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Abstract

A simple task of storing a database or transferring it to a different point via
a communication channel turns far more complex as the size of the database
grows large. Limited bandwidth available for transmission plays a central role
in this predicament. In two broad contexts, Content Distribution Networks
(CDN) and Distributed Storage Systems (DSS), the adverse effect of the grow-
ing size of the database on the transmission bandwidth can be mitigated by
exploiting additional storage units. Characterizing the optimal tradeoff be-
tween the transmission bandwidth and the storage size is the central quest to
numerous works in the recent literature, including this thesis.

In a DSS, individual servers fail routinely and must be replicated by down-
loading data from the remaining servers, a task referred to as the repair process.
To render this process of repairing failed servers more straightforward and ef-
ficient, various forms of redundancy can be introduced in the system. One of
the benchmarks by which the reliability of a DSS is measured is availability,
which refers to the number of disjoint sets of servers that can help to repair
any failed server. We study the interaction of this parameter with the amount
of traffic generated during the repair process (the repair bandwidth) and the
storage size. In particular, we propose a novel DSS architecture which can
achieve much smaller repair bandwidth for the same availability, compared to
the state of the art.

In the context of CDNs, the network can be highly congested during certain
hours of the day and almost idle at other times. This variability of traffic can be
reduced by utilizing local storage units that prefetch the data while the network
is idle. This approach is referred to as caching. In this thesis we analyze a
CDN that has access to independent data from various content providers. We
characterize the best caching strategy in terms of the aggregate peak traffic
under the constraint that coding across contents from different libraries is
prohibited. Furthermore we prove that under certain set of conditions this
restriction is without loss of optimality.

Keywords: Coded Caching, Distributed Storage Systems, Memory-Rate
Tradeoff, Content Distribution Networks, Exact Repair, Functional Repair,
Repair Bandwidth, Lattices, Shortest Vector Problem, Compute-and-Forward.






Résumeé

Une tache simple consistant a stocker une base de données ou a la transférer
vers un point différent via un canal de communication devient beaucoup plus
complexe a mesure que la taille de la base de données augmente. La bande
passante limitée disponible pour la transmission des données joue un role cen-
tral dans cette situation difficile. Dans deux grands contextes, les réseaux de
distribution de contenu et les systemes de stockage distribué, 1'effet négatif de
la taille croissante de la base de données sur la bande passante de transmission
peut étre atténué en exploitant des unités de stockage supplémentaires. Car-
actériser le compromis optimal entre la bande passante de transmission et la
taille de stockage est la quéte centrale de nombreux travaux dans la littérature
récente, y compris cette these.

Dans un DSS, les serveurs individuels échouent régulierement et doivent
étre répliqués en téléchargeant des données a partir des serveurs restants, une
tache appelée processus de réparation. Pour rendre ce processus de réparation
des serveurs défaillants plus simple et plus efficace, diverses formes de redon-
dance peuvent étre introduites dans le systeme. L'un des criteres de référence
permettant de mesurer la fiabilité d’un DSS est disponibilité, qui fait référence
au nombre d’ensembles de serveurs disjoints qui peuvent aider a réparer tout
serveur défaillant. Nous étudions I'interaction de ce parametre avec la quantité
de trafic généré pendant le processus de réparation et la taille de stockage. En
particulier, nous proposons une nouvelle architecture DSS qui permet d’obtenir
une bande passante de réparation beaucoup plus petite pour la méme disponi-
bilité, par rapport a I’état de la technique.

Dans le contexte des CDN, le réseau peut étre tres encombré pendant
certaines heures de la journée et presque inactif a d’autres moments. Cette
variabilité du trafic peut étre réduite en utilisant des unités de stockage lo-
cales qui prélevent les données alors que le réseau est inactif. Cette approche
est appelée mise en cache. Dans cette these, nous analysons un CDN qui a
acces a des données indépendantes provenant de différents fournisseurs de con-
tenu. Nous caractérisons la meilleure stratégie de mise en cache en termes de
trafic de pointe agrégé sous la contrainte que le codage a travers le contenu
de différentes bibliotheques est interdit. En outre, nous prouvons que dans
certaines conditions, cette restriction est sans perte d’optimalité.
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Introduction

Of all the fundamental tradeoffs studied in the context of network information
theory, the trade-off between storage and bandwidth has received significant
attention in the past decade. From a business perspective, this is justified by
different costs associated with the two technologies and is particularly enticing
when exploiting a small amount of memory results in considerable reductions in
the transmission bandwidth. The core of this thesis concerns two broad areas
in which this trade-off is prominent, namely Content Distribution Networks
(CDN) and Distributed Storage Systems (DSS).

Envision a network which consists of users, entertainment companies which
provide multimedia content for these users, and CDNs which operate in be-
tween these two entities and are in charge of delivering the data to the users.
In order for this ecosystem to successfully operate, many basic considerations
must be taken into account. Let us begin with how the content providers must
store their data and next move on to the operation of the CDN.

Distributed Storage Systems [1]

As the term suggests, a Distributed Storage System (DSS) is a group of servers
that are designed and optimized for collectively storing a large database. By
contrast, centralized storage is not suitable for such applications, due to the
formidably large size of the database, and perhaps more importantly, due to
the fact that individual servers are prone to failure and loss of data. Sub-
sequently, a DSS must be reliable and efficient. Reliability translates to the
requirement that a certain number of servers can fail without exposing the
system to major risks such as permanent loss of the data. The failed servers
must eventually be substituted with new ones which have the same function-
ality as their predecessors. Efficiency of a DSS is measured by the amount of
traffic generated for “repairing” a failed server (henceforth referred to as the
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repair bandwidth) as well as by the storage size of each server. In order to see
how these parameters interact with each other, let us look at two basic, yet
surprisingly popular, coding schemes that a DSS can resort to.

Perhaps the simplest form of redundancy is r-replication: Let us say the
size of the database is M bits. A DSS may first divide the database among &
servers and then maintain r copies of each server. Clearly, such a configuration
is resistant to failure of any set of » — 1 servers. On the other end of the
spectrum, a DSS can resort to a simple erasure code where the data is divided
among k servers and r — 1 additional servers are utilized to store parity checks,
independent linear combinations of the data stored on the initial k servers.
This construction too is resilient to failure of any r» — 1 servers. In terms of the
total storage requirement this scheme clearly outperforms the r-replication:
%(k +1r — 1) bits as opposed to % -k -r. Nevetheless, from the perspective of
the repair bandwidth, the story is entirely different. A replication scheme can
repair any failed server by generating a traffic of % bits whereas the repair
bandwidth of the simple erasure code discussed above can be as large as M
bits. This simple example should illustrate that our two measures of efficiently
cannot be simultaneously optimized, and a compromise must be made between
them.

Caching in Content Distribution Networks [2]

The cost of the network bandwidth in a server-user communication system
varies over time. Resorting to a first order approximation of this volatility, we
shall assume that within certain time intervals, when the network congestion
is low, this cost is negligible whereas a fixed cost must be paid during the
congested hours. From the perspective of a CDN, it is generally desirable
to transmit some part of the data to the users in the first phase, and later
complete the transmission in the second. It is needless to say that for this
communication scheme to succeed, the users must store the data that they
receive in the first phase in their local memories. The process of substituting
communication bandwidth with local memories is referred to as caching.

Unlike a DSS, the non-compatibility of minimizing storage and bandwidth
in a CDN is a triviality: less needs to be transmitted to a user who already has
partial access to the data. This advantage is commonly referred to as “local
caching gain”. The central question in the caching literature is whether we can
go beyond this linear gain and offer something more substantial. For instance,
in the context of a single-server multi-user network, a “global caching gain” can
be created by diversifying the content that is stored at the users in the first
phase. This diversification creates broadcasting opportunities in the second
phase, where a message can be simultaneously helpful for several users. But
the broadcast nature of the second transmission is not crucial in achieving
non-trivial caching gains. Even in a single-user single-server network, non-
trivial gains can be realized, for instance by exploiting similarities among the
contents that the user might be interested in.
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Clearly, there are far more nuances to the design of a CDN or a DSS than the
short description above. But hopefully, these two paragraphs have signified
that the trade off between storage and bandwidth plays a central role in both
domains. This thesis aims at contributing to a better understanding of these
two fields and this tradeoff in a number of ways, that is summarized below.
Other contributions which are mostly of independent nature have been listed
too.

Main Contributions

e Increasing Availability in Distributed Storage Systems via Clus-
tering

We introduce Fixed Cluster Repair System (FCRS) as a novel architec-
ture for distributed storage systems which focuses on increasing “avail-
ability” while maintaining a low repair bandwidth. Availability, refers
to the number of distinct subsets of servers than can serve to repair any
failed server, and is one of the benchmarks by which the reliability of a
DSS is measured. Our proposed architecture consists of partitioning the
servers into s clusters of equal size. Once a server fails it can choose any
of the clusters other than its own for the purpose of repair. Naturally, this
guarantees an availability of s — 1. We show that for this architecture
random linear codes achieve a multiplicative improvement of 2/3 over
the minimum repair bandwidth compared to the existing architectures
which guarantee the same availability. Furthermore, we introduce cubic
codes for the exact repair problem for FCRS. We show that cubic codes
achieve an improvement of 0.79 over the repair bandwidth compared to
the existing exact-repair codes that achieve the same availability. We
provide an information theoretic proof of optimality of cubic codes for
FCRS when the number of clusters is small.

e Multi-Library Coded Caching

Envision a CDN which has access to independent databases (libraries)
from several different content providers, and is serving users which may
order files from any of these libraries. We refer to this as a multi-library
caching network. In this context, two questions are studied. Firstly, what
is the optimal caching strategy for the network if coding across different
libraries is prohibited? Put simply, how much cache should each user
dedicate to each library in order for the network to have the “best” overall
experience in terms of the aggregate delivery rate? Avoiding a cross-
library coding scheme has clear advantages in terms of the simplicity of
the code and resilience to failure or corruption of individual libraries.
However, a natural follow-up question is, does this restriction come at
a significant price in terms of the optimal storage-bandwidth trade-off?
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We provide a complete answer to the first question and a partial answer
to the second. In particular, we prove that when the number of files in
different libraries are equal, there is no loss at all due to this “memory-
sharing” restriction.

e GDSP, a Generic Model for Distributed Storage

The repair process plays a central role in the analysis of the performance
of a DSS. Naturally, in order to avoid overcomplicating the theoretical
analysis of a DSS, researchers impose many symmetric and idealized as-
sumptions on the architecture of the network, some of which may prove
unrealistic in practice. We take a fresh look at distributed storage sys-
tems by relaxing many of these constraints, and introducing a model
which is highly flexible both in terms of the nature of the data and the
architecture of the network. We call this the Generic Distributed Storage
Problem or GDSP. In the analysis of GDSP we only concern ourselves
with the storage requirements, as we assume the failures occur so rarely
that the traffic generated due to them becomes negligible. Whether or
not this assumption becomes a reality with advancing hardware technol-
ogy, it is not hard to appreciate the benefits of studying such a model, in
particular in highly non-symmetric configurations. We propose achiev-
ability schemes and converse bounds for specific subclasses of GDSP, and
prove an optimality result in a practically motivated case.

Other Contributions

e Finding the Best Equation in Compute-and-Forward

In the context of Compute-and-Forward [4], an emerging relaying strat-
egy, a relay node is required to decode an integer linear combination of
the codewords emitted by several transmitters, but is left free on how to
choose the coefficients of this linear combination. A natural choice for
this integer vector is one that maximizes the sum achievable rate at the
relay. This maximization problem can be formulated as an instance of the
shortest vector problem (SVP), a problem that is known to be NP hard
in its general form, under randomized reduction [5]. Many algorithms
are proposed to tackle the particular instance of SVP that appears in
Compute-and-Forward, but they are either heuristic in nature or run in
exponential complexity. We prove that this specific instance of SVP ad-
mits an exact solution in low polynomial complexity. Furthermore, we
extend this result to the Integer Forcing paradigm [6], a generalization
of Compute-and-Forward to multi-antenna relays. For this case too, we
prove that the relay can find the (single) integer vector which maximizes
the sum achievable in complexity polynomial in number of transmitters.

e Two Conjectures



Introduction 5

In the last two chapters of this thesis we study two conjectures. The first
is a well-known open problem known as the most informative bit (or most
informative quantization function) conjecture. We offer an improvement
over the state of the art upper-bounds for the mutual information be-
tween the inputs and arbitrary quantization functions of the outputs of
binary symmetric channels. The second is a conjecture by us about a
non-Shannon type information theory inequality with direct application
to coded caching.

Notation and Terminology

The set of integers between a and b (inclusive) is represented as either [a : b]
or {a,a+1,...,b}. An interval consisting of real numbers between a and b
(inclusive) is denoted by [a,b]. For a set of integers 7 of size n define a, =
[ax(1), - - -, Gn(n)] Where 7(7) is the ¢’th smallest element of 7.

For two sets A and B we define

Ax B ={(a,b)|la € Aand b e B}.

For a set A and a positive integer N > 2 we define AY = A x AN—L,

The set of real numbers and integers are denoted by R and 7Z respec-
tively. Random variables are denoted by capital letters and the alphabets by
calligraphic letters. Probability and expectation are denoted by P and E re-
spectively. For a random variable X with support & we define H(X) as the
entropy of X. For a probability vector p we define

H(p) =—> pilog,pi.

For a scalar 0 < p < 1 we define binary entropy as

ha(p) = —plogy(p) — (1 — p) logy(1 — p).

The operators ceiling and floor are denoted by [-] and |-|. The round operator
is denoted by either [-] or |-] depending on whether half integers are rounded
up or down, respectively.






Preliminaries

Distributed Storage

The distributed storage model introduced in [1] consists of n servers that
collectively store a file A of size M. The DSS is analyzed in a sequence
of snapshots or time-slots starting at ¢ = 0. Let X, represent the con-
tent of the i'th server at time-slot ¢ where ¢t € Z* U {0}. At time-slot
t = 0 the variables X, are arbitrarily initialized such that H(X;,) < « and
H(A|X;p) =0, ¥r C[1:n]st. |r| = k. This means that any subset of &
servers at ¢ = 0 can collectively recover the file. The servers in the network
are subject to failure. We assume that at the end of each time-slot exactly one
server fails. Suppose at the end of time-slot ¢, server X, fails. At the beginning
of the next time-slot this server is replaced by a newcomer. An arbitrary set of
servers 7 C [1 : n]\{i} s.t. |7| = d is chosen. We refer to these servers as the

(JT)t , a function of

X1 to the newcomer. We limit the size of this message to satisfy H (Y};i) < B.
We define repair bandwidth as v = df which is the amount of traffic generated
for repairing one failed server. Upon receiving these d messages the newcomer
stores Xy ;41 a function of Ye(jT)t We refer to this process as one round of failure
and repair. For any other server ¢ # ¢ we have X;,.; = X;,;. In other words,
apart from the failed server, the remaining servers remain intact at time-slot
t. Two main repair models have been studied in the literature:

repair group. The j’th server in the repair group transmits Y,

e Fzact repair: Under the exact repair model the content of the newcomer
must be identical to the failed server. Therefore, we must have

Xppy1 = Xop VI, L

while studying this model we may omit the subscript ¢ for simplicity and
write X&t = Xg.
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e Functional repair: Under the functional repair model the newcomer may
not be identical to the failed server but it must satisfy the data recovery
requirement. That is, for any 7 C [1 : n| s.t. |7| = k we must have

H(M|X,,) =0, VteZU{0}

It is clear that the exact recovery criterion is more stringent in nature.
However, in practice it is a more attractive option compared to functional
repair due to its simpler implementation and maintenance [7].

The functional repair model has been thoroughly studied in [1] and a trade-
off between the parameters «, df has been characterized.

Theorem 2.1 (Theorem 1 from [1]). For a DSS with parameters M, n,k,d
the achievable rate region (c,) under functional recovery is characterized by

. %, . v € [f(0), +00)
Moy e [£(i), f(i - 1))

where

2Md
(2k —i—1)i+2k(d — k + 1)
(2d — 2k +i + 1)i
2d ‘

Two points on this rate region are of particular importance. The Minimum
Storage Regenerating (MSR) point where « is minimized and is given by

(anisp se) = (o, ——ME
MSRIMSR) = A5 k(@ —k + 1)

and the Minimum Bandwidth Regenerating (MBR) where the repair band-
width is minimized and corresponds to

@ = 2IMd oM )
MBR-TMBR) = \op T2 Tk okd — k2 + k-

As for the exact repair model, explicit codes [8, 9, 10, 11] and converse
bounds [12, 13] have been studied in depth. It is known [14] that a non-
vanishing gap exists between the overall achievable («,~) region for the two
repair models.

Locality in a DSS refers to the size of the repair group for each failed server
[15]. While studying the parameter locality the requirement that the repair
group can be chosen arbitrarily is lifted. Therefore, for any failed server, Xy,
there are only a limited number of subsets 7 C [1 : n]\{¢} which can serve as
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its repair group. In this context the parameter repair bandwidth is typicality
ignored. Therefore, “serving as repair group” simply means H(X,|X,;) = 0.
Furthermore, this parameter is generally studied in the realm of the exact
repair model. For any server ¢ € [1 : n] define

Ser B {rr c [L:n\{0}, |7] < rsit. H(X/|X,) =0}

We say that a DSS has locality r if [Sy,.| > 1 for all £ € [1 : n].

Let 7y, be a maximal subset of Sy, such that V7, 7 € T, we have 71 N7y =
(). We say that a DSS with locality r has availability s—1if |7,,.| > s—1, V/ €
[1:n] [16, 17]. A DSS has availability s — 1 if there exists an r € [1 : n — 1]
such that |T;,| > s—1, V¢ € [1 : n]. In words, availability refers to the number
of disjoint repair groups for any failed server. While locality is an indicator of
how efficient a DSS is in performing the repair process, availability is one of
the benchmarks by which the reliability of a DSS is measured. It is possible
to bring back the parameter repair bandwidth into the picture and explore its
connection with availability. This will be explored in Chapter 3.

Caching

In its canonical form, a caching network consists of a server which is in posses-
sion of N independent files {W*, ... W} such that H(W?*) = F, Vi€ [1: N].
There are K users in the network each equipped with a cache of size M. There
are two phases of communication between the server and the users. In the
placement phase, the i’th user received and stores Z;, an arbitrary function of
all the files, such that, H(Z;) < MF. In the delivery phase each user requests
one file d; € [1 : N|, Vi € [1 : K]. Next, the server broadcasts a delivery
message Xg, ., of size H (Xd“: K]) < RF in order to simultaneously satisfy all
the users. The i'th user then decodes an estimate of his desired file,

W = Mz‘(Xd[LK], 7).

We say that a memory-rate pair (M, R) is achievable if there exists place-
ment and delivery strategies such that each user can successfully recover his
requested message, i.e., if for any € > 0 there exists a sufficiently large F' such
that

max  max P(W% # W) <e.
d[le]e[llN}K kG[IK]

The quest is to characterize the achievable memory-rate region (M, R), i.e.
to find the fundamental trade-off between the two parameters. Algorithms 1
and 2 are the placement and delivery strategies which were first proposed in
[2] and later refined in [18]. The placement strategy has the property of being
“uncoded”, in that it does not require any computation, apart from breaking
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each file into subfiles. The achievable memory-rate region of these placement
and delivery algorithms is provided in Theorem 2.2. The joint placement and
delivery algorithm is proved to be optimal under uncoded placement [18] and
within a factor of 2 of an information-theoretic converse bound for arbitrary
range of parameters [19].

Placement Phase Delivery Phase

Figure 2.1: The canonical caching model consists of two phases of communica-
tion. In the placement phase, each user receives a private message of size M. This
message is transmitted without full knowledge of the requests of the users. In the
delivery phase, after the users announce their requests to the server, a broadcast
message of size R is transmitted to satisfy all the users simultaneously.

Algorithm 1 Placement Strategy [2]
Input: Parameters N, K, M
Output: The cache contents Z.x;

1: Let t = % Break each file into (It() subfiles and index each by Wi
where 7 C [1: K] and |7| = t.

9 Forall k € [1: K] store Z, = {W[ie [1:N|,7 C[1: K],|7| =tk € 7}.

Algorithm 2 Delivery Strategy [2, 18]

Input: Parameters N, K, M, dj;.x
Output: The delivery message Xq,

1: Let L C [1: K| be a maximal subset of users who have requested distinct
files. Let t = % and Xg, ., = 0.

2. for al TC[1:K]st. |[T|=t+1and TNL#(do

3 Let Xy = Xay g U ier Wity

4: end for
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Theorem 2.2 (Corollary 1 from [18]). For a caching network with K users
and N servers, the above caching and delivery strateqy results in the following
rate region.

() = ()

()

where t = £ and t € [0 : K]. If the ratio t = £ is not an integer, the

achievable delivery R corresponds to the lower convexr envelop of the points
above.







