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Abstract

The current European energy regulation, aligned with the European Union energy strategy and

targets for the next decade, requires large industrial companies to regularly assess their energy

performance and implement energy efficiency improvement measures. In many cases, these energy

reviews fulfil minimum criteria for energy audits set by the legislation and focus on the optimisation

of the energy conversion units and utilities distribution. Opportunities for energy savings within

production processes are missed, which can also lead to an inadequate hot and cold supply system.

Existing methods for energy reviews in the petrochemical sector do not feature the holistic and

systematic aspects required to deeply analyse and improve industrial sites down to the production

units level. The lack of time and human resources, combined to the availability and reliability of

data, are additional barriers preventing detailed studies to take place.

This thesis presents a comprehensive methodology to carry out detailed energy review of (petro)che-

mical plants, in accordance with energy management and auditing standards requirements. This

methodology comprises three main steps: the energy consumption analysis, the targeting of the

heat recovery potential and the identification and evaluation of energy saving opportunities to reach

this target. A top-down approach is undertaken in the first step, with the objective of translating the

raw energy consumption of the system into process units heating and cooling demand. In doing so

the mass and energy flows are mapped and the efficiency of the entire energy chain is characterised

in a structured way. The focus on the process requirements allows to understand howmuch, where

and why energy is consumed. In this first step, guidelines and heuristic rules are defined to reduce

the required time for data collection. A data consistency check in the form of key mass and energy

balances ensures the validity of data and a good control of the energy flows of the system.

In the second step, a novel methodology for the definition of the minimum approach temperature in

pinch analysis is presented. By considering the characteristics of each process hot and cold stream

individually, together with the economic parameters of the system, the heat recovery potential is

refined and the minimum energy consumption targets are closer to what can be achieved econom-

ically. From the results of the pinch analysis, the objective of the third step is to reach the energy

targets through the identification of energy saving opportunities. A bottom up approach is defined

to look for options starting from the process operating parameters and heat integration towards

the optimisation of the energy conversion and distribution system. Waste heat recovery through
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Abstract

heat pumping being a recurring identified opportunity, a heat transformer system is proposed,

coupling a mechanical vapour compression cycle to an organic Rankine cycle. Integrated to the

polyethylene slurry production, this system allows to recover the residual reaction heat and produce

steam without importing electricity from the grid. In doing so the energy consumption is reduced

by 50%.

The proposedmethodology was developed, tested and refined on around 10 different petrochemical

sites, enabling a comprehensive analysis of their energy performance and leading to the identifica-

tion of promising energy saving opportunities to increase the energy efficiency of their production.

Keywords

Energy efficiency, energy review, methodology, petrochemical industry, pinch analysis, heat recovery

targeting, energy performance indicators, data collection, heat transformer, waste heat recovery
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Résumé

La législation européenne actuelle en matière d’énergie impose aux grands groupes industriels

d’évaluer régulièrement leur performance énergétique, d’identifier les mesures adéquates permet-

tant de l’améliorer, et de les mettre en oeuvre. Dans de nombreux cas, ces revues énergétiques

répondent aux critères minimaux d’audits fixés par la législation et se concentrent sur l’optimisation

des unités de conversion et de distribution d’énergie. Les opportunités d’économie d’énergie au

niveau des procédés de production sont manquées, ce qui peut également conduire à un système

de fourniture de chaud et de froid inadapté. Les méthodes existantes pour réaliser des revues éner-

gétiques sur des sites pétrochimiques ne présentent pas les aspects holistiques et systématiques

nécessaires pour analyser et améliorer en profondeur les sites industriels. Le manque de temps et

de ressources humaines, combinés à la disponibilité et à la fiabilité des données, sont des obstacles

supplémentaires qui empêchent de donner lieu à des études poussées.

Cette thèse présente une méthodologie complète pour effectuer un examen énergétique détaillé de

sites pétrochimiques, en accord avec les exigences des normes de gestion de l’énergie et d’audit.

Cette méthodologie comprend trois étapes principales : l’analyse de la consommation d’énergie, le

ciblage du potentiel de récupération de chaleur et l’identification et l’évaluation des opportunités

d’économie d’énergie pour atteindre cet objectif. Une approche descendante est utilisée en premier

lieu, afin de traduire la consommation d’énergie brute du système en demande de chauffage et

de refroidissement des procédés. Ce faisant, les flux de masse et d’énergie sont cartographiés et

l’efficacité de la chaîne énergétique est caractérisée de manière structurée. Des lignes directrices

et règles heuristiques sont fournies pour réduire le temps nécessaire à la collecte de données. Un

contrôle de cohérence des données sous forme de bilans massiques et énergétiques est également

introduit, assurant la validité des données.

Dans la deuxième étape, une nouvelle méthodologie pour la définition de la température minimale

d’approche au niveau de l’analyse de pincement est présentée. En considérant les caractéristiques

de chaque flux chaud et froid individuellement, ainsi que les paramètres économiques du système,

le potentiel de récupération de chaleur est affiné et les objectifs de consommation d’énergie mini-

mum sont plus proches de ce qui peut être atteint économiquement. Finalement, une approche

ascendante est définie pour identifier les options permettant d’atteindre les objectifs énergétiques,

en partant des paramètres de fonctionnement des procédés de production vers l’optimisation du
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système de conversion de l’énergie. La récupération de la chaleur résiduelle par pompe à chaleur

étant une opportunité identifiée demanière récurrente, un système de transformateur de chaleur est

proposé, couplant un cycle de compression mécanique de vapeur à un cycle organique de Rankine.

Intégré à la production de polyéthylène par le procédé "slurry", ce système permet de réduire la

consommation d’énergie de 50% sans importer d’électricité du réseau.

La méthodologie proposée a été développée, testée et affinée sur une dizaine de sites pétrochi-

miques, permettant une analyse complète de leur performance énergétique, ainsi que l’identifi-

cation d’opportunités d’économies d’énergie afin d’améliorer l’efficacité énergétique liée à leur

production.

Mots-clefs

Efficacité énergétique, revue énergétique, méthodologie, industrie pétrochimique, analyse de pince-

ment, intégration de chaleur, cibles énergétiques, indicateurs de performance énergétiques, collecte

de données, transformateur de chaleur, récupération de chaleur perdue
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Glossary

benchmarking: procedure of comparing an industrial system’s performance to the Best Practice

Technologies.

best practice technologies (BPT): specific energy consumption (i.e. GJ/ton of product) of the best

performing economically viable processes currently in operation at industrial scale.

best practices reference documents (BREF): series of documents available for different industrial

sectors (http://eippcb.jrc.ec.europa.eu/reference/). Each document gives information on a specific

industrial sector in the EU, on the techniques and processes used in this sector, current emission and

consumption levels, techniques to consider in the determination of the best available techniques

and emerging techniques.

energy audit: systematic procedure with the purpose of obtaining adequate knowledge of the

existing energy consumption profile of a system, identifying and quantifying cost-effective energy

savings opportunities, and reporting the findings [4].

energy baseline: quantitative reference providing a basis for comparison of energy performance. It

reflects a specified period of time used for calculation of energy savings, as a reference before and

after implementation of energy performance improvement actions [5].

energy management: set of interrelated or interacting elements to establish an energy policy and

energy objectives, and processes and procedures to achieve those objectives [5].

energy review: determination of the organisation’s energy performance based on data and other

information, leading to identification of opportunities for improvement [5]. In this thesis, it also

includes the generation of the energy baseline and the definition of key performance indicators.

system’s boundaries: physical or site limits and/or organisational limits as defined by the organisa-

tion [5].
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Ė Electrical flow [kW]

h Enthalpy [kJ/kg]

i Interest rate [%]

ṁ Mass flow [kg/s]

n Lifetime [y]

P Pressure [bar]

Q̇ Heat flow [kW]

s Entropy [kJ/kg◦C]
T Temperature [◦C]
U Overall heat transfer coefficient [W/m2◦C]

xxiv



Nomenclature

Indices

a ambient

c cold

cond condensation

desup desuperheating

evap evaporation

h hot

i n inlet

l m logarithmic mean

max maximum

mi n minimum

o reference

out outlet

p pinch

r ec recovered

subc subcooling

tot total

xxv





Introduction

Overview

• Why is industrial energy efficiency so important in Europe?

• What are the main challenges for increasing energy efficiency in industrial companies?

• Contributions and outline of the thesis.
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Figure 1 – Global context for industrial energy efficiency improvement in Europe.
(*)EnMS = Energy Management System

European context

European Union energy targets

Around 10 years ago, in order to fight against climate change and increase energy security, the

European Union launched its Climate and Energy Package to reach energy targets defined for 2020.

Three objectives were set and agreed upon by Member States, with the goal of moving Europe to a

highly energy efficient and a low carbon economy. The three targets, also known as the 20/20/20

targets aim a 20% reduction in Europe greenhouse gas emissions compared to 1990 levels, 20% of

energy produced from renewable sources, and 20% reduction of primary energy consumption for

2020 [6].
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Early 2014, the European Commission went further and released preliminary energy targets for

2030, as a prolongation of the 2020 climate and energy package. The European Union established its

commitment to a domestic emissions reduction target of at least 40% by 2030, defined an EU-wide

binding target for renewable energy of at least 27% in the energy mix and an improvement in energy

efficiency of at least 27% [7].

At the 2015 Climate Change Conference in Paris, Europe committed itself to contributing to limiting

the global rise in temperature to only 1.5◦C [8]. Following this ambitious decision, the energy

efficiency target for 2030 has been extensively negotiated to be better in linewith the overall objective

in terms of global warming limitation. While a proposition of 30% came up in November 2016 [9],

on January 17th, 2018, the European Parliament in plenary sitting endorsed a 35% binding EU target

for energy efficiency and indicative national ones [10].

The 2030 objectives are defined as intermediate targets, having in mind even more ambitious ones

for 2050 in order to reduce carbon footprint and secure the European energy system by this time,

with a 80 to 95% reduction of greenhouse gas emissions as compared to 1990 levels [11]. This

timeline, with a clear tightening of the ambitions and targets, enforces and demonstrates the will

of Europe to move towards a low-carbon economy, but also put additional pressure on the main

energy consuming sectors that are buildings, transport and industry.

Energy Efficiency Directive

The Energy Efficiency Directive 2012/27/UE (EED) [4] was released in December 2012, amending

some earlier European directives related to energy by introducing new legally binding measures

covering the whole energy chain, from its conversion to end-use consumption. The EED was

originally drawn up to reach the 20% EU target for the reduction of energy consumption by 2020, as

this target was unlikely to be met according to projections by the time.

The Energy Efficiency Directive is the reference document defining the actual European regulation

for energy efficiency. It establishes a common framework of legally binding measures for the

promotion of energy efficiency within the European Union at all stages of the energy chain, from the

transformation of energy to its final consumption, in order to reach its 2020 and 2030 objectives and

to pave the way for further energy efficiency improvements beyond that date.

The main EED requirement impacting large industrial companies is the need for regular assessment

of their energy performance (Article 8), either through energy audits and/or implementation of an

energy management system (e.g. ISO 50001 standard [5]). Europe strategy for industrial energy

consumption is therefore aligned with the International Energy Agency which has recognised

industrial energy efficiency as a key element to be able to reach energy consumption and greenhouse

gases emissions targets [12].
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Minimum criteria for good quality energy audits have been defined in the appendix of the EED,

such as being based on up to date energy consumption data and providing a reliable picture of the

energy performance and opportunities to save energy. Penalties have to be put in place in case of

non-compliance to the Article 8 of the directive.

The transposition within Member States national legislation had to be effective by June 2014. While

the basic requirements from the EED are embedded into national transpositions, the scope of the

audit and the potential sanctions for non-compliance may differ widely across EUMember States.

Table 1 highlights some of these disparities for four European countries [13].

Table 1 – Scope of the audit and penalties for non compliance in France, Germany, Belgium and the
United Kingdom.

France Germany Belgium (Flanders) United Kingdom

Scope
of audit

at least 65% of com-
pany’s energy con-
sumption for the
1st audit, at least
80% for the next
ones

at least 90% of the
total energy usage;
audit has to com-
ply with DIN EN
16247-1 (basis for
ISO 50002)

detailed overview
of the energy con-
sumption to deter-
mine improvement
points in a reliable
manner

at least 90% of the
total energy usage,
in compliance with
ESOS regulations

Penalties formal notice in-
dicating a delay
for compliance, 2)
fine of an amount
capped at 2% of
the previous an-
nual turnover 3)
the rate might be
increased from 2%
to 4% for repeated
infringement

sanction might be
up to 50’000AC per
offence

administrative and
criminal sanctions
((temporary) clos-
ing order, fine up
to 250’000AC multi-
plied by the infla-
tion coefficient (6),
1 month to 2 years
of imprisonment)

financial penalty
from 5’000£ to
50’000£ depending
on the failure,
with additional
500£ per day until
obligation is met

In order to be consistent with the new energy efficiency target for 2030 defined in January 2018 and

the overall European Union energy strategy, the directive was already reviewed and updated [14] and

will continue to be. While the focus was originally put on the energy efficiency assessment, it is now

also on the implementation of energy saving opportunities as part of energy efficiency improvement

plans as well as the energy consumption monitoring.

Whether it is in view of energy management system certification or part of an energy audit, the

energy consumption should be analysed and understood, the energy performance evaluated and

energy saving opportunities generated and quantified. This process is found in both energy auditing

procedures and energy management systems and is called “energy review” in the international

standard for energy management systems ISO 50001.
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Energy audits and energy management systems

According to the International Organisation for Standardisation, an energy management system is

a ”set of interrelated or interacting elements to establish an energy policy and energy objectives,

and processes and procedures to achieve those objectives” [5]. The worldwide reference in terms of

energy management systems is the ISO 50001 standard.

The core of the technical part of ISO 50001 is the energy planning phase, where the energy review

is carried out, the energy baseline established and key performance indicators are defined and

calculated (NB: The energy baseline and key performance indicators are complementary to the energy

review. In the rest of the thesis, the term "energy review" will refer to these three elements together).

Energy objectives should also be established according to the company’s energy policy and achieved

following an action plan, pushing further towards continuous improvement and the implementation

of opportunities to save energy.

An energy audit is defined by the EED as a ”systematic procedure with the purpose of obtaining ade-

quate knowledge of the existing energy consumption profile of a system, identifying and quantifying

cost-effective energy savings opportunities, and reporting the findings” [4].

Contrary to energy management system, it is a punctual event, to be repeated regularly. There is

no single agreed-upon definitions for the different types of energy audits. Three categories can be

found depending on the scope, the system’s boundaries and the level of detail required [15]:

• Walk-through audit (type I): lowest level of detail for energy audit that can be used as input for

more detailed ones. This type of audit corresponds to a rapid survey of the plant based on

energy inputs and energy bills, aiming at quantifying losses and identifying low-hanging fruits

opportunities and housekeeping measures.

• Intermediate audit (type II):more detailed analysis of the plant’s energy consumption, analysing

and quantifying the energy efficiency of system and identifying low investment energy saving

opportunities.

• Detailed/comprehensive audit(type III): highest level of detail for energy audits. These audits

are based on detailed calculations and analysis at the level of subsystems. Benchmarking

against best practices is carried out and a long list of improvements options are generated,

from low investment opportunities to major retrofitting schemes.

In general, the more detailed an energy audit is, the longer and more expensive it is. From one

day for a walk-though audit, it can take up to several months for the last type of audit. The ISO

50002 standard [16] defines the minimum set of requirements to carry out an energy audit from the

opening to the closing meeting, with general guidelines at each step (e.g. data collection, site visit,

energy performance analysis, reporting) and can be used as a support for the energy review of ISO

50001.
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What is an energy review?

The energy review is defined in the ISO 50001 standard [5] as the "determination of the organisation’s

energy performance based on data and other information, leading to identification of opportunities

for improvement".

Its key steps and requirements are summarised in Figure 2, in addition to the generation of the

energy baseline and key performance indicators included in the energy planning phase and which

are closely linked to the energy review itself.

The first step is to analyse the current energy consumption and identify the energy sources (i.e.

energy vectors). The energy baseline needs to be generated. It is defined as a "quantitative reference

providing a basis for comparison of energy performance" and is used for the evaluation of energy

savings opportunities. The second step goes a step further and look at the end-use consumption.

The objective is to map the energy flows to identify the areas of significant energy use and the

influencing factors acting on the energy consumption (e.g production load, product purity, external

temperature).

analyse energy 
consumption

identify areas of significant 
energy use

identify, prioritise & record
energy savings opportunities

determine the energy 
performance

energy sources
energy consumption trend

+energy baseline

analysis & classification

energy consumption breakdown
influencing factors

optimal energy needs
+energy performance indicators

Figure 2 – Key requirements of an energy review as defined in ISO 50001.

Once energy consumption is understood and detailed, the use of key performance indicators allows

to analyse and quantify the energy performance. Finally, energy savings opportunities are identified,

evaluated and prioritised based on the energy performance analysis.

Although the Energy Efficiency Directive does not impose a specific level of detail for energy audits,

the increasing energy efficiency targets and Europe long term energy strategy would suggest to go

towards deep and detailed energy audits of type III.
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Problematic and challenges

European (petro)chemical industry

This thesis focuses on the chemical and petrochemical industry. This sector is responsible for 19%

of Europe’s industry final energy consumption [17]. 80% of manufacturing costs of petrochemicals

are related to feedstock (85% of European crackers use naphta as main feedstock) and energy [18].

The European petrochemical industry faces a hard challenge in staying competitive with the United

States, the Middle East and Asia. The shale gas boom across the Atlantic caused US gas prices to fall

by two third between 2008 and 2012, while naphta prices rose by 19% [19]. The recent drop in crude

oil prices decreased the difference in terms of feedstock between Europe and the US but not with

the Middle East.

In this highly competitive context, topped with increasing European and national regulations to

limit industrial CO2 emissions and energy consumption, the European chemical and petrochemical

industry still needs to operate successfully. In this regard, developing and implementing cost-

effective ways to assess their energy performance and evaluate the possibility for improvement

are of major importance, since it would at the same time decrease operating costs for the same

production level and enable industrial companies to more easily cope with European regulations.

Significant energy savings in the chemical and petrochemical sector are reported to be still possible

[20]. However, a gap, known as the energy efficiency gap, remains between the available solutions

and the actual implementation in industrial companies.

Even if a lot of documentation is available and mature techniques are in place, many companies

seem to lack appropriate methods to effectively master energy efficiency in their production system

[21]. Part of this gap can be explained by barriers to cost-effective investment, such asmarket-related

or behavioural and organisational-based barriers, but also to technical and methodological issues

on how to evaluate, control and continuously improve their energy performance [22, 23]. The two

last issues are therefore related to the energy review itself and are partly due to the use of the wrong

approach to the analysis, with no comprehensive methodologies.

When investigating further the industry needs identified in the literature, it can be found the need for

suitable key performance indicators, the use of real-time data, the improvement of the reliability of

data, effective tools for cost-analysis of energy savings options, or also innovative ways of simulating

and visualising energy efficiency [21, 24].

Other issues observed from practical experience, are the lack of time and people dedicated to the

task and the availability and reliability of data. The first observation varies from one industrial site

to another. Very often, the energy manager is also in charge of other daily operations related to

the production, which overshadow or delay energy management duties. The process of analysing
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the energy efficiency of an industrial site, followed by the identification and implementation of

the energy saving opportunities, from the preliminary estimates to the final design and operation,

involves various trades. This interdisciplinary aspect can sometimes also be a barrier for energy

efficiency improvement but is a key element for a successful energy management.

In addition to this, measurements are often lacking to be able to properly characterise the energy

performance of industrial systems, and any measurement or assumption is subject to errors and

uncertainty. It is challenging to find suitable ways to check the validity of results and work with a

consistent set of data.

Improving industrial energy efficiency

Improving energy efficiency of an industrial site means to deeply analyse the energy consumption,

understanding and quantifying first the real energy requirements. Too often energy studies and

audits aiming at improving the energy performance of an industrial system are carried out at a

too low level of detail. Whether this is done on purpose to fulfil minimum requirements or due to

resources constraints (e.g. money, time, skills, not enough data), it usually results in improvements

related to standalone standard practices, replacement of equipment or maintenance and control.

Such "surface" optimisation leads to investment in equipment that might not be needed if the

system would be studied to understand for which purpose energy is being consumed in a first place,

and carefully integrated when possible.

level of details
pertinence

energy savings

time

external
auditor

internal process
expert

internal expert
+ external auditor

Figure 3 – Representation of the main approaches for energy reviews according to the level of detail
and time required.

