
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. A. Lenstra, président du jury
Prof. J.-P. Hubaux, Prof. J. Fellay, directeurs de thèse

Dr D. Baker, rapporteuse
Dr P. Flicek, rapporteur

Prof. B. Ford, rapporteur

On Secure Cloud Computing for Genomic Data:
From Storage to Analysis

THÈSE NO 8367 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 13 AVRIL 2018

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE POUR LES COMMUNICATIONS INFORMATIQUES ET LEURS APPLICATIONS 1

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2018

PAR

Zhicong HUANG

Dark clouds become heaven’s flowers when kissed by light.

Stray Birds, by Rabindranath Tagore, 1916

To my family and Danhua

Abstract

Although privacy is generally considered to be the right of an individual or group to

control information about themselves, such a right has become challenging to protect

in the digital era, this is exemplified by the case of cloud-based genomic computing.

Despite the rapid progress in understanding, producing, and using genomic information,

the practice of genomic data protection remains a fairly underdeveloped area. One of

the indisputable reasons is that most nonexpert individuals do not realize the sensitive

nature of their genomic data, unless it has been used against them. Many commercial

organizations take advantage of their customers by taking control of personal genomic

information, if customers want to benefit from services such as genetic analysis; even

worse, these organizations often do not enforce proper protection, which could result in

embarrassing data breaches. In this thesis, we investigate the potential threats of cloud-

based genomic computing systems and propose various countermeasures by taking into

account the functionality requirement.

We begin with the most basic system where only symmetric encryption is needed

for the cloud storage of genomic data, and we propose a new solution that protects the

data against brute-force attacks that threaten the security of password-based encryption

in direct-to-consumer companies. The solution employs honey encryption, where plain-

text messages need to be transformed to a different space with uniform distribution on

elements. We present a novel distribution-transformation encoder. We provide formal

security proof of our solution.

We analyze the scenario where efficient searching on encrypted data is necessary. We

propose a system that provides fast retrieval on encrypted compressed data and that

enables individuals to authorize access to fine-grained regions during data retrieval. Our

solution addresses three critical dimensions in platforms that use large genomic data:

encryption, compression, and efficient data retrieval. Compared with a previous de facto

standard solution for storing aligned genomic data, our solution uses 18% less storage.

To enable complicated data analysis, we focus on a proposal for secure quality-control

of genomic data by using secure multi-party computation based on garbled circuits. Our

proposal is for aggregated genomic data sharing, where researchers want to collaborate

to perform large-scale genome-wide association studies in order to identify significant

genetic variants for certain diseases. Data quality control is the very first stage of such

a collaboration and remains a driving factor for further steps. We investigate the fea-

sibility of advanced cryptographic techniques in the data protection of this phase. We

demonstrate that for certain protocols, our solution is efficient and scalable.

With the advent of precision medicine based on genomic data, the future of big data

v

has become clearly inseparable from cloud-based genomic computing. It is important

to continuously re-evaluate the standards of cloud-based genomic computing as novel

technologies are developed, security threats arise, and more complex genomic analyses

become possible. This is not only a battle against cyber criminals, but also against rigid

and ignorant practices. Integrative solutions that carefully consider the use and misuse of

personal genomic data are essential for ensuring secure, effective storage and maximizing

utility in treating and preventing disease.

Keywords : genomic privacy, cloud computing, brute-force attacks, password-based en-

cryption, honey encryption, compression, order-preserving encryption, secure multi-party

computation, differential privacy, garbled circuits

Résumé

Être en mesure de protéger sa vie ou sphère privée en contrôlant la divulgation de ses

données personnelles est traditionnellement considéré comme un droit. Malheureuse-

ment, cet acquis est devenu difficile à protéger dans l’ère numérique. Il en va partic-

ulièrement ainsi pour les données génomiques, sur lesquelles des calculs doivent souvent

être exécutés directement dans le “cloud”. En dépit des rapides progrès scientifiques

dans la compréhension, la production et l’usage des données génomiques, la protection

de celles-ci reste un sujet relativement peu développé. La méconnaissance des enjeux

dépendants de la protection de ces données, dont font preuve la plupart des non-initiés,

en est l’une des raisons. Plusieurs entreprises proposent, par exemple, des analyses

génétiques à leurs clients et profitent de leur relative ignorance pour utiliser leurs données

génomiques. De façon plus inquiétante encore, certaines de ces organisations ne protègent

pas correctement les données récoltées, les rendant vulnérables à des vols. Dans cette

thèse, nous étudions les potentielles menaces sur les systèmes de stockage et traitement de

données génomiques basés sur une approche “cloud-computing”, et proposons plusieurs

solutions afin de les protéger tout en respectant leurs impératifs en terme de fonction-

nalités et performances.

Sur la base d’un système basique dans lequel les données sont simplement protégées à

l’aide d’un chiffrement symétrique avant d’être stockées dans le “cloud”, nous proposons

une nouvelle solution prévenant contre les attaques de type “brute-force” qui menacent

habituellement la sécurité du chiffrement par mot de passe. Cette solution repose sur le

chiffrement “honey”, dans lequel les messages en clair sont préalablement transformés de

manière à suivre une distribution uniforme. Nous pr

’esentons une nouvelle transformation de distribution et donnons une preuve formelle de

la sécurité de notre solution. Nous nous intéressons ensuite à un scénario dans lequel une

méthode de recherche efficace dans des données chiffrées est nécessaire. Nous proposons

un système capable de retrouver rapidement un élément dans des données chiffrées et

compressées, tout en permettant aux utilisateurs d’en limiter l’accès de manière gran-

ulaire. Notre solution est, au meilleur de nos connaissances, la première à regrouper

les trois éléments clés des plateformes de stockage de données génomiques: chiffrement,

compression et efficacité de recherche. Nous montrons notamment que notre solution

réduit l’espace de stockage requis de 18% par rapport aux standards existants.

Afin de permettre des analyses complexes de données, nous proposons une solution

utilisant les techniques dites “secure multi-party computation” basées sur les “garbled

circuits” afin de permettre un contrôle de la qualité des données génomiques distribuées

sur de multiples sites, tout en respectant leur nature sensible. De tels contrôles sont

vii

une étape cruciale, préalable à toute étude d’association des génomes (GWAS). Notre

solution permet donc la collaboration entre chercheurs sur ces études en rendant pos-

sible le partage de données génomiques agrégées, afin d’isoler des variations génétiques

intéressantes dans l’étude de certaines maladies. Nous testons la faisabilité de ces solu-

tions lorsque des techniques cryptographiques récentes sont employées afin de protéger

les données et montrons quels parties de cette phase de contrôle peuvent en bénéficier.

Avec les avancées de la médecine de précision basée sur les données génomiques,

le futur du “big data” apparâıt inexorablement lié au traitement massif des données

génomiques dans le “cloud”. Il est donc important de continuellement réévaluer les stan-

dards et pratiques dans ce secteur. En effet, la technologie se développe et des analyses

de plus en plus complexes deviennent possibles, mais ce progrès est aussi accompagné

de nouvelles menaces contre la sécurité de ces données sensibles. Il s’agit d’un combat,

non seulement contre les pirates informatiques, mais aussi contre l’ignorance et les mau-

vaises pratiques en matière de sécurité. Il est essentiel que des solutions intégrables et

considérant la possibilité d’un usage abusif des données soient proposées, afin d’assurer

la sécurité, l’efficacité du stockage, et la maximisation de l’utilité des données dans la

prévention et le traitement des maladies.

Mots-clés : protection des données génomiques, calculs dans le “cloud”, attaque de

“brute-force”, chiffrement “honey”, compression, chiffrement respectant l’ordre, “secure

multi-party computation”, “differential privacy”, “garbled circuits”

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor, Prof.

Jean-Pierre Hubaux, for the continuous support of my Ph.D. study and related research,

for his patience, guidance, and immense knowledge. After 5 years, I still have the fresh

memory of my first day stepping into this lab, with limited research experience and lack

of initiative. His guidance and encouragement helped me in all the time of research and

writing of this thesis. Beyond that, I am extremely grateful for a lifelong lesson of which

he keeps reminding me: Be proactive and express myself!

I am particularly grateful to my co-advisor, Prof. Jacques Fellay, for his instruction,

insights and useful critiques in all my research problems. Being devoted to a cross-

discipline research topic, I could not have completed this work without his support and

knowledge from a domain that I was not familiar with at the beginning.

My sincere thanks also goes to the rest of my thesis committee: Dr. Dixie Baker, Dr.

Paul Flicek, Prof. Bryan Ford, and Prof. Arjen Lenstra, who invested valuable time and

effort in reviewing this thesis, and some of whom travelled a long way for the defense of

my thesis.

I would like to thank my co-authors for our fruitful collaborations and their valuable

contributions to this thesis: Prof. Erman Ayday, Dr. Raeka S. Aiyar, Prof. Ari Juels,

Prof. Zoltán Kutalik, Dr. Huang Lin, Dr. Adam Molyneaux, Prof. Lars M. Steinmetz,

and Dr. Zhenyu Xu. In addition, I have the privilege to work with many other brilliant

minds in other joint works that are not presented in this thesis, and great thanks to them:

Dr. Jean Louis Raisaro, Florian Tramèr, David Froelicher, Patricia Egger, Joao S. Sousa,

Christian Mouchet, Cédric Lefebvre, Prof. Carlos Aguilar-Melchor, Prof. Marc-Olivier

Killijian, Dr. Sahel Shariati Samani, Prof. Mark Elliot, Dr. Mathias Humbert, Dr.

Alexandra Olteanu, and Prof. Karl Aberer. I would like to also thank Dr. Kristin

Lauter for offering me the great internship in Microsoft Research, where I was fortunate

to collaborate with many excellent researchers: Dr. Kim Laine, Dr. Hao Chen, Dr. Ran

Gilad-Bachrach, Kyoohyung Han, and Amir Jalali. My special thanks are extended to

the secretaries and system administrators for all their great support and meticulous work

during the 5 years of my Ph.D. study, and to Holly Cogliati-Bauereis who helps me grow

from a rookie writer to a somewhat-proficient writer in English.

I wish to thank all my colleagues and friends in EPFL for the joys and tears we shared

together in this grand journey: Jean Louis, Anh, Italo, Juan, Alexandra, Mathias, Joao,

David, Christian, Ludovic, Qiang, Yan, Tong, Junrui, Fengyun, Bin, Kaicheng, Li, Tao,

Wouter, Bogdan, and Kévin. A very special gratitude goes out to Jean Louis who

has been a great friend in these 5 years, and who has brought me all the memorable

ix

experiences in social life! As another special mention, my Ph.D. life abroad would not

have been as pleasant without the friendship of more than 10 years from these people

outside EPFL: Jinle, Zhiqian, Guiyu, Ke, Jie, Wenlong, Yadan, Xiaomin, Tingting,

Lixing, and Yinmin.

I dedicate this thesis to my parents for their unconditional support and love, and

for their care for me while I study abroad on the other side of the continent. Last

but not least, my heartfelt thanks goes to Danhua, for her love and support during the

past 8 years, for her understanding in our 5-year cross-country relationship, and for the

happiness she brings into my life. To Danhua: There is no one else I would like to spend

the rest of my life with, so, will you marry me?

Contents

Contents xi

1 Introduction 1

1.1 Related Work . 2

1.2 Contributions . 5

1.3 Thesis Outline . 6

1.4 Publications . 7

2 Securing storage of genomic data 9

2.1 Background . 11

2.2 System Model . 14

2.3 GenoGuard . 15

2.4 Security Analysis . 24

2.5 Towards Phenotype-Compatible GenoGuard 30

2.6 Discussion . 34

2.7 Summary . 37

3 Searching-enabled genomic data protection 39

3.1 Background . 41

3.2 System model . 42

3.3 SECRAM Format . 43

3.4 System Implementation . 49

3.5 Evaluation and Analysis . 51

3.6 Discussion . 56

3.7 Summary . 58

4 Protecting genomic data with arithmetic-computation capability 61

4.1 Background . 63

4.2 Adversary Model and System Structure 66

4.3 Secure Quality Control . 66

4.4 Implementation and Evaluation . 73

4.5 Discussion . 81

4.6 Summary . 83

5 Conclusion 85

xi

xii CONTENTS

Bibliography 89

Index 101

CV 103

Chapter 1

Introduction

Due to major advances in genomic research and to the plummeting cost of high-

throughput sequencing, the use of human genomic data is rapidly expanding in vari-

ous domains, including healthcare (e.g., genomic-based personalized medicine), research

(e.g., genome-wide association studies), direct-to-consumer (DTC) services (e.g., ancestry

determination), legal cases (e.g., paternity tests), and forensics (e.g., criminal investiga-

tion). It is now possible for physicians to adjust the prescription of certain drugs based

on the genetic makeup of their patients, for individuals to learn about their genetic pre-

disposition to serious diseases, and for couples to find out if their potential offspring

has an increased likelihood of developing rare genetic diseases. These exciting use cases

come with tremendous economic potentials, which explains the success of many enter-

prises such as 23andMe and Color Genomics, and new services from major stakeholders

such as Google Genomics [1], IBM Watson [2], Microsoft Genomics [3], Apple Research

Kit [4], and Amazon AWS Genomics [5].

However, such a vast exploitation of genomic data raises critical privacy issues. Be-

cause genomic data includes valuable and sensitive information about individuals, leakage

of such data can have serious consequences, including discrimination (e.g., by a potential

employer), denial of services due to genetic predisposition (e.g., by an insurance com-

pany), or even blackmail (e.g., using sensitive paternity information). With the technol-

ogy becoming increasingly mature, these privacy concerns could lead to the humanity

nightmare that was depicted by the 1997 science fiction movie Gattaca. To benefit from

the aforementioned interesting biomedical services, individuals and even large medical

institutions tend to hand over the control of their data to third-party stakeholders who

might or might not protect the data properly. Although it is generally true that large

cloud-computing companies have better capabilities in protecting their system and data,

data breaches happen from time to time, either because the data is not properly en-

crypted or the key is stolen. For example, in 2013, 1 billion user accounts were hacked

in Yahoo’s database, where most of the information is not encrypted, including even

security questions that could be used to reset passwords [6]. Ironically, because large

databases are valuable attack targets, the world’s biggest data breaches often happen in

well-known companies that should have protected the data better than others [7]. If the

same failure happened with a genomic database, the consequences would be much worse.

As the security expert Bruce Schneier once said [8],

1

2 CHAPTER 1. INTRODUCTION

If someone steals your password, you can change it. But if someone steals

your thumbprint, you can’t get a new thumb. The failure modes are very

different.

The argument holds for personal genomic data because this data is unique to every

human being. Even worse, users cannot control how companies will deal with their

personal genomic data after they sign general consent forms, e.g., when 23andMe sold

customers’ genetic data to another biotechnology company Genentech for 60 million

dollars [9].

Unfortunately, existing practices could lead to the abuse of genomic data; this abuse

is driven purely by economic interests. Indeed, due to the cost of security and privacy,

a privacy-preserving implementation might impair the performance and utility, which is

the reason why enterprises and institutions tend to go with easy and efficient solutions

for processing data. Historically, the initially insecure Internet has indeed survived from

numerous attacks, thanks to the gradually improving security deployment (e.g., from

HTTP to HTTPS). Nevertheless, in the case of genomic data, as mentioned above,

the failure modes are different; once an individual’s genomic information is exposed, the

corresponding privacy is lost forever. Therefore, it is crucial to store and manage genomic

data in a privacy-preserving way in order to enable its secure use from the beginning.

Existing mechanisms for protecting the privacy of genomic data include (i)

anonymization, which has proven to be ineffective for genomic data [10, 11, 12], (ii)

adding noise to published genomic data or statistics for medical research (e.g., to guar-

antee differential privacy [13, 14, 15, 16]), (iii) cryptography (e.g., homomorphic encryp-

tion [17, 18], private set intersection [19], etc.), and (iv) trusted hardware ([20, 21, 22]).

In this thesis, in order to enable the secure use of genomic data, we propose various

defense mechanisms that depend on the functionality requirement, . These privacy-

conscious systems can de deployed under different scenarios, ranging from storage-only

applications to complicated statistical analysis. We implement these systems and demon-

strate that, with reasonable performance costs, they are scalable in real-life applications

with strong security and privacy guarantee.

1.1 Related Work

Because genomic information is highly personal, privacy has become a major concern as

these data become more widely generated, disseminated, and unwillingly exposed [113,

114]. For example, coarse-grained encryption and access control to genomic data could

lead to incidental findings that doctors often prefer to avoid [115]. Standard sample de-

identification has been proven insufficient for complete protection of genetic privacy [25].

Establishing a secure and privacy-preserving solution for genomic data storage is urgently

needed to facilitate the usage and transfer of the data. For example, storing sequence data

on a cloud is an attractive option, considering the size and the required availability of the

data [116, 117, 118]. However, access threats in this case are even more serious because

the data owner has to trust insiders on the cloud (e.g., the cloud administrator or high-

privileged system software). These concerns around genomic data and the corresponding

countermeasures have been extensively investigated by researchers in recent years [23].

1.1. RELATED WORK 3

1.1.1 Statistical inference attacks and differential privacy

Homer et al. [11] show the possibility of inferring the participation of an individual in

a genotype database with the help of public allele frequencies. This work, known as

Homer’s attack, became a landmark for genomic privacy, due to its resulting widespread

fear that even sharing aggregate statistics is no longer safe. Afterwards, the NIH even

removed aggregate genomic data from open-access databases and urged the scientific

community to take precautions before sharing any aggregate GWAS data. Wang et

al. [12] give similar results of inference power based on p-values released in genome-wide

association studies. Various other statistical inference attacks have been proposed, which

makes the situation of genomic privacy more worrisome. These two attacks are typical

examples for the general category of statistical inference attacks on aggregate genomic

data, and a plethora of similar attacks have been proposed in the literature [134, 136,

137, 135, 133]. Hence, we wonder if it is even possible to protect against these attacks. In

response to the above concerns about published genomic statistics, Fienberg et al. [13]

propose to apply Laplacian noise to the released data to achieve differential privacy.

Another approach, using an exponential mechanism, to achieving differential privacy in a

genome-wide association study, is proposed by Johnson and Shmatikov [14]. Yu et al. [15]

present scalable privacy-preserving methods in genome-wide association studies that are

based on the Laplacian mechanism and an exponential mechanism. To further improve

the accuracy of the shared noisy data, Tramèr et al. [16] propose to relax differential

privacy by bounding the prior knowledge of potential attackers. In spite of these works on

differentially private genomic data, Fredrikson et al. [24] demonstrate an unsatisfactory

tradeoff between privacy and utility in an end-to-end case study of personalized dosing of

warfarin: after enforcing recommended level of differential privacy, the result is too noisy

to be used. A similar unsatisfactory result in an association study is also mentioned by

Erlich and Narayanan [25].

1.1.2 Computation on encrypted sensitive data

Apart from the family of solutions based on differential privacy, which turns out to be

criticized heavily by practitioners, many promising systems have been proposed in the

cryptography community. Jha et al. [26] design several privacy-preserving protocols for

some fundamental genomic computations (edit distance and Smith-Waterman score) that

use oblivious transfer and oblivious circuit evaluation. Kantarcioglu et al. [18] propose

the use of homomorphic encryption to store encrypted genomic sequence records in a

centralized repository and in a way that queries can be executed without decryption

and thus without violating participants’ privacy. Baldi et al. [19] propose a set of tech-

niques based on private set operations to address genomic privacy in several important

applications, namely, paternity tests, personalized medicine, and genetic compatibility

tests. To store and retrieve raw genomic data in a privacy-preserving manner, Ayday

et al. [17] introduce a framework that integrates stream ciphers and order-preserving

encryption. Other researchers also propose to protect privacy in genomic computation

by partitioning the computation through program specialization, according to the sen-

sitivity levels of different parts of the genome data [27]. The improvement of advanced

cryptographic techniques has helped to advance many other secure cloud computing so-

lutions [28, 29, 30, 31, 32, 33, 34, 35, 36] that share similar cloud models to some extent

with the aforementioned systems. Nevertheless, in most cases, these solutions are based

4 CHAPTER 1. INTRODUCTION

on heavy public-key cryptography, such as homomorphic encryption and garbled circuits,

which demands further research before they can be widely deployed in practice.

1.1.3 Trusted computing

In another direction, some researchers have begun to explore the possibility of employ-

ing trusted hardware for secure genomic computing in public clouds, thanks to several

breakthroughs in trusted computing, such as Intel’s Software Guard eXtension (SGX).

The most evident benefit of solutions in this dimension is the significant performance

gain, compared to the above advanced cryptographic solutions. Under the same system

and threat models, solutions have been proposed to address different genomic computing

problems [20, 21, 22]. In addition, several distributed computing systems based on Intel

SGX have been designed to solve more general big-data-processing problems [37, 38, 39].

It would be indeed encouraging if the same security and privacy could be achieved with

trusted hardware instead of heavy public-key cryptography; however, many researchers

raise concerns about its trust model and side-channel information leakage. For exam-

ple, multiple research groups show that it is practical to extract sensitive data from CPU

cache even though the main memory is encrypted [40, 41, 42, 43]. Moreover, attacking the

Intel processors was escalated in the start of 2018 [44], when several groups independently

found serious CPU vulnerabilities in Intel’s hardware [45, 46], further raising concerns

about the security promise of SGX. Therefore, it is unlikely that trusted computing will

be able to supplant advanced cryptographic solutions under all circumstances.

1.1.4 Honey encryption

There have been a number of practices of applying deception and decoys in the litera-

ture of computer security. Honeypots [86] are fake computer systems intended to bait

malicious actions that will be tracked and studied once these systems are probed or com-

promised. Honeypots are widely used in intrusion detection system [87, 88, 89]. Similarly,

a honeynet [90] is proposed to assist the system administrator in identifying malicious

traffic on the enterprise network.

The Kamouflage system [91] and honeywords [92] are designed to protect a password

vault by constructing plausible decoy passwords. Juels and Ristenpart [61] formalize such

a construction process with the concept of distribution-transforming encoder (DTE),

and propose honey encryption that provides security beyond the brute-force bound of

password-based encryption. As a formal extension to the above construction, Chatterjee

et al. [93] propose a design, called NoCrack, for crack-resistant password vaults using

honey encryption with natural language encoders. NoCrack shares the same motivation

with Chapter 2 of this thesis: When an attacker decrypts with the wrong password, it

gets a plausible-looking decoy, such that it does not know whether the password is indeed

wrong or not.

We improve honey encryption in this thesis by proposing a novel and useful DTE,

and apply the result to the protection of genomic data. To the best of our knowledge,

prior to this thesis, no cryptographic solution in genomic privacy addresses the challenge

of long-term threats to encryption, such as quantum computing [82], or of the common

short-term threat of brute-force cracking of password-based encryption [83, 84, 85].

1.2. CONTRIBUTIONS 5

1.2 Contributions

In this thesis, we investigate the problem of secure cloud computing for genomic

data. First, we start from the most basic system where only symmetric encryption is

needed for the storage of genomic data, then we propose a new solution that protects the

data against brute-force attacks that threaten the security of password-based encryption

in direct-to-consumer companies. Second, we analyze the scenario where efficient search-

ing on encrypted data is necessary. We propose a system that provides fast retrieval

on encrypted compressed data and that enables individuals to authorize access to fine-

grained regions during data retrieval. Finally, we explore various methods for enabling

readers to design privacy-conscious systems for complicated data analysis, with the fo-

cus on a proposal for secure quality control of genomic data by using secure multi-party

computation based on garbled circuits.

Our contributions are as follows:

1. We propose a novel technique for securing genomic data against data breaches that

involve a computationally unbounded adversary (an essential requirement given the

longevity of genomic data). This is particularly useful in the case of password-based

encryption that is frequently used by direct-to-consumer services, where encryption

keys are derived from low-entropy user-chosen passwords. The solution employs a

symmetric encryption primitive called honey encryption, where plaintext messages

need to be transformed to a different space with uniform distribution on elements.

Such a transformation needs to be provably secure and efficient. We design and

analyze several distribution and transformation models for genome sequences, and

we present a formal security analysis of our proposed techniques. In addition,

we propose and analyze techniques for preventing an adversary from exploiting

side information (physical traits of victims) in order to decrypt genomes. We

implement our solution in Python and show that it is efficient, especially under a

parallel-processing environment.

2. In clinical genomics, the continuous evolution of bioinformatic algorithms and se-

quencing platforms makes it possible to store patients’ complete aligned genomic

data in addition to variant calls relative to a reference sequence. Due to the large

size of human genome-sequence data files (varying from 30 GB to 200 GB depend-

ing on coverage), genomics laboratories face two major challenges: the costs of

storage and the efficiency of the initial data processing. We present a privacy-

preserving solution for the secure storage of compressed aligned genomic data. Our

solution enables selective retrieval of encrypted data and improves the efficiency

of downstream analysis (e.g., variant calling). Compared with a previous de facto

standard solution for storing aligned genomic data, our solution uses 18% less

storage. Our solution maintains both efficient compression and downstream data

processing, and it provides unprecedented levels of security in genomic data stor-

age. Compared with previous work, the distinguishing features of our solution are

that (1) it is position-based instead of read-based, and (2) it enables random query-

ing of a sub-region in an encrypted file. Our method thus offers a space-saving,

privacy-preserving, and effective solution for the storage of clinical genomic data.

3. Due to the limited power of small-scale genome-wide association studies (GWAS),

in order to perform large-scale GWAS, researchers tend to collaborate and establish

6 CHAPTER 1. INTRODUCTION

a larger consortium. Genome-wide association meta-analysis (GWAMA) is a statis-

tical tool that synthesizes results from multiple independent studies to increase the

statistical power and reduce false-positive findings of GWAS. We propose a secure

quality control protocol that enables the quality of data to be checked in a privacy-

preserving way without revealing sensitive information to a potential adversary.

Our solution employs state-of-the-art cryptographic and statistical techniques for

privacy protection. To demonstrate the efficiency and scalability on commodity

machines, we implement the solution in a meta-analysis pipeline with real data.

The distributed execution of our solution on a cluster of 128 cores for one million

genetic variants takes less than one hour, which is a modest cost considering the

10-month time span usually observed for the completion of the QC procedure that

includes timing of logistics. To end with a promising future for secure processing of

genomic data, we discuss multiple alternative solutions that might provide benefits

(e.g., high efficiency, low communication) under slightly different security and trust

models.

Before we go into the technical details, it is crucial to understand why the above

proposed systems in this thesis are superior to off-the-shelf techniques (e.g., from cryp-

tography) that are directly applicable for general data protection. First of all, some

special characteristics of genomic data might require researchers and developers to de-

sign new security primitives. For example, the aforementioned failure mode of genomic

data poses a long-term protection requirement in cloud storage, which motivates us to

design a new encryption scheme in Chapter 2 instead of using a conventional one that

is vulnerable to brute-force attacks. Secondly, during the design of these systems, it is

imperative to take existing practices into account so that the systems are usable and

appreciated by practitioners in the genomic and medical community. This actually pre-

vents us from directly applying off-the-shelf techniques for general data, because genomic

data are generally stored in well-structured format and are used in predefined ways that

might lead to unintended information leakage (Chapter 3) if the protection framework is

not crafted accordingly. Finally, many applications in medical research (e.g., statistical

analysis on protected data) demand research on advanced protection techniques, such

as secure multi-party computation and homomorphic encryption. During the design of

such systems, it is also crucial to combine various techniques for improving performance

and privacy, and to prove the security and privacy guarantee of such combination, e.g.,

the combination of parallel multi-party computation and differential privacy in Chapter

4.

1.3 Thesis Outline

Following the secure cloud-computing scenarios from storage to data analysis, we organize

this thesis as follows. In Chapter 2, we discuss the secure cloud storage for genomic data,

and propose a detailed encryption that provides resistance against brute-force attacks.

In Chapter 3, we extend the scenario to take data searching into account. We describe

a solution with efficient selective data retrieval. In Chapter 4, we focus on solutions that

encompass complicated data-analysis operations, at a cost of performance overhead, ac-

curacy loss, or weak trust model. We describe a secure multi-party computation solution

in detail.

1.4. PUBLICATIONS 7

1.4 Publications

Chapter 2 is an extended version of [47]. Chapter 3 is an extension of [48]. Finally,

Chapter 4 rests on the results of [49]. I am thankful to the following collaborators who

made valuable contribution to these projects: Erman Ayday (Bilkent University), Raeka

S. Aiyar (Stanford University), Jacques Fellay (EPFL), Jean-Pierre Hubaux (EPFL), Ari

Juels (Cornell Tech), Zoltán Kutalik (University Hospital Lausanne), Huang Lin (Applied

Science and Technology Research Institute), Adam Molyneaux (Sophia Genetics), Lars

M. Steinmetz (Stanford University), and Zhenyu Xu (Sophia Genetics).

Chapter 2

Securing storage of genomic data

Cloud storage is becoming more and more popular in people’s daily life, mostly thanks

to its promise of availability in any time and on any device. Moreover, considering the

scalability, efficiency and reliability provided by cloud services, many organizations adopt

cloud solutions for their IT work instead of building and maintaining the infrastructure

by themselves. According to the 2016 HIMSS Analytics Cloud Study [50] in United

States, 84% of the surveyed healthcare organizations are currently using cloud services,

25.6% of which fall into the public cloud computing model. In spite of privacy concerns,

healthcare organizations are ready to adopt public cloud storage, provided that the cloud

providers sign Business Associate Agreement (BAA) and offer HIPAA1-compliant ser-

vices, such as Google Cloud Drive, Microsoft OneDrive and Amazon [51]. Nevertheless,

when organizations and (especially) individual users place their data with cloud com-

puting services, they lose the complete control of that information. There have been

numerous cases and debates about whether cloud providers scan clients’ data [52]. For

example, Microsoft’s SkyDrive (now OneDrive) and Apple’s iCloud reserve the right to

scan users’ private files for content they deem “inappropriate”, which led to a number

of worrisome results [53, 54]. In this regard, many privacy-centric services start to bring

the control back to users while still enabling them to benefit from cloud storage. For

instance, SpiderOak [55] offers both cloud storage and a security option for users to

encrypt data before uploading. In addition, several third-party tools, such as Boxcryp-

tor and Odrive [56], enhance users with encryption functionality integrated in current

popular cloud storage providers (e.g., Google Drive, Dropbox). Finally, even for local

data protection, some companies offer software solutions to encrypt the database, such

as IBM’s DB2 [57] and Microsoft’s Access database [58]. In brief, these solutions are

mostly based on password-based encryption (PBE), where users choose passwords in or-

der to derive cryptographic keys for standard symmetric encryption such as 128-bit AES.

However, since keys are derived from passwords with lower entropy, the security level is

actually lower than the 128 bits indicated by the name.

Appropriately designed cryptographic schemes can preserve the utility of data, but

they provide security based on assumptions about the computational limitations of ad-

1HIPAA (Health Insurance Portability and Accountability Act of 1996) is United States legislation
that provides data privacy and security provisions for safeguarding medical information.

9

10 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

versaries. Hence they are vulnerable to brute-force attacks when these assumptions are

incorrect or erode over time. Given the longevity of genomic data, serious consequences

can result. A genome is (almost) stable over time and thus needs protection over the

lifetime of an individual and even beyond, as genomic data is correlated between the

members of a single family. It has been shown that the genome of an individual can be

probabilistically inferred from the genomes of his family members [59].

In many situations, though, particularly those involving direct use of data by con-

sumers, keys are weak and vulnerable to brute-force cracking even today. This problem

arises in systems that employ password-based encryption, a common approach to pro-

tection of user-owned data. Users’ tendency to choose weak passwords is widespread and

well documented [60].

Several years ago, Juels and Ristenpart introduced a new theoretical framework for

encryption called honey encryption (HE) [61]. Honey encryption has the property that

when a ciphertext is decrypted with an incorrect key (as guessed by an adversary), the

result is a plausible-looking yet incorrect plaintext. Therefore, HE gives encrypted data

an additional layer of protection by serving up fake data in response to every incorrect

guess of a cryptographic key or password. Notably, HE provides a hedge against brute-

force decryption in the long term, giving it a special value in the genomic setting.

