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Abstract— Many daily life tasks require precise control when
making contact with surfaces. Ensuring a smooth transition
from free motion to contact is crucial as incurring a large
impact force may lead to unstable contact with the robot
bouncing on the surface, i.e. chattering. Stabilizing the forces at
contact is not possible as the impact lasts less than a millisecond,
leaving no time for the robot to react to the impact force. We
present a strategy in which the robot adapts its dynamic before
entering into contact. The speed is modulated so as to align
with the surface. We leverage the properties of autonomous
dynamical systems for immediate re-planning and handling
unforeseen perturbations and exploit local modulations of the
dynamics to control for the smooth transitions at contact. We
show theoretically and empirically that by using the modulation
framework, the robot can (I) stably touch the contact surface,
even when the surface’s location is uncertain, (II) at a desired
location, and finally (III) leave the surface or stop on the surface
at a desired point.

I. INTRODUCTION

Establishing a stable contact with an environment is
the first step toward accomplishing interactive tasks. A
wide variety of many real-world manipulation tasks, such
as milling/polishing/finishing workpieces [1], [2], wip-
ing/painting surfaces [3], [4], peeling or dough rolling [5],
include interactions between a tool and an environment. For
such applications, the complete scenario can be categorized
into three regions: (I) Moving in free motion space and
approaching the contact surface; i.e. Free motion region.
(II) Establishing the contact with the surface; i.e. Transition
region. (III) Maintaining the contact with the surface while
moving in the other directions; i.e. Contact region.; see Fig.1.
In this paper, we call a contact stable if the impact happens
only once and the robot remains in contact with the surface
after the impact.

Achieving a stable contact is particularly challenging as
the contact leaves an infinitesimally short window of time
for the robot to react properly to the impact force. It is
however necessary to control for stable contact to avoid that
the robot bouncing on the surface and damaging itself or the
environment. Importantly, the complexity of the environment
increases if the arm and the surface do not dissipate impact
energy, i.e., perfectly elastic impact. In this case, to success-
fully establish a contact with a rigid surface, the robot should
touch the surface with zero velocity so that the post-contact
velocity taken along the line of impact is zero. Nevertheless,
impacts in real-world scenarios are mainly inelastic, where,
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(a) Scenario 1.

(b) Scenario 2.
Fig. 1: Schematic of three subtasks of an interactive application while the
surface’s location is uncertain. The arm starts approaching the surface at the
free motion region. Once it is close enough to the surface, it regulates its
velocity to establish a stable contact at the desired contact point (xc). Then
while sliding on the surface, based on the scenario requirements, it either
leaves the surface (Fig.1a) or reaches the target on the surface (Fig.1b) at
desired departure (xl ) or stop (xs) locations, respectively. qi ∀i∈ {1,2} form
an orthogonal bases in R2.

if the robot does not pass through the contact surface or
the impact does not release energy, the relative post-contact
velocity is a fraction of the relative pre-contact velocity [6].
In this case, touching the surface with near-to-zero velocity
results in a zero post-contact velocity along the impact line,
i.e., the robot remains in contact with the surface after the
impact [7].

The complexity of achieving a stable contact has attracted
attention in the last two decades. Early approaches addressed
the stable contact problem with position/force hybrid control
architectures. [8]–[11] proposed a hybrid control architecture
in which a stable contact can be ultimately established after
a finite number of bounces. On the same track, [7], [12] pro-
posed three control laws for the three motion regions. Once
the first impact has occurred, the controller at the transition
region is activated which, asymptotically, reduces the normal
velocity to zero. In [13], an integral force compensation
with a velocity feedback controller is proposed for force
tracking and rejecting the effect of impacts, where the force
regulation is activated as soon as the force sensor detects
the impact. Indirect force control architectures address the
problem of switching between controllers [14]. [15] proposed
a two layers controller which consists of an impedance
and an admittance controllers. The parameters of the latter
are calculated by solving a Linear Quadratic Regulator
problem to minimize the force overshooting. In [16], [17],



a hybrid impedance(admittance)/time-delayed controller is
proposed to absorb the impact force where the control input
becomes zero if the contact force is not sensed. By artificially
saturating the feedback sensors and modeling the contact
surface via a passive mass-spring system, a controller for a
2-DOF planar robotic arm is proposed to limit the impact
force in [18]. [19] shows that the classical PD feedback
control law can be effectively used for mechanical systems
subject to inequality constraints. By assuming the contact
surface is a passive mass-spring system, [20] developed
an adaptive control architecture to push the system to a
desired state while the dynamics of neither the robot nor the
environment are precisely known. The proposed controller
in [21] guarantees stabilization of the manipulator on the
contact surface after a finite number of bounces. By applying
the concept of energy tanks, [4], [22] proposed tank-based
approaches to ensure the stability of robotic arms driven
by variable impedance controllers during non-contact/contact
transitions. Even though in the mentioned works, it can be
proved that the robot’s motion is stable and the contact is
asymptotically/ultimately stable, there is no guarantee that
the robot does not bounce on the surface after the first impact.

By approximating the contact surface with a passive spring
system and dividing the state space into five regions, [23]
uses the feedback force to propose piecewise affine con-
trollers for each region such that a stable impact is achieved
for linear one dimensional systems. However, in [23] the
stable impact is achieved if the environment and the tool can
be precisely modeled via a spring system and the bandwidth
of the position and force sensors and the communication
delays are infinite and zero, respectively.