Increasing Availability in
Distributed Storage
Systems via Clustering

As discussed in the preliminaries and Theorem 2.1 the trade-off between the
storage size a and the repair bandwidth v for a DSS has been completely
characterized in [1] under functional repair via a network information flow
analysis. This analysis hinges on a strong assumption: a failed server must be
able to choose any set of d servers as its repair group. Furthermore, it has been
observed [1] that as the size of the repair group, the parameter d, grows large
the required repair bandwidth + can be made smaller for a fixed storage size
a. Setting d = n — 1, we achieve the best tradeoff between o and ~. However
there are important downfalls to setting d very large. A coding scheme that
is designed based on say, d = n — 1 is not optimal for repairing multiple
parallel failures. Furthermore, the servers involved in the repair process of one
failed server may not be available to perform other tasks. More specifically, an
architecture with large d is not suitable for applications that involve reading
hot data [16, 20] where multiple parallel reads of the same block might become
necessary. Mainly in the light of this latter issue, the parameter availability is
defined in the literature. As mentioned in the preliminaries, a server in a DSS
is said to have (all-symbol) availability s — 1 if there are s — 1 disjoint sets of
servers that can serve as its repair group. A DSS has availability s — 1 if all
the servers in the DSS have availability s — 1.

This parameter has been largely investigated in the context of locally re-
pairable codes [15, 21], i.e. codes for which the size of the repair group can
be made much smaller than k. The tradeoff between locality (size of the re-
pair group) and availability has been extensively studied [16, 20, 17, 22, 23].
Nevertheless, in the context of locally repairable codes the parameter repair
bandwidth is typically ignored and sacrificed. For instance, the achievability
results in [16, 20, 17, 15] all have a repair bandwidth of at least v = rM/k
where 7 is the locality of the code (the size of the repair group). This is easily

13
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outperformed by the codes that achieve the MBR point in [1, 9].

In this work we introduce the Fixed Cluster Repair System (FCRS) model
as a novel architecture which aims at achieving a high availability while main-
taining a low repair bandwidth. The main idea is to partition the servers into
s clusters of equal size, and a final cluster of size s = mod (n,s). As a
server in a cluster fails, we allow it to choose any of the remaining clusters
as its repair group (the last cluster is an exception: as it does not contain as
many servers as the remaining clusters, we exempt it from serving as a repair
group.) This way, we achieve an availability of s — 1. It is noteworthy that this
clustering is not relevant for the data recovery process, meaning that any set
of k servers must be able to recover the file, regardless of which cluster they
belong to.

The term Fixed Cluster Repair System has been specifically chosen to
contrast with Adjustable Cluster Repair System (ACRS), a general model
where the repair groups of two different servers do not necessarily coincide
with each other. Studying an ACRS should lead us to answering a general
question. Suppose we are given a DSS consisting of n servers that follow the
data recovery and repair requirements discussed above, while guaranteeing
an availability s — 1. What is the trade-off between storage a and repair
bandwidth v under these constraints? To the best of our knowledge there
has not been any literature so far that specifically addresses this question.
However, the random linear codes as well as the explicit codes for the seminal
work in [1] serve as achievability results for ACRS. In fact, since a server can
choose any subset of d servers as its repair group in [1] where d € [k : n], it
is possible to achieve an availability of s — 1 for any s —1 € [1: [2*]]. The
random linear codes and the cubic codes designed for FCRS (Sections 3.2 and
3.3) can be viewed as achievability schemes for ACRS too for any availability
s—1¢€[1:[%]—1]. While we emphasize that a comparison with the work in
[1] is not in its entirety fair as the parameter availability has not been a driving
motive there, we do find it instructive to demonstrate, through a comparative
study, how clustering can help with achieving a low repair bandwidth and a
high availability.

Our main objective in this chapter is to thoroughly analyze the FCRS under
both functional and exact repair models. We will follow a network information
flow analysis to completely characterize the a vs v trade-off for the FCRS with
arbitrary parameters. An interesting observation is made here. We show that
the only adverse affect of increasing the number of clusters in the FCRS is the
inevitable decrease in the size of the repair groups. In other words, two FCRSs
with n = ds and n’ = ds’ with respectively s and s clusters have exactly the
same performance in terms of the achievable () region. By characterizing
the entire («,~) region, we show that for small values of v FCRS performs
better than [1]. Whereas, on the other end of the spectrum, when « is small,
[1] is superior. The improvements offered by the FCRS are most visible at
the MBR point itself (the point where the repair bandwidth is minimized), at
which we prove an asymptotic multiplicative improvement of % over the repair
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bandwidth compared to [1], as s, k and n grow large.

Our second contribution is to propose cubic codes for the FCRS which are
designed to minimize the repair bandwidth under exact repair. Cubic codes
are examples of Fractional Repetition codes [24], codes that do not require
any computation to perform the repair process. More specifically, they are
subclasses of Affine Resolvable Designs and generalizations of Grid Codes both
discussed in [25]. When the number of clusters is small (two or three complete
clusters with no residual servers), we prove that cubic codes do minimize the
repair bandwidth for the FCRS. While we do not generalize this proof of
optimality of cubic codes to an arbitrary number of clusters, we prove that
they achieve an asymptotic (again, as s, k and n grow large) multiplicative
improvement of 0.79 over the repair bandwidth compared to the MBR codes
for [1].

Before we move on, it is worth noting that clustering is not a new term or
technique in the analysis of Distributed Storage Systems. “Clustered Storage
Systems” have been studied in a series of works [26, 27] where different re-
pair bandwidths are associated to inter-cluster and intra-cluster repair. These
models have close connections with the “rack model” [28, 29, 30] and are gen-
erally motivated by the physical architecture of the network and the fact that
the cables/channels which connect the servers within one cluster or rack have
higher capacities than the inter-cluster counterparts, which creates the moti-
vation to mostly confine the repair process to within the same cluster as the
failed server. They also have slightly different data recovery requirements in
[26] than [1] and the model studied here. These physical considerations do
not play any role in our analysis. We simply assume a completely symmetric
structure where the communication bandwidth between any pair of servers is
identical.

The rest of this chapter is organized as follows. In Section 3.1 we provide a
precise description of FCRS. In Section 3.2 we analyze the FCRS with arbitrary
parameters under the functional repair model and make a numerical as well as
analytical comparison with the results in [1]. In section 3.3 we introduce cubic
codes as explicit constructions targeted to minimize the repair bandwidth for
the FCRS under exact repair. Comparisons with MBR codes for [1] will follow.
Finally in Section 3.4, we provide a converse bound for the exact repair problem
with s < 3 complete clusters (no residual servers) which indicates that cubic
codes indeed minimize the repair bandwidth when the number of clusters is
small.

3.1 Model Description

The FCRS is defined by three parameters n, k£ and s. Suppose the network
consists of n = ds + s servers where d = [%] and s = mod (n,s) and
2 < s < [7]. We partition these servers into s + 1 clusters, s of which are of

size d and the last of size sop. We have a file M of size H(M) = M. Each
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server ¢ € [1 : n] is equipped with a memory. We model each memory with
a random variable where the server can store a function of M. Specifically
the random variable X ](lt) represents the content of the j’th server in the ¢'th
cluster at time slot ¢ where (7,7) € {[1:s] x [1: d]} U{{s+ 1} x [1: s¢]} and
t € ZTU{0}. We restrict the size of each memory to be bounded by a, that is,
H(X](Zt)) < aVi,jt Foraset ECI[l:d] we define XEt {(xt i st.ec E}
The initial contents of the servers at ¢ = 0 must be chosen in such a way that
any set of k servers can collectively decode the file M, irrespective of their
clusters. In other words, for any (Fy, ..., Es, Fg.1) that satisfy E; C [1: d] for
i€[l:s]and Fgpq € [1: 5], and ZS+1 |E| = k, we must have

repair

Figure 3.1: The FCRS with three complete clusters. Two nodes in the blue
cluster fail which are repaired by the red and green clusters respectively. A data
collector (DC) is connected to k = ky + ko + k3 servers, one of which is newcomers.

1 s+1
HM|XE .. X500 = 0.

The servers in the network are subject to failure. We assume that at the end
of each time slot exactly one server fails. Suppose at the end of time slot ¢,
the £’th server in the r’th cluster fails. At the beginning of the next time
slot this server is replaced by a newcomer. A second cluster ¢ will be chosen
arbitrarily such that ¢« # r. We refer to this as the repalr group. The j'th

server in the repair group transmits Ye( i » a function of X ) to the newcomer.

We limit the size of this message to satisty H (Ye(;; ) < 6. Upon receiving
these d messages the newcomer stores X"

/ NAY
H(X{ AV

, a function of Y;([lezi] ;- Therefore,

(1), .) = 0. We refer to this process as one round of failure and
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repair. Due to this requirement, we can assume without loss of generality that
a < df. Note that if (i,7) # (¢,7) then XJ(QH = Xj(»ft). In other words, apart
from the failed server, the remaining servers remain unchanged at time slot ¢.
We will study both the functional and exact repair models.

The model described above is what we refer to as Fixed Cluster Repair Sys-
tem (FCRS). See Figure 3.1 for an illustration of an FCRS with three complete
clusters and no residual servers (so = 0). By contrast, a general DSS (what we
referred to as ACRS) lacks many of these constraints. A DSS with parameters
(n, k) consists of n servers {X7,..., X} such that any k servers can recover
the file M. A DSS is said to have availability s — 1 if for each server X; there
are s — 1 disjoint sets of servers of respective sizes dgi), . ,dgill that can serve
as its repair group while generating repair bandwidths dgi) 55”, e ,dg’zl 58(?1,
respectively. The repair process can be defined either as functional or exact
repair. The repair bandwidth is defined as

= max  dVB". (3.1)

(
i€l jellis—1] 7 Y

3.2 The Functional Repair Model

In this section, we present a network information flow analysis for the FCRS.
Each server X J(lt) is modelled by a pair of nodes X7 and X!/ that are

Jtan 7,t,out
connected with an edge. The sources is directly connected to the nodes X ](l())m

with edges of infinite capacity. The nodes X%m are in turn connected to
X J(f&out with edges of capacity a.. Suppose at end of time slot t—1 (where ¢ > 1)
the j’th server from the i’th cluster fails. Assume the newcomer replacing this
server is repaired by connecting to the r’th cluster. We represent this by d

edges which connect X [(f )d] t1ou 10X ](Zt)m Each of these edges has a capacity

of 3. Furthermore, there will be an edge of capacity a from X ](Zt)m to X J(Zt)out
Since we have only one failure per time slot, for all other (¢, ;') # (i, ) there

will be edges of infinite capacity from X ") to X and from X

3! t—10ut 7', tin 7' tin to

X J(,Z/t)out At any given time a data collector can be connected to the out nodes
of any set of servers of size k with edges of infinite capacity. An illustration
has been provided in Figure 3.2 which involves three clusters.

Our goal in this section is to find the minimum cut that separates any
data collector from the source in this graph under all possible failure and
repair patterns. As we shall see this minimum cut helps us to characterize
the smallest possible value of a for any choice of v = df3, such that any data
collector can recover the file. Furthermore, the tradeoff («,~) characterized
by this min-cut is achievable, for instance if we resort to random linear codes
[31].

Consider a sequence of failures and repairs as depicted in Figure 3.3. Note
that only two clusters participate in this sequence. First, ky > [%W servers
from the first cluster fail. All of these servers are repaired by connecting the
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cluster p !

source

data

collector

cluster ¢

Figure 3.2: The network information flow model for the FCRS. At the end of
t = 0,1,2 the servers X;Q,Xéfll) and ng) fail respectively. These servers are
repaired by connecting to clusters p,r and ¢, in that order. Finally a data collector
connects to k servers at time slot ¢ = 3 for recovering the file M. Note that some

of these k servers are newcomers.

second cluster. Next, ks = k — kq servers from the second cluster fail. These
servers are repaired by the first cluster. Assume a data collector connects to
these k newcomers in order to recover the file M. As we shall see soon, a
simple cut-set argument shows that we must have

Our first objective is to prove that for any choice of the parameters o and df,
there exists a k; € [[£] : k] such that this is the smallest cut which separates
any data collector from the source. Let us assume that at some arbitrary
point in time, ¢y, a data collector is connected to k servers which we call
Zitys- -y Liy- Forany i € [1: k] let t; <ty be the smallest integer such that
an edge of infinite capacity exists from Z; s gyt t0 Z;pri1.4n for all ¢ € [t; : o).
If no such ¢; exists, set t; = t;. We say that there is a path from Z,;, to
Zjy, if there exists a ¢ € [t; : t; — 1] such that there is an edge of capacity (3
connecting Z; ¢ out 10 Zjp41,n. We can order these k servers such that ¢ < j
implies ¢; < ¢;. As a result, i < j implies there is no path from Z;; to Z;,,.
Let us assume that such an ordering is in place. Define e; € [1 : s + 1] as the
cluster to which Z;;, belongs and let

c(i,j) =|{€ sit. £ <jand e, =i} forje[l:k] (3.2)

be the number of servers in Zj.j,, which belong to the i'th cluster. Let
F(Zpx4,) be the value of the minimum cut that separates a data collector
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connecting to Z1.x,¢,0u¢ from the source. In order to find this cut, we must
decide for any j € [1 : k] whether to include both Zj; ;, and Zj;, . on the
sink (data collector) side, or to include Zjt;in on the source side and Zj¢. ou
on the sink side (if we include both Zjtsin and Zjy. o on the source side,
the value of the cut will be infinite). In the latter case the value of the cut is
increased by «, whereas in the former scenario, the value of the cut is increased
by at least (d — maXie[:s+1)\{¢;} (¢, 7)) 3. This is because any newcomer must
be repaired by a cluster differently from his own. As a result, the value of this
cut must satisfy

k
F(Zpg o) = Zmin{(d —  max  ¢(i,7))5,a}.
j=1

1€[l:s+1]\{e; }

Let us represent this lower bound by

k
A
F*(epy) = min{(d — max ¢(i,7))5, a}. 3.3
(eq:n) ; {( e T (4,7))8, a} (3.3)

Note that for fixed parameters «, d and (3, the expression in (3.3) is uniquely
determined by the sequence efi.), hence the change of the argument in F™(-)
from Zj1.414, to merely efy.y. The first lemma tells us that among all different
sequences e[y, the value of F*(e[l:k]) is minimized when this sequence has a
very specific structure.

Lemma 3.1. For any sequence e € 1: s+ 1]’“, there exists a sequence
elp) € [1:2]" such that F*(efy) < F*(eps)-

Proof. Let c(i, j) be as defined in (3.2) and

/
=

A 1 if C(Gj,j — 1) = IaX;e[1:5+1] C(L.j - ]')
2 Otherwise.

for j € [2: k] and €] 2 1. Define two variables as follows.

0 if j =0
wli) =9, o (3.4)
vp(j—1)+e;—1 if0<j<k

and

n(j) 2 j = (). (3.5)

For any finite discrete set D, let maxl(-?D () return the second largest value of

f(+) over D (if the maximizer of f(-) over D is not unique, then maxl(-?D (i) =

max;ep f(7)). We proceed by proving the following two claims: v;(j) =
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max;e(i:s41] (4, j) and vy (j) > mauxge)[1 o1 €7, 7). The first claim can be proven
by induction. Trivially, v1(1) = 1 = max;c(i,1). Assume the hypothesis is

true for j — 1. Then

vi(j) = e =1 ui(j — 1) + 1) + 1{e] = 2}vi(j — 1)
= 1{c(ej,j—1)= m;axc(i,j — 1)}(mzaxc(i,j —1)+1)

+ 1{c(ej,j —1) <maxc(i,j — 1)} maxe(i,j — 1)

= maxc(i, j).

The second claim follows because va(j) = j — v1(j) = j — max;c(i,j) =
> iz €(1,7) > max? ¢(4, j) where i* = arg max; c(i, 7).

As a result, we have maxe[.s1)\(e;3 €(i,4) < (¢f — Dvi(j) + (2 — €j)va(y)
for any j € [1: k]. Therefore,

“(epw) = me{ (e = Dui(g) — (2 = €j)va(4)) B, a}

Now consider a sequence of failures and repairs occurring at t = j € [1 : k]
such that if e} = 1 a server from the first cluster fails and is repaired by the
second cluster, and if e;- = 2 then a server from the second cluster fails and is
repair by the first cluster. At each time-slot the parameters v;(j) and vy(j)
represent the number of failed servers from the first and the second cluster
respectively. Therefore we can write

F* (1) E:mm{ (€5 = Dvi(4) = (2 = €))va(i)) B, a}, (3.6)

thus, F*(efy) < F*(ep)- -

Suppose now that we are given an arbitrary sequence 6/[1:k] such that €} €
{1,2}. The next question is then how to sort the elements of eh:k} such that
the expression in Equation (3.6) is minimized. It turns out there is a simple
and global answer to this equation. Assume without loss of generality that
v1(k) > ve(k). The next lemma tells us that the the failures from each cluster
must occur consecutively, without being interrupted. Specifically, v; (k) servers
must fail from the first cluster, and only then, v, (k) servers fail from the second.
Such a pattern always minimizes (3.6) regardless of the value of a and df.

Lemma 3.2. Let eh:k] € [1:2]* be an arbitrary binary sequence of length k
and let vi(j) and vo(j) be as defined in equations (3.5) and (3.4). Assume
without loss of generality that vy (k) > va(k). We have

F*(e{lzk]) > vy (k)a + vo(k) min{(d — v1(k))f, a}. (3.7)

This is achieved with equality if eh:k] is sorted, i.e. if e{lml(k)] are all ones.
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Proof. Let us for simplicity define f(a) = Zle min{(d — (ej — v (j) — (2 -

e;)v2(j))B, a} and g(e) = vi(k)a + va(k) min{(d — v1(k))B, . The proof
follows from three simple observations.

e Aslong as a < (d — vy (k))5 we have f(a) = g(a) = ka.

e The curve f(a) is concave within (d — v1(k))5 < o < df whereas the
curve g(«a) is linear within the same interval.

o f(dP) = g(dp).

To see why the last claim holds, note that
k
fdB) = Y (d— (& = Dui(j) = (2 = ¢))va))B
j=1
k
= kdB - Z (¢ — Dvi(j) + (2 — €))va(4)).

Since g(df) = kdp — v1(k)va(k)S3, it is left to show that Z?Zl(e;- — D () +
(2—€})v2(j) = vi(k)va(k). This can be proved by induction over k. For k =1,
the result trivially holds. Let us assume it is true for £ — 1. Then:

D€ = Do) + (2= hua(5)
vi(k — Dwvg(k — 1) + (€}, — Doy (k) + (2 — €} )va(k)
= (0(k) + & = 2)(va(k) — e} +1) + (¢, — Dor(k) + (2 — €} )va (k)
= v (k)va(k).

]

Remember that F’ *(eh:k]) is merely a lower bound on value of the min-cut
separating any data collector from the source. But it is easy to find a cut the
value of which is given by Equation (3.7). The sequence of failures and repairs
leading to this cut is what is depicted in Figure 3.3: at the end of each time
slot £ € [0 : ky — 1] the server Xt(i)u fails and is repaired by the second cluster.

Next, at the end of each time slot ¢ € [k : k — 1] the server Xt( )k 11, fails
and is repaired by the ﬁrst cluster. Then a data collector connects to the k

Servers X[(l)k Lk and X[1 k] TOT every t € [1: k1] we include X% on the

ttzn

source side of the cut and X}, on the sink side. If (d—Fk1)B > «, we do

t,t,ou

exactly the same thing for the servers in {Xt(2 k.t € [k +1:k]}. Otherwise,

if (d — k1)B < « then for all t € [k; + 1 : k] we include both Xt@)k1 tin

Xg)kht’out on the sink side. Since v1(k) = ky and vy(k) = k — ky, the value of
this cut is precisely what is given by Equation (3.7).

and
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Figure 3.3: Network information flow graph corresponding to a sequence of
failures and repairs where k; > (%1 servers from the first cluster fail, followed by
ko = k — kq failures from the second cluster. Each failure in cluster 1 is repaired

by cluster 2 and vice versa. A data collector is connected to the k newcomers.

We have therefore proved the claim which we made at the beginning of this
section. The last question to answer is what is the optimal choice of k; for a
specific value of o and df. With a slight abuse of notation, let us denote by
F*(a, dp) the value of the min-cut for the FCRS with a storage of size o and
a repair bandwidth of v = df.

Lemma 3.3. Suppose we have an FCRS with parameters n,k,s and d = [ ].
g”he value of the min-cut separating any data collector from the source is given
Y
kdf — 511518 if d< 5,
kio+(d—k)(k— k) if d+k—2k —1<9 <
min{d +k — 2k, + 1,d} for ky € [[£] : K],
ka if $<d—k-1.

F*(o,dB) = (3.8)

Proof. Let us define g(k;) = kya+ (k— k1) min{(d—k1)3, a}. We want to min-
imize (ki) over ky € [[£] : k] for a specific choice of a and d. Without loss of
generality we can assume (d—k—1)8 < a < df. If & > df then g(k;) is clearly
minimized for k; = [%] which matches with the first line of Equation (3.8).
On the other hand, if o < (d — k — 1) then g(k;) is minimized at k; = k
which yields the last line in (3.8). Let us now minimize a simpler function
h(k1) = kia+ (d—k1)(k — k1) 5. This is a second degree polynomial in k; and
evidently its minimizer over k; € [[4] : k] is kj = min{[3(d+ k — o/B)], k}
where |-] returns the closest integer to its argument. Note that g(k;) =

min{kia + (k — k1)(d — k1)8, ki + (k — k1)a} = min{h(k;), ka}, so the
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same k] minimizes g(-) too. Finally, kj = min{|3(d + k — a/B)], k} implies
d+k—-2ki-1< % < d+ k — 2kj + 1 which is the same as the second line in
Equation (3.8). O

For any FCRS with parameters n, k, s and file size M we must have M <
F*(a,dp) given by Equation (3.8), otherwise there exists a sequence of fail-
ures and repairs after which a data collector (connecting to the newcomers)
is incapable of recovering the file. Furthermore, satisfying M < F*(«, df) is
sufficient for successfully repairing any sequence of failures, and for any data
collector to recover the file, if we resort to random linear codes [31]. The func-
tion F*(a, df) can be inverted in order to find the minimum value of « for a
specific choice of df and M, in much the same way as illustrated in [1]. We
will sketch this - mostly replicated - proof for the sake of completeness. Let
us summarize the result in the next theorem.