Putting aside the level of detail, there are two general approaches for the energy review of an

industrial system, depending on who is carrying out the analysis:

1) External auditor: external energy auditors and consultants will have a limited time for the study,

with an understanding of the system based on provided internal documents and information. In

this case the top-down approach is preferred, starting from an overview of the energy consumption

of the industrial system and gradually entering into the details of the process. A general or more
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specific methodology can be followed, depending on the auditors/consultants expertise and on

the scope of the review. Often, the output of such analysis is based on best practices reference

documents related to the production processes and utilities in place. As a result, improvements are

usually made at the level of the utility system, without understanding the real energy requirements

of the processes due to the lack of time and process knowledge. Data validation might also be

difficult for the same reasons.

2) Internal process expert: on the other side, the energy review can be carried out internally, by a

team of engineers and/or specialised workers. In this case data gathering and energy consumption

mapping can be done at the highest level of detail, sometimes with the help of existing models of

the system (simulation). This approach has the advantage of screening the entire industrial system

and benefits from the knowledge of the internal auditors. However, it requires the involvement

of employees dedicated to the task, which might be an issue in some companies with limited

human resources. Also, having a good knowledge of the system under study and a full access to

information is not enough to carry out a proper energy review. Necessary analytic skills related to

energy efficiency improvement might be lacking.

Usually, the more detailed the energy review, the higher the cumulated sum of potential energy

savings and the pertinence of findings, coming at the expense of a higher time required for the

analysis. This observation is depicted on Figure 3, which also shows that the best results are obtained

from a combination of these two general approaches, i.e. an informed external auditor that works

together with internal process experts. This corresponds to finding the right trade-off between the

realisation of highly detailed energy reviews and the associated time and complexity.

Thesis objectives and outline

The goal of this thesis is to contribute to the closing of the energy efficiency gap and thereby try to

answer to part of the industry needs presented above. This is done in two ways:

- the generation of a global methodology for energy reviews (Chapter 1), in line with existing stan-

dards and regulations, leading to a comprehensive analysis of the energy performance of industrial

systems and enabling the identification of energy savings opportunities covering the whole energy

chain.

- at each step of the methodology, problematic and challenges with existing approaches are raised

and guidelines, tools and/or methods are proposed to solve these issues (Chapters 2,3 and 4).
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Research methodology

The thesis focuses on the chemical and petrochemical sector. It is partly based on the PhD thesis

from Stéphane Bungener entitled "Energy efficiency and integration in the refining and petrochemi-

cal industries" [25]. While the latter provides a methodology to identify energy efficiency solutions

in the utility networks of large refining and petrochemical clusters, this thesis has a stronger focus

on the global approach to energy reviews in the framework of energy audits and energy manage-

ment systems, applicable from small to large production sites. These two theses are therefore

complementary and references to Stéphane Bungener’s work are made throughout the thesis.

The research development was made considering the actual state-of-the-art related to method-

ologies and specific tools/techniques to carry out energy reviews in the process industry. Existing

limitations of the literature as well as industry specific constraints were established, and answers to

the resulting research questions were developed and validated in the industrial context.

Ten petrochemical sites were studied as part of the thesis, covering 11 different production processes

displayed as color boxes in Figure 4. Such diversity helped to develop, refine and validate the

proposed methodology so that the maximum aspects of the energy review are taken into account,

and resulted in significant applied experience which was transformed into heuristics rules included

in the methodology.

Thesis scope

The proposed methodology can be applied to any small to large size chemical and petrochemical

production sites, featuring continuous processes and a significant thermal power consumption

(i.e. heating and cooling demands).

While the thesis scope targets increased energy efficiency, the methodology can easily be integrated

to other actions related to complementary policies and regulations that are forcing change of

industrial processes. Reduced on-site emissions of greenhouse gases are linked to both cleaner

heat and power production and higher energy efficiency, since less fossil energy is consumed for

the same output. Indicators in place for CO2 emissions can be merged with the ones generated for

energy efficiency, according to their level of application, and energy saving opportunities can be

evaluated and prioritised also based on CO2 emission reduction. Turbomachinery is accounted for

in the methodology since it can consume a significant amount of steam to produce the mechanical

work driving compressors or pumps. Its replacement by electrical devices, as well as other aspects

covered in the thesis scope such as heat pumping, fit into Europe’s move towards an increased

electrification of the industry sector [26]. Finally, the methodology is still valid even with a switch to

renewable or recycled feedstocks. Energy will still remain the driver for the production processes to

take place.
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Figure 4 – Overview of the main petrochemical processes studied in the thesis.1

1Polystyrene being produced via batch processing, the described methodology was only partly applied and validated
in this case, since the representation of the heating and cooling demands requires another approach in comparison to
continuous processes.
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Chapter 1: Methodology for thermal energy reviews

The research question of the first chapter can be expressed as follows:

How to carry out an energy review covering the whole energy chain and enabling the identification of

energy savings opportunities at an adequate level of detail?

Existing guidelines and standards for energy audits and energy management systems are first

investigated, together with the tools and techniques which can be used at the different steps.

Strengths and limitations of existing documentation are discussed and the lack of detailed and

systematic methodologies for energy reviews in the petrochemical sector is pointed out.

In order to help filling this gap, a detailed methodology is proposed, which includes the basic

requirements for the energy review while enabling the generation of energy savings opportunities

down to the level of detail of the production processes. The proposed methodology is composed of

3 main steps, following the logic of analysing-targeting- and achieving energy efficiency, which is

similar to what is defined in energy management standards:

1. Energy consumption analysis: at this step the raw energy consumption of the system is gradu-

ally translated into process requirements, in order to understand where and why energy is

consumed. In doing so, the entire energy chain is characterised (i.e. energy conversion, distri-

bution and end-use consumption). The required data to analyse the system energy efficiency

and identify improvement opportunities is collected and validated to ensure working with a

consistent set of data along the analysis.

2. Targeting heat recovery: the second step aims at targeting the energy consumption reduction

potential through the application of pinch analysis. The actual energy consumption is com-

pared to the minimum energy requirements of the system, targeting the potential for heat

recovery. The grand composite curve of the system gives information on the temperature-

enthalpy profile of the process heating and cooling requirements.

3. Reaching the energy consumption target: based on the results of the previous steps, energy

saving opportunities are identified, with the objective of getting as close as possible to the

minimum energy requirements target and improve the utility system. A bottom-up approach

is followed, starting from the process operating parameters towards the energy conversion

and distribution system. Each opportunity is evaluated via a thermo-economic analysis to

estimate its profitability.

The first chapter of this thesis goes through themain steps of themethodology. Tools and techniques

used at each substep are indicated, together with the expected outcomes. In doing so, existing

key questions and challenges are raised which will be tackled in the following three chapters, each

corresponding to one of the steps of the methodology.
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Chapter 2: Energy consumption analysis

How to analyse and characterise the efficiency of the entire energy chain down to the end-use

consumers in a reliable manner, while keeping the required time for data collection at an acceptable

level?

Starting from the characterisation of the system boundaries, this chapter presents a systematic

approach to translate the raw energy consumption of the site into the end-use consumption down

to the equipment level. The objective is to understand where and why energy is consumed and

prepare the input for pinch analysis, which is carried out in the second step.

At the level of the system boundaries definition, this chapter introduces the importance of working

with energy and exergy units rather than financial or mass quantities to compare energy vectors.

A method to define the energy baseline is presented, making use of multi-period analysis on the

production combined with the specific energy consumption of the site.

Several levels of details for the site representation are defined, allowing to progressively zoom in the

system until the process flowsheet level. This approach helps to understand how energy is converted,

distributed and delivered to the end use consumers. It also allows to structure the analysis and the

data collection. The latter being usually the most time-consuming step, heuristic guidelines and

rules are defined to reduce the required time and complexity of data gathering.

In order to ensure the consistency of data when data reconciliation cannot be applied, a set of key

mass and energy balances at different levels of the energy consumption chain is presented. This

consistency check ensures that themajor mass and energy flows of the system are reliably quantified

and points towards areas were more investigation is required. Finally, a set of key performance

indicators is proposed at the same levels as for the consistency check, to evaluate the energy

efficiency of the system.

Chapter 3: Targeting energy consumption reduction

How to generate economically feasible minimum energy consumption targets in pinch analysis, with

the minimum level of detail for streams definition?

Once the process heating and cooling requirements are defined in the form of a list of hot and cold

streams, pinch analysis can be carried out. In this methodology, the default level of detail for process

energy requirement representation is the "grey box" level, which considers only the process streams

exchanging with utilities.

This chapter discusses first the influence of the level of detail for streams definition on theminimum

energy requirements and the shape of the grand composite curve. It is shown on an example that for
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the sameminimum heating and cooling demands, corresponding to the highest level of detail for

streams definition (i.e. "white box" or full pinch analysis), only a third of the streams needs to be

detailed at this level. Although the optimum trade-off for streams definition cannot be known in

advance, the default list of streams can be refined by going further in the process details at specific

temperature locations.

One main concept in pinch analysis is the performance target ahead of design. The heat cascade on

the process hot and cold profiles leads to the determination of the minimum heating and cooling

demands of the system. These targets are depending on the definition of the minimum temperature

difference ΔTmin of the system. This chapter shows that existing methods for the definition of

the ΔTmin in existing industrial systems are often not adapted and can lead to serious over- or

underestimation of minimum energy consumption targets.

A novel way of defining the contribution of each stream to theminimumapproach temperature, prior

to the heat cascade, is then presented and tested on two case studies. As a result, more economically

realistic energy consumption targets are obtained through a more accurate temperature correction

of streams and pinch point location.

Chapter 4: Reaching the energy consumption target

How to generate energy savings opportunities in a systematic way from the production process to the

integration of utilities and how to properly evaluate their profitability? What are the available

technologies to recover waste heat?

From the results of the two first steps of the methodology, the last step aims at generating and

evaluating a list of energy saving opportunities (EnSO’s) to improve the energy efficiency of the site,

thereby decreasing its energy consumption andCO2 emissions. A bottom-up approach is introduced,

derived from the onion diagram for chemical processes design, which defines optimisation layers

for the generation of EnSO’s in a systematic way. A case study is used to illustrate the identification

of EnSO’s from the process operating parameters to the optimisation of the energy conversion and

utility system.

A thermo-economic analysis is carried out for each opportunity, estimating its profitability. The

uncertainty on the capital costs and the main parameters influencing the operating cost savings is

briefly studied, showing how the economic indicators used for decision criteria and risk evaluation

are varying according to different sets of economic parameters.

Finally, this chapter highlights the potential for heat pumping in chemical processes, especially

when exothermic reactions are taking place. It introduces a new heat transformer system and shows

how its integration to a polymerisation process can reduce the steam consumption by 50 to 60%.
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1 Methodology for energy reviews

Chapter overview:

• What are the available guidelines and techniques to carry out an energy review?

• What are the remaining challenges?

• Description of the proposed methodology.

ENERGY 
CONSUMPTION 

ANALYSIS

TARGETING 
HEAT 

RECOVERY

REACHING 
ENERGY 
TARGETS

1.1 Carrying out an energy review

1.1.1 General guidelines

When carrying out energy audits or energy reviews as part of energy management systems, the

first interface for general definition and structure is provided by international standards. The

International Standard Organisation has published several standards in both fields (ISO 50001 [5]

and ISO 50002 [16]), to help beginners and practitioners in their approach as well as to harmonise

definitions and general expectations in energy audits and energy management systems.

These standards were defined to be applicable to all types of organisation, and all forms of energy

usage. Not only they provide support by detailing the different steps and expected outcomes, they

also enable fair competition and comparison between service providers. The main drawback of

these standards in applied situation is the lack of details on the methods and tools to analyse,

evaluate and improve the energy efficiency.
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To tackle this issue, complementary guidelines were established, either by chemical and petrochemi-

cal associations (IPIECA [27]) and councils (Cefic [28]), government bodies [29, 30], or energy-related

international and national agencies [31, 32]. These handbooks and guides cover the whole process of

the energy review and provide additional information on the scientific methods that can be applied.

Too often in these guidelines, the level of detail stops at the utility system and the efficiency of

equipment, without looking at the energy recovery potential at the level of the process itself or

understanding if the utilities in place are optimised with respect to the end-use energy requirements.

Aspects related to the data availability and collection, as well as its validation, are either forgotten or

briefly mentioned although it is of major importance to ensure to work with a consistent set of data.

It is also hard to identify a clear methodology with well-defined and connected steps being able to

be applied directly.

In the scientific literature, several case studies of energy audits are available, whether it is on utility

systems, specific consumption types [33] or on entire production plants [34]. In these works, the

focus is more on the description of the energy systems under consideration and on the applied

results, rather than on the methodology and tools used to do so. Most of the time, the focus is put on

electricity rather than thermal power. No specific works have been found related specifically to the

chemical and petrochemical sector.

Two papers present innovative and global energy efficiency improvement methodologies that can

be employed to carry out detailed and systematic energy reviews. Petek et al. [35] proposes a

holistic approach combining the concepts of Cleaner Production, Total Site Integration and Energy

Efficiency Optimisation in order to maximise energy efficiency improvement and environmental

performance of industrial systems. While the literature review and the description of the different

techniques mentioned in the methodology is quite extensive, the focus is more on case studies and

resulting energy saving opportunities rather than on a clear methodology and detailed explanations

on the practical application of the approach.

Drumm et al. [36] presents a Structured Efficiency System for energy (STRUCTese), developed

internally at Bayer as an energy management tool to continuously improve the energy efficiency of

their plants. Key steps of the continuous improvement cycle are presented as well as an innovative

way to determine and represents the energy losses from the theoretical energy optimum to the

current energy consumption. Improvement opportunities are generated through checklists, best

practices and brainstormings, and make use of different optimisation levels. The optimisation levels

considered in the energy efficiency analysis start from the end-use individual consumers towards

the utility integration, passing by operational and process design improvement. The application

of this global and systematic approach on a specific plant resulted in a significant decrease of the

overall specific energy consumption. Details on the techniques applied at each step are however not

provided, the focus of the paper being more on the energy management system itself.
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It can already be seen here that there is a lack of a clear methodology to carry out detailed energy

review of (petro)chemical systems. Although methods, tools and techniques exist and are well-

documented a major limitation is the level of detail of the analysis. A methodology embedding all

the requirements of the energy review andmade of key and logical steps screening reliably the entire

energy chain down to the end-use consumers is missing.

1.1.2 Specific tools and techniques

Among the different tools which can be used during an energy review, recurring ones are presented

in Figure 1.1, depending on the stage at which they can be applied. Three usage categories can

be defined: the energy consumption analysis, the energy efficiency improvement and the energy

monitoring. Some tools and techniques are specific to a single category while others can be assigned

to two or all of them.

ANALYSE IMPROVE

MONITOR

key performance 
indicators

• statistical
analysis

• benchmarking

• modelling
• optimisation
• data 

reconciliation

• piloting tools
• dashboards

pinch analysis best practices 
documents 
(BREF’s)

real-time 
control
strategies

Figure 1.1 – Venn diagram of the different tools and techniques that can be used during an energy
review

Modelling and data reconciliation techniques can be used at all stages of the energy review since

they allow working with a validated and consolidated set of data, which is of major importance for

the accuracy and reliability of the analysis. Depending on the size of the system, the availability of

data and the study scope, modelling and data reconciliation can be applied to the whole system or

to smaller subparts like utility networks. Aspen Plus® and Belsim Vali are two powerful flowsheeting
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software that can be used for modelling and simulation of chemical industrial systems with the

possibility of applying data reconciliation.

One major limitation with modelling and data reconciliation, in addition to the availability of data,

is the availability of these software internally, with employees with the necessary time and skills to

use them. Building reliable models can be quite complex and requires a significant amount of time.

When data reconciliation cannot be applied it is difficult to find in the literature other approaches to

check the consistency of data in petrochemical sites.

Mixed Integer Linear (MILP) andNon Linear Programming (MINLP) aremathematical programming

techniques used for solving optimisation problems involving both continuous and discrete variables.

Process integration [37], heat exchanger network generation [38] and energy supply optimisation

[39] are examples of problems that can be efficiently addressed using MILP. MINLP can be used to

address these problems and when non-linearity cannot be overcame.

ANALYSE

Internal benchmarking can be used for similar plants within the company in order to compare their

respective performances, or in view of energy consumption monitoring. It can be applied at the

plant and subunit levels [40] or at the level of the different energy vectors [41]. It has the advantage

of applying a consistent methodology, avoiding boundary and calculation details issues, since the

samemethodology is applied to each system.

Most of the time benchmarking is carried out externally. Without external benchmarks a company

may lack information and understanding on the grounds of the best performance, currently achieved

or theoretical. External benchmarking is usually applied on the entire production process based

on the specific energy consumption (SEC) indicator, where the energy performance of the plant

is measured as the quantity of final or primary energy required to produce one unit of good [42].

SEC’s from Best Practice Technologies (BPT), defined according to the best performing economically

viable processes currently in operation at industrial scale, can be used for comparison [20].

While the SEC of an industrial system is useful for energy consumption monitoring purposes, it

does not give information on how efficiently energy is used. Also comparison with BPT’s to compare

the energy performance should be done with care, since calculations details are hard to obtain and

assumptions might be different from one value to another.

More complex methods for internal benchmarking can be found in [43, 44], where the industrial

system energy consumption is decomposed and a system of equations is developed, including linear

relationships between subsystems energy consumptions and factors impacting their consumption.

In this way energy consumption benchmarking is carried out at the same time at the site and

subsystem levels.
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The specific energy consumption ratio is part of the so-called Key Performance Indicators (KPI’s).

Energy efficiency KPI’s are used to evaluate the evaluate the energy performance of a system,

establish targets and track improvement. A wide range of KPI’s was developed in the literature to

characterise the energy and environmental performance of industrial systems at different levels

(e.g. sector, plant) [45, 46]. They are generally classified in four main groups: thermodynamic,

physical-thermodynamic (e.g. SEC), economic-thermodynamic, and economic [47]. In the context

of the energy consumption analysis the three first categories are of interest for the energy review.

Among the KPI’s related to energy efficiency in the cited papers, only a few are suitable for energy

management application since they are mostly applied at the overall industrial sector or plant

scale and do not report information on how efficiently energy is used within the plant. The MORE

European research project [48] made a significant contribution in the definition of indicators related

not only to the energy use but also resources and water consumption. A large number of indicators

were developed for different industry sectors, from the site-level down to the equipment level for

real-time monitoring and optimisation of resource efficiency.

Another comprehensivemethod to develop a set of specific KPI’s for improving energy efficiency was

also found in the literature [49], but its application is more adapted to the manufacturing industry

in particular rather than the (petro)chemical industry.

Finally, relationships between energy consumption and influencing factors can be generated through

multivariable linear regression analysis on archived data, to identify factors influencing the energy

consumption (e.g. production load, external temperature, product purity, reflux ratio, catalyst age).

This statistical method allocates coefficient to each factor which may affect the energy consumption

to generate a linear relationship linking all variables. Such relationships can be used for both energy

consumption analysis and monitoring as it corresponds to an extension of the SEC indicator.

IMPROVE

When it comes to energy efficiency improvement, the level of detail of the energy review will define

the tools and techniques to use.

Best practices documents, the so-called BREFs, are the reference documents in industry. The 32

BREFs were developed under the Industrial Emissions Directive and covers all the industry sectors,

as well as waste treatment and energy use. The important ones for energy performance in the

(petro)chemical industry are the BREF on Energy Efficiency [50], Refining of Mineral Oil and Gas

[51], Large Volume Organic Chemical Industry [52], and the production of Polymers [53].

While the former covers industrial efficiency at the level of the entire energy chain (e.g. combustion,

steam network, heat exchanges), the three others are related to best practices of the chemical

processes (i.e. equipment, waste, emissions) which is also linked to the energy consumption.
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Depending on the production processes and utility systems included in the perimeter, a checklist

can be prepared based on these best practices and improvement propositions can subsequently

be made if the actual system differs from what could be attained. The advantages of best practices

documents are numerous.

They cover a wide range of production processes and utility systems and are based on observed

operation and performance of existing facilities, making them economically viable. Also a large

number of the presented best practices imply low-investment and/or low-risk actions, mainly

related to maintenance and control and widely spread equipment layout. These solutions are often

readily implemented in industry as they correspond to “low-hanging fruits”, with short payback

times. More complex energy efficiency options involving heat recovery and process integration are

recommended but only briefly described. These options do however provide the highest potential

for energy consumption reduction [54].