In this paper, we exploit the properties of Dynamical
Systems (DS) for immediate re-planning and their inherent
robustness to real-time perturbations and propose an actively
compliant control strategy. In [24] and later in [25] and [28]
, we propose dynamical systems to intercept a moving object
with zero relative velocity by a single or a multi-arm system,
respectively. Those proposed DSs are particularly tailored for
the reaching and softly intercepting moving objects. In this
work, as the transition is a local behavior, we propose a
strategy consisting of locally modulating the robot’s motion
in such a way that a stable contact can be established, even
when the location of the contact surface is uncertain. The
proposed architecture can be integrated into existing DS-
based motion control approaches and modulates the robot’s
motion in dynamic scenarios, where the robot must adapt to
fast external perturbations. The idea of locally modulating
dynamical systems is not novel and it has been previously
used in [26] and [27] for modulating first order DSs. In this
contribution, we use this idea to modulate the motion of a
robot such that:

Objective 1 : If the robot contacts the surface, the impact
happens only once and the robot remains in
contact after the impact.

Moreover, we show that the proposed controller is capable
of modulating the robot’s motion such that:

Objective 2 : The robot contacts the surface at a specific
point (xc).

Objective 3 : If the robot is in contact with the surface, it
slides on the surface and either

a) leaves the surface at a specific departure
location (xl), see Fig.1a, or

b) stops at a specific stop location (xs) on the
surface, see Fig.1b.

As the main scope of this paper is the stability of contact
and not the closed-loop motion generator, we have assumed
that the robot is able to exactly follow the generated motion
at the position level. The rest of the paper is organized
as follows. We formalize our assumptions and problem
formulation in Section II. Section III develops our controller.
The approach’s performance is evaluated on real world robot
experiments in Section IV. This paper concludes with a
discussion of the limitations and future extensions in Section
V.

II. PROBLEM STATEMENT

Suppose the contact surface is non-penetrable, passive and
flat. Moreover, a continuous function (Γ(x) = q1

T x), which
conveys a notion of distance to the surface is available, where
N is the unit normal vector to the surface and x denotes the
position of the robot’s end-effector. By definition, the origin
of the coordinate frame is on the surface and the surface
corresponds to the plane q1

T x = 0. Based on this definition,
one can categorize the task space into two regions: the free
motion region when 0 < q1

T x and the contact region when
q1

T x = 0.
We consider the following continuous-time system. As the

aim of this paper is controlling both position and velocity at
the contact, the DS must be a function of both of them and
the output must define the desired acceleration of the robot.

ẍ =M(x, ẋ) f (x, ẋ, t) (1)

where f (x, ẋ, t) represents the nominal dynamical system
which generates the nominal arm behavior. We assume
that the nominal DS is asymptotically stable to a fixed
target (xt) located above the surface, i.e., 0 < q1

T xt .1 Fur-
thermore, the nominal acceleration is non-zero everywhere
except on the target; i.e. f T (x, ẋ) f (x, ẋ) 6= 0 ∀(x, ẋ) =Rd×d−
{xt ,0}.2M(x, ẋ) ∈ Rd×d is a modulation function which re-
shapes the nominal DS such that it complies with the contact
surface based on the state of the robot. We define the
modulation function as follows:

M(x, ẋ) = QΛQT Q =
[
q1 . . . qd

]
(2)

where qi ∀i ∈ {1, . . . ,d} form an orthonormal basis in
Rd as shown in Fig.1a. λλλ i j(x, ẋ) ∀i, j ∈ {1, . . . ,d} are the

1It is important to note that asymptotically stability of the nominal
DS is only required to achieve Objective 3.a. To achieve the other objec-
tives(Objective 1, Objective 2 and Objective 3.b) it is not necessary for the
nominal DS to be stable.

2If M(x, ẋ) is the control input, this assumption is equivalent to the
controllability of ẍ =M(x, ẋ) f (x, ẋ, t).



entries of Λ, where i is the row number and j is the column
number. The motion direction, tangential and normal to the
surface, can be controlled through the scalar values λλλ i j ∀i, j∈
{1, . . . ,d}. As an example, by setting λλλ 1 j(x, ẋ) = 0 ∀ j ∈
{1, . . . ,d}, the acceleration of the robot normal to the surface
will be zero; i.e. q1

T ẍ = 0. Moreover, by setting λλλ ii(x, ẋ) =
1, λλλ i j(x, ẋ) = 0 ∀i, j ∈ {1, . . . ,d}, i 6= j, the nominal DS
drives the robot in the qi

th direction. We exploit this property
and limit the influence of the modulation function to a region
in a vicinity of the surface; denoted as the transition region.3.
Given that we have at our disposal the function Γ(x) to
measure the distance to the surface, we set the transition
region to be all points such that 0 < Γ(x) ≤ ρ, ρ ∈ R>0.
Outside this region, to avoid undesirable modulations, the
modulation exponentially decreases as a function of the
distance to the surface. To modulate locally the dynamics
of the DS given by (1) and (2), we set:

λλλ i j(x, ẋ)=


λi j(x, ẋ) if Γ(x)≤ ρ

(λi j(x, ẋ)−1)e
ρ−Γ(x)

σ +1 if i = j ρ < Γ(x)

λi j(x, ẋ)e
ρ−Γ(x)

σ if i 6= j ρ < Γ(x)
(3)

∀i, j ∈ {1, . . . ,d} where 0 < σ defines the speed at which
the modulation vanishes in the free motion region. ρ defines
the region of the influence of the modulation function. If
ρ < Γ(x), the robot is far from the contact surface and Λ =
Id×d ; i.e. the robot is driven solely by the nominal dynamical
system.