Theorem 3.1. The tradeoff between o and v = dfg in an FCRS with parame-
ters n,k,s and d = |%] can be characterized as

M .
. & if v € [£(0), 00)
o = {%}Hm ifv e lf@), fli—1)) (3.9)
where
Md . ‘ X
N 2 ) @h—i—1)itk(d—k+1) if 0 <i < [5]
f(@) {% ioLh)

Proof. The function M = F*(«, df) can be inverted in terms of a.

M if0< M <k(d—k—1)3

v MoUR)RBf (df — k2 — k1)B < M < (dk — k3 + k)3
o = F (M, dp) = for ky € [[5]+1: k]

M—(d—[.])|% :

MBS (dk — T512 - TA1)8 < M < (dk — |5]T5T)8

If we write the conditions in terms of df we find

e if d > 12 k [y
M—(d—F1)(k—k
of = ( kll)( V)8 1fdﬁ€[dk k2+k1’dk kQ T | for ky € [[%1—}-1;]4;)

r% dk— L N 17 dk—T512-%]

which is essentially the same as Equation (3.9). We intentionally substitute
i =k — ki to find an expression similar to Equation (1) in [1]. O

Let us denote by (arpr.e; YmBR,e) the operating point at which the repair
bandwidth of the FCRS is minimized. At this point we have

YMBR,c = f(LED Md

3) = W (3.10)
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By plugging in this value in Equation (3.9) we find

OMBR,c = m = YMBR,c-
Therefore,
dM dM

).

(AMBRe; YMBR.e) = (kd— L%J %1 " ed — ng %1

Comparison with [1]

As discussed earlier, random linear codes for FCRS can be viewed as an achiev-
ability scheme for a more general problem, ACRS, where we are given a DSS
and we are required to characterize the region () for any fixed availability,
where « is the storage size and + is the repair bandwidth as defined in Equation
(3.1). Interestingly, although the parameter availability has not been a moti-
vation behind the work in [1], their scheme serves as an achievability result for
this general problem too, for any availability s —1 € [1: [%]]. In particular,
the random linear codes proposed in [1] can achieve an availability of s — 1
it we set d = d, = LZ:H whereas the random linear codes for FCRS with s
complete and one incomplete clusters (n = ds + s¢) achieve an availability of
s —1 with d = d. = [%]. In this section, we want to illustrate how FCRS
can improve the tradeoff (o, ) compared to [1] for the same availability and
for certain range of parameters. To begin with, we find this comparison most
interesting if neither system has any “residual servers”, namely if s — 1|n — 1
and s|n. For instance let us select n = k% and s = k. For FCRS we will have k
clusters each of size k and therefore d, = k. For [1] we have d, = 2= =k + 1.
By plugging in these values of d in Equations (3.9) and Equation (1) from [1]
respectively, we can find the smallest value of « for any repair bandwidth ~.
This is precisely what we have plotted in Figure 3.4 for a choice of n = 100 and
k = 10 (both repair bandwidth and storage size are normalized by M). The
figure suggests that at small values of repair bandwidth FCRS has a superior
performance, and that there is a threshold value of v beyond which it is out-
performed by [1]. The improvements offered by FCRS are most visible at the
MBR point for which we are going to provide an analytical comparison. Let us

define yarBr,o = % which is the value of the repair bandwidth at MBR
point in [1]. The two conditions s|n and s—1|n—1 imply that n = (fs—{+1)s
for some positive integer ¢. Under this constraint we have d, = ¢s + 1 and

d. = f¢s — ¢+ 1 and we can write

deM deM
YMBRc  kde—=|5[5] kd—E  ls+1—(k—1)/2 ls—L+1
- 2, M — __2d,M _ _ ’
YMBR,o T T ls—0+1—Fk/4 ls+1

This ratio is upper-bounded by 1 for almost the entire range of parameters
(except when s =2 or k = 1 or when (s, k) € {(3,2),(3,3),(4,2)}) as can be
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Figure 3.4: Comparison of the achievable region («,~y) for FCRS and [1]. We

have n = 100, £ = 10 and both schemes are required to achieve an availability of
s—1=09.

easily verified. The ratio is smallest when s is maximal, that is, s = [ 7]. This
implies k = s — ¢ + 1, which results in

YMBR,c

ls+/0+2

2
-3 ls+1

YMBR,o

This can be upper-bound by

YMBR,c <2'S+3
YMBRo 3 s+1

which is achieved when ¢ = 1. This indicates an asymptotic multiplicative
improvement of 2/3 over the repair bandwidth at MBR point in comparison
to [1].

It is worth noting that the assumption of “no residual server” becomes irrele-
vant as the parameters k and s grow large and as long as we choose s = |7 .

Proposition 3.1. Let s , k and sy be three positive integers such that 0 <
so < min{k,s}. Let n = sk +so, d. = |2| =k and d, = | 2=} |, and define

dc
_|k Tk
f(S’ ]{;7 80) é ’YMBR,C kd(‘ L2J|—21

- 2d,
TMBRo  5pg " j2i

We have

2 (s+3)k+s—3
< Z.
Jlsikss0) < 3 =2 =T
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Proof.
- d dy— k dy— k
kd,— & . 2d, — k+1 2 2d,—k+1
floks) < =0 % a3 4,
2kd,—k2+k cT 1 o o
2 k—1 -1 2 k—1 —1
c 2, (=D6=1) 2, (=@E-1),
3 sk +so—1 3 (s+1)k—1

2 (s+3)k+s-3
3 (s+1)k—-1

O

s+3

As a result of this proposition we see that limy_,, f(s, k, s¢) < (% +e€)- oy

If we further let s — oo, the ratio of % will be established.

3.3 The Exact Repair Model: Cubic Codes for
the MBR Point

In this section we introduce cubic code as a coding scheme designed to minimize
the repair bandwidth for the FCRS with s 4 1 clusters where 2 < s < [Z].
Cubic Codes are examples of Affine Resolvable Designs [25] which themselves
are subclasses of Fractional Repetition codes [24]. They can also be viewed
as generalizations of grid codes discussed in [25]. As we shall prove in the
next section via a converse bound, cubic codes are information-theoretically
optimal, in the sense that they minimize the repair bandwidth of FCRS with 2
and 3 clusters and no residual server. On the other hand, they have a strictly
worse performance compared to random linear codes that can achieve the
cutset bound analyzed in Section 3.2. This implies an inherent gap between
the functional repair and exact repair models at the MBR point for the FCRS
with 2 and 3 complete clusters. This is by contrast to the DSS model studied
in [1] where the MBR point for functional and exact repair coincide. Despite
this, we will show that cubic codes still achieve an asymptotic multiplicative
improvement of 0.79 on the repair bandwidth compared to the MBR codes
[8, 9] that guarantee the same availability.

Suppose as stated in Section 3.1 the network consists of n = ds+ sg servers
divided into s clusters of size d and one cluster of size sy < s. In this section
we further assume that sy < d. If this is not true, we can increase s to s’
such that n = ds’ + s; where s; < min{d, s’} and s’ < |7]. Also note that
this condition is automatically satisfied if k2 > n. Assuming the file is large
enough, we break it into m independent chunks M = {Mj,..., M,,} so that
H(M;) = M/m. The value of m will be determined shortly. We start by
constructing a (d**',m) MDS code over these m symbols and indexing the
codewords by strings of s + 1 digits. Let C} represent a codeword of the MDS
code where b is a string of s + 1 digits, b = bsy1...by, and b; € [1 : d].
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Server j in Cluster ¢ stores all the codewords of the form Cj where b; = j

and the other indices vary. That is,

X = {Cylb; = j} forall (i,7) € {[1:s] x [L:d]} U{{s+1} x [1:s0]}.

This is akin to arranging the codewords of an MDS code in an s+ 1-dimensional

|
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S
S
St
RSS2 SA
e NS o
NS r
EE‘:‘ ;{;%I‘;{! X
N ”‘f’ >
RN
B tizececieed
3
o QPN

Figure 3.5: Cubic Codes for the FCRS with 3 clusters and with n = 15, d =

5. The codewords of an MDS code (the
dimensional cube. The j'th node in the

small blocks) are arranged in a three
1'th cluster stores the codewords that

form that j'th plane orthogonal to the i'th axis.

hyper-cube and requiring the servers within the ¢’th cluster to store hyper-
planes orthogonal to the i’th axis. See Figure 3.5 for an illustration. One can
also express this code in terms of its generator matrix. Let B be the generator

matrix of any (d**',m) MDS code. For

any integer ¢ let ¢s11(f)...¢1(¢) be

the s 4+ 1-digit expansion of ¢ in base d, where ¢4, 1(:) represents the most

significant digit. For any (i,7) € {[1 : s

QU7 be the d* by d**! matrix where
¢e(r> = ¢e(€)

(i,5) Lif (be(r) = ¢e—1(€)
Lr T .
’ ¢i(r) =7 —1
0  otherwise.
Then we can write
X% = QI BM;, ...

J

| x[1:d}u{{s+1} x[1: s} let

foree [1:i—1] and
foree[i+1:s+ 1] and

, Mo]T
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If a server Xér) fails and chooses cluster ¢ for repair, then the j’th server

in cluster ¢ transmits Yé;l) = {Cy|b; = j,b, = (} to the newcomer. Upon
receiving all such codewords Ye(ﬁzzzp the newcomer is capable of reconstructing
the failed server. Furthermore, the newcomer receives a total of d* codewords
which shows that for cubic codes df = a.

Let us now analyze the performance of this code. Based on the data re-
covery requirement, we know that every k servers in the network, regardless
of their cluster must be able to recover the file. Consider a set of k servers
chosen in such a way that k; servers belong to cluster ¢ where Zf;l ki = k.

These servers together provide a total of R codewords of the MDS code where

s+1 s+1 s+1
R = ) dk—> Y d 'k
i=1 i=1 j=i+1

s+1 s+1 s+1
+ 33 ST @ hikgky —
i=1 j=i4+1/l=75+1
s+1

= & [~ k).

i=1

Thus, in order for the file M to be recoverable from these k servers, we must
have

s+1
= T]d - k) = m. (3.11)

i=1
Note that this inequality must be true for any choice of the parameters k;. Let
us therefore minimize the left hand side of this inequality over the constraints

Sk =k, By > 0 and Ky < so.

s+1
Kfiasy = arg min =T - k). (3.12)
k[1:s+1]iZfill ki=k and ks+1<s0 i=1

To solve this optimization problem, it is necessary to distinguish between
two regimes.

e Regime 1: sy > LS%J

Define s; = mod (k, s+ 1). The solution to (3.12) can be expressed as

Lr [25] ifi<s
' |[2] s <i<s+1

Returning to Inequality (3.11) we can write m = d*™' — (d — [HLJ )1 (d—

LS%J)(S“_“). Since each server stores d® codewords, the storage size is
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Md? Md?

m dstl — (d — [;kﬂ)sl(d — LHLlJ)(sH_sl)'

o =

We saw that for cubic codes v = a. Therefore,

Ma®

. (d— (ﬁ})sl(d _ I_;klj)(s-l-l—ﬁ)'

v

e Regime 2: sy < LS%J

This time define s; = mod (k — sg, ). The solution to (3.12) is

[F=s0] if § < s
ki=Q =] ifs<i<s
So ifi=s+1.

Again, plugging this into (3.11) we have

]{Z—SO k—SO

m = dM—(d—]

S (.

= (- so)(d - [Py |

J>s+1—51

D" (d = 1=

50 so)d - [ [

]f—SO
S

I{I—SO

I
D

Consequently,

_ Md?
T — (@ so)(d— [2) - 2]

T=a

Let us summarize this in the following theorem.

Theorem 3.2. Suppose we have an FCRS with parameters n,k,s where n =
ds + so and sop < min{d, s}. The cubic codes achieve a repair bandwidth of

Md? . K
Sl (A Tk N\s1(d— | F_\(s+1—s71) Zf Sg > I—ﬁj
IYCC(na k; S) - deri=(d |—5+1—‘) I(Zéd!;erlJ) 1 +

d5+1—(d—so)(d—]'k_%])%(d—\_k_%ns—% Zf S < LH_lJ

(3.13)

where s; = mod (k,s +1) and s, = mod (k — sg, s).
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An interesting regime is when there are no residual servers, that is when n =
sd. In this case we have

M/d

Yee(sd, k, ) = . (3.14)
L— (1= [E]/d)=(1 — [ 4] /d)s==
This can be further simplified if we assume s|k.
M/d
Vee(sd, ls, s) =
T
In fact, it follows from a simple argument that
M/d
Vee(sd, ky 5) < / - (3.15)

To see why, note that

| — o] 2 /1 L4/2) s=s2
1- £ 1 - & <1
sd sd

which is true since the geometric mean of s numbers is upperbounded by their
arithmatic mean.

It is not difficult to see that if we fix s, k and d, v..(n, k, s) is monotonically
increasing in sg for 0 < sy < d. This is because adding one more server to the
last cluster cannot increase the expression miny,, . d**'— [1:5 (d—k;). Based
on this property and Equation (3.15) we can establish the following bound.

Corollary 3.1. Let 7y..(n,k,s) be the repair bandwidth of cubic codes for an
FCRS with parameters n, k, s where n = ds + so and sy < min{s,d}. Then

M/d
el ) <
o ( o (s+1)d)

This bound is sufficiently tight for our purpose and we will resort to it for
our analytical comparison in the next section.

Comparison with Functional Repair and [9]

Let us start with a numerical comparison. Here we fix the number of servers n
and let the availability grow gradually. For every fixed availability we compare
the repair bandwidth for the three schemes: the MBR point for functional re-
pair of FCRS in Section 3.2, that is expression (3.10), the MBR codes proposed
in [9] (which corresponds to the functional repair MBR point in [1]) and finally
the cubic codes, that is expression (3.13). For this numerical analysis we set
n = 400, k = 20, and we let s — 1 grow from 1 to 19. We normalize the repair
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bandwidth by the size of the file. As can be seen in Figure 3.6, as s grows
large cubic codes perform somewhere in between the functional repair points
of FCRS and [1]. The multiplicative improvement over [1] can be measured
around 0.79 at its peak, i.e. when s — 1 = 19. This will be theoretically
justified next.

0.095

T T T
——functional MBR point for FCRS
—+-cubic codes

MBR point for [1]
0.09 - o

0.085 - .

°
o
©
T
I

0.075 - 4

Repair Bandwidth
o
o
<
T
L

0.065 -

0.06 -

0.055 |-

0.05

20

Figure 3.6: Comparison of cubic codes with the functional repair MBR point of
FCRS and the MBR point of [1] for n = 400, k = 20.

Let us first bound the ratio of repair bandwidth for cubic codes and func-
tional repair bandwidth for the FCRS. Assuming k even we have

M/d. i
Vee < 1_(1_ﬁ)5+1 _ k(l B 4dc)
YMBRe # de —de(1 — (S+1)dc)s+l
k k 1 3
< —

1—— < )
2T ) T S i e

In conjunction with the results of Section 3.2, if we further assume that s is
chosen as large as possible, i.e. s = [2], we can write

k
Yee 3 2 (s+3)k+s—3
’YMBR,O - 4(1—6_1) 3 (S—f—]_)k?—l
Since the expression for the ratio WMW# does not depend on whether k£ is odd

or even, the same bound holds for general k. We have therefore established
the following proposition.
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Proposition 3.2. Let s , k and so be three positive integers such that sq <
min{k, s}. Let n = sk + so, d. = 2] =k and d, = [2=], and define

1

1T—(1——F s+t
g(s,k, o) 8 e < ( i;j”c)
YMBR,o hdy—k7Th
We have
1 3)k -3
g(S,k,So)S (S+ ) _I_S

20—e 1) (s+Dk—1

Based on this proposition, if we let k& — oo, we find

cc 3 2 3 3
Jee < N By B dtd
YMBR,o0 4(1—6_1) 3 s+ 1 s+ 1
This proves that for the same availability of s —1 = [#| — 1, cubic codes

achieve an asymptotic (as k,s,n — oo) multiplicative improvement of 0.79
over the minimum repair bandwidth in comparison to MBR point in [1].

3.4 Converse Bound for Exact Repair

In this section we provide an exact repair converse bound for the FCRS. The
main purpose of this converse bound is to prove that the cubic codes introduced
in Section 3.3 minimize the repair bandwidth for the FCRS with two or three
complete clusters and no residual servers. Unfortunately a straightforward
generalization of the bound to more than three clusters is loose and is omitted
for this reason. As we are dealing with exact repair we can drop the time

index from X and Y variables, since X ](-ft) =X J(Jt), for all ¢ and t'. Therefore,

we simply represent this by X ](Z) The same slight change of notation applies
for the helper variables Y.

Theorem 3.3. Cubic codes achieve the minimum repair bandwidth under exact
repair for the FCRS with 2 or 3 complete clusters, i.e. when s € {2,3} and
Sp — 0.

Proof. We will present the proof for s = 3. The proof for s = 2 is omitted to
avoid redundancy. Therefore, we have n = 3d. Assume k; servers from the i’th
cluster take part in the data recovery. Specifically, let 7, C [1: d] for i € [1 : 3]
represent the set of indices of the servers from ¢’th cluster that are connected
to a data collector, such that |;| = k; and 37, k; = k. By taking an average
over all possible such choices of 71, 75, 73 we can write
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Mo< b S H(XW, X, XO)

(kdl) (li) (]i)) i T1 VT 9T
i C[Ld), |7il=Fi

_ ]' 1
‘<d><d><d>z HOGLXE, XI0) + (s 3 S

k1 ko/ \k3/ T1,T2,T3 T1,T2

+ ZH (XM, (3.16)

Let us start by upper-bounding the first term.

AN
@ = H(XW XD, X1D)

TOD L, R

(%) 1

< vy 2o MO XD
OO 2 Tl

1

- IO TR X
k1/ \k2/ \k3/ T1,72,73

= Z d 2 ( T33?)d]’X7('11))’

(i) () 77

Inequality (x) follows from the fact that H (X @ |Y(3 ?d]) = 0and H(Y; v |XT2 ) =

0. Inequality (#) follows from (conditional) Han’s inequality. Let us continue
by bounding the right hand side of this inequality.

@ <;i>1<:3>§d3k2H<Yff[i)d]lx<l>>
) <,:i>1<:3> 2 T HX X)) + (;i)l(zi) 2 T HE X, X
S D@ Z T IR + gy 3 S HO )
(2 é)(d kQC)ng k) ZH ) + ka(d — k2)B _d- kQZHX(B
< kg—(d kQL(d kl)ﬂ+k3(d ko) _d- kQZH

Inequality (x) follows from the fact that H(Y|X) = H(Y) — H(X) if X is a
function of Y and from applying Han’s inequality for a second time. We go
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back to Equation (3.16) and bound the second term.

Q2 £ ( ) Z H(X X(1 Z H(Y, v Pd] 7(22711))
k1 2 T1,T2 2 T1,T2
I )(k ZH (Vs Yf(zzrll))
1 2/ T1,T2
1 d—k
G Y HY ) < Rald = k).
ko T2

Therefore, we proved

M < Q3+Q2+%ZH(X(1)
ki/ 7

(d — k2)(d — k1)
d

6+@@—%gﬂ—d]b§:Huﬁw

d(s,) =

< k3

+ ko(d— k) + % ST HEXWD).
ki/ 71

Via an identical procedure we can more generally prove that if 7 : {1,2,3} —
{1,2, 3} is a bijection, then

(d B km)(d B kﬂ'l)

M < k7r3 d B+ kWB (d o ka)B
B 1
L= Frs S B(X) 4 higy (d = o)+ o S H(XE),
d(k.ﬂ_g) - (kﬂ—l) Ty

By averaging this inequality over all possible bijections © we find

(d—ko)(d — k) (d — k3)(d — k1) (d — k3)(d — k1)
3d B+ kaf 3d + 3d

+ %((d - k’l)kﬁ + (d - k’l)k’?) + (d - k‘g)k’l + (d - k’g)k’g + (d - kg)kl

M

IA

ks

1
+ (d—ks)ks)B + g(klkg + kiks + koks)

d—ko)(d—k d—k3)(d—k d—ko)(d—k
_ é(de+k3( 2)( 1)+k2< 3)( 1>+k;1( 2)(d — ks)
3 d d d
— ks — kiks — koks)
= Sﬂd(dek + 3kikoks — 3d(kyky + kiks + koks) + d*k)
= @@k R )

where we have used the fact that o < df (due to the repair requirement) and
> ki = k. Note that the inequality above must hold for any choice of ky, ko, k3
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that satisfy Y k; = k. In particular we must be able to choose k; = [%] for
i€[l:s)and k; = |£] for i € s+ 1: 3] where s, = mod (k,3). For this
choice of k1.3 we have

Md? ~ M/d
(d—[51)2(d— 5] 1—(1—[§]/d)=(1— [5]/d)>=

This is the same expression as the achievable repair bandwidth of cubic codes
specified by Equation (3.14) if we set s = 3. O

vzdﬁzdg_






Multi-Library Coded
Caching

In this chapter we study the performance of a CDN which has access to the
data from several different companies, as one naturally expects in practice.
The model studied in [2] considers a single collection which consists of all the
files required by the users. These files are of equal size and each user is inter-
ested in precisely one such file. In this sense, the model does not distinguish
among heterogeneous data, and does not take into account independent re-
quests that a user may make from different providers. Hence, for our purpose
we introduce a new model; we assume the CDN has access to multiple col-
lections of files which we refer to as libraries. The files on different libraries
are not necessarily of equal size and each user makes independent requests
from different libraries. Subsequently, our goal is to find the optimal caching
strategy for such a network. That is, we are interested in minimizing the total
delivery rate R assuming each user has a cache of size M.