However, HE relies on a highly accurate distribution-transforming encoder (DTE)

(Section 2.1.2) over the message space. Unfortunately, this requirement jeopardizes the

practicality of HE. To enable its use in any scenario, we have to understand the corre-

sponding message space quantitatively, that is, the precise probability of every possible

message. When messages are not uniformly distributed, characterizing and quantifying

the distribution is a highly non-trivial task. Building an efficient and precise DTE is

the main challenge when extending HE to a real use case, and it is what we do in this

chapter. Hopefully, the techniques proposed are not limited to genomic data; they are

intended to inspire those who want to apply HE to other scenarios, typically when the

data shares similar characteristics with genomic data.

In this chapter, we propose to address the problem of protecting genomic data by

combining the idea of honey encryption with the special characteristics of genomic data

in order to develop a secure genomic data storage (and retrieval) technique that is (i)

robust against potential data breaches, (ii) robust against a computationally unbounded

adversary, and (iii) efficient.

In the original paper [61], Juels and Ristenpart propose specific HE constructions that

rely on existing generation algorithms (e.g. for RSA private keys), or operate over very

simple message distributions (e.g., credit card numbers). These constructions, however,

are inapplicable to plaintexts with considerably more complicated structure, such as

genomic data. Thus substantially new techniques are needed in order to apply HE

to this case. Additional complications arise when the correlation between the genetic

variants (on the genome) and phenotypic side information are taken into account. This

chapter is devoted mainly to addressing these challenges.

2.1. BACKGROUND 11

2.0.1 Overview

We propose a scheme called GenoGuard. In GenoGuard, genomic data is encoded,

encrypted under a patient’s password2, and stored at a centralized biobank. We propose

a novel tree-based technique to efficiently encode (and decode) the genomic sequence to

meet the special requirements of honey encryption. Legitimate users of the system can

retrieve the stored genomic data by typing their passwords.

A computationally unbounded adversary can break into the biobank protected by

GenoGuard, or remotely try to retrieve the genome of a victim. The adversary could

exhaustively try all the potential passwords in the password space for any genome in

the biobank. However, for each password he tries, the adversary will obtain a plausible-

looking genome without knowing whether it is the correct one. We also consider the

case when the adversary has side information about a victim (or victims) in terms of his

physical traits. In this case, the adversary could use genotype-phenotype associations to

determine the real genome of the victim. GenoGuard is designed to prevent such attacks,

hence it provides protections beyond the normal guarantees of HE.

GenoGuard is highly efficient and can be used by the service providers that offer DTC

services (e.g., 23andMe) to securely store the genomes of their customers. It can also be

used by medical units (e.g., hospitals) to securely store the genomes of patients and to

retrieve them later for clinical use.

2.1 Background

In this section, we briefly introduce some basic concepts of genomics, as well as the honey

encryption scheme [61]. To facilitate future references, frequently used notation is listed

in Table 2.1.

2.1.1 Genomics

Genetic Locus, Allele, and Single Nucleotide Variant

In this chapter, we consider a genetic locus (plural loci) as a position on a chromosome.

One of a number of alternative forms at a given locus is called an allele. Most of the

genome is conserved, in comparison to the reference human sequence, in any given in-

dividual. The most abundant type of genetic variants are single nucleotide variants

(SNVs), in which different alleles are observed at the same chromosomal position. Only

about 4 million SNVs are observed per individual; they represent the sensitive informa-

tion that should be protected. In most cases, there are two alleles at a locus, a major

allele, which is observed with a high frequency in the population, and a minor allele,

which is observed with low frequency. The frequency of an allele in a given population is

denoted as the allele frequency (AF). An allele takes a value from the set {A, T,C,G}.
We represent a major allele as 0, and a minor allele as 1. Human chromosomes are

inherited in pairs, one from the father and the other from the mother, hence each SNV

position has a pair of alleles (nucleotides). For example, the i-th SNV (on the DNA se-

quence) can be represented as SNVi = xy, where x (and y) is an allele. As the ordering

of x and y does not matter, we represent the value of an SNVi from the set {0, 1, 2},
2A patient can choose a low-entropy password that is easier for him/her to remember, which is a

common case in the real world [60].

12 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

M sequence (plaintext) space
M a sequence (message), M ∈M
n number of SNVs in M
S seed space
K key space
C ciphertext space
pk key (password) distribution
pm original message distribution
pd DTE message distribution
h storage overhead parameter
A the adversary against the DTE scheme

Advdte
DTE,pm(A) adversary A’s advantage of distinguish-

ing pm from pd
B the adversary against the HE scheme

Advmr
HE,pm,pk(B) adversary B’s advantage of recovering

the correct sequence

Table 2.1: Notations and definitions for Chapter 2.

based on the number of minor alleles it has. For example, if locus i has major allele A

and minor allele G, we represent AA as 0, AG (or GA) as 1, GG as 2.

Diploid Genotype and Haploid Genotype

To be consistent throughout the chapter, given a sequence of loci, we interpret an indi-

vidual’s diploid genotype as a corresponding sequence of SNVs, each of which takes

values in {0, 1, 2}, and a haploid genotype as a corresponding sequence of alleles, each

of which takes values in {0, 1}.

Linkage Disequilibrium and Recombination

Because chromosomal segments are inherited as blocks, SNVs on a sequence are usually

correlated, especially when they are physically close to each other. This correlation is

measured by linkage disequilibrium (LD) [62]. The strength of LD between two SNVs

is usually represented by r2, where r2 = 1 represents the strongest LD relationship. At

meiosis, two DNA sequences exchange genetic information, leading to a novel combination

of alleles that is passed on to the progeny. This process is called recombination. The

recombination rates vary on the different regions of a chromosome.

2.1.2 Honey Encryption

Honey encryption [61] is a recently proposed encryption scheme that has the advantage of

providing security beyond the brute-force bound over conventional ciphers. In our case,

this is a highly desirable property, considering the longevity of genomic data. Suppose

a message M is sampled from a distribution pm over the message space M and honey

encrypted under key K ∈ K to yield a ciphertext C ∈ C. Decryption under an incorrect

key K ′ 6= K yields a fake message M′ also from the distribution pm. In a conventional

cipher, when decrypting a ciphertext using a wrong key, the scheme usually produces an

2.1. BACKGROUND 13

invalid3 message (often denoted by special symbol ⊥); thus the adversary can easily elim-

inate wrong keys via a brute-force attack. However, in honey encryption, the adversary

does not have such an advantage because the output of the decryption under a wrong

key is equivalent to random sampling from pm. Honey encryption is proposed with a

notion called distribution-transforming encoder (DTE), as we briefly describe below.

Distribution-Transforming Encoder: A DTE works by transforming the potentially

non-uniform message distribution pm into a uniform distribution over a seed space S.

Formally, it is a pair of algorithms represented as DTE = (encode, decode): encode takes

as input a message M and outputs a value in S, whereas decode takes as input a value in S
and outputs a message. encode is probabilistic: A message M can potentially be mapped

to one of many possible values that make up a set SM ⊆ S, and SM 6= ∅. For any pair of

different messages M and M′ (where M 6= M′), SM ∩ SM′ = ∅. Moreover,
⋃

M∈M SM = S.

Therefore, encode needs to choose a value randomly in SM when transforming M, but

decode is deterministic. A good DTE has the property that a randomly selected seed,

mapped to the message space, yields roughly the underlying message distribution pm (
|SM|
|S| ≈ pm(M)), where pm(M) is the probability of message M. We further discuss the

benefits of this property in Section 2.4.

In the DTE-then-encrypt paradigm proposed in [61], encryption of a message M in-

volves two steps: (i) application of encode to M to yield a seed s, and then (ii) encryption

of s under a conventional symmetric cipher SE. HE does not provide IND-CCA (indis-

tinguishability under chosen-ciphertext attack) security. It provides the weaker but still

useful property of message-recovery (MR) security, described below and formally defined

in Section 2.4. Consider the scenario in which an adversary wants to guess the key (K)

used for the encryption. Given an ideal cipher model for SE, a randomly selected key

corresponds to a permutation selected uniformly at random. Hence, if the adversary

tries to decrypt a ciphertext C with a randomly guessed key K ′, he will obtain a value

uniformly sampled from S. If he decodes this value, the output message is equivalent

to one sampled from the distribution pm. Given a good DTE, the adversary cannot

distinguish a correct key K from an incorrect one K ′ with a significant advantage over

guessing the key (without knowledge of the ciphertext).

We use the DTE-then-encrypt construction in honey encryption. The setup is de-

scribed as follows:

• Let pm denote the distribution over the message space M, pk denote the distribu-

tion over the key (password) space K, S = {0, 1}l denote the seed space with bit

length l, and C denote the ciphertext space.

• Let DTE = (encode, decode) be a DTE scheme. Specifically, encode(M) = S and

decode(S) = M, where M is a message and S ∈ S.

• Use a conventional symmetric encryption scheme SE = (encrypt, decrypt) with

plaintext space S and ciphertext space C. For block ciphers without padding, C
is the same as S. SE uses random bits uniformly sampled from {0, 1}B during

encryption, where B is the length of the random bits.

The honey encryption construction HE[DTE,SE] = (HEnc,HDec) is also shown in Figure

2.1. However, as we will show, the application of HE to genomes, is far from straightfor-

3Here “invalid” means a message with an extremely low probability in pm.

14 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

HEnc(K,M)

S ← $ encode(M)
r ← $ {0, 1}B
C ← $ encrypt(K,S, r)
return (r, C)

HDec(K, (r, C))

S ← decrypt(K,C, r)
M← decode(S)
return M

Figure 2.1: DTE-then-encrypt construction using a symmetric encryption. M ∈M,K ∈
K, S ∈ S, and C ∈ C. The symbol ‘$’ implies randomness of the function. r is a random
salt of length B.

ward. Constructing a good DTE for genetic sequences, one that yields an HE scheme with

good MR security bounds, is the main challenge addressed in this chapter. Addressing

the problem of side information is also a significant challenge.

2.2 System Model

We consider a scenario where individuals’ genomic data is stored in a database (e.g., a

biobank) and used for various purposes, such as clinical diagnosis or therapy, or DTC

services. In the data collection phase, patients provide their biological samples to a

certified institution (CI) that is responsible for the sequencing. Furthermore, each patient

also chooses a password (we assume patients can choose low-entropy passwords). The CI

pre-processes the sequence data; the most important step is the application of protection

mechanisms to the data, such as encryption using the passwords of the patients. The CI

then sends the processed data to the biobank. To efficiently protect the data, we assume

there are two layers of protection:

• The inner-layer protection is provided by using cryptographic techniques. This

layer is necessary for defending against attacks from insiders or someone who hacks

into the system and steals the database. This is the focus of this chapter.

• The outer-layer protection is the access control; it decides various permissions on

the data. Access control has been extensively investigated in the literature [63] and

is out of the scope of this chapter.

During data retrieval, a user (such as a doctor or the patient himself) first authenticates

himself to the system using a passcode4, or biometric information (e.g., face). After

authentication, the user can send a data request to the biobank that processes the request

according to access control rules and the biobank responds with the authorized data.

Figure 2.2 gives an overview of the considered architecture.

2.2.1 Genomic Data Representation

We represent each patient’s genomic data as a sequence of genetic variants (SNVs) that

take values from the set {0, 1, 2}, as we discussed before. We assume a sequence M with

4Chosen by the user or generated by a one-time passcode generator. Note that the passcode used
for authentication cannot be the same as the password used for PBE (if PBE is used in GenoGuard that
is introduced in Section 2.3), as the former would require storing a hash of the passcode on the system.

2.3. GENOGUARD 15

Certified
Institution

(CI)

Alice

Bob

Cathy

Eva

Data
Collection

Data Preprocessing

Users

Data
Retrieval

Biobank

Access control

Figure 2.2: System model of genomic data storage and retrieval. Patients provide their
samples to CI for sequencing. Encrypted sequence data is sent to the biobank and
retrieved for various purposes by the users.

n SNVs, and we represent such a sequence as (m1,m2, · · · ,mn), where mi represents

an SNV. We use Mi,j to represent the subsequence including all the SNVs between (and

including) the i-th and the j-th.

2.2.2 Threat Model

We assume the CI to be trusted in order to perform sequencing on patients’ samples.

An adversary can be anyone (except the CI) who has access to the protected data,

such as the biobank, a user who has been granted access permission on part of the

data, or an attacker who breaks into the biobank and downloads a snapshot of the

database. As a consequence, the adversary can be assumed to have a copy of encrypted

sequences. We further assume that the adversary has access to public knowledge about

genomics, i.e., AF, LD, recombination and mutation rates. A stronger adversary could

even have some side information about a given patient, such as his phenotype, and

even some of his SNVs. We represent the adversary’s background knowledge as BK =

{AF,LD, recombination and mutation rates, [side info]}, where “[side info]” means the

type and amount of side information depend on the power of an adversary. We also

study the effect of phenotype as side information (in Section 2.5) and propose a general

solution in this regard. We emphasize that more side information could result in stronger

attacks. Throughout this chapter, we assume a computationally unbounded adversary

who has the capability to efficiently enumerate all keys in K and to use them to decrypt

the data, also called a brute-force attack. We also assume that the adversary is honest-

but-curious (i.e., follows the protocols honestly, but tries to learn more information than

he is authorized for). The adversary’s main goal is to break the inner-layer protection

and gain access to the plaintext sequences of the patients.

2.3 GenoGuard

We describe GenoGuard, our solution based on honey encryption, for the secure storage

of genomic data. We show the main steps of the protocol in Figure 2.3. We represent

the patient and the user as two separate entities, but they can be the same individual,

depending on the application. We discuss more about the application scenarios in Sec-

tion Section 2.6. Step by step, we discuss the protocol in this section, emphasizing the

encoding (Step 3) and decoding (Step 9) steps that are the major features of GenoGuard.

Initially, a patient provides his biological sample (e.g., blood or saliva) to the CI

and chooses a password that is used for the encryption (Step 1). The CI does the

16 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

sequencing on the sample and produces genomic data represented as discussed in Section

2.2.1 (Step 2).

CI User

Biobank

1. Sample, Password

2. Sequencing
3. Encoding
4. Password-based encryption

5. Ciphertext

6. Request

7. Ciphertext

8. Password-based decryption
9. Decoding

Patient

Figure 2.3: GenoGuard protocol. A patient provides his biological sample to the CI,
and chooses a password for honey encryption. The CI does the sequencing, encoding
and password-based encryption, and then sends the ciphertext to the biobank. During a
retrieval, a user (e.g., the patient or his doctor) requests for the ciphertext, decrypts it
and finally decodes it to get the original sequence.

2.3.1 Encoding

We introduce a novel DTE scheme that can be applied efficiently on genome sequences.

The general idea is to estimate the conditional probability of an SNV given all preceding

ones. In other words, the proposed scheme estimates P (mi|M1,i−1), the conditional prob-

ability of the i-th SNV given preceding SNVs. The probability of a complete sequence

M can be decomposed as follows:

pm(M) = P (mn|M1,n−1)P (mn−1|M1,n−2) · · ·P (m2|m1)P (m1). (2.1)

The main challenge is to find an efficient way to encode a sequence M into a uni-

formly distributed seed, which defines the deterministic mapping from M to SM (then

we can uniformly pick a value from SM). A naive and impractical method would be to

enumerate all possible sequences, compute their corresponding probabilities, calculate

the cumulative distribution function (CDF) of each sequence in a pre-defined order, and

finally assign the corresponding portion of seeds to a sequence. However, given that there

are three possible states for each SNV on a sequence of length n, this method incurs both

time and space complexity of O(3n).

Therefore, we propose a novel approach for efficiently encoding such a sequence. The

approach works by assigning subspaces of S to the prefixes of a sequence M. The prefixes

of a sequence M are all the subsequences in the set {M1,i|1 ≤ i ≤ n}. For example, the

prefixes of the sequence ATTCG are {A,AT,ATT,ATTC,ATTCG}. We first describe the

basic setup as follows:

• Seed space S corresponds to the interval [0, 1). Each seed is a real number in this

interval. In practice, we need to use only sufficient precision (l bits as indicated by

the definition S = {0, 1}l) to distinguish between the seeds of different sequences.

2.3. GENOGUARD 17

Figure 2.4: A toy example of the encoding process. The sequence is of length 3. The
sequence that needs to be encoded is (0, 2, 1), shown in red dashed line. Take the sec-
ond step as an example. We have P (m2 = 0|m1 = 0) = 0.6, P (m2 = 1|m1 = 0) =
0.3, P (m2 = 2|m1 = 0) = 0.1, and [L0

1, U
0
1) = [0, 0.6). Hence the next three inter-

vals are: (i) [L0
2, U

0
2) = [L0

1, L
0
1 + (U0

1 − L0
1) × P (m2 = 0|m1 = 0)) = [0, 0.36); (ii)

[L1
2, U

1
2) = [L0

1 + (U0
1 − L0

1) × P (m2 = 0|m1 = 0), L0
1 + (U0

1 − L0
1) × (P (m2 = 0|m1 =

0) + P (m2 = 1|m1 = 0))) = [0.36, 0.54); (iii) [L2
2, U

2
2) = [L0

1 + (U0
1 − L0

1) × (P (m2 =
0|m1 = 0) + P (m2 = 1|m1 = 0)), U0

1) = [0.54, 0.6). Note that the intervals in black
solid line do not need to be computed when encoding (0, 2, 1). When we reach the leaf
[0.576, 0.594], we pick a seed randomly from this range, e.g., 0.583.

But, for simplicity of presentation in the rest of this subsection, we assume there

is infinite precision.

• To calculate the CDFs, we define a total order O of all sequences in M, i.e.,

O : M → N. For any two different sequences M and M′, scanning from the first

SNV, suppose they begin to differ at the i-th SNV, mi and m′i correspondingly (i.e.,

M1,i−1 = M′1,i−1 and mi 6= m′i). If the value (0, 1, or 2) of mi is smaller than that

of m′i, then O(M) < O(M′), otherwise O(M) > O(M′). The CDF of a sequence M

is CDF(M) =
∑

M′∈M
O(M′)≤O(M)

pm(M′) where pm(M′) is the probability of sequence M′.

In a nutshell, we can encode a sequence with the help of a perfect ternary tree (an

example of which is provided in Figure 2.4). For a sequence M, starting from the root,

(i) if an SNV mi is 0, we move down to the left branch; (ii) if it is 1, we move down to

the middle branch; (iii) if it is 2, we move down to the right branch. As a consequence,

each internal node represents a prefix of a sequence, whereas each leaf node represents a

complete sequence. We also attach an interval [Lji , U
j
i) to each node, where i represents

the depth of the node in the tree, and j represents the order of the node at a given depth

i, both starting from 0. This interval is the sub seed space that can be assigned to the

sequences that start with the prefix represented by the corresponding node.

Here, we describe the details of encoding process (step 3 in Figure 2.3). Assume

we encode a sequence M. It is obvious that the root has an interval [0, 1), namely,

[L0
0, U

0
0) = [0, 1). Depending on the value of SNV mi+1, encoding proceeds from the

node that represents M1,i with order j at depth i to depth i+ 1 as follows:

• If mi+1 = 0, go to the left branch and attach an interval [L3j
i+1, U

3j
i+1) = [Lji , L

j
i +

(U ji − Lji)× P (mi+1 = 0|M1,i)).

18 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

• If mi+1 = 1, go to the middle branch and attach an interval [L3j+1
i+1 , U3j+1

i+1) =

[Lji +(U ji −Lji)×P (mi+1 = 0|M1,i), L
j
i +(U ji −Lji)×(P (mi+1 = 0|M1,i)+P (mi+1 =

1|M1,i))).

• If mi+1 = 2, go to the right branch and attach an interval [L3j+2
i+1 , U3j+2

i+1) = [Lji +

(U ji − Lji)× (P (mi+1 = 0|M1,i) + P (mi+1 = 1|M1,i)), U
j
i).

So far, we have not devoted much content to the discussion of computing the con-

ditional probability P (mi+1|M1,i), which will be elaborated later. For now, we focus

on how the encoding scheme works on the high level. Finally, when we reach the leaf

node with the interval [Ljn, U
j
n), we pick a seed S uniformly from this range to encode

the corresponding sequence. In the following, we give a toy example of this encoding

process.

Example (Encoding): Suppose all sequences are of length 3. The sequence M that

needs to be encoded is (0, 2, 1). Assume P (m1 = 0) = 0.6, P (m2 = 2|m1 = 0) = 0.1, and

P (m3 = 1|M1,2) = 0.3. The encoding process is illustrated in Figure 2.4.

In Step 4 (in Figure 2.3), after the encoding is finished, the seed, as a plaintext, is

fed into a conventional password-based encryption (PBE) [64] by using the password

chosen by the patient (at Step 1). This step is a direct application of PBE, so we

skip the details here. The encrypted seed is then sent to the biobank (step 5) that,

as a centralized database, receives requests (step 6) from users and responds with the

corresponding encrypted data (step 7).

2.3.2 Decoding

When an encrypted seed is sent to the user, the user first performs a password-based

decryption by using the patient’s password (step 8). As discussed, the user could be

the patient himself, or the patient can provide his password on behalf of the user. We

discuss more on these scenarios in Section 2.6. Once the user has the plaintext seed, the

decoding process (step 9) is the same as the encoding process. Given a seed S ∈ [0, 1),

at each step, the algorithm computes three intervals for the three branches, chooses the

interval in which the seed S falls, and goes down along the ternary tree. Once it reaches

a leaf node, it outputs the path from the root to this leaf with all chosen SNVs.

2.3.3 Moving to Finite Precision

As we mentioned, the current seed space S is a real number domain with infinite precision.

However, considering the size of a DNA sequence, with infinite precision, we could end

up having a very long floating-point representation for a sequence, which could cause a

high storage overhead. Also, we cannot afford to enumerate all possible sequences to find

the smallest precision to represent all the corresponding real numbers. Moreover, if we

work with finite precision and decide on the precision a priori (without enumerating the

sequences), this could result in an inaccurate representation of the sequence distribution,

thus causing a security loss. In this subsection, we describe how our proposed DTE

scheme can be implemented with finite precision and with negligible effect on security.

For a sequence of length n, with each SNV taking three possible values, we require

at least (n · log2 3) bits to store the sequence.5 To optimally implement the scheme, we

5We do not consider compression techniques here.

2.3. GENOGUARD 19

first select a storage overhead parameter h (h > log2 3). We use hn bits to encode one

sequence. As before, the algorithm works by segmenting intervals based on conditional

probabilities. In this case, however, an interval is represented by integers, and not by

real numbers of infinite precision. The root interval is [0, 2hn − 1]. To better describe

the scheme, suppose (during the encoding) we reach the j-th node at depth i on the

tree (the root has depth 0 and the leaves have depth n). The interval of this node is

denoted by [Lji , U
j
i] (U ji inclusive, which is different from the infinite-precision case). The

segmentation rules are described in the following.

We compute the conditional probabilities for the three branches, PL (left branch),

PC (middle branch) and PR (right branch) respectively. Without loss of generality, we

assume the three probabilities are ordered as PL ≥ PC ≥ PR (the following algorithm is

similar for different orderings). We initialize a variable avail = U ji − Lji + 1 to denote

the size of the seed space available for allocation. The sizes of seed space that will be

allocated to the three branches are denoted by allocL (left branch), allocC (middle

branch), and allocR (right branch). Note that allocL + allocC + allocR = U ji −Lji + 1.

The algorithm advances as follows:

(i). If PR <
3n−i−1

avail , then allocR = 3n−i−1, otherwise allocR = dPR · availe. Then, we

update avail as avail = avail− allocR.

(ii). If PC
PC+PL

< 3n−i−1

avail , then allocC = 3n−i−1, otherwise allocC = dPC · availe. And,

we set allocL = avail− allocC .

(iii). Finally, we set the three sub-intervals as:

• [L3j
i+1, U

3j
i+1] = [Lji , L

j
i + allocL − 1];

• [L3j+1
i+1 , U3j+1

i+1] = [Lji + allocL, L
j
i + allocL + allocC − 1];

• [L3j+2
i+1 , U3j+2

i+1] = [Lji + allocL + allocC , U
j
i].

The intuition behind the above conditions is that we need to allocate at least one

integer (seed) for one sequence. To ensure this, when we want to move down to a branch,

we need to guarantee that the size of the seed space allocated for this branch is not smaller

than the total number of sequences belonging to this branch. The requirement is satisfied

from the beginning by setting the root interval as [0, 2hn − 1] and never violated in the

algorithm. This method causes a deviation from the original sequence distribution. In

Section 2.4, we quantify the security loss due to such deviation and prove that it is

negligible.

2.3.4 Modeling Genome Sequences

To compute the conditional probabilities in Equation (2.1) efficiently, we introduce several

models and compare their goodness of fit in real genome datasets.

Modeling with linkage disequilibrium and allele frequency

With LD and AF, we can compute the joint probability of two SNVs, P (mi,mj). How-

ever, to compute the conditional probability P (mi+1|M1,i), we have to simplify the model

(Equation (2.1)) because public LD values are always given pairwise in the literature.

20 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

Although there could be multiple pairwise LD relations for SNVi+1, we adopt the follow-

ing heuristic method: We consider only the previous SNV that has the strongest LD with

SNVi+1. Such an LD usually occurs between neighboring SNVs on the DNA sequence,

hence we have P (mi+1|M1,i) ≈ P (mi+1|mi) = P (mi+1,mi)
P (mi)

. This is the first-order Markov

chain that was considered also in genomics [65].

This model fails to capture the correlation between distant SNVs. However, we argue

that it approximates the genome sequence model better than the uniform distribution

model used in conventional encryption, as we will see later in model comparison with

real datasets.

Modeling by building k-th-order Markov chains on a dataset

With this method, we assume the correlation in a genome sequence can be captured by

a k-th-order Markov chain, where the conditional probability of SNVi+1 depends on the

k preceding SNVs. In other words, we estimate the conditional probability as

P (mi+1|M1,i) ≈ P (mi+1|Mi−k+1,i). (2.2)

Researchers have tried to build such a genetic Markov model in a different context [66].

However, to the best of our knowledge, there is no public data (like LD) available for

these models. In a similar manner, we build the k-th-order Markov model on a real

dataset, for different k values. Assume the dataset has N sequences. We use F (Mi,j) to

represent the frequency of subsequence Mi,j between SNVs i and j in the dataset. The

k-th-order Markov model is built by computing

P (mi+1|Mi−k+1,i) =

{
0 if F (Mi−k+1,i) = 0,
F (Mi−k+1,i+1)
F (Mi−k+1,i)

if F (Mi−k+1,i) > 0.
(2.3)

Due to the constraint of the dataset size, k normally can only take small values to

avoid overfitting of the model. For example, in HapMap diploid genotype datasets, N is

smaller than 200 for each population. For k = 3, there are 81 possible configurations for

Mi−k+1,i+1, which makes the average frequency for each configuration quite small, hence

the model has modest statistical significance due to this sparsity problem. We introduce

this model as a possible direction and use it to emphasize the importance of higher-order

correlation, which will be shown in the evaluation. The k-th-order Markov chain serves

as a bridge to the next more promising model.

Modeling with recombination rates

Although higher-order Markov models might better model genome sequences, these mod-

els seem unlikely to be practical because of the difficulty of accurately estimating all the

necessary parameters in available datasets. Inspired by the modeling method used by

Li and Stephens [67], we can address the problem from a different viewpoint. Given a

set of k existing haploid genotypes {h1, h2, ..., hk}, another haploid genotype hk+1 to be

observed is an imperfect mosaic of h1, h2, ..., hk, due to genetic recombination and mu-

tation (Figure 2.5). This reproduction process is actually a hidden Markov model with

a sequence of n states (the number of loci in a haploid genotype):

• Markov chain states: State j, Xj , can take a value from 1 to k, representing

the original haploid genotype for locus j;

2.3. GENOGUARD 21

copy copy copy mutate

ℎ1

ℎ2

ℎ3

ℎ4

Figure 2.5: An example showing how the haploid genotype h4 is interpreted as an imper-
fect mosaic of a given set of haploid genotypes {h1, h2, h3}, based on recombination and
mutation. Each haploid genotype can be as long as the whole genome, but we show only
four loci here to explain the idea. White circle means allele 0 for that locus, whereas
black circle means allele 1. The first allele of haploid genotype h4 is copied from h1.
Though the second allele comes from h3, it mutates to a different allele. The third allele
is copied from h2, and the fourth is copied from h1. Note that this shows just one possible
process to get h4 from {h1, h2, h3}, and as there are many other possibilities, the task
of this model is to compute the probability of observing h4 by taking all the possible
underlying processes into account, which constitutes a hidden Markov model.

• Symbol emission probabilities: hi,j denotes the allele (0 or 1) at locus j in

haploid genotype i. To produce hk+1, at state j, an allele hk+1,j is output with a

certain probability, depending on the allele of the original haploid genotype (Xj)

and the mutation rate;

• Transition probabilities: Transition probabilities from state j to state j + 1

depend on the recombination rate between locus j and j + 1.

With this model, we can compute the probability of a haploid genotype hk+1, that

is, P (hk+1|h1, ..., hk). The computation is done with the well-known forward-backward

algorithm for hidden Markov models [68]. The probability of a genome sequence M,

which is the coupling of two haploid genotypes, can be computed similarly by extending

this hidden Markov model so that state j will take a value pair (X1
j , X

2
j), where X1

j

denotes the first original haploid genotype and X2
j denotes the second. Such an extension

technique has been detailed in a genotype imputation scenario [69]. The conditional

probability P (mi+1|M1,i) can then be computed in the intermediate steps of the forward

algorithm. Details are specified as follows.

Initially, at state 1, we have P (X1 = x) = 1
k (x ∈ {1, · · · , k}). The transition proba-

bility from state j to j + 1 is characterized by

P (Xj+1 = x′|Xj = x)

=

exp(−
ρj
k) +

1−exp(−
ρj
k)

k if x′ = x;
1−exp(−

ρj
k)

k otherwise,

(2.4)

where ρj is the genetic distance between locus j and j + 1. It is computed based on the

recombination rate between these two loci. Intuitively, a smaller genetic distance will

make the two states more likely to take the same value, meaning that they are more

likely to come from the same haploid genotype.

22 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

At state j, an allele (0 or 1) will be emitted. To mimic the effects of mutation, the

emitting probability is characterized by

P (hk+1,j = a|Xj = x) =

{
1− λ if hx,j = a;

λ otherwise,
(2.5)

where a is 0 or 1, and λ is the mutation rate.

Let the forward variable αj(x) = P (hk+1,≤j , Xj = x). Then α1(x) = P (hk+1,1|X1 =

x)P (X1 = x). And α2(x), · · · , αn(x) can be computed recursively using

αj+1(x) =P (hk+1,j+1|Xj+1 = x)

k∑
x′=1

αj(x
′)P (Xj+1 = x|Xj = x′),

(2.6)

The probability of a complete haploid genotype is then computed using

P (hk+1|h1, · · · , hk) =

k∑
x=1

αn(x). (2.7)

The conditional probability for allele j+ 1, given all preceding alleles, is computed using

P (hk+1,j+1|hk+1,≤j , h1, · · · , hk) =

∑k
x=1 αj+1(x)∑k
x=1 αj(x)

. (2.8)

For a genome sequence that couples two haploid genotypes, all the above quantities

can be computed similarly by an extension of this hidden Markov model [69].

The correlation between two SNVs, which is considered in the previous two models,

is essentially the result of recombination in genome sequences. With this recombination

model, we are able to capture the high-order correlation efficiently, without having to

estimate a large number of parameters.

Goodness of fit of the models

To evaluate the models, we used different types of real genomic datasets from HapMap,

for the population CEU (Utah residents with Northern and Western European ancestry

from the CEPH collection) [70], including:

• A diploid genotype dataset that contains 165 individuals, each having 22 pairs of

autosomes (different from sex chromosomes that are discussed in Section 2.5.1).

The shortest chromosome contains 17304 SNVs, whereas the longest one contains

102157 SNVs;

• A haploid genotype dataset that contains 234 haploid genotypes, each of which

has the same sequence of loci as that in the diploid genotype dataset on the 22

chromosomes;

• Allele frequency and linkage disequilibrium datasets for each chromosome;

• Recombination rates for each chromosome.