In the following section, we show how by defining
λi j ∀i, j ∈ {1, . . . ,d}, a stable contact can be achieved.
Moreover, we define ρ based on the kinematic constraints of
the robot. First, we consider a perfect elastic impact between
the robot and the contact surface; i.e. the Coefficient Of
Restitution (COR)4 (e) is one. Then, we extend this to a
realistic scenario where the impact is inelastic, i.e. 0≤ e < 1.

III. COMPLIANT MODULATION FUNCTION

A. The elastic impact
Consider a scenario where the impact is perfectly elastic

(e = 1). In this case, the normal velocities5 of the robot
before and after the impact are equal in amplitudes but
pointing to opposite directions. Hence, to achieve a stable
contact (Objective 1), the normal velocity of the robot at the
contact must be zero, i.e., q1

T ẋ(t∗) = 0, where, t∗ is the time
when the robot enters into the contact with the surface.

Theorem 1: For a given initial state {x0, ẋ0 ∈ Rd | 0 <
q1

T x0 ≤ ρ, f (x0, ẋ0) 6= 0}, the motion generated by (1) and
(2) makes contact with the surface with zero normal velocity
and satisfies Objective 1, if ∀ j ∈ {1, . . . ,d}

λ1 j(x, ẋ) =
(
−2ωNT ẋ−ω

2NT x
)

f j(x, ẋ, t) (4)

3The development of the transition region is partly inspired from the
potential field obstacle avoidance approaches [29].

4COR is defined as the ratio of velocities after and before an impact,
taken along the line of the impact.

5For sake of simplicity, in the rest of the paper, we call the velocity
normal to the surface, the normal velocity.

where f j(x, ẋ, t) =
f (x,ẋ,t)T q j

f (x,ẋ,t)T f (x,ẋ,t)
and

|q1
T ẋ0|

q1T x0
≤ ω (5)

Moreover, the motion generated by (1) and (2) makes contact
with the surface at xc and satisfies Objective 2, if ∀(i, j) ∈
{(2,1),(2,2), . . . ,(d,d)}

λi j(x, ẋ) =
(
−2ωqi

T ẋ−ω
2qi

T (x− x∗)
)

f j(x, ẋ) (6)

Where x∗ = xc.
Proof: see Appendix A.

Theorem 1 provides a function to modulate the motion
of the robot’s end-effector such that stable contact can be
established at the desired location. However, it is important
to note that defining the pre-specified contact location is
not necessary for implementing the proposed modulation
framework. For instance, by defining

λi j(x, ẋ) =

{
0 if i 6= j

1 if i = j
∀i∈ {2, . . . ,d} ∀ j ∈ {1, . . . ,d}

(7)

and λ1 j(x, ẋ), ∀ j ∈ {1, . . . ,d} by (4), the motion of the
nominal DS is modulated only in the normal direction.
Hence, if the robot enters the transition region, it stably
makes contact with the surface as the normal velocity of
the robot is modulated based on (4). However, the contact
location emerges from the motion generated by the nominal
DS.

If the robot starts its motion outside of the transition
region, Eq. (3) states that the modulation function is activated
once it enters the region. Hence, the initial state (q1

T x0)
in Theorem 1 is equivalent to ρ . However, Theorem 1
depends on the dynamics of the robot and is achievable
only if the robot can decelerate sufficiently fast. Hence, the
transition region must be set sufficiently large to meet the
robot’s physical limits. This is summarized in the following
proposition:

Proposition 1: For a robot with upper bounds ẋmax and
ẍmax on velocity and acceleration, respectively, given q1

T x0 =
ρ , we set ρ and ω in (3) and (4), respectively, such that
ρ = 3(q1

T ẋmax)
2

|q1T ẍmax|
, ω = | q1

T ẍmax
3q1T ẋmax

|.
Proof: see Appendix B.

Once the robot is in contact with the surface, two inter-
active scenarios can be accomplished. In the first scenario,
the robot slides on the surface and leaves it at the specific
departure location (xl); see Fig.1a. In the second scenario,
the robot slides on the surface till it reaches the desired stop
location on the surfaces (xs); see Fig.1b. The former can
be achieved by modulating the nominal dynamical system,
x∗ and the definition of Γ(x). Whereas, the latter can be
achieved by modulating only the nominal DS and x∗. These
are summarized in the following propositions:

Proposition 2: For a given initial state {x0, ẋ0 ∈
Rd | q1

T x0 ≤ ρ, f (x0, ẋ0) 6= 0}, the motion generated
by the nominal DS (1) modulated by (2), where



λi j(x, ẋ), ∀(i, j) ∈ {(1,1),(1,2), . . . ,(d,d)} are defined
by (4) and (6), makes contact with the surface at xc and
then slides on the surface till it asymptotically reaches xs

(i.e. satisfaction of Objective 3.b) if x∗ in (6) is such that:

x∗ =

{
xc if 0 < q1

T x

xs if q1
T x = 0

(8)

Where, xs is defined on the surface.
Proof is omitted as it is similar to the one given in

Appendix A.
Proposition 3: For a given initial state {x0, ẋ0 ∈

Rd | q1
T x0 ≤ ρ, f (x0, ẋ0) 6= 0}, the motion generated

by the nominal DS (1) modulated by (2), where
λi j(x, ẋ), ∀(i, j) ∈ {(1,1),(1,2), . . . ,(d,d)} are defined
by (4) and (6), makes contact with the surface at xc and
then leaves it at xl (i.e. satisfaction of Objective 3.a) if x∗

and Γ(x) in (6) and (3), respectively, are defined as follows:

x∗ =

{
xc if 0 < q1

T x

2xl− xc if q1
T x = 0

(9)

Γ(x) = q1
T x+

(
ρ− (xl − xc)T (xl − x)

)
e−(x

l−x)T Σ−1(xl−x) (10)

Where, xl is defined on the surface and Σ∈Rd×d is a positive
definite matrix.
Proof: see Appendix C.