Our main contribution is to derive inner and outer bounds for the delivery
rate of the described network, and to show that when the number of files in
all libraries are equal, the optimal caching strategy only requires coding across
files within the same library. In other words, each user partitions his cache into
several segments and dedicates one segment to each library and ignores coding
opportunities across files from different libraries. Similarly, in the delivery
phase, there is no need to perform coding across libraries.

The optimality of this memory-sharing strategy has interesting practical
implications. Firstly, if one knows the optimal caching strategy for the single-
library problem, one can simply extend it to multiple libraries. Secondly,
although CDNs receive their data from multiple different companies, large
streaming corporations such as Netflix are moving their traffic to their own
CDNs [32] and perform independently from one another. This can be modelled
as a network with several servers each having access to distinct files and having

37
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limited or no interactions with each other. The optimality of memory-sharing
implies that there is no loss due to this emigration from one centralized CDN to
multiple isolated ones. From a different perspective, coding across files from
different servers in the placement phase introduces vulnerability to network
failures; if one server goes down in the delivery phase, the users will not be
able to recover the files from any other.

The basic coded caching strategy proposed in [2] has been extended to
a variety of other networking scenarios, among which are decentralized [33],
multi-server [34], hierarchical [35], multi-request [36] and online coded caching
[37], and caching with heterogenous cache sizes [38]. Perhaps the most relevant
to our work is “multi-level coded caching” [39, 40] where several popularity
classes of files are served to the users via access points that are in possession of
local caches. The mathematical model in [40] is similar to the model considered
here, with “popularity classes” taking the role of “libraries” in our terminology.
More precisely, the model in [40] is slightly more general in that it allows
multiple users to have access to each cache, and is slightly less general in that it
forces files on all libraries to be of the same size. The more important difference
between [40] and the present work concerns the results: the caching strategies
are substantially different, and while [40] establishes order-optimality (under
specific constraints), the present work establishes an exact optimality result
(under certain other constraints).

We continue this chapter by providing a motivating example in Section 4.1.
Next, we will formally define our problem in Section 4.2 and express our main
achievability and converse results in Section 4.3. In Section 4.4 we will find
the optimal memory-sharing strategy and will prove that it is globally optimal
when the number of files are equal in different libraries.

4.1 Motivating Example

Assume we have two libraries. Library 1 consists of two files A and B each
of size Fy and in Library 2 there are two other files C' and D each of size
F5 = 1.5F;. Suppose we have two users each with a cache of size M = F; + F5.
We plan to perform memory-sharing, that is to divide the cache of each user
into two segments and assign each segment to one library. Let us assume we
assign AM of each cache to Library 1 and the rest to the Library 2, for some
0 < A < 1. In the delivery phase, each user will request one file from each
library. In other words, each user will request either of {A,C}, {A, D}, {B,C}
or {B, D}.

For each library we know the optimal coded caching strategy from [2].

Therefore, for each A we know the minimum value of R(\) = Ry(AM) +
Ry((1 —X)M). This curve is plotted in Figure 4.1 and can be described by the
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Fi1+Fi2 vs A for M = 1 (both normalized by 2.5F1)

0.4
0

0.2 0.4 0.6 0.8 1

Figure 4.1: The sum of the delivery rates of Library 1 and Library 2 vs A, the
fraction of the cache dedicated to Library 1. Library 1 consists of 2 files each of
size F; and Library 2 has two files each of size F, = 1.5F;. The cache size of
each of the two users is M = F| + F5.

following set of equations

(2 3\ ifo<Aa<l,

0 2
7 1 e 1 2
RN =1 5+32 ifZ<a<,

2 3 e 7 4
—5—1—5)\ 1fﬁg)\<5,
—34+2) ifF<A<1L

\

Evidently, the minimum of Ry + Rs is % and is attained for \ = % This is the
same point that we obtain if we divide the cache size proportional to the size
of the files on the two libraries, i.e. A = FIFIFQ. As we will see in Section 4.4.1,
this is always the case, regardless of the number of libraries, the number of
users or the size of the cache. As long as all libraries have the same number of
files, the optimal memory-sharing strategy is one that divides the cache among
different libraries proportional to their size of the files. More importantly, we
will see that this strategy is globally optimal. That is, coding across files from
different libraries cannot help in reducing the total delivery rate.

4.2 Statement of the Problem

Our problem statement closely follows that of [2] with the difference that we
classify the files into several libraries; allow the size of the files on different
libraries to be different, and allow the users to request files from every library.
More formally, suppose we have L libraries each consisting of N, files, ¢ € [1 :
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L]. We denote by W the n’th file on the £'th library and assume all the
files are mdependent Furthermore, We assume the n’th file on the ¢’th library
is of size F\) = o/ F where S oA Ly = 1. We impose this last
normalization constraint in order to make our deﬁnltlon of rate and cache size
compatible with the single-library case with equal file sizes. It is important to
note that in this work we are mostly interested in the the scenario where the
size of the files within each library are equal. In other words, Fr(f) = FO for

€[1: Ny and ¢ € [1: L]. This more general notation is introduced in order
to facilitate the statement of our converse results in their full generality. We
have K users each with a cache of normalized size M. The caching scheme
consists of two phases, the placement phase and the delivery phase. In the
placement phase each user has access to all the files and stores an arbitrary
function of them of size M F in his cache Z;. Following the notations in [2],
we call these caching functions

L N
®
érc [T : 2% 1 — [1: 2], vk e [1: K], (4.1)
/=1 n=1
Note that the requests are unknown in this phase and hence ¢, does not
depend on them. In the delivery phase, every user requests exactly one file
from each 11brary 1. The requests made to the £’th library are represented by
a vector d[lK for every ¢ € [1 : L] where d,(f) € [1: Ny for every k € [1: K].
Based on this request vector an update message X (@ 3 of size RF is then
[1:K]Je=1

broadcast by the server to all the users. This update message naturally depends

on the requests and the files

X{d(e) T ?/J{duz) S W [1N, }z 1)

where ¥, ) are called the encoding functions
{d[I:K]}Z:1
Lo <>
fass |FR)
dff)K W ”1 | |11 25 [1: 2K, (4.2)

Each user reconstructs his desired files as a function of the content of his cache
7. and the update message.

A

W= v i X a0y )
Vk:e[l.K], 1: L]
where p [0, ) are called the decoding functions
K FE=1oR
o)
1 L 2B 1 2lFMI 2 KL 2. (4.3)
{d[l K]}e ki

Tt is perhaps more realistic to assume each user orders at most one file from each library.
However, since we are studying the worst case analysis, this will not change the results.
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We say that a memory-rate pair (R, M) is achievable for a network with
parameters (L, {a[(f:)Nd 1, Npopy) if there exists a caching strategy such that
for any request vector {dff)K] | each user is able to recover all his desired

files. In other words, if for any € > 0 and F' large enough, there exist caching,
encoding and decoding functions for which the probability of error

ma P(W L@
{d) e e 161‘5 L[1:Ny K FELK], Kl e[ ( (g ki 7 d;(?)

can be upper bounded by €. For a network with parameters (L, {(xff:)Ne] e N
the memory-rate tradeoff is defined as

. ¢ =
R*(L, M, {CVEL)NZ] by Niy) =

inf {R : (M, R) is achievable} . (4.4)
Whenever the size of the files within each library are equal, that is 047(1Z ) =
forn € [1: N, and ¢ € [1: L], we use the simpliﬁed notation
R*(L, M,{a"9}t |, Nyi.p)) instead of R*(L, M, {al’ . N]}E 1> Niny). Our goal is
to characterize the memory-rate tradeoff of a network with L libraries in terms
of the memory-rate tradeoffs of networks with single libraries. To this aim we
find outer and inner-bounds for the L-library network and prove that the two
bounds match in special cases.

4.3 General Results: Achievability and Converse
Bounds

4.3.1 Achievability

Our achievability results are based on a memory-sharing strategy. We divide
the cache of each user into L segments and assign one segment to each library.
We ignore coding opportunities across files from different libraries. Note that
as pointed out in the previous section we are only expressing our results for
the scenario where F\”) = F () that is the files within each library are of the
same size. We have the following theorem.

Theorem 4.1. Let R*(L, M,{a'9}t |, Nyi.p)) describe the memory-rate trade-
off as defined in (4.4) where o = a®¥ forn € [1: N, and for ¢ € [1 : L].
Then, we have

L
R (L, M {9}, Npg) <)ol e),1,N£)
/=1

where My’s are arbitrary non-negative numbers satisfying Zle M, = M.
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Proof. Consider Network A with parameters (L, {a®}f_ |, Njy.r)) and L net-
works B with parameters (1,1,N,), ¢ € [1: L]. Suppose for every ¢ € [1: L]
a memory-rate pair (224 > 1) = ( Oi\{f) , Ry) is achievable for Network B with

files W"”. We will prove that (M, Zngl oY Ry) is achievable for Network A.
Fix some ¢ > 0. By definition of achievability for Network BY), ¢ € [1 : L]
there exist caching functions

6O [1: 2PN Sy (12 2P b)) ke [1: K]
encoding functions

4 () ()
¢;§?K}:[1:2F [N (12 2P R) wald) e (10 N K

and decoding functions

M,
pO [ 2R s 2P s 2P,
Atk

ke [1: K] df) € [1: NJ*
such that the estimates

i 0) (0)

W o) = Y x99 . z)
0] (0 4k

d[1=K]’k’£ d[l K]’ ik d[l:K]

satisfy
max max ]P’(W ooy + W;(%) <e€
k

d(z) E[l NZ}K k‘e[l K] d[l K]’
for ' = (e> sufficiently large.
Now for Network A we define the caching functions

A

or({W, 1Ng]}£ ) =

the encoding functions

DOV o VR, L i

X EAGUGAE

1) (1) (L 4
Wi, Win)s- ¥y, W)l dig b

{d(é) }% . ¢{d(e)

and the decoding functions

W%mgmaw&ﬁ;%)
(@) (1/}@) (W(i) ) gb(i)(W(i) )) Vi, k, {d }
'udﬁ);qk dD NS P A e 2 [1:K]J =1

The probability of error of this caching scheme is thus
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7 (4)
max max PW, .« . . #ZW))
Kl ie/1: diy ey Yo ks @
{d{) e iy €TTHy [N K RE[LRT €L i} dy
= max max max P(Wg # W(zz))
i€[L:L] ¢ N,k kELK] (LK) dj,
[1:K] e
<e.

Furthermore, this scheme has/a rate equal to S FOR, =31 YR,
and a memory of size % 25:1 % = M. Therefore, the memory-rate pair

(M, Zle oY Ry) is achievable for Network A which proves the theorem.
]

4.3.2 Converse

Consider Network A with L libraries. Roughly speaking, we will prove that
any caching strategy for Network A can also be used for Network B which has
a single library consisting of files that are concatenation of files from different
libraries of A. Intuitively, this is done by breaking each file on Network B into
its subfiles and assuming that each subfile belongs to a separate library. This
is formally stated in the next theorem.

Theorem 4.2. Let R*(L, M, {9}t |, Nii.p)) describe the memory-rate trade-
off as defined in (4.4) where alf! = a® forn e [1: Ny and for ¢ € [1 : LJ.
Furthermore, assume without loss of generality that Ny < Ny < --- < Ny
Then, we have

R*(L, M, {a"9}}_,, Np.py) >
R*(]-) M, 6[1:NL]7 NL)

The coefficients (3, for n € [1: Ni| are defined as

L i
! ZeLzl alY Ny

where f(n) returns the smallest j € [1 : L] such that n < Nj.

Proof. Consider Network A with parameters (L, {a¥}L |, N, n:z)) and Network
B with parameters (1, /5p.n,), N). Suppose a memory-rate pair (R, M) is
achievable for Network A. We will prove that the same memory-rate pair
(R, M) is also achievable for Network B. We represent the files on Network

Lo o)

B by W, which are of size §,F = %FNL for n € [1: Ny|. We break
=19

each W, into disjoint subfiles

W, = WY@ e o) (4.5)
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where W\” is of size a(f)ﬁ]\f 1. Fix some ¢ > 0. By definition of
=1¢

achievability for Network A with files {W[(e) L_| there exist caching functions

¢k, encoding functions ¢, and decodmg functions p 0, , . asin
{ [1:1(]}@:1 { [1:K]}Z:1’ L

equations (4.1),(4.2),(4.3) such that for any request vector {dEf)K] | and for
F large enough, each user can recover his desired files with probability of error
bounded by e.

Now for Network B we define the caching functions

or(Wiavy) = (W M), Yk € [1: K]

the encoding functions
w' (W, ) 4 " ({W(f) }L ), Vd! e[l:N ]K
diy g \IENL) T W e WV N se=1) VK] : Np

and the decoding functions

2

Md' (4.6)

[1: K]’
a0 ot @) P Vs @ P )

[1:K]

Vk € [1: K], djy g €[L: Np)¥

where d = mm( ., N¢). Note that if N, < dj, then d(g is a dummy request
and the reconstructed W(M) will be discarded as visible from equation (4.6).

The probability of error of this caching scheme is less than Le

max max ]P’(Wd/

W
LN K kE[l:K] [1: ”“7& @)

[1 K]

L
B 2 (@)
= max omox P( V <W{dffﬁm}5pkﬁwdsﬂ)

(dEI:K])G[lzNL]K kel:K] i—f(d])
d\" =min(d},,N¢)
L

< max max P (W, £ W(Zi) )

{d(f) }% JElTE 1N K ke[l:K] (z:\/l {d[lzK]}?:l’k’Z di)
<L max max P(W 2w
a {d{}) e Hy €TT7y [N 6 ke[l:Klie[1:L] < {dff:)m}f*:v’“ # dy”
< Le.

Since we are reusing the same caching, encoding and decoding functions, the
memory-rate pair (R, M) is the same for both Networks A and B. Since
this is one achievable strategy for Network B, we have R*(1, M, fp.n,), Ni) <
R*(L7M7 {@(6)}5:17‘]\[[15/:])' O
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4.4 Optimality Results

4.4.1 VLibraries with Equal Number of Files

Suppose we have Ny, = N for ¢ € [1 : L]. That is, all the libraries keep hold of
equal number of files. We will show that if in Theorem 4.1 the M,’s are chosen
proportional to ) our inner and outer bounds will match. This implies that
the simple memory-sharing strategy proposed in Theorem 4.1 is indeed optimal
and cannot be outperformed by coding across files from different libraries.

Theorem 4.3. Let R*(L, M, {9} |, Nj1.p)) describe the memory-rate trade-

off as defined in (4.4) where ol =a® forn e 1 Ng] and for ¢ € [1 : LJ.
Suppose we have Ny = N for £ € [1: L] and My = o' M. Then

L

R*<L7M7 {a(g)}g/:lvN[l L] Za * (Z ) 7NZ) (47)
/=1

Proof. From Theorem 4.2 we have

R* (L7 M’ {a(f) }5%:17 N[l:L]) >
R*(1, M, Bun,), Ni) = R*(1, M, 1, N). (4.8)

On the other hand, from Theorem 4.1 we know that

R*(L M {a(f)}é/ 13 [1:L}) <

Za R*(1 )M,1,Ng)

L
> aR*(1,M,1,N) = R*(1,M,1,N). (4.9)
=1

The claim follows from (4.8) and (4.9). O

4.4.2 Libraries with Arbitrary Number of Files

In this section we find the optimal memory-sharing strategy when the number
of files in different libraries are not necessarily equal. Whether this optimal
memory-sharing strategy is globally optimal or not, is a question that we have
no answer for at this point (but we conjecture that it is).

We know that the memory-rate tradeoff for a network with one library is
convex. We will further assume that it is piecewise linear and has the following
form

co —70 Myt o< M <o

¢ — A i o) < < 0

R*(1,M,1,N) = (4.10)

(=N 00 < M <
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where VSN) > > 7,(,]2 > 0 (due to convexity) and Ci(ivl) — %(ivl) GZ(N) = CZ-(N) -

M) )

i

for ¢ € [1 : 7] (due to continuity) and r naturally depends on N but

to simplify the notation we have used r = ry. Also define 7&1\1[) = 00, 77(~N) =0,

¢ =00, (M =0, 08 =0, ) = N and 6%) = 0.

Note that if R*(1, M, 1, N) is not piecewise linear, we can readily generalize
our results by approximating R*(1, M, 1, N) with a piecewise linear function of
arbitrarily large number of pieces. We can now describe the optimal memory-
sharing strategy for the L-library setting.

Theorem 4.4. Suppose the memory-rate tradeoff for a network with param-
eters (1,1, N) has the general form of (4.10) with ry segments. Then there
exists an optimal memory-sharing strategy for a network with parameters

(L, {9}  Njy), i.e. a solution to

M,

R ' O p*(1. =L
M.y = arg min Zoz R*(1, NG

M[l:L] 725:1 My=M (=1

) 17 Nf)

that satisfies the following. There exist an /c [1: L] and L integers 0 < i, <
rn,, £ € [1: L] such that

. e ifl#0
MZ - (Ny) () . 5
0; + Mo, ifl=1.

L

where 0 < Mgy, < aO(0,"7) = 0,"7) and

(Ne) (Nyr)
’Y’Lg ’7151 / .
S S iy VG eI
and
(Ne) 7(N)
Y Y el L. 4.11
W@ S g Vel (4.11)

Proof. Assume there exist ¢, ¢ € [1 : L] such that ¢ # ¢’ and MZ‘ = GENZ)a(@ +
Myem and M}, = o) (@) + M!  and M, # 0 and M/ # 0. Assume

Qg rem
(N[) (NZ’)

’L

without loss of generality that —7- > (2, . Now we set

rem

6 = mln( ® (QEZNJ:l QZ(ZVZ ) Mrem; leem)
M; <+ M;+54,
M, <« M, -5

This moves either of M} or M (or both) to a corner point (that is, either of

Myem or M), will be zero). Furthermore, this changes the total rate by
,y(NW) (Ne)
AR = (-2 — — 2 )5 <0.

04(5') 05(5) -
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Therefore, there exists an optimal solution for which at most one of the libraries
has M, # 0. We call this library £. Next assume there exists a pair ¢ # ¢ €

(Ne) (Ngr)
[1: L\{¢} for which - —ar % This time we define § = mm(a(z)(ez(z +i —
vae)),aw)(ﬁzjl\/" 91(5”1)). Again setting M < M; + 0 and M}, < M, — 0

Wy N

results in AR < 0. Finally assume % > % for some /. We can set
§ = min(a® (Q(N‘Z HKNE)), Mie) and M <= M + 6 and M} < M7 — § which

tp+1 1p
results in AR < 0 unless if M., = 0, in which case we simply choose the
(Ne) R
library with the largest L to be L. O]

The solution described by Theorem 4.4 can be found in an incremental way.
Assume that initially the size of the cache is zero and we gradually increase it
up to M = Zle a® N,. At any point we must decide how much of the cache
should be allocated to each library. At the beginning it is advantageous to

Ny

assign all the cache to library ¢ with the largest ((D), since this reduces the
total delivery rate by the largest factor. This is the library which is called { in
the theorem. This assignment continues until this library reaches the corner
point M; = oz(g)QﬁNé). At this point { is re-initialized as the library with the
largest right-slope and the process continues. This procedure is summarized
in Algorithm 3.

As a final remark, we conjecture that this memory-sharing strategy is again
globally optimal and that our converse bound is tight in this general case. In
other words, we conjecture

- M;
ZOC * 5)717N€):R*(17M76[1:NL}7NL)-
/=1

This would imply that even in the general case, there is no gain from coding
across files from different libraries and memory-sharing suffices for minimizing
the delivery rate.
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Algorithm 3 Optimal Memory Allocation for L libraries

1: Set AllocM= 0.
2: Set My =0for ¢ € [1:L].
3: Set iy =0, for £ € [1: L].

4: while AllocM< M do

5:

10:
11:
12:
13:
14:

Find the library { that has the largest right slope

(Ne)

124

{ = arg max
£e[1:1] al®)
AN
Set 6 =~ (0] — 017 )
if M >AllocM +6 then

Mé = le + 4.
AllocM =AllocM + 9.
ié = Z'é + 1.

else
M; = M; + M—AllocM.
AllocM= M.

end if

15: end while
16: Output M, for £ € [1: L].