For energy reviews with a higher level of detail and carried out on industrial systems consuming a

significant amount of thermal power, which is the case for the chemical and petrochemical sector,

pinch analysis is the method of choice for the improvement of energy efficiency. Pinch analysis on

single production units can help identify direct and/or indirect heat recovery opportunities through

optimised heat exchanges between process streams.

Total Site Analysis (TSA) is the application of pinch analysis to large industrial sites or even clusters,

extending the potential for energy and resources flow optimisation and industrial synergies. Based

on the process requirements in terms of heating and cooling demands and the existing utilities, TSA

identifies heat recovery opportunities and targets cogeneration potential through the modification

and/or optimisation of the utility system.

Two major problems can be identified with the use of pinch analysis in the framework of energy

reviews. First, depending on the size of the system, a pinch analysis requires a significant amount

of time, especially if the analysis is carried out at the highest level of detail. Second, the minimum

thermodynamic targets obtained applying the traditional approach are often under or overestimated,

raising feasibility issues at the level of the engineering work.

Once opportunities are identified, thermo-economic analysis has to be carried out to evaluate the

profitability and financial risk of the implementation. On one side the investment linked to the

implementation is estimated and on the other side the operating cost savings are determined. At this

level, it is important of being aware of the impact of the different parameters involved in these two

terms (e.g. interest rate, utility costs, cost estimates) and how they influence the decision making.
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MONITOR

Most of the tools and techniques already described above can be applied for energy consumption

monitoring. The purpose of monitoring is to ensure that the daily operation takes place under

predefined optimal conditions through the regular collection of information on energy use, and

determine when and why energy consumption is deviating from the expected behaviour.

The optimal set points for energy efficiency can be defined based on energy consumption models,

generated at the level of the energy consumption analysis and benchmarking. From the past

behaviour of the plant, models for energy consumption, corresponding to average or minimum

observed consumption according to the plant production and other key energy use drivers, can be

used to define the optimal conditions. Online [55] and "enhanced" [56] data reconciliation can be

used to reconcile measurements and closemass and energy balances according to the uncertainty of

sensors, even on systems with low instrumentation level and poor redundancy. When the reconciled

measurements deviate from their expected values (i.e. decreasing reconciled accuracies), anomalies

such as wrong plant operation or heat exchanger fouling can be detected.

The CoPro European project [57], started in November 2016, aims to "develop and demonstrate

methods and tools for processmonitoring and optimal dynamic planning", whichwill likely integrate

such units energy consumption and production models. This project complements the MORE

European project previously cited [48], for which the goal was to develop key performance indicators

to "monitor resource efficiency during daily operations and to influence the operational decisions

such that the plant efficiency is optimised".

The proposed methodology being mostly focused on analysing and improving the energy consump-

tion, tools and techniques specific to monitoring are not covered in this thesis.

1.2 Proposed methodology

Thanks to the analysis of the literature, it can be seen that whilemethods and tools which can be used

at somepoint to study the energy performance of an industrial system exist and arewell documented,

a comprehensive energy review methodology specific to the (petro)chemical industry and including

a logical combination of these tools is missing in the literature. This thesis is contributing to fill this

gap by proposing a methodology reducing the limitations of existing ones.

The proposed methodology comprises three main steps, following the energy review process. The

core of the methodology is the pinch analysis, carried out at the level of the 2nd step, which allows to

determine and locate the potential for energy efficiency improvement at the deepest level of detail.

The overview of the methodology is schematically represented on Figure 1.2. Each main step is

detailed with its substeps, for which the colored title represents the name of the substep and the
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Chapter 1. Methodology for energy reviews

STEP 1: ENERGY CONSUMPTION ANALYSIS

black box definition
- system boundaries
- energy vectors analysis
- energy baseline
- site-level KPI’s

Tools & techniques used > how to compare energy 
vectors? 
> how to generate the energy 
baseline in a systematic way?

- statistical analysis
- multi-time analysis

understand the energy use
- energy conversion to process 
mass & energy flows mapping

> which level of details 
allows to explain the energy 
consumption?

Tools & techniques used
- top-down approach

data gathering
- definition and collection of the 
required data for the analysis 

> how to minimise the time of 
the data collection step?
> is there a tradeoff between 
level of details and 
information gain?

data validation
- consistent set of data 

> how can data consistency 
be systematically ensured?

Tools & techniques used
- data reconciliation

energy efficiency evaluation
- key performance indicators

> what is the default set of 
KPI’s evaluating the efficiency 
along the energy chain?

Tools & techniques used
- state-of-the art KPI’s

STEP 2: TARGETING HEAT RECOVERY

energy profile generation 
- actual process energy 

requirements and utility delivery
Tools & techniques used > can minimum energy 

targets be generated 
without fully characterising 
the system?

> how can over- and 
underestimation of targets 
be minimised?  

- total site composite 
profiles & curves
- traditional pinch analysis
- “boxes” representation 
for process streams 

energy consumption targeting
- minimum energy requirements
- penalising heat exchangers

STEP 3: REACHING THE ENERGY CONSUMPTION TARGET

energy saving opportunities 
(EnSO’s) identification

- list of opportunities 

Tools & techniques used
> how to convert energy 
resources to process 
requirements?
> how can waste heat be 
valorised?

- bottom-up approach
- modelling 

EnSO’s evaluation 
- thermoeconomic tradeoff
- decision/classification criteria

Tools & techniques used > what are the parameters 
impacting the evaluation and 
prioritisation of EnSO’s?

- cost estimates
- economic indicators

Figure 1.2 – Detailed overview of methodology and open questions.
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1.2. Proposed methodology

black text below being the expected outcomes of the substep. The existing tools and techniques

which are applied at each substep are displayed on the left in grey and the challenges and open

questions raised in this chapter are highlighted in the colored boxes on the right.

1.2.1 Step 1: energy consumption analysis

The first step of the methodology aims at defining the real energy requirements of the system,

following a top-down approach.

The system is first studied as a black box, establishing the system boundaries and defining the main

chemicals and energy vectors entering and leaving the plant. This step is important to understand

the raw energy consumption supporting the production and the interactions of the site with its

surroundings (e.g utility contracts, industrial symbiosis). The study of the energy vectors entering

the plant indicates the distribution of the energy consumption, provided that a clear basis for

comparison is defined. Measuring units for common energy vectors are often different (e.g. tons,

normal cubic meter, cubic meter, kilowatthour, megajoule), raising the issue of the basis for energy

vectors comparison.

At this level, the energy baseline needs to be generated, representing the reference energy con-

sumption of the system. It is based on a selected time period, typically a year, and derived from the

analysis of the energy consumption and the production rate, as well as other factors significantly

impacting the consumption (e.g. outdoor temperature). Clear guidelines for the generation of an

energy baseline are difficult to find in the literature. Also, the use of monthly of weekly averages

should be avoided since it can lead to fictive operation modes not reflecting typical production

scenarios. This can be seen on Figure 1.3 (days 60-185 and 245-340), where averages for the months

combining both shutdown and high production periods result in productions lower than what is

observed normally.
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Figure 1.3 – Example of daily production andmonthly averages.
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Chapter 1. Methodology for energy reviews

Once the black box level is characterised, the mass and energy flows are mapped, gradually entering

into the site details in order to spot where and why energy is consumed. A clear top-down decom-

position is required at this stage to structure the data acquisition and understand the connections

between the industrial system components.

Data gathering is then carried out and is typically the most time-consuming step. The three basic

questions to be answered at this step are who? what for? and how much? With the objective of

reducing the complexity and time required to collect the required data without losing information

to be able to identify energy saving opportunities, several questions arise: how to minimise and

simplify the data collection step? can a trade-off between level of detail and information gain be

found, and what is the associated level of detail?

Once the required raw data to come up with the list of streams is acquired, it needs to be validated

to ensure that it is consistent in terms of mass and energy balances, and that results can be trusted.

The use of data reconciliation on the conversion units, the utility networks (e.g. steam network,

hot oil network) and processes is highly recommended and is the method of choice to correct and

validate data. However, it might be difficult to be used depending on the available time, skills and

access to the right platform or software. In this regard, other strategies need to be developed to

ensure the validity of the collected data and locate areas where inconsistencies are occurring.

Finally, the energy efficiency of the system is evaluated thanks to key energy performance indicators.

From the existing KPI’s in the literature, not all are suitable for (petro)chemical sites and the level

of detail of the analysis, and the single specific energy consumption indicators is not enough to

characterise an entire plant. A set of KPI’s, giving information on the energy efficiency at each step

of the energy chain is required.

Thanks to the first step, not only the list of streams serving as input to the pinch analysis of the

second step is generated, but the whole analysis procedure allows to characterise the entire energy

chain, from its conversion to end-use consumption. At the same time, the site measurements are

checked andmissing or malfunctioning sensors can be spotted.

1.2.2 Step 2: targeting energy consumption reduction

In the second step, total site graphical representations are first generated to obtain the hot and cold

composite curves of both process and utility streams, leading to the hot and cold total site profiles

of the site. These profiles show the temperature levels and heat loads of the system’s requirements

and how heat is supplied to and removed from the process.

Pinch analysis is then carried out on the process streams to determine the minimum energy re-

quirements of the system. When the number of process units is high, as in large industrial clusters,

direct heat integration is rarely viable as the involved process streams might be located far away
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from each other and belong to different process units. In this case, total site pinch analysis is more

adapted, but pinch analysis on individual or dependent process units should be carried out at the

same time, to evaluate the potential for both direct and indirect heat recovery at the unit and site

level (i.e. through the intermediate utility system). In this thesis, almost all the studied industrial

systems were composed of 1 to 2 process units, making pinch analysis suitable.

Several levels of details exist to represent the process energy requirements. The black box level

represents process requirements as its actual utility consumption, the grey box level considers also

only the process streams interacting with the utility system but looks at the temperature level of

the heating/cooling, and finally the white box level characterises the entire real process energy

requirements. The lighter the color the higher the level of detail and the more complex the analysis.

Again with the objective of reducing the complexity and time of the energy review, without missing

opportunities, we can ask ourselves if minimum energy consumption targets can be generated

without fully characterising the system, and how to do it.

A recurring observation when pinch analysis is carried out on existing industrial systems is that

minimum energy requirements are often under or overestimated, when further engineering calcula-

tions are done to actually design and implement heat recovery schemes. This is mainly due to the

traditional definition of a key assumption in pinch analysis, which is the minimum temperature

difference between the hot streams and cold streams profiles of the system (ΔTmin). A better un-

derstanding of the signification of Δ Tmin and control of the influencing parameters implied in its

determination would allow a better targeting of the minimum energy consumption of the system.

1.2.3 Step 3: achieving energy consumption reduction

Based on the results of the pinch analysis, the third step aims first at generating energy saving

opportunities. A bottom-up approach is followed, starting from process modifications, direct heat

integration, indirect heat integration, heat pumping to finally utility integration and optimisation.

This approach allows to generate a full list of options to increase the energy efficiency of the system

in a systematic way, starting from the core of the process.

Petrochemical processes have the characteristic of being usually exothermic, thereby releasing heat

at different temperature levels depending on the chemical process. Sometimes this heat cannot be

recovered to heat up cold process streams and is evacuated through the cooling system as waste

heat. Heat pumping opportunities and the development of innovative technologies to do so are

promising options to valorise waste heat.

Each identified energy saving opportunity is then evaluated by carrying out a thermo-economic

analysis, estimating the investment cost of themodifications and the expected operating cost savings.

Economic indicators such as the payback time, net present value or internal rate of return can be
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used as classification criteria. At this level, it is important to be aware of how parameters used in

this analysis influence the selected economic indicators. Natural gas prices variations, a CO2 tax

introduction, or uncertainty on cost estimates can drastically change the risk and profitability of the

different options.

1.2.4 Pinch analysis at the core of the methodology

Pinch analysis being the centerpiece of the methodology, the basic principles of this technique and

the resulting graphical representations are presented in this section. Complementary information

and details on its application on existing industrial systems are provided in Chapter 3.

The first developments of the pinch analysis date from the early 80’s with Linnhoff and Flower [58].

For more than forty years, heat integration based on pinch analysis andmathematical programming

has received continuous attention and significant developments were made in the field [59].

Pinch analysis is a systematic methodology based on thermodynamic and economic principles

which targets the maximum heat recovery via counter-current heat exchanges that can be realised

in a given system.

In any chemical process, streams have to be heated up or cooled down. Each stream is defined by its

heat load and its starting and target temperatures. Another key parameter to define is the minimum

temperature difference (ΔTmin), representing the trade-off between energy savings resulting from

heat integration and the investment cost linked to the heat exchange area to install.

Once the ΔTmin is defined, each hot and cold process stream is corrected, either by respectively

decreasing or increasing their temperatures by their contribution to the minimum temperature

difference, represented by ΔTmin/2.

Heating and cooling requirements of individual process streams are then summed up to generate

the so-called hot and cold composite curves of the system, showing at which temperatures heat

has to be removed and supplied to the system. These curves are then shifted horizontally until they

touch each other at the pinch point. Example of composite curves in real and corrected temperature

domains can be seen on Figure 1.4 (a).

The hot and cold utility consumption targets (i.e. minimum hot (MERH) and cold (MERC) energy

requirements) as well as the maximum heat recovery potential can be read on the curves. The

difference between the actual utility consumption and the minimum energy requirements is caused

by penalising heat exchangers within the system. These are explained by a bad positioning of a

utility (i.e. hot utility below the pinch point and cold utility above) or the transfer of heat across the

pinch.
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Figure 1.4 – Example of (a) hot and cold composite curves and (b) corresponding grand composite
curves.

The grand composite curve (GCC), represented on Figure 1.4 (b), gives information on the heat loads

and temperature levels of the utilities to optimally supply the rest of the energy requirements and

highlights opportunities for heat pumping.

1.3 Conclusion

This first chapter brings an answer to the following research question:

How to carry out an energy review covering the whole energy chain and enabling the identification of

energy savings opportunities at an adequate level of detail?

by proposing a global methodology for energy reviews in the (petro)chemical sector, which covers

all the requirements of the existing standards and enables the generation of energy savings op-

portunities starting from the process itself to the optimisation of the utility system, in a reliable

manner.

This methodology comprises three main steps: 1) the energy consumption analysis 2) the energy

consumption reduction targeting and 3) and the achievement of the energy consumption reduction.

It makes use of state-of-the-art tools and techniques, with pinch analysis at the core, that are used at

particular points along the methodology.

At each substep of the methodology open questions and challenges were raised and will be in-

vestigated in the next three chapters of this thesis, corresponding to the three main steps of the

methodology, with the aim of providing answers and close the gap and limitations found in the

literature.
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2 Energy consumption analysis

Chapter overview:

> From site raw energy consumption to detailed analysis of energy performance and process

units requirements.

STEP 1: ENERGY CONSUMPTION ANALYSIS

black box definition
- system boundaries
- energy vectors analysis
- energy baseline
- site-level KPI’s

Tools & techniques used > how to compare energy 
vectors? 
> how to generate the energy 
baseline in a systematic way?

- statistical analysis
- multi-time analysis

understand the energy use
- energy conversion to process 
mass & energy flows mapping

> which level of details 
allows to explain the energy 
consumption?

Tools & techniques used
- top-down approach

data gathering
- definition and collection of the 
required data for the analysis 

> how to minimise the time of 
the data collection step?
> is there a tradeoff between 
level of details and 
information gain?

data validation
- consistent set of data 

> how can data consistency 
be systematically ensured?

Tools & techniques used
- data reconciliation

energy efficiency evaluation
- key performance indicators

> what is the default set of 
KPI’s evaluating the efficiency 
along the energy chain?

Tools & techniques used
- state-of-the art KPI’s
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Chapter 2. Energy consumption analysis

2.1 Black box characterisation

2.1.1 System’s boundaries

The energy audit scope, as defined in the ISO 50002 standard [16], is the "extent of energy uses and

related activities to be included in the energy audit". It corresponds to the energy consumption

share of the business entity which has to be covered by the energy audit, according to each member

state’s legislation.

When carrying out an energy review on a (petro)chemical site, several cases can be faced depending

on the limits of the business entity, as depicted in Figure 2.1.

Figure 2.1 – Schematic representation of possible system boundaries

Case 1 features a standalone plant, producing one or two main chemicals and having its own utility

system in place. Case 2 is similar except for the size of the site. Many related and/or independent

production units compose the system, forming an industrial cluster with its central utility system.

The last case is when the system under study is part of such cluster, but with the utility system

outside the boundaries. In this case, the site is directly importing its hot and cold utilities (e.g. steam,

cooling water) from another business entity.

The results of an energy review strongly depend on the choice and definition of the system’s bound-

aries. Compared to case 1 and 2, in case 3 opportunities for direct or indirect heat recovery with

neighbouring production units can be missed. The utility system being outside of the boundaries, it

is audited separately, without including the real energy requirements of the end-use consumers and

heat integration potential if the entire cluster would be studied as a whole.

This can result in oversized investments and suboptimal configuration of the energy conversion

and distribution system. It is important to comment at this point that, in terms of energy efficiency,
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2.1. Black box characterisation

taking the legal entity boundaries is therefore not the best approach, and finding the optimum scope

for an energy analysis is not always straightforward.

Once the perimeter has been established, mass and energy flows entering and leaving the system’s

boundaries should be identified. Figure 2.2 shows the main flows to consider at the black box level,

corresponding to the limits of system. Horizontal flows represent the material flows related to the

chemical production itself.

Reactants and co-reactants enter the system, undergo chemical and physical transformations, to

finally leave as useful products and by-products. Vertical flows entering the system are mass and

energy flows required to support the production. These are energy vectors linked to the system’s

hot and cold utilities. The exiting vertical arrows correspond to mass and energy flows resulting

from the process unit operations. Among them can be found waste streams from the process, either

to be treated in a waste treatment plant, or waste fuels which can be valorised in boilers or sold to

neighbouring businesses. If the process is exothermic, excess heat can be exported in the useful

form of steam or a hot fluid.

Figure 2.2 – Mass and energy flows to consider at the system’s boundary, when applicable

The goal of the energy review is to quantify the energy consumption of the systemwith respect to the

production, breakdown the energy consumption to identify themain consumers, and finally identify

and propose energy savings opportunities to reduce the energy consumption and CO2 emissions

and increase the energy efficiency. The objective of these opportunities is to reduce the size of the

vertical flows related to waste or primary fuel consumption, for the same level of the horizontal ones.

The remaining waste mass and energy flows leaving the system’s boundaries are important to

characterise since they offer potential for industrial symbiosis and waste heat valorisation. For

example, a waste product stream could perhaps be of interest for a neighbouring industrial site, or

waste heat could be recovered through a steam line or hot water network. It is therefore important

to understand the interactions of the system with its surroundings and the flows crossing its border.
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2.1.2 Energy vectors distribution

Listing and characterisation of the energy vectors entering and leaving the system allows a better

understanding of the energy consumption and the quantities and temperature levels at stake. Among

energy vectors can be found electricity, any type of fuels (e.g. gaseous, liquid, solid), steam, hot fluids,

but also compressed gases if their pressure is high enough compared to atmospheric conditions.

In the literature, when petrochemical processes are evaluated in terms of their energy consump-

tion, it is often expressed in final energy consumption of electricity, fuel and steam. The end-use

consumption of these three vectors is however not detailed.

Table 2.1 shows the final energy consumption breakdown for Best Practice Technologies of most of

the processes displayed in Figure 4 and other key petrochemical products (relative values calculated

from [60]). Relative and not absolute values are shown to highlight the energy consumption distri-

bution. It can be seen that for all processes, except polymers, steam alone is already responsible for

a large share of the final energy consumption.

If we assume that fuel is also converted to hot utility, fuel and steam combined sum up to more

than 90% of the final energy consumption for the same processes, except for ethylene oxide (still

significant with 76%). Although the share of energy consumption which has to be investigated in the

framework of energy audits differs across Member States, the minimum scope varies between 80%

and 95% of the total final energy consumption.

Table 2.1 – Energy consumption breakdown based on Best Practice Technologies of the production
processes of key petrochemicals.