As (4) is not a function of x∗, changing x∗ does
not influence the motion of the robot in the normal
direction to the surface. Σ defines the influence of(
ρ− (xl− xc)T (xl− x)

)
e−(x

l−x)T Σ−1(xl−x) over q1
T x in (10).

If all entries in Σ are small, its influence will be small and
vice-versa.

B. The inelastic impact

In an inelastic impact, due to internal friction, kinetic
energy is dissipated and hence the coefficient of restitution
is less than one, i.e., 0≤ e < 1. In this case, we can assume
that if the normal velocity of the robot is very small (−1�
δẋ ≤ 0) on contact, the surface absorbs all the kinetic energy
of the arm, i.e. the end-effector remains in contact after the
impact6. Hence, to achieve Objective 1, the velocity of the
robot must satisfy the following constraint at impact:

δẋ ≤ q1
T ẋ(t∗)≤ 0 (11)

Theorem 2: Assuming the impact is inelastic. For a given
initial state {x0, ẋ0 ∈ Rd | 0 < q1

T x0 ≤ ρ, f (x0, ẋ0) 6= 0},
the dynamical system (1) and (2) satisfies condition (11),
if λ1 j(x, ẋ) =

ω

(
−q1

T ẋ+(δẋ +ν)
)

f j(x, ẋ) q1
T ẋ < δẋ

ω

(
ν

δẋ
q1

T ẋ−ω(1− q1
T ẋ

δẋ
)q1

T x
)

f j(x, ẋ) δẋ ≤ q1
T ẋ≤ 0

ω

(
−2NT ẋ−ωNT x

)
f j(x, ẋ) 0 < q1

T ẋ

(12)

(13)

(14)

6This assumption is adopted from [7].

(a) Stable contact is achieved by using the proposed modulation function.
Γ(x) is defined based on (10). The contact is assumed inelastic. ρ = 0.1,
σ = 0.01, ω = 0.1, ν = 0.01 and δẋ =−0.02. As it is illustrated above, at
the transition region, the velocity of the robot is reduced based on Theorem
2 such that it satisfies (11). Moreover, in the tangential directions, the robot
regulates its velocity based on (6) and touches the surface exactly at the
desired contact point (xc = [−0.3 0]T ). As it is shown in this example,
based on Proposition 3, the robot leaves the surface at the desired leaving
point (xl = [0 0]T ) .
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(b) The modulation function is disabled by setting M = I. As the force of
impact is nonzero, (≈ −19.4N), not only is the contact unstable causing
the robot to bounce on the surface, but also the robot does not contact the
surface at the desired location.

Fig. 2: An intuitive example showing the behavior of the proposed control

in three different regions. f (x, ẋ) =
[
−1 0
−40 −25

]
ẋ+
[
−1 0
0 −1

]
(x− xt),

where xt = [0.1 −0.2]T .

where f j(x, ẋ) =
f (x,ẋ,t)T q j

f (x,ẋ,t)T f (x,ẋ,t)
and ω is defined based on (5)

(or its equivalent in Proposition 1) and

δẋ−q1
T ẋ0

e1−1
< ν (15)

Proof: see Appendix D.
λ1(x, ẋ) defined by (12)-(14) is continuous. The main

advantages of the modulation function proposed for the
inelastic impact over the elastic one is in its handling of
uncertainties in the surface location:

Proposition 4: We assume a planar surface with equation
q1

T x = η , whose orientation is precisely defined through its
normal (N) but whose location (η) is imprecise but bounded
with a known upper bound ηηη , i.e. |η |≤ ηηη < ρ . Moreover,
for a given initial state x0, ẋ0 ∈Rd | q1

T ẋ0 < δẋ < 0,0≤ηηη <
q1

T x0 ≤ ρ , the dynamics of the robot is generated by the
nominal DS (1) modulated by (2), where λ1 j(x, ẋ), ∀( j) ∈
{1,2, . . . ,d} are defined by (12). Then, the velocity of the
robot when it impacts the surface is bounded and satisfies
condition (11), if ν and ω are defined as follows:

ν =−δẋ, ω =
δẋ−q1

T ẋ0

q1T x0−ηηη
(16)

Proof: see Appendix E.
Proposition 4 ensures that the contact is stable and Objec-

tive 1 is satisfied. However, the uncertainty on the location
of the surface must remain bounded within a small region.
Moreover, the contact location can not be precisely specified.



TABLE I: The details of the systematic assessment. All the positions are
with respect to the robot’s base. The units are defined in the metric system.
δẋ = −0.01ms−1 and ρ = 0.2m. “ Contact ”, “Leaving/ Stopping” errors
are the Euclidean distance between the real and the desired corresponding
points. “Pre-contact” and “Pre-transition” velocities are the velocity of the
end-effector in the normal direction when entering the contact and transition
regions, respectively.