A Generic Approach to
Distributed Storage
Systems

A variation of the classical distributed storage model will be introduced and
analyzed in this chapter. In many ways, the new formulation can be viewed as
a straightforward generalization of the classical DSS discussed in the prelimi-
naries, whereas from other perspectives, it is more limited. This model should
be of interest in studying DSSs where failures occur rarely. As a result, the
traffic generated during the repair process is negligible and should not be taken
as a criterion for evaluating the performance of the system. Instead, we will
focus on relaxing several idealized and symmetrized properties of the classical
model which, as will be discussed shortly, could be unrealistic in practice. We
will first describe the new model and highlight its differences with the classical
one, and next motivate it.

Let us start by looking at the classical DSS from a new perspective. Ig-
noring the repair requirement, this model [1] can be viewed as a complete
k-uniform hyper-graph with K vertices which represent the servers and ([k{ )
hyper-edges representing the users which are connected to the corresponding
set of servers. Each vertex of the hyper-graph is equipped with a memory of
size M and each hyper-edge should be able to recover a specific file A from
the memories of the vertices associated with him. A minimum-storage code
minimizes the total required memory M K under these constraints. As we
are assuming the repair events occur rarely, this becomes the sole criterion
by which we judge the performance of this DSS. Therefore, a simple MDS
(maximum distance separable) code can achieve the optimal performance.

Now, let us assume instead that we have an arbitrary hyper-graph defined
over K vertices and a set of N independent files {A;,..., Ay}. Each hyper-
edge of the graph is colored by some ¢ € {1,...,N}. We have an entire
memory budget of M which we distribute among different vertices of the hyper-
graph. To each vertex i we assign a memory of size M, such that ). M; < M.

49
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Each server stores a function h; of the files in his memory which satisfies
H(h;) < M;. These functions must be designed so that if S = {s1,...,s,} is
a hyper-edge of the graph colored with ¢, then H(A.|hs,,...,hs,) = 0. The
question is what is the minimum total memory budget M which allows us to
accomplish this task for a particular colored hyper-graph. We refer to this
as the Generic Distributed Storage Problem (GDSP). We will establish close
connections between this problem and well known problems in the network
information theory literature. These connections also imply that the problem
cannot be easily solved in its full generality. Therefore, we focus in this work
on two sub-models. Firstly, and for most of this chapter, we will study a graph
(a hyper-graph where size of each hyper-edge is two) where edges are colored
arbitrarily. In Section 5.1, we will propose an achievability strategy for a -
practically motivated - subclass of such graphs which we refer to as “smoothly
colored graphs”. We will show that under certain constraints our strategy is
optimal. Secondly, we will briefly investigate a hyper-graph in the presence of
only one file. For such a hyper-graph in Section 5.2 we will characterize the
minimum total required memory as the solution to an LP.

To motivate the extension of the distributed storage problem considered
in this work, let us start by reconsidering the classical version. There, a key
requirement is that every sufficiently large subset of the servers must enable full
recovery of the entire file. For several scenarios of potential practical interest,
this requirement could be unnecessarily stringent. Consider for example a
setting with different classes of servers. Some servers could be more powerful
than others, or more reliable. Then, a natural consideration would be to
suppose that every file recovery would always involve at least one of the more
powerful servers. In other words, one would not impose a requirement that a
subset consisting of only less powerful servers must enable file recovery. This
naturally leads to a more general hyper-graph model, beyond the uniform
complete ones studied in the classical setup. A practical framework where
such a combination of more and less powerful servers might appear are caching
networks for content distribution. In such networks, there are auxiliary servers
that help speed up data delivery. However, it will generally not be possible
to fully recover the desired content only from auxiliary servers. Rather, an
additional call to one of the (more powerful, but typically overloaded) main
servers will be necessary.

The second generalization of our work concerns the file itself: In the clas-
sical problem, there is a single file. In our extension, we allow for several files,
and each user is requesting only one of the files. Again, such a scenario is of
potential practical interest, for example, in a geographical setting: let us sup-
pose for the sake of argument that the servers are geographically distributed in
a large area, and let us envision content distribution that is location-specific,
as in many of the commercial video distribution services. Here, some servers
will serve only one geographical sub-area while other servers will serve multi-
ple, leading to a hyper-graph where each hyper-edge will potentially seek to
recover a different file, specific to the geographical location.
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Figure 5.1: How large does M; + M, + M3 + M, need to be, such that the
network (left) admits a rate of 1?7 Equivalently, what is the solution to the GDSP
defined over the graph on the right?

Figure 5.2: The coded caching problem [2] can be viewed as GDSP defined over
a complete bipartite graph. Blue edges must be able to recover file A and the red
ones, file B.

— A
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Figure 5.3: Left: GDSP over a tree. The root has to solve an instance of Index
Coding with Coded Side-Information [41], assuming his children have stored the
correct functions. Right: the problem cannot be solved greedily, by looking at
one's own subtree (unless the root has a depth of 2 or less).

Connections with the literature

GDSP can be seen as a special instance of the single source network information
flow problem. The source is connected to K intermediate nodes with links with
capacities My, ..., Mg respectively. These nodes represent the vertices in the
GDSP. We have |E| sinks corresponding to the hyper-edges of the GDSP.
For any hyper-edge S = {s1,...,S¢}, we connect all the intermediate nodes
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S1,...,8¢ to the corresponding sink with links with infinite capacities. Our
problem is equivalent to finding the minimum sum rate Zfil M; such that,
given proper manipulation of the data at the intermediate nodes, each sink
can recover its desired message at a rate of 1 bit per second (see Figure 5.1
for an illustration). For the network in Figure 5.1 one can use Theorem 5.2 to
show that the minimum required total memory is M* = 3.

The canonical coded caching model [2] can be equivalently represented by
a GDSP defined over a complete bipartite graph where on one side we have
K vertices standing for the user memories and on the other side we have N¥
vertices representing the delivery messages (see Figure 5.2). While in general
one can study the overall trade-off among (M, ..., Mg, Ry,..., Ryx), the
analysis in [2] is limited to M; = M and R; = R whereas we are interested in
minimizing >, M; + >, R;.

If we restrict GDSP to a tree, it is easy to show that there exists an optimal
storage scheme where the leaves do not store anything. In such a scheme,
naturally, the parents of the leaves carry the burden of recovering the files
requested by the edges between them and the leaves. For the parents of the
parents, the problem turns into an instance of the index coding. In fact, this
simple argument shows that any instance of the index coding problem with
uncoded side information can be seen as a special case of GDSP defined over
a tree of diameter at most 4. GDSP defined over a tree of diameter 6 is closely
connected to the problem of index coding with coded side-information [41].
See Figure 5.3 for an illustration.

There are also close connections between our work and Femto Caching
[42] where caching over an arbitrary hyper-graph is studied. The vertices
and edges in GDSP correspond to femto-cells and users in the Femto Caching
model, respectively. There are however several differences. To mention a few,
in the Femto Caching model: all the caches are assumed to be of the same size;
the file requests per hyper-edge are unknown and are modeled by a popularity
distribution (which does not vary across different users) and last but not least
coding across different files is not permitted and the main quest is to find the
best storage strategy under this restriction.

5.1 Graphs with Multiple Files

Let us first formally define the problem. We have a set of N independent files
{A1,..., Ax} where A; consists of F' independent and uniformly distributed
symbols over F, where ¢ is a sufficiently large prime number. We have a
colored graph G = (V, E) where V = {vy,..., vk} is a set of K vertices and
E is a set of tuples of the form ({i,j},c) where i,5 € {1,..., K}, i # j and
ce N={1,...,N}. For any {i,j} there is at most one such tuple in F, that
is, if ({4,j},¢c) € E and ({¢,j'},) € E and ¢ # ¢ then {i,5} # {¢',j'}. The
parameter ¢ specifies the color of the edge or the file that the edge is interested
in. Each vertex 7 of the graph is equipped with a memory of size M; pF' where
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he stores a function the files, that is, h; r = h; p(A;,..., Ay) such that both
conditions below are satisfied.

H(hip) < M; pF (5.1)

H(Ahip, hjp) =0 for all ({i,5},c) € E. (5.2)

Note that all the entropy terms are calculated base ¢. For a given colored
graph G, we say that a memory allocation (M p,..., Mg p) is valid if there
exists functions h; p(-) that satisfy (5.1) and (5.2). In this case, we call
(hir(+),...,hir(-)) a valid assignment too. We say that a normalized sum
rate of M is achievable if there exists a sequence {(Mi p,..., Mk r)}3_, such
that (M; p, ..., Mk ) is a valid assignment for all /' and

K
lim > My < M. (5.3)

F—o0 4
=1

Our goal is to find the minimum normalized sum achievable rate M* for a
given colored graph G. That is M* = inf{M ‘M is achievable}. When clear

from the context, we omit the subscript I’ from M; r and h; p to simplify the
notation.

Motivated by the arguments presented earlier in this chapter, let us now
introduce a model which we refer to as a “smoothly colored graph”. Intu-
itively, a smoothly colored graph is one that can be “partitioned” into several
clusters each of which representing a certain geographical location. The edges
connecting the vertices within each cluster are colored differently from the
other clusters, whereas the edges that connect vertices from two different clus-
ters can be colored similarly to either of the two clusters. Such cross edges
represent users which have access to servers from both clusters. Let us define
this concept more formally.

Definition 5.1 (Smoothly Colored Graphs). We say that a graph G = (V, E)
is smoothly colored with respect to a partitioning N1, Na, ..., N of N if the
set V can be partitioned into L subsets Vi, Vs, ...,V such that if v;,v; € Vy
and ({i,7},¢) € E then c € Ny and if v; € Vy and v; € Vy and ({i,j},c) € E
then ¢ € Ny UN]. Fori,j € {1,2,...,L}, we represent by F;; the subset of
vertices in V; which are connected to at least one vertex outside of V; with an
edge colored with some ¢ € N;. Formally,

Fij = {UEVj JugV;, ceN;, st ({u,v},c)EE},
Vi,je{l,....L}.

An example of a smoothly colored graph with three clusters and |[N;| =
IN2| = |N3| = 1 has been depicted in Figure 5.4.
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)
-0

Vi = {v1,...,v6}
Vo = {vr,...,v10}
V3 = {L‘]],...,vlg,}
Fia ={v1,v3}
Foq ={v2,v5}
Fz1 = {vs,v6}
Fia2= {U7}

Fop = {vr,v8,00}
F32 = {Um}
Fiz= {7115}

Faz ={vi1}
Fzz= {U117 171271}1:3-,1’1/1}

Figure 5.4: A smoothly colored graph with three clusters.

Our approach is to reduce the GDSP over a smoothly colored graph to sev-
eral smaller instances of GDSP over subgraphs representing different clusters.
This can be interesting for several reasons. Firstly, if each cluster is colored
with only one color, we can use proposition 5.1 from Section 5.2 in order to
provide an exact solution for each cluster and consequently, find the exact so-
lution for the overall network. Secondly, even within the realm of linear codes
(for a fixed F'), the complexity of an exhaustive algorithm grows exponentially
with N. Therefore, any preprocessing that reduces N can significantly improve
the running time of the overall algorithm.

Suppose solve(G) is an optimal algorithm that given a graph G returns
any valid assignment (Mj7,..., M}) for which S35 My = M*. Consider
now Algorithm 4 which given a graph G and an arbitrary partitioning of
the colors into A, ..., N returns SUP(G,Ni,...,N7), a superposition of
solve(G1), . ..,solve(G) where Gy is a subgraph of G which only retains the
edges colored by ¢ € N, and eliminates all the other edges.

Algorithm 4 Superposition Algorithm
Input: G = (V, F) and a partitioning of colors into Ny, ..., Nf.
Output: (My,..., Myg) = SUP(G,Ny,...,Ny)
1: Construct the subgraphs G, = (V, Ey) such that ({7, j},c) € E; if and only
if ({¢,7},¢) € E and ¢ € N,.
2: Let (Ml(g), e Ml(f)) = solve(Gy) for all £ € {1,...,L}.
3: return (Zle Ml(e), e Zle M[(f))

The following theorem tells us that for a smoothly colored graph with
V| = 1, and under the constraint Fj; N Fy; = @ for k # ¢, Algorithm 4
returns an exact solution.

Theorem 5.1. Suppose a graph G = (V, E) is smoothly colored with respect
to Ni,...,Ni where |Ny| =1 for all {. Suppose further that Fy; N Fp; = &
for all j, k.0 € {1,...,L}, k # 0. Let (M,...,Myg) = SUP(G,N1,....N7)
and (M7, ..., Mg) = solve(G) and, M = S5 M; and M* = S8 M. We
have M = M*.
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Proof. Suppose (h}, ..., h})is a valid assignment for G which satisfies H (h}) <
M. Without loss of generality let us assume N, = {¢}. Consider the follow-
ing memory assignment for Gy. For all v; € V\ Uy Fr.e We set MO = My
For all v; € Fiy for k # £, we set Mi@) = M; — (1 — min; M7)" where the
minimum is over all j such that v; € V;, and ({7,j},k) € E. (Note that =™
stands for max{z,0}). For all v; € F we set Mi(g) = (1 — min; M;)* where
the minimum is over all j such that v; € V, and ({4, j},¢) € E. Finally, for all
v; € V\ (Uk# For U Vg) we set MZ@ = 0. We first prove that this is a valid
assignment for G,. Since |[N;| = 1, by proposition 5.1 we only need to prove
that M + M J@ > 1if ({i,5},¢) € E. We consider several different cases.

® i,j € Vi\Upp Fre- In this case we have MY 4 Mj(g) = M; + M;.

(2
Since (M7, ..., Mj) is a valid assignment for G, we must have that

M7 + M; > 1, by proposition 5.1.

e i cV)\ Uk;,,éz Fie and j € Fyy for some k # L.
We have MZ@ +M J@) = M} + (1 — miny M;)* > 1 since by definition

M; > min iz
jl:Uj/ EV@,({'L,]},Z)GE

e i€V Uk# Freand j € Fi . We can write MZ-(E) + MY = M} + M;‘ -

J
(1 —miny M;)*. If 1—miny M < 0, we trivially have M7 + M7 > 1.
Suppose 1 —miny M3 > 0. For any j' € V, for which ({7, j'}, k) € E we

have

F(M] + M; + M;, —1)

> H(hj)+ H(h}) + H(h}) — F

> H(hi,hj,hi) = F

#

> OF + H(h, W, WA, A) — F > F
where (#) follows from the fact that (hj,...,h} ) is a valid assignment
and therefore, in graph G the triple (A}, b}, h},) must be able to reproduce

the files Ay and A,. Thus, M7 + M\” = My + M + miny M; —1 > 1.

? J

e i,j € Fiy for some k # £. We can write Mi(g) - M]@) = M —(1-
ming Mj)" + M7 — (1 — miny M3)*. Again, if 1 — miny M < 0 or
1 — miny M7, < 0, the proof is simple. Suppose both these expressions

are non-negative. For any ', j* € Fy . for which ({i,7'}, k), ({j, 7'}, k) € £



56 A Generic Approach to Distributed Storage Systems

we have

F(M + My + M} + M, —2)
H(hi, hy) + H(h}, h}) — 2F
2F + H(h;, hi|Ag) + H(R}, | Ag) — 2F

H(h: BB, B Ay)

PR B 1) J

H(h WAL > F + H(h!, B Ay, A) > F.

17°7) 17°7)

AVAR AVARAVARLY,

And therefore, Mi(z) + M]@ > 1. Note that we might have i = j’ but

this does not affect the analysis above.

o i € Fryand j € Fpy for k # k'. The analysis is very similar to the
previous case.

Let (My,..., Mg) = (31, MY, S Mg)) and let M = S | M;. Since
(M, ..., Mk) is a superposition of L different (not necessarily optimal) solu-
tions for Gy,...,Gy, clearly we have that M > M. But we have M = M*,

because:
RPN BTN VD oF

k:vkEV\ Ui;ﬁj ]:7;7]' l k:vkefm,i;éj ZG{i,j}
= E M} + E (1— min M;)*
o i €V
kg eV\ Ui;ﬁj Fij kivke-/—'i,jvwéj

+ E My —(1— min M;)*
Jv €V 7
k:va}—i,]',i;éj

= oo M+ Y Mp=M"

k:vaV\ Ui;éj .7:1"]' k:vkefm,i;&j

Therefore, we qstablished that M < M*. Trivially, we also have that M* < M
which proves M = M*. O

At a first glance, it is tempting to conjecture that the constraint |A;| = 1
imposed by Theorem 5.1 is not of fundamental importance and can be relaxed.
Nevertheless, this is only partially true. As we will see shortly, even when
L =2, M| =1and [Ny > 1, Algorithm 4 may fail to return an optimal
solution. On the bright side, we can still make the following claim.

Theorem 5.2. Suppose a graph G = (V, E) is smoothly colored with respect
to a partitioning N7 and Ny where |N1| = 1. Suppose further that Foj = D for
j=1,2. Let (My,...,Mg) = SUP(G,N1,Na) and (M7, ..., Mj;) = solve(G)

X

and, M = S8 M; and M* = 3.5, M?. We have M = M*.

Proof. Suppose (hj, ..., I ) is a valid assignment for G which satisfies H (h}) <
M. Without loss of generality, assume N; = {1} and N2 = {2,..., N}. Con-

sider the following assignment for G;. For all v; € V; we set Mi(l) = M} and
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for all v; € Fy o we set FMZ-(I) = I(hf; Ay). We set Mi(l) = 0 for all the other
vertices. As for (G5, we propose the following assignment: for all v; € Vs let
FMi(Q) = H(h;|A,; = a) where a € F} is the solution to

a= rgmlnz H(h;|AL = a)

acky [IS%

For all the remaining vertices we set MZ@) = 0. Note that without loss of
generality, one can assume that a is a string of zeros. (If not, one can easily
modify the functions A} such that this property is held. This can be done
without changing the required memory, and the recoverability of the files.)

Similar to the previous proof, we will show that these two are valid assignments.
Firstly, (M1(2), oM [((2)) is a valid assignment for G5 because for all nodes in
V, we can store hYY = hi(0, Ay, ..., Ax). We have H(h!(0,As, ..., AN)) =
H(h%|A; = 0). For all {u,v} € V, where ({u,v},c) € E for some ¢ # 1, since:

H(A,

hi(Aq, Asg, ..., AN), R (A, Ay, AN)) =0
we must have that

H(AC h;(a, AQ, P ,AN),]'LT)((I,AQ, e 7AN)7A1 = CL) =0

for all a € Fy including a = 0. Therefore,

H(A,

h;(0,As, ..., AN),h;(0, Ay, ..., AN), A1 =0) =0

and thus H(Ac‘hz(O, Ag, ooy AN) (0, Ag, ..., AN)) = 0 (because A; is inde-
pendent of (A, ..., Ay)).

Secondly, (M, (1) M }Q ) is a valid assignment for Gy because if u € V;
and v € V, and ({u v}, 1) € E then
F(MWY + MYy = FM*+I(h%; Ay
= H(h;)+ H(h*) — H(hy|Ay)

H(A) = F.

v

Finally, since

Y Hh A =0) < Y H(hy|A)

IS% uEVs
it follows that

FM = F(O(MD 4+ M)

uey
< FY M+ Y (b Ay + HJAY
ueVy ucVs

= FY M;+> H(h)=F> M;=FM"

ueEV] u€EVy u€ey
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Figure 5.5: If |[N}| > 1 and F; ; # @ then Algorithm 4 is suboptimal in general.

Naturally, M < M and therefore, M = M*. O

The condition Fy ; = &, 7 = 1,2 imposed by Theorem 5.2 is clearly stronger
than the constraint F; ;N Fy; = &, 5 = 1,2 from Theorem 5.1. It tells us that
the cross-edges must be all colored similarly to the monochromatic cluster.

If not, Algorithm 4 may be strictly sub-optimal. An example is depicted
in Figure 5.5. This is a complete bipartite graph superimposed with the edges
({wivse, wjpse},4) for all {s, 5} € {1,2,3} and ¢ € {0, 1,2}. All the black edges
are interested in Ay, while the blue, red and green edges are interested in A,
Ay and Aj respectively. We show that applying Algorithm 1 on this network
with partitioning N7 and N, provides a strictly suboptimal solution. Suppose
G, and Gy are the two subgraphs obtained from Algorithm 1. By applying
Theorem 5.2 twice on G one can find its optimal solution: h,, = {41, Az, A3}
for i € {1,2,3} (and all the other node store nothing). Then the solution to
G4 can be easily verified as hy,, = hy, = hy, = Afll) and hy, = hyy = hyy = Aff)
and hy, = hyy = hyy = AS) —i—Af) where A, is assumed to have 2 symbols Afll)
and Aff) and the summations are modulo g. Therefore, algorithm 1 provided
a solution with M = 13.5. On the other hand, we can do strictly better via
the following strategy: h,, = A4 for i € {1,2,3} and h,, = Ay, hy, = A1 + Ay,
hy, = A + 2A4, hyy = Ag, hyy = As + Ay, hyy = As + 244, hy, = As,
hug = As + Ay, hyy = Az + 2A,. which results in M = 12.

5.2 Hyper-graphs with One File

In this section we briefly look at the GDSP defined over an arbitrary hyper-
graph but only in the presence of one file. Suppose G = (V, E') where E is an
arbitrary subset of the power set of V. We define the concepts of valid memory
allocation and normalized sum achievable rate similarly to chapter 5.1. We



5.2. Hyper-graphs with One File 59

only replace (5.2) by
H(A|hs, py...,hs,p) =0forall S = {s1,...,s} € E.