Studied processes Electricity [%] Fuel [%] Steam [%] Fuel+ Steam [%]
Butadiene (C4 separation) 7 0 93 93
Cumene 0 43 57 100
Ethylene glycol 4 18 78 96
Ethylene oxide 24 76 0 76
Phenol 6 0 94 94
HDPE 47 0 53 53
LLDPE 20 0 80 80
Polypropylene 90 0 10 10
Polystyrene 44 56 0 56
Other important processes Electricity [%] Fuel [%] Steam [%] Fuel+ Steam [%]
Acetaldehyde [ref Neelis] 8 0 92 92
Acetone 2 0 98 98
Aromatics extraction 5 0 95 95
Ethanol 3 0 97 97
Ethylbenzene 3 0 97 97
Styrene 0 0 100 100
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2.1. Black box characterisation

These observations show the importance of thermal power consumption in petrochemical processes

and corroborates the focus of this thesis on hot utilities. Electricity is sometimes consumed for

heating purposes, which is the case for polymer extrusion, where pellets are gradually melted via the

absorption of heat provided by barrel heaters and throughmechanical work [61]. In other types of

processes, it is however mostly consumed to drive mechanical devices (e.g. pumps, compressors,

blowers and fans), where it is sometime replaced by steam in turbomachinery. Production of electric-

ity and steam is linked in cogeneration units and within steam networks via back-pressure turbines

between steam pressure levels. These two energy vectors can therefore be highly interconnected.

2.1.3 Energy vectors comparison

Proper comparison between energy vectors entering the system’s boundaries is ensured through the

careful definition of energy flows and the use of homogeneous physical units. Several comparison

bases are used to study the energy vectors distribution.

Economic units: a first mistake is made when energy vectors are compared on the basis of eco-

nomics and on their share in the energy bill. The variability of energy prices according to the energy

vector type and site location can lead to various energy cost distributions for the same energy

consumption pattern, and hide the true order of magnitude for each vector. Operating costs should

enter into play at the level of the identification and evaluation of energy efficiency opportunities,

not at the level of the energy consumption analysis.

Mass units: another mistake is to use mass quantities. This is valid for fuels but more especially for

steam consumption. Because it is how it is measured, steam is too often characterised by tons no

matter what its pressure and temperature levels are. Figure 2.3 shows the energy content of 1 ton of

saturated steam, from 1 to 80 bar.
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Figure 2.3 – Energy content of the condensation of 1 ton of steam according to the pressure level
(condensates = 1.5 bar and 100°C).
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Although the total energy content from saturated vapor to condensate is not varyingmuch according

to the steam pressure, the distribution between the condensation and subcooling varies drastically.

Steam condensation occurs at constant temperature with a high heat transfer rate, this is why it is

used for process heating. The energy content in the subcooling can be used for lower pressure flash

steam production or to heat up streams at lower temperatures. The lower is the steam pressure the

higher is the energy released during the condensation phase compared to the subcooling phase, but

the lower is the saturation temperature.

Energy units: more generally one ton of steam cannot be compared with one ton of natural gas.

Energy vectors should then all be characterised using energy units for proper comparison. The

question arising at this point is the choice between final and primary consumption.

Final energy consumption corresponds to the quantity of energy entering the system’s boundaries

(i.e. electricity and fuels). Table 2.2 shows the calculation of the final energy consumption for

the most common energy vectors, from what it typically measured. Steam and hot fluid do not

correspond to final energy since the final energy consumption is at the level of the fuel that is burnt

to generate these two energy vectors. However, considering the fact that these flows can enter

directly the system boundaries (i.e. energy conversion outside the system), the corresponding heat

flows are associated to final energy consumption in this case.

Mass or volumetric flowrates (ṁ,V̇ ) of fuels and imported heating fluids are usually measured.

Tcond corresponds to the return temperature of condensates. If condensates are not valorised and

returned to the steam generation system, this reflects in additional cost linked to make-up water

preheating. For common fuels, the lower heating value (LHV) can easily be found in the literature

[62]. For other fuels such as waste fuels, these values can be derived from the atomic composition,

using for example the Dulong’s formula [63] originally developed for coal, or modified versions of

the formula proposed more recently for gas, liquid and solid fuels [64] and biomass-based fuels [65].

Table 2.2 – Final energy consumption calculations

Energy vector Measured Required data Final energy [kW]
Electricity Q̇el ec [kW] - Q̇el ec

Natural gas, ng ṁ [kg/s], (V̇ ) [m3/s] LHV [kJ/kg] Q̇ng = ṁng LHVng

Waste fuel, wf ṁ [kg/s], (V̇ ) [m3/s] LHV [kJ/kg] Q̇w f = ṁw f LHVw f

Steam, s ṁ [kg/s], T [°C], P [bar] Ti n ,Tsat ,Tcond Q̇s = ṁs · (hi n −hcond )
Hot fluid, hf ṁ [kg/s], T [°C], P [bar] cp [kJ/kg°C] Q̇h f = ṁcp · (Ti n −Tout )

Primary energy considers the efficiency in the energy resources exploitation, including the conver-

sion and distribution losses in the production of the final energy. Once the final energy consumption

is calculated, primary energy consumption can be determined by applying conversion factors to the

final consumption of the different energy vectors. Conversion factors are determined depending on

how the energy vectors are produced (e.g energy mix, type of conversion unit, fuel consumption).
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In [66], conversion factors of respectively 40% and 90% are used to calculate the primary energy

consumption related to the final consumption of electricity and heat at the European level.

The energy mix drastically varying from country to country and with renewable energy being more

and more present, there is a need to define suitable conversion factors at the national and even

regional levels with regard to primary energy, if this basis for comparison is to be used.

In the framework of energy audits and energy management, final energy consumption is the most

convenient way of comparing energy vectors, since the energy flows can be directly measured and

monitored. This is how energy consumption is expressed in this thesis.

Exergy units: the exergy of a heat transfer or an energy quantity is defined as the maximum amount

of work that would ideally be possible to obtain from each energy unit transferred or stored, using

reversible cycles with the atmosphere as hot or cold source (at the temperature Ta).

Exergy is used to quantify at the same time the quantity and quality of different energy vectors. It

enables the comparison of different energy conversion systems with the aim of minimising the

consumption of primary energy by maximising thermodynamic efficiency.

Exergy losses of the heat and refrigeration supply to an industrial site, from the system’s boundaries

to the end-use consumers can be calculated at several levels of the energy chain. For example, exergy

losses in boilers are calculated by the difference between the fuels exergy and the heat exergy of

the hot fluid (i.e steam or hot oil). The temperature difference between these intermediate energy

carriers and the production process streams determine the exergy losses at the level of the end-use

consumption.

According to Borel and Favrat [67], the exergy value of a fuel is defined as Δk0, defined for standard

conditions P0 and T 0 (often P0 = 1 atm, T 0 = 25°C). This parameter introduces the coenthalpy k,

which is a derivative state property combining enthalpy h and entropy s (k = h−Ta ·s). Exergy values
of common fuels are available in [67].

The heat exergy Ėqi is equal to the heat quantity Q̇i multiplied by the Carnot factor. The exergy of a

heat source can then be calculated thank to Equation 2.1. According to this equation, the higher is

the temperature of the heat source, the higher is the work production potential.

Ėqi =
(
1− Ta

Tlm,i

)
·Q̇i with Tl m,i =

Ti n,i −Tout ,i

ln(Ti n,i /Tout ,i )
(2.1)

The exergy losses of a heat exchange L̇ht can be determined by Equation 2.2, as the difference
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between the exergy of the hot source and the resulting heated stream:

L̇ht = Ėq,hot − Ėq,cold (2.2)

2.1.4 Energy baseline

Specific energy consumption

Once final and/or primary energy consumption is calculated, its variation with the site production

can be investigated. An example for a production site can be seen on Figure 2.4, where the total

final energy consumption is plotted against the yearly production, with the details at the level of the

energy vectors (i.e. middle and low pressure steam and electricity). Linear regressions can be fitted

on each data set, together with the corresponding coefficient of determination (R2).
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Figure 2.4 – Example of the energy consumption according to production per energy vector (daily
values).

From the example, it can be seen first that the consumption of electricity is very small compared to

the steam usage. The steam consumption at the two pressure levels are then the main components

of the total energy consumption. Although the low pressure steam consumption has the best R2,

it can be seen that if a linear regression is carried out only for the points corresponding to low

andmedium production, the resulting trend line would be much lower for high production points,

compared to what is actually observed.

As for the middle pressure steam, a large vertical variation is observed at low production meaning
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2.1. Black box characterisation

that for a specific production rate its consumption varies significantly (around 4MW). These two

aspects should be analysed in details, by investigating which parts of the plant and/or which final

consumers are responsible for this behaviour.

The specific energy consumption (SEC), introduced in Chapter 1, is then calculated at each level

(i.e. site and per energy vector) to serve as internal or external benchmark. Logarithmic trend lines

where generated for electricity, middle pressure steam and the total energy consumption, showing

the effect of the part load.

Results are shown on Figure 2.5. The coefficient of determination for the SEC according to the

production is the same as in Figure 2.4 for the total energy consumption. However, results are

drastically different at the level of the specific steam consumption.

While the R2 of the middle pressure steam SEC indicates a good correlation (R2 =0.92), the SEC for

the low pressure steam is not following the expected decreasing trend with the production. On the

contrary, it is higher at higher production rate. This observation adds up to the previous one and

should also be explained by entering into the site details.
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Figure 2.5 – Example of the specific energy consumption according to production per energy vector
(daily values).

More generally, the evolution of the energy consumption and the specific energy consumption with

the production are two good indicators at the site level. They can be used to define reference lines

corresponding to best and average "business as usual" situations. While the latter will serve for

energy baseline generation, the former indicates the best points at which the plant was already

operated for different production rates and can be used as energy targets.
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Whenmodifications are made to the production units and impacting the energy consumption, the

specific energy consumption model(s) has to be updated.

Multi-period analysis

The recommended study period length for an energy review is minimum one year. An entire year

is long enough to encompass several production modes and shutdowns and allows to see the

effect of seasons on the energy consumption. While the analysis of the energy performance and

benchmarking can and should be carried out on a daily basis, it is more difficult to do so when

carrying out a pinch analysis and generating engineering solutions to improve energy efficiency,

due to the large amount of data to treat and analyse.

However, yearly or monthly averages do not reflect the real behaviour of the industrial system and

can result in "fictive" operation scenarios. Also, high and low production periods are not visible. In

order to successfully study the different operation modes, it is necessary to reduce the study period

into a number of base case scenarios, each representing a typical plant operation. In this way, the

data size is reduced but the variability of the system is still taken into account.

This multi-period analysis depends on the number of units in the system and the variation of their

production rates. When the plant comprises a single or two related plants operating simultaneously,

the multi-period profile is generally easy to generate. Figure 2.6 (a) shows the decomposition of such

production profile in 13 periods, each corresponding to a typical operation scenario. Production

values correspond to the same example as in the previous section (Figure 2.4 and 2.5).
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Figure 2.6 – Multi-period representation of a production profile (a) and typical period distribution
over the study period (b).

In this specific case, 4 production regimes are identified (e.g zero, low, medium and high production)

38



2.1. Black box characterisation

with averaged productions very close to each other for periods belonging to the same production

regime. Instead of oscillating around only three values, the plant production can vary more sig-

nificantly. In this case, several production ranges are defined, covering the full plant production

spectrum, and each period can be assigned to the range within which it is located. Additionally to

the multi-period definition, the study year can also be represented according to the share of the

production ranges as it can be seen on Figure 2.6 (b).

For systems with a large number of units, as it is the case when studying industrial clusters, the iden-

tification of a limited number of periods is more difficult. In this case, mathematical programming

and optimisation techniques can be selected, as it is presented in [68], where a genetic evolutionary

algorithm is used to find the best solution for multi-period decomposition based on two objectives:

the minimisation of the standard deviation between the averaged and real profiles and the respect

of the zero flow days.

This methodology has been applied on a large industrial cluster where a Total Site Analysis was

previously carried out without consideringmulti-period analysis [69]. The results highlighted the im-

portance of this approach for more accurate investment sizes with, among other, recommendation

for a larger boiler capacity than previously calculated.

Generating the energy baseline

The evaluation of any project aiming at improving the energy efficiency of a system has to take into

account the duration and capacity level of plant operations. The analysis of the energy consumption

of the system over the year defines how energy consumption varies according to the production rate

(section 2.1.4). The multi-period analysis defines the production model of the plant over the same

year. By putting the two together, it is possible to generate the energy baseline, which will be used to

evaluate energy saving opportunities.

From the multi-period decomposition, Table 2.3 shows the averaged values of the plant production

and energy consumption for each typical production regimes, which are then considered for the

energy baseline. The comparison between averaged values on a daily basis for the study period and

the energy baseline is provided in Table 2.4.

Table 2.3 – Yearly production and energy baseline

Operation mode Production [t/h] MPS [t/h] LPS [t/h] Electricity [kW] [hours/y]

High production 26.1 44.6 21.3 2983 701

Medium production 20.9 42.2 16.4 2827 1051

Low production 16.4 40.1 12.2 2692 4818

Shutdown 0 0 0 0 2190
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The energy baseline using the multi-period decomposition shows results close to the daily values

of the study year, showing the good representation of the plant’s behaviour with the multi-period

approach. The latter has the advantage of simplifying the analysis, considering a limited number of

scenarios, each corresponding to a real operation mode of the plant. As a result, the energy profile

of the plant can be generated for the different scenarios (i.e. via pinch analysis) and the accuracy of

the design and evaluation of energy saving opportunities is improved compared to the use of yearly

or monthly averages.

Table 2.4 – Comparison between the study year and the energy baseline

Production MPS LPS Electricity

[kt/y] [kt/y] [kt/y] [GWh/y]

Energy baseline 119.3 268.8 90.9 18.0

Study year 120.3 269.9 92.0 18.1

The energy baseline defines the future operating conditions of the system. It has first to be approved

internally and match the expected future operating conditions of the plant. If higher production

rates are expected in the near future, the energy baseline should be adapted to take it into account.

2.2 From black box to process flowsheet representation

Starting from the black box and the global energy consumption of the site, the goal is to track the

energy flows down to the process level and the final energy use, thereby understanding where and

why energy is consumed. When the utility system is part of the system’s boundaries, the energy

conversion flows should be considered, together with the utilities distribution network.

This section gradually details the site representation from the black box perspective to the process

block flow diagram and flowsheet, which enables the complete mapping of the energy flows. It takes

over and complete the approach presented in [70] for chemical sector virtual profile generation.

2.2.1 Site map

The site map decomposes the industrial system into its major sections. They can be divided in three

main categories: process units, production support units, and utility units.

Process units are responsible for most of the thermal energy end-usage as well as production when

chemical reactions taking place are exothermal. In the site map representation, each individual

process unit is detailed in terms of reactants, products and co-product flows as well as other smaller

material streams to close the mass balance. Energy vectors entering and leaving the units are drawn.
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2.2. From black box to process flowsheet representation

Utility units encompass all units required to convert and distribute hot and cold utilities. Among

them are found the energy conversion units (e.g. boiler, cogeneration unit), directly delivering heat

to the process or converting fuels to intermediate energy carriers, and the distribution system of

these intermediate carriers (e.g steam network with the different steam headers and back-pressure

steam turbines). On the cold utility side, cooling towers and cooling water network are drawn,

together with potential refrigeration systems.

Production support units are all the other components of the site. Among them are foundworkshops

and offices, the production support system providing air, inert gases or basic chemicals to the

process, the flaring system and the storage tanks.

Figure 2.7 – Site map representation

Connections between the utility units and the process and production support units have to be

drawn to map all the energy flows of the system and track energy conversions and heat transfers

within the system. A simplified example of a site map can be seen in Figure 2.7.
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2.2.2 Process block flow diagram

At the level of the site map, details on the final usage of this energy, meaning to which purpose

it is consumed, is unknown. The next level of representation zooms inside the process units, to

decompose each one of them into interconnected blocks representing their main transformative

operations.

As represented in Figure 2.8, these blocks can be reactants mixing and preparation step, followed by

the reaction itself, then a recovery step where all the main unreacted chemicals are extracted and

recycled back, and finally a separation step to recover the main product(s). Other transformative

steps can be for example absorption, distillative extraction, CO2 capture or cleaning.

Figure 2.8 – Example of process unit decomposition into main blocks

These blocks are usually straightforward and readily defined and accepted internally. Main product

and energy flows entering and leaving each block have to be connected at this step. When using this

representation, the "grey box level" is targeted, meaning that the process requirements are defined

at the interface between process and utility stream. Existing process-process integration is left out

of the analysis.

2.2.3 Process flowsheet

For industrial systems composed of only one or two production units, the mass and energy flows

mapping can be carried out at another deeper level, called the process flowsheet. Instead of stopping

at the process block flow diagram level and only targeting final energy consumption use, process-

process integration is also looked at. Therefore, mass flows inside each block are connected to the

major pieces of equipment and all heat exchangers are mapped and connected to their surrounding

pieces equipment.

This level of detail is used for white box analysis, which is the level of detail for traditional unit pinch

analysis. Translation of Figure 2.8 to the detailed view is shown on Figure 2.9.
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2.2.4 Choosing the level of detail

The choice in the level of detail of the energy review will dictate the list of streams in the pinch

analysis of the system. Depending on the expected level of detail of the analysis and the system

constraints, the energy requirements can be represented in several ways. Practitioners usually

consider three categories for streams definition [71]: black boxes, grey boxes and white boxes.

A black box defines the energy requirement of a stream as its utility consumption itself. A 1000

kW consumption of steam at 4 bar will be represented by an horizontal segment at the saturation

temperature of water at this same pressure (144°C). Choosing the black box representation means

that the current utility consumption is fixed and cannot be changed, but the heat load is still taken

into account in the analysis. Most of the time black boxes are either smaller utility consumers,

processes for which the utility profile cannot be modified or consumers for which data is missing.

Showing the actual temperature and heat loads of the hot and cold utilities consumption and/or

production, the black box representation only allows optimisation on the actual utility flows and the

identification of cogeneration potential between the existing steam pressure levels.

The grey box representation goes a step further and considers the temperature level of the process

streams exchanging with utilities. Only process streams which are heated up or cooled down by

utilities are included in the analysis. The previous 4 bar steam consumption will be translated into

the real temperature requirements of the process stream, which might be heating from 100°C to

115°C, while the heat load stays identical. When switching to grey box representation, the utility

system can be modified and optimised so that it better fits the process curve while maximising the

cogeneration potential. The grey box level also allows the identification of direct and indirect heat

recovery schemes and highlight opportunities for heat pumping.

The white box representation corresponds to a traditional pinch analysis, where all the hot and

cold energy requirements of the system are considered, thereby also looking at process-process

heat integration and non-isothermal mixings. Depending on the size and complexity of the system

under study, a significant amount of data and a simulation model are needed for this type of

representation. Compared to the grey box level, additional findings to improve the energy efficiency

concerns mostly process-process heat integration redesign and the removal of non-isothermal

mixings, involving modifications of the actual heat integration due to penalising or not optimal heat

exchanges configurations.

Figure 2.10 shows for the same system the grand composite curves obtained when using the three

types of representation. The switch from black box to grey box shows only a slight potential for heat

recovery but it reveals the temperature profile of the heating and cooling demands of the system,

allowing the identification of opportunities for heat pumping. The white box level, corresponding to

the full characterisation of the system, brings 4MW of additional heat recovery, at the expense of a

bigger time spent on data gathering and streams definition.
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Figure 2.10 – Black, grey and white box grand composite curves of a production unit

The grey box representation of the energy requirements is usually more suitable when carrying

out an energy review on systems larger than a single process unit and allows to greatly reduce the

complexity and size of data to collect.

Not only the data gathering step is much longer and difficult in white box situation, but in the end

the proposed modifications will rarely be viable in retrofit situation, due to diverse constraints like

safety issues, space limitation, streams too far from each other, which will also lead to economi-

cally infeasible modifications. The grey box level mostly targets heat recovery schemes through

intermediate utility systems, allowing greater flexibility and site operability, while still enabling the

identification of direct process heat integration potential.

For these reasons, the grey box level is selected as the default level of detail for this methodology.

It can be applied for small systems to large clusters. In the former case, the actual process-process

heat integration can always be checked with respect to the process pinch point, to verify if heat

exchangers are correctly placed and not penalising. Inversely, in certain cases, the number of utility

consumers can still be very high and grey box data can also be missing for some streams. In these

situations, it can be judicious to switch to black box representation.

