for imaginary time values. Since Cff(t) is an even
function of time, ˜̃ηγ(t) will be even as well, and analytical continuation of ˜̃ηγ(t) into
complex time values will yield real values for imaginary times. Consequently, for imaginary
time values ˜̃ηγ(t) will still yield dividing surfaces’ positions that make Cff(t) a saddle
point, and both Cff [t, {˜̃ηγ(t)}] and Cfs[t, {˜̃ηγ(t)}] appearing in Eq. (I.12) will be actual
flux-flux and flux-side functions corresponding to dividing surfaces defined by ˜̃ηγ(t). Next,
we note that at least in some neighborhood of ε = 0 the two dividing surfaces will be
merged. For one-dimensional case this can be shown by taking derivative of Eq. (I.2) with
respect to ||rb − ra||+ and observing that the result will go to ∞ or −∞ if ε → 0 unless
||rb − ra||+ = 0; for multidimensional case the procedure is more involved, but yields the
same result. It is also obvious that the optimal position of the merged dividing surface
will have a ε → 0 limit, which can be seen from differentiating ε3/2Cff with respect to the
dividing surface’s position; this implies that ˜̃ηγ(t) have limits at ε → 0 and are bound in any
neighborhood of ε = 0. We finally go to Eq. (I.12) and observe that Cff [t, {˜̃ηγ(t)}] should
be O(ε−3/2) since Cff(t) is O(ε−3/2) for any choice of dividing surfaces and ˜̃ηγ(t) are bound
in a neighborhood of ε = 0. For the second term, we note that since ˜̃ηγ(t) have a limit in
ε → ∞, d˜̃ηγ(t)/dt is o(ε−1). We also reiterate that derivative of ε3/2Cff(t) with respect to
a merged dividing surface’s position has a ε → 0 limit, meaning that in this case we have
∂Cff [t, {˜̃ηγ(t)}]/∂ ˜̃ηγ(t) = O(ε−3/2); this implies that ∂Cfs[t, {˜̃ηγ(t)}]/∂ ˜̃ηγ(t) = O(ε−1/2),
and as a result the second term in Eq. (I.12) is o(ε−3/2), and the expression itself is
O(ε−3/2).

Now that we have proven that analytic continuation of ˜̃Cff(t) into complex plane leads
to 3/2 singularities at t = ±iβ�/2, we go back to calculating reaction rate via Eq. (I.10)
and note that a suitable ansatz for ˜̃Cff(t) should have a form analogous to the Hansen-
Andersen ansatz for Cff(t) (5.23). As Eq. (I.13) implies, this procedure would be numerically
equivalent to simply using Hansen-Andersen ansatz for Cff(t) and then taking the integral
of the ansatz to recover the reaction rate. As a final note we would like to emphasize that,
unlike the quantum instanton derivation of Sec. 5.2, the algebra presented in this appendix
is correct in the general multidimensional case.
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