We have the following simple proposition which directly follows from the anal-
ogy that we established between GDSP and network information flow in Sec-
tion 5 and the min-cut max-flow theorem [43].

Proposition 5.1. Suppose we have a hyper-graph G = (V, E) with K vertices.
Let M* be the minimum normalized sum achievable rate for G. Then M* is
the solution to the following LP.

K
M* = min M, st
My,.... My £~
M, > 0, Yue{l,...,K},

ZMu > 1, VSeE.






The Shortest Vector
Problem and
Compute-and-Forward

A lattice is a structured collection of vectors in R™ which are characterized
by integer linear combinations of a given set of vectors. Specifically, if we
represent these vectors by the columns of a matrix A € R"*" we can define a
lattice as

A = {Aala € Z"}.

The matrix A is known as the basis of the lattice. The basis of a lattice is not
unique. Any matrix A whose columns are n linearly independent vectors in A
can serve as a basis matrix for A.

The Shortest Vector Problem (SVP) is the problem of finding the shortest
non-zero vector in a lattice. More specifically, given a basis A we can write

a* = argmin |[Aal|.
acZ™\{0}

The shortest vector of a lattice is then Aa*. The optimization problem can be
rephrases as

a* = argmina’ ATAa = argmina’ Ga (6.1)

acZ"\{0} acZ"\{0}

where the matrix G = AT A is called the Gramian matrix of A.
A closely connected problem to SVP is the Closest Vector Problem (CVP).
CVP is the problem of finding the closest vector in a lattice to a given vector
in space. Specifically, given a lattice basis A, and a vector y € R" we are
interested in

a* = argmin |Aa — y||* = argmina’ Ga — 2y” Aa + y'y. (6.2)
aczn aczn

61
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The CVP and the SVP are known to be NP-hard under randomized re-
duction [44, 45]. In fact, for a general lattice, there is not even an efficient
constant-factor approximation algorithm known for these problems. Discover-
ing such algorithms would have significant implications in terms of the hierar-
chy of complexity classes [46, 47, 45]. Currently, the best known polynomial
complexity approximation algorithms for the SVP/CVP only achieve expo-
nential approximation factors [48, 49].

On the bright side, efficient algorithms for special lattices have been known
for a long time. For instance Gauss found an algorithm for solving the SVP
in dimension two. Conway in [50] provides exact algorithms for a class of root
lattices in higher dimensions. Based on [51] McKilliam [52] showed that if an
obtuse superbase for a lattice is known, the SVP and the CVP can be solved
in polynomial complexity.

In this work, we introduce new classes of lattices where the SVP and the
CVP are of polynomial complexity. These classes are inspired by recently
proposed cooperative communication strategies referred to as “Compute-and-
Forward” [4] and “Integer-Forcing” [6]. Optimizing the computation rate
achieved by these strategies involves solving particular instances of the SVP.
We will first show that under certain conditions on the eigenvalues of the ma-
trix G in Equations (6.1) and (6.2), the solution to the SVP and the CVP can
be found in complexity order

O (n*1(2[y] +2)F). (6.3)

We will then show that the instances of the SVP that we are interested in
satisfy these conditions. As for Integer-Forcing, the parameters k& and n re-
spectively stand for the number of antennas at the receiver and the number of
transmitters. Here ¢» = /1 + P~2,,, depends on P, the transmission power
and ~2, ., the largest eigenvalue of HH” where H is the channel matrix. For
Compute-and-Forward the complexity can be further reduced to

O(ny log(nip)) (6.4)

where 1) = 1/ P||h||?2 + 1 and h is the channel vector.

We will then proceed by introducing a larger class of lattices for which
a constant approximation factor for the SVP and the CVP can be found in
polynomial complexity.

There is a sizable literature concerning the particular instance of the SVP
that appears in Compute-and-Forward and Integer-Forcing. Modifications to
Sphere Decoding and Schnorr-Euchner algorithms [53, 54|, Quadratic Pro-
gramming Relaxation [55], Branch and Bound algorithm [56], Slowest Descent
method [57], modifications to the LLL algorithm [58, 48], exhaustive search
over a reduced search space [59], etc are some of the approaches taken by the
community. Some of these works have excellent (sometimes linear) average
complexity based on simulation results. Our work is distinguished in that we
provide rigorous theoretical guarantees on both complexity (worst-case) and
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correctness of the algorithm. In addition, direct extensions of our work have
been shown to demonstrate linearithmic average complexity [60, 61]. Our algo-
rithm has further been extended to the Compute-and-Forward problem over
rings of Gaussian integers and Eisenstein integers [62, 63]. Finally, another
line of research concerns the recoverability of the messages at the receivers in
a multi-relay scenario [64, 65, 66], where decoding the best equation by each
relay node may not be the best approach.

The rest of this chapter is organized as follows. We will briefly discuss the
Compute-and-Forward technique and its connection with the SVP in Section
6.2. We will demonstrate how this particular instance of the SVP can be solved
efficiently. In Section 6.3 we will extend our results to Integer-Forcing. Next,
in Section 6.4 we will show that the SVP and the CVP can be approximation
up to a constant factor for a much larger class of lattices. Finally, in Section
6.5 we will discuss an open problem in the context of lattice reduction.

6.1 Notation

In addition to the notation in the introduction of the thesis, we introduce
the following notation for this particular chapter. Vectors and matrices are
denoted by boldface lowercase and capital letters respectively. All vectors
are column vectors by default. All vector inequalities are elementwise. For
instance a < b is true if and only if a and b are of the same length n and
a; < b;, Yi € [1:n]. For an n x m matrix A and for a set 7 C [1 : n] we define
A, as the submatrix of A which consists of the rows indexed in 7. Similarly,
for a vector a and a set of integers m we define a, as a sub-vector of a which
consists of the elements indexed in 7. For a square matrix A, the operator
diag(A) returns a column vector which consists of the diagonal elements of A.
We use || - || to represent the 2-norm of a vector. The identity matrix is denoted
by I and 1 and O represent the all-one and all-zero vectors respectively.

6.2 IP! Matrices and Compute-and-Forward

The initial motivation behind this work is the problem of maximizing the
achievable computation rate of Compute-and-Forward. In this section, we will
present a short introduction to this relaying technique and establish its con-
nection with the SVP. We will then demonstrate how this particular instance
of the SVP can be solved in polynomial complexity.

6.2.1 Compute-and-Forward

Compute-and-Forward is an emerging relaying technique in wireless multiuser
networks. Contrary to the conventional approaches, Compute-and-Forward
does not view interference as inherently undesirable. The key idea is to recover
integer linear combinations of transmitted codewords as opposed to decoding
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individual transmitted messages. Nested lattice codes ensure that these integer
linear combinations are codewords themselves. Compute-and-Forward has the
potential to increase the achievable rate compared to the traditional relaying
techniques, as the analysis suggests in [4, 67, 68].

wi & € z
hy
h
w9 52 €9 2 7 Yy D ,glaiwi
1=
hp

Wn, S In
n

Figure 6.1: n transmitters send their messages to one relay. The relay decodes
an integer linear combination of the codewords.

Figure 6.1 demonstrates a Compute-and-Forward scenario, where n trans-
mitting nodes, each with transmission power P, share a wireless channel to
send their messages to a relay node. We assume no knowledge of the channel
states at the transmitters. The relay receives a noisy linear combination of the
transmitted messages, namely

Yy = zn:hixi + z
i=1

where z; and h; respectively represent the signal transmitted by node ¢ and
the effect of the channel from node i to the decoder, and z is the additive white
Gaussian noise of unit variance. The relay then recovers > a;w;, an integer
linear combination of the transmitted codewords. It has been proved [4] that
the achievable rate of Compute-and-Forward satisfies:

1 PlhTal? \
h,a) = - log* C L . .

As evident from Equation (6.5), the achievable rate depends on the choice
of the integer vector a. From the perspective of a single decoder, a reasonable
choice for a is one that maximizes R:

1 PhTa)? \
a* = argmax = log™* < all’ - ——— 6.6
i 2 ( o = T P (66)
which can be simplified as

a* = argmin f(a) = a’ Ga (6.7)
acZ"\{0}
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where P
G=I-———hh"” 6.8
1+ P|h|? (6.8)

is a positive-definite matrix. Comparing this optimization problem with Equa-
tion (6.1), we see that Equation (6.7) is an instance of the SVP.

6.2.2 IP! Matrices and the Main Results

The positive-definite matrix G in Equation (6.8) falls in the following category
of matrices which we refer to as IP!. This term is chosen to emphasize a
decomposition of the form I — P where P is of rank 1.

Definition 6.1. A positive-definite matriz G is called IP* if G =1 — avv’
where v is a normalized column vector in R™ and 0 < o < 1 is a real number.

The following theorem, albeit provable mostly by elementary manipula-
tions of integer inequalities, establishes an important fact that provides the
foundation of our SVP algorithm for IP! matrices. (The proof can be seen as
a special case of Theorem 6.2. All the proofs are in Section 6.6.)

Theorem 6.1. Suppose a* is the solution to (6.1) for an IP* matriz G. Then
at least one of the following statements is true

e a* satisfies
a*—ll <Vx<a*+11 (6.9)
2 2
and thus
a* = [vx]| (6.10)

for some x € RT,
e a* is a standard unit vector, up to a sign.

It follows from Theorem 6.1 that for the special lattices of interest, the
shortest vector can be obtained by solving an optimization problem over only
one variable. It is shown in [4] that the solution to (6.7) satisfies

la*]l < /Pl + 1. (6.11)

Equation (6.11) transforms into

1
V11—«

for a general IP! matrix. Consequently, the search only has to be done over
a bounded region and in the vicinity of the line in the direction of v crossing

la*]| < (6.12)
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the center. A separate examination of the standard unit vectors must also be
performed. This is a significant reduction in the number of candidate vectors
compared to other exhaustive search algorithms that apply to general lattices
as in [69], where such a structure is naturally absent and all the lattice vectors
within an n-dimensional sphere must be enumerated.

Remark 6.1. The formula given by Theorem 6.1 has some resemblance to the
results of [70] and [71]. However the span of these works are Cozeter lattices
[72] and the goal is to find faster algorithms for problems (CVP) which are
already known to be polynomially solvable. It is not difficult to see that the
Gramian matriz for Cozeter lattices have an IP* decomposition with small k
(k < 2). Nevertheless, Cozeter lattices are highly limited in structure. For
instance, there are fewer than n + 1 different Coxeter lattices in R™1.  All
these lattices are rank-deficient and the solution to their SVP can be given in
closed form. For instance, for AL, the shortest vector is e; — n%l(z;fll e;) and
for A" it is e; — es.

6.2.3 SVP Algorithm for IP' Matrices

In line with Theorem 6.1 we define a(z) = [vz|. Furthermore, let ¢ = ﬁ,
so that we have [|a*|| < 1. Note that Theorem 6.1 reduces the problem to a
one-dimensional optimization task. Since every a;(x), the i'th element of the
vector a(z), is a piecewise constant function of z, so is the objective function

f(a(@)) = [va]"Glva].

Overall, the goal is to find a set of vectors which fully represent all the intervals
in which f(-) is constant and choose the vector that minimizes f(-). Being a
piecewise constant function, f(-) can be represented as:

fla(z)) = (6.13)

T, iffi<x<§i+1,2’:O,1,...
si , ifx=¢&,1=0,1,...

&’s are sorted real numbers denoting the points of discontinuity of f(-). Since

f(+) is a continuous function of a, these are in fact the discontinuity points

of a(x) (or a subset of them) or equivalently the points where a;(z) is dis-

continuous, for some i = 1...n. We can see from Equation (6.9) that any x

satisfying .

1

minimizes f(-). As a result,  belongs to the interior of an interval and not
the boundary. Therefore, in the process of minimizing f(-), one can ignore the
s; values in (6.13), and find the minimizer of the objective function among the
r; values.

] = ] i 6.15
pein  f(2) = min (6.15)
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Since % belongs to the interior of the interval (&;,&;11), we can rewrite ;

as r; = f(a(%)) Hence:

min  f(a) = min f(a(351y)

6.16
aczm\{0} i=0,1... 2 ( )

As we discussed, &;’s are the points where at least one of the elements of the
vector a faces discontinuity. Since we have a;(z) = [v;x], the discontinuity
points of a;(x) are the points where v;x is a half-integer, or equivalently the
points of the form =z = ﬁ where ¢ is a positive half-integer and v; # 0. From

Equation (6.12) we can also see that |af| < ¢ and therefore, 0 < ¢ < [¢] + 3.
To conclude this argument, we write:

GelJo, . i=01,-- (6.17)
=1
where
1 1
o, = ol | O<c<[Y]+= ,C—QEZ , v; # 0,
]

o, = F,v;=0,5=1...n

Thus, the algorithm starts by calculating the sets ®; and their union @,
sorting the elements of ® and then running the optimization problem described
by (6.16). The standard unit vectors will also be individually checked. The
number of elements in ®; is upper-bounded by [¢] + 1 and thus the number
of elements in ® is upper-bounded by n([¢| + 1). The value of f(-) can be
calculated in constant time. This is thanks to the special structure of the
matrix G. In fact, the objective function can be rewritten as:

f(a) = Za? -« <Z am)z : (6.18)

We keep track of every a; and the two terms Y a? and Y a;v;. Since the
discontinuity points are sorted, at each step only one of the a;’s changes and
therefore the two terms can be updated in constant time. Consequently the
new value of f(a) can also be calculated in constant time. (In order to remem-
ber which a; is being updated at each step, we assign a label to every member
of ® which indicates to which ®; it originally belonged).

It is easy to see that the complexity of the algorithm is determined by the
sorting step. Since ® has at most n([¢] + 1) members, the complexity is

O(ny log(nv)) (6.19)

where 1) = \/1177 for a general IP! matrix (Equation (6.12)) and ¢ = 1/1 + P||h]?
for the Compute-and-Forward problem (Equation (6.11)).
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The procedure is summarized in Algorithm 5. To provide further insight, it is
worth noting that the efficiency of the algorithm is due to two factors. Firstly,
the number of candidate lattice vectors to be enumerated is bounded by a
polynomial function of n. Secondly, thanks to the special structure of these
lattice vectors (imposed by Theorem 6.1) their efficient enumeration is pos-
sible. To appreciate the importance of the second factor, an analogy can be
made with sphere decoding [69] where the radius of the sphere is chosen in
such a way that the number of lattice vectors within the sphere is polynomi-
ally bounded. However, performing an efficient exhaustive search over all the
candidate vectors within the sphere remains as the main challenge.

Algorithm 5 SVP for IP! matrices
Input: The IP! matrix G =1 — avv’.
Output: a* the solution to SVP for G.

Initialization :
1: u; + standard unit vector in the direction of the i-th axis
2: 77/1 — \/11—711
3: P+ o
4t finin < min(diag(G))
5: @" <= Uarg min(diag(GQ))
Phase 1:
6: for all i € {1,...,n}, and v; # 0 do
7. forallc,0<c<[¢Y]+35, c—1€Zdo
8: X <— \U_CZI
9: O+ dU{(x,1)}
10: end for
11: end for
Phase 2:

12: sort ® by the first element of the members (in an increasing order).
13: set 77 < 0, Ty <+ 0 and a < 0.

14: for every (z,7) € ® (sweeping the set from left to right) do

15: a; < a; + sign(v;)

16: Tl%Tl—{—Qaj—l

17: To 15+ |Uj‘

18: Joew < Ty — aT?
19: if fnew < fmin then
20: a* < a

21: fmin <~ fnew

22: end if

23: end for

24: return a*
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Figure 6.2: A comparison of LLL vs. Algorithm 5 in terms of outage probability.
Simulations are done with the following parameters: P = 20, n = 20 and h ~

N(0,1).

Prior to this work, it had been suggested [6] to use approximation algo-
rithms such as LLL in order to solve this instance of the SVP. It is well-known
that despite its notorious worst-case performance (only exponential guarantee),
LLL performs well in practice. In order to provide a quantitative judgment,
we performed a MATLAB simulation by generating 100,000 realizations of
channels distributed as h ~ N(0,I) with 20 users and with P = 20. Indeed,
LLL returned the optimal solution in almost 91% of the cases. Nevertheless,
in the few cases where LLL fails, the difference in the achievable rate is rather
significant (around 7% on average). An outage rate curve has been provided
in Figure 6.2 for the sake of comparison. In particular the gap in the outage
probability is non-negligible at small transmission rates, i.e. R =~ 0.1 where
the outage probability of Algorithm 5 is only around 0.6% as opposed to LLL’s
3.8%. Many other algorithms exist in the literature as discussed in the intro-
duction. Some of these works have excellent performance based on simulation
results. Nevertheless a strict theoretical guarantee is missing on either their
correctness or their complexity. (We refrain from presenting empirical com-
plexity comparisons in terms of running time or otherwise owing to the strong
dependence on the precise implementation of each algorithm.)
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6.2.4 Asymmetric Compute-and-Forward and DP!
Matrices

A slightly more general model compared to Definition 6.1 is when the positive-
definite matrix G is equal to

G=D-avv’ (6.20)

where D is an arbitrary diagonal matrix with strictly positive diagonal ele-
ments, v is a normalized column vector and 0 < o < 1. We refer to such
matrices as DP!. Very similar to Theorem 6.1 we have

Theorem 6.2. Suppose a* is the solution to (6.1) where G is DP', that is
G = D — avv? as in Equation (6.20). Then at least one of the following
statements is true

e a* satisfies

1 1
a* — 51 < D vy < a* + 51 (6.21)
and thus

a* = [D 'vz] (6.22)

for some x € RT,
e a* is a standard unit vector, up to a sign.

Furthermore,

Gmin

>\min

where G, s the smallest diagonal element of the matric G and M\, s the
smallest eigenvalue of G.

"} < ¢ =

Algorithm 5 can then be readily extended to solve the SVP for DP! matri-
ces. The following modifications are necessary. In step 8, v; should be replaced
by . Furthermore, f(a) is no longer of the form (6.18), but instead

f(a) = Z Dja? — « (Z aivi>2. (6.23)

Therefore, at step 16, 77 should be updated as 77 = 11+ D,;(2a; —1). Finally,
Gmin

>\min

the value of ¢ should be replaced with the more general expression ¢ =

to represent the new bound on the value of [|a*|| < . With this change in
value of ¢, the complexity again follows (6.19).

The interest in DP! matrices originates from their application in Asym-
metric Compute-and-Forward [73]. Concisely, if in the Compute-and-Forward
scheme we allow the transmitters to transmit at different rates, the achievable
computation rate of the k’th transmitter is proved [73] to be equal to:

+
P|/hTBa|?

—1
1 1
Ry.(h,a,B) = | S log (HB&H2 - Hth”z) + 5 log Biy,

(6.24)
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where B is an arbitrary diagonal matrix with positive diagonal elements. These
diagonal elements are chosen by the respective transmitters based on their
channel state information. Clearly, the integer vector a that maximizes the
achievable rate is the same for all of the transmitters:

a* = argmin a’ Ga, (6.25)
acZ™\{0}
where G is given by:
G=B(I-————hh"|B 6.26
(- e pm) 020

which is a DP! matrix. Therefore, the extension of Algorithm 5 can be used
to find the vector a which simultaneously maximizes the achievable rate for
all transmitters.

It should be noted that for DP! matrices, the algorithm requires the de-
composition of G as D — avv’. This information might be given a priori as
with Asymmetric Compute-and-Forward or the decomposition could be found

using the so called diagonal and low rank matrix decomposition techniques
studied in [74, 75].

6.3 IP" Matrices and Integer-Forcing

6.3.1 Integer-Forcing

In this section we provide a generalization of Theorem 6.1 and the correspond-
ing algorithm by relaxing several constraints that we imposed on the structure
of the Gramian matrix G. The generalized theorem can be applied to max-
imize the achievable computation rate of Integer-Forcing studied in [6]. The
scenario is very similar to the previous section, with the difference that the
relay node now has multiple antennas. Our objective remains the same: de-
code the best integer linear combination of the received codewords. Assume
there are n transmitters with transmission power P and the receiver node has
k antennas. Let h; be the channel vector from the transmitting nodes to the
i-th antenna of the relay. Also, let H be the n x k matrix whose columns are
the h; vectors. It directly follows from the results of [6] that the achievable
computation rate satisfies the following equation:

1
R(a) = —5 loga’ Ga (6.27)
where
G = WRW". (6.28)

Here W is a unitary matrix in R"*" whose columns are the eigenvectors of
HH”, and R is a diagonal square matrix with the first & diagonal elements
satisfying

1

- =1k
1+ Py? 7’ !

Ty
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and the last n—k diagonal elements equal to 1. Finally, 77 is the i-th eigenvalue
of HH” (same order as the columns of W).
Our goal is to find
a* = argmina’ Ga
acz™\{0}

as in the single antenna case.

6.3.2 IP* Matrices and the Main Results

We first mention a generalization of Theorem 6.1 and next we show that the
Gramian matrix which appears in Equation (6.28) satisfies the constrains of
the new theorem. To begin with, we define the following:

Definition 6.2 (IP* matrices). A positive-definite matriz G is called IP* if
G =1— P where P is a positive semi-definite matriz of rank k and I is the
wdentity matriz.