2.3. GENOGUARD 23

Figure 2.6: Chi-square goodness-of-fit tests for different genome sequence models on 22
chromosomes. The x-axis is the chromosome number, from 1 to 22. To graphically show
the results at a fine scale, the left y-axis is transformed to the logarithm of chi-squared
statistic. The right y-axis shows one frequently used significance level, α = 0.01, and
another significance level, α = 0.2. The uniform distribution model is the one used
in conventional encryption. The “public LD model” is built with public LD and AF
data. The “0-th”, “1-st”, “2-nd”-order models are the Markov models built on the
dataset. Finally, the “recombination model” is built based on genetic recombination
and mutation. Most models are rejected at α = 0.01, whereas the recombination model
cannot be rejected even at α = 0.2, which shows a good fit of this model on real datasets.

We performed a chi-square goodness-of-fit test to show how well each model fits the

diploid genotype dataset. We divided the sequence space M into B bins with equal

probability. The chi-square statistic is defined as

χ2 =

B∑
i=1

(Oi − Ei)2

Ei
, (2.9)

where Oi is the observed frequency for bin i, and Ei is the expected frequency for bin

i. The null hypothesis H0 is that the data follows the specified distribution model. B is

chosen with an empirical formula in statistical theory [71] (B = b1.88N
2
5 c where N is the

sample size). We performed several rounds of the test for different B values around the

empirical one and they all gave similar results. Hence we set B to be 10, and show the

results in Figure 2.6. From the chi-square statistics, we can see that uniform distribution

indeed gives a poor model of genome sequences. The 0-th-order model built on the

dataset is also not appropriate because it does not take the correlation among SNVs into

account. The model built with public LD and AF performs similarly with the first-order

model built on the dataset, which is reasonable because they both consider only the

first-order correlation. The second-order model is better than the previous four models,

but it is not stable across different chromosomes: in many chromosomes, we can reject

the null hypothesis H0 at the significance level (α) of 0.01. The recombination model

performs best among these models because it captures high-order correlations that are

24 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

naturally caused by the underlying recombination mechanism. Moreover, the model is

stable across all tests and cannot be rejected, even at the significance level of 0.2 in every

chromosome, which shows a good fit of this model on real datasets. Therefore, we keep

this model for our scheme.

2.4 Security Analysis

In this section, we prove the security of our proposed DTE scheme, with regard to the

scheme in finite precision.

Once the algorithm allocates seed space of size 3n−i−1 to a branch at step i (as in

Section 2.3.3), each following step simply segments an input interval into three parts

of equal size. Hence there is only one seed for each sequence in the sub-tree under the

branch of step i. As discussed in Section 2.3.3, in such a case, the subinterval of the jth

node at depth i of the tree will contain 3n−i−1 integers that are exactly the number of

sequences under that branch.

The goal in constructing a DTE is that decode applied to uniform points (in the seed

space) provides sampling close to that of the target distribution pm; this is the sequence

distribution produced by the kth-order Markov chain. The seed space S is the integer

interval [0, 2hn− 1] (i.e., l = hn). We define pd to be the DTE message distribution over

M by

pd(M) = P [M′ = M : S ← $ S; M′ ← decode(S)].

The additional security provided by honey encryption depends on the difference between

pm and pd. Intuitively, pm and pd are “close” in a secure DTE. Next, we quantify this

difference for the proposed DTE scheme. Let P im be the original probability of the prefix

sequence M1,i, namely, P im =
∑

M′∈M
M′1,i=M1,i

pm(M′). We define P id similarly in the distribution

pd.

We prove the following lemma that gives an upper bound on the difference between

the original message distribution pm and the DTE message distribution pd.

Lemma 2.1. ∀M ∈M, |pm(M)− pd(M)| < 1
2(h−log2 3)n .

Proof. As we showed in the optimized scheme, the goal is to compute three intervals

according to the conditional probabilities for the three branches, PL (left branch), PC
(middle branch) and PR (right branch), respectively. Without loss of generality, we

assume the three probabilities are ordered as PL ≥ PC ≥ PR. The proof is similar for

different orderings.

First consider the case when pd(M) > pm(M). According to the algorithm, the

probability of sequence M increases in pd only if it has at least one SNV that belongs to

the right branch or the middle branch. In other words, when we set allocR = 3n−i−1

(allocC = 3n−i−1) or allocR = dPR ·availe (allocC = dPC ·availe), we actually increase

the probability for this branch. Without loss of generality, we prove for the right branch

in the following, but it is similar for the middle branch.

If allocR = 3n−i−1 has been executed at some step, as we mentioned, there will be

only one integer assigned for each sequence under that branch. The probability of one

integer in S is 1
2hn

. Hence, the probability of sequence M will be increased by at most
1

2hn
.

2.4. SECURITY ANALYSIS 25

Otherwise, the increased probability is only due to allocR = dPR · availe, coming

from the “ceiling” operation that expands the interval by at most one additional integer.

In this case, we need to show that

∀i ∈ {0, 1, 2, · · · , n}, P id − P im ≤
i

2hn
. (2.10)

When i = 0, there is no prefix and P 0
d = P 0

m = 1, and hence the result holds. Also,

for i <= k, the result holds. When i = k + 1, P k+1
m = P km · PR. The right sub-interval

has size allocR = dPR · (U jk − L
j
k + 1)e. Then we have

P k+1
d =

dPR · (U jk − L
j
k + 1)e

2hn
≤ PR · (U jk − L

j
k + 1) + 1

2hn

= P kd · PR +
1

2hn
.

(2.11)

Hence, ∀i >= 0, 2i > i

P k+1
d − P k+1

m = P kd · PR − P km · PR +
1

2hn

≤ k

2hn
· PR +

1

2hn
<
k + 1

2hn
.

(2.12)

Therefore, we have pd(M)− pm(M) = Pnd − Pnm ≤ n
2hn

< 2n

2hn
= 1

2(h−log2 3)n .

If pd(M) < pm(M), we need to show that pd(M) − pm(M) > − 1
2(h−1)n . Consider the

smallest depth i which makes P id < P im. Let P id = P im − ε0, where ε0 ≥ 0. In the

previous step, the algorithm must have chosen the left branch (or the middle branch),

otherwise P id will continue to be larger than P im. We only prove for the left branch whose

probability will decrease the most.6 Then, we have

P id ≥ P i−1
d · PL −

3n−i · 2
2hn

≥ P i−1
m · PL −

3n−i · 2
2hn

= P im −
3n−i · 2

2hn
,

(2.13)

and hence ε0 <
3n−i·2

2hn
.

We define P i+kd = P i+km − εk. Now, we will show that εk <
∑k
j=0

3n−i−j ·2
2hn

. Clearly,

the result holds for k = 0. Going from depth i+ k to i+ k + 1, we have

P i+k+1
d ≥ P i+kd · PL −

3n−i−k−1 · 2
2hn

> (P i+km − εk) · PL −
3n−i−k−1 · 2

2hn

> P i+k+1
m −

k+1∑
j=0

3n−i−j · 2
2hn

.

(2.14)

Hence,

pd(M)− pm(M) = −εn−i > −
n−i∑
j=0

3n−i−j · 2
2hn

> −
n−1∑
j=0

3n−1−j · 2
2hn

> − 1

2(h−log2 3)n
.

(2.15)

6The result also holds for the middle branch whose probability can decrease (or increase), but not
as much as the left branch (or the right branch).

26 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

SAMP1ADTE

M∗ ← pmM
S∗ ← $ encode(M∗)
b← $ A(M∗, S∗)
return b

SAMP0ADTE

S∗ ← $ S
M∗ ← decode(S∗)
b← $ A(M∗, S∗)
return b

Figure 2.7: Game defining the DTE advantage. In SAMP1ADTE, sequence M∗ is sampled
according to pm, whereas in SAMP0ADTE, M∗ is equivalently sampled according to pd.
The adversary’s output b is 0 or 1, indicating his guess on whether he is in SAMP0ADTE

or SAMP1ADTE.

The above proof shows that, for a given sequence M with original probability pm(M),

the corresponding probability pd(M) in the DTE model (Section 2.3.3) can increase or

decrease at most by 1
2(h−log2 3)n , which is useful to prove a negligible adversary advantage

in later theorems (Theorem 2.2 and Theorem 2.1). �

Lemma 2.1 bounds the largest difference between pm(M) and pd(M). It gives rise

to the following important theorem that bounds the DTE advantage of an adversary,

introduced by honey encryption. The DTE advantage is formally defined by the following

definition.

Definition 2.1. Let A be an adversary attempting to distinguish between the two games

shown in Figure 2.7. The advantage of A for the sequence distribution pm and encoding

scheme DTE = (encode, decode) is

Advdte
DTE,pm(A) = |P [SAMP1ADTE ⇒ 1]− P [SAMP0ADTE ⇒ 1]|.

Theorem 2.1. Let pm be the sequence distribution and DTE = (encode, decode) be the

transformation scheme using hn bits. Let A be any sampling adversary, then

Advdte
DTE,pm(A) ≤ 1

2(h−2 log2 3)n
.

Proof. The proof follows Theorem 6 in [61]. We briefly describe it in the following.

P [SAMP1A ⇒ 1]

=
∑
M∈M

P [SAMP1A ⇒ 1|M∗ = M] · pm(M)

≤
∑
M∈M

P [SAMP0A ⇒ 1|M∗ = M] · (pd(M) +
1

2(h−log2 3)n
)

≤ P [SAMP0A ⇒ 1] + 3n · 1

2(h−log2 3)n

= P [SAMP0A ⇒ 1] +
1

2(h−2 log2 3)n
.

(2.16)

This theorem demonstrates that for given any sequence M, it is difficult for an ad-

versary to tell whether it is sampled from pm, or from pd (with negligible advantage

for appropriate h). This is critical because it essentially explains the power of honey

encryption: the adversary is confused whether the decrypted sequence is the original one

(from pm) or a wrong one (from pd). �

2.4. SECURITY ANALYSIS 27

MRBHE,pm,pk

K∗ ← pk K
M∗ ← pmM
C∗ ← $ HEnc(K∗,M∗)
M← $ B(C∗)
return M = M∗

Figure 2.8: Game defining MR security. Given ciphertext C∗ (encrypted from M∗),
adversary B is allowed to guess the message by brute-force attack. B wins the game if
his output message M is the same as the original message M∗.

The last step of the security analysis is the quantification of message recovery (MR)

security for any adversary B against the encryption scheme HE.

Definition 2.2. Let B be the adversary attempting to recover the correct sequence given

the honey encryption of the sequence, as shown in Figure 2.8. The advantage of B against

HE is

Advmr
HE,pm,pk(B) = P [MRBHE,pm,pk ⇒ true].

We emphasize that pk, the password distribution, is non-uniform. We assume the

most probable password has a probability w. Using Lemma 2.1 and Theorem 2.1, we

can establish the following theorem.

Theorem 2.2. Consider HE[DTE, H] (the detailed definition is available in [61]) with H

(the hash function) modeled as a random oracle and DTE using an hn-bit representation.

Let pm be the sequence distribution with maximum sequence probability γ, and pk be a

key distribution with maximum weight w. Let α = d1/we. Then for any adversary B,

Advmr
HE,pm,pk(B) ≤ w(1 + δ) +

3n + α

2(h−log2 3)n
, (2.17)

where δ = α2

2b
+ eα4

27b
2 (1− eα2

b
2)−1 and α = d3/we and b = b2/γc.

Proof. The proof is similar to Corollary 1 in [61]. We omit the redundant details and

specify the necessary modifications in the following.

pm is a non-uniform sequence distribution and we assume γ ≤ 3−
√

5 ≈ 0.76, which

is a requirement for Corollary 1 (in [61]). This assumption is reasonable considering

the length of the sequence n (≥ 20000)7. To estimate γ, we can consider the sequence

with all major alleles and pessimistically assume each major allele frequency is 0.995,

large enough to give an upper bound for real datasets. Then, γ can be estimated by

0.99520000 ≈ 2.89× 10−44 � 3−
√

5.

The term 3n+α
2(h−log2 3)n is achieved by replacing Advdte

DTE,pm(A) ≤ 1
2l

with our Theorem

1, and |pm(M) − pd(M)| < 1
2l

with our Lemma 1 in the proof of Corollary 1 (in [61]).

Essentially, 3n+α
2(h−log2 3)n is the security loss due to DTE imperfectness that causes the

difference between pm and pd.

7We need to focus only on one chromosome because there is no LD between chromosomes. The
number 20000 is based on the observation of chromosome 22 (one of the shortest chromosomes) in a real
dataset from the International HapMap Project.

28 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

Figure 2.9: Adversary advantage versus storage overhead. Without encryption, the
minimum storage for a sequence of n SNVs is n · log2 3 bits. The x-axis is the expansion
ratio between the storage with GenoGuard and the storage without encryption, namely,
hn

n·log2 3 = h
log2 3 . The y-axis is logarithm of the security loss term, log2 ∆Adv , that

is part of the advantage of the message recovery adversary B (Equation (2.17)). With
GenoGuard, to ensure a security loss smaller than 2−200, we only need a storage expansion
ratio that is slightly larger than 2.

By this theorem, even with a brute-force attack, an adversary’s probability of suc-

ceeding in recovering a honey-encrypted sequence is close to the probability of the real

password. Therefore, the attack does not help more than randomly guessing the pass-

word. �

As mentioned in the proof, we denote ∆Adv = 3n+α
2(h−log2 3)n as the security loss term.

Consider a case where n = 20000, h = 4, and γ = 2.89×10−44. If pk is a password distri-

bution, then w can be estimated to be 1/100 according to Bonneau’s Yahoo! study [72],

in which the most common password was selected by 1.08% of users. In this case, ∆Adv

is negligible (≈ 2−16600), and δ ≈ 0, hence the upper bound on message recovery ad-

vantage is w = 1/100. If we consider an adversary who trivially decrypts the ciphertext

with the most probable key and then outputs the resulting sequence, he can win the

message recovery (MR) game with probability 1/100. Hence, the bound is essentially

tight. However, this case only happens if the patients choose weak passwords according

to the previous password study.

To choose the storage overhead parameter h in practice, we consider how it affects

the security loss term ∆Adv. Since α is negligible compared to 3n, we have ∆Adv ≈
1

2(h−2 log2 3)n . Taking the logarithm of ∆Adv, we can observe that it has a linear relationship

with h, as shown by Figure 2.9. For example, when h
log2 3 = 200.63%, we have ∆Adv ≈

2−200. Hence, with a storage overhead slightly larger than two times (compared to the

storage of a plaintext sequence), we achieve a negligible security loss.

Security under Brute-Force Attacks: To illustrate the security guarantee of

GenoGuard, we conducted two experiments to compare GenoGuard with a simple (unau-

thenticated) PBE algorithm under brute-force attacks. For the simple PBE algorithm, we

encoded the genome by assuming a uniform distribution in GenoGuard encoding, specif-

ically by setting all edge weights in the tree to be equal (namely, 1
3). Thus, its decryption

2.4. SECURITY ANALYSIS 29

Figure 2.10: Experimental security evaluation. We encrypted a genome with a given
password from a pool of 1000 passwords (for simplicity, we assume that the passwords
are integers from 1 to 1000). Each point represents one decryption result using an integer
from the password pool (the x-axis). The y-axis is the logarithm8 of the interval size
of the decrypted sequence when encoded with the recombination model. (a) With a
conventional PBE scheme [64], all the wrong passwords have been ruled out except the
correct one; (b) Obviously, with GenoGuard, no password can be excluded.

under any key yields a valid genome (“valid” does not necessarily mean “plausible”, as

we will show). We show here that for this PBE scheme a very simple classifier suffices

for identifying the correctly decrypted genome with high probability. We encrypted a

victim’s chromosome 22 (see Section 2.6.1 for dataset description and implementation

details) with a given password from a password pool of size 1000 (without loss of gen-

erality, we assume that the passwords are integers from 1 to 1000). We chose “539” as

the correct password for both experiments; and we assumed that the adversary knows

the correct password is a number from the password pool and that he performs a simple

brute-force attack. In real life, brute-force attacks can be carried out if the adversary

knows that the correct password has a limited number of characters (hence memorizable

by users) or even a fixed length (e.g., six-digit PIN code). In the first experiment,

we encrypted the victim’s sequence directly with the PBE scheme in [64] (after encod-

ing by assuming a uniform distribution). In the second experiment, we followed the

same procedure except that we encrypted the victim’s sequence by using the GenoGuard.

Note that in our proposed DTE, the size of the interval of a leaf in the ternary tree is

proportional to the probability of the corresponding sequence. In both experiments, to

rule out wrong passwords, we computed the interval sizes of the decrypted sequences and

observed the result. Figure 2.10 shows the result of the two experiments. We observe

that if the sequence is protected by a direct application of the PBE scheme, the adversary

can exclude most passwords in the attack because the corresponding decrypted sequences

have much lower probabilities than that of the correct sequence. In this example, only

the correct password is retained, as shown in Figure 2.10 (a). With GenoGuard, on the

contrary, the correct sequence is buried among all the decrypted sequences, hence it is

almost impossible to reject any wrong password.

30 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

2.5 Towards Phenotype-Compatible GenoGuard

An individual’s physical traits (such as gender, ancestry and hair color) are highly cor-

related to his DNA sequence. Recently, researchers showed that it is even possible to

model facial traits of an individual from his DNA [73]. Although such progress in human

genetics is desirable for many applications (e.g., forensics), it can pose a threat to our

proposed technique. In particular, such correlations could be used as side information by

an adversary who tries to obtain the sequence of a specific victim (e.g., by trying various

potential passwords). For instance, if the adversary knows that an encrypted sequence

belongs to a victim of Asian ancestry, he might be able to eliminate a (wrong) password

if the genetic sequence obtained using this password does not belong to an individual of

Asian ancestry.

In genetics, gender and ancestry are the most well studied human genetic traits.

These traits have deterministic genotype-phenotype associations, whereas other traits

(such as hair color) have less certain (probabilistic) genotype-phenotype associations.

In this section, we first show that the security of GenoGuard is not affected by traits

with deterministic genotype-phenotype associations. Our main goal is to show that

if an adversary knows a phenotype (physical trait) of a victim, he always retrieves a

decrypted sequence that is consistent with the corresponding phenotype, even if he types

a wrong password. Next, we quantify the privacy loss if an adversary has information

about other traits (with probabilistic genotype-phenotype associations) of a victim via a

privacy analysis.

2.5.1 Traits with Deterministic Genotype-Phenotype Associations

Gender: Gender is determined by sex chromosomes, namely, X chromosome and Y

chromosome. Females have two copies of the X chromosome, whereas males have one X

chromosome and one Y chromosome. Note however that X chromosome and Y chro-

mosome have different lengths. Therefore, the adversary can immediately ascertain

whether a ciphertext comes from an X chromosome or a Y chromosome because the

latter is shorter than the former. As we mentioned in Section 2.3.3, (when implementing

GenoGuard) the whole interval [0, 2hn−1] is determined by the length n of the sequence.

To deal with the gender problem, we use the length of X chromosome for both sex chro-

mosomes. In other words, X chromosome and Y chromosome are encoded in the same

interval [0, 2hn − 1], where n is the length of X chromosome.9 In this way, the adversary

cannot infer any information about the gender because the ciphertext is always of the

same length, whether it belongs to a male sequence or a female sequence. Furthermore,

if the adversary knows the gender of a victim, he will always get a consistent sequence

(based on the gender) when he decodes the ciphertext by using the corresponding public

knowledge of Y (or X) chromosome.

Ancestry: Research has shown that ancestry information can be accurately inferred

from DNA sequences. For example, the sequence of an individual of Asian ancestry usu-

ally has different combinations of SNVs compared to an individual of European origin.

In genetics, ancestry can be inferred with a number of methods, e.g., principal compo-

8Note that hn is close to 80000, hence the interval size is a huge integer and is better expressed as
its logarithm with base 2.

9There is no LD between two different chromosomes, so each chromosome can be encrypted as an
independent sequence.

2.5. TOWARDS PHENOTYPE-COMPATIBLE GENOGUARD 31

nent analysis (PCA) followed by k-means clustering [74]. In this method, a training

set is comprised of a number of individuals, each of which is genotyped on a predefined

set of SNVs (the most informative SNVs). This training set is then fed into PCA in

order to find several principal components. After the dataset is projected on these prin-

cipal components, k-means clustering is applied to cluster the individuals into different

ethnicities.

What we want to achieve in GenoGuard is ethnic plausibility: the principal compo-

nents of the decrypted genome-wide genotyping data should be broadly similar to those

from a real genome. Hence, we argue that the decoding operation with knowledge of re-

combination rates and haploid genotype dataset from a specific population always yields

a sequence belonging to that population. To verify this, we conducted an experimental

analysis depicted in the following.

We used Phase III10 data from the HapMap dataset [70]. In this dataset, we chose 3

populations for our evaluation:

(i). ASW (African ancestry in Southwest USA), with 90 samples;

(ii). CEU (Utah residents with Northern and Western European ancestry from the

CEPH collection), with 165 samples;

(iii). CHB (Han Chinese in Beijing, China), with 90 samples.

We selected 100 SNVs to infer ancestry according to [75]. First, we applied PCA on

the above dataset and selected the first two principal components. The projection of the

dataset on the two principal components can be seen in Figure 2.11(a). We encrypted

a sequence from a specific population (e.g., ASW) by using GenoGuard. Then, for each

of the three aforementioned populations, we decrypted the ciphertext with randomly

guessed passwords 100 times, generating 100 random sequences for each case (in total,

we generated 300 sequences). Finally, we projected these 300 sequences on the principal

components and observed the result, as shown in Figure 2.11(b), (c), and (d). We

conclude that decoding with public knowledge from a population always produces a

sequence of that population, which proves that ancestry inferred from a sequence does

not pose a threat to our proposed technique. We leave the case for people with mixed

blood for the future work, but a reasonable assumption is that corresponding public

knowledge could be available for mixed-blood people in the future.

2.5.2 Traits with Probabilistic Genotype-Phenotype Associations

In theory, the idea we introduce for ancestry also works for other traits: incorporate

phenotype-related data during encoding. For the case of ancestry, such data is provided as

population-specific haploid genotype dataset. However, such data is not easily available

for many other traits (e.g., those with probabilistic genotype-phenotype associations) and

genotype-phenotype associations is ongoing research. In the following, we quantify the

privacy loss when the phenotype of a victim is not taken into account during encoding,

but is exposed to the adversary as side information. For instance, the adversary could

have access to a small number of phenotypical traits by observing a victim’s photographs

from online social networks.

10The third phase of the International HapMap project. This phase increases the number of DNA
samples covered from 270 in phases I and II to 1,301 samples from a variety of human populations.

32 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

Figure 2.11: Evaluation of ancestry compatibility on GenoGuard. (a) Ancestry inference
with PCA on three populations: ASW (lower left cluster), CEU (upper left cluster), and
CHB (right cluster). The red crosses are sequences decrypted from an ASW person with
randomly guessed passwords, but with public haploid genotype dataset from different
populations: (b) ASW; (c) CEU; (d) CHB. We can see that, regardless of the population
which the original sequence belongs to, the ancestry of the decrypted sequence only
depends on population-specific haploid genotype dataset used for the decoding.

Consider a genetic trait that has a set of possible phenotypes {T1, T2, · · · , Tu}. For

example, the trait “hair color” can have phenotype set {Red,Blond,Brown,Black}. Let

PTi denote the prior probability of a phenotype Ti. Each phenotype Ti is also associated

with a vector of prediction probabilities A
Tj
Ti

: given a sequence with phenotype Ti, A
Tj
Ti

is the probability that the best classification algorithm will associate the sequence with

phenotype Tj . Then, a brute-force attack proceeds as follows. For each password, the

adversary uses it to decrypt the ciphertext, inputs the result sequence to the classifier,

and excludes the password if the phenotype does not match; otherwise he retains the

password. We assume that the adversary trusts the classifier and makes a binary decision

on whether he should retain the password.

Suppose there are totally N unique passwords at the beginning, and they are in

descending order regarding their probabilities: P1 ≥ P2 ≥ · · · ≥ PN . The order of a

password is usually called its rank. Note that
∑N
i=1 Pi = 1. It has been shown that

the distribution of real-life passwords obeys Zipf’s law [76, 77]. In other words, for a

2.5. TOWARDS PHENOTYPE-COMPATIBLE GENOGUARD 33

Hair Color (T ∗) Prior (PT∗) ARedT∗ , A
Blond
T∗ , ABrownT∗ , ABlackT∗

Red 8.8% 60.7%, 28.6%, 7.1%, 3.6%
Blond 42.6% 0.8%, 93.9%, 3.8%, 1.5%
Brown 39.3% 0.8%, 56.7%, 20%, 22.5%
Black 9.3% 0%, 55.2%, 3.4%, 41.4%

Table 2.2: Summary of the results from the HIrisPlex system [78]. The second column,
prior, is the fraction of samples that have the corresponding hair color. The third column
is the vector of prediction accuracies (of the classification algorithm) for all four hair
colors, given that a person has hair color T ∗.

password dataset, the probability of password with rank i is

Pi = Wi−s, (2.18)

where W and s are constants depending on the dataset. This is actually the password

distribution pk. Suppose the victim’s phenotype is T ∗, which is known to the adversary.

We assume that decryption under a given incorrect password yields phenotype Ti with

probability PTi , and that such assignment is independent across passwords. Whether

an incorrect password is retained then depends on the probability that the decrypted

sequence is classified by the classifier as phenotype T ∗. This event may be modeled

as independent Bernoulli trials across passwords, each with retaining probability Pret
computed as

Pret =

u∑
i=1

PTi ·AT
∗

Ti . (2.19)

Note that for the correct password, the adversary retains it with probability AT
∗

T∗ . From

Theorem 2.2, we observe that the advantage of adversary B without side information is

approximately equal to w, the maximum weight in the password distribution (equivalent

to the above P1). Let B′ represent the adversary with side information T ∗. B′ first

prunes passwords based on the classifier, and then executes the algorithm of adversary B
in the MR game (Figure 2.8) on the resulting smaller password pool consisting of retained

passwords. Let p′k represent this new password distribution, with maximum weight w′.

We can represent the password pruning procedure as a randomized function f(pk)→ p′k.

Therefore, B′ adheres to the procedure: i) B′ uses f to compute p′k; ii) B′ gives p′k to B.

Let Adv(B′) represent the advantage of adversary B′. We have

Adv(B′) = AT
∗

T∗ · Ep′k←f(pk)[Advmr
HE,pm,p′k

(B)]

≈ AT∗T∗ · Ep′k←f(pk)[w
′],

(2.20)

where E is the expectation over the randomized password pruning process, and we ap-

proximate Advmr
HE,pm,p′k

(B) with the maximum weight w′ in the password distribution p′k.

In the following, we quantify Adv(B′) empirically with real data.

For this purpose, we study a recent work about predicting hair color from DNA (the

HIrisPlex system [78]). The study collects DNA samples and hair color information from

1551 European subjects and builds a model to predict the hair color. The results are

shown in Table 2.2.

We use the Zipf’s model in [77], where N = 486118, W = 0.037871 and s = 0.905773.

For different hair colors known by adversary B′, we perform the Bernoulli trials with

34 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

Red Blond Brown Black
Victim’s Hair Color Known by Adversary B′

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
dv

er
sa

ry
’s

A
dv

an
ta

ge

0.0379 0.0379 0.0379 0.0379

0.0642

0.0416

0.0189

0.0382

Adversary B
Adversary B′

Figure 2.12: Evaluation of adversary’s advantage with the side information of hair color.
Adversary B has no side information, and his advantage is approximately w = 0.0379, the
maximum weight in the original password distribution pk. The advantage of adversary
B′ depends on the prediction accuracy AT∗T∗ and the retaining probability Pret for the
victim’s hair color T ∗.

corresponding Pret on the password pool, and estimate Adv(B′) in Equation (2.20). We

repeat the whole experiment 1000 times for each hair color, and the average results are

shown in Figure 2.12.

With the “Red” hair information, the adversary’s advantage increases from 0.0379 to

0.0642, which is the worst among the four colors (for the victim). This is explained by the

fact that “Red” hair has a very low prior probability that leads to a small Pret, hence most

wrong passwords are deleted. We observe that the empirical estimation of Ep′k←f(pk)[w
′]

is consistently larger for a smaller Pret. On the contrary, because “blond” hair has a high

prior probability, a larger number of passwords are retained, hence smaller Ep′k←f(pk)[w
′]

and smaller Adv(B′), compared to the case of “Red” hair. From Equation (2.20), the

advantage is also positively correlated to the accuracy of the prediction algorithm. The

low accuracies for “Brown” and “Black” hair (ABrownBrown and ABlackBlack) explain why the

advantage of adversary B′ barely increases, or even decreases11, compared to adversary

B.

Even though side information is a common security concern in cryptography, we

propose a general idea to avoid this problem for GenoGuard: incorporate the side infor-

mation during the encoding phase. Nontrivial as this is, we will elaborate this idea in

our future work, especially for traits with probabilistic genotype-phenotype associations.

2.6 Discussion

In this section, we discuss the performance, application scenarios, some extensions, and

limitations of the proposed scheme.

11When the prediction is unreliable, it’s better for the adversary to ignore the side information.

2.6. DISCUSSION 35

2.6.1 Performance

The time complexity of the encoding phase is O(n) where n is the length of the sequence.

Moreover, the storage overhead of the encrypted seeds is low as shown in Figure 2.9. Note

that the ternary tree does not need to be stored. The encoding and decoding process are

completely executed based on public knowledge; not on a pre-stored tree.

We implemented GenoGuard in Python. It includes mainly four steps: encode, de-

code, PBE encrypt, PBE decrypt. As before, we used the Phase 3 data in International

HapMap Project, for the CEU population [70]. We set the storage overhead parameter

h = 4. As for password-based encryption (decryption), we followed the standard PKCS

#5 [64]. That is, using HMAC-SHA-1 as the underlying pseudorandom function, given

a password P , we first applied a key derivation function

DK = KDF (P, S),

where DK is a 128-bit derived key and S is a 64-bit random salt. DK is used as the key

for an AES block cipher that encrypts the seed in CBC mode. We ran the algorithm on a

cluster of 22 nodes, each with 3.40GHz Intel Xeon CPU E31270 and 64-bit Linux Debian

systems. In other words, the task of encrypting the whole genome was parallelized in

22 nodes that independently encrypt 22 chromosomes. We evaluated GenoGuard on

165 CEU samples, and the average performance is shown in Figure 2.13. Although

encoding (decoding) is more costly than PBE, it is still acceptable considering the size

of a full genome. Moreover, encoding different chromosomes was run in parallel, hence

the running time depends only on the longest chromosome.

2.6.2 Application Scenarios

GenoGuard can be applied to various scenarios, including healthcare and recreational

genomics, for the protection of genomic data. The general protocol in Figure 2.3 can

work in a healthcare scenario without any major changes. In this scenario, a patient

wants a medical unit (e.g., his doctor) to access his genome and perform medical tests.

The medical unit can request for the encrypted seed on behalf of (and with consent

from) the patient. Hence, there is a negotiation phase that provides the password to

the medical unit. Such a phase can be completed automatically via the patient’s smart

card (or smart phone), or the patient can type his password himself. In this setup, the

biobank can be a public centralized database that is semi-trusted. Such a centralized

database would be convenient for the storage and retrieval of the genomes by several

medical units.

For direct-to-customer (DTC) services, the protocol needs some adjustments. For

instance, Counsyl12 and 23andMe13 provide their customers various DTC genetic tests.

In such scenarios, the biobank is the private database of these service providers. Thus,

such service providers have the obligation to protect customers’ genomic data in case of

a data breach. In order to perform various genetic tests, the service providers should

be granted permission to decrypt the sequences on their side, which is a reasonable

relaxation of the threat model because customers share their sequences with the service

providers. Therefore, steps 8 and 9 in Figure 2.3 should be moved to the biobank. A

12https://www.counsyl.com/.
13https://www.23andme.com/.

36 CHAPTER 2. SECURING STORAGE OF GENOMIC DATA

Figure 2.13: Performance of GenoGuard on 22 chromosomes, averaging over 165 CEU
samples. The dashed line shows the length of each chromosome, whereas the solid
lines show the running time of the four procedures: encode, decode, PBE encrypt,
PBE decrypt. The number of SNVs roughly decreases from chromosome 1 to chromo-
some 22. We can see that the running time of password-based encryption (decryption) is
negligible compared to encoding (decoding), whose running time increases almost linearly
with the length of a chromosome).

user (customer) who requests a genetic test result logs into the biobank system, provides

the password for password-based decryption and asks for a genetic test on his sequence.