Experimental set-up 1: Metallic surface and plastic tool
Scenario 1 Scenario 2

Initial position
[
−0.5±0.2 −0.0±0.4 0.8±0.1

] [
−0.5±0.1 −0.0±0.3 0.8±0.1

]
Contact Error 0.0±0.03 0.0±2×10−3

Leaving/Stopping Error 0.0±0.01 0.0±4×10−3

Pre-contact velocity 0.008±0.006 0.007±0.001
Pre-transition velocity 0.24±0.14 0.25±0.13

Experimental set-up 2: Metallic surface and tool
Scenario 1 Scenario 2

Initial position
[
−0.5±0.1 −0.2±0.3 0.8±0.2

] [
−0.5±0.1 −0.0±0.3 0.8±0.2

]
Contact Error 0.0±0.02 0.0±×10−3

Leaving/Stopping Error 0.0±6×10−3 0.0±2×10−3

Pre-contact velocity 0.006±0.00 0.006±0.00
Pre-transition velocity 0.29±0.02 0.27±0.04

The performance of the proposed framework is illustrated by
a simple intuitive 2-D example in Fig.2, where, in Fig.2a,
by using the proposed framework, the robot can stably
transit to the contact region. Fig.2b illustrates an unstable
contact where the modulation function is disabled by setting
M(x, ẋ) = I. In this case, as contact velocity is very high,
the robot bounces on the surface. The source code in C++ is
available on-line https://github.com/sinamr66/CoDs SDK.

IV. EMPIRICAL VALIDATION

We consider a task of wiping a surface. The performance
of the proposed framework is evaluated on a real robotic
arm platform, i.e., 7 DOF robotic arm (KUKA IIWA). The
robot is controlled at the level of joint positions at a rate
of 200 Hz. The output of the DS (1) is converted into the
joint state using the damped least squares inverse kinematic
solver. The robot is equipped with a 6-axis ATI force-torque
sensor which is only used for recording forces and not in
the controller. The nominal DS is a second order dynamical

system: f (x, ẋ) = −40ẋ−

[
400 0 0

0 400 0
4000 4000 400

]
(x− xt). These

values were chosen such that the robot enters the transition
region.

The surface of the fender is approximated by a plane
which is calculated by capturing the position of three markers
on the surface. The positions are captured by an Optitrack
motion capture system. The orientation of the end-effector is
constrained to be normal to the contact surface. The impact
is assumed inelastic and δẋ =−0.01ms−1.

The empirical validation is divided into three parts. In
the first part, we systematically assess the performance of
the controller in executing the two scenarios illustrated in
Fig.1a and Fig.1b in a known environment. In the second
part, we assess the controller’s performance in modulating
the robot’s motion in a dynamically changing environments.
In the third part, the performance of the controller is assessed
in an uncertain environment.

1) Systematic assessment: Two experimental set-ups are
designed to assess the performance of the system. In the first
one, the surface is planar and both surface and the tool are
metallic and rigid. In the second one, the surface is a metallic
fender and the tool is made from plastic. Both scenarios
were repeated 30 times for each set-up where the initial

state of the robot is randomly chosen; all the information
is summarized in Tab. I. The location of the surface is fixed.
The snapshots of the motion execution in both experimental-
set-ups are shown in Fig. 3 and Fig. 4. Visual inspection of
video and the measured force profiles confirms that, in all
the trials, the robot stably makes contact with the surface
and accomplishes the tasks. However, the inspection of the
measured velocity profiles indicates that in three cases the
velocity at impact is higher than 0.01ms−1. An example of
the motion of the robot is illustrated in Fig. 4. As can be
seen, the normal velocity of the robot is reduced to δẊ in
the transition region to ensure a stable contact.

As reported in Table I, the overall position errors at xc,
xl and xs are very small and they can be considered to be
negligible in the wiping scenario. This indicates that even
though the surface is not exactly planar in our implemen-
tation, our modulation function is capable of accomplishing
the desired tasks. These inaccuracies can be attributed to
three different causes. i) The main cause of this error is the
approximation of the contact surface. In this experiment, we
assumed that the contact surface is a plane. However, the
fender’s surface is bumpy. This results in inaccuracies in the
measurement of the distance between the robot and the real
surface. ii) The second cause of error is the inverse kinematic
[approximation] algorithm. Although, the motion of the robot
is not super fast, the IK solver is still unable to generate a
very accurate joint-level motion corresponding to the desired
end-effector trajectory. The kinematic constraints of the robot
are the main reasons for this shortcoming. iii) The third cause
of the error is delays in measuring the joint positions and
the communication channels. As the robot runs closed-loop,
any measuring delays cause inaccuracies in specifying the
desired motion of the robot. In spite of these, the overall
performance of the task execution is satisfying and the robot
was able to wipe the surface successfully in all the trials.

2) Modulation under perturbations: The second assess-
ment is designed to illustrate the capability of the modulation
framework in performing Scenario 1 (Fig.1a) under pertur-
bations. While the robot is moving from the initial location,
a human operator perturbs either the robot or the surface.
Perturbations on the robot are applied to its end effector.
Due to the closed-loop implementation of (1), the robot does
not stiffly stick to its current state. Hence, one can grab the
robot’s end-effector and move it around (Fig. 6). As it can be
seen in the accompanying video, when the robot is perturbed,
the modulation function modifies the motion of the robot
such that Objective 1, Objective 2 and Objective 3.a are
achieved. We then assess the performance of the controller in
a dynamically changing environment. Once the robot started
moving, the operator changes the fender’s position as well
as its orientation (Fig.5). Due to the fact that the modulation
function is inherently a linear system, it is computationally
efficient. Hence, it can instantaneously modify the robot’s
motion wrt. the current state of the surface.

3) Modulation under uncertainties: In the final experi-
ment, we assess the performance of the controller in an

 https://github.com/sinamr66/CoDs_SDK


(a) 0 s. (b) 3.6 s. (c) 5.6 s. (d) 8.27 s. (e) 8.92 s. (f) 9.51 s. (g) 9.8 s. (h) 10.16 s.