We find it convenient to write G as
G=I-VvVv’ (6.29)

where V is an n X k matrix. Such a decomposition is not unique, but our
arguments will be valid regardless of how the matrix V is chosen.

Theorem 6.3 is a generalization of Theorem 6.1 with a similar claim: the
SVP for IP* matrices can be reduced to a search problem over only k dimen-
sions.

Theorem 6.3. Suppose a* is the solution to (6.1) where G is IP*, that is
G = 1-VV" as in Equation (6.29). Then at least one of the following
statements is true

e There exists a vector x € R¥ such that a* — %1 < Vx<a*+ %1 and thus
a* = [Vx].

e a* is a standard unit vector, up to a sign.

Furthermore, ||a*|| < ¢ = |/$=2 where Gy is the smallest diagonal element

min

of G and Ay 1S the smallest eigenvalue of G.

Note that Theorem 6.1 is a special case of Theorem 6.3 where £k = 1. The
bound on the norm of a* turns into \/%’ for IP! matrices since we have
Amin = 1 —a and G, < 1.

The Gramian matrix in equation (6.28) also satisfies the constraints of The-
orem 6.3: Since W is a unitary matrix, G can be rewritten as I-W (I — R)WT.
The matrix W(I —R)W is of rank % (since I — R has only k non-zero di-

agonal entries), and positive semi-definite. The bound given by the theorem
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translates into ||a*|| < /1 + P42,,, where v,,q, is the maximum ~; value. This

is because G,,;, < 1 and the eigenvalues of G are equal to ﬁ (with the

same eigenvectors as HH) or 1.

We will now show how to solve the SVP for an IP¥ matrix using Theorem
6.3.

6.3.3 SVP Algorithm for IP* Matrices

Similar to the case &k = 1 we see that
fla(x)) = [Vx]TG[Vx]

is piecewise constant as a function of the vector x (this is because [Vx| is a
piecewise constant function of x). Our objective is very similar to before: enu-
merate all the regions in space in which the objective function f(-) is constant
and choose the one that minimizes f(-). From Theorem 6.3 we know that the
vector a* satisfies the 2n inequalities:

1 1
—_1<Vx<a*'+-1
a 5 X a+2

for some x € R¥. In other words, x belongs to the interior of the cell described
by these half-spaces. By analogy to the case k = 1 we aim at enumerating
all such cells and finding the one which minimizes the objective function. To
start with, we observe that each such cell is bounded by a set of hyperplanes
of the form:

Vigx=c

where c is a half integer. Due to the bound given by Theorem 6.3 we could show
that the hyperplanes are restricted to |c| < ([4] 4 5) which gives us a total of
n(2[¥] 4+ 2) hyperplanes. The problem of efficient enumeration of all the cells
resulting from a partitioning of the space by a set of hyperplanes is the subject
of a field called Hyperplane Arrangements. Very efficient algorithms have been
developed over the past few decades. The general idea behind most of these
algorithms is the following: we assign a normal vector with a specific direction
to every hyperplane. Since a cell is bounded by hyperplanes, it must be entirely
located on one side of each hyperplane. Therefore, a cell can be represented
by a sign vector v of length m where m is the number of hyperplanes. Each
v; is either +1 or —1 depending on whether the cell is located on the positive
side or the negative side of the corresponding hyperplane. Although there
are 2™ possible configurations for the sign vector v, at most O(mF) cells are
created by the intersection of m hyperplanes. The enumeration algorithm will
aim at finding those sign vectors that correspond to the actual cells. We will
discuss two existing algorithms due to [76] and [77]. The first one is very
simple to understand and implement but it might face numerical issues in case
of degeneracies, i.e. when there are more than k + 1 hyperplanes intersecting



74 The Shortest Vector Problem and Compute-and-Forward

at the same point. It is clear however that in practice, such an event occurs
with probability zero. The second algorithm is slightly more complicated but
it covers degeneracies too.

Simple Cell Enumeration Algorithm [76]

The idea is to first find all the vertices of the cells by finding the intersection of
every k hyperplanes. We can represent each vertex by a sign vector of length
m where each entry belongs to {—1,0,1} depending on whether the vertex
is on the left hand side of the corresponding hyperplane, located on it, or
on its right hand side. Assuming there are no degeneracies, each such vertex
belongs to exactly k& hyperplanes (and not more). Consequently, every vertex
has a sign vector with exactly k elements equal to zero. In this case, each
vertex belongs to exactly 2¥ cells whose sign vectors can be found by taking
all possible assignments of {—1,1} to the zero elements of the sign vector of
the vertex. Repeating this procedure for every vertex, we will have enumerated
every cell of the arrangement, albeit in a redundant way. The running time
of the algorithm is O(m**1). In case of degeneracies, [76] suggests that we
slightly perturb the hyperplanes which however may not perform very well for
highly degenerate matrices due to numerical issues.

Output-sensitive Cell Enumeration [77]

We represent every cell by a node in a graph. Two nodes are connected
by an edge if and only if the corresponding cells are adjacent in space; in
other words, if the sign vectors of the two cells differ in exactly one element.
Intuitively such a graph is always connected. The algorithm aims at finding
a spanning tree of this graph rooted at an arbitrary node. It also provides
an interior point of each cell (here we are only interested in these interior
points and not the sign vectors). There are two challenges. Firstly, we do not
have a global knowledge of the graph and starting from each node we need
to discover the neighboring nodes in an efficient way. Secondly, in order to
form the spanning tree we must uniquely determine the parent of each node.
The Output-sensitive Cell Enumeration algorithm in [77] uses two subroutines,
namely adjlist() and parent() to address these two problems. The pseudocode
is provided in Algorithm 6.

The overall complexity of the algorithm is O(m|C|) where m is the number
of hyperplanes and C' is the number of cells which in turn is upper-bounded
by O(m*). In our case, the number of hyperplanes is n(2[¢] + 2). Therefore
the algorithm runs in O (RF(2[¢] + 2)F1).

In order to ensure that all the cells are enumerated, it is necessary to make
the first call to Algorithm 6 with the parameter ¢ = {+,...,+}, that is the
all plus sign vector. To guarantee that the all plus sign vector corresponds
to an actual region, we change the direction of the hyperplanes in such a way
that the origin is on the plus side of every hyperplane. Algorithm 7 will find
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the solution to the SVP for an IP* matrix by first finding a list of all the
hyperplanes, then calling Algorithm 6 in order to find an interior point of each
cell, and finally calculating the value of the objective function over an interior
point of each such cell in O(kn). Since there are at most O(m*) cells, the
complexity of Algorithm 7 is the same as Algorithm 6 (for constant k) that is

O ("1 (2] +2)F). (6.30)

Algorithm 6 CellEnum(A,b,c)
Input: The root cell ¢ represented by its sign vector. The hyperplanes
given by the matrix A and the vector b
Output: An interior point of each cell in the subtree rooted at c.

begin
Output an interior point of c.
Find adjlist(c); the list of all neighbors of ¢
for each d € adjlist(c) do

if parent(d) = ¢ then

CellEnum(A, b, d)

end if

end for

6.3.4 Asymmetric MIMO Compute-and-Forward and DP*
Matrices

Similar to IP' matrices, we can slightly extend the results by replacing the
identity matrix in Equation (6.29) with an arbitrary diagonal matrix with
strictly positive diagonal values. More precisely, we define the DP* matrices
as positive-definite matrices of the form

G=D-VV’ (6.31)

where V € R™* and D is diagonal with strictly positive diagonal elements.
The following Theorem holds:

Theorem 6.4. Suppose a* is the solution to (6.1) where G is DP*, that is
G = D — VV7 as in Equation (6.31). Then at least one of the following
statements is true

e There exists a vector x € RF such that a* — %1 <D 'Vx < a*+ %1 and
thus a* = [D™'Vx]|.

e a* is a standard unit vector, up to a sign.
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Algorithm 7 SVP for IP* matrices
Input: The IP* Matrix G =1 - VV7,
Output: a* the solution to the SVP for G.

Initialization
u; := standard unit vector in the direction of i-th axis

f(a) :=a’Ga
fmin = min(diag(GQ))

a* = Warg min(diag(G))

begin

6: Form the matrix V.= [ VT | ... | VT ]T by repeating V, ([¢] +1) times.
Then V < [ V7 ‘ ~VvT ]T.

7: Form the vector ¢ = [ ¢f | -+ | ¢] }T where L = [¢]+1and ¢; = (5 —1)1
and 1 is of length n. Then ¢ « [ ¢’ | c” }T.

8: & = CellEnum(V, ¢, {+,...,+})

9: for each d € ® do

10: Find a = [Vd]

11: if f(a) < fuin AND a is not the all-zero vector then

12: Set a* = a.

13: Set fuin = f(a).
14: end if
15: end for

Furthermore, ||a*|| < ¢ =, /% where Gpin 1s the smallest diagonal element

min

of G and Ay 1S the smallest eigenvalue of G.

Algorithm 7 can be reused with the following modifications in order to
solve the SVP for DP* matrices. In step 6 we now have V as the vertical
concatenation of the matrix D=*V. Moreover, step 10 should be replaced by
a = [D7'Vd]. The complexity of the algorithm is again given by (6.30).

This new version of the algorithm can help us with maximizing the achiev-
able computation rate of all transmitters in an asymmetric MIMO Compute-
and-Forward scheme [73], assuming that the receiver aims at decoding a single
integer linear combination of transmitted messages. In this case the achievable
computation rate for the k’th transmitter is given [73] by

1 TBWRW'B
Rk(h7avB>:__loga WRW 2

: = (6.32)

where W and R are as in (6.28) and B is an arbitrary diagonal matrix with
positive diagonal elements selected at the transmitters. We can simultaneously



6.4. Approximate SVP and CVP for IAFji Matrices 77

maximize the achievable rate for all transmitters by solving the SVP for the
matrix G = BWRW7”B. We know from earlier discussion that WRW is IP¥
from which it directly follows that BWRWB is DP*. Hence, our modified

algorithm can be used to solve this instance of SVP.

—~
6.4 Approximate SVP and CVP for IP, Matrices

6.4.1 iﬁi Matrices

In this chapter we introduce a larger class of lattices for which both the SVP
and CVP can be approximated up to a constant factor. As evident from Def-
inition 6.2, the eigenvalues of an IP*¥ matrix have a very particular structure:
n — k eigenvalues are equal to 1 and the remaining k eigenvalues are between
0 and 1. The main idea here is to relax this rather tight constraint and allow
the eigenvalues to change within a neighborhood of these values. We will show
that if these variations are small, the solution to the SVP and the CVP can
be approximated within a constant factor. We start by defining the concept
of IP*-approximation of positive-definite matrices.

Definition 6.3. Let Q € R™"™ be a symmetric matriz with eigenvalues in
(0,1] and with the following eigendecomposition:

Q=VTAV.
Fork=0,...,n, we define the IP*-approzimation of Q as:
7:(Q) = VIAV
where A is obtained by setting the largest n — k diagonal elements of A to one.

The assumption that the eigenvalues must be less than or equal to one is
not of fundamental importance. If the eigenvalues of a Gramian matrix G are
larger than one, we can normalize all the eigenvalues by the largest one. This
translation does not have any effect on the solution of SVP (for CVP we will
also have to scale the vector y).

Definition 6.4. A symmetric matriz G € R™" with eigenvalues in (0,1] is

—~k - -
called 1P if T)(G) — G has all its eigenvalues smaller or equal to y, where
is a constant satisfying 0 < vy < 1.

—~k
In particular, the largest n — k eigenvalues of an IP, matrix cannot be
arbitrarily close to zero. They must be within a constant () gap of one.

Figure 6.3 represents the sorted eigenvalues of an f137 matrix (marked by black
circles) and its IP*-approximation (red crosses).
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Figure 6.3: Eigenvalues of an IP_ matrix (black circles) and its IP" -approximation
(red crosses).

—k
6.4.2 Approximate SVP Algorithm for IP, Matrices

The following Theorem establishes a close connection between the solution of

—~—k
the SVP for an IP. matrix and for its IP*-approximation.

Theorem 6.5. Let 3
f(a) =a’Ga

- —~k
where G 1s IPV. Assume a* is the solution to

a" = argmin f(a)
acZ™\ {0}

and a satisfies .
a = argmin a’ Z(G)a
acz"\{0}

Then we have: .

fla) < Ef(a*). (6.33)

—~k .
Theorem 6.5 suggests that instead of solving the SVP for the IP, matrix G,

we can solve the problem for Ik(é), the IP*-approximation of G. The solution
achieves a constant (ﬁ) approximation factor on the original problem. As we

saw in Section 6.3 the SVP for Z;,(G) (which is an IP* matrix) can be found in
polynomial complexity. Therefore, Algorithm 8 is proposed to approximate the
SVP for G. A trivial improvement here would be to perform this minimization
task over the original objective function. In other words, we can change line 3

of Algorithm 7 to f(a) := a” Ga.
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—k
Algorithm 8 ﬁ—approximation algorithm for the SVP for IP, matrices

—~k ~

Input: 1P, Matrix G
1: Find G = Z,(G) )
2: return a , the output of Algorithm 7 applied on G.

Finding the IP*¥ approximation of a matrix can be done in the same com-
plexity order as finding its eigen-decomposition, that is O(n3), therefore, the
overall complexity still follows Equation (6.30) (for £ > 1) where % is equal

to ,/% the ratio of the smallest diagonal element and the smallest eigen-
value of the matrix G. Although \,.;, is equal for the two matrices G and
G the parameter G,,;, is in general larger for the matrix G compared to G.
Nonetheless, it is evident that all the diagonal entries of G are upper bounded

by 1. Therefore we could still claim that as long as ﬁ is upper bounded by
a polynomial function of n, the algorithm runs in polynomial complexity.

6.4.3 Extension of the Results to the CVP

Our results can be readily generalized to the CVP. For instance, the CVP
for an IP*¥ matrix can be solved in an almost identical approach to the SVP.

Furthermore, a similar constant-factor approximation for the CVP for IAISi
matrices can be obtained. This is particularly interesting since in general, the
algorithms that are used for solving the CVP are more sophisticated compared
to the SVP.

The following theorem tells us that the same dimensionality reduction that
appears in the SVP for IP*, also holds for the CVP:

Theorem 6.6. Suppose A € R™™ and G = ATA is IP*, that is
G=I-VV’
as in Equation (6.29). The solution to the Closest Vector Problem

a* = argmin ||Aa — y|?
EISYAL

satisfies:

= [Vx+Aly]| (6.34)

for some x € RE. Furthermore,

G”{TL(ZIII

Anﬂn

la" — A7ly|| <4 = (6.35)

where Gaz and Ny, are the largest diagonal element and the smallest eigen-
value of the matriz G, respectively.



80 The Shortest Vector Problem and Compute-and-Forward

The same Hyperplane Arrangement technique as in Section 6.3 can be
applied here. The main difference is that now the hyperplanes are shifted
compared to the case of SVP. Similar to Algorithm 7 we need to ensure that
the all plus sign vector corresponds to an actual region. We will do this by
changing the direction of the hyperplanes in such a way that the origin is on
the plus side of every hyperplane. See Algorithm 9.

Algorithm 9 CVP for IP¥ matrices

Input: The IP* Matrix G = I—VV7 and the latice basis A that satisfies
G = AT A and the vector y € R,
Output: a* the solution to the CVP for A and y.

Initialization
L= 4/3

2: f(a):=aTGa—2yT"Aa+y'y
3: fmin = o0

begin
4: Form the matrix V = [ v7T ‘ . ‘ vT ]T by repeating V, 2([¢]+1) times.
Form the vector ¢ = [ ¢f |-+ |c], ]T where L1 = —[¢] and Ly = [¢]+1
and ¢; = (i — 3 + [A'y])1 — ATy and 1 is of length n.
for i =1 to 2n([¢¥] +1) do
if ¢; > 0 then
C; < —C;.
Vip < Vi
10: end if
11: end for
12: & = CellEnum(V, ¢, {+,---,+})
13: for each d € ® do
14: Find a = [Vd + ATy|
15: if f(a) < fmin then

a

=

16: Set a* = a.

17: Set fuin = f(a).
18: end if

19: end for

These modifications do not affect the complexity order of the algorithm.
Equation (6.30) still describes the complexity except for the fact that now

¢ — Gmax

)\min ’
The results can be extended to DP* matrices. In this case, the optimal
coefficient vector is given by
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Theorem 6.7. The solution to the CVP for DP* matrices satisfies:
a*=[D ' (Vx+A'y)| (6.36)

for some x € R¥. Furthermore,

Gmax

Awnn

la" = Ay <oy = (6.37)

We will now propose a generalization of our approximation algorithm for
the CVP. First note that for the positive-definite matrix G with normalized
and sorted eigenvalues \; we have G = AT A if and only if

A=TUB (6.38)

where U is an arbitrary unitary matrix and B is a symmetric matrix with the
same eigenvectors as G and with eigenvalues f3; (sorted) that satisfy:

ﬁg ::Ar

Without loss of generality, we can also assume [;’s are positive (if they are
negative, we can transfer the sign to the unitary matrix U). Under this as-
sumption, if G is IP* then the matrix B must be IP* too. Finally, we can
generalize Theorem 6.5 for CVP. Here, besides mapping the matrix G to its
IP* approximation, we will also need to map the vector y, whose nearest
neighbor is of interest, to a different vector in space.

Theorem 6.8. Lety be an arbitrary vector in R" and A € R™™ pe a full-rank
matriz satisfying A = UB as in Equation (6.38). Furthermore assume BTB

is Tf’i Define ~
f(a) = [Aa —y|*

Suppose a* is the solution to

a" = argmin f(a)
acZ"
and a satisfies
a = argmin ||Aa — y|?
acZ"

where A = Ik(B) and y = AA~'y. we have that:

18) < = f(a0).
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To summarize, we propose Algorithm 10 for approximating the CVP for

—~k
IPV matrices.

—k
Algorithm 10 ﬁ—approximation algorithm for the CVP for IP_ matrices

Input: The vector y, the full-rank square matrix A = UB as in Equation
. —~—k
(6.38) with B"B being IP.,.
1: Find A = Z,(B) and y = AA~'y. A
2: return a , the output of Algorithm 9 applied on y and A.

Again, the complexity follows Equation (6.30) where 1 is equal to , /%,

the ratio of the largest diagonal element and the smallest eigenvalue of the
matrix G

Remark 6.2. A similar approximation factor of ﬁ can be obtained for a

general positive-definite matriz of the form G = vD(I - P)VD if we instead
solve the SVP or CVP for the matriz G = vV/DZ,(I — P)v/D.

6.4.4 Application: MIMO Detection; a Trade-off Between
Complexity and Accuracy

We study a potential application of Algorithm 10 in the context of MIMO
detection. Consider communication over a general MIMO channel without
CSIT:

y = Hx + z.

Assume the noise vector z is i.i.d. Gaussian. The receiver performs ML detec-
tion to estimate x. After shifting and scaling, and assuming the alphabet size
is large enough, we get the following optimization problem [78]:

x = arg min ||y — Hx||*.
XEL™

This can be seen as an instance of the CVP, where the lattice matrix is H.
Note that the ML detector outputs the correct value of x, if the norm of the
equivalent noise vector z is smaller than half the minimum distance of the
vectors (or equivalently, half the length of the shortest vector) of the lattice
characterized by H. Let us call this parameter dZ, . Thus we have:

P.. < P(|zl| > dpin/2) (6.39)

which can be expressed in terms of the CCDF of the Chi-squared distri-
bution. Let us define A as the maximum eigenvalue of H. For any integer
k =0,...,n, suppose v(k) is the smallest positive number for which the lattice
_ .~k

——H is IP,y(k). We will show that Algorithm 10 achieves the following error
probability:
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di
Pt < p (\|z|| > min ) : (6.40)

14+ 1/4/1—~(k)

Note that if for some integer k we have (k) = 0, the matrix ;7—H will be

max

IP*, and not surprisingly the algorithm returns the ML solution which achieves
the same error probability as in Equation (6.39). But in general there will be
a trade off between the complexity of the decoder and the achievable error
probability: as we let k decrease to zero, Algorithm 10 runs faster (as evident
from Equation (6.30)) but (k) becomes larger which indicates a higher error
probability, according to Equation (6.40).
. _ dH . ~

To prove Equation (6.40), let us suppose that ||z| < #\/?—VW Assume X is
the output of Algorithm 10 applied on ﬁy and ﬁﬂ If x # x , the best
achievable approximation factor is:

(I!I:ﬁ—yl\)Q - (dﬁm—HZH)Q
Hx—yl/ — Il

2
min 1)
> FE

min

14+1/4/1—(k)
2

B 1 1
B 1—~k) ) 1—~k)

This contradicts with the fact that Algorithm 10 achieves an #(k) approx-
imation factor. Thus we must have that x = x. As a result, as long as
dH

|z]| < #\/ln—(k) , Algorithm 10 outputs the correct value of x. This proves
-
Equation (6.40).

—~k
6.5 Open Problem: IP -reduced Basis

The basis matrix of a lattice is not unique. For any lattice £(A) there are
infinitely many bases. All these bases are related via linear transformation
by unimodular matrices. In other words if we have £(A) = L£(B) then there
exists a unimodular matrix T such that B = AT.