The plaintext sequence is deleted after the test.

2.6.3 Typos

Providing an incorrect password yields a fake but valid-looking sequence. This is a good

security characteristic of honey encryption, but can be bad for usability if a legitimate

patient or doctor does not realize she has made a mistake when typing the password. To

solve this problem, we propose several solutions, as discussed below.

The first idea is to append to the plaintext some information that is unique and

verifiable by the patient but meaningless for the adversary. We propose encoding such

information (such as a 4-digit PIN chosen by the patient) as a string of bits similar to the

seed. Such a PIN can be appended to the seed and encrypted together. In other words,

the third encryption step in Figure 2.1 can be replaced with C ← $ encrypt(K,S||PIN, r).

This option works well if the PIN is a uniformly random string; otherwise it will cause

some security degradation because S||PIN is no longer uniform. Moreover, it requires the

PIN to be kept secret and that the adversary cannot link it to a patient.

2.7. SUMMARY 37

Another approach might be to leverage the distinction between recall memory and

recognition memory [79]. The latter is shown to be more robust than the former. For

instance, the system can provide a pool ofN confirmation images, and the user can choose

one before encryption. The confirmation images do not themselves have to be part of the

ciphertext. The system can hash the genome sequence into ZN = {0, 1, 2, · · · , N − 1} to

obtain a confirmation index, for security parameter N . The user might confirm correct

decryption simply by indicating that a displayed image is familiar. A similar idea has been

proposed in previous work where the authors apply it to anti-phishing techniques [80].

Another idea is based upon concealment of a biometric template among decoys. For

instance, the user can provide his fingerprint template that is stored with some honey

templates (e.g., synthetic fingerprint images [81], or other users’ templates). These tem-

plates can also be indexed as what we propose for the confirmation images above. During

retrieval, only the user can verify whether the decryption is correct or not using his own

fingerprint.

2.7 Summary

The long-term sensitivity of genomic data gives rise to a need for especially strong pro-

tective mechanisms. Brute-force attacks on standard encryption schemes under strong

passwords should not be considered infeasible in the long term, given the rapid evolution

of computing technology and potential algorithmic advances. In the short term, the use

of low-entropy keys, such as passwords, poses serious risks to password-based encryption

of genomic data.

In this chapter, we describe GenoGuard, a cryptographic system that offers long-

term protection for genomic data against even computationally unbounded adversaries.

Decryption attempts against a GenoGuard ciphertext under an incorrect key yield a

genome sequence that appears statistically plausible even to a sophisticated adversary.

To achieve this guarantee, GenoGuard introduces a novel DTE scheme that efficiently

encodes a genome sequence on a ternary tree with sensitivity to genetic recombination

and mutation, thereby capturing the highly non-uniform probability distribution and

special structure of genomic data. GenoGuard additionally provides security against

adversaries with phenotypic side information (physical traits of victims). We provide a

parallelized software implementation of GenoGuard and demonstrate its efficiency and

scalability on a cluster of nodes. GenoGuard thus offers an appealing approach to the

increasingly important challenge of protection of genomic data.

Chapter 3

Searching-enabled genomic data

protection

In the previous chapter, we discussed the importance of securing genomic data stor-

age, and presented a solution that is robust even under brute-force attacks against weak

passwords. With either standard symmetric encryption or the presented GenoGuard, it

is sufficient for scenarios where secure storage is the sole requirement and users always

decrypt the whole data before usage (or decrypt data blocks if data is segmented into

blocks which are encrypted separately with salted keys or with different nonces). In

some use cases that we will describe later, efficient database searching is a necessary

feature, but none of the aforementioned encryption options enable searching under se-

mantic security. Moreover, in many genomic applications, searching is based on ranges,

instead of keywords, which poses another design challenge for the reconciliation of se-

curity, functionality, and efficiency. In these applications, semantic security might be

hard to achieve if one wants to satisfy all functionality and efficiency requirements and

impose minimal changes to existing practices (which normally work with NO encryption

at all). For example, to enable searching, one of the most secure and relatively efficient

cryptography-based solution is searchable encryption [94]; nevertheless, it only works for

keyword searching and leaks non-trivial information in searching results, and will bring

excessive changes to current practices because big genomic data are stored in specific

formats that are not necessarily compatible with searchable encryption schemes. In or-

der to advocate a smooth transition from current insecure practices to the secure use of

genomic data, in this chapter, we describe a privacy-preserving solution based on order-

preserving encryption that provides relatively weaker notion of security than searchable

encryption, but nonetheless is efficient and fully compatible with current practices.

While the generation of genome sequence data is no longer cost-prohibitive, the un-

precedented rate of data production presents new challenges for data storage and man-

agement. For example, the 1000 Genomes Project Consortium generated more data in

its first 6 months than the NCBI GenBank database had accumulated in its 21 years

of existence [95]. Sequence data are being more routinely used for diagnostic purposes,

which has raised concerns regarding security and privacy. Until recently, it was standard

in clinical genetics to screen only one or two genes for mutations relevant to a spe-

39

40 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

cific disease, but high-throughput sequencing technologies have now made whole-genome

or whole-exome sequence data commonplace. These comprehensive sequence data sets

must then be securely stored and relevant variants made available to various stakehold-

ers in the healthcare system. Preventing incidental leakage of personal data requires

not only encryption but also defining access privileges and enabling selective retrieval.

Although some encryption solutions (e.g., in cramtools [96]) have been proposed, they

remain straight-forward applications of encryption standards and do not take into con-

sideration the aforementioned threat model. Addressing these issues of security and

privacy while minimizing storage costs will be essential for the large-scale application of

personal genomics in research and clinical settings. Here, we describe a solution that

minimizes information leakage, stores the sequence data in a lossless compressed format,

and optimizes the performance of downstream analysis (e.g., variant calling).

Since 2007, when the first high-throughput sequencing technology was released to the

market, the growth rate of genomic data has outpaced Moore’s law, more than doubling

each year [97]. Big data researchers estimate the current worldwide sequencing capacity

to exceed 35 petabases per year [98]. For every 3 billion bases of human genome sequence,

30-fold more data (about 100 gigabases) must be collected to ensure sufficient coverage

at each nucleotide. More than 100 petabytes of storage are already used by the worlds

largest 20 biological research institutions; this corresponds to more than $1 million USD

in storage maintenance costs if we consider Amazon cloud storage pricing [99]. This

number continues to grow, and it is estimated that 2 - 40 exabytes of storage capacity

will be needed by 2025 to store hundreds of thousands of human genomes. To face this

challenge, more efficient approaches to genomic data storage are needed.

Current approaches for genomic data storage use different methods for compres-

sion [100]. Before high-throughput technologies were introduced, algorithms were de-

signed for compressing genomic sequences of relatively small size (e.g., tens of megabases).

These algorithms, such as BioCompress [101], GenCompress [102], and DNACom-

press [103], exploit the redundancy within DNA sequences and compress the data by

identifying highly repetitive subsequences. The latest sequencing technologies pose new

challenges for the compression of genomic data in terms of data size and structure. Due

to the high similarity of DNA sequences among individuals, it is inefficient to store and

transfer a newly assembled genomic sequence in its entirety, because> 99% of the data for

two assembled human genomes are the same. This has led to the approach of storing only

differences from a reference sequence (known as reference-based compression), such as the

DNAzip algorithm [104]. Apart from entire assembled sequences, individuals sequence

data are typically organized as millions of short reads of 100 to 400 bases, as produced

by state-of-the-art sequencing technologies. Each genomic position is usually covered by

multiple short reads. General-purpose compression algorithms, such as gzip [105], are

applicable to these data sets. For example, the BAM format [106], which remains the de

facto standard for storing aligned short reads, is already highly compressed by applying

gzip compression to the data blocks.

Various advanced compression algorithms have been proposed for high-throughput

DNA sequence data (Quip [107], Samcomp [108], HUGO [109], etc.). Among larger

data sets (e.g., The 1000 Genomes Project Consortium), there is an observable trend

toward using the highly compressed format CRAM [110], a reference-based compression

algorithm for aligned data. Most advanced algorithms also use variable-length encod-

ing (VLC) techniques, such as Huffman encoding and Golomb encoding, to compress

3.1. BACKGROUND 41

the metadata (read name, position, mapping quality, etc.). Recently, researchers devel-

oped a cloud-computing framework called ADAM [111], which uses various engineering

techniques (e.g., dictionary coding, gzip compression, distributed processing) to reduce

storage costs by 25% compared with BAM. This scheme achieves significant (2×-10×)

acceleration in genomic data access patterns. A group of MIT researchers released a

lossy compression algorithm called Quartz [112], which can discard 95% of quality scores

without compromising the accuracy of downstream analysis. Their method works on the

FASTQ file stage and can be plugged in as a preprocessing step for the aforementioned

methods (and our solution) to achieve a higher compression ratio. Our solution is a

lossless compression method that enables the user to completely reconstruct the original

data (BAM files). To our knowledge, there is no existing compression solution that pro-

vides strong security and privacy control, the issue we address in this chapter. There is

thus a need to integrate encryption methods into compression solutions for genomic data

that are secure and privacy-preserving [100]. The closest example of such a solution [115]

provides a privacy-preserving solution for storing BAM files, but it does not provide an

efficient method for compression.

For clinical or research purposes, the most valuable information from human genomic

data is the set of genetic variants that are identified across the genome. Typically,

sequence data are taken as input for a pipeline and retrieved for downstream analyses, for

example, variant calling. Given this usage scenario, it is crucial to have a storage format

that is amenable to efficient downstream analyses. For example, it is common practice to

aggregate information on a position from all short reads that cover the position (pile-up);

hence, it is desirable that the storage format organizes information in this manner. In

addition, it is challenging to enable selective retrieval of encrypted data because global

encryption solutions obfuscate index information. As we demonstrate in this chapter,

our SECRAM solution is convenient not only for retrieval but also for protection in that

it enables the retrieval of specific information about the genome without compromising

the rest of it.

In this chapter, we present our genomic data storage solution to address the challenges

of compression, security, and retrieval. SECRAM is a novel aligned data storage format

that is (1) organized in position-based storage that enables random queries anywhere in

the genome, (2) highly compressed through a combination of reference-based and general

data compression techniques, and (3) encrypted with standard secure cryptographic tech-

niques and a fine-grained privacy control mechanism. By applying our solution, sequence

data are securely protected in storage and can be efficiently retrieved for downstream

analysis (e.g., variant calling) without any access to unauthorized information. Below,

we compare SECRAM with two state-of-the-art storage solutions, BAM and CRAM,

which are two of the most widespread formats for aligned sequence data. Our major goal

is to bridge the gap between compression and protection of genomic data.

3.1 Background

The DNA sequence data produced by DNA sequencing consists of millions of short reads,

each typically including between 100 and 400 nucleotides (A,C,G,T), depending on the

type of sequencer. These reads are randomly sampled from a human genome. Each read

is then treated and positioned (aligned) to its genetic location to produce a so-called

SAM file (Sequence Alignment Map). BAM file (Binary Alignment Map) is simply the

42 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

Figure 3.1: Format of a short read in SAM/BAM.

binary version of SAM, including some compression techniques. There are hundreds of

millions of short reads in the SAM file of one patient. In Figure 3.1, we illustrate the

format of a short read in a SAM file.

We focus the introduction on positions, cigar string, and nucleotide content

{A, T,C,G}∗. A short read’s position denotes the position of the first aligned nucleotide

in its content, with respect to the reference genome. The cigar string (CS) of a short read

expresses the variations in the content of the short read, with respect to the reference

genome. For example, ‘15M’ means the next 15 nucleotides match (or mismatch with

substitution) those on the reference genome, while ‘2I’ means the next 2 nucleotides are

inserted with respect to the reference genome. For more explanation about the format,

the readers are referred to the SAM specification [119].

3.2 System model

SECRAM is essentially a storage format that could be used locally like BAM. Users can

employ the API to efficiently extract any region of data from the file without decrypting

and decompressing the whole file.

However, in order to provide strong security and privacy guarantees in a cloud com-

puting scenario where no single party (e.g., the storage server, the client) is trusted, we

envision the following system for efficient information retrieval by using SECRAM. We

adopt the system architecture proposed by Ayday et al. [115]. We provide below a brief

summary of this system.

(i). Patient (P) goes to a Certified institution (CI) for genome sequencing. CI sends

the sequence data to a centralized database Biobank, and the secret keys to Masking

and Key Manager (MK).

(ii). Medical Unit (MU) sends a query to Biobank retrieve data of a patient in the

position range [P1, P2].

(iii). Biobank communicates with MK to acquire encrypted and masked decryption

key stream for the range [P1, P2]. Finally, Biobank sends back the ciphertext and

sanitized decryption key stream to MU.

3.3. SECRAM FORMAT 43

The third step will be explained in the next two sections with detailed encryption and

masking techniques. For the sake of brevity, we mention the security and privacy goals

we intend to achieve in the system:

• The original content of a short read cannot be accessed without explicit permission

from the owner;

• Users (e.g., medical units) can access only restricted regions of data that are au-

thorized by the owner; each user is allowed to access only specific region(s), e.g., a

medical unit that specializes in female breast and ovarian cancers might be allowed

to access only BRCA1 and BRCA2 genes;

• In order to prevent the inference attack on the purpose of user access, the storage

center (i.e., the Biobank) should not learn about the region that a user accesses.

3.3 SECRAM Format

The SECRAM format conversion framework is depicted in Figure 3.2, including trans-

position from read-based storage (BAM) to position-based storage, compression, encryp-

tion, and retrieval (e.g., for variant calling). Following sequence alignment to a reference

genome, the data are transposed, compressed, and encrypted. All these steps are one-

time operations for each individual file. Afterwards, the SECRAM format can be queried

routinely for data retrieval. More details of SECRAM are specified in the following sub

sections.

3.3.1 Transposition

Aligned genomic sequence data are typically stored by sequencing reads (e.g., BAM,

CRAM formats) (Figure 3.2-A). The first step of our solution is to organize the data by

position instead of by read (Figure 3.2-B). This is crucial because (1) it facilitates multiple

downstream analysis procedures, notably the variant calling pipeline, and (2) it allows us

to seamlessly combine compression and encryption (fine-grained privacy control). The

conversion between the two formats is equivalent to a matrix transposition, when we

consider the index of the reads as one dimension and the position of the reference genome

as the other dimension. If necessary, our format can be inversely transposed to BAM

without losing information; this functionality makes our format compatible with several

other applications designed for a read-based format, such as visually displaying reads

that overlap with a specific genomic region.

Figure 3.3 describes the detailed structure of SECRAM in the manner of regular

expressions. We denote the important notations as follows:

• ‘ˆ’ is the start marker of a read

• ‘$’ is the end marker of a read

• ‘.*’ denotes the base information at this position.

• ‘[Read Info]’ contains information about this read, such as read name (or id), strand,

mapping quality, etc.

44 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

Read1 Read2
Read3

Read4 Read5
Position

+2
+3
+4
+5
+6
+7
+8

+1Read1

Read2

Read3

Read4

Read5

+2+1 +3 +4 +5 +6 +7 +8

ACGATCTTAATGCCTTACTTGTT - - GG - CATTC
ATCGTAAT - - - TTAC

ATGCCTTACTTGT
ACTTGTT ATGGC C

1 10 20 30

reference

reads

Position Substitutions Insertions Deletions

7 S-G none none
12 none none D-3
23 none I-AT none
25 none I-C none

7 12 23 25

OPE(7) SE(S−G) Metadata

OPE(12) SE(D−3) Metadata

OPE(23) SE(I−AT) Metadata

OPE(25) SE(I−C) Metadata

… … …

OPE(12) SE(D−3) Metadata

OPE(23) SE(I−AT) Metadata

Selective retrieval of range [OPE(10), OPE(24)]

Inverse Transposition

Transposition

Decryption

Encryption

A B

C
D

Full dataset

Query results

Figure 3.2: SECRAM framework for compressed, encrypted storage of genomic data. (A)
The sequencing read-based format used in BAM is transposed into a genome position-
based format (B). The read-based format can be reconstructed from the position-based
format via reverse transposition. (C) The position-based storage is compressed and de-
compressed using a reference-based compression technique. In the table, “S-G” stands for
substitution with base “G”, “D-3” stands for deletion of three bases, and “I-AT” stands
for insertion of two bases “AT”. (D) The compressed position-based storage is encrypted
to generate the final SECRAM format using order-preserving encryption (OPE) and tra-
ditional symmetric encryption (SE) scheme. “OPE (POSITION)” represents the OPE
ciphertext of POSITION, and “SE(VARIANT)” represents the SE ciphertext of VARI-
ANT. Metadata are not encrypted (e.g., quality scores, mapping quality, read name).
The compressed format is recovered from the encrypted format by running the respective
decryption algorithms. Our encryption enables efficient selective retrieval. For instance,
if a user wants to retrieve data in the range [10, 24], the database executes a normal
search between OPE(10) and OPE(24) based on the order-preserving property of OPE,
and in the shown example, two positions, OPE(12) and OPE (23), are returned.

3.3. SECRAM FORMAT 45

Figure 3.3: The basic structure of SECRAM. ‘ˆ’ is the start marker of a read. ‘$’ is the
end marker of a read. ‘.*’ denotes the base information at this position. ‘[Read Info]’
contains information regarding this read, such as read name (or id), strand, mapping
quality.

3.3.2 Compression

Our algorithm takes advantage of several efficient compression methods used in CRAM:

• Reference-based compression.As shown in Figure 3.2-C,we use reference-based com-

pression and store only the differences at each position relative to that of a chosen

reference sequence.

• VLC. This technique is used to further compress the differences found in reference-

based compression along with read metadata, such as the mapping quality. Depend-

ing on the information content, the most efficient encoding technique is selected,

for example, Huffman, Golomb, and Beta encodings [96].

• Block compression. After the previous compression phases, positions are grouped

into blocks and compressed with gzip. Blocks are gzipped separately, so that they

can be decompressed independently for fast random access. This phase is important

for the compression of information such as read name, quality score, and other

auxiliary text.

Reference-based compression

The basic structure in Figure 3.3 does not take the redundancy of short reads into

account, as a large portion of most reads are likely to match the reference. Reference-

based compression is applied in most compression methods. To explain how we apply the

idea in SECRAM, we make use of a new concept called position cigar string, PosCigar

for short. For a given position, if we imagine that the reads that cover the position are

ordered by their starting positions, then each read is attached with a unique order. Note

46 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

that one read could have different orders for different positions because the corresponding

lists of covered reads in those positions vary. For example, in Figure 3.3, on Position

+3, “Read3” has order 3 because it is the third covering read, but on Position +4, it

has order 1 because “Read1” and “Read2” end in the last position and “Read3” now

becomes the first covering read. Given a position, a PosCigar is composed of mainly

three possibilities:

(i). Order||′S′||[A|T |C|G] : the read (specified by Order) has a substitution with the

specified letter compared to the reference.

(ii). Order||′I ′||i||{A, T,C,G}i : the read has an insertion of i letters that are listed.

(iii). Order||′D′ : the read has a deletion.

For example, a PosCigar that looks like “9I4ATTG...23SA...57D”, means:

• 9I4ATTG: an insertion of 4 letters “ATTG” in the 9th read

• 23SA: a substitution with letter ‘A’ in the 23rd read

• 57D: a deletion in the 57th read

More operators (e.g., soft clipping, hard clipping, skipping region [106]) are also encoded

in SECRAM, and we omit the redundant details here because each of them is handled

similarly as one of the three aforementioned operators. As one possible design option,

each position row can be encoded as:

Row size||Position||List of read headers||quality scores||PosCigar

In the following, we explain the terminology used in this option.

• Row size: Length (measured in bytes) of a position row;

• List of read headers: List of information of the reads that start at this position.

It is decomposed as “(Order||Read Info)∗” , with ‘*’ meaning an arbitrary number

of such headers. The read information would also include read length so that we

do not have to store the end marker as in Figure 3.3.

• Quality scores: Quality scores for the bases of this position.

• PosCigar: The variants information.

3.3.3 Encryption

SECRAM protects genomic data using secure symmetric encryption (SE) techniques. To

provide fine-grained privacy control and avoid information leakage in data retrieval, our

solution encrypts the variant information for each position independently. We encrypt

positions with order-preserving encryption (OPE) [120] to enable efficient retrieval of

encrypted data without decryption. This is a critical feature to prevent insider attacks

on servers that store the encrypted data. We encrypt other sensitive information (e.g.,

short read differences relative to the reference) using conventional SE (e.g., AES). Figure

3.4 summarizes the format encryption design. Notably, encryption adds randomness to

the data, which inevitably affects the compression ratio. We explain the basics of these

two encryption schemes below.

3.3. SECRAM FORMAT 47

Position Sensitive*information*
(Read*variants)

Non4sensitive*
information

OPE4encrypted AES4encrypted Plaintext

Figure 3.4: Protection methods for different types of information of a position row.

Symmetric encryption

In SECRAM, we make use of the stream cipher mode [121] of SE, which is done in

two steps: (1) By using the encryption key, the data sender generates a random bit

stream of identical length to the data; and (2) the encryption is performed via bitwise

XOR of the stream with the data. The decryption is performed similarly: By using the

decryption key, the ciphertext receiver first generates the bit stream as the sender does,

and then decrypts the ciphertext via bitwise XOR of the ciphertext with the stream.

The stream cipher mode enables the server to tailor the decryption key stream to only

those positions matching the data retrieval request, hence sensitive information of other

positions is also protected from clients who send the data request. With our solution, the

privacy control is precise at the position level, in contrast to some existing solutions that

provide coarse-grained encryption on the data, which leaks non-negligible information in

each data retrieval. For example, if data region A, B, C from user X are in the results,

but user X only authorizes to reveal region A and C, then region B of the decryption key

stream will be replaced with random bits. The process is explained in detail in Section

3.4.

Order-preserving encryption

In a traditional SE scheme, to an observer who does not have the encryption key, the

ciphertext is indistinguishable from a random bit stream. Therefore, the ciphertext does

not reveal any useful information about the underlying data. OPE differs from traditional

SE, however, in that the OPE ciphertext reveals both the order and equality information

of the underlying data, namely, if m1 ≤ m2, then OPE(m1) ≤ OPE(m2).

To understand the encryption design of SECRAM, it is important to understand

the challenges of securing existing formats (e.g., CRAM). Consider a straightforward,

blockwise SE solution for CRAM-formatted data (Figure 3.5-A). The problem is that the

solution leaks information on other positions outside of the query range during retrieval

and decryption. As a block in CRAM usually contains multiple reads, it is usually

the case in practice that the retrieved block reveals parts of reads outside of the query

position range [115]. Even if encryption is performed read-wise, the possibility remains

that a single read can leak information on positions outside of the query range.

Figure 3.5 shows how encryption is applied in SECRAM, with each block encrypted

based on positions. We encrypt the position information using OPE; the compressed

sensitive content at the respective positions, using SE. Therefore, during retrieval, our

scheme only outputs the sequence and metadata in the query range without the risk of

revealing any information about undesired (or unauthorized) positions.

48 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

Enc(block!)
Decryption

block!

Leakage

No leakage
(in retrieval range)

Read"

Leakage

Read#

Read#$"

Read%
Read%$"

…
…

…
Read&

leakage

Read%$"

Retrieval of range
[Pos1, Pos2]

Enc(block1)

Enc(block2)

Enc(blockn)

…

block"

block'

block(

…

Position" = 7

Position' = 12

Position- = 23

…

S−G

D−3

I−AT

…

Metadata

Metadata

Metadata

…

OPE(7) = 23596

OPE(12)= 50723

OPE(23)= 71641

…

SE(S−G) = jkljsdfoy4r5

SE(D−3) = tryeo42alkaf

SE(I−AT) = xvoibjwr442

…

Metadata

Metadata

Metadata

…

OPE_Enc%(⋅)

OPE_Dec%(⋅)

SE_Enc%(⋅)

SE_Dec%(⋅)

block!

A

B

Authorized
part

Pos1

Pos2

Pos2

Figure 3.5: Solutions for encrypting genomic data. (A) A standard SE solution on
CRAM-compressed data. It leads to potential data leakage when querying specific ge-
nomic regions. The encryption is performed over each individual data block. As a block
in CRAM usually contains multiple sequencing reads, it is usually the case that the
retrieved block will reveal reads or positions that are not in the query position range.
(B) SECRAM encryption. Our solution encrypts each block in SECRAM format based
on positions. Position information is encrypted with OPE; the compressed content at
each position, with SE. This ensures that only information corresponding to the query
position range is retrieved and decrypted. “OPE(POSITION) represents the OPE ci-
phertext of POSITION, and “SE(PosCigar)” represents the SE ciphertext of PosCigar.
Metadata are not encrypted (e.g., quality scores, mapping quality, read name). Note
that OPE preserves the order of the positions, namely, 23596 < 50723 < 71641 because
7 < 12 < 23, but SE encrypts the original message to a random string, for example, from
“S-G” to “jkljsdfoy4r5”.

3.4. SYSTEM IMPLEMENTATION 49

Metadata

The SECRAM format contains all necessary information to enable reconstruction of the

original BAM files. This is achieved with the metadata field at each position. This field

is not encrypted and contains two categories of information: (1) quality scores and (2)

information about reads that begin at that position. The first category is a numerical

score (the phred-scaled base error probability: −10 log10 Pr{base is wrong}), while the

second has a slightly more complicated structure. For each read that begins at position

P , the metadata for P will store the following information: read name, read length,

mapping quality, and pair information.

3.3.4 Indexing

The indexing of aligned genomic data is a map from positions to file offsets such that,

given queried positions, a data reader can randomly access the file. Indexing is easy to

implement in SECRAM. Our index file contains a list of tuples of position and file offset,

where position is the genomic position of the first position row in a gzip block, and file

offset is the byte offset of a gzip block in the compressed file. Hence, when we retrieve

data for a position, a binary search first locates the gzip block containing the position,

and then a linear search locates the position in the block.

3.4 System Implementation

In this section, we provide details about the encryption schemes, key management, and

protocols for secure and fast retrieval.

3.4.1 Encryption

All fields, except “Position” and “PosCigar”, are left in clear, because they do not contain

any highly sensitive information. The encryption scheme can be described as follows:

• The patient (data owner) is assigned with a master key Km that is used to derive

various encryption keys.

• The position field is encrypted with order-preserving encryption (OPE) [120] for

the efficiency of a random access based on position comparison (details in Section

3.3.3). A key, Kope, is derived from Km and used for OPE.

• The PosCigar field is encrypted with a stream cipher (SC). A key, Ksc, is derived

from Km and used for the SC. For the i-th GZIP block in the file, the PosCigar

fields of all the included position rows are concatenated to generate a single data

block, Di, which is encrypted with Ksc and a 64-bit random salt Ri. The random

salts are stored in the index file.

The above keys are stored at the MK.

3.4.2 Basic Retrieval

The retrieval process consists of the following steps:

(i). MU and MK setup a one-time symmetric session key Kss;

50 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

(ii). MU encrypts the range [P1, P2] with AES under the key Kss , to generate the

ciphertext [AES(Kss, P1),AES(Kss, P2)] that is sent to MK (or first sent to Biobank

which forwards it to MK);

(iii). MK decrypts [AES(Kss, P1),AES(Kss, P2)] and re-encrypts it with OPE under the

key Kope, generating ciphertext [OPE(Kope, P1),OPE(Kope, P2)] that is sent to the

Biobank;

(iv). The Biobank retrieves the k GZIP blocks (Bi, Bi+1, · · · , Bi+k−1) that overlap with

the range [OPE(Kope, P1),OPE(Kope, P2)], with the help of the index file. The

Biobank decompresses the block Bi, and computes an offset value of the position

row OPE(Kope, P1), denoted by OFFP1
: the byte offset of its PosCigar field in the

data block Di (Di was defined in Section 3.4.1). OFFP2
is computed similarly. The

Biobank sends OFFP1 , OFFP2 , and random salts (Ri, Ri+1, · · · , Ri+k−1) to MK;

(v). With key Ksc, MK derives the corresponding decryption keys

(DKi, DKi+1, · · · , DKi+k−1) for the k blocks, masking those rows

out of the range [P1, P2]. MK encrypts these keys, thus generating

(AES(Kss, DKi),AES(Kss, DKi+1), · · · ,AES(Kss, DKi+k−1)), and it sends

these encrypted keys to the Biobank;

(vi). The Biobank sends the k GZIP blocks (Bi, Bi+1, · · · , Bi+k−1) and the encrypted

keys (AES(Kss, DKi),AES(Kss, DKi+1), · · · ,AES(Kss, DKi+k−1)) to MU;

(vii). MU decompresses the blocks and decrypts the content.

3.4.3 Context-Aware Retrieval

In the basic retrieval scheme, we do not address the problem that the returned data might

contain incomplete reads and thus cannot perform queries of read information, such as

mapping quality, strand, and a relative position inside a read. Because the metadata

(read name, mapping quality, read flags, etc.) are stored only at the starting position of

a read, Biobank needs to retrieve the complete context of a position row. One solution

is to return the “Read Info” of the position row.

Consider the query range [P1, P2]. If the position row P1 contains any read that is

not complete in block Bi (specifically, it does not start at this block), the storage server

traces back to the previous block(s) and crops the corresponding metadata fields for the

incomplete reads of row P1. As a block normally contains thousands of positions, the

server usually needs to look back to at most one previous block, as long as the reads are

not excessively long (e.g., in our experiments, we use a block size of 50,000 positions).

The server then returns these metadata fields along with the complete sequence data

(only) within the query range.

3.4.4 Efficient Query Processing

We discuss how to efficiently answer the queries that are interesting to MU. Before going

into details, we state the following assumption:

• The genomic positions are queried sequentially. In other words, if the position rows

in a genomic range [P1, P2] are returned, these rows are queried from P1 to P2 one

3.5. EVALUATION AND ANALYSIS 51

by one. This assumption does not affect the correctness of our system, rather it

affects the efficiency.

The queries related to one position are more efficient than those related to a complete

read. Examples of queries of one position include the coverage of a position, the variants

(substitution, insertion and deletion) and quality scores. The complexity of answering

these queries is O(C), where C is the coverage of this position. The overall complexity

of iterating all positions in the range [P1, P2] is O((P2 − P1)C).

For queries related to a complete read, we need to access the “Read Info” field. But

this field does not exist in each row. The main idea is that we run the reconstruction

algorithm for a position row whenever these queries are needed. Then the complexity

of answering these queries for all rows in the range [P1, P2] is O((P2 − P1)CL), where

L is length of a read and C is the coverage. But with the above assumption, we can

carry out the task much more efficiently. In the context-aware retrieval, the Biobank

needs to run the reconstruction algorithm for the position P1. In the data returned to

MU, “Read Info” fields already exist for all the reads of position P1. To answer queries

from position P1 to P2, MU maintains a cache that contains the “Read Info” fields of

all reads in the current position. The cache is initialized to the “Read Info” fields of

position P1, and is updated as MU move to the next position. The complexity of this

method is O(CL + (P2 − P1)C), if the one-time reconstruction in the Biobank is taken

into account.

3.4.5 Software Details

For processing BAM files and applying VLC and block compression techniques, SECRAM

uses the open-source Java library, HTSJDK [122], designed for high-throughput sequenc-

ing data. For encryption, SECRAM builds its security solution based on the open-source

Java library, Bouncy Castle [123]. Depending on the category of information, SECRAM

chooses appropriate compression methods to achieve high compression ratio (Table 3.1).

SECRAM is open source at https://github.com/acs6610987/secram.

3.5 Evaluation and Analysis

3.5.1 Storage Analysis

In Figure 3.6, we show the compression performance of SECRAM compared with BAM

and CRAM for both paired and unpaired simulated data sets of different coverages1

and error rates (substitution, insertion, and deletion). Both the SECRAM and CRAM

formats preserve all information from BAM files, including quality scores, read names,

and read-pair information. The number of bits per base is calculated by dividing the

size of the file by the total number of bases (roughly equal to reference length multiplied

by the coverage). Unsurprisingly, for all three formats, the average per-base storage cost

decreases as the coverage increases. In contrast to CRAM, SECRAM does not compress

efficiently when the coverage is very low (e.g., 1×) because of the storage overhead of

encryption. Yet as coverage increases (e.g., 10×), the benefit of compression becomes

more pronounced, mitigating the storage costs of encryption. In the best case, for high-

coverage unpaired data with a 0.01% error rate, SECRAM and CRAM have almost

1Coverage is the number of reads that include a given nucleotide in the data file.