Fig. 3: Close-up snapshots of the end-effector motion while performing Scenario 1. Both surface and the tool are metallic and rigid. The robots gets into
contact with the surface at (d) and leaves the surface at (g).
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Fig. 4: In Fig. 4a and Fig. 4c, the location of the surface is precisely measured. In the bottom right figures, the normal velocity of the robot at the impact
region is illustrated. δẋ =−0.01ms−1. The videos are also available on-line at https://youtu.be/fhfBBMH4XVg and https://youtu.be/uHaElQRmofk.

(a) 0.0 s. (b) 1.7 s. (c) 4.3 s.

(d) 8.3 s. (e) 10.2 s. (f) 11.1 s.

Fig. 5: Snapshots of the motion of the robot in a dynamically changing
environment. (a) is the initial location. In (c), the robot makes contact with
the surface at xc. In (d), the robots slides on the surface while the surface’s
orientation is changed. In (e), the robot reaches xl and, consequently, leaves
the surface as depicted in (f).

uncertain environment while performing Scenario 1 (Fig.1a).
Uncertainties are modeled as random noise on the location
of the surface, where ηηη = 0.15m. As δẋ = −0.01ms−1 and
q1

T x0 = ρ = 0.2 and q1
T ẋmax = −0.4ms−1, and based on

(16), ν = 0.1 and ω = 78. The experiment was repeated 30
times; see the accompanying video and Table II. In all 30
trials, the impacts were stable. However, as expected, the
robot does not exactly make contact with the surface at xc.
Moreover, as a force/tactile sensor was not used, the robot
has no way to recognize that a contact occurred. Hence, in
28 out of 30 cases, the robot does not slide on the surface,
after the contact, to reach xl . In the other two cases, η was
approximately 0.

V. SUMMARY AND DISCUSSION

In this paper, we propose a controller for locally mod-
ulating a motion of the robot during non-contact/contact
transitions. Using/employing this approach, the robot reduces
its velocity to a certain threshold before entering into contact
with the surface such that the post-contact velocity becomes
zero; i.e. the impact is stable and the robot does not bounce
on the surface. Furthermore, by modulating the motion of the
robot in the tangential directions, we showed that the contact

TABLE II: The details of the systematic assessment of the controller in an
uncertain environment. As η = 0.15 and ρ = 0.20, the effective transition
region is 5cm. Although, the arm does not contact the surface at xc, the
contact is stable and, hence, the robot slides on the surface till it reaches
xc. The contact error is almost constant for η < 0.1 and it exponentially
increases for 0.1≤ η .

Scenario 1−0.5±0.1
−0.1±0.3
0.8±0.2

Initial position

η 0.06±0.04
Contact error 0.0764±0.13
Pre-contact velocity 0.006±0.005
Pre-transition velocity 0.13±0.013

(a) 0.0 s. (b) 0.96 s. (c) 3.48 s. (d) 5.72 s.

(e) 6.47 s. (f) 14.81 s. (g) 16.32 s. (h) 18.18 s.

Fig. 6: Snapshots of the motion of the robot while performing Scenario 1
under perturbations. As η = 15 and ρ = 20, the effective transition region
is 5cm. Due to the closed loop implementation of (1), the robot complies
with the human operator in all directions.

location can be specified. Moreover, while the robot slides
on the surface, it can either leave or stop on the surface at
the desired departure or stop points, respectively.

Throughout the proofs, we assume that x∗ is a fixed target.
However, in two cases it is not constant. In the first case, x∗

is changed wrt. the state of the robot in Proposition 2 and 3.
This does not actually affect the performance of the system
for two reasons as changing x∗ based on (8) or (9) does
not affect the motion of the robot in the normal direction.
Hence, the switch between 0 < NT x and NT x = 0 happens
only once. In the second case, x∗ changes while the surface is

https://youtu.be/fhfBBMH4XVg
https://youtu.be/uHaElQRmofk


perturbed. In this case, as the modulation function is very fast
to compute and its convergence rate is faster than the update
rate, it can properly react, in real-time, to the perturbations
as presented in Section IV-.2.

In Section IV, the modulated DS is implemented in closed-
loop as the low-level controller of IIWAs fully compensates
for the robot’s dynamics and it is safe to assume that
the measured position is equal to the commanded position.
However, this assumption might not be true in other robotic
platforms. In these cases, in order to ensure the stability of
contact, one needs to study the behavior of the modulated-DS
while considering the robot’s controller and dynamics.

As the sole information about the surface is its location,
any inaccuracies in the position measurements deteriorate the
performance of the controller. To address this, we present
Proposition 4 to improve the robustness of the system in
face of uncertainties in the location of the surface. This,
however, fails in identifying the true location of the surface
once the robot makes contact with the surface. By integrating
our modulation framework and force control architectures,
one can use the force-feedback information not only for
identifying the true location of the surface, but also for
controlling the contact force while the robot is on the surface.

Even though, the performance of the system is successfully
evaluated on a bumpy surface, in this paper, the contact
surface is assumed planar. We are currently working on
generalizing the framework such that general shaped surfaces
can also be considered. Furthermore, in this work, we do
not control for the forces and hence could not compensate
for strong frictional forces. To address this, ongoing work
is oriented towards unifying force control frameworks with
the proposed motion generator such that one can precisely
control for the interaction of (both normal and frictional)
forces while the robot slides on the surface.
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APPENDIX

A. Proof of Theorem 1
By definition, Q is an orthonormal matrix; i.e QQT = I, QT = Q−1. Moreover,

as qi ∀i ∈ {1, . . . ,d} form an orthonormal basis in Rd , ∀w ∈ Rd :w =
d
∑

i=1
qiqi

T w.