2.3 Data gathering

The targeting of minimum energy requirements and heat recovery opportunities is only possible

once the full set of hot and cold streams is defined, which is usually the most time-consuming step

even at the grey box level. Indeed, the complexity of large industrial systems, the significant data

size and the lack of time are some of the barriers preventing large companies from carrying out
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site-wide energy integration studies [72].

This section provides guidelines and heuristic rules to reduce the time required for the data collection

step, properly define themain types of heat flows commonly found in industrial systems and simplify

the acquisition of the input data for pinch analysis. This section is an extension of a conference paper

[73] of the thesis author, in which complementary information on the graphical representation of

each type of stream can be found.

Figure 2.11 – Key questions of the data gathering step.

The goal of the data gathering step is to answer to the three key questions displayed on Figure 2.11

that are: who are consuming energy, to which purpose and howmuch?

2.3.1 Dual representation

The dual representation shows the same heat requirement at two different levels: from the utility and

process stream perspectives. At the grey box level of detail, it means that for each process stream, the

corresponding current utility stream is defined. It allows to generate the corresponding process and

utility hot and cold composite curves of the actual system while ensuring that the energy balance is

closed.
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Figure 2.12 – Dual representation of a black box and a grey box cold process stream with the
corresponding utility.

The dual representation depends on the stream box color as it can be seen on Figure 2.12. For a

same utility stream, here steam heating, the equivalent process requirement will vary. The process
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requirement of a black box stream corresponds to its utility consumption profile, whereas at the

grey box level the real temperature-enthalpy profile of the process is represented, that is heating

from Tp,in to Tp,out.

Contrary to black boxes, grey boxes require additional data collection and calculations to properly

define the process side of the heat exchange, corresponding to the real process thermal requirements,

which depends on the stream type.

2.3.2 Streams classification

The main types of heating and cooling demand encountered in the (petro)chemical industry are:

• Heaters and coolers: simple heating or cooling without phase change can be represented by

a heat load segment going from the initial to the target temperature, assuming a constant heat

capacity.

• Reboilers and condensers: heat exchangers usually found respectively at the bottom and at

the top of distillation columns (sometimes on the side) for evaporation or condensation. As

soon as a phase change is taking place during the heat exchange, the phase change tempera-

ture enthalpy profile is determined by the stream composition.

– one major compound: the stream is represented by a horizontal segment at the satu-

ration temperature of the main compound at the stream pressure. If desuperheating

or superheating and/or subcooling or preheating is required, additional temperature-

enthalpy segments should be added to the stream.

– several compounds: the phase change profile cannot be approximated by a straight line

since it is likely that the different chemical species have different saturation temperatures.

Depending on the stream composition, different methods can be used such as the true

boiling point for hydrocarbon mixtures or other specific thermodynamic methods to

generate the phase change profile of the stream.

• Steam injection: steam is directly injected inside the process. Injected steam ismostly used for

separation purposes (stripping, desorption, venting) but also for cracking (refineries), cleaning

or water heating. The representation of a stripping stream corresponds to the production of

steam from the ambient temperature to the saturation temperature of the minimum pressure

allowed by the system.

• Reactors cooling: most of the petrochemical reactions are exothermic and release heat. Reac-

tors cooling is carried out either through water cooling or though the production of steam if

the temperature is high enough.

• Building heating: buildings on a plant are often heated up by the same utility system as the

plant itself. Depending on the location and the size of buildings, the energy consumption for

heating might be non-negligible.
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Three special cases not corresponding to a pure process utility consumption but to the steam

network should be added in the curves to account for other important utility flows:

• Tracing/storage: Steam is used to maintain a fixed temperature in the distribution pipes,

so that process streams do not degrade or start condensing when being transported from

one point to another or stored in intermediate tanks. The process stream corresponds to the

minimum temperature required.

• Cogeneration: the production of electricity by back-pressure turbines within the steam net-

work as well as the different pressure level between which the expansions occur should be

noted to be included in the total site profile.

• Distribution losses: Lack of maintenance and poor insulation are responsible for losses

through steam traps and leaks. Depending on the system, steam losses can be significant.

Quantified heat losses within utility systems should be included as well since they contribute

to the optimisation potential of the site. In this case the process side is represented by a

segment at the ambient temperature.

2.3.3 Minimum data set

In any industrial system, the size of data available to control and check the chemical and physical

operations taking place within the site boundaries is gigantic. This section aims at defining the

minimum data set to collect to be able to carry out the next steps of the methodology. In this way,

the optimum time is spent on data collection without losing information.

Conversion units

At the level of the energy conversion, the minimum data to collect is related to the calculation of

the efficiency of conversion units (e.g. boilers, cogenerating units). The following information is

required:

• Lower heating value(s) (LHV[kJ/kg]) of fuels

• Mass flow (ṁ [kg/s]) or volumetric flow (V̇ [m3/s]) of fuel(s) .

• Temperature (T [°C]), pressure (P [bar]) and ṁ of intermediate energy carrier(s).

• Temperature of the fumes (Tfumes [°C])

• Inlet and outlet conditions of turbines (T and P) and electricity production (Ėpr od [MW]).

If available, additional data such as the excess air, fumes composition and blowdown rate should be

collected to further investigate energy losses.
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Steam network

The steam network is a key component of almost all (petro)chemical sites. In order to characterise it

properly, the following measurements should be collected:

• P and T of each steam header at different points to check for pressure changes and heat losses.

• ṁ, P and T at each steam consumer and producer level.

• ṁ, P and T at the inlet and outlet of each letdown and steam turbine.

• P and T of condensates at the outlet of the heat exchangers.

• Inlet and outlet water/steam conditions (T and P) for flash drums and flash steammass flow.

• ṁ of steam venting.

While steam consumed and produced by the production unit(s) are generally well measured, it is

seldom the case for the condensates system. In this case, assumption can be made on the pressure

drop and subcooling level.

Process streams

According to the type of stream, data should be collected to be able to properly define it and

prepare the input for the pinch analysis. Within a pair of process and utility streams, each stream is

characterised by a minimum number of four parameters: the heat load of the heat exchange (the

same for both streams), the initial temperature Tin, the target temperature Tout and the contribution

to the minimum temperature difference ΔTmin/2.

Temperature information of process streams aremost of the timemeasured or easily found in design

data or via discussions with operators. Regarding the heat load of the heat transfer, the grey-box

approach allows to calculate it either from the utility or the process side. When data on utility flows

and thermodynamic properties are available, it is easier to calculate the heat load from the utility

side. The best case is to have access to validated measurements onmass flows, temperatures and

pressures of the utility streams. If not, mass and energy balances can be calculated using other

measurements to determine directly the heat load or the missing parameters required to calculate it.

A good example of the use of mass and energy balances are distillation columns. Figure 2.13 shows

the main parameters involved in the calculation of the energy balance around the column.

When feed (F), distillate (D) and bottom (B) flows have approximately the same temperature, the

overall energy balance can be expressed by Equation 2.3. The sum of the heat flows ’in’ (i.e. reboiler

(R) and preheater (PH) heat load) should equal the sum of the heat flows ’out’ (i.e. condenser (C), top

(TC) and bottom (BC) coolers). In the case where inlet and outlet flows have a different temperature

and/or there are no coolers, the individual stream enthalpies should be considered and the overall
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Figure 2.13 – Energy balance around a distillation column.

energy balance is written as Equation 2.4.

Q̇PH +Q̇R = Q̇C +Q̇TC +Q̇BC (2.3)

Q̇PH +Q̇R +ṁF hF = Q̇C +ṁD hD +ṁB hB + (Q̇TC )+ (Q̇BC ) (2.4)

When nomeasurements are available and/or if sensors are malfunctioning, design data can be used,

either directly or applying linear interpolation from the design reference flow. The last option is to

make an educated guess.

Figure 2.14 – Procedure to collect data.

This procedure, schematically represented on Figure 2.14, is to be followed for each required in-

formation. When one or several parameters are missing and cannot be recovered or calculated,
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complementary data should be collected on the process side to determine the stream heat load.

Large chemicals databases (e.g NIST WebBook [74]) and modelling software [75, 76] can be very

useful at this stage, facilitating calculations. In specific cases, additional data can also be required to

properly define and graphically represent process streams, summarised in Table 2.5.

Table 2.5 – Complementary data collection for process stream definition

Type Additional data
Phase-change heaters/coolers Tevap,Tcond,TBP’s
Injection Pmin, ΔTsuperheating

Tracing/Storage Pmin, Tmin

Building heating Area, HDD , Tinside

Reactor cooling Xreaction, ΔHreaction

In the case where evaporation or condensation occurs in heat exchangers, the stream phase-change

temperature has to be known. When a stream is mainly made of a single component, the phase

transition is represented as a straight line at the evaporation temperature. However, if the stream is

composed of a mixture of components having different boiling points, the condensation can take

place over a wide temperature range.

Depending on the stream composition, several thermodynamic methods can be applied to approx-

imate the temperature-enthalpy profile of the evaporation [77]. In the refining industry, the true

boiling point (TBP) method is an efficient way to determine thermal properties of hydrocarbon

streams, which may be made up of millions of components. TBPs give the fraction of fluid evap-

orated or condensed according to the temperature, over the whole phase transition temperature

range.

The minimum pressure for steam injection (Pmin), based on the required overpressure, and the

level of superheating (ΔTsuperheating) should be determined. Tracing and storage heat requirements

are based on the product temperature and the minimum steam pressure (Pmin, Tmin). For these

two heat flows, the objective is to establish the minimum requirements of the process stream by

questioning the real requirements, rather than describing what is currently done.

Instead of representing building heating as a black box requirement, the heat demand can be

determined according to the external temperature, the surface to be heated and the buildings

insulation. Standards can be found on indoor temperature criteria according to the geographical

location and the heating degree-day (HDD)method [78] can be used to calculate the required energy

demand. Choosing to represent building heating as a grey box enables the identification of heat

recovery opportunities at low temperatures.

Finally, the cooling load of reactors can be determined based on the heat of reaction (ΔHreaction)

and reaction conversion (Xreaction), or through the heat evacuated by the cooling system, a simple
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calculation in the case of a well-measured water cooling.

Theminimum temperature difference for heat exchange (ΔTmin) is an important parameter in pinch

analysis, as it has a direct impact on the heat recovery potential and associated investment costs.

In a heat exchange, each stream contributes to the minimum temperature difference (ΔTmin/2).

Depending on the type of stream (e.g. gaseous, liquid, phase-changing stream) and other param-

eters (e.g. utilities cost, heat exchanger type), different ΔTmin/2 can and should be attributed. A

comprehensive analysis on the definition and impact of the ΔTmin on the results is provided in

Chapter 3.

2.3.4 Heuristic rules

For large systems and/or when scarce information is available, the following set of heuristic rules

can be applied at the data collection step.

Pareto principle or "cut-off" criterion

Although the higher the details the better the analysis, a trade-off can be found between the amount

of data to collect and the quality of the results. The application of the Pareto principle, or 80/20 rule,

reduces the data size while keeping a high information level. This principle states that in general

80% of the effect is explained by 20% of the cause.

Applied to the energy consumption analysis, it means that data collection on final consumers can

be stopped after having identified and characterised at least 80% of the consumers for each utility,

in decreasing order. The streams for which the cumulative sum is below or equal to 80% are defined

as grey boxes and the rest of the streams as black boxes.

The comparison between the grand composite curves of a system when the Pareto principle is

applied and when all the streams are characterised as grey boxes is illustrated on Figure 2.15. For this

example, the minimum energy requirements are similar in both cases. Yellow areas correspond to

grey-box streams not included in the streams required to reach at least 80% of the total hot and cold

utility consumption, which were then transformed to black-boxes. The application of the Pareto

principle for process integration can also be found in a previous thesis from Damien Müller [79],

focused on the food industry.

This cut-off criterion of 80% can of course be adjusted, depending on the size of the process unit

and the availability of data. For process units with a manageable number of streams the limit can

easily be set to 90%, and all energy consumers can even be characterised. The grey-box Pareto

representation of the heating and cooling demand is not unique and depends on the availability of

data.
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Figure 2.15 – Comparison between full and Pareto streams definition

Defining such cut-off criterion will prevent spending too much time on the smallest consumers,

often poorly monitored, which would anyway not be worth considering for heat recovery schemes

in retrofit situations. It is however important to keep in mind here that small consumers defined as

black box will have an impact at the level of the utilities integration and optimisation.

Hot process streams targeting

Process streams cooling is in the majority of cases carried out by a cooling water network, cooled

down by cooling towers. When collecting data to define process hot streams it is often difficult to

have access to information on the utility side to calculate the heat load, although these are in reality

the possible opportunities for heat recovery.

Cooling water flowmeasurements and temperatures are often missing, and a first screening rarely

allows to obtain 80% of the consumption from utility flow measurements. In this case, other

calculation means like mass and energy balances, modelling techniques or the use of design values

can be used to reach the Pareto limit.

In the case where limited information is available on both process and utility side a screening can be

applied on hot process streams regarding their potential for heat recovery. Streams with temperature

higher than 80-90°C, large heat transfer coefficient (phase change) and large heat loads have to be

characterised first, since they feature a priori interesting properties for heat recovery.

Low temperature and/or small heat load streams and streams for which modifications or heat inte-

gration with another process stream would be consider dangerous or unlikely due to size/location

constraints should be characterised last.
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2.4 Data validation

Once the required minimum data set has been collected, the next step is the data validation. Indeed,

as soon as the level of detail is quite high, with an analysis looking for opportunities from low to

significant investment costs and risk taking, it is of major importance to work with consolidated and

validated data. Data reconciliation is a powerful method to do so when enough data and time is

available. In case of missing data or when faced with too large and complex systems, a set of key

mass and energy balances to carry out at the different level of the site map representation has been

developed to ensure working with reliable data.

2.4.1 Data reconciliation

When the redundancy of measurements and parameters in the system allow it, data reconciliation

techniques can be used to correct the data set while ensuring the consistency of the reconciled

values [80].

Measurements from process control sensors (e.g. temperature, mass flow, pressure measurements)

are subject to systematic, random and gross errors. Systematic errors have the same magnitude

and sign and are due to the limitation of equipment. Random error are statistical fluctuations in

the measured data due to the precision limitation of sensors and can therefore be treated with by

statistical methods. Gross errors are caused by non random events (e.g. instrument malfunctioning,

corrosion, solid deposit) and can differ greatly from the average measurements under the same

process conditions. They should be detected and removed before carrying out data reconciliation.

Data reconciliation is a technique that is used to improve measurements by adjusting the measured

values so that they satisfy the system constraints. In any industrial system the variables are linked

together through physical constraints, material and energy conservation laws and constitutive

equations. If enough measurements are available, they can be reconciled using the redundancy

of the system, coming from the combination of the model constraints and the measurements

themselves.

Data reconciliation has been found to be very powerful when applied to industrial systems, with

examples on a gas pipeline [81], a steam turbine power plant [82] or a multi-fuel fired boiler [83],

resulting in improved system knowledge and system performance control.

Models can be developed for the entire system or for smaller subparts like process units and utility

system. Data reconciliation on steam networks allows to close mass and energy balances around the

utility system, from the conversion units to the end-use consumers, including letdowns, turbines and

losses quantifications. Practical application of data reconciliation of steam networks in refineries

and petrochemical sites can be found in this technical report [84].
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The use of data reconciliation is highly recommended and was carried out for almost all case studies

during this thesis. It was also covered in the PhD thesis of Stéphane Bungener [25] via its application

on the steam network of a large petrochemical cluster, and is therefore not investigated further here.

2.4.2 Data consistency check

When data or time is missing or when the lack of proper programming skills and software does not

allow the use of data reconciliation, it is however still possible to check the consistency of the data

set through a set of key mass and energy balances to be carried out at different levels in the system.

Figure 2.16 shows an example of the main mass and energy flows at the level of site map, providing a

visual basis for the equations presented in this subsection.

Figure 2.16 – Mass and energy flows involved in the key balances of the data consistency check

The objective of these balances is to minimise the system inconsistencies. Imbalances will be

inevitable and will occur between what comes in and out of the system. These imbalances are in

reality composed of errors (i.e. coming from rawmeasurement and assumptions) and real losses,

which can then be identified and quantified. Areas were more investigation is required are pointed

out, in order to understand where the losses come from and if they can be recovered. Once data is

validated and balances explained, energy saving opportunities can be sought.
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Site level:

At the site-level it is important to calculate the global energy balance, which can be expressed by

Equation 2.5 as the sum of the energy entering the system (Q̇i n) being equal to the energy leaving

the system (Q̇out ) and the heat losses (Q̇losses) .

Q̇i n = Q̇out +Q̇losses (2.5)

Taking an example of an industrial system with a natural gas boiler, a steam export, back-pressure

steam turbines, an exothermic process, and water cooling (cold and hot water), the previous equa-

tion becomes Equation 2.6.

ṁ f uel ·LHVf uel +Q̇r eac = Ėout +Q̇steam +Q̇cool i ng ++Q̇HW +Q̇losses (2.6)

where:

ṁ f uel = mass flow of fuel [kg/s]

LHVf uel = lower heating value of fuel [kJ/kg]

Q̇r eac = heat of reaction [kW]

Ėout = exported electricity [kW]

Q̇steam = exported steam [kW]

Q̇cool i ng = cooling water load [kW]

Q̇HW = exported hot water [kW]

Figure 2.17 – Example of a Sankey diagram at the site level (LPS = low pressure steam, HW = hot
water)
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This energy balance is represented on a Sankey diagram (Figure 2.17), where the order of magnitude

for each energy flow and the energy losses can be seen. The 21% imbalance (7MW) at the level of the

global energy balance has to be explained, and therefore the energy chain needs to be decomposed

to understand where and why losses occur in the system.

Conversion units:

Energy conversion units such as boilers or cogeneration units convert final energy and/or waste fuels

into secondary energy carriers (e.g. steam, hot oil) and electricity in case of cogeneration. These

units are important to characterise as they can show potential for energy efficiency improvement

which are well documented in the literature and in best practices documents [50].

The energy balance around energy conversion units, displayed in equation (2.7), seeks to determine

the efficiency of the conversion and quantify the energy losses.

ṁ f uel ·LHVf uel = ṁsteam(hsteam−hb f w )+Q̇loss,conv +Ėpr od ,conv = Q̇hu+Q̇loss,conv +Ėpr od ,conv

(2.7)

where:

ṁ f uel = mass flow of fuel [kg/s]

LHVf uel = lower heating value of fuel [kJ/kg]

ṁsteam = mass flow of steam [kg/s]

hsteam = enthalpy of superheated steam [kJ/kg]

hb f w = enthalpy of boiler feed water [kJ/kg]

Q̇loss,conv = conversion losses (e.g. fumes heat, radiative losses) [kW]

Ėpr od ,conv = cogenerated electricity [kW]

If an intermediate carrier other than steam is generated as hot utility, like hot oil, then the useful

heat produced becomes Q̇hu = ṁ f lui d · cp, f lui d · (Tout −Ti n).

The direct method is the easiest way to quickly determine the efficiencies of conversion units. It

calculates the ratio between the useful energy coming out over the input energy. The difference

between the inlet and outlet energy flows corresponds to losses in the system, about which no details

are however available when using the direct method.

The indirect method is more fastidious and requires additional measurements. It can be used

complementarily to the direct method, if efficiency results are far from what is expected or from tra-

ditionally observed results. It focuses on the losses and aims at calculating each of them individually.
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Major sources of losses are the heat losses in the flue gases and the heat losses through radiation

and convection. Other loss sources and detailed explanations on the direct and indirect method

calculations can be found in [85].

Steam network:

The steam network is usually the centerpiece of the utility system, connecting energy conversion

units to the final consumers. If poorly designed, insulated or maintained, the steam distribution

system can be a significant source of losses.

Both mass (Equation(2.8)) and energy (Equation(2.9)) balances around the overall network and

around each distribution header allow to evaluate the quality of the distribution efficiency and helps

in the identification of the nature and location of losses. It also ensures that consumers and/or

producers are not forgotten in the analysis. Care should be taken since an apparent surplus in steam

inlet compared to steam outlet can hide unaccounted consumers, additionally to pure mass losses.

Depending on the size, age, design andmaintenance of the steam network, losses can vary greatly

from one site to another. Major causes for heat and mass losses are poor and insufficient insulation,

malfunctioning steam traps and steam leaks. Best practices on steam network operation and

maintenance can be found in [50].