52 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

Information type Compression/encryption method
Position Step 1: Order-preserving encryption

Step 2: Gzip block compression
Read bases Step 1: Reference-based compression

and VLC compression
Step 2: AES encryption in CRT mode

Quality scores Gzip block compression (optional lossy
compression)

Read name Gzip block compression
Mapping quality VLC compression
Template length Gzip block compression
Flag (e.g., strand) VLC compression
Auxiliary text (e.g., tags in
BAM)

Gzip block compression

Table 3.1: Compression and encryption methods for different types of information in
SECRAM. Only positions and read bases are encrypted, with OPE and SE, respectively.
Note that positions are encrypted with OPE before block compression in order to enable
indexing. Block compression is chosen for the information that has a wide variety of
values, or for text information, or merely as a default way to save storage. AES encryption
in CTR mode stands for advanced encryption standard in counter mode, which is one
way of applying a block cipher in a stream-cipher mode (essentially equivalent to a stream
cipher).

identical compression ratios, both using nearly 4 bits/base. We also observed that, in

general, compression ratios are lower for paired data with higher error rates because there

is more information (e.g., metadata and variants) in the data. Compared with BAM,

SECRAM saves 18% of storage on average when the coverage is higher than 10×; this is

slightly lower than CRAM, which saves 34% of storage but has no privacy and security

features. Figure 3.6-B shows the average storage costs on several randomly selected

real data files from the 1000 Genomes Project repository (The 1000 Genomes Project

Consortium 2015) with an average coverage of 3×. We observed a similar compression

ratio as with simulated data in Figure 3.6-A.

3.5.2 Runtime Analysis

To assess the runtime efficiency of SECRAM, we considered the performance of its six

most important subprocedures: transposition, inverse transposition, compression, decom-

pression, encryption, and decryption. We ran experiments on simulated data sets with a

range of coverages and error rates. Figure 3.7-A shows the runtime breakdowns in per-

centages for different subprocedures relative to total runtime, across four experiments.

One important observation is that encryption and decryption are not bottlenecks in the

system, demonstrating that our implementation of security does not come at the cost of

efficiency. When coverage and error rate are low, compression is slower than encryption

and dominates the runtime; this is because there is less information to encrypt, but it

still takes time to compress the nonsensitive information. When the error rate is higher,

the encryption time surpasses compression time, mainly because of order-preserving en-

cryption (OPE) on more positions, but the global runtime does not change much even

for a high error rate (1%). The high coverage hinders (inverse) transposition more than

3.5. EVALUATION AND ANALYSIS 53

B

4

5

6

7

8

9

1 10 20 30 40 50

0.01% unpaired

1 10 20 30 40 50

0.1% unpaired

1 10 20 30 40 50

1% unpaired

1 10 20 30 40 50

0.01% paired

1 10 20 30 40 50

0.1% paired

1 10 20 30 40 50

1% paired

BAM

CRAM

SECRAM

Coverage

Bi
ts

 p
er

 b
as

e
A

472.4
403.4

735.3

560.1
480

325.3
280.5

448.3
369.2

313.5
407.7

327.9

623.8

454.6
389.2

0
100
200
300
400
500
600
700
800

HG00096 HG00099 HG00100 HG00108 HG00113

D
A

TA
 S

IZ
E

 (
M

B
)

1000 Genomes Project Participant ID

Storage Required for Human Chromosome 11 (3X coverage)

BAM (No encryption) CRAM (No encryption) SECRAM (Encrypted)

Figure 3.6: Storage analysis of compression algorithms for genomic data. (A) Storage
comparison on simulated data sets. It shows the average number of bits per base (com-
pression ratio) for three storage formats: BAM, CRAM, and SECRAM. The results are
based on simulated data sets with different coverages (from one to 50) and error rates
(0.01%, 0.1%, 1%) for both paired and unpaired data. (B) Storage comparison on Chro-
mosome 11 from the 1000 Genomes Project participants with an average coverage of 3×.
Only SECRAM is an encrypted format, whereas both BAM and CRAM are in plaintext.
Both A and B show that the compression ratio of SECRAM is between that of BAM
and that of CRAM.

compression and encryption because the complexity of (inverse) transposition is linearly

dependent on the number of total bases. We also observed that decompression is the most

efficient subprocedure; this is because the decompression dictionaries for some compres-

sion algorithms (e.g., Huffman encoding) are stored with SECRAM and can be directly

used, whereas compression has to build these dictionaries.

Figure 3.7-B shows the runtime costs of conversion between BAM and SECRAM on

real data sets as used in Figure 3.6-B. The conversion from BAM to SECRAM consists of

three procedures (transposition, compression, and encryption), whereas the conversion

from SECRAM to BAM encompasses the remaining three (inverse transposition, decom-

pression, and decryption). On average, to process one megabyte of data, each procedure

takes < 0.25 seconds; in total, the conversion in either direction takes < 0.5 seconds.

We should emphasize that our current implementation is parallelizable (i.e., numerous

data files or chromosomes can be processed in parallel). For instance, a whole-genome

54 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

BAM file of 100 gigabytes can be converted to SECRAM in parallel with 24 threads (one

thread for each reference chromosome: 22 autosomes plus two sex chromosomes) in ∼ 1h.

So far, we have analyzed the runtime costs of converting a whole BAM file or a

whole SECRAM file, which is a one-time cost. For most applications, conversion is not

necessary, but selective retrieval is crucial for efficiency. We designed this new format so

that laboratories need only to store the inherently encrypted, compressed SECRAM files

and develop analysis pipelines for accessing the data directly from these files. Therefore,

it is critical to evaluate the efficiency of the SECRAM format for data retrieval. Figure

3.7-C shows the average runtime performance of random access of a data region of one

megabase (the cost scales linearly with the size of the region). The total time for the

retrieval procedure is < 0.5 seconds, which is efficient for real-time usage in any analysis

pipeline. In traditional use, without any security measures, data retrieval consists of at

least three steps (random access, disk reading, and decompression); decryption roughly

doubles the runtime overhead, which we believe to be acceptable, given the strong privacy

and security features.

3.5.3 Security and Privacy Analysis

Two encryption schemes are used in SECRAM. The symmetric encryption (SE) scheme

used in SECRAM provides semantic security that is a standard and strong security

guarantee in cryptography. OPE is less secure than SE (see Section 3.6). In SECRAM

format, information is organized by genomic position. Therefore, during retrieval, the

storage server can search the encrypted data (due to the properties of OPE) to locate the

exact range of data in the query. The stream cipher mode enables the server to restrict

the decryption key stream to only the information within the query range; hence, private

information about other positions is protected from clients who send the query. This is

in contrast to applying straightforward encryption techniques to read-based data, which

risks information leakage from overlapping reads with each retrieval. Therefore, the

position-based storage used in SECRAM is crucial for its fine-tuned data protection and

privacy control.

3.5.4 Real Case Study

We envision SECRAM as most useful when deployed for routine clinical care. There are

two phases that typically comprise the clinical application of genomic data: (1) variant

calling: a hospital outsources a large volume of sequence data to the cloud and delegates

variant annotation to a specialized bioinformatics company (e.g., Sophia Genetics [124]);

and (2) mutation querying: a clinician in the hospital queries for hotspot mutations

for precise diagnosis of a patient. In the first phase, the hospital should restrict the

company’s access to a predefined set of genes for variant calling in order to respect

patient privacy, whereas in the second phase, a clinician should only access the genes

that are related to their area of specialty. Both phases require the property of selective

retrieval on encrypted sequence data on the cloud, ideally without having the hospital

frequently handle access control on data requests. Typically, the data corresponding to

a gene (or a set of genes) are accessed twice, necessarily in the first phase of variant

calling and potentially in the second phase of mutation querying if the clinician requires

verification of raw sequence data.

3.5. EVALUATION AND ANALYSIS 55

B C

0% 20% 40% 60%

Transposition

Inverse
Transposition
Compression

Decompression

Encryption

Decryption

Coverage (1x), Error (0.01%)

0% 20% 40%

Coverage (1x), Error (1%)

0% 20% 40%

Coverage (50x), Error (0.01%)

0% 20% 40%

Coverage (50x), Error (1%)

Runtime Breakdowns

A

0

0.05

0.1

0.15

0.2

0.25

R
un

ni
ng

 t
im

e
(s

ec
on

ds
 p

er

M
B

yt
es

)

BAM <-> SECRAM conversion

0

0.05

0.1

0.15

0.2

0.25

R
un

ni
ng

 t
im

e
(s

ec
on

ds
 p

er

m
eg

ab
as

e)

SECRAM retrieval

Figure 3.7: Runtime analysis of SECRAM system for storing and retrieving genomic data.
(A) Runtime breakdowns on simulated data sets for the six most important procedures in
SECRAM: transposition, inverse transposition, compression, decompression, encryption,
and decryption, relative to total runtime (= 100%). The experiments were repeated for
four simulated data sets with low (1×)/high (50×) coverages and low (0.01%)/high (1%)
error rates. In all cases, the runtime cost of encryption/decryption is comparable with
other necessary procedures, showing that enforcing security does not result in significant
performance overhead. (B) Conversion time on real data sets (same data sets as those
in Figure 3.6-B). It shows the average conversion time between the BAM and SECRAM
formats on real data sets, running with a single thread on a machine equipped with Mac
OS X Yosemite system and 3.1-GHz Intel Core i7 processor. The black bars (transpo-
sition, compression, encryption) represent the three steps of conversion from BAM to
SECRAM, whereas the light gray bars (decryption, decompression, inverse transposi-
tion) represent the three steps of conversion from SECRAM to BAM. Each step takes
< 0.25 seconds per megabyte of data. (C) Retrieval time on real data sets (same data
sets as those in Figure 3.6-B). It shows the average runtime cost of retrieving data within
a range of 1 million genomic positions. The actual data size corresponding to 1 million
positions depends on the coverage. Shown are experiments on real data sets from Figure
3.6-B with a coverage of about 3× and a size of slightly > 1 megabyte.

56 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

A B

383.9
299.8

1340

336.3

0

200

400

600

800

1000

1200

1400

1600

Da
ta
$s
ize

$(M
B)

Storage(of(high,coverage(data
for(cell(line(NA12878

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

Ru
nn

in
g

tim
e

(s
ec

on
ds

)

Retrieval time of CFTR gene
for cell line NA12878

Figure 3.8: (A) Storage and (B) runtime on high-coverage clinical data. The data come
from a public cell line (NA12878), based on a gene panel that includes the CFTR gene,
queried for diagnosing cystic fibrosis. The average coverage of these data is 1035, con-
taining more than 4 million reads of length around 300 bases. ARHMH2013 [115] is a
privacy-preserving solution on BAM files that does not address the compression require-
ment. We observe a consistent compression performance of SECRAM on high-coverage
clinical sequence data. Moreover, querying for the CFTR gene on SECRAM takes less
than twice the time on the non-encrypted CRAM.

As a case study, we evaluate the storage and retrieval performance by using high-

coverage sequence data in clinical care: specifically, the diagnosis of cystic fibrosis as-

sociated with the CFTR gene (roughly between positions 117120017 and 117308719 on

Chromosome 7 of the reference sequence GRCh37). The sequence data come from a

public cell line (NA12878), based on a gene panel that includes the CFTR gene. The

maximum coverage is 10642×, whereas the average coverage is 1035×. In addition,

we compare SECRAM with another solution that we call ARHMH2013 [115] that pro-

vides similar security and privacy properties for BAM files. In Figure 3.8-A, we observe a

consistent compression performance of SECRAM compared with the low-coverage results

in Figure 3.6; however, the ARHMH2013 approach does not scale well with high-coverage

data due to the lack of compression and the overhead of encryption. In Figure 3.8-B, we

also see that SECRAM performs very well in selective retrieval, namely, less than twice

the time needed when using non-encrypted CRAM. We should emphasize that with SE-

CRAM, one can query for a small region of data, while standard encryption approaches

necessitate downloading the entire genome, making SECRAM more efficient as well as

privacy-preserving.

3.6 Discussion

In this work, we present a novel, position-based, compressed, encrypted format for storing

genomic data that enables selective and secure retrieval of variant information. We

demonstrate that our solution compresses data more effectively than widely used formats

like BAM. Importantly, it offers a level of security not possible with existing standard

3.6. DISCUSSION 57

storage formats, preventing the data leakage to which read-based formats are susceptible,

without slowing down data retrieval or analysis. We provide algorithms for conversion

to and from BAM/read-based formats, compression, decompression, encryption, and

decryption.

3.6.1 Attacks Against OPE

As described below, the ciphertext of OPE contains both order and equality informa-

tion about the underlying data. Therefore, if it is assumed that an attacker has enough

information, OPE-encrypted data are vulnerable to some well-known attacks that ex-

ploit this property, such as frequency analysis attacks [120, 125, 126]. However, these

frequency-analysis attacks would not be effective against our scheme, because (1) posi-

tions are encrypted only once regardless of the coverage, because all information about

each position is clustered together in the transposition phase of SECRAM; (2) we use

different OPE keys for data from different individuals; and (3) the underlying message

in our adopted OPE scheme is usually a subset of the whole position space of genomic

data, and it matches the requirement of the OPE scheme for message unpredictability.

Regarding the third reason, however, the level of data protection depends on the data,

more specifically, on the distribution of genetic variants and sequencing errors across

the genome. If average coverage and sequencing error rate are high enough such that

there is at least one different base from the reference genome on almost every position,

SECRAM protection with OPE will be less effective. In this case, OPE would have to

encrypt the whole plaintext space and thus provide little protection. The compromise of

position information also leads to potential threats for the content encrypted by SE. For

example, if positions are known and coverage can be inferred from the encrypted content

size, CNV (copy number variation) analysis can identify deletions/insertions without the

need for the sequence itself, and other single-nucleotide variants can be inferred by ob-

serving peaks of encrypted information size on the compromised positions. Nevertheless,

a countermeasure would be to shuffle the OPE ciphertext [115], which is essentially a

second-level encryption and reduces the efficiency of retrieval. An alternative counter-

measure is to add random padding to each position to obfuscate the size of encrypted

content at the cost of storage efficiency.

The purpose of adopting OPE as a building block is to maximize the difficulty of

launching a successful attack against the encryption scheme while still allowing for ef-

ficient retrieval from the ciphertext. To enable efficient retrieval, the order information

must be observable from the ciphertext, and under this premise, OPE is the optimal avail-

able solution with the best security guarantee, as the database community has recognized

long ago [127]. We do not rule out the possibility that there could be other variants of

frequency-analysis attacks against the OPE scheme adopted in this work; however, there

already exist several enhanced OPE schemes [128, 129, 130] as potential replacements of

the current version. Another alternative to OPE would be secure multiparty computa-

tion (SMC), for example, SMC schemes based on homomorphic encryption. Considering

the high volume of data in the problem addressed here, however, SMC would introduce

a prohibitively high overhead to storage and retrieval.

58 CHAPTER 3. SEARCHING-ENABLED GENOMIC DATA PROTECTION

3.6.2 Lossy Compression

In the open-source implementation of CRAM [96], multiple lossy compression options

are provided, such as removing read names and reducing the precision of quality scores.

These options are also made available in our solution. For instance, we noticed that

quality scores account for most of the storage space. We provide a parameter to specify

the precision of quality scores; the default option maintains the original scores to allow

exact reconstruction of the BAM file. A compression algorithm called Quartz [112] can

be used to discard 95% of quality scores without affecting the accuracy of downstream

analysis. Although their solution requires further validation, it indicates that lossy com-

pression is a possibility for reducing storage requirements without jeopardizing the value

of the data.

3.6.3 Datatype Applicability

SECRAM is designed to be compatible with SAM/BAM files; hence it enables, or is

extensible to, a variety of sequence data that can be handled by SAM/BAM. These

include (but are not limited to) the following:

• Multiple mapping. A read can be mapped to multiple alignments, for example, due

to repetition. One of these alignments is considered primary, whereas the other

alignments are annotated as secondary and have a link to the primary alignment.

In BAM files, the read bases and quality scores of secondary alignments are set

to “empty” to reduce the file size. SECRAM can be extended similarly to nullify

bases and quality scores of the corresponding positions of secondary alignments and

to include a link to the primary alignment in the read headers of these secondary

alignments.

• Long reads. Several high-throughput sequencing systems produce long reads (e.g.,

the Sequel system [131], with read length 10 - 15 kb), for which SECRAMs preven-

tion of read-based information leakage is even more valuable. Similar to CRAM,

SECRAM is expected to have a slightly higher compression ratio with longer reads,

assuming the same coverage depth, because there is less read information (e.g.,

read name). However, this improvement is modest because the majority of storage

(> 80% in our data) is occupied by read bases and quality scores.

• RNA-seq data. RNA sequence data are stored in the same way as DNA sequence

data in BAM formats and hence can be processed in essentially the same manner

by SECRAM.

3.7 Summary

Overall, our solution addresses the pressing issues of data storage and security brought

about by advances in sequencing technology and the emergence of personal and clini-

cal genomics. By bridging the persistent gap between compression and security in the

storage of genomic data, SECRAM offers an effective balance between the needs of re-

searchers for efficient data analysis and the needs of individuals to maintain their genetic

privacy. It will be important to continuously reevaluate the standards of genomic data

storage as novel technologies are developed, security threats arise, and more complex

3.7. SUMMARY 59

phenotypic analyses become possible. Integrative solutions that carefully consider the

use and misuse of personal genomic data are essential for ensuring its secure, effective

storage and maximizing its utility in treating and preventing disease.

Chapter 4

Protecting genomic data with

arithmetic-computation capability

Apart from searching on protected genomic data, more sophisticated operations are re-

quired in many important use cases. For instance, researchers may want to issue statis-

tical queries on encrypted genomic database, or doctors may want to compute disease

risks by incorporating genomic information. There are various tools for executing sophis-

ticated computation on protected genomic data, but each comes with certain drawbacks:

• homomorphic encryption and secure multi-party computation: High runtime over-

head, communication cost, and storage blowup;

• differential privacy : Accuracy degradation;

• trusted computing (e.g., Intel SGX): Questionable trust model.

As we mentioned, the searching functionality in the previous chapter could also be imple-

mented with homomorphic encryption or secure multiparty computation, but it would be

impractical, considering the huge amount of data. In this chapter, in order to perform

arithmetic computation, we introduce a system based on secure multiparty computa-

tion, by focusing on an important use case, namely, data quality control in genomic

applications.

Large human genomic databases enable researchers to conduct whole genome anal-

ysis on genomic variations and their associations with phenotypic traits. For instance,

in a case-control Genome-Wide Association Study (GWAS) scenario, researchers can

compute χ2-statistics to reveal whether some genetic variants and a given disease are

independent or not up to a significance level. In another case, researchers might use

linear regression for modeling the relationship between a continuous phenotypic trait

(dependent variable) and a genetic variant (explanatory variable). Although small-scale

GWAS can identify variants associated with diseases, these variants explain only a small

portion of the risk variability for many diseases. Discovery of new significant associa-

tions requires much larger sample sizes. However, the privacy-sensitive nature of human

genomic data prevents research groups from sharing genomic data of individual partic-

ipants, especially when it comes to cross-border collaboration. Therefore, it is usually

61

62
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

hard or even impossible to directly combine data from several groups to enlarge sample

sizes. Nevertheless, to increase statistical power and reduce false-positive findings, re-

searchers can use Genome-Wide Association Meta-Analysis (GWAMA) for the synthesis

of results from multiple independent studies, thanks to the fact that GWAMA requires

only aggregate statistics rather than individual genomic data from each study.

Generally speaking, GWAMA can be divided into two phases: the data-quality-

control phase and the meta-analysis phase. Quality control (QC) usually takes place

before meta-analysis, in order to filter out the studies whose data have quality issues and

thus are not appropriate for meta-analysis. Both phases involve multiple processing steps

of summary data from individual studies. Quality control is an important procedure for

ensuring the quality or even the correctness of a meta-analysis.

Our proposed system is built upon a comprehensive protocol describing the state-of-

the-art procedure to conduct data QC for large-scale GWAMA [132]. This particular

framework has incorporated all the necessary QC steps proven to be helpful in practice.

In this framework, each study shares its own association statistics for each genetic variant,

such as allele frequencies, P-value and effect size estimates with standard errors, which

are delivered to the analysts. The analysts will apply statistical techniques to detect

potential errors in the aggregate data. For example, quality control will check whether

the same allele is designated as the effect allele for all studies, in order to prevent that

one study erroneously declares the other allele as the effect one. These quality issues

could lead to unexpected or incorrect conclusions for the variant associations if the data

were used blindly. We should emphasize that the quality control procedure is designed

to detect systematic errors of a study, hence if such an error exists, many data points

(i.e. statistics of single nucleotide variants (SNVs)) will deviate significantly from the

expected ones, and thus this phenomenon can be easily observed by plotting the data.

However, even aggregate statistics may contain sensitive information from each par-

ticipant; it has been demonstrated that individual information (e.g., cohort membership)

can still be inferred from the published summary data [11, 133, 134, 135, 136, 137, 12]. As

a matter of fact, the practice of publishing certain aggregate data has been discouraged

since the revelation of the privacy breach of public summary statistics. For instance,

the NIH1 removed aggregate genomic data (e.g. allele frequencies and P-values) from

open-access databases, and urged the scientific community to take precautions before

sharing any aggregate GWAS data [138]. These statistical inference attacks are based on

a similar idea: if an adversary has access to a large number of SNVs (both the victims

SNVs and the aggregate results of the SNVs), it can gain strong enough statistical power

to tell whether the victim is a contributor to the dataset. If a dataset contains sensitive

health information about participants such as their HIV status, such an inference is a

serious privacy breach.

The privacy issue of sharing plaintext aggregate statistics resides in that they reveal

aggregate statistics for a high number of SNVs (we call these SNV-level statistics, for-

mally defined in Section 4.1.1), and these statistics are exactly the input to a quality

control procedure and a meta-analysis model. A secure approach is needed in order to

complete the procedure without revealing the SNV-level statistics of any single study. A

secure protocol for the meta-analysis phase has been proposed by operating on encrypted

study statistics such that only the result of the meta-analysis is revealed [29]. However,

as we shall see, quality control is a fundamentally more complicated procedure, and

1National Institutes of Health in United States

4.1. BACKGROUND 63

protecting this phase remains an open problem. In the proposed secure quality control

(SQC), it guarantees that the analysts will receive nothing other than the final quality

measurements. To the best of our knowledge, this is the first comprehensive solution for

secure quality control for meta-analysis of genome-wide association studies.

4.1 Background

4.1.1 SNV-Level Aggregate Statistics in Quality Control

A meta-analysis protocol usually requires the aggregate association statistics such as

effect allele frequency (EAF) (f), beta estimate2 (β), standard error (e) and P-value (p),

for a predefined set of variants. We denote the set of SNV-level statistics for study j as

{(f, β, e, p)i,j}, i ∈ {1, 2, · · · , n}, where n is the number of variants. We use these four

types of statistics for demonstrating our solution in a secure quality control pipeline, but

it is easy to extend the solution to handle other types of statistics. We also use Nj to

denote the sample size (number of participants) of study j, and Nj is usually a public

value.

4.1.2 Secure Multi-Party Computation

A well-established cryptographic approach called secure multi-party computation (SMC)

guarantees the following property (without loss of generality, we use two parties through-

out the chapter):

Definition 4.1 (Secure two-party computation). Suppose there are two parties, Alice and

Bob, who have their own private data x and y, respectively, and want to securely compute

a function F (x, y).The SMC technique enables Alice and Bob to execute a protocol that

outputs the result R = F (x, y), without Alice learning any other information on Bob’s

input y, nor Bob learning any other information on Alice’s input x.

Using this technique in the quality-control scenario, we can imagine splitting each

statistics into two random and individually uninformative shares (secret shares), one

stored by Alice and one stored by Bob. The quality control can then define a set of

functions to be securely computed on the two shares. The underlying statistics are not

revealed as long as Alice and Bob do not collude, which is realistic in practice if, for

example, the two parties are chosen to be private, competitor companies (e.g., a Google

cloud server and an Amazon cloud server). A detailed system setup of our solution is

described later.

There are many cryptographic protocols for SMC, one of them being Yao’s garbled

circuit [139], which is what we use for the evaluation in this chapter. To summarize the

technique, it can be decomposed into the following steps:

(i). The function F (x, y) is described as a Boolean circuit with log x+log y input gates.

The circuit is known to both Alice and Bob.

(ii). Alice garbles (encrypts) the circuit. Hence Alice is called the garbler.

(iii). Alice sends the garbled circuit to Bob along with her encrypted input (encryption

of x).

2Beta estimate is the coefficient learnt in linear regression model.

64
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

(iv). Bob receives his encrypted input (encryption of y) from Alice through oblivious

transfer [140].

(v). Bob evaluates (decrypts) the circuit (NOT the inputs) and obtains the encrypted

output. Hence Bob is called the evaluator.

(vi). Alice and Bob communicate to learn the output.

The above Step (iv) uses a protocol called oblivious transfer, whose functionality can

be defined as follows:

Definition 4.2 (Oblivious transfer). Suppose there are two parties, Alice and Bob. Alice

has two values v0 and v1, whereas Bob has one value i ∈ {0, 1}. Oblivious transfer (OT)

enables Bob to obtain value vi, without Alice learning i, nor Bob learning v1−i.

To make things more clear, we present below a simple (but inefficient) implementation

of Yao’s garbled circuit in Protocol 0. Researchers have proposed various optimization

techniques to improve its efficiency, such as Free XOR gates [141], Half AND gates [142],

OT extension [143, 144, 145] and Point-and-permute [146, 141, 147]. Discussing all these

techniques is out of scope of this thesis, although most of them are implemented in the

library used by our evaluation.

4.1.3 Differential Privacy

Informally, differential privacy guarantees that a persons contribution to a dataset does

not significantly alter the output distribution of a statistical query on the dataset. Let

U denote the universe of entities, 2U denote the powerset of U , and D (∈ 2U) denote a

dataset.

Definition 4.3 (Differential privacy). A randomized mechanism K provides (ε, δ)-

differential privacy if and only if, for any two data sets D and D′ which differ in at

most one individual, and for any S ⊆ range(K),

Pr[K(D) ∈ S] ≤ eεPr[K(D′) ∈ S] + δ.

We then introduce the sensitivity of a function f : 2U → Rd: it characterizes the

largest possible change in the value of f , when one data element is replaced.

Definition 4.4 (lk-sensitivity). The lk-sensitivity of a function f : 2U → Rd is ∆kf =

maxD1,D2 ||f(D1)−f(D2)||k, where D1 and D2 are datasets differing in a single element.

k is usually 1 or 2.

In the standard approach of adding Laplacian noise, we are concerned about l1-

sensitivity; releasing f(D) +w, where w is random noise drawn from a Laplace distribu-

tion with mean 0 and scale ∆1f
ε , satisfies (ε, 0)-differential privacy, or just ε-differential

privacy. For example, to release minor allele frequency of a SNV while satisfying ε-

differential privacy, it is proved that we should add Laplacian noise with scale ∆1f
ε = 1/N

ε ,

where N is the size of the dataset [13]. By adding Gaussian noise with standard deviation

that depends on ε and δ, we can achieve (ε, δ)-differential privacy [148], which is discussed

in more detail in Section 4.3.1. Smaller ε and δ imply higher noise variance and stronger

privacy. Although differential privacy reduces the accuracy of GWAS applications, we

4.1. BACKGROUND 65

Procotol 0 Garbled circuit protocol

- Input: Alice has input x, Bob has input y.
- Circuit description: Alice and Bob describe the function F (x, y) as a circuit out of
2-input XOR and AND gates.
- Garbling: For any gate G (XOR or AND), let us denote its two input wires as wa,
wb, and output wire as wc. For each wire, Alice generates two 128-bit random values for
the two possible values (0 or 1) of the wire. In other words, we have the following:

• Wire wa: Generates Xa
0 and Xa

1 ;

• Wire wb: Generates Xb
0 and Xb

1;

• Wire wc: Generates Xc
0 and Xc

1 .

Afterwards, Alice garbles the truth table of G with a double-key symmetric encryption
Ek1,k2 . Namely, Alice generates four ciphertexts: EXai ,Xbj (Xc

G(i,j)), for i, j ∈ {0, 1}.
Moreover, Alice randomly permutes the four ciphertexts.
- Data transfer: There are three parts that require communication:

• For each gate, Alice sends the corresponding four ciphertexts to Bob.

• For Alice’s input x with m bits x0, x1, · · · , xm−1 that correspond to the m in-
put wires wa0 , wa1 , · · · , wam−1 , Alice sends the corresponding m random values
Xai
xi ,∀i ∈ 0, 1, · · · ,m− 1.

• For Bob’s input y with n bits y0, y1, · · · , yn−1 that correspond to the n input wires
wb0 , wb1 , · · · , wbn−1 , Alice and Bob engage in n instances of 1-out-of-2 oblivious
transfer protocols: in the i-th instance, Alice has two random values Xbi

0 and Xbi
1 ,

Bob has the selection bit yi, and finally Bob obtains its random value Xbi
yi .

- Evaluation: Bob evaluates the circuit from input to output. For each gate he en-
counters, he has four ciphertexts EXai ,Xbj (Xc

G(i,j)) (for i, j ∈ {0, 1}), and two random

input values Xa and Xb, where Xa is Xa
0 or Xa

1 , and Xb is Xb
0 or Xb

1. Hence, Bob
can decrypt exactly one of the four ciphertexts and reveal one output random value Xc.
In the circuit, Xc might be used later (as an input random value Xa′ or Xb′) for the
decryption of any following gate.
- Revealing output: After evaluating the whole circuit of function F (x, y), Bob has a
list of k output random values, Xci ,∀i ∈ 0, 1, · · · , k − 1, and Alice knows its mapping to
Boolean values because she generated both random values Xci

0 and Xci
1 for every output

wire wci . Therefore, Alice and Bob can communicate to reveal the output r = F (x, y),
whose binary representation is: ri = 0 if Xci = Xci

0 , and ri = 1 if Xci = Xci
1 .

66
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

will justify its use in the case of quality control; in short, the way we apply differential

privacy in quality control does not affect the utility of the data in the meta-analysis

phase.

4.2 Adversary Model and System Structure

We adopt the standard security notion of semi-honest model for secure computation,

which implies that corrupted parties do not deviate from the protocol specification but

might try to gather information out of the protocol. From a data owner’s point of view,

potential adversaries include external attackers and curious or corrupted parties in the

protocol (e.g., cloud servers or analysts in Figure 4.1). We assume the adversary knows

the set of genomic variants SNVs {SNV1,SNV2, · · · ,SNVn} shared by all studies.

The storage and computation are outsourced to two non-colluding, semi-honest cloud

providers (A and B). Each cloud server could be equipped with a cluster of machines to

enable parallel secure computation. The system works as follows (Figure 4.1):

Step 1. Each study splits its aggregate statistics X (e.g. fi,j) into two secret shares:

X = X1 ⊕ X2 (bit-by-bit XOR operation on the whole value), where X1 is randomly

chosen. X1 is encrypted and sent to cloud A, whereas X2 is encrypted and sent to cloud

B. ‘[X]’ represents the encryption of ‘X’ in Figure 4.1. Essentially, in our system, all

the communication links are protected with authenticated symmetric encryption that is

a well-established security feature in the Internet (e.g. when we use HTTPS instead of

HTTP). The protection of X1 in cloud A and X2 in cloud B will be detailed in Section

4.5.

Step 2. An analyst sends a request to cloud A for checking data quality.

Step 3. The two clouds execute a secure two-party computation protocol to perform

the quality control procedure on the secret shared input data of each study. The quality

measurements are sent back to the analyst.

Step 4. If there is no quality issue, the analyst sends another request to cloud A for

running a meta-analysis approach, and Step 5 follows. Otherwise, the analyst contacts

the study whose data present quality issues, and the study administrator resolves these

issues and goes back to Step 1.