The field of lattice reduction aims at finding such unimodular transforma-
tions for arbitrary lattice bases, and producing new bases with more desirable
properties. The new basis is usually called a reduced basis of the lattice. There
are different notions of lattice reduction. For instance Minkowski’s criteria for
calling a basis A reduced is that the shortest vector (or column) of this ba-
sis, vi must be the shortest vector of the lattice £(A); the second shortest
vector of A must be the second shortest vector of the lattice among all the
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vectors that are linearly independent of v; and so on. Of course, there is
no polynomial time algorithm known that can find such a reduced basis (as
otherwise, the SVP would have been solved and much more). Another notion
is the LLL-reduced basis due to [48]. An LLL reduced basis can be found in
polynomial time. However the shortest vector of an LLL-reduced basis can be
exponentially longer than the shortest vector of the lattice.

—~Fk
Here, based on the concept of IP, matrices we introduce a new notion of
reduced basis. Specifically, we define

Definition 6.5. A lattice basis A is called IP -reduced if it holds that ya (k) <
ve(k) for any matriz B that satisfies L(B) = L(A). Here ya (k) is the smallest

~k
7y for which the matriv G = AT A (after normalizing the eigenvalues) is Ip,.

In other words, given an arbitrary lattice basis, we are interested in finding
a new basis for the same lattice which minimizes the value of  for a particular
k. This is demonstrated in Figure 6.4.

Y

~ J;
Figure 6.4: An arbitrary lattice basis and its IP reduction

It should be clear why we are interested in such a basis. We want to achieve
the best possible approximation factor for SVP and CVP through Algorithms
8 and 10 which run in complexity order of O(n**1(2[¢]+2)¥*1). Currently we

do not know any algorithm that can find an ﬁi—reduced basis for an arbitrary
lattice. Finding an efficient algorithm which performs this task could have
quite interesting implications in terms of approximating the SVP or CVP for
a general lattice.

6.6 Appendix

Proof of Theorem 6.7. We will prove the claim for DP* matrices, that is
G =D —-P =D —VV’. Theorem 6.6 follows as a special case. To simplify
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the notation, we define z = ATy. We can rewrite f(a) = aTGa —2z"a+y’y
as follows:

n n i—1 n
f(a) = Z(D“ — .PZZ)CL? -2 Z Z Pl-jaiaj -2 Z 2 + yTy
i=1 i=1 j=1 i=1
First note that since P is positive semi-definite, we have P; > 0 for i =
1,...,n. If for some j we have P;; = 0, then we must have F;; = P;; = 0
and Vj; = 0 for ¢ = 1,...,n. The optimal value for a; in this case is simply

a; = ’VDZ_;J which satisfies the claim of the theorem. The problem can then

be reduced to n — 1 dimensions. Thus without loss of generality we assume
P;; > 0 for the rest of the proof.

Assume that we already know the optimal value for all a! elements except
for one element, a;. Note that f is a convex parabola in a; (this is because
D;; — Pj; = Gj; is a diagonal element of a positive-definite matrix) thus the
optimal integer value for a; is the closest integer to its optimal real value. By
taking partial derivative with respect to a;, the optimal real value of a; is
easily seen to be equal to

Zj + Z?zl,i;éj Bja;
D, — P,

gt
Taking the closest integer to the real valued solution, we find:

S — zj + Z?:l,i;éj Bjja; or
’ Djj =Py | (6.41)
0 — zj + Z?:l,i;éj Bjja;
Tl DBy

Due to the symmetry of the parabola, both functions return equally correct
solutions for aj.

Note that this expression must be true for any j: If for a* and for some j, aj
does not satisfy at least one of these two equations, we can achieve a strictly
smaller value over f by replacing aj with the value given above, and so a*
cannot be optimal. From Equation (6.41) we have that:

1 %+ iy Dol
a;+§z d lz):_i ? d , and (6.42)
17 J
1 2+ 2 iy Pial
at— =< izvizi Ll (6.43)
72 Dj; — Pjj

Starting with Equation (6.42), we multiply both sides by the denominator,
and add the term a} P;; to obtain:

. - .1
(aj + §)Djj 2 Zj + Zpijai + Eij.
=1
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Dropping the positive term %P]j we conclude

* 1 - *
(aj + §)Djj > Z5 + ZPijai.
i=1

As a result, we have

. 1oz >0 Pya)

,7=1...n.

Jj

Writing this inequality in vector format, we obtain

1
a’+ 51> D Y(z+PTa*) =D 'z + V(V'a") (6.44)

In a similar fashion one can show that Equation (6.43) results in

1
a’— ;1< D Yz + V(VTaY)). (6.45)

Defining x = V7a*, it follows from (6.44) and (6.45) that

1 1
a* — 51 < D_l(VX+Z) < a*+ 51

=a*=[DYVx+z)| =D Vx+ATly)].

This completes the proof of Equation (6.34).
To prove Equation (6.37), note that

|Aa" —y|? = [|A(a" — A7'y)[|> = Apinlla® — ANy

It is also evident that ||Aa* — y||? < G, that is the square distance of the
closest vector of the lattice to y is less than the largest diagonal element of G.
To see this, note that for any vector in the Voronoi region of the origin there
are N successive minima of the lattice (vq,...,vy) such that p = Ziil 0;v;
where #; > 0 and vazl 0; < 1. The claim follows since /G4 cannot be
smaller than the length of the N’th successive minima of the lattice.

Gma:c 2 ||1A3—>‘< - Y||2 Z )\mana* - A_1Y||2

from which we can conclude: ||a* — A7 y|| <, /Smaz, O

min

Proof of Theorem 6.5. Proof of Theorem 6.5 can be seen as a special case
of proof of Theorem 6.8 for y = 0. The extra condition of a # 0 for the SVP
does not cause any problem here. O]
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Proof of Theorem 6.4. The proof of Theorem 6.4 is almost identical to that
of Theorem 6.7 after setting y = 0. The requirement for checking the standard
unit vectors follows from the fact that a cannot be the all zero vector. In
other words, all the elements of the vector a must satisfy (6.41) unless a* is a
standard unit vector in the direction of the j’th axis in which case replacing
aj by (6.41) will lead to the all zero vector.

To prove the bound on norm of a* note that the square norm of the shortest
vector of the lattice must be smaller or equal to G,,,;,,. Therefore,

Gmin

)\min

Gomin 2 [ A2"[* = Ainla”||* = Jla7] <

]

Proof of Theorem 6.2. This is clearly a special case of Theorem 6.4. The
fact that we can limit the search to x € R™ instead of the whole R follows
trivially from: a’ Ga = (—a)’ G(—a). O

Proof of Theorem 6.8. Define ¢ = B~*U”y. We have

f@") = |Ba"-BB'Uy|’=|B(a’ —¢)|

SN ACET R0,

> 2(1_@53((&—@%0252 (1—7)((a" = c)Tv;)?
(1-7)[A@ - o))

= (1—9)|Aa’ —yll2

> (1—7)lAa -y’

> (1-7)f(a)

where the last step is due to the fact that ||[Aa —y| < |[Aa — y| for any
arbitrary vector a. O]






The Most Informative Bit
Conjecture

The most informative bit conjecture first introduced in [79] can be formulated
as follows.

Conjecture 7.1. Let {(X;,Y;)}, be an i.i.d. sequence of length n such that
X; € {0,1} is a Ber(1/2) random variable and Y; € {0,1} is the output of a
Binary Symmetric Channel (BSC) with input X;, i.e. P(Y; = 0|X; = 0) =
P(Y;=1|X;=1)=1—p. Let B:{0,1}" — {0,1} be an arbitrary function.
We have

I(B(Y1n)); X1mp) < 1= ha(p).

There is a simple interpretation to the conjecture. Suppose we have a BSC
over which we transmit n independent bits. At the receiver we are allowed
to compute any binary function of the outputs of these n transmissions. The
conjecture states that a simple B(Y}1.,)) = Y1, typically referred to as the dic-
tator function, conveys the most information about the inputs of the channel,
among all possible binary functions. As of now the conjecture is still open,
with the exception of extremal values of p, that is when p ~ 0 or p ~ 1/2
[80]. Several variations of the problem have been studied in the literature. For
instance the following two weaker variations of the problem have been proven.

Theorem 7.1 ([79]). Under the constraints of Conjecture 7.1 we have
D IH(BYm); Xi) < 1= ha(p).
i=1

Theorem 7.2 ([81]). Let {(X;,Y;)}", be as described in Conjecture 7.1. Let
B,C :{0,1}" — {0,1} be two arbitrary binary functions. Then

I(B(Y(i:)); C(Xpimg)) < 1= ha(p).

89
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A generalization of the conjecture to non-binary functions B : {0,1}" —
{0,1}* - referred to as “the most informative quantization function” - asks
whether the following holds

](B(Yv[ln])wxv[ln]) < k/’(l — hg(p))

This generalized conjecture has been disproven [82], however the following
result has been established.

Theorem 7.3 ([82]). Let {(X;,Y;)}!, be as described in conjecture 7.1. As-
sume B : {0,1}" — {0,1}* is an arbitrary function. We have

I(B(Yjtm); Xpny) < k(1 = 2p)*.

In this work we tighten and generalize this bound via our next theorem.
Apart from strengthening the bound, perhaps the more important contribution
of this work is to introduce an alternative - arguably more straightforward -
proof technique for Theorem 7.3. The simplicity of the proof is encouraging in
that a variation of the arguments presented here may result in further advance
towards proving Conjecture 7.1. We first present a simple lemma and next
proceed to our main theorem and its proof.

Lemma 7.1. The function

f(x,y)=H(x)+ H(y) — Hipx+ (1 — p)y) — H((1 — p)x + py)

defined over probability vectors x andy is concave in (x,y) for any p € [0, 1].

Proof. Let X,Y, Uy, Us be four independent discrete random variables. Let X
and Y have support [1 : n| such that P(X =) = z;, P(Y =0) = y;. Let U;
and Uy have support {0,1} such that P(U; = 0) = P(Uy = 0) = p. Define
Dy =U1Y + (1 — U)X and Dy = U X + (1 — Uy)Y. We have

f(x,y) = —1(Dy;Ur) — I(Dy; Us).
Both I(D;; U;) are convex in pp,jy, = [X,y]. So, f(x,y) is concave in (x,y). [

Theorem 7.4. Let {(X;,Y;)}, be as defined in Conjecture 7.1. Assume
B :{0,1}" = [0: ¢ — 1] is an arbitrary q-ary function. We have !

I(B(Yi); Xpng) < H(B)(1 - 2p)*.

!Note that Theorem 7.4 reproduces Theorem 7.3 if B has uniform marginal distribution
and g = 2F.
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Proof of Theorem 7.4. Define two functions Cy, Cy : {0,1}"1 — [0: ¢ — 1] as
follows.

CO(}/’[lzn—l]) — B(nl:n—l]v Yn - O)J
Cl(yv[l:nfl]) = B<Yv[1:nfl]7 Yn - 1)

Let P; = P(C; = j| Xpm—q) fori € {0,1} and j € [0: ¢—1]. Let P; = P, jg.g—1]
and S; = E(P;) for i € {0, 1} where the expectations are over Xq,..., X, 1.
We prove the theorem by induction over n. The base case is trivial. Suppose
our claim holds for n — 1. Therefore we have

I<CO(YV[1:n71]); X[l:nfl]) < H<CO)(1 - 2p)27
](Cl(yv[lzn—l]); X[l:n—l]) < H<Cl>(1 - 2p>2

Define
A(Po, Pl) = —H(B|X[1m]) + O.5H(CO|X[1:H,1}) -+ O.5H(01|X[1:n,1}).

First note that

H(B|Xpm) = — 05E(H((1—p)Po+pP1)) —0.5E (H((1 —p)P1 + pPy)).
Therefore,
APy, P1)= — 05E(H((1—p)Po+pPy)) — 0.5E(H((1 —p)P1+ pPy))

0.5E(H(Py)) + 0.5E(H(P,))
—0.5H((1 = p)So + pS1) — 0.5H((1 — p)S1 + pSo)
+ 0.5H(So) + 0.5H(So)

IN +

where the inequality is due to Lemma 7.1. We are now ready to bound

I(B; Xpn—1])-
I(B; X[im)) H(B)—0.5H(Cy) —0.5H(Cy) + A(Py, Py)

0.51(Co; Xpin—1j) + 0.51(C1; X1:n—1))

H(0.58¢ + 0.5S;)

— 0.5H((1 —p)So+pS1) — 0.5H((1 — p)S1 + pSo)

0.5(2p — 1)*H(So) + 0.5(2p — 1)*H(S;)

— (2p—1)?H(0.5S¢ + 0.581) + (2p — 1)2H(0.5S¢ + 0.5S,).

IN +

+

The last term is our desired bound. It is left to prove that the remaining terms
add up to a non-positive number. Therefore, we need to show that

(2p — 1) [H(0.5S¢ + 0.5S;) — 0.5H(Sy) — 0.5H(S1)]
> H(0.58 +0.581) — 0.5H((1 — p)Sg + pS1) — 0.5H (pSq + (1 — p)S1).
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Let us define

mﬁzggf@m&%

where

H(O.5So + 0.581) - 0.5H((1 — p)So + pSl) - 0.5H(p80 + (1 — p)Sl)

f(So,81) =

and the maximum is taken over all arbitrary probability vectors Sy and S;. If
we can show that ¢(p) < (2p — 1)? we are done. We can rewrite the function

f(SO, Sl) as

ST di(1— ha(0.5 + €(2p — 1))

So,S1) =
f( 0 1) Z?;ll dl(l _ h2(05 _|_ E’L))
where d; = % and €; = 2(%5;%;)
1—hy(0.5 4 &(2p — 1))
So, S <
f( 05 1) - Zer[{l?;}_(l} 1-— h2(05 + Gz')

1 —ho(0.54+€(2p—1))
max
le|<0.5 1 — he(0.5 +€)
1— . -
0 1 — hy(0.5 +€)
= (2p—1)%

IN

Therefore, c(p) < (2p — 1)? which completes the proof.



A Conjectured Inequality
with Applications to
Coded Caching

The achievable rate region in [18] is known to be optimal under uncoded place-
ment for all parameters K and N. Restricting Equation (4) in [18] to N = 2
and minimizing R + M, one can show that

2 K __if Kiseven

R+ M = KD
{ — K+l if K is odd

aK
is achievable for the caching problem with 2 files. Similar inner bound can
be established from other achievability results some of which rely on coded
placement, for instance [83, 84, 85, 86].

In a parallel line of research [87, 88, 89, 90, 91, 19] significant progress has
been made in deriving information-theoretic converse bounds for the coded
caching problem. These bounds are inherently different from the counting ar-
gument presented in [18], as they establish impossibility results that are not
restricted to uncoded placement, but any caching technique. Unfortunately
however, these bounds offer little when it comes to small choices of N, in
particular N = 2. Until recently, the best known information theoretic con-
verse bounds for N = 2 and arbitrary K were restricted to the following three
equations

R+2M > 2
R+M > 1.5
2R+M > 2
first derived in [2]. In [92] Tian proved that
K(K +1)M +2(K - VKR > 2(K — 1)(K + 1) (8.1)
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along with several other converse bounds that do not depend on K as long as
K > 4. In particular,

R+M>5/3 (8.2)

when N =2 and K > 3. To this date, this is the tightest known information-
theoretic converse bound of the form R+ M > f(K) for the caching problem
with N = 2. We propose the following conjecture, implying that the caching
scheme in [18] minimizes R + M for N = 2 and arbitrary K.

Conjecture 8.1. Suppose (M, R) is an achievable memory-rate pair for the
coded caching problem with parameters K and N = 2. We must have

2 — K if K is even,

R_|_M Z { 4(K-1)

2 — EH if K is odd.

We will make some progress towards proving this conjecture. In particular,
we will reduce this to a more intuitive conjecture which we can prove when
K = 3. This also serves as an alternative proof for Equation (8.2).

To start with, assume we have a random variable S, and K pairs of ar-
bitrary random variables {V;, U;}X, such that any pair of them completely
describe S. In other words, H(S|U;,V;) = 0 for all i € [1 : K]. What can we
say about the minimum value of >, H(V;,U;)? The corresponding problem
in set theory has an easy answer.

Proposition 8.1. Assume we have a set S of size |S| = n. Let {V;,U;} 5,
be 2K sets that satisfy S C V; UU; for alli € [1 : K]. We have the following
(tight) inequality.

1 & K(K-1)- KT2 if K is even,
_Z|%UUJ|Z K2-1 : ;
n K(K—-1)—2= if K is odd.

A 4

2,7=1
The proof of this proposition follows from a simple counting argument
which we omit for conciseness. The question is, does the same inequality hold
in the realm of random variables?

Conjecture 8.2. Suppose we have a random variable S of entropy H(S) = F.
Let {V;,U;}E | be 2K random wvariables that satisfy H(S|V;,U;) = 0 for all
i€[l: K]. We have the following (tight) inequality.

4

K
1

a H(VivUj) > 2_ . .
F%;l K(K—-1)—- %= if K is odd.
,]=

{K(K —1) - £ if K is even,
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We will prove that Conjecture 8.1 follows from Conjecture 8.2. Further-
more, we will show that Conjecture 8.2 holds when K = 3. The validity of
the conjecture for K = 4 follows trivially from K = 3 (same property holds
in general. If the conjecture holds for K = 2¢ — 1, it also holds for K = 2/).
The inequality, if true, is of non-Shannon type for K > 5, as can be veri-
fied with Information Theory Inequality Provers such as the one available on
xitip.epfl.ch.

Theorem 8.1. If Conjecture 8.2 is true, so is Conjecture 8.1.
Theorem 8.2. Conjecture 8.2 holds when K = 3.

The rest of this chapter is dedicated to proving these two theorems. But
first, let us establish a simple lemma which will come handy in our proofs.

Lemma 8.1. For three arbitrary random variables X,Y, Z we have

[(X;Y) + [(X;2) < I(Y; Z) + H(X). (8.3)

Proof. After taking everything to the right hand side of the inequality, we have
HX)+1(Y;2)-1(X;2) - 1(X;Y)
H(X|Z) + I(X; 2)] + 1(Y; Z) — I(X; Z) — [I(X; Y|2) + 1(X; Y, Z)]
[H(X|Z) = I(X;Y[2)]+ 1(Y; Z) = I(X;Y; Z)
= HX|Y,Z)+1(Y;Z]|X) > 0.
]

Proof of Theorem 8.1. Let us denote our two files by A and B. Let X; rep-
resent the delivery message when the i'th user demands A and the remaining
K — 1 users demand B. Let 7 : {1,2,3} — [1 : K] be an arbitrary bijection.
For any such bijection we can write

H(X7q)) + H(Xr@) +2H(Zr3) < RF+ RF+2MF.
Furthermore,

H(Xrm) + H(Xrp) +2H(Zrs)) > H(Xrq), Zre)) + H(Xr@2): Zr3))
> H(Xxq), Zr)|B) + H(Xx@), Zn(3)| B).

where the last step follows from the fact that file B can be recovered from
(Xr(1); Zr(3)) as well as from (Xr(9), Zr3)). As a result of this, we have

1 1
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Let us average this expression over all possible bijections 7. We find

K(K—-1)(R+M)>K(K—1)+ % i H(X;, Z;|B). (8.5)

7T
i,5=1

It follows from Conjecture 8.2' that since H(A|X;, Z;, B) = 0 and H(A|B) =

F', we must have

K 2 e s
1 K(K—1)— 52 if K is even
~SNCH(X,, Z|B) > i " (86
Fz_: (Xi, Z)\B) = {K(K—U—% if K is odd. (8.6)
i#
It follows from Equations (8.5) and (8.6) that
K . .
R+ M Z 2 — 4;(([(—71) if K is evel, (87)
— 4—;1 if K is odd.
[

Proof of Theorem 8.2. We first apply Lemma 8.1 on three random variables
Us, Vi, V3 as well as on Vi, V3, Us.

I(Vi; V) > I(Vi;Up) + I(V3;Us) — H(Uy)
I(V3;Us) > I(Vi;Us) + I(Va; Vs) — H(Vh)

From these two inequalities we conclude

I(Vi;Ua) + I(Vi; Us) + 1(Vs; Us)
< HMW)+ H(Uy) + I(V3; Us).

Similarly, we can write

I(Vo; Up) + I(Vs; Uy) + 1(Va; Us)
< H(Vz)+ H(Up) + I(Vs; Us).

By summing up the last two inequalities, and following a similar approach we
obtain
3
S I(ViU;) < H(WL)+ H(U) + H(Va) + H(Us) + 21(Vs; Us),
i
3
S I(ViUy) < H(WA)+ H(Uy) + H(Vs) + H(Us) + 21 (Va; Us),
i
3
S I(ViU;) < H(Va)+ H(Us) + H(V3) + H(Us) + 21(Vi; Uy).

i
i,j=1

!The conditional version of Conjecture 8.2 readily follows from its non-conditional form.
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Averaging the last three inequalities, we will have

3 9 3 9 3

ST Iwviuy < §Z H(U) + 3 ) 1V Uy,
i#j =1 =1

i,7=1

Substituting I(V;; U;) = H(V;) + H(U;) — H(V;, U;) we find

3

HGU) 2 5 D H0) + HO)) -3 3 10 U)
> i[ﬂm’“‘” > §§[1<w,ui;s>]
= 4H<S>—§§[H<sm,m>y

Therefore,
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