Equation (2.10) is the application of Equation (2.9) on the steam network box of Figure 2.16.

ni n∑
i=1

ṁi =
nout∑
j=1

ṁ j +ṁlosses (2.8)

ni n∑
i=1

ṁi ·hi =
nout∑
j=1

ṁ j ·h j +Q̇losses (2.9)

ṁsteamhsteam +ṁs,pr oc hs,pr oc +ṁdesup hdesup = ṁs,cons ·hs,cons + Ėpr od ,sn +Q̇loss,sn (2.10)

where:

ni n = total number of inlet flows

nout= total number of outlet flows

ṁlosses ,Q̇losses = mass [kg/s] and heat [kW] losses of the perimeter

ṁs,pr oc ,hs,pr oc = mass flow [kg/s] and enthalpy [kJ/kg] of steam produced by process units

ṁdesup ,hdesup = mass flow [kg/s] and enthalpy [kJ/kg] of water for desuperheating
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ṁs,cons ,hs,cons = mass flow [kg/s] and enthalpy [kJ/kg] of steam to process

Ėpr od ,sn = cogenerated electricity [kW]

Q̇loss,sn = steam network heat losses [kW]

Equation (2.11) encompasses both steam network and process units boxes of Figure 2.16. It provides

insights on the condensates return rate, since all the condensed steam should theoretically be

returned to the conversion units.

ṁsteam +ṁs,pr oc +ṁdesup = ṁcond ,r etur n +ṁi n j +ṁl oss,sn +ṁcond ,loss (2.11)

where:

ṁcond ,r etur n = mass flow of condensates return [kg/s]

ṁi n j = mass flow of injected steam [kg/s]

ṁcond ,r etur n = mass flow of condensate losses [kg/s]

A last point to consider at the level of the steam network are the flash units, where a decrease

in pressure causes a fraction of hot condensates to evaporate. The higher the condensate flow

temperature, the higher the vapour fraction. These units are typically found between steam pressure

levels, to maximise the use of steam. Condensates temperature at the outlet of heat exchangers and

inlet of flash units should be checked to investigate if the current system is well designed and the

production of flash steam is optimised.

Process units:

Energy balances around each process unit should also be verified. A typical energy balance is

displayed in equation (2.12). This equation states that the heat supplied to the process streams,

either through hot utilities or internal heat generation, should be equal to the sum of the exported

heat and the heat evacuated via cold utilities. When material flows entering and leaving the process

unit have different temperatures, their contribution has to be included in the energy balance.

Q̇i n +Q̇r eac = Q̇out +Q̇cool i ng (2.12)

where:

Q̇i n = heat supplied to process units [kW]

Q̇r eac = heat of reactions [kW]

Q̇out = heat exported by process units [kW]
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Q̇cool i ng = heat removed by cold utilities [kW]

Q̇i n +Q̇r eac +
ni n∑
i=1

ṁi ·hi = Q̇out +Q̇cool i ng +
nout∑
j=1

ṁ j ·h j (2.13)

In the case of Figure 2.16 the heat balance can be translated as follows:

ṁhex ·
(
hs,cons −hcond

)+ṁi n j ·hs,cons︸ ︷︷ ︸
Q̇i n

+Q̇r eac = Q̇cool i ng +ṁs,pr od · (hs,pr od −hdemi n
)

︸ ︷︷ ︸
Q̇out

(2.14)

where:

ṁhex = mass flow of steam to heat exchangers

hs,cons = enthalpy of steam at the inlet of process units

hcond = enthalpy of condensates

hdemi n = enthalpy of water for process steam production

Figure 2.18 – Example of a Sankey diagram

Additional energy flows should be added in equation (2.12) when relevant. Sometimes part of

the steam consumed by process units serve to drive turbomachinery. In this case the electricity

generated to drive the associated devices (e.g. pumps, compressors), should be taken into account
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in the heat balance. Finally if important heat losses to the environment have been identified (e.g.

ambiant cooling), they should be included in the equation.

Energy flows from the set of key mass and energy balances presented above can be visualised via the

use of a Sankey diagram, like the one provided on Figure 2.18. Losses at the level of the conversion

units and the steam network can be seen, as well as potential imbalance around the process units,

often due to uncertainty on the heat of reaction and process cooling.

These balances do not correct measurements contrary to data reconciliation. However, they are

used to check for inconsistencies and spot the areas where additional investigation is required, by

going more into the details of subunits and locate losses and/or identify malfunctioning sensors.

Generally, it was found that 5% to 10% of imbalance is acceptable for smaller to larger systems.

2.5 Key performance indicators

Key performance indicators are quantifiable measurements to establish actual performance and

evaluate progress towards specific goals, and are thus extensively used in energy management

systems. Energy efficiency KPI’s are used to evaluate the energy efficiency of the system, establish

targets, and follow the energy performance improvement through effective monitoring.

To evaluate the energy efficiency of an industrial site, it is important to generate a set of relevant and

representative performance indicators as already pointed out in section 1.1.2. Indeed, an industrial

site is composed of several subsystems that have different purposes and energy consumption types.

A single performance indicator is not enough to describe the energy efficiency of such complex sites,

therefore suitable metrics to identify inefficiencies within a plant’s energy usage are needed.

A significant contribution in the development and implementation of real-time resource and energy

efficiency indicators was brought by the MORE European project [48]. This project targeted the

optimisation of daily operations. At the level of the analysis of the energy consumption to identify

ways of improving the energy efficiency of a system, the level of detail and number of indicators

defined are maybe too important and would be more suitable at the monitoring step, which was the

objective of the project.

In order to evaluate the energy efficiency of an industrial system, it is required to be able to charac-

terise it at a global level, but also decompose the overall energy efficiency into its main components,

corresponding to the different energy conversion steps until the final end-usage.

Starting from the site-level, Figure 2.19 shows an example of a KPI’s map, covering the energy chain

from the conversion to the end-use consumption. The proposed energy efficiency related KPI’s

are common indicators applicable to all (petro)chemical sites. Additional indicators, specific to

particular production processes or sites should be developed and added to the map.
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Figure 2.19 – Example of an industrial site KPI’s map.

Overall plant: Apart from the overall and energy vector specific energy consumptions already

introduced in section 2.3.1, other site-level sustainability indicators can be used such as the e-

factor (Equation (2.15)) representing the waste produced per ton of useful output (kg of waste/kg

of product) or the CO2 factor (Equation (2.16)) showing the CO2 emissions with respect to the

production (tons of CO2/kg of product). The absolute energy consumption should also bemonitored

alongside the specific energy consumption.

e-factor = mw aste

1 ton of product
(2.15)

CO2 factor = mCO2

1 ton of product
(2.16)

Conversion units: The KPI’s for energy conversion units mainly relate to the conversion efficiency.

Thermal and electrical efficiencies are most of the time calculated by the direct method, which is

the ratio of the useful energy over the input energy. The total efficiency is calculated by summing
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these two efficiencies. This indicator has the advantage of being simple to evaluate since it requires

few parameters for computation and few instruments for monitoring. It gives a good overview of the

efficiency of fuel conversion but does not provide insight on what differs from normal behavior if

the value is lower than typical efficiencies or how to improve it.

ηth = Q̇hu

ṁ f uel ·LHVf uel
(2.17)

ηel ec =
Ėpr od

ṁ f uel ·LHVf uel
(2.18)

ηtot = ηth +ηel ec =
Q̇hu + Ėpr od

ṁ f uel ·LHVf uel
(2.19)

NB: when the input fuel to the conversion units is a mix of fuels, the conversion efficiency according to

the share of the different fuels should also be calculated, to determine the impact of the mix.

Steam network: The energy distribution efficiency is mainly related to the condensates return rate

calculated by Equation (2.20). Indeed, the more condensates are returned, the less water make-up is

needed. Since water make-up has a much lower temperature than condensates, it would require

more energy to bring it to the steam thermodynamic properties. Also costs due to fresh water import

and deionization treatment are decreased when steam is produced on-site.

condensates return rate= 100− ṁmakeup

ṁsteam
·100 (2.20)

A decrease in the condensates return rate might be explained by several factors:

• increase of injected steam

• discarded condensates

• steam starting to condense causing losses through steam traps

• purges within units

• piping leakage

The pure losses of the steam distribution network are calculated by subtracting the amount of

injected steam to the condensates not returned:

network losses= 100− ṁmakeup −ṁi n j

ṁsteam
·100 (2.21)
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Process units: By defining and regularly evaluating the specific consumptions of the different

processes or blocks, it is possible to identify the locations explaining the value and the variations of

the overall specific steam consumption.

For each process and/or block, a reference flow has to be defined for the calculation of the specific

steam consumption. The same can be done for the export of steam from the process with the

specific steam production indicator.

Specific steam consumption/production indicators depend mostly on the chemical production

but also on other parameters related to the operation itself, product specification (e.g. purity), raw

material properties or also catalyst age. These influencing factors and their respective impacts

should be studied in details as part of energy consumption monitoring.

The reaction conversion (X ) and selectivity (S) are two important indicators since their variations

are closely linked to the energy consumption. If the conversion is lower then recycled streams are

bigger, which might cause a higher utility consumption, and steam production from the reaction is

lower. The same goes with selectivity, which also has an impact on the distillation columns utility

consumption.

2.6 Conclusion

The second chapter of this thesis corresponds to the first step of the methodology for energy review

presented in Chapter 1. The main research question it is aiming to answer is the following:

How to analyse and characterise the efficiency of the energy chain down to the end-use consumers, in

a suitable and reliable manner, while keeping the required time for data collection and complexity of

the analysis at an acceptable level?

At the level of the black box, corresponding to the system’s boundaries, guidelines and recommen-

dations to properly quantify the energy flows crossing the limits of the system and establish the

energy baseline were provided.

To characterise and evaluate the energy efficiency from the site raw energy consumption down to

the final use of energy, a top-down approach was followed with well-defined intermediate level of

detail (i.e. black box, site map, process block flow diagram and process flowsheet). This approach

allows to gradually enter into the site details, track mass and energy flows, to ultimately understand

where and why energy is consumed and how efficiently it is done.

The data gathering step is traditionally the most time-consuming step in such energy study. It

is highly dependent on the size of the system and the number of sources and availability of data.

However, when the required data is properly defined in advance, the time for data collection can
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be drastically reduced. The ultimate objective of the data gathering step is to obtain the process

heating and cooling requirements.

Figure 2.20 – Key questions of the data gathering step.

Having this in mind, this chapter introduced strategies and heuristic rules to answer to the key

three questions preparing the input for the pinch analysis: who are the energy consumers? what is

the energy used for? and howmuch each end-usage is consuming? The first question corresponds

to the black box level of detail, identifying the energy consumers. To answer to the second question,

the real requirements of the process need to be characterised and therefore the grey-box level of

detail is required. Finally, based on the recurring observation that the largest share of the energy

consumption is often explained by a small number of consumers, the use of the Pareto principle

to prioritise the streams characterisation allows to reduce the time and complexity of the streams

definition, without losing too much information for the next steps of the analysis.

In order to ensure the validity of data, a consistency check was defined in the form of a set of key

mass and energy balances to be carried out at the site-level, but also for each main entity at the level

of the site map (i.e. energy conversion units, steam network, process units). These balances are of

major importance to master energy flows across the site. They allow to estimate losses and therefore

identify the areas where further investigation is required.

Finally, in order to evaluate the energy efficiency of the system, a set of key performance indicators

was proposed at the same levels as for the consistency check. These indicators are used for the

energy consumption analysis and should also be used for monitoring purposes.

The next step of themethodology aims at targeting theminimum energy requirements of the system,

based on the analysis of the first step and the list of process hot and cold streams.
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3 Targeting heat recovery

Chapter overview:

> From actual energy consumption analysis to heat integration potential targeting.

STEP 2: TARGETING HEAT RECOVERY

energy profile generation 
- actual process energy 

requirements and utility delivery
Tools & techniques used > can minimum energy 

targets be generated 
without fully characterising 
the system?

> how can over- and 
underestimation of targets 
be minimised?  

- total site composite 
profiles & curves
- traditional pinch analysis
- “boxes” representation 
for process streams 

energy consumption targeting
- minimum energy requirements
- penalising heat exchangers

3.1 Pinch analysis and energy review

As defined in [59], heat integration based on pinch analysis "examines the potential for improving

and optimising the heat exchange between heat sources and sinks in order to reduce the amount of

external heating and cooling, together with the related cost and emissions". It is a powerful method

largely used to improve heat integration within industrial sites or clusters with significant thermal

power consumption [86, 87].

Originally applied to single processes, pinch analysis was extended on entire industrial sites via the

so-called Total Site Analysis (TSA). TSA accounts for heat recovery between subsystems through

intermediate utilities and thereby overcome constraints linked to direct heat integration between

different production units. Since its first introduction and definition in the 1990’s [88], significant

theoretical developments [89, 90] and practical applications contributed to the robustness and
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versatility of TSA.

Issues related to the practical implementation were also tackled. Among them can be found the

integration of geographical and/or operational and security constraints in the optimisation problem

formulation through the use of restricted matches [91, 92] and the consideration of multi-periods

[93, 69] allowing the generation of a set of profiles accounting for different operational modes of

production units.

When applied in the framework of energy reviews, pinch analysis from a single process to total site

analysis has several advantages. First, it provides insights on the temperature enthalpy profile of the

industrial system, showing at which temperatures heat is supplied to and removed from the process,

including the order of magnitudes of the heat exchanges. This observation might seem evident but

often on-site people are not aware of these information.

Secondly, pinch analysis provides targets for energy consumption reduction, via the difference

between the minimum energy requirements resulting from the heat cascade and the actual energy

consumption. This potential corresponds to the penalising heat exchangers with respect to the

system pinch point. The redesign of the heat exchanger network will aim at getting closer to the

minimum energy consumption targets while respecting different constraints (e.g. economic, safety,

technical, restricted matches).

Third, the grand composite curve of the system provides information on the real temperatures and

heat loads to be delivered by the utility system, highlighting as well heat pumping opportunities.

On the basis of the heat cascade results, different strategies can be followed. If potential for process

integration is low, focus will be put on the utility system optimisation or heat pumping integration

if applicable. If there is a significant potential for heat recovery, then redesign of the new heat

exchanger network (HEN) can be carried out either using pinch techniques, mathematical program-

ming or hybrid methods (combinations of both approaches). The different techniques and problem

formulation to redesign the HEN are not investigated in details in this thesis.

NB: Extensive reviews of the heat exchanger network retrofitting methodologies and their applications

can be found in [94] as well as in [59], together with more general information on process integration.

3.2 Generating the energy profile

3.2.1 Current process-utility profile

In the first step of the methodology, the full list of streams at the grey-box level (i.e. default level of

detail) is obtained with the dual representation presented in section 2.3.1. Before determining the

utility and energy consumption targets, it is interesting to generate the actual energy profile of the
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industrial system, through the use of the so-called hot and cold total site profiles. The hot total site

profile shows how heat is removed from the process and inversely for the cold site profile.
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Figure 3.1 – Example of a total site profile.

Such graphical representation can be seen on Figure 3.1 for a reference case study which will be

used in this section and in Chapter 4. In this case study, heating is provided by steam at two pressure

levels (middle pressure steam (MPS) at 18 bar and low pressure steam (LPS) at 4 bar) and cooling is

realised with cooling water. The grey box list of streams can be found in Appendix A.

At this level of the energy review and for this specific example, several observations can be made:

• the grey box level shows only a small potential for heat integration (direct or indirect), the

temperatures of the cold composite curve being higher than the ones of the hot composite

curve.

• increasing the level of detail might lead to additional heat recovery opportunities

• the steam pressure levels could be optimised to better match the cold composite curve.

• there is a potential for hot water production if neighbouring areas have use of it.

Generally speaking, the total site profile helps to visually understand the existing heat transfer

between the process and the utility steams. It gives preliminary information on the potential for

direct and indirect process integration and utility optimisation.

3.2.2 Level of detail refining

From the default level of detail, which is the grey box level with or without the application of the

Pareto principle introduced in section 2.3.4 (applied depending on the system size and availability

of data), the refining of the list of streams is highly recommended and is investigated in this section.
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Let’s say that for the same industrial system as in Figure 3.1, the complete list of the heat transfer

requirements at all the levels of representation is available (i.e. black box (BB), grex box with Pareto

principle (GBP), full grey box (GB) and white box (WB)). The white box level will give the minimum

energy requirements of the system, corresponding to the maximum heat recovery potential.

However, the highest the level of details, the hardest it is to modify and integrate the system, mainly

explained by economical and topological constraints. The goal of the list of streams refining is to

be able to unveil the white box streams of interest. To highlight this, another representation of the

same industrial system is added, called OPT, which corresponds to the optimum level of detail for

each stream which leads to the sameminimum energy requirements as the white box level, but with

the minimum number of streams defined at this level.

The grand composite curves and the corresponding hot and cold energy requirements can respec-

tively be seen on Figure 3.2 and Figure 3.3. Details on the pinch point and the heat penalty compared

to the MER from the white box level are displayed in Table 3.1. The full list of streams for each case is

available in Appendix A.
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Figure 3.2 – GCC according to the level of detail for the streams definition.

The actual energy consumption of the system corresponds to the black box energy requirements, i.e.

31.4 MW of hot utility (steam) and 36.2 MW of cold utility (cooling water). Switching from the black

box to the grey box level through the application the Pareto principle allows to identify a potential

for heat recovery of 1.24 MW, which corresponds to stream ’HEAT2_1’, consuming a hot utility below

the pinch point located at 94°C in corrected temperature.
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Figure 3.3 – MER hot and cold according to the level of detail.

Table 3.1 – MER results for each level of detail

Black box
Grey box

pareto
Grey box White box

Optimum
MER WB

Pinch point [°C] - 94.5 94.5 89.5 89.5
ΔGB [MW] 5.9 4.7 4.2 0 0.07

The full grey box level shows very similar minimum energy requirements (MER) than the Pareto

one, but additional 500 kW could theoretically be recovered, coming from a hot black box stream

(’RECYCLING’) turned into a grey box and consuming a cold utility above the pinch. These two

streams are the only penalising streams at the grey box level, with a total amount of 1.7 MW.

Increasing the level of detail to the deepest level (white box), the difference between the actual

energy consumption and the MER is now of 5.9 MW. Characterising fully the heating and cooling

requirements of the entire process allows then to identify an additional heat penalty of 4.2 MW. The

pinch point is also changed by 5°C (from 94.5°C to 89.5°C), showing a fair approximation from the

grey box level.

Finally, for the optimal case "OPT", the grand composite is the same than the white box one in terms

of MER, but the shape is slightly different due to the temperature definition of streams.

Figure 3.4 details the number of streams per level of representation (i.e. black, grey and white). The

top and bottom graphs show the results respectively for the cold and hot streams, while the bottom

graph is for the total number of streams. It can be seen that the total number of streams for the WB

and OPT cases is identical, but the number of streams being defined as white boxes is only one third.

The two other thirds are represented by black and grey streams.
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boxes representations according to the level of detail.
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By further investigating how to go from the default (pareto) grey box level to the optimum case, it

was found that the white box streams to be defined correspond to 3 distinct heat recovery schemes

involving 5 cold streams and 3 hot streams. Among these 3 systems, one is responsible for 95% of the

information gain going from grey to white level. The hot and cold streams involved in this existing

heat recovery system have the following properties: 1) both are crossing the pinch point 2) both

have a significant heat load.

The last aspect was already raised in section 2.3.4 for grey box hot process streams targeting at the

data gathering phase, and is therefore still valid for this phase of composite curves refining towards

the white box level. The first aspect leads to the generation of other heuristic rules adding up to the

previous ones, once the pinch analysis at the default grey box level is carried out:

• identify and include in the list white box streams in the area of the pinch point (+/- 20°C), with

a heat load at least equal to 300-500 kW (these are typical observed values, they depend in

reality on the thermodynamic and economic properties of the system).

• for systems with a large number of process units, convert potential black boxes to grey boxes

in the same area.

The white box being the highest level of detail and requiring a significant amount of data collection

time for large systems, it is seldom possible to reach such deep investigation. It is also obvious

that the optimum level of detail for all the streams are not known from beginning of the analysis.

However, starting from the grey box level, the list of streams can be gradually extended depending

on the shape of the composite and grand composite curves and the pinch point location. In this way,

additional information on heat recovery and heat pumping opportunities can be gained, without

spending too much additional time on data collection.

The importance of allowing several representations for process streams definition is also raised and

demonstrated mathematically in a recent paper on retrofit process integration based onMILP [95].

It was shown in this work that bringing flexibility in the energy requirement representation provides

preliminary design suggestions and reduces the number of streams to be considered for the heat

exchanger network retrofit.