Step 5. The two clouds execute another different secure two-party computation

protocol to perform meta-analysis on the data. The result is sent back to the analyst.

This step has been studied in previous work [29] and is not described here.

4.3 Secure Quality Control

In this section, we introduce our design for a secure quality control (SQC) procedure,

and apply the design to several important quality-control scenarios. We divide this

section into two sub sections: the first sub section describes several secure-computation

procedures that serve as the building blocks for protocols in the second sub section.

4.3.1 Secure Computation Procedures

SQC is composed of several important procedures, each of which has an added value

to the protection of the data. Unless otherwise specified, all the following procedures

are performed in secure two-party computation by each of the two clouds on two secret

4.3. SECURE QUALITY CONTROL 67

...

Aggregate data
𝑋" = 𝑋""⨁𝑋%"

Aggregate data
𝑋% = 𝑋"%⨁𝑋%%

Aggregate data
𝑋& = 𝑋"&⨁𝑋%&

Study 1

Study 2

Study k

Secure Two-Party
Computation

Analyst

Cloud A

Cloud B

[Result]

[Result]

[𝑋%%]

[𝑋%"]
[𝑋"%]

[𝑋"&]

[𝑋""]

[𝑋%&]

[Request]

[Request]

Figure 4.1: System architecture. Each study splits its summary statistics into two secret
shares that are sent to two non-colluding cloud servers (e.g., Google and Amazon). At
the request of an analyst, the two clouds perform secure two-party computation to verify
data quality or perform meta-analysis. In both cases, only the final results, either quality
measurements or meta-analysis results, are revealed to the analyst. ‘[X]’ represents
the encryption of ‘X’. All the communication links are protected with authenticated
symmetric encryption that is a well-established security feature in the Internet (e.g.,
HTTPS instead of HTTP).

shares of the input, which corresponds to Step 3 of the above system workflow. This is

further explained by the general conversion guideline in Figure 4.2.

Procedure 1: Variant hiding by oblivious sorting

As discussed before, the adversary knows the list of targeted SNVs in the study, which

is also an assumption for the aforementioned inference attacks. On the other hand, in

the quality control protocols considered in this chapter, a set of SNV-level statistics will

produce the same results regardless of the ordering among them, therefore we oblivi-

ously sort the statistics of the SNVs. In fact, this step hides the original ordering (e.g.,

based on positions on genome), which has already been used by previous work on meta

analysis [149]. Procedure 1 serves as a preliminary step of SQC. The two clouds use

bitonic sorting [150] to guarantee the obliviousness: the algorithm does not reveal in-

formation about the input [151]. In more detail, bitonic sorting works in a sequence of

stages (number of stages depends on number of values to be sorted): in each stage, the

algorithm compares predefined pairs of values in the list, and swap them if necessary.

These predefined pairs are fixed for all lists having the same length, regardless of the

values, which is why the sorting procedure is oblivious.

NOTE: Although we abbreviate it in the procedure, the input and output are actually

represented as two secret shares. In other words, L = LA ⊕ LB and L′ = L′A ⊕ L′B ,

where LA and L′A are on cloud A, LB and L′B are on cloud B, and ‘⊕’ is a convenient

abbreviation for the element-wise XOR between two list of elements. Moreover, the

computation in the procedure (i.e., ‘L′ ← bitonicSort(L)’ in Procedure 1) is programmed

as two-party computation circuits between cloud A and cloud B, each of which holds a

68
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

Plaintext Procedure

Require: X
Ensure: f(X)
r ← f(X)
return r

SMC Procedure

Require: Alice’s input is X1, Bob’s input is X2, and X1 ⊕X2 = X
Ensure: Alice and Bob output f(X)

Define F (X1, X2) as follows:
X ← X1 ⊕X2;
f(X).

Alice and Bob execute Protocol 0 for evaluating function F with
Alice’s input x = X1 and Bob’s input y = X2. Alice and Bob reveal
output r = F (x, y) at the end of the protocol.
return r

Figure 4.2: SMC conversion. The figure shows a general guideline for converting a
plaintext procedure to an SMC procedure. It applies to all procedures and protocols
described in this section.

Procedure 1 Oblivious sorting

Require: : A list L
Ensure: : A sorted list L′

L′ ← bitonicSort(L)
return L′.

share of the input (LA and LB respectively), rather than a traditional one that is executed

on a single party that has the whole input. We stick to such an abbreviated presentation

in all following procedures and protocols.

Procedure 2: Adding Gaussian noise

In most cases of genomic computation (e.g., GWAS, risk test), accuracy is of paramount

importance. Therefore, many privacy-preserving techniques that introduce noise to

data are criticized because of their unacceptable negative impact on computation accu-

racy [152, 24], even though a lot of advances have been made to apply these techniques

in order to enable genomic data sharing [13, 14, 153, 16, 154]. However, quality control

is meant to detect systematic errors of a study, hence analysts are concerned mainly

about the global characteristics of the data, rather than the precise value of individual

data points. For example, analysts might expect to see the data points cluster along the

diagonal line of a pane rather than a horizontal line. Such a relatively loose requirement

provides us room to change the data points of the results in a manner such that the

output patterns can still lead to the same conclusion on the data quality (some results

4.3. SECURE QUALITY CONTROL 69

are presented in Figure 4.7 and Figure 4.8).

In two-party computation, two methods have been explored for adding Laplacian

noises to the output. In the first approach [155, 156], Laplacian noises are generated

from an approximate Laplacian distribution. In theory, a Laplacian distribution can be

exactly constructed from a uniform distribution because of the following proposition:

Proposition 4.1 ([157]). If X ∼ U(− 1
2 ,

1
2) (uniform distribution), then

Y = µ− b · sgn(X) · ln(1− 2|X|) ∼ Laplace(µ, b),

where µ and b are the mean and scale parameters of the Laplace distribution, and sgn(X)

denotes the sign of X.

This is a direct result of the inverse transform sampling. It is easy for two parties

to jointly draw a sample from a uniform distribution without either party knowing the

sample, as the summation of two uniformly distributed variable from same sample space

remains a uniformly distributed variable in the sample space. However, this approach

requires computing a logarithm operation afterwards, which can only be approximated

through Taylor series with state-of-the-art SMC techniques and hence is computationally

intensive. For example, it took about 5 seconds for two parties to generate a Laplacian

scalar variable securely in a collaborative fashion on 2.4 GHz processors [156]. This

remains impractical given the fact that we need to process millions of SNVs for each

study.

In the second approach [158], a Laplacian sample is generated by using the following

proposition:

Proposition 4.2 ([159]). Let Xi ∼ N (0, λ) for i ∈ {1, 2, 3, 4} be four independent

Gaussian random variables. Then,

Y = (X2
1 −X2

2) + (X2
3 −X2

4) ∼ Laplace(0, 2λ2).

This proposition provides a way for two parties to cooperatively generate a Laplacian

random variable that is unknown by each party. In this method, one party produces its

noisy share X2
1 − X2

2 , whereas the other one produces its noisy share X2
3 − X2

4 . The

two parties then engage in a secure addition operation, which is quite efficient. However,

the problem with this approach is that the noisy shares, X2
1 − X2

2 and X2
3 − X2

4 , do

not follow the Laplacian distribution. Therefore, the method provides some privacy

protection against each party, but it is not proven to satisfy any bound of differential

privacy.

In this framework, we achieve differential privacy through adding Gaussian noise. We

make use of the following two results.

Theorem 4.1 (Gaussian Mechanism [148]). Let ε ∈ (0, 1) be arbitrary. For c2 >

2 ln(1.25
δ), the Gaussian Mechanism that adds zero-mean Gaussian noise with standard

deviation σ ≥ c∆2(f)
ε >

√
2 ln(1.25

δ)∆2(f)

ε is (ε, δ)-differentially private.

Proposition 4.3 ([160]). Let X1, X2 ∼ N (0, σ2) be two independent Gaussian random

variables. Then,

Y = X1 +X2 ∼ N (0, 2σ2).

70
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

Therefore, each party independently draws a random sample from the Gaussian dis-

tribution, computes the addition of the two samples via SMC, and adds the result to the

statistics (Procedure 2). Because of Proposition 4.3, we can provide theoretical guarantee

that the noisy result is differentially private against the two parties that engage in SMC

and any external party that knows neither X1 nor X2. We have the following result.

Corollary 4.1. Procedure 2 is (ε, δ)-differentially private against the honest-but-curious

adversary which controls at most one of the cloud servers.

Proof. Because an honest-but-curious adversary controlling Cloud A (resp., Cloud B)

can remove its own noise X1 (resp., X2) from the output f +w, resulting in f +w−X1

(resp., f + w −X2), from Theorem 4.1, the output is (ε, δ)-differentially private.

�

Note that this procedure is executed on the fly for checking data quality without

affecting the stored data, hence the data can still be used at a later stage (e.g., for

meta-analysis) without any accuracy loss.

Procedure 2 Adding Gaussian noise

Require: : Original value f
Privacy parameters ε and δ
Sensitivity ∆2(f)

Ensure: : f + w, where w is a Gaussian noise

σ ←
√

2 ln(1.25
δ)∆2(f)

ε (Theorem 4.1)
X1 ← N (0, σ2) (Cloud A draws a random sample X1 from the Gaussian distribution)
X2 ← N (0, σ2) (Cloud B draws a random sample X2 from the Gaussian distribution)
w ← X1 +X2

r ← f + w
return r

Procedure 3: Precision truncation

Truncating the precision of statistics serves two purposes in this framework: First, apart

from differential privacy, it is an alternative way to add noise to the data; second, it helps

to reduce the number of SNVs that can be revealed, undermining the power of inference

attacks. The second feature will be discussed in the next procedure. In Procedure 3,

we use fix-point representations (more efficient than floating-point operations), reserve a

predefined precision and round the statistics to the nearest reduced-precision represen-

tation. For a fix-point statistics x that has w-bit width (total number of bits) and t-bit

offset (number of bits for the fractional part), we preserve r bits after leading zeros (so

that small fractional numbers, such as p-value 10−8, are not truncated to zero).

Procedure 4: Oblivious de-duplication

After reducing precision, we might observe a high number of repetitive statistics. For

example, if we have 4 million SNVs and preserve 10-bit precision (around 3 decimal

digits), we could expect on average 4000 duplicates per SNV statistics. Not only is

this frequency information useless for analysts to construct quality-control plots, but

4.3. SECURE QUALITY CONTROL 71

Procedure 3 Precision reduction
Require: : Precision r bits, and a fix-point number x with w-bit width and t-bit offset.
Ensure: : A fix-point number x′ that sets all other bits of x to zero except the first r

bits after the leading zeros of x.

x′ ← x
[Step 1] Starting from the most significant bit, skip leading zeros of x′

[Step 2] Preserve at most r bits after leading zeros
if there are m (>= 1) bits after Step 2 then
carry ← the most significant bit of the m bits
Set the remaining m bits of x′ to 0
{We should avoid overflow when rounding up.}
if the highest (w −m) bits of x′ are not all 1s then
x′ ← x′ + carry × 2m

return x′.

also a potential privacy leakage to adversaries. In Procedure 4, we perform an oblivious

sorting to cluster duplicated items together, preserve one of them by setting the others to

the infinity element, and perform another round of oblivious sorting in order to discard

the infinity elements. The second round of sorting is necessary to avoid leaking which

elements are duplicated (and how many times they are duplicated).

Procedure 4 Oblivious de-duplication

Require: : a sorted sequence L of length n.
Ensure: : a de-duplicated sequence L′ of length n′, n′ � n.

Apply Procedure 1 to L. We denote the sorted sequence as L′.
previous item← L′1
for i = 2→ n do

if L′i == previous item then
L′i ← ⊥ (⊥ is defined as the infinity element)

else
previous item← L′i

Apply Procedure 1 to L′, and discard all the elements of ⊥ at the end, resulting in a
new sequence L′′ of length n′.
return L′′.

4.3.2 Secure Quality Control Protocols

Using the above design, we propose our methodology to run several quality-control pro-

tocols [132] in a secure and privacy-preserving way. In absence of the secure protocols

described below, a large number of original SNV-level statistics would be revealed, mak-

ing them vulnerable to inference attacks, hence each SQC protocol is necessary to avoid

leaking those (precise) SNV-level statistics.

Protocol 1: Secure SE-N plot

An analyst can plot the median standard error (SE) across all SNVs against the square

root of the sample size (N) for each study, in order to identify analytical problems,

72
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

e.g., inconsistent regression models. More specifically, for study j with sample size Nj
(public value), the analyst finds the median in the corresponding list of standard errors:

e1,j , e2,j , · · · , en,j . We denote this median with emedian,j . If the study data have no

quality issues,
√
Nj is proportional to the inverse of emedian,j by a public constant

c [132]: √
Nj ≈ c ·

1

emedian,j
.

Therefore, the study-specific data points of the SE-N plot should resemble a straight

line. Protocol 1 applies oblivious sorting to each list of standard errors and chooses

the corresponding median afterwards. A more efficient median-finding algorithm can be

derived by using the selection networks [161, 151]. We note that there is no need to go

through Procedure 3 and Procedure 4 in this protocol because the output for each study

contains only one overall statistics (median) across all SNVs, which is different from the

following two protocols.

Procotol 1 Secure SE-N processing

Require: :
List of standard errors from m studies: L1, L2, · · · , Lm.
Lj = {e1,j , e2,j , · · · , en,j}.

Ensure: :
List of median standard errors:
{emedian,1, emedian,2, · · · , emedian,m}

for j = 1→ m do
Apply Procedure 1 to list Lj

emedian,j ← the median of list Lj

return {emedian,1, emedian,2, · · · , emedian,m}.

Protocol 2: Secure EAF plot

The EAF (effect allele frequency) protocol plots the reported EAFs from a study against

another study, which could pinpoint issues such as a wrong strand, allele miscoding,

etc. For example, a study might consistently label the wrong allele as the effect allele,

leading to wrong allele frequencies. If the two studies j1 and j2 have no quality issues

and their samples come from the same ancestry, then fi,j1 should be close to fi,j2 , ∀i ∈
{1, 2, · · · , n}. The two sets of allele frequencies are taken as input to Protocol 2, which

first reduces the precision of allele frequencies (Procedure 3) and then de-duplicates the

pairs of EAFs (Procedure 4) from the two studies.

Protocol 3: Secure P-Z plot

The P-Z plot (P -value and Z-statistics) can reveal analytical problems of the computa-

tion of beta estimates (linear regression coefficients), standard errors or P -values. More

specifically, for SNVi of study j, the Z-statistics is computed as follows:

Z-statistics =
βi,j
ei,j

.

The corresponding reported P -value pi,j should be close to the P -value associated with

the above Z-statistics. In the first step of Protocol 3, the two servers perform a secure

4.4. IMPLEMENTATION AND EVALUATION 73

Procotol 2 Secure EAF processing

Require: :
List of effect allele frequencies from study j1: {f1,j1 , f2,j1 , · · · , fn,j1};
List of effect allele frequencies from study j2: {f1,j2 , f2,j2 , · · · , fn,j2};
Precision: r bits.

Ensure: :
List of reduced-precision and de-duplicated EAF tuples:
{(f ′′i,j1 , f ′′i,j2)}, i ∈ {1, 2, · · · , n′}, n′ � n.

for i = 1→ n do
f ′i,j1 ← Procedure 2 and 3 on number fi,j1
f ′i,j2 ← Procedure 2 and 3 on number fi,j2

return the result of applying Procedure 4 on the list of tuples:
{(f ′i,j1 , f ′i,j2)}, i ∈ {1, 2, · · · , n}.

division protocol to compute the Z-statistics, which is known to be a costly operation in

secure computation. We benchmark this step in Section 4.4.2. The resultant Z-statistics

are paired with the corresponding P -values to go through a similar precision-reduction

and de-duplication procedure as in Protocol 2.

Procotol 3 Secure P-Z processing

Require: :
Lists (length n) of p-values, beta estimates, and standard errors from study j;
Precision: r bits.

Ensure: :
List of reduced-precision and de-duplicated P-Z tuples:
{(p′′i,j , Z ′′i,j)}, i ∈ {1, 2, · · · , n′}, n′ � n.

for i = 1→ n do
Zi,j ← βi,j

ei,j
(secure division in garbled circuits)

for i = 1→ n do
p′i,j ← Procedure 3 on precision r and number pi,j
Z ′i,j ← Procedure 3 on precision r and number Zi,j

return the result of applying Procedure 4 on the list of tuples:
{(p′i,j , Z ′i,j)}, i ∈ {1, 2, · · · , n}.

4.4 Implementation and Evaluation

We use ObliVM-GC [162] for our backend secure two-party computation. This framework

provides a Java library that helps programmers to build secure-computation protocols in

a circuit representation. Nayak et al. wrap it into a parallel secure-computing paradigm

that we use to scale up our solution [163]. Our experiment uses two sets of data:

• Real data: GWAS data from 10 studies, each of which builds a linear regression

model between human height and each of roughly three million SNVs [164].

• Simulated data: Following another work [165], we choose a study size (N) and a

number of SNVs (n). For each SNV, we pick a random number in the range of

74
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

0.05 to 0.5 as the minor allele frequency. We then generated the genotypes of N

individuals independently. For example, we choose N = 1000 and n = 3000000,

which is similar to the size of our real data.

4.4.1 Privacy and Utility Analysis

Log likelihood ratio test. As we apply differential privacy to the allele frequencies that

are the major vulnerability exploited by inference attacks, we experimentally analyze the

privacy of our solution by using the attack power as a metric. The log likelihood ratio

test is one of the most powerful inference attacks for individual detection in a pool [136].

To construct the test, we assume a reference population with specified allele frequencies

for variants, and we sample a pool of 1000 individuals from this reference population.

The null hypothesis of the test is that a tested individual is not in the pool. An LLR

statistic for the tested individual is computed based on the genotype frequencies of the

reference population and the pool, in order to tell whether the individual is included in

the pool.

The larger the LLR statistic is, the higher is the probability that individual i is in

the case group (i.e. lower P -value for the test). To assess the attack power, we construct

two groups: one case group (same as the pool) and one test group, for nine different

experiments. We then calculate the LLR statistics for each individual in the two groups,

rescale them to the range [0, 1], and analyze their distribution (Figure 4.3). A wider gap

between the case distribution and the test distribution indicates a higher attack power.

From the results, it is evident that privacy can be enhanced by requiring a higher level

of differential privacy and releasing fewer SNVs.

Note that the absolute values of the LLR statistics are invisible in Figure 4.3, due

to the rescaling operation; in fact, for the eight experiments of adding noise, the LLR

statistics are extremely small (hence P -values close to 1). This is because the effect of

adding noise, even with the least amount of differential privacy (ε = 0.1, δ = 0.05), dom-

inates over the effect of sampling, which indicates that the tested individual is actually

closer to the reference population than to the ‘noisy’ pool. However, we can still observe

the interesting relative difference between the case group and the test group. To quan-

tify the attack power, we measure the gap between the case distribution and the test

distribution of Figure 4.3 by using Kolmogorov-Smirnov distance (instead of performing

a Kolmogorov-Smirnov test to tell whether the two samples are drawn from the same

distribution, we are more interested in measuring the distance between the two). The

result is illustrated in Figure 4.4. A larger distance indicates less privacy, because it

would be easier for an attacker to differentiate the two groups. We observe that adding

the least amount of differential privacy in SQC can already greatly reduce the attack

power and strengthen the privacy.

Most of the time, an attacker does not have access to genotypes of a large group of

individuals. But assuming the attacker has the genotype of a victim, he must make an

assessment about whether the victim is in the pool based on one LLR statistic. Note

that using the P -value for the assessment is not effective in our scenario for the same

reason discussed above. From an attacker’s point of view, Chen et al. define a classifier

with a threshold τ : if LLR(i) ≥ τ , then individual i is classified to be in the case

group, otherwise it is in the test group [166]. To have a high true positive rate, we set

a low τ value, e.g. at the lowest 1 percentile of the case group (99% true positive rate).

4.4. IMPLEMENTATION AND EVALUATION 75

(a) No noise
Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

(b) 𝝐 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟓
Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

(c) 𝝐 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟏

(d) 𝝐 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟎𝟓

Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

(e) 𝝐 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟎𝟏

Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

(f) 𝝐 = 𝟎. 𝟎𝟓, 𝜹 = 𝟎. 𝟎𝟓
Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

(g) 𝝐 = 𝟎. 𝟎𝟓, 𝜹 = 𝟎. 𝟎𝟏
Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

(h) 𝝐 = 𝟎. 𝟎𝟓, 𝜹 = 𝟎. 𝟎𝟎𝟓

Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

(i) 𝝐 = 𝟎. 𝟎𝟓, 𝜹 = 𝟎. 𝟎𝟎𝟏
Number of revealed SNVs

Re
sc

al
ed

 L
LR

 s
ta

tis
tic

s 𝟏. 𝟎

𝟎. 𝟖

𝟎. 𝟔

𝟎. 𝟒

𝟎. 𝟐

0. 𝟎

Figure 4.3: Rescaled LLR statistics. The nine experiments are conducted on simulated
datasets after adding different Gaussian noises by choosing parameters ε and δ. In
each experiment, for the case group (red) and the test group (blue), we reveal different
number of SNVs, from left to right: 1000, 5000, 10000, 50000, 100000, 500000, 1000000.
In general, we observe that revealing more SNVs makes it easier to separate the two
groups based on LLR statistics. Adding Gaussian noises by imposing smaller values of
ε and δ helps to mitigate the effect of this attack. We could choose these parameters by
basing them on the quantification of the resulting attack powers, which will be detailed
in Figure 4.4 and Figure 4.5: for example, releasing 1000 SNPs after adding the least
amount of differential privacy (ε = 0.1, δ = 0.05) is appropriate because the attack power
is relatively weak in this case.

76
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

103. 0 103. 5 104. 0 104. 5 105. 0 105. 5 106. 0

Number of SNVs

0.0

0.2

0.4

0.6

0.8

1.0

K
S
 D

is
ta

n
ce

No noise

ε= 0. 1, δ= 0. 05

ε= 0. 1, δ= 0. 01

ε= 0. 1, δ= 0. 005

ε= 0. 1, δ= 0. 001

ε= 0. 05, δ= 0. 05

ε= 0. 05, δ= 0. 01

ε= 0. 05, δ= 0. 005

ε= 0. 05, δ= 0. 001

Figure 4.4: Kolmogorov-Smirnov distances between case LLR statistics and test LLR
statistics. The distances correspond to the visualized gaps in Figure 4.3. The larger the
distance is, the stronger the attacker power is, hence the less the privacy is. Adding the
least amount of differential privacy (ε = 0.1, δ = 0.05) in SQC can already greatly reduce
the attack power and strengthen the privacy.

We observe the false positive rates in the test group for the above nine experiments

(Figure 4.5). If the data is released without adding noise, an attacker can easily achieve

low false positive rates (i.e. effective attack) even if only a small number of SNVs are

released. For example, the false positive rate is less than 40% when only 10000 SNVs are

released. Differential privacy adding the lowest amount of noise in our experiment (i.e.,

ε = 0.1, δ = 0.05) can effectively thwart the attack. With stronger differential privacy,

more SNVs can be released at the same false positive rate for an attacker. Nevertheless,

we will see that with SQC, only a small number of SNVs need to be released in order

to achieve good utility, hence we can add a low level of Gaussian noise for differential

privacy, e.g., ε = 0.1, δ = 0.05.

Effects of precision r. From the above results, we observe that the number of

SNVs used in the attack significantly influences the attack power. For example, when

releasing one million SNVs, there is almost no privacy at all for all the privacy parameters

in the experiments; but the strongest privacy parameters (ε = 0.05, δ = 0.001) that we

use already have a non-trivial negative impact on the utility of the data (Figure 4.6).

Therefore, it is crucial that our SQC protocols output a relatively small number of SNVs

after de-duplication, hence achieving a good trade-off between privacy and utility. This

number actually depends on the precision r in Procedure 3 used by Protocol 2 (analogous

to Protocol 3): The higher the precision is, the more EAF pairs the protocol outputs.

Roughly speaking, the maximum number of de-duplicated EAF pairs for precision r is

4r .

We evaluate the effectiveness of our approach by setting different combinations of

parameters (ε, δ, r), and observe the patterns of EAF plots in Figure 4.7. We also calculate

the false positive rates (at 0.99 true positive rate) of LLR test on the output EAF data

by assuming, pessimistically, that the adversary is able to link the EAF data back to

4.4. IMPLEMENTATION AND EVALUATION 77

103. 0 103. 5 104. 0 104. 5 105. 0 105. 5 106. 0

Number of SNVs

0.0

0.2

0.4

0.6

0.8

1.0
Fa

ls
e
 p

o
si

ti
v
e
 r

a
te

No noise

ε= 0. 1, δ= 0. 05

ε= 0. 1, δ= 0. 01

ε= 0. 1, δ= 0. 005

ε= 0. 1, δ= 0. 001

ε= 0. 05, δ= 0. 05

ε= 0. 05, δ= 0. 01

ε= 0. 05, δ= 0. 005

ε= 0. 05, δ= 0. 001

Figure 4.5: False positive rates of inferring an individual in the case group when setting
the true positive rate to be 99%. The nine plots correspond to the experiments in Figure
4.3.

𝝐=
0.

1
𝜹=

0.
05

𝝐=
0.

1
𝜹=

0.
01

𝝐=
0.

1
𝜹=

0.
00

5

𝝐=
0.

05
𝜹=

0.
01

𝝐=
0.

1
𝜹=

0.
00

1
𝝐=

0.
05

𝜹=
0.

05

𝝐=
0.

05
𝜹=

0.
00

5
𝝐=

0.
05

𝜹=
0.

00
1

𝟎. 𝟎𝟔

𝟎. 𝟎𝟓

𝟎. 𝟎𝟒

𝟎. 𝟎𝟑

𝟎. 𝟎𝟐

𝟎. 𝟎𝟏

𝟎. 𝟎𝟎

Privacy parameters

Av
er

ag
e

di
st

an
ce

 fr
om

 tr
ue

 M
AF

Figure 4.6: Average distance from original MAF after adding different Gaussian noises.

78
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

their SNV identifiers and then perform LLR test. As the precision increases, the number

of de-duplicated EAF pairs grows exponentially and thus the false positive rate drops

accordingly, but the plot is better preserved. Nevertheless, we can still observe the plot

pattern even at a low precision r = 5, but it fades out when we further decrease the

precision because points become sparse. By observing the distinction between Figure

4.7-b and Figure 4.7-c, the differential privacy parameter ε has a significant influence

on the plot pattern, and ε = 0.1 is a reasonable choice; in contrast, parameter δ has a

relatively modest effect on the pattern. To guarantee a reasonable privacy level (i.e. high

false positive rate) and preserve useful plot patterns, it is a good choice to set ε = 0.1

and r = 5 or 7, and to fine tune the result by choosing δ.

Example: Visualization of EAF Plots

Due to Gaussian noises, precision reduction, and de-duplication, the numerical output

of SQC protocols is very different from that of insecure QC protocols. However, in this

section, we show that by guaranteeing a reasonable privacy level, SQC can still maintain

the useful global characteristics for quality control. We take the secure EAF protocol

as an example, because it encompasses all the above three procedures and results in the

most noisy output. In our experiment, we set ε = 0.1, δ = 0.05, and precision r = 7.

Combining these parameters, the secure EAF protocol outputs on average 4340 noisy

and low-precision SNV pairs. Even if we assume that an adversary is able to link these

SNVs back to their identifiers, it still has more than 90% false positive rate when trying

to perform Homer’s attack (Figure 4.5). We evaluate the utility of the output plots in

Figure 4.8. It is evident that SQC maintains the quality (good or bad) of the data, with

a slight dispersion of data points.

4.4.2 Runtime Analysis

Single machine. Secure computation provides strong security, but this comes at the cost

of a high computational overhead. Even with current techniques and implementation, the

slowdown of secure computation is as high as thousands or even hundreds of thousands

of times, compared with non-secure, plaintext computation [162]. The following results

are obtained on a single machine with Intel Core i7 processor clocked at 3.1 GHz and 16

GB of RAM.

Secure operation benchmark. Before executing the whole SQC protocols, we

benchmark the different core computation procedures on a small set of 1000 SNVs. Table

4.1 shows the result of benchmarking. In secure computation based on garbled circuits,

another measurement of performance is the number of AND gates generated during

computation; this number is linearly proportional to the running time and communication

cost. Oblivious sorting has a complexity of O(n log2 n) [150], whereas all other procedures

have a linear complexity as the number of SNVs increases. For example, with sequential

implementation, we estimate it will take around 7.5 hours to accomplish oblivious sorting

of 3 million SNV statistics of 64-bit representation. We also see that secure division

incurs a high overhead, especially when bit length of numerator (denominator) increases;

indeed, the complexity of a secure division is O(l2) for two numbers of l bits. In our

SQC framework, secure division is only used for beta estimates and standard errors that

are represented by 32-bit fix-point numbers, hence it will take 5.46 seconds on average to

execute secure division for 1000 SNVs. This is roughly the same cost as oblivious sorting

4.4. IMPLEMENTATION AND EVALUATION 79

FP: 0.971

FP: 0.981

FP: 0.98

FP: 0.982

FP: 0.945

FP: 0.937

FP: 0.927

FP: 0.913

FP: 0.46

FP: 0.344

FP: 0.279

FP: 0.153

Precision r (bits)
5 7 9

𝜹 = 𝟎. 𝟎𝟓

𝜹 = 𝟎. 𝟎𝟏

𝜹 = 𝟎. 𝟎𝟎𝟓

𝜹 = 𝟎. 𝟎𝟎𝟏

𝜹 increases

Points: 687

Points: 752

Points: 769

Points: 829 Points: 11084

Points: 10024

Points: 10355

Points: 9128

Points: 108856

Points: 112151

Points: 119132

Points: 99617

(b) Noisy plot patterns at 𝝐 = 𝟎. 𝟏

FP: 0.98

FP: 0.98

FP: 0.978

FP: 0.991

FP: 0.967

FP: 0.972

FP: 0.955

FP: 0.936

FP: 0.773

FP: 0.745

FP: 0.741

FP: 0.579

Precision r (bits)
5 7 9

𝜹 = 𝟎. 𝟎𝟓

𝜹 = 𝟎. 𝟎𝟏

𝜹 = 𝟎. 𝟎𝟎𝟓

𝜹 = 𝟎. 𝟎𝟎𝟏

𝜹 increases

Points: 923

Points: 1008

Points: 1037

Points: 1067 Points: 15282

Points: 14095

Points: 14535

Points: 12840

Points: 150914

Points: 155331

Points: 164068

Points: 137365

(c) Noisy plot patterns at 𝝐 = 𝟎. 𝟎𝟓

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2
0.4

0.6

0.8

1.0

EAF .reference
EA

F
.s

tu
dy

(a) Original plot

Figure 4.7: An example EAF plot and its noisy plot patterns for different levels of
differential privacy and different precisions. (a) The original plot shows a study in which
a fraction of the effect alleles was mis-specified. (b) Noisy plots when fixing ε = 0.1 and
changing δ and r. (c) Noisy plots when fixing ε = 0.05 and changing δ and r. The number
(e.g. ‘Points: 687’) at the bottom of each noisy plot is the number of EAF pairs output
by SQC, namely, the number of points in the plot. The number (e.g. ‘FP: 0.973’) on top
of each noisy plot indicates the false positive rate by applying the LLR test in Figure 4.5,
when we pessimistically assume the strongest adversary that is able to link the EAF data
back to their SNV identifiers. Plot patterns are well preserved when ε = 0.1, while δ has
a relatively modest effect and could be used to fine tune the pattern. At a low precision
r = 5, the scatter plot is sparse and looks faded. As the precision becomes higher, the
number of de-duplicated EAF pairs grows exponentially, and the false positive rate drops
accordingly. An interesting phenomenon is that when δ increases (adding less noises),
points deviate less from their original positions (Figure 4.6) and are more concentrated,
hence the number of points decreases monotonically. However, the false positive rate is
not monotonically decreasing when increasing δ, because fewer points lead to higher false
positive rates (Figure 4.5). For example, at ε = 0.1 and r = 9, when increasing δ from
0.005 to 0.01, its effect on the false positive rate is weaker than the effect of decreased
number of points, hence the false positive rate becomes higher. The SQC framework can
provide a reasonable trade-off by setting ε = 0.1, r = 7, and then fine-tuning δ.