Substituting (4) and (2) into (1) and multiplying both sides of the resultant equation
by qT

1 yields:

q1
T ẍ = q1

T QΛQ−1 f (.) =
d

∑
j=1

λ1 j(x, ẋ)qT
j f (.) =

d

∑
j=1

−2ωNT ẋ−ω2NT x

f (.)T f (x, ẋ, t)
f (.)T q jqT

j f (.)

=
−2ωNT ẋ−ω2NT x

f (.)T f (.)
f (.)T

d

∑
j=1

q jqT
j f (.) =

(
−2ωNT ẋ−ω

2NT x
) f (.)T f (x, ẋ, t)

f (.)T f (.)

=−2ωNT ẋ−ω
2NT x

(17)

Which is a critically-damped second order linear differential equation where ω defines
the natural frequency of this system. The solution of (17) for a given initial state
{x0, ẋ0} is:

q1
T x = e−tω (q1

T x0 +(q1
T x0ω +q1

T ẋ0)t) (18)

Based on (5), as |q1
T ẋ0 |

q1
T x0
≤ ω and 0 < q1

T x0, 0≤ q1
T x0ω +q1

T ẋ0. Hence, (18) is zero

only when t tends to infinity; i.e. lim
t→+∞

q1
T x = 0. Moreover, the time derivative of

(18) at t = +∞ is zero; i.e. lim
t→+∞

q1
T ẋ = lim

t→+∞
e−tω (q1

T ẋ0− (q1
T x0ω +q1

T ẋ0)ωt) = 0.
Hence, the motion generated by 1 and 2 with respect to (4) and (5), enters the contact
surface with zero normal velocity. Hence, Objective 1 is satisfied.

Similar to (17), substituting (6) and (2) into (1) and multiplying both sides of the
resultant equation by qi, ∀i ∈ {2, . . . ,d} yields:

qT
i ẍ =qT

i QΛQ−1 f (.) =
d

∑
j=1

λi j(x, ẋ)qT
j f (.) =−2ωqi

T ẋ−ω
2qi

T (x− x∗) (19)

Which is a second order linear differential equation. Similar to (18), the solution of
(19) for a given initial state {x0, ẋ0} converges to qi

T x∗ when t tends to infinity; i.e.
lim

t→+∞
‖qi

T x−qi
T x∗‖= 0. Where, in this theorem, x∗ = xc. As this holds ∀i∈ {2, . . . ,d}

and the rate of change of (17) and (19) are the same, the motion reaches xc when
t = +∞, the dynamical system (1) and (2) with respect to (5) and (6) contacts the
surface at xc; i.e. Objective 2 is satisfied. �

B. Proof of Proposition 1
As the modulation function is activated once the robot enters the transition region,

ρ = q1
T x0. Substituting (4) and (2) into (1) with ω =

|q1
T ẋ0 |
ρ

and multiplying both
sides of the resultant equation by q1

T yields:

q1
T ẍmax =−2ωq1

T ẋ0−ω
2q1

T x0 =−2ωq1
T ẋ0−ω

2
ρ =−2

|q1
T ẋ0|
ρ

q1
T ẋ0− (

q1
T ẋ0

ρ
)2

ρ ⇒

ρ =
−2|q1

T ẋ0|q1
T ẋ0− (q1

T ẋ0)
2

q1
T ẍmax

(20)

To be safe, we take the upper bound of (20), i.e. :ρ =
3(q1

T ẋmax)2

|q1
T ẍmax |

. Substituting this

into ω =
|q1

T ẋ0 |
ρ

yields:ω = | q1
T ẍmax

3q1
T ẋmax

|. �

C. Proof of Proposition 3
xl is located in the middle of xc and 2xl −xc.Once the robot is in contact with the

surface (q1
T x = 0), as the motion generated by (6) moves on a straight line towards

x∗ = 2xl − xc , it passes xl . Moreover, the modulation part of (10) is less than ρ for
all the points between xc and xl as ∀θ ∈ [0,1) and x = xc +θ(xl − xc)

(
ρ− (xl − xc)T (xl − x)

)
e−(x

l−x)T Σ−1(xl−x) =(
ρ− (xl − xc)T (xl − xc−θ(xl − xc))

)
e−(1−θ)2(xl−xc)T Σ−1(xl−xc) =ρ−(1−θ)(xl − xc)T (xl − xc)︸ ︷︷ ︸

0<

e−(1−θ)2(xl−xc)T Σ−1(xl−xc)︸ ︷︷ ︸
<1

< ρ

(21)

However, if lim
θ→1+

, the modulation part of (10) is greater than ρ . Hence, once the

robot passes xl , the modulation function is deactivated based on (3) and the nominal
dynamical system leaves the surface to converge to xt . However, it is important to note
that if Σ is very small, even thought it leaves the surface at xl , the motion might not
converge to xt . �

D. Proof of Theorem 2
Substituting (12)-(14) and (2) into (1) and multiplying both sides of the resultant

equation by qT
1 yields:

q1
T ẍ =


−ω

(
q1

T ẋ− (δẋ +ν)
)

q1
T ẋ < δẋ

ω2q1
T x+νω

δẋ
q1

T ẋ−ω
2q1

T x δẋ ≤ q1
T ẋ≤ 0

−2ωNT ẋ−ω
2NT x 0 < q1

T ẋ

(22)

(23)