3.3 Energy consumption targeting

3.3.1 Importance of the targeting step

Onemain concept in pinch analysis, as pointed out in [96] is the performance target ahead of design.

The minimum approach temperature ΔTmin is therefore a key input parameter. When considering a

single heat exchange, it corresponds to the smallest temperature difference between the hot and

the cold stream. The higher it is the lower is the required heat exchange area, and consequently the
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lower the investment cost. On the other hand, the recovered heat load is smaller, leading to higher

operating costs to supply the remaining energy requirements. The minimum approach temperature

is then a trade-off to be explored depending on the variables influencing the calculations.

Applied to larger systems like process units, the minimum approach temperature locates the tem-

perature levels where the heat exchanges between the hot and cold streams are the most difficult.

The so-called pinch point divides the system into independent heat sink and heat source profiles

across which heat should not be transferred.

Assumptions made at the level of the heat cascade and the ΔTmin definition will then directly

impact the results of the targeting step, which will influence the decisions in terms of energy savings

opportunities.

3.3.2 ΔTmin selection in pinch analysis

In existing industrial systems, heat exchanger network modifications are only economically viable if

the operating costs saving linked to the heat recovery compensates the capital expenditure of the

redesign, so that the payback time do not exceed a certain limit. Companies are asking for payback

times lower than a year, with a higher limit usually around 3 years. When pinch analysis is applied in

the framework of energy reviews, it is needed to be able to obtain appropriate consumption targets

and avoid or minimise a posteriori engineering calculations leading to economically infeasible

solutions.

Too often a singleΔTmin is defined for the entire system, usually based on typical values. Such values

are for instance available in [97], derived from the fact that similar retrofit projects featuring similar

cost conditions are likely to result in similar ΔTmin values. Although thermodynamically correct,

since similar processes have similar heat transfer properties, it is not straightforward for the other

parameters influencing the ΔTmin. This is especially true regarding utility costs, with the high price

variability of natural gas.

Examples of the use of a single ΔTmin in the literature can be found in [98], [99] and [100], where

pinch analysis andheat exchanger redesign is respectively applied on the production of ethylbenzene

(ΔTmin = 10◦C), in the food industry (ΔTmin = 5◦C) and in an ethanol production plant (ΔTmin= 7◦C).

Using typical values without considering the economic and thermodynamic specificities of the

system can lead to serious overestimation or underestimation for heat recovery potential as well as

non-optimal heat recovery schemes. This can be seen in [101] for a single process unit and in [102]

in Total Site Analysis, where results in terms of internal heat recovery and utility integration can vary

significantly according to the ΔTmin assumption (+18% and -25% for two process units in the case

study).
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The first observation is that gas, liquid and evaporating/condensing streams have very distinct heat

transfer properties, directly impacting the required area for the heat exchange and consequently the

cost of the heat exchanger. The use of stream specific ΔTmin/2 according to the physical state can be

found in several case studies in the literature ([91, 103]). Although more accurate, the choice for the

individual ΔTmin/2 are most of the time also based on typical values without considering the other

parameters influencing the heat recovery trade-off calculations. Indeed, the cost of utilities, the

interest rate and operating time are some of the parameters having an impact on the heat recovery

potential which may differ significantly from country to country, and from site to site.

The first analytical method to analyse and improve the HEN of existing industrial systems was

developed by [86], via the targeting and design approach. Trade-off between investment and

operating costs, including payback period specification is included in the determination of the

optimum ΔTmin for the retrofit through the use of the so-called area efficiency [104].

In this method, supertargeting is first carried out over a wide range of ΔTmin to generate the grass

root curve of the minimum heat exchange area according to the corresponding energy costs. This

line serves as reference for comparison with the actual area efficiency, given by the existing area

divided by the actual energy consumption. The area-energy cost curve can then be translated into

an investment cost-energy cost curve, and according to the constraints set on the payback time, an

optimum ΔTmin of the system can be determined. Examples of application of the area efficiency on

existing industrial processes can be found in [105, 106].

The major limitation when using the area efficiency comes from the use of pairs of pseudo single

hot and cold streams resulting from the vertical splitting of the composite curves. In reality these

pseudo single streams can be made of several streams, having different heat transfer characteristics

as well as particular constraints for the choice in heat exchanger (e.g. material, pressure). The use

of only one hot and one cold utility for operating costs calculations is a second limitation. Several

utilities having different prices can be used to supply the energy requirements of the process. It

may be less economically attractive to recover heat in a temperature interval where a hot utility

price is particularly low, thereby increasing the minimum approach temperature difference and

reducing the exchange area to maintain a sufficiently low payback time. The area efficiency also

implies to have access to the area of all the existing heat exchangers, which can be difficult to obtain

in practice.

3.3.3 Parameters impacting the thermo-economic trade-off

Provided that initial and target temperatures of a hot and a cold stream are overlapping and the use

of a counter-current heat exchanger to maximise the heat recovery, the heat transfer between the

two streams will be determined by the minimum approach temperature of the heat exchange. This

parameter is usually selected from the analysis of the trade-off between the capital costs linked to
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the installation of the required heat exchange area and the resulting decrease in operating costs

[107], with the objective of minimising the total costs.

Along this optimisation solving problem, schematically represented and summarised in Figure 3.5,

several parameters are influencing the calculations. These parameters can be classified in 3 distinct

categories: process, site, and equipment related.

Process streamparameters impact the required heat exchange area and consequently the capital cost

of the heat exchange at several levels. For a range of ΔTmin, the corresponding recovered heat load

can be determined (Q̇rec). The initial and final temperatures of both streams (Th,i n/out ,Tc,i n/out ) will

influence the temperature gradient along the heat exchanger, expressed by the logarithmic mean

temperature difference (LMTD). The streams composition and flow characteristics will determine

the overall heat transfer coefficient (U), representing the rate of heat transfer on a section of the heat

exchanger. The required heat exchange area A can be calculated using Equation 3.1, and serves as

the reference parameter to estimate the cost of the heat exchanger installation.

A = Q̇r ec

U ·LMT D
where LMTD = (Th,i n −Tc,out )− (Th,out −Tc,i n)

ln
(Th,i n −Tc,out )

(Th,out −Tc,i n)

(3.1)

The streams properties will have an impact on the material of the heat exchanger as well as the oper-

ating pressure (P). Once this is fixed together with the choice of the heat exchanger type, the capital

cost (IC) of the heat exchanger can be determined. At this stage of the analysis, preliminary cost

estimates are used, generated through statistical analysis on observed equipment and installation

costs versus heat exchange area. In this work cost laws from Turton et al. [108] are used for all cost

estimation.

The operating costs depend on the recovered heat load (Q̇rec) and site parameters. Utility costs

and operating time will determine the yearly operating cost savings (OC) resulting from the heat

exchanged between the two streams. For proper comparison, the investment cost of the heat

exchanger has to be annualised using an annualisation factor involving the interest rate (i) and the

lifetime (n) of the project. These two parameters are also site-related.

Depending on the company’s financial practices and investment strategy, one or several economic

indicators can be selected for the final decision on the chosen ΔTmin. The minimisation of the total

costs (TC) is the most common objective for this particular problem. However, restrictions on the

payback time (PBT) can also be used and combined with the minimisation of the total costs. This

optimisation problem, combining the total cost minimisation constrained by the payback time, can

be expressed by Equation 3.2 and will be referred to as "P1" in the rest of the chapter.
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Figure 3.5 – Parameters influencing the choice of ΔTmin for a counter-current heat exchanger

min
ΔTmi n

⎡
⎢⎢⎢⎣

i (1+ i )n

(1+ i )n −1
·
(

It

It ,r e f
·10k1+k2log (A)+k3(l og (A))2 ·CB M ·e

)
︸ ︷︷ ︸

IC

+(
Q̇tot −Q̇r ec (ΔTmi n)

) · top · cut︸ ︷︷ ︸
OC

⎤
⎥⎥⎥⎦

(3.2)

s.t A = Q̇r ec (ΔTmi n)

U · ΔTmi n −ΔThi g h

ln
ΔTmi n

ΔThi g h

(3.3)

CB M = b1+
(
b2 ·Fm ·10c1+c2l og (P )+c3l og (P )2

)
(3.4)

IC

Q̇r ec (ΔTmi n) · top · cut
−PBTmax ≤ 0 (3.5)

ΔTmi n ≥ 1.5 (3.6)
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where:

It , It ,r e f = cost index values for the current and reference year [-]

k1,k2,k3 = purchase cost coefficients of the chosen heat exchanger [-]

CB M = Bare module factor [-]

e = currency exchange rate [€/$]

top = operating time [h]

cut = utility cost [€/MWh]

ΔThi g h = temperature difference at the other end of the heat exchanger [°C]

b1,b2 = Bare module cost coefficients [-]

FM = material factor (CS/CS = 1, CS/SS = 1.8, SS/SS = 2.7) [-]

c1,c2,c3 = coefficients to determine the pressure factor [-]

3.3.4 Parameters estimation

For a given heat recovery scenario, in a given plant, many parameters have a single fixed value.

Compositions and temperatures of process streams are known, as well as the required operating

pressure. For the equipment related variables, the material and heat exchanger type are fixed

according to the heat exchange characteristics. Finally, the lifetime and interest rate are site-related

parameters that are usually established internally by the financial department. The other parameters

are subject to more uncertainty.

Throughout the year, it is common for an industrial site to have one or several plant shutdowns,

which are periods where production is stopped. It can be due to different reasons, e.g. maintenance

purposes, refurbishment or process modifications. Although the operating time can vary from one

year to another, a typical operating time, based on past and projected operation can be derived. This

is part of the energy baseline generation, addressed in Chapter 2.

The overall heat transfer coefficient depends on the final design of the heat exchanger but needs to

be estimated beforehand. Cost estimation methods are based on empirical statistical analysis and

are therefore given with accuracy ranges. Uncertainty is finally also at the level of utility costs, with

fluctuations of natural gas price. Each of these aspects is investigated in the next subsections.

Overall heat transfer coefficient

The overall heat transfer coefficient represents the rate of heat transfer on a section of the heat

exchanger, expressed in [W /m2K ]. It is a composite term which can be expressed by Equation 3.7,

as the sum of the contributions of the individual film heat transfer coefficients of the two fluids

(hcold and hcold ), the thermal resistance of the heat exchanger wall, involving the wall thickness (e)
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and thermal conductivity (λ), and the resistance due to the fouling on both sides (R f ).

1

U
= 1

hcold
+ e

λ
+ 1

hhot
+R f (3.7)

Most of the time, the wall resistance is negligible compared to the contribution of other terms. With

highly conductive metals such as copper (386 W/m◦C), two orders of magnitude can separate the

wall resistance to the individual film heat transfer contribution. For materials with lower thermal

conductivity like carbon steel (45 W/m◦C), stainless steel (16 W/m◦C) or nickel (90 W/m◦C), and
depending on the wall thickness, it is closer to a one order of magnitude difference. For very low

conductivity materials and/or thick walls due to specific chemicals handling or a large pressure

difference between the two sides, the wall resistance can have a significant impact of the overall heat

transfer coefficient. A fouling factor is added to account for heat transfer resistance due to corrosion

products or the accumulation of dirt [109].

Table 3.2 – Typical overall heat transfer coefficients for tubular heat exchanges, involving common
(petro)chemical species and utilities.

Hot fluid Cold fluid U [W/m2C]
Heat exchangers water water 800 - 1500

organic solvents organic solvents 100 - 300
light oils light oils 100 - 400
heavy oils heavy oils 50 - 300
gases (p=atm) gases (p=atm) 5 - 35

Coolers organic solvents water 250 - 750
light oils water 350 - 700
heavy oils water 60 - 300
gases water 20 - 300

Heaters steam organic solvents 500 - 1000
steam light oils 300 - 900
steam heavy oils 60 - 450
steam gases 30 - 300

Condensers aqueous vapours water 1000 - 1500
organic vapours water 700 - 100
refinery hydrocarbons water 400 - 550

Vaporisers steam aqueous solutions 1000 - 1500
steam light organics 900 - 1200
steam heavy organics 600 - 900

The overall heat transfer coefficient can be obtained by calculating or estimating each term in

Equation 3.7. If the design of the heat exchanger is known and data is available to characterize

streams, calculations are straightforward. If parameters aremissing, typical values for fouling factors,

film or directly overall heat transfer coefficients are available in the literature [110, 111].
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It is however difficult to find detailed databases for both film and overall heat transfer coefficients,

due to the many parameters involved (i.e. fluids density, viscosity, velocity, thermal conductivity,

specific heat, and heat exchanger type, fouling factor, wall thickness, thermal conductivity of metal).

This often results in large ranges for the heat transfer coefficients even for the same type of fluids or

heat exchanges, as it can be seen in Table 3.2 (values from [111]). Acceptable estimations can be

determined combining typical values from literature and observed values derived from existing heat

exchangers with similar features.

Operating costs

Another parameter to be estimated in the ΔTmin determination procedure is the cost of utilities.

Depending on the temperature levels of the hot and cold streams, the corresponding utilities which

should be consumed in the case where there is no recovery is easy to identify, especially in retrofit

situations. These utilities are often intermediates (e.g steam, hot oil, refrigerant), for which the cost

is principally linked to the consumption of final energy sources like natural gas, coal or electricity.

The major energy source for heating in the (petro)chemical industry is natural gas and future

variations of its price are hard to predict. Evolution of the natural gas price in France and Germany

between 1979 and 2014 (data derived from IEA energy prices and taxes [1]) is visible on Figure 3.6.
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Figure 3.6 – Evolution of the natural gas price in France and Germany between 1979 and 2014
(including taxes) [1]. NB: missing price data in 2001 for Germany.

Different strategies can be used to account for natural gas price in the ΔTmin trade-off calculations,

such as taking an average value based onmarket observations or predictions, using forecasts from

authorities in the field or applying uncertainty models. Several scenarios can also be developed as it

is done in Nemet et al. [112], with projections made onmonthly basis over the project lifetime.
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Investment cost estimation

According to Turton et al. [108], there are 5 classes of capital cost estimates, depending on the

level of project definition and the purpose of the estimate: detailed estimates, definitive estimates,

preliminary estimates, study estimates, and order-of-magnitude estimates. Although wording and

number of classes may vary according to other authors [110], such classification is widely accepted

by practitioners.

When carrying out a pinch analysis, whether it is on existing or design cases, not enough details are

available at the targeting stage on the matches and characteristics of heat exchangers to go below

preliminary cost estimates. This type of cost estimates has a typical accuracy of +/- 25%.

Several cost estimation methods have been generated to estimate the preliminary purchase cost of a

heat exchanger, all developed around correlations based on a reference parameter which is its area.

They differ in the way the purchase cost (free on board cost, f.o.b) of the heat exchanger is expressed

and on the factors used to account for indirect and additional expenses linked to the installation.

Purchase cost are expressed according to 3 formulation categories:

1. log based (ln or log10): log (PC )= k1+k2 · log (A)+k3 · log (A)2

2. power law: PC = a · Ab

3. power law with fixed contribution: PC = a +b · Ac

From the purchase cost of the heat exchanger, based on the cheapest material and atmospheric

operating conditions, its final total cost is determined through factorial costing or module costing

methods. These factors take into account direct (heat exchanger material, operating pressure

and temperature) and indirect costs (instrumentation, piping, insurance, overhead, engineering

expenses). A contingency factor, accounting for unforeseen circumstances, can also be taken into

account. Costs related to auxiliary facilities are left out since they are more related to grass root

situations and total plants rather than the installation of a single or several heat exchangers.

Table 3.3 presents six methods which can be used for preliminary cost estimates, often cited in

costing reviews or related work in the literature [113, 114]. References are provided for further

investigation since only a brief summary is provided in this thesis. A recent review on cost estimation

methods can be found in [115], were the author discusses traditional and novel andmore detailed

costing methods, applicable for design and preliminary cost estimates.

All of these correlations have been developed based on surveys carried out over a certain period of

time, usually within a month or a year. Observed prices according to the type and characteristics

of the heat exchangers lead to the generation of trends, linking the investment cost to the area of

the heat exchangers. Apart from the quantifiable factors associated with the installation of the heat

exchanger, additional factors influence the quality and accuracy of the resulting cost functions.
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3.3. Energy consumption targeting

Among them can be found the variability of manufacturers profit margins or differences in design

and fabrication quality. Location also plays a role. Most equipment cost data were developed in US

dollar, on a US Gulf Coast basis. Application of the correlations and factors in a different location,

with a different currency, implies first the variability of the currency exchange rate but also other

aspects such as the availability of labor and the efficiency of the work force in the specific region or

country [110]. Location factors can be applied in these situations, although they are also subject to

variability over time.

Since correlations were developed at a certain point of time and cost is not static, cost indexes are

used to update prices taking into account inflation. Commonly used indexes are the Chemical

Engineering Plant Cost Index and the Marshall & Swift equipment cost index.

From Table 3.3, whereas cost factors linked to direct and indirect costs are extensively detailed in

Turton [108], Sinnot [116] and Smith [117], it was not the case for Seider [110], Corripio [118] and

Hall [119], which make the comparison between the six methods difficult. Additionally, Sinnot is

providing cost data for a limited number of shell & tubes heat exchangers (only U-tube and double

pipe) and Smith and Hall present a single reference cost for all shell & tubes. The Turton cost data

has the advantage of a large diversity in the type of heat exchangers available and the cost factors

involved in the direct and indirect costs calculations, which can make it tunable.

Initially introduced by Guthrie in the late 1960s [120] and developed by Ulrich [121], this method is

used to estimate the cost of a new plant, from the purchase cost of of each piece of equipment. It

can then be used to estimate the cost of installing a new heat exchanger.

The module costing technique details 4 different costs: the purchase cost of the equipment, the bare

module cost (accounting for material, operating conditions, installation and other indirect costs),

the total module cost (accounting for contingency and fee) and the grass root cost (accounting

for auxiliary facilities, i.e. green field construction). The total module cost referring to the cost of

making small modifications to an existing facility, it is the best suited to estimate the cost of heat

exchangers installation. The method and data provided in Turton [108] are selected in this paper for

preliminary cost estimation.

Figure 3.7(a) shows these four costs for a reference heat exchanger as well as the expected accuracy

for the total module cost, while the comparison with other cost estimates of Table 3.3 can be seen

on Figure 3.7(b). Other comparisons between capital cost methods [114] and programs [122] can be

found in the literature for common shell and tube heat exchanger types (floating head and/or fixed

tube), also showing large disparities between the methods.

Despite similar trends in the capital cost according to an increasing area, the first thing to note is

that capital cost can differ significantly from onemethod to another. This highlights the disparity

that could be obtained in results when applying two different methods. In both cited references, the
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module costing method by Turton leads to capital costs in the upper cost range and in the same

range as most of the common other methods.
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Figure 3.7 – (a) Turton et al. module cost estimates for a fixed tube heat exchanger (CS/CS) operating
under ambient pressure conditions (b) cost estimates comparison on the same type of exchanger.

Other alternatives in applied industrial situations can be the use of scaling factors from the cost

of similar heat exchangers or the use of internal cost data derived from internal observations and

surveys. This would have the advantages of reflecting the real installation costs with respect to

the type of industry and plant location. To be noted that Aspen Capital Cost Estimator™, part of

the Aspen Engineering Suite, seems to be one of the most detailed and accurate method currently

available for equipment preliminary cost estimation.

3.3.5 Economic indicator for decision criteria

Increasing heat recovery through process integration implies investing a certain amount of money

to buy and install the new heat exchange area and generate benefits in the form of operating cost

savings. The decision on the ΔTmin and the final design of the heat exchanger is usually made

based on specific criteria. In any companies, financial indicators are used to compare investment

projects by calculating their profitability and evaluate risks. Depending on the internal practices

and strategy, different indicators can be selected to decide whether or not investing. The total cost

(TC), payback time (PBT) and net present value (NPV) are the most common methods used for

investment decision.

The payback time is the ratio of the investment cost over the operational cost savings. Whenmargins

are low and competition is hard, as in the European (petro)chemical sector, companies are reluctant

to implement energy saving opportunities with a payback time larger than 1.5 - 2 years. They even

ask for the investment to pay for itself within the same year.