80
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

(a) Original pattern 1 (c) Original pattern 2 (e) Original pattern 3 (g) Original pattern 4

(b) Noisy pattern 1 (d) Noisy pattern 2 (f) Noisy pattern 3 (h) Noisy pattern 4

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

EAF (reference)

EA
F

(s
tu

dy
)

0.0 0.2 0.4 0.6 0.8 1.0
EAF (reference)

0.0 0.2 0.4 0.6 0.8 1.0
EAF (reference)

0.0 0.2 0.4 0.6 0.8 1.0
EAF (reference)

0.0 0.2 0.4 0.6 0.8 1.0
EAF (reference)

0.0 0.2 0.4 0.6 0.8 1.0
EAF (reference)

0.0 0.2 0.4 0.6 0.8 1.0
EAF (reference)

0.0 0.2 0.4 0.6 0.81.0
EAF (reference)

0.0
0.2
0.4
0.6
0.8
1.0

EA
F

(s
tu

dy
)

0.0
0.2
0.4
0.6
0.8
1.0

EA
F

(s
tu

dy
)

0.0
0.2
0.4
0.6
0.8
1.0

EA
F

(s
tu

dy
)

0.0
0.2
0.4
0.6
0.8
1.0

EA
F

(s
tu

dy
)

0.0
0.2
0.4
0.6
0.8
1.0

EA
F

(s
tu

dy
)

0.0
0.2
0.4
0.6
0.8
1.0

EA
F

(s
tu

dy
)

0.0
0.2
0.4
0.6
0.8
1.0

EA
F

(s
tu

dy
)

Figure 4.8: Original and noisy EAF plots. For each plot, the x-axis is the reference allele
frequency of European ancestry, and the y-axis is the study allele frequency. Plots (a)
and (c) show two studies with a relatively consistent European ancestry, while study (c)
contains participants with a slightly different ancestry to the reference and has a thicker
band. Plot (e) shows a study involving participants of non-European ancestry resulting
in substantial deviation from the reference. Plot (g) shows a study with quality issues,
e.g., a fraction of the effect alleles was mis-specified. And plots (b), (d), (f), and (h)
are the corresponding noisy plots from SQC. A potential researcher can draw the same
conclusion about the quality from these noisy plots as from the original plots.

on 64-bit numbers, which takes place in Protocol 2, but less than oblivious sorting on

96-bit numbers, which takes places in Protocol 3.

Small-scale experiments. To show the efficiency of each protocol on a single

machine, we perform experiments with real data on small scales, varying from input of

1000 SNVs to 10 000 SNVs. In Figure 4.9-a, the secure P-Z protocol dominates the

running time over the other two protocols, because of the secure division operations

on 32-bit numbers and oblivious sorting on 96-bit numbers (64 bits for P -values and

32 bits for Z-statistics). Nevertheless, with a sequential implementation, these secure

computation protocols seem impractical to run on a large-scale dataset that contains one

million SNVs.

Parallel SQC. Due to the heavy overhead of secure computation and the non-

trivial complexity of running the whole SQC protocols, it would be impractical to deploy

the solution on a single machine with a sequential implementation. Building upon the

ObliVM-GC backend, Nayak et al. propose a parallel secure-computation framework

(GraphSC) that parallelizes graph-based algorithms and scales well in a cluster envi-

ronment. We reconstruct SQC with the primitives provided by GraphSC, and deploy

the system on a cluster of machines. The major benefit of using this paradigm is that

oblivious sorting, which is the dominant overhead, can run in parallel. For our system

configuration, we test the protocols on a cluster of 16 nodes, each equipped with Intel

Xeon CPU E5-2680 v3 processors clocked at 2.5 GHz. Each machine consists of 8 cores

and 32 GB of RAM. Half of the machines simulate cloud A, and the other half simulate

cloud B. The bandwidth between machines is 1 Gbps.

In Figure 4.9-b, we show the performance of running the three SQC protocols on one

4.5. DISCUSSION 81

Procedure Bits Time AND gates

Oblivious sorting
32 3.11s 1726976
64 5.94s 3453952
96 8.83s 5180928

Differential privacy
32 0.813s 192000
64 1.472s 384000
96 2.126s 576000

Precision reduction
32 3.57s 2015000
64 6.7s 4127000
96 9.84s 6239000

De-duplication
(without sorting
steps)

32 0.26s 94905
64 0.4s 190809
96 0.57s 286713

Secure division
32 5.46s 3230000
64 20.09s 12606000
96 46.19s 28126000

Table 4.1: Benchmark results of the computation steps, conditioning on 1000 SNVs.
Oblivious sorting has a complexity of O(n log2 n), whereas all other procedures have a
linear blowup of complexity as the number of SNVs increase.

million SNVs. In total, executing the three quality control tasks takes about one hour,

which we deem to be an acceptable cost, considering the days or even months of data

access authorization procedures for biomedical studies. SQC safeguards the studies and

minimizes the privacy concerns, producing a minimal interface where researchers retrieve

sanitized and useful results in practical running time through parallel computation.

4.5 Discussion

Even though the data are not revealed as long as cloud A and cloud B do not collude,

X1 and X2 should still be protected, considering that potential data breaches can occur

on both clouds. The protection can be enforced on three levels, including hard disks,

memory and cache. For example, on the level of the hard disk, HIPAA compliant cloud

services could be one solution that normally encrypts the storage on disk. In this way,

even if attackers steal the data on a disk from both clouds, they are not able to recover

the original information. On the level of memory, the use of trusted hardware (e.g.,

Intel Software Guard eXtensions (SGX)) [22] has become an increasingly popular and

powerful approach in recent years. This approach encrypts the memory so that attack-

ers cannot steal the information, even by compromising the memory. There are more

sophisticated attacks that occur, however, on the CPU cache level [41, 40]. There are

different countermeasures proposed to thwart these attacks, but few of them are effective

enough to be widely deployed in practice. The aforementioned cloud-protection methods

are orthogonal to this work and could be added as components to our system.

For the effectiveness of hiding variants, we should emphasize that it is difficult to argue

about the privacy guarantee of Procedure 1 alone, either theoretically or experimentally.

Indeed, if the adversary has public reference statistics, it might be able to roughly map

the identities by sorting the public statistics and comparing them with the sorted study

statistics, but the precision of the mapping is highly data-dependent.

82
CHAPTER 4. PROTECTING GENOMIC DATA WITH ARITHMETIC-COMPUTATION

CAPABILITY

(a) Performance of small-scale
experiments on a single machine

(b) Performance of large-scale
experiments on a cluster

0

100

200

300

400

500

600

Ru
nn

in
g	t
im

e	
(s
ec
on

ds
)

Number	of	SNVs

Secure	EAF	Plotting
Secure	P-Z	Plotting
Secure	SE-N	Plotting

0

500

1000

1500

2000

2500

3000

3500

Secure	SE-N	
Plotting

Secure	EAF	
Plotting

Secure	P-Z	
Plotting

Pa
ra
lle
l	r
un

ni
ng

	ti
m
e	

(s
ec
on

ds
)

Figure 4.9: Runtime performance of three SQC protocols. (a) Running time of three
protocols on small real datasets. It is measured on a single Intel Core i7 processor
clocked at 3.1 GHz and 16 GB of RAM. We construct small datasets, varying from
1000 SNVs to 10000 SNVs, from the real data that contains 3 million SNVs. Secure
P-Z plotting takes more time than the other two protocols because of secure division and
oblivious sorting on numbers of 96 bits. This sequential implementation, especially due to
sequential oblivious sorting, is not efficient enough to run on large datasets. (b) Parallel
performance on two private clouds. Each machine has 8 cores clocked at 2.5 GHz and
32 GB of RAM, and each cloud has 8 machines (64 cores in total). Any two cores inside
a cloud can communicate with each other, whereas a core of Cloud A can communicate
with only one core of Cloud B in a channel with bandwidth of 1 Gbps, representing
secure two-party computation as defined in Definition 1. The performance of the three
SQC protocols is measured by processing one million SNVs. The most expensive secure
P-Z protocol takes less than one hour.

Note that if the statistics under consideration describe pairwise SNV correlation (link-

age disequilibrium), reducing precision might not be a sufficient measure to defend against

some categories of attacks [12]. Indeed, if the victim is in the case group, such pairwise

statistics from a few SNVs might contribute a substantial amount of information to at-

tackers because it is less common to find a combination of two alleles than to find either

one of them. Although these pairwise correlations are not seen in our data, researchers

should take more precautions about revealing such correlation statistics than statistics

of independent SNVs.

In parallel to SQC based on secure multiparty computation and differential privacy,

homomorphic encryption is also widely used for untrusted cloud computing. Such an en-

cryption enables an untrusted cloud to perform computation on randomized ciphertext,

which is projected into certain computation on the corresponding plaintext. This is a

highly desirable solution for our purpose of utilizing the cloud computing power without

revealing the sensitive plaintext data, although existing efficient schemes are still con-

strained by the limited number of possible operations [167]. In the privacy-preserving

genomic and medical studies, researchers have also proposed various systems based on

homomorphic encryption [17, 28, 32, 31, 30].

4.6. SUMMARY 83

4.6 Summary

Overall, SQC addresses the pressing issues of quality controlling privacy-preserving ag-

gregate data sharing. By using a set of sanitization processes and advanced crypto-

graphic tools, SQC guarantees that users of the framework have access to only minimal

but sufficient output information that is unlikely to be useful for inference attacks. In

particular, SQC automates the quality control phase in GWAS meta-analysis in a privacy-

preserving manner. By projecting the quality-control protocols in a secure computation

framework, SQC offers an effective balance between the needs of researchers for GWAS

meta-analysis and the needs of data owners to respect the genetic privacy of research

participants. Moreover, running SQC does not incur any utility loss for subsequent meta

analyses. Although the strong security and privacy guarantees of SQC comes with in-

tensive computation, we demonstrate that it is practical to perform the task using a

recently proposed parallel secure computation framework. Considering the months-long

discussions required for data access agreement, the SQC framework, once established, is

promising for automating both the data sharing and protection, hence paving the way

for large-scale medical research.

Chapter 5

Conclusion

In this thesis, we have investigated the potential threats of cloud-based genomic com-

puting systems and have proposed various countermeasures by taking into account the

functionality requirements. We have shown how to choose appropriate privacy-enhancing

techniques in order to design the privacy-conscious counterpart of existing cloud-based

genomic computing systems. Different techniques have different advantages and limi-

tations, which system designers must carefully consider in order to avoid pitfalls (e.g.,

security vulnerabilities, inefficiency, low accuracy).

In Chapter 2, we have presented a robust cloud storage system of genomic data

for end users who can employ password-based encryption to protect their data from

brute-force attacks. We have proposed GenoGuard to defend against data breaches

that involve a computationally unbounded adversary who can brute-force passwords or

even cryptographic keys. With various data breaches showing that users tend to choose

weak passwords, GenoGuard is particularly useful in the case of the password-based

encryption that is frequently used by direct-to-consumer services. GenoGuard is built on

honey encryption, where plaintext messages need to be transformed to a different space

with uniform distribution on elements. We designed a novel distribution-transformation

encoder for honey encryption. This encoder employs a hidden Markov chain on genome

sequence, and our chi-square test shows that the model fits well on the distribution of

genotypes. We have also presented a thorough security proof on the resulting honey

encryption scheme that uses our new distribution-transformation encoder. To ensure a

security loss smaller than 2−200, GenoGuard needs to expand the storage by only a factor

slightly larger than 2; in exchange for this, users gain the security property against brute-

force attacks on the encrypted data. We have also shown the high probability of being

able to break the conventional password-based encryption scheme if the password set is

limited (e.g., 1000 passwords), whereas GenoGuard remains robust in the same scenario.

In addition, we have proposed and analyzed techniques for preventing an adversary

from exploiting phenotype information (physical traits of victims) in order to decrypt

genomes. For example, with the “red” hair information, an adversary’s advantage can

increase from 0.0379 to 0.0642. The countermeasure to this problem is to incorporate the

side information during the encoding phase, which we have demonstrated for the case of

ancestry information. Our Python implementation requires around 1 minute to encrypt

22 chromosomes on a cluster of 22 nodes.

85

86 CHAPTER 5. CONCLUSION

In Chapter 3, we have introduced a privacy-preserving solution, SECRAM: it offers

efficient random retrieval on large encrypted genomic data. Researchers or doctors are

sometimes interested in retrieving the highly redundant raw genomic data, in addition to

genetic variants, in order to discover some other useful information or sequencing errors.

With 3 billion nucleotides being replicated and stored multiple times in a file (sometimes

even randomly located), the data of one person can go up to several hundred gigabytes,

posing two major technical challenges: storage costs and data processing efficiency. In

this regard, we have presented a privacy-preserving solution for the secure storage and

efficient retrieval of compressed aligned genomic data. We have shown the possibility

of storing read-based genomic data in a transposed manner, and of still maintaining all

information with lossless compression. Compared with BAM (the current standard),

SECRAM provides strong protection and saves 18% of storage on average, when the cov-

erage is higher than 10×. For example, BAM uses 472 MB to store human chromosome

11 with 3× coverage, whereas SECRAM only uses 407 MB. SECRAM also offers efficient

data retrieval that requires less than 0.25 seconds to obtain 1 million genomic positions

with a 3× coverage. We maintain both efficient compression and downstream data pro-

cessing in SECRAM, and we provide unprecedented levels of security in genomic data

storage. SECRAM thus offers a space-saving, privacy-preserving, and efficient solution

for the storage of clinical genomic data.

Furthermore, SECRAM is a result of the collaboration project with the Swiss com-

pany Sophia Genetics that specialises in genomic analysis and data-driven medicine.

The biggest challenge and also most important lesson we learnt from this collaboration

is: the bioinformatics community has well-established storage formats and query inter-

faces, hence any newly designed framework (with security and privacy features) has to

comply with those for smooth integration with real applications. Our design is based on

a thorough evaluation of real deployment scenarios and requirements, which renders SE-

CRAM a highly compliant product for existing cloud systems. We have also discussed the

potential vulnerability of using order-preserving encryption. Although SECRAM offers a

smooth transition from current practice to a more privacy-conscious system, we envision

more secure cryptographic primitives to be integrated, such as searchable encryption.

In Chapter 4, we have described SQC in detail for securing genomic-data quality

control during genome-wide association meta-analysis. To some extent, fear-induced

regulations thwart the development of genomic analysis, especially after the revelation

of a number of powerful statistical inference attacks on aggregated data. As an alterna-

tive to the time-consuming data-sharing logistics, SQC demonstrates another possibility

that the data-analysis collaboration can be enabled in a secure manner by employing

advanced cryptographic techniques, such as secure multi-party computation based on

garbled circuit. Certainly, these techniques come at a high computational cost, but it is

modest compared to existing practices of data sharing. We have shown that the expected

patterns of data quality plots will have only a negligible change even after ensuring strong

differential privacy, rendering SQC a robust scheme for privacy-preserving data sharing.

The system makes use of parallel processing. To demonstrate the efficiency and scal-

ability on commodity machines, we have implemented the solution in a meta-analysis

pipeline with real data. As a result, we achieved a performance of one-hour execution

for three quality control protocols for one million genetic variants, on a cluster of 128

cores. With rapid advances in the cryptographic community, we expect the performance

of these advanced schemes to be much better in the near future, opening the possi-

87

bility that efficient secure data-sharing protocols could substitute certain fear-induced

regulations.

In conclusion, we have devised various privacy-enhancing tools that data scientists

can exploit when facing a privacy and security requirement, and we have shown several

concrete privacy-conscious systems that employ these tools. As the sensitive nature of

genomic data becomes increasingly more visible to attackers, genomic-data protection

becomes more relevant to cloud computing. Nevertheless, despite its cutting-edge inter-

disciplinary research, privacy-conscious genomic computing systems are mostly based on

many techniques available in the cryptography community. Communication between the

genomic community and the cryptography community is of paramount importance. In

absence of this, hardly any solution can claim itself secure, useful, or even meaningful.

The state of the art in data hacking continues to advance, demanding ongoing efforts to

protect against the latest vulnerabilities. After completing this thesis, we can breathe

a sigh of relief because of the extensive powerful privacy-enhancing tools available, if

only on our academic shelves. But at the same time, we must persevere in further re-

search into cloud computing for genomic data due to the subtlety of privacy-enhancing

designs, such as efficiency, security, privacy level, accuracy, storage cost, and compat-

ibility. Meanwhile, we should educate the general public about the risks so that they

know to demand for better security and privacy in genomic applications. Surely, the

genomic-privacy community will remain busy for years to come, dealing with all these

problems and those as yet unimagined.

Bibliography

[1] https://cloud.google.com/genomics/, [Online; accessed 13-November-2014]. [cited at p. 1]

[2] https://www.ibm.com/watson/health/oncology-and-genomics/genomics/. [cited at p. 1]

[3] https://enterprise.microsoft.com/en-us/industries/health/genomics/. [cited at p. 1]

[4] https://www.apple.com/newsroom/2016/03/21Apple-Announces-Advancements-to-

ResearchKit/. [cited at p. 1]

[5] https://aws.amazon.com/health/genomics/. [cited at p. 1]

[6] https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html?action=

Click&contentCollection=BreakingNews&contentID=64651831&pgtype=Homepage& r=

0. [cited at p. 1]

[7] http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-

hacks/. [cited at p. 1]

[8] http://www.nytimes.com/2013/12/29/business/reading-your-palm-for-securitys-

sake.html. [cited at p. 1]

[9] https://www.forbes.com/sites/matthewherper/2015/01/06/surprise-with-60-million-

genentech-deal-23andme-has-a-business-plan/. [cited at p. 2]

[10] http://www.nature.com/news/privacy-protections-the-genome-hacker-1.12940.

[cited at p. 2]

[11] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pear-

son, D. A. Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals contributing

trace amounts of DNA to highly complex mixtures using high-density SNP genotyping

microarrays,” PLoS Genetics, vol. 4, no. 8, p. e1000167, 2008. [cited at p. 2, 3, 62]

[12] R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou, “Learning your identity and disease

from research papers: Information leaks in genome wide association study,” in Proceedings

of the 16th ACM conference on computer and communications security, 2009, pp. 534–544.

[cited at p. 2, 3, 62, 82]

[13] S. E. Fienberg, A. B. Slavkovic, and C. Uhler, “Privacy preserving GWAS data sharing,”

in IEEE 11th International Conference on Data Mining Workshops (ICDMW), 2011, pp.

628–635. [cited at p. 2, 3, 64, 68]

[14] A. Johnson and V. Shmatikov, “Privacy-preserving data exploration in genome-wide as-

sociation studies,” in Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2013, pp. 1079–1087. [cited at p. 2, 3, 68]

89

https://cloud.google.com/genomics/
https://www.ibm.com/watson/health/oncology-and-genomics/genomics/
https://enterprise.microsoft.com/en-us/industries/health/genomics/
https://www.apple.com/newsroom/2016/03/21Apple-Announces-Advancements-to-ResearchKit/
https://www.apple.com/newsroom/2016/03/21Apple-Announces-Advancements-to-ResearchKit/
https://aws.amazon.com/health/genomics/
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html?action=Click&contentCollection=BreakingNews&contentID=64651831&pgtype=Homepage&_r=0
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html?action=Click&contentCollection=BreakingNews&contentID=64651831&pgtype=Homepage&_r=0
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html?action=Click&contentCollection=BreakingNews&contentID=64651831&pgtype=Homepage&_r=0
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.nytimes.com/2013/12/29/business/reading-your-palm-for-securitys-sake.html
http://www.nytimes.com/2013/12/29/business/reading-your-palm-for-securitys-sake.html
https://www.forbes.com/sites/matthewherper/2015/01/06/surprise-with-60-million-genentech-deal-23andme-has-a-business-plan/
https://www.forbes.com/sites/matthewherper/2015/01/06/surprise-with-60-million-genentech-deal-23andme-has-a-business-plan/
http://www.nature.com/news/privacy-protections-the-genome-hacker-1.12940

90 BIBLIOGRAPHY

[15] F. Yu, S. E. Fienberg, A. B. Slavković, and C. Uhler, “Scalable privacy-preserving data

sharing methodology for genome-wide association studies,” Journal of biomedical infor-

matics, 2014. [cited at p. 2, 3]

[16] F. Tramèr, Z. Huang, J.-P. Hubaux, and E. Ayday, “Differential privacy with bounded

priors: reconciling utility and privacy in genome-wide association studies,” in Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM,

2015, pp. 1286–1297. [cited at p. 2, 3, 68]

[17] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rougemont, “Protecting and evaluating ge-

nomic privacy in medical tests and personalized medicine,” in Proceedings of the 12th ACM

workshop on Workshop on privacy in the electronic society, 2013, pp. 95–106. [cited at p. 2,

3, 82]

[18] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin, “A cryptographic approach to securely

share and query genomic sequences,” IEEE Transactions on Information Technology in

Biomedicine, vol. 12, no. 5, pp. 606–617, 2008. [cited at p. 2, 3]

[19] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik, “Countering GAT-

TACA: Efficient and secure testing of fully-sequenced human genomes,” in Proceedings of

the 18th ACM conference on Computer and communications security, 2011, pp. 691–702.

[cited at p. 2, 3]

[20] M. Canim, M. Kantarcioglu, and B. Malin, “Secure management of biomedical data with

cryptographic hardware,” IEEE Transactions on Information Technology in Biomedicine,

vol. 16, no. 1, pp. 166–175, 2012. [cited at p. 2, 4]

[21] F. Chen, S. Wang, X. Jiang, S. Ding, Y. Lu, J. Kim, S. C. Sahinalp, C. Shimizu, J. C.

Burns, V. J. Wright et al., “PRINCESS: Privacy-protecting rare disease international

network collaboration via encryption through software guard extensions,” Bioinformatics,

vol. 33, no. 6, pp. 871–878, 2016. [cited at p. 2, 4]

[22] F. Chen, C. Wang, W. Dai, X. Jiang, N. Mohammed, M. M. Al Aziz, M. N. Sadat,

C. Sahinalp, K. Lauter, and S. Wang, “PRESAGE: Privacy-preserving genetic testing via

software guard extension,” BMC medical genomics, vol. 10, no. 2, p. 48, 2017. [cited at p. 2,

4, 81]

[23] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P. Hubaux, B. A. Malin,

and X. Wang, “Privacy and security in the genomic era,” arXiv preprint arXiv:1405.1891,

2014. [cited at p. 2]

[24] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in phar-

macogenetics: An end-to-end case study of personalized warfarin dosing,” in USENIX

Security, 2014. [cited at p. 3, 68]

[25] Y. Erlich and A. Narayanan, “Routes for breaching and protecting genetic privacy,” Nature

Reviews Genetics, vol. 15, no. 6, pp. 409–421, 2014. [cited at p. 2, 3]

[26] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for genomic computa-

tion,” in IEEE Symposium on Security and Privacy, 2008, pp. 216–230. [cited at p. 3]

[27] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong, “Privacy-preserving ge-

nomic computation through program specialization,” in Proceedings of the 16th ACM con-

ference on Computer and communications security. ACM, 2009, pp. 338–347. [cited at p. 3]

[28] E. Ayday, J. L. Raisaro, P. J. Mclaren, J. Fellay, and J.-p. Hubaux, “Privacy-preserving

computation of disease risk by using genomic, clinical, and environmental data,” in Pro-

ceedings of USENIX Security Workshop on Health Information Technologies (HealthTech),

2013. [cited at p. 3, 82]

BIBLIOGRAPHY 91

[29] W. Xie, M. Kantarcioglu, W. S. Bush, D. Crawford, J. C. Denny, R. Heatherly, and B. A.

Malin, “SecureMA: protecting participant privacy in genetic association meta-analysis,”

Bioinformatics, vol. 30, no. 23, pp. 3334–3341, Dec. 2014. [cited at p. 3, 62, 66]

[30] M. Kim and K. Lauter, “Private genome analysis through homomorphic encryption,”

BMC Medical Informatics and Decision Making, vol. 15, no. 5, p. S3, 2015. [cited at p. 3,

82]

[31] K. Shimizu, K. Nuida, and G. Rtsch, “Efficient privacy-preserving string search and

an application in genomics,” Bioinformatics, vol. 32, no. 11, pp. 1652–1661, Jun. 2016.

[cited at p. 3, 82]

[32] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and X. Jiang,

“HEALER: Homomorphic computation of ExAct Logistic rEgRession for secure rare dis-

ease variants analysis in GWAS,” Bioinformatics, vol. 32, no. 2, pp. 211–218, Jan. 2016.

[cited at p. 3, 82]

[33] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet, B. Ford, and

J.-P. Hubaux, “UnLynx: A decentralized system for privacy-conscious data sharing,” in

Proceedings on Privacy Enhancing Technologies, vol. 4, 2017, pp. 152–170. [cited at p. 3]

[34] J. R. Troncoso-Pastoriza, A. Pedrouzo-Ulloa, and F. Pérez-González, “Secure genomic

susceptibility testing based on lattice encryption,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 2067–2071. [cited at p. 3]

[35] J. S. Sousa, C. Lefebvre, Z. Huang, J. L. Raisaro, C. Aguilar-Melchor, M.-O. Killijian, and

J.-P. Hubaux, “Efficient and secure outsourcing of genomic data storage,” BMC Medical

Genomics, vol. 10, no. Suppl 2, Jul. 2017. [cited at p. 3]

[36] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and G. Bejerano, “Deriving

genomic diagnoses without revealing patient genomes,” Science, vol. 357, no. 6352, pp.

692–695, 2017. [cited at p. 3]

[37] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and

M. Russinovich, “VC3: Trustworthy Data Analytics in the Cloud Using SGX,” in 2015

IEEE Symposium on Security and Privacy (SP), May 2015, pp. 38–54. [cited at p. 4]

[38] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M2r: Enabling Stronger

Privacy in Mapreduce Computation,” in Proceedings of the 24th USENIX Conference on

Security Symposium, 2015, pp. 447–462. [cited at p. 4]

[39] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss, and D. Sharma,

“Observing and Preventing Leakage in MapReduce,” in Proceedings of the 22Nd ACM

SIGSAC Conference on Computer and Communications Security, 2015, pp. 1570–1581.

[cited at p. 4]

[40] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-Tenant Side-Channel Attacks

in PaaS Clouds,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’14, 2014, pp. 990–1003. [cited at p. 4, 81]

[41] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache Side-Channel

Attacks are Practical,” in 2015 IEEE Symposium on Security and Privacy, May 2015, pp.

605–622. [cited at p. 4, 81]

[42] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Deterministic Side Chan-

nels for Untrusted Operating Systems,” in 2015 IEEE Symposium on Security and Privacy,

May 2015, pp. 640–656. [cited at p. 4]

92 BIBLIOGRAPHY

[43] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx amplifies the power

of cache attacks,” in International Conference on Cryptographic Hardware and Embedded

Systems. Springer, 2017, pp. 69–90. [cited at p. 4]

[44] https://www.wired.com/story/meltdown-spectre-bug-collision-intel-chip-flaw-

discovery/. [cited at p. 4]

[45] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin,

Y. Yarom, and M. Hamburg, “Meltdown,” ArXiv e-prints, Jan. 2018. [cited at p. 4]

[46] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,

M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” ArXiv

e-prints, Jan. 2018. [cited at p. 4]

[47] Z. Huang, E. Ayday, J. Fellay, J.-P. Hubaux, and A. Juels, “GenoGuard: Protecting

genomic data against brute-force attacks,” in 36th IEEE Symposium on Security and

Privacy (SP), 2015, pp. 447–462. [cited at p. 7]

[48] Z. Huang, E. Ayday, H. Lin, R. S. Aiyar, A. Molyneaux, Z. Xu, J. Fellay, L. M. Stein-

metz, and J.-P. Hubaux, “A privacy-preserving solution for compressed storage and se-

lective retrieval of genomic data,” Genome research, vol. 26, no. 12, pp. 1687–1696, 2016.

[cited at p. 7]

[49] Z. Huang, H. Lin, J. Fellay, Z. Kutalik, and J.-P. Hubaux, “SQC: secure quality control

for meta-analysis of genome-wide association studies,” Bioinformatics, vol. 33, no. 15, pp.

2273–2280, 2017. [cited at p. 7]

[50] https://www.cleardata.com/wp-content/uploads/2016/12/2016-HIMSS-Analytics-

Cloud-Study.pdf, [Online; accessed 2-October-2017]. [cited at p. 9]

[51] https://www.ispartnersllc.com/blog/most-trusted-hipaa-compliant-cloud-storage-

services/, [Online; accessed 2-October-2017]. [cited at p. 9]

[52] https://www.nbcnews.com/technology/your-cloud-drive-really-private-not-according-

fine-print-1C8881731, [Online; accessed 2-October-2017]. [cited at p. 9]

[53] https://lifehacker.com/the-best-cloud-storage-services-that-protect-your-priva-

729639300, [Online; accessed 2-October-2017]. [cited at p. 9]

[54] https://www.forbes.com/sites/kellyclay/2012/07/19/is-microsoft-spying-on-skydrive-

users/, [Online; accessed 2-October-2017]. [cited at p. 9]

[55] https://spideroak.com/. [cited at p. 9]

[56] https://www.comparitech.com/blog/cloud-online-backup/6-apps-to-encrypt-your-files-

before-uploading-to-the-cloud/, [Online; accessed 2-October-2017]. [cited at p. 9]

[57] https://www.ibm.com/support/knowledgecenter/en/SSEPGG 9.5.0/

com.ibm.db2.luw.admin.sec.doc/doc/c0005815.html, [Online; accessed 2-October-2017].

[cited at p. 9]

[58] https://support.office.com/en-us/article/Encrypt-a-database-by-using-a-database-

password-fe1cc5fe-f9a5-4784-b090-fdb2673457ab, [Online; accessed 2-October-2017].

[cited at p. 9]

[59] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti, “Addressing the concerns of the

Lacks family: Quantification of kin genomic privacy,” in Proceedings of the ACM SIGSAC

conference on Computer and communications security, 2013, pp. 1141–1152. [cited at p. 10]

https://www.wired.com/story/meltdown-spectre-bug-collision-intel-chip-flaw-discovery/
https://www.wired.com/story/meltdown-spectre-bug-collision-intel-chip-flaw-discovery/
https://www.cleardata.com/wp-content/uploads/2016/12/2016-HIMSS-Analytics-Cloud-Study.pdf
https://www.cleardata.com/wp-content/uploads/2016/12/2016-HIMSS-Analytics-Cloud-Study.pdf
https://www.ispartnersllc.com/blog/most-trusted-hipaa-compliant-cloud-storage-services/
https://www.ispartnersllc.com/blog/most-trusted-hipaa-compliant-cloud-storage-services/
https://www.nbcnews.com/technology/your-cloud-drive-really-private-not-according-fine-print-1C8881731
https://www.nbcnews.com/technology/your-cloud-drive-really-private-not-according-fine-print-1C8881731
https://lifehacker.com/the-best-cloud-storage-services-that-protect-your-priva-729639300
https://lifehacker.com/the-best-cloud-storage-services-that-protect-your-priva-729639300
https://www.forbes.com/sites/kellyclay/2012/07/19/is-microsoft-spying-on-skydrive-users/
https://www.forbes.com/sites/kellyclay/2012/07/19/is-microsoft-spying-on-skydrive-users/
https://spideroak.com/
https://www.comparitech.com/blog/cloud-online-backup/6-apps-to-encrypt-your-files-before-uploading-to-the-cloud/
https://www.comparitech.com/blog/cloud-online-backup/6-apps-to-encrypt-your-files-before-uploading-to-the-cloud/
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.5.0/com.ibm.db2.luw.admin.sec.doc/doc/c0005815.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.5.0/com.ibm.db2.luw.admin.sec.doc/doc/c0005815.html
https://support.office.com/en-us/article/Encrypt-a-database-by-using-a-database-password-fe1cc5fe-f9a5-4784-b090-fdb2673457ab
https://support.office.com/en-us/article/Encrypt-a-database-by-using-a-database-password-fe1cc5fe-f9a5-4784-b090-fdb2673457ab

BIBLIOGRAPHY 93

[60] D. Florencio and C. Herley, “A large-scale study of web password habits,”

in Proceedings of the 16th International Conference on World Wide Web, ser.