(24)

q1
T ẍ defined by (22)-(24) is continuous. Based on q1

T ẋ0, the proof of Theorem 2
needs to be done in three different velocity regions. In the third region, 0 < q1

T ẋ0.
Hence, based on (24): q1

T ẍ =−2ωq1
T ẋ−ω2q1

T x, which is equal to (17). Hence, as
shown in Appendix A, as long as |q1

T ẋ0 |
q1

T x0
≤ ω , the motion reaches the surface with

zero velocity. Hence, Objective 1 is satisfied.
In the second region, δẋ ≤ q1

T ẋ ≤ 0. Hence, based on (23), q1
T ẍ =

ω2q1
T x+νω

δẋ
q1

T ẋ−ω2q1
T x. The aforementioned DS yields that if q1

T ẋ= δẋ, q1
T ẍ=ων ,

where, based on (15), 0 < ων . This means that once q1
T ẋ enters this region, it does

not cross the velocity boundary at δẋ; i.e. it does not get less than δẋ. Moreover, while
the robot is above the surface (i.e. 0 < q1

T x) and q1
T ẋ = 0, the normal acceleration

is negative; i.e. q1
T ẍ≤ 0. Hence, the robot’s normal velocity can not get higher than

zero. To sum up, if q1
T ẋ is in this region, the robot moves towards the contact surface

with the velocity between 0 and δẋ. Hence, Objective 1 is satisfied.
In the first region, q1

T ẋ0 < δẋ. Hence, based on (22), q1
T ẍ =−ω(q1

T ẋ−(δẋ +ν)).
The solution of the aforementioned dynamic for a given initial state {x0, ẋ0} is given
by:

q1
T x(t) =

(ν +δẋ−q1
T ẋ0)e−ω−1t +ω(q1

T x0 +νt +δẋt)+(ν +δẋ)t +q1
T ẋ0

ω



(25a)

q1
T ẋ(t) = (q1

T ẋ0−ν−δẋ)e−ωt +δẋ +ν (25b)

Both (25a) and (25b) are monotonic profiles; i.e. if 0< q1
T x0 and q1

T ẋ0 < δẋ, (25a)
is monotonically decreasing and (25b) is monotonically increasing. Hence, based on
(25b), q1

T ẋ(t∗) = δẋ at t∗ =−ln( ν

ν+δẋ−q1
T ẋ0

)ω−1. Given q1
T ẋ0 < δẋ, substituting (5),

(15) and t∗ into (25a) yields

q1
T x(t∗) = (δẋ +ν)(−ω

−1 ln(
ν

ν +δẋ−q1
T ẋ0

))+(q1
T ẋ0−δẋ)ω

−1 +q1
T x0

= (−(δẋ +ν) ln(
ν

ν +δẋ−q1
T ẋ0

)−δẋ +q1
T ẋ0)ω

−1 +q1
T x0

(26)

As − q1
T ẋ0

q1
T x0
≤ ω , q1

T x(t∗) defined by (26) is bounded:

q1
T x0δẋ

q1
T ẋ0

(
ln
(

ν

ν +δẋ−q1
T ẋ0

)
+1
)
+

q1
T x0 ν

q1
T ẋ0

ln
(

ν

ν +δẋ−q1
T ẋ0

)
≤ q1

T x(t∗)< q1
T x0

(27)

By defining 0 <
δẋ−q1

T ẋ0
e1−1

< ν , the lower bound of (27) will be positive:

0 <
q1

T x0δẋ

q1
T ẋ0︸ ︷︷ ︸

0<

(
ln
(

ν

ν +δẋ−q1
T ẋ0

)
+1
)

︸ ︷︷ ︸
0<

+
q1

T x0 ν

q1
T ẋ0︸ ︷︷ ︸
<0

ln
(

ν

ν +δẋ−q1
T ẋ0

)
︸ ︷︷ ︸

<0

(28)

Hence, the robot’s normal velocity is δẋ before it gets into the contact. Moreover,
as 0 < q1

T ẍ if q1
T ẋ = δẋ, the robot moves toward the contact surface with δẋ ≤ q1

T ẋ.
To sum up, in all three regions, the proposed modulation function regulates the normal
velocity of the robot such that it satisfies (11) before the robot gets into the contact
with the surface. �

E. Proof of Proposition 4
To satisfy (11) when the location of the surface is uncertain, we need to study the

worse scenario; namely when η =ηηη . In this case, to achieve Objective 1, the robot’s
normal velocity must be δẋ at q1

T x =ηηη . Hence, (26) should lower bounded by ηηη :

(−(δẋ +ν) ln(
ν

ν +δẋ−q1
T ẋ0

)−δẋ +q1
T ẋ0)ω

−1 +q1
T x0 =ηηη (29)

Moreover, Theorem 2 requires that: 0< ν ≤−δẋ, 0<ω . Equation (29) with respect
to 0 < ν ≤−δẋ,0 < ω does not have a unique solution. Hence, one can use numerical
solvers to minimize ω with respect to (29) and 0 < ν ≤ −δẋ, 0 < ω . However, as
ηηη < q1

T x0 and q1
T ẋ0 < δẋ, one can set ν = −δẋ and ω =

δẋ−q1
T ẋ0

q1
T x0−ηηη

. This, based on
our experience, results in an acceptable performance. To conclude, by defining (16),
q1

T ẋ(t) = δẋ at q1
T x(t) =ηηη . Hence, ∀η ∈ [−ηηη ,ηηη ], based on (13), the robot’s velocity

at the contact is δẋ ≤ q1
T ẋ; i.e. (11) is satisfied. �
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