84



3.3. Energy consumption targeting

Depending on the situation different ΔTmin candidates can have a very similar or a very different

PBT, highlighting the possible degree of freedom in the decision. In order to choose "the best"ΔTmin

among the different possibilities the minimisation of the total cost over the potential candidates can

guide the selection. The total cost is the sum of the operating costs and the annualised investment

cost. The minimisation of total costs is a typical optimisation problem in design projects were the

use of the payback time as decision constraint would make less sense.

The NPV can be used to determine the profitability of the investment. When the annual income does

not vary over the project lifetime, as it is usually the case with heat exchanger network installation,

the NPV can be expressed by Equation 3.8, as being the difference between the present value of the

yearly operating cost savings and the present value of the investment.

N PV = (1+ i )n −1

i (1+ i )n ·OCsavi ng s − IC (3.8)

For a project to be profitable the NPV has to be positive. Different project scenarios with similar

payback time can be compared in terms of NPV, as the indicator of their profitability. However, the

time value of money having little influence in industry due to the small payback times required, the

latter is often enough as decision criteria.

3.3.6 Heat exchanger choice and technical limitations

The investment cost of a heat exchanger will depend on its type and characteristics. Shell and tubes

heat exchangers already show differences depending on their design (e.g. U-tube, fixed tube, floating

head, kettle vaporiser). Also, although this type is widely used in the chemical and petrochemical

industry, other heat exchanger types can be preferred for particular applications (e.g. viscous liquids,

particular alloys). While flat-plate heat exchanger are more commonly used in the food industry,

their application to petrochemical processes in increasing. The purpose of the heat exchanger and

the process streams characteristics will dictate the heat exchanger type, but also the choice for the

material of construction and the operating pressure.

The heat exchanger annualised investment cost and associated yearly operating costs being calcu-

lated, the minimisation of the sum yields to the optimum ΔTmin . However, beyond this thermo-

economic analysis, technical limitationsmight prevent the obtainedΔTmin to be practically achieved.

It is found in literature [121] that each type of heat exchanger has approach temperature limitations,

that might prevent the implementation of the optimum heat recovery. It seems that shell and tube

heat exchangers are limited by a difference of minimum 5°C due to fouling tendencies whereas flat

plate could go down to 2°C. However, the reasons for these limitations are not well documented and

should theoretically be able to be circumvented with an increased heat exchange area.
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3.3.7 Single heat exchange example

This subsection illustrates how theminimum approach temperature can vary with a simple example

of a counter-current heat exchanger. A hot stream is to be cooled down from 130°C to 100°C with

a heat load of 800 kW. Heat can be recovered by heating up a cold stream of the same heat load,

starting at the temperature of 100°C. Apart from these temperatures and heat loads, all the other

parameters involved in the determination of themaximumheat recovery between these two streams

(see Figure 3.5) can vary between upper and lower limits.

When these two extreme values are used for all parameters, two scenarios are obtained. The

"best case" scenario corresponds to the best conditions for heat recovery, with the combination of

parameter extreme values leading to the smallest ΔTmin. The "worst case" scenario is the opposite.

"Best" and "worst" case parameters values are displayed in Table 3.4.

Table 3.4 – Best and worst cases parameter values.

Best case Worst case Units

Cold stream outlet T 100 130 [°C]
Overall HTC 1000 50 [kW/m2C]
Pressure 1 50 [bar]
Operating time 8500 6000 [h/y]
Utility cost 30 10 [€/MWh]
Interest rate 5 10 [%]
Project lifetime 30 10 [y]
HEX type fixed-tube (FT) floating head (FH) [-]
HEXmaterial carbon steel (CS) stainless steel (SS) [-]

When the minimisation of total cost of the installation of a heat exchanger is carried out, the ΔTmin

corresponding to the best case conditions corresponds to the lower limit set for the temperature

difference between the hot and the cold stream of 1.5°C. On the contrary, when all the worst case

parameters are considered, the obtained ΔTmin is of 40.5°C.

In reality, as mentioned in section 3.3.4, when the same problem is applied in an existing plant for

a specific heat exchanger, most of the parameters are fixed. When only uncertain parameters are

allowed to vary, it is possible to narrow the variation range of ΔTmin. Table 3.5 shows the probability

distribution functions used for the uncertain parameters.

Table 3.5 – Probability distribution functions for the selected uncertain parameters.

Overall HTC [kW/m2C] normal dist. μ = 400 σ = 30
Operating time [h/y] normal dist. μ =7250 σ = 50
Utility cost [€/MWh] random dist. min = 17 max = 25
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Figure 3.8 – ΔTmin distribution (nb. evaluations = 100’000)

The fixed parameters are given a value corresponding to the central point between the upper and

lower limits from Table 3.4. The heat exchanger is a floating head shell & tube made of CS for

the shell and SS for the tubes. The ΔTmin results for random 100’000 evaluations can be seen on

Figure 3.8, spread around the expected value of 2.9°C when everything is fixed at central values. The

distribution follows a beta probability distribution function, often applied to model the behaviour

of random variables limited to a finite interval, which is the case for the utility cost.

Payback times corresponding to the ΔTmin distribution are represented on Figure 3.9. Since the

optimisation problem was solved without setting a limit on the payback time, many evaluations are

outside the economic feasibility corresponding to a payback time below 3 years. For these points,

the minimisation of the total costs does not fulfil the PBT condition.

Figure 3.9 – Scatter plot of the corresponding payback times.
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3.3.8 Consequences for pinch analysis

Several observations can be derived from this simple example:

• The use of a uniform ΔTmin applied to all streams should be avoided. This statement seems

intuitive but too often practitioners tend to overlook the impact on the minimum approach

temperature assumption on the energy consumption targeting step, where a uniform ΔTmin

can lead to serious over- or underestimations.

• A contribution to the minimum approach temperature should be defined for each hot and

cold process stream. Using a set of typical ΔTmin/2 for each thermodynamic state (gas, liquid

and phase change) is a first step, but values are most of the time selected based on what

is currently observed and accepted, without carrying out a deeper analysis specific to the

industrial system under study.

• While the minimisation of total costs being the commonly used decision criteria, in existing

industrial systems a limit is usually put on the payback time. Depending on the streams

characteristics and the values of each parameters, it can be that noΔTmin fulfils the maximum

payback time allowed and these streams will in the end not be considered for heat recovery

schemes.

Starting from the list of process hot and cold streams, it is not possible to know where the pinch is

going to be and which heat exchanges will be "pinched". The application of the simple procedure

described in section 3.3.3 is of course not an option since it is only applicable for a single pair of

streams. However, a better definition of the hot and cold process streams through individual analysis

of their contribution to the ΔTmin, and considering all parameters involved in the thermo-economic

trade-off, would allow a better targeting of the potential for heat integration and avoid over- and

under-estimations.

The latter can have a non-negligible impact on decision making for energy management, especially

if the objective of the pinch analysis is to obtain a first screening for improvement potential and

heat integration opportunities, before launching follow-up projects. In order to try to tackle this

issue, the proposed methodology revisits one of the core assumption of pinch analysis, which is the

definition of the minimum approach temperature of the system.

3.4 Methodology proposition for ΔTmin definition

This section presents a novel methodology revisiting one of the core assumption of pinch analysis,

the definition of the ΔTmin. It differs from traditional approaches involving the use of the area

efficiency for the determination of the ΔTmin, while still considering the thermo-economic trade-off

resulting from the physical and financial characteristics of the system. The proposed methodology

is first presented theoretically step by step and results of its application on two examples are shown.
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3.4.1 Theoretical basis

The pinch point divides a thermal system in two distinct parts: a heat sink located above the pinch

and a heat source below. Above the pinch point, the integration of hot streams with cold streams to

be heated up is to be maximised, in order to avoid the consumption of a cold utility and the creation

of penalties. Inversely, below the pinch, the cold streams should be heated up by streams requiring

cooling instead of consuming a hot utility. The most critical heat exchanges are the pinched ones,

for which one end is located at the level of the pinch point.

Instead of making use of traditional approaches and correct each stream with a constant ΔTmin,

this methodology defines for one stream after the other its temperature-enthalpy profile directly

in corrected temperatures, according to its thermodynamic characteristics, its heat exchanger

requirements and the economic parameters of the site.

To do so, a virtual pinch point is varied along the temperature range of each stream, starting

from its initial temperature. This virtual pinch point will define at each step the maximum heat

recovery, corresponding to an infinite heat exchange area. Then, a corresponding mirror stream is

defined having the exact same heat transfer properties and slope, except that the initial and final

temperatures are reversed to account for counter current heat exchanges.

This virtual stream is moved with increasing minimum temperature difference. The optimal ΔTmin

is found at each temperature step according to the economic objectives, being in this paper the

minimisation of total costs while fulfilling a maximum payback time of 3 years. The obtained

corrected temperature-enthalpy profiles of a hot and a cold stream can be seen in Figure 3.10.
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Figure 3.10 – Example of corrected profiles for a hot (left) and a cold (right) stream

Taking as an example the hot stream on the left on the Figure 3.10, the virtual pinch point is varied
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starting from its initial temperature Th,in towards the ambient temperature. At first, the heat load

above the pinch is too small to be recovered in an economically interesting way. The investment

cost linked to the installation of a heat exchanger is too important compared to the operating

costs savings to be able to get below the required payback time. This is observed until a certain

temperature where a first ΔTmin fulfilling the economic constraint is found.

In between the first evaluation point and the latter one, the stream profile is corrected as a flat line at

the corrected temperature at which a first minimum approach temperature is obtained. This comes

down to say that, considering the characteristics and constraints of the system, this heat load, which

is called Q̇min, is in reality available for recovery when the pinch point temperature is at least below a

certain value. Progressing down the hot stream, the optimum ΔTmin is decreasing until a minimum

value. This transition zone is due to the increasing heat load available above the pinch point. The

remaining part of the stream is corrected using the minimum ΔTmin/2.

For some streams, the entire heat load can correspond to Q̇min, and the heat recovery would be

economically feasible only with a large correction. If this correction is too big and the corrected

temperature is higher or lower than the utility that the stream is consuming or can consume (+/-

ΔTmin/2 of utility), the stream is transformed to black box representation. In this way it is still

accounted in the heat balances but it reflects only the temperature levels of the utility it consumes.

3.4.2 Corrected profiles generation procedure

The generation of corrected profiles can be schematically represented by Figure 3.11. The same

procedure is used for the total number of streams ns, represented by the outside loop. The inside

loop corresponds to the evaluation of each stream s at each temperature Tp,i starting from the initial

temperature of the stream Ti n,s , until the total heat load of the stream Qs is reached.

At each temperature step Tp,i , corresponding to a potential pinch point, the optimisation problem

P1 (Equation 3.2) is solved for a given maximum heat recovery (Qr ec,max)i ,s . Figure 3.12 shows

the main parameters involved in the procedure. The generation of corrected profiles can easily be

automated and they can be directly integrated in the heat cascade mathematical formulation.

In order to be able to calculate the thermo-economic trade-off, all parameters depicted on Figure 3.5

have to be defined. An additional parameter to decide on is the temperature step along each stream.

It can be the same for each stream, for example 0.5°C, or be fixed by linearising the temperature

range of the stream according to a certain number of evaluations.

One of the interesting features of the proposed methodology is the possibility to have flexibility

in the heat exchanger characteristics. If a stream requires a specific type of heat exchanger, if a

particular material should be used or if the operating pressure is high, the cost estimation method

can take into account these specificities already at the targeting stage.
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Figure 3.11 – Procedure to generate the corrected T-H profiles of all streams
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Figure 3.12 – Graphical representation of the main parameters at a given temperature point along
the procedure.

There is also the possibility to consider several utilities having different costs. For example, a site can

use several pressure levels for steam, each having its own cost and temperature range for heating. If

the temperature range of a cold stream is located over several hot utility temperature ranges, when

the corrected profile is determined the operating costs are varying depending on which utility would

be saved.

3.4.3 Impact of parameters

Figure 3.13 (a) shows the influence of the overall heat transfer coefficient on the shape of a hot stream

corrected profile. It can be seen that with a decreasing coefficient, the temperature correction is

increasing, making the heat available at a lower temperature in the heat cascade for this hot stream

example. The minimum heat load for which heat recovery becomes profitable is also getting bigger,

due to the lower heat transfer rate and consequently the higher heat exchanger area required. The

impact on the maximum payback time can be seen on Figure 3.13 (b).

The variation of the corrected profile according to the overall heat transfer coefficient can more

globally be observed on Figure 3.14 (a), showing the variation of the minimum ΔTmin/2 and heat

recovery load Q̇min (b) and for 4 different sets of economic parameters.

The three first scenarios have the same payback time constraint but the operating time and utility

price are gradually increased (from low to high operating cost savings). The last scenario, represented

by the red crosses, is a variation of the scenario featuring a high operating time and utility price, but

with a limit on the payback time set to 2 years.

It can be seen that when larger savings are resulting from heat recovery, both Q̇min and ΔTmin/2
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are decreasing for given overall heat transfer coefficient. The inverse behavior is observed when

the payback time constraint is stronger. It is also interesting to note that for overall heat transfer

coefficient in the upper range (700-1300 W/m2°C), results slightly vary, compared to coefficients in

the lower range (50-400 W/m2°C). Uncertainty on low overall heat transfer coefficient will then have

higher impact, which is the case for gaseous streams or heavy organics products.
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Figure 3.13 – (a) Influence of the heat transfer coefficient U (in W/m2°C) and (b) of the payback time
constraints on the corrected profile of a hot stream.
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Figure 3.14 – (a) ΔTmin/2 and (b) Q̇min variation according to the overall heat transfer coefficient
and different economic conditions.

3.5 Application on two examples

The described methodology has been applied on two industrial system scenarios S1 and S2, both

featuring a large production site composed of two plants operating simultaneously and importing

utilities. In both scenarios, the actual process requirements are represented by 17 hot streams and

11 cold streams, for which the heat load, temperatures and heat transfer coefficients vary from one
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scenario to the other. Heat is removed from the process through a cooling water network, and steam

is delivered to cold process streams at two pressure levels (3 bar (LPS) and 10 bar (MPS)).

The list of streams for S1 and S2 are available in Appendix B. Details on the utilities and parameter

sets involved in the calculations are displayed in Table 3.6 and Table 3.7.

Scenario 1: S1 features favorable economic parameters encouraging process integration. Utilities

cost are rather high and the cheapest type of shell & tube heat exchanger is considered for all

streams (carbon steel fixed tube sheet, operating at low pressure), pushing the investment costs and

operating cost savings respectively in the lower and upper range.

Scenario 2: compared to S1, utilities cost, the operating time and the project lifetime are lower

and the interest rate is higher. In S2, the heat exchanger type (fixed-tube FT or floating head FH),

material (shell side/tube side: CS/CS, SS/SS) and operating pressure are defined for each stream.

Table 3.6 – Utilities description for both scenarios

Utility
Pressure

[bar]
Tin
[°C]

Tout
[°C]

Cost S1
[€/MWh]

Cost S2
[€/MWh]

LP steam 3 133 133 20 16
MP steam 10 180 180 23 18
Cooling water 2 20 30 0.1 0.1

When the proposedmethodology is applied to the list of streams, the corrected profile of each stream

is generated and the heat cascade is carried out directly in corrected temperatures. Results can then

be compared with a reference situation for which a uniform ΔTmin of 5°C is used. Reference cases

will be called S1.A and S2.A respectively for scenario 1 and 2, and corrected cases resulting from the

application of the proposed methodology S1.B and S2.B.

Table 3.7 – Other cost parameters

Parameter S1 S2 Units

Heat exchanger type fixed-tube varying [-]
Heat exchanger type pressure 2 varying [bar]
Heat exchanger material CS/CS varying [-]
CEPCI reference (2001) 397 397 [-]
CEPCI (2016) 541.7 541.7 [-]
currency exchange rate 0.86 0.86 [€/$]
Operating time 8000 7500 [h/y]
Lifetime 20 15 [y]
Interest rate 8 9 [%]
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3.5.1 Scenario 1

MER and penalising heat exchanges

Hot and cold composite curves for scenario 1 can be seen in Figure 3.15 with Table 3.8 summarising

the hot and coldminimumenergy requirements for both cases, compared to the actual consumption.

In the reference case, potential for heat recovery amounts to 9.4MWwhereas in the new case, with

the application of the proposed methodology, this potential equals to 12.3MW.

Table 3.8 – MER results - S1

Actual
consumption

S1.A
(Tp = 101°C)

S1.B
(Tp = 91.7°C)

Difference

MERH [MW] 24.1 14.7 11.8 +2.9
MERC [MW] 27.4 17.9 15.1 +2.9
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Figure 3.15 – Composite curves for S1.A (a) and S1.B (b).
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For this first scenario, the use of a single ΔTmin for each stream, without taking into consideration

the physical and cost specificities of the system, leads to an underestimation of the potential for

heat recovery of 30% at the targeting step.

When a uniform typical ΔTmin is used, the pinch is located at 101◦C. It is caused by cold stream C7,

which corresponds to a reboiler at 96◦C in the real temperature domain. Condensing hot stream

H16 is located under the pinch point. Using the proposed methodology, the ΔTmin/2 of H16 is lower

and the stream is now located above the pinch point, enabling its integration with C7. The pinch

point is at a lower temperature of 91.7◦C, created by the flat heat load of H4 corresponding to Q̇min

(344 kW).

Table 3.9 – Penalising heat exchanges for S1

Stream
S1.A
[kW]

S1.B
[kW]

Difference
[kW]

H3 2337 3700 +1363
H12 2590 2590 0
H14 82 0 -81
H16 0 2250 +2250
C2 900 900 0
C3 2348 1944 -404
C10 1229 984 -245
C11 (cf. H3) (cf. H3) 0
total 9486 12368 +2882

As a result, 2.9 MW of additional penalising heat load is found, coming from the decrease of the

pinch point and the better overlapping of the hot and cold composite curve in the pinch area.

Table 3.9 details the penalising heat exchanges for S1.A and S1.B. The latter shows higher heat

recovery potential although streams C3 and C10 are less penalising since the pinch point is as a

lower temperature. This is due to the entire integration of hot streamH3 and H16 above the pinch.

Impact on direct heat integration

Once the pinch point of the system is determined, hot and cold streams belonging to the heat

sink and source can be generated. Figures 3.16 (a) and (b) show the streams involved above the

pinch point, respectively for cases S1.A and S1.B, where hot streams are penalising and have to be

cooled down using cold streams. Streams are depicted in the real temperature domain for sake of

simplicity and clarity. Indeed, the segmentation of the streams in the corrected domain for S1.B is

more difficult to represent in such diagram.
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Figure 3.16 – Streams involved in HEN redesign above the pinch point for S1.A (a) and S1.B (b).

Table 3.10 – Pairs of streams involved in heat recovery of S1.B above the pinch.

Load U A IC OC PBT
Streams [kW] [W/m2◦C] [m2] [kEUR] [kEUR/y] [y]

H16 - C7 2250 545 688 386 360 1.1
H3 - C7 2500 600 540 333 400 0.83
H3 - C5 1200 720 259 224 192 1.2
H12 - C5 1830 327 246 219 293 0.75
H12 - C3 760 255 48 121 140 0.87

The first difference, as mentioned previously, is the presence of H16 and H3 entirely above the pinch

in S1.B. The second difference is that H14 is not penalising nor crossing the pinch as it is the case in

S1.A. This stream is associated with a rather low heat transfer coefficient (270 W/m2°C), leading to a

larger Q̇min and therefore a temperature correction below the pinch point. To be noted that H9 is

already integrated with C8 (see list of streams) and this heat exchange is not penalising.

Table 3.10 shows one option for the heat exchangers involving the penalising hot streams for S1.B

above the pinch , when the proposed methodology is applied. For both H3 and H16, although the

heat recovery approach temperature is smaller than the 10°C in scenario S1.A, the payback times of

their heat integration with cold streams are below the 3 years constraint, making the heat recovery

economically acceptable considering the system’s characteristics.

Figure 3.17 (a) and (b) shows the streams involved below the pinch point, respectively for cases S1.A

and S1.B, where cold streams are penalising and have to be heated up using hot streams. H3 andH16

are no longer available in S1.B, reducing the choice for pinch streams connections. The integration

below the pinch should then also be studied to check if the economic constraint is still satisfied. To

be noted that C1 is already integrated with H10, and this heat exchange is not penalising.
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Figure 3.17 – Streams involved in HEN redesign below the pinch point for S1.A (a) and S1.B (b).

Table 3.11 – Pairs of streams involved in heat recovery of S1.B below the pinch.

Load U A IC OC PBT
Streams [kW] [W/m2◦C] [m2] [kEUR] [