WWW ’07. New York, NY, USA: ACM, 2007, pp. 657–666. [Online]. Available:

http://doi.acm.org/10.1145/1242572.1242661 [cited at p. 10, 11]

[61] A. Juels and T. Ristenpart, “Honey encryption: Security beyond the brute-force bound,”

in Advances in Cryptology–EUROCRYPT, 2014, pp. 293–310. [cited at p. 4, 10, 11, 12, 13,

26, 27]

[62] J. M. VanLiere and N. A. Rosenberg, “Mathematical properties of the r2 measure of

linkage disequilibrium,” Theoretical population biology, vol. 74, no. 1, pp. 130–137, 2008.

[cited at p. 12]

[63] M. Benantar, Access control systems: Security, identity management and trust models.

Springer, 2006. [cited at p. 14]

[64] B. Kaliski, PKCS# 5: Password-based cryptography specification version 2.0, RSA Labo-

ratories, September, 2000. [cited at p. 18, 29, 35]

[65] M. S. McPeek and A. Strahs, “Assessment of linkage disequilibrium by the decay of hap-

lotype sharing, with application to fine-scale genetic mapping,” The American Journal of

Human Genetics, vol. 65, pp. 858–875, 1999. [cited at p. 20]

[66] S. L. Salzberg, A. L. Delcher, S. Kasif, and O. White, “Microbial gene identification

using interpolated Markov models,” Nucleic acids research, vol. 26, pp. 544–548, 1998.

[cited at p. 20]

[67] N. Li and M. Stephens, “Modeling linkage disequilibrium and identifying recombination

hotspots using single-nucleotide polymorphism data,” Genetics, vol. 165, pp. 2213–2233,

2003. [cited at p. 20]

[68] L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, pp. 257–286, 1989. [cited at p. 21]

[69] J. Marchini, B. Howie, S. Myers, G. McVean, and P. Donnelly, “A new multipoint method

for genome-wide association studies by imputation of genotypes,” Nature genetics, vol. 39,

pp. 906–913, 2007. [cited at p. 21, 22]

[70] http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en, [Online; accessed 11-

November-2014]. [cited at p. 22, 31, 35]

[71] R. B. DiAgostino and J. M. Massaro, “Goodness-of-fit tests,” Handbook of the Logistic

Distribution, p. 327, 2013. [cited at p. 23]

[72] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus of 70 million

passwords,” in IEEE Symposium on Security and Privacy, 2012, pp. 538–552. [cited at p. 28]

[73] P. Claes, D. K. Liberton, K. Daniels, K. M. Rosana, E. E. Quillen, L. N. Pearson,

B. McEvoy, M. Bauchet, A. A. Zaidi, W. Yao et al., “Modeling 3D facial shape from

DNA,” PLoS genetics, March 20, 2014. [cited at p. 30]

[74] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Re-

ich, “Principal components analysis corrects for stratification in genome-wide association

studies,” Nature genetics, vol. 38, no. 8, pp. 904–909, 2006. [cited at p. 31]

[75] J. N. Sampson, K. K. Kidd, J. R. Kidd, and H. Zhao, “Selecting SNPs to identify ancestry,”

Annals of human genetics, vol. 75, no. 4, pp. 539–553, 2011. [cited at p. 31]

[76] D. Malone and K. Maher, “Investigating the distribution of password choices,” in Proceed-

ings of the 21st international conference on World Wide Web. ACM, 2012, pp. 301–310.

[cited at p. 32]

http://doi.acm.org/10.1145/1242572.1242661
http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en

94 BIBLIOGRAPHY

[77] D. Wang, G. Jian, H. Cheng, Q. Gu, C. Zhu, and P. Wang, “Zipfs law in passwords,”

Cryptology ePrint Archive, Report 2014/631, Tech. Rep., 2014. [cited at p. 32, 33]

[78] S. Walsh, F. Liu, A. Wollstein, L. Kovatsi, A. Ralf, A. Kosiniak-Kamysz, W. Branicki,

and M. Kayser, “The HIrisPlex system for simultaneous prediction of hair and eye colour

from DNA,” Forensic Science International: Genetics, vol. 7, no. 1, pp. 98–115, 2013.

[cited at p. 33]

[79] F. Haist, A. P. Shimamura, and L. R. Squire, “On the relationship between recall and

recognition memory,” Journal of Experimental Psychology: Learning, Memory, and Cog-

nition, vol. 18, no. 4, p. 691, 1992. [cited at p. 37]

[80] R. Dhamija and J. D. Tygar, “The battle against phishing: Dynamic security skins,” in

Proceedings of Symposium on Usable Privacy and Security, 2005, pp. 77–88. [cited at p. 37]

[81] R. Cappelli, A. Erol, D. Maio, and D. Maltoni, “Synthetic fingerprint-image generation,”

in Proceedings of the 15th International Conference on Pattern Recognition, vol. 3, 2000,

pp. 471–474. [cited at p. 37]

[82] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cam-

bridge University Press, 2010. [cited at p. 4]

[83] L. S. Clair, L. Johansen, W. Enck, M. Pirretti, P. Traynor, P. McDaniel, and T. Jaeger,

“Password exhaustion: Predicting the end of password usefulness,” in Information Systems

Security, 2006, pp. 37–55. [cited at p. 4]

[84] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F. Cranor, P. G.

Kelley, R. Shay, and B. Ur, “Measuring password guessability for an entire university,”

in Proceedings of the ACM SIGSAC conference on Computer & communications security,

2013, pp. 173–186. [cited at p. 4]

[85] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled web of pass-

word reuse,” in Proceedings of Network and Distributed System Security Symposium, 2014.

[cited at p. 4]

[86] L. Spitzner, Honeypots: Tracking hackers. Addison-Wesley Reading, 2003. [cited at p. 4]

[87] C. Kreibich and J. Crowcroft, “Honeycomb: Creating intrusion detection signatures using

honeypots,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 1, pp. 51–56,

2004. [cited at p. 4]

[88] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen, “Honeystat:

Local worm detection using honeypots,” in Recent Advances in Intrusion Detection, 2004,

pp. 39–58. [cited at p. 4]

[89] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. P. Markatos, and A. D.

Keromytis, “Detecting targeted attacks using shadow honeypots.” in Usenix Security,

2005. [cited at p. 4]

[90] J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver, “The use of honeynets to

detect exploited systems across large enterprise networks,” in IEEE Systems, Man and

Cybernetics Society Information Assurance Workshop, 2003, pp. 92–99. [cited at p. 4]

[91] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh, “Kamouflage: Loss-resistant password

management,” in ESORICS, 2010. [cited at p. 4]

[92] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking detectable,” in Pro-

ceedings of the ACM SIGSAC conference on Computer & communications security, 2013,

pp. 145–160. [cited at p. 4]

BIBLIOGRAPHY 95

[93] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart, “Cracking-resistant password

vaults using natural language encoders,” in 36th IEEE Symposium on Security and Privacy

(SP), 2015, pp. 481–498. [cited at p. 4]

[94] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner,

“Dynamic searchable encryption in very-large databases: Data structures and implemen-

tation.” in NDSS, vol. 14, 2014, pp. 23–26. [cited at p. 39]

[95] E. Pennisi, “Will Computers Crash Genomics?” Science, vol. 331, no. 6018, pp. 666–668,

Feb. 2011. [cited at p. 39]

[96] http://www.ebi.ac.uk/ena/software/cram-toolkit. [cited at p. 40, 45, 58]

[97] http://www.genome.gov/sequencingcosts/. [cited at p. 40]

[98] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron, R. Iyer, M. C.

Schatz, S. Sinha, and G. E. Robinson, “Big Data: Astronomical or Genomical?” PLoS

Biol, vol. 13, no. 7, p. e1002195, Jul. 2015. [cited at p. 40]

[99] https://aws.amazon.com/s3/pricing/. [cited at p. 40]

[100] Z. Zhu, Y. Zhang, Z. Ji, S. He, and X. Yang, “High-throughput DNA sequence data

compression,” Briefings in Bioinformatics, vol. 16, no. 1, pp. 1–15, Jan. 2015. [cited at p. 40,

41]

[101] S. Grumbach and F. Tahi, “Compression of DNA sequences,” in Data Compression Con-

ference, 1993. DCC ’93., 1993, pp. 340–350. [cited at p. 40]

[102] X. Chen, S. Kwong, and M. Li, “A Compression Algorithm for DNA Sequences and Its

Applications in Genome Comparison,” in Proceedings of the Fourth Annual International

Conference on Computational Molecular Biology. New York, NY, USA: ACM, 2000.

[cited at p. 40]

[103] X. Chen, M. Li, B. Ma, and J. Tromp, “DNACompress: fast and effective DNA sequence

compression,” Bioinformatics, vol. 18, no. 12, pp. 1696–1698, 2002. [cited at p. 40]

[104] S. Christley, Y. Lu, C. Li, and X. Xie, “Human genomes as email attachments,” Bioin-

formatics, vol. 25, no. 2, pp. 274–275, Jan. 2009. [cited at p. 40]

[105] https://www.gzip.org. [cited at p. 40]

[106] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,

R. Durbin, and . G. P. D. P. Subgroup, “The Sequence Alignment/Map format and

SAMtools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079, Aug. 2009. [cited at p. 40,

46]

[107] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze, “Compression of next-generation

sequencing reads aided by highly efficient de novo assembly,” Nucleic Acids Research, p.

gks754, Aug. 2012. [cited at p. 40]

[108] J. K. Bonfield and M. V. Mahoney, “Compression of FASTQ and SAM Format Sequencing

Data,” PLoS ONE, vol. 8, no. 3, p. e59190, Mar. 2013. [cited at p. 40]

[109] P. Li, X. Jiang, S. Wang, J. Kim, H. Xiong, and L. Ohno-Machado, “HUGO: Hierarchical

mUlti-reference Genome cOmpression for aligned reads,” Journal of the American Medical

Informatics Association, vol. 21, no. 2, pp. 363–373, Mar. 2014. [cited at p. 40]

[110] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney, “Efficient storage of high

throughput DNA sequencing data using reference-based compression,” Genome Research,

vol. 21, no. 5, pp. 734–740, May 2011. [cited at p. 40]

http://www.ebi.ac.uk/ena/software/cram-toolkit
http://www. genome.gov/sequencingcosts/
https://aws.amazon.com/s3/ pricing/
https://www.gzip.org

96 BIBLIOGRAPHY

[111] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. D. Joseph, and D. A.

Patterson, “Adam: Genomics formats and processing patterns for cloud scale computing,”

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2013-207,

2013. [cited at p. 41]

[112] Y. W. Yu, D. Yorukoglu, J. Peng, and B. Berger, “Quality score compression improves

genotyping accuracy,” Nature Biotechnology, vol. 33, no. 3, pp. 240–243, Mar. 2015.

[cited at p. 41, 58]

[113] S. D. Kahn, “On the Future of Genomic Data,” Science, vol. 331, no. 6018, pp. 728–729,

Feb. 2011. [cited at p. 2]

[114] E. L. van Dijk, H. Auger, Y. Jaszczyszyn, and C. Thermes, “Ten years of next-generation

sequencing technology,” Trends in Genetics, vol. 30, no. 9, pp. 418–426, Sep. 2014.

[cited at p. 2]

[115] E. Ayday, J. L. Raisaro, U. Hengartner, A. Molyneaux, and J.-P. Hubaux, “Privacy-

Preserving Processing of Raw Genomic Data,” in 8th International Workshop on Data

Privacy Management and Autonomous Spontaneous Security, New York, NY, USA, 2013,

no. 8247, pp. 133–147. [cited at p. 2, 41, 42, 47, 56, 57]

[116] G. Onsongo, J. Erdmann, M. D. Spears, J. Chilton, K. B. Beckman, A. Hauge, S. Yohe,

M. Schomaker, M. Bower, K. A. T. Silverstein, and B. Thyagarajan, “Implementation of

Cloud based Next Generation Sequencing data analysis in a clinical laboratory,” BMC

Research Notes, vol. 7, no. 1, p. 314, May 2014. [cited at p. 2]

[117] J. G. Reid, A. Carroll, N. Veeraraghavan, M. Dahdouli, A. Sundquist, A. English, M. Bain-

bridge, S. White, W. Salerno, C. Buhay, F. Yu, D. Muzny, R. Daly, G. Duyk, R. A. Gibbs,

and E. Boerwinkle, “Launching genomics into the cloud: deployment of Mercury, a next

generation sequence analysis pipeline,” BMC Bioinformatics, vol. 15, no. 1, p. 30, Jan.

2014. [cited at p. 2]

[118] Z. Rilak, S. Wernicke, and I. Bogicevic, “Keeping Genomic Data Safe on the Cloud,” Jour-

nal of Biomolecular Techniques : JBT, vol. 25, no. Suppl, p. S5, May 2014. [cited at p. 2]

[119] https://samtools.github.io/hts-specs/SAMv1.pdf. [cited at p. 42]

[120] A. Boldyreva, N. Chenette, and A. ONeill, “Order-Preserving Encryption Revisited: Im-

proved Security Analysis and Alternative Solutions,” in Advances in Cryptology CRYPTO

2011, Aug. 2011, no. 6841, pp. 578–595. [cited at p. 46, 49, 57]

[121] H. Lipmaa, D. Wagner, and P. Rogaway, Comments to NIST concerning AES modes of

operation: CTR-mode encryption, 2000. [cited at p. 47]

[122] https://samtools.github.io/htsjdk/. [cited at p. 51]

[123] https://www.bouncycastle.org/. [cited at p. 51]

[124] http://www.sophiagenetics.com/home.html. [cited at p. 54]

[125] V. Kolesnikov and A. Shikfa, “On The Limits of Privacy Provided by Order-Preserving En-

cryption,” Bell Labs Technical Journal, vol. 17, no. 3, pp. 135–146, Dec. 2012. [cited at p. 57]

[126] M. Naveed, S. Kamara, and C. V. Wright, “Inference Attacks on Property-Preserving En-

crypted Databases,” in Proceedings of the 22Nd ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’15, New York, NY, USA, 2015, pp. 644–655.

[cited at p. 57]

[127] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order Preserving Encryption for Numeric

Data,” in Proceedings of the 2004 ACM SIGMOD International Conference on Manage-

ment of Data, ser. SIGMOD ’04, New York, NY, USA, 2004, pp. 563–574. [cited at p. 57]

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/htsjdk/
https://www.bouncycastle.org/
http://www.sophiagenetics.com/home.html

BIBLIOGRAPHY 97

[128] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, “Practical Order-Revealing Encryption

with Limited Leakage,” Cryptology ePrint Archive, Tech. Rep. 1125, 2015. [cited at p. 57]

[129] F. Kerschbaum, “Frequency-Hiding Order-Preserving Encryption,” in Proceedings of the

22Nd ACM SIGSAC Conference on Computer and Communications Security, ser. CCS

’15, New York, NY, USA, 2015, pp. 656–667. [cited at p. 57]

[130] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, “POPE: Partial Order Pre-

serving Encoding,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’16, New York, NY, USA, 2016, pp. 1131–1142.

[cited at p. 57]

[131] http://www.pacb.com/products-and-services/pacbio-systems/sequel/. [cited at p. 58]

[132] T. W. Winkler, F. R. Day, D. C. Croteau-Chonka, A. R. Wood, A. E. Locke, R. Mägi,

T. Ferreira, T. Fall, M. Graff, A. E. Justice et al., “Quality control and conduct of genome-

wide association meta-analyses,” Nature Protocols, vol. 9, no. 5, pp. 1192–1212, 2014.

[cited at p. 62, 71, 72]

[133] H. K. Im, E. R. Gamazon, D. L. Nicolae, and N. J. Cox, “On Sharing Quantitative Trait

GWAS Results in an Era of Multiple-omics Data and the Limits of Genomic Privacy,” The

American Journal of Human Genetics, vol. 90, no. 4, pp. 591–598, Apr. 2012. [cited at p. 3,

62]

[134] K. B. Jacobs, M. Yeager, S. Wacholder, D. Craig, P. Kraft, D. J. Hunter, J. Paschal, T. A.

Manolio, M. Tucker, R. N. Hoover et al., “A new statistic and its power to infer mem-

bership in a genome-wide association study using genotype frequencies,” Nature genetics,

vol. 41, no. 11, pp. 1253–1257, 2009. [cited at p. 3, 62]

[135] Lumley T and Rice K, “Potential for revealing individual-level information in genome-

wide association studies,” JAMA, vol. 303, no. 7, pp. 659–660, Feb. 2010. [cited at p. 3,

62]

[136] S. Sankararaman, G. Obozinski, M. I. Jordan, and E. Halperin, “Genomic privacy and

limits of individual detection in a pool,” Nature genetics, vol. 41, no. 9, pp. 965–967, 2009.

[cited at p. 3, 62, 74]

[137] P. M. Visscher and W. G. Hill, “The Limits of Individual Identification from Sample Allele

Frequencies: Theory and Statistical Analysis,” PLOS Genet, vol. 5, no. 10, p. e1000628,

Oct. 2009. [cited at p. 3, 62]

[138] E. A. Zerhouni and E. G. Nabel, “Protecting aggregate genomic data,” Science, vol. 322,

no. 5898, p. 44a, 2008. [cited at p. 62]

[139] A. Yao, “How to generate and exchange secrets,” in Foundations of Computer Science,

1986., 27th Annual Symposium on. IEEE, 1986, pp. 162–167. [cited at p. 63]

[140] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in Proceedings of

the twelfth annual ACM-SIAM symposium on Discrete algorithms, 2001, pp. 448–457.

[cited at p. 64]

[141] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR Gates and Appli-

cations,” in Automata, Languages and Programming, Jul. 2008, pp. 486–498. [cited at p. 64]

[142] S. Zahur, M. Rosulek, and D. Evans, “Two Halves Make a Whole,” in Advances in Cryp-

tology - EUROCRYPT 2015. Springer, Berlin, Heidelberg, Apr. 2015, pp. 220–250.

[cited at p. 64]

[143] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending Oblivious Transfers Efficiently,”

in Advances in Cryptology - CRYPTO 2003, Aug. 2003, pp. 145–161. [cited at p. 64]

http://www.pacb.com/products-and-services/pacbio-systems/sequel/

98 BIBLIOGRAPHY

[144] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More Efficient Oblivious Transfer

and Extensions for Faster Secure Computation,” in Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security, 2013, pp. 535–548. [cited at p. 64]

[145] V. Kolesnikov and R. Kumaresan, “Improved OT Extension for Transferring Short Se-

crets,” in Advances in Cryptology CRYPTO 2013, 2013, pp. 54–70. [cited at p. 64]

[146] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplaya Secure Two-party Computation

System,” in Proceedings of the 13th Conference on USENIX Security Symposium - Volume

13, 2004, pp. 20–20. [cited at p. 64]

[147] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster Secure Two-party Computation Using

Garbled Circuits,” in Proceedings of the 20th USENIX Conference on Security, 2011, pp.

35–35. [cited at p. 64]

[148] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Founda-

tions and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211–407, 2014.

[cited at p. 64, 69]

[149] A. P. Singh, S. Zafer, and I. Peer, “Metaseq: privacy preserving meta-analysis of

sequencing-based association studies,” in Pacific Symposium on Biocomputing, vol. 356,

2013, p. 367. [cited at p. 67]

[150] K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the April 30–

May 2, 1968, spring joint computer conference. ACM, 1968, pp. 307–314. [cited at p. 67,

78]

[151] D. E. Knuth, The art of computer programming: sorting and searching. Pearson Educa-

tion, 1998, vol. 3. [cited at p. 67, 72]

[152] Y. Erlich and A. Narayanan, “Routes for breaching and protecting genetic privacy,” Nature

Reviews Genetics, vol. 15, no. 6, pp. 409–421, Jun. 2014. [cited at p. 68]

[153] S. Simmons and B. Berger, “Realizing Privacy Preserving Genome-wide Association Stud-

ies,” Bioinformatics, p. btw009, Jan. 2016. [cited at p. 68]

[154] F. Yu, S. E. Fienberg, A. B. Slavkovi, and C. Uhler, “Scalable privacy-preserving data

sharing methodology for genome-wide association studies,” Journal of Biomedical Infor-

matics, vol. 50, pp. 133–141, Aug. 2014. [cited at p. 68]

[155] B. Anandan and C. Clifton, “Laplace noise generation for two-party computational differ-

ential privacy,” in 2015 13th Annual Conference on Privacy, Security and Trust (PST),

Jul. 2015. [cited at p. 69]

[156] A. Narayan and A. Haeberlen, “DJoin: Differentially Private Join Queries over Distributed

Databases,” in Proceedings of the 10th USENIX Conference on Operating Systems Design

and Implementation, ser. OSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp.

149–162. [cited at p. 69]

[157] K. Jiang, D. Shao, S. Bressan, T. Kister, and K.-L. Tan, “Publishing trajectories with

differential privacy guarantees,” in Proceedings of the 25th International Conference on

Scientific and Statistical Database Management. ACM, 2013, p. 12. [cited at p. 69]

[158] N. Mohammed, D. Alhadidi, B. C. M. Fung, and M. Debbabi, “Secure Two-Party Differ-

entially Private Data Release for Vertically Partitioned Data,” IEEE Trans. Dependable

Secur. Comput., vol. 11, no. 1, pp. 59–71, Jan. 2014. [cited at p. 69]

[159] S. Kotz, T. Kozubowski, and K. Podgorski, The Laplace distribution and generaliza-

tions: a revisit with applications to communications, economics, engineering, and finance.

Springer Science & Business Media, 2012. [cited at p. 69]

BIBLIOGRAPHY 99

[160] B. Eisenberg and R. Sullivan, “Why is the sum of independent normal random variables

normal?” Mathematics Magazine, vol. 81, no. 5, pp. 362–366, 2008. [cited at p. 69]

[161] N. Pippenger, “Selection networks,” SIAM Journal on Computing, vol. 20, no. 5, pp.

878–887, 1991. [cited at p. 72]

[162] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A Programming Frame-

work for Secure Computation,” in 2015 IEEE Symposium on Security and Privacy (SP),

May 2015, pp. 359–376. [cited at p. 73, 78]

[163] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi, “GraphSC:

Parallel Secure Computation Made Easy,” in 2015 IEEE Symposium on Security and

Privacy (SP), May 2015, pp. 377–394. [cited at p. 73]

[164] A. R. Wood et al., “Defining the role of common variation in the genomic and biological

architecture of adult human height,” Nature Genetics, vol. 46, no. 11, pp. 1173–1186, Nov.

2014. [cited at p. 73]

[165] S. Simmons and B. Berger, “One Size Doesn’t Fit All: Measuring Individual Privacy in

Aggregate Genomic Data,” in 2015 IEEE Security and Privacy Workshops (SPW), May

2015, pp. 41–49. [cited at p. 73]

[166] Y. Chen, B. Peng, X. Wang, and H. Tang, “Large-Scale Privacy-Preserving Mapping of

Human Genomic Sequences on Hybrid Clouds.” in NDSS, 2012. [cited at p. 74]

[167] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic Encryption,” Cryp-

tology ePrint Archive, Tech. Rep. 144, 2012. [cited at p. 82]

Index

AES block cipher, 33

AES encryption, 50

Aggregate statistics, 61

Allele, 9

Allele frequency (AF), 9, 20

Ancestry, 28

Beta encoding, 43

Beta estimate, 61

Binary alignment map (BAM), 38–40

Biobank, 41

Block compression, 44

Brute-force attack, 26

CBC mode, 33

Certified Institution (CI), 41

Chi-square test, 21

Cigar string (CS), 40

Coverage, 50

CRAM, 38, 40

CTR mode, 50

Cumulative distribution function (CDF), 14

Differential privacy, 59, 62

Diploid genotype, 10, 20

Distribution-Transforming Encoder (DTE), 8,

11, 14, 16, 22, 24, 27

Effect allele frequency (EAF), 61, 70

Evaluator, 62

Garbled circuit, 61

Garbler, 61

Gaussian mechanism, 67

Genetic distance, 19

Genome-wide association meta-analysis, 60

Genome-wide association study (GWAS), 59

Golomb encoding, 43

Goodness of fit, 20

Gzip, 44, 46, 50

Haploid genotype, 10, 20

HapMap project, 29

HMAC, 33

Homomorphic encryption, 59

Honey encryption, 8, 10, 13, 24, 34

Huffman encoding, 43, 52

Inverse transform sampling, 67

K-means clustering, 29

Key derivation function (KDF), 33

Kolmogorov-Smirnov distance, 72

Laplacian mechanism, 62

Linkage disequilibrium, 10, 17, 20

Log likelihood ratio test (LLR), 72

Markov chain, 18, 22

Masking and key manager (MK), 41

Medical unit (MU), 41

Message-Recovery (MR), 11, 25, 26

Oblivious de-duplication, 68

Oblivious sorting, 65, 76

Oblivious transfer (OT), 62

Order-preserving encryption, 50

Order-preserving encryption (OPE), 42, 45

P-value, 61

Password-Based Encryption (PBE), 7, 14, 16,

33

Phenotype, 28

PKCS, 33

PosCigar, 44

Principal component analysis (PCA), 28

Quality control, 60

Quality scores, 44, 46, 50

Recombination, 10, 13, 18–21

Recombination rate, 18, 20

Reference-based compression, 43, 44

Searchable encryption, 37

Secret share, 61, 64

Secure division, 76

Secure multi-party computation (SMC), 59, 61

Secure two-party computation, 61

Semi-honest model, 64

101

102 INDEX

Sensitivity, 62

Sequence alignment map (SAM), 40

Session key, 48

Short read, 40, 43

Single Nucleotide Variant (SNV), 9

Single nucleotide variant (SNV), 61

Standard error, 61, 70

Stream cipher (SC), 48

Symmetric encryption (SE), 11, 45

Trusted computing, 59

Trusted hardware, 79

Variable-length encoding (VLC), 39, 43, 50

Zipf’s law, 30

Zhicong Huang

Contact
Information

Postal address: Work Telephone: +41216933697
EPFL IC ISC LCA1, Mobile: +41786729465
BC 266 (Batiment BC) E-mail: zhicong.huang@epfl.ch
Station 14
CH-1015 Lausanne
Switzerland

Summary Researcher in security and privacy, applied cryptography, network and communication security,
big data analysis and security, secure computation, trusted computing (e.g., Intel SGX), privacy-
preserving machine learning

Education École Polytechnique Fédérale de Lausanne, Switzerland Sep., 2012 – June., 2018
Doctoral Program in Computer, Communication and Information Sciences

• PhD Thesis: On Secure Cloud Computing for Genomic Data: From Storage to Analysis

• Advisors: Jean-Pierre Hubaux (jean-pierre.hubaux@epfl.ch)
Jacques Fellay (jacques.fellay@epfl.ch)

• Expected graduation date: March 2018

Peking University, P.R.China Sep., 2008 – Jul., 2012
B.S., Computer Science

Honours and
Awards

Distinguished Student Paper Award (36th IEEE Symposium on Security and Privacy), 2015
SAMSUNG Scholarship for Academic Excellence, Peking University, 2010
Wusi Scholarship for Academic Excellence(Twice), Peking University, 2009-2011

Work
Experience

Microsoft Research Intern Jun., 2017–Sep., 2017
• Improved performance of homomorphic encryption library; Designed and implemented a new

library for private set intersection
• Machine learning on encrypted data: logistic regression, deep learning

Projects Distributed cluster analysis of medical data Apr., 2016 – Mar. 2018
in LCA1, EPFL (in collaboration with Sophia Genetics)

! Summary: Mixture modelling and encryption, Intel SGX, Differential privacy
! C++ project

Security and Compression of Aligned Sequencing Data Aug., 2013–Jul., 2015
in LCA1, EPFL (in collaboration with Sophia Genetics and Stanford University)

! Summary: Genomic data encryption, compression, and selective retrieval
! Java project
! Two papers published, two patents granted
! Github: https://github.com/acs6610987/secram

GenoGuard Nov., 2013– Dec., 2015
in LCA1, EPFL (in collaboration with Jacobs Institute, Cornell Tech)

! Summary: Robust password-based encryption for genomic data
! Python project
! One paper published in IEEE S&P with distinguished award
! Github: https://github.com/acs6610987/GenoGuard

CredibleWeb Sep., 2012–Jan., 2013
in LSIR, EPFL
! Summary: Crowdsourcing Evaluation of Web Credibility
! Github: https://github.com/acs6610987/CredibleWeb

! Google appengine and python webapp2 framework
! One extended abstract published in CHI

A Drowsiness Detection System on Android Smart Phones Dec., 2011–July., 2012
in Networking Lab, Peking university
! Bachelor thesis (award for excellence of bachelor thesis)

! Android project
! A machine learning project using deep forward networks

Publications SQC: Secure Quality Control for Meta-Analysis of Genome-Wide Association Studies
Z. Huang, H. Lin, J. Fellay, Z. Kutalik, J.-P. Hubaux
Bioinformatics, 2017 Aug 1, 33(15): 2273-2280.

Unlynx: A Decentralized System for Privacy-Conscious Data Sharing
D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet, B. Ford, J.-P. Hubaux
Proceedings on Privacy Enhancing Technologies, pp. 232-250, vol. 4, 2017.

Efficient and Secure Outsourcing of Genomic Data Storage
J. S. Sousa, C. Lefebvre, Z. Huang, J. L. Raisaro and C. Aguilar-Melchor, M.-O. Killijian, J.-P.
Hubaux
BMC Medical Genomics, vol. 10, p. 46, 2017.

A Privacy-Preserving Solution for Compressed Storage and Selective Retrieval of Ge-
nomic Data
Z. Huang, E. Ayday, H. Lin, R. S. Aiyar, A. Molyneaux, Z. Xu, J. Fellay, L. M. Steinmetz, J.-P.
Hubaux
Genome Research, vol. 26, pp. 1687-1696, 2016.

Differential Privacy with Bounded Priors: Reconciling Utility and Privacy in Genome-
Wide Association Studies
F. Tramèr, Z. Huang, E. Ayday, J.-P. Hubaux
22nd ACM Conference on Computer and Communications Security (CCS), 2015 .

GenoGuard: Protecting Genomic Data against Brute-Force Attacks
Z. Huang, E. Ayday, J. Fellay, J.-P. Hubaux, and A. Juels.
36th IEEE Symposium on Security and Privacy (S&P 2015), San Jose, CA, USA, May 2015. (Distinguished
student paper award)

Quantifying Genomic Privacy via Inference Attack with High-Order SNV Correlations
S. S. Samani, Z. Huang, E. Ayday, M. Elliot, J. Fellay, J.-P. Hubaux, Z. Kutalik.
2nd International Workshop on Genome Privacy and Security (in conjunction with IEEE S&P 2015),
San Jose, CA, USA, May 2015.

Practical Solutions for Protecting Individual Genomic Privacy
J. Fellay, J. L. Raisaro, Z. Huang, M. Humbert and E. Ayday et al.
American Society of Human Genetics (ASHG), San Diego, CA, USA, 2014.

CredibleWeb: A Platform for Web Credibility Evaluation
Z. Huang, A. Olteanu, K. Aberer.
CHI’13 Extended Abstracts on Human Factors in Computing Systems, Paris, France, 2013.

Skills Programming Languages
• Most experienced: Java, C/C++, Python

• Used in the past: SQL, JavaScript, Matlab, PHP, HTML

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Thesis Outline
	1.4 Publications

	2 Securing storage of genomic data
	2.1 Background
	2.2 System Model
	2.3 GenoGuard
	2.4 Security Analysis
	2.5 Towards Phenotype-Compatible GenoGuard
	2.6 Discussion
	2.7 Summary

	3 Searching-enabled genomic data protection
	3.1 Background
	3.2 System model
	3.3 SECRAM Format
	3.4 System Implementation
	3.5 Evaluation and Analysis
	3.6 Discussion
	3.7 Summary

	4 Protecting genomic data with arithmetic-computation capability
	4.1 Background
	4.2 Adversary Model and System Structure
	4.3 Secure Quality Control
	4.4 Implementation and Evaluation
	4.5 Discussion
	4.6 Summary

	5 Conclusion
	Bibliography
	Index
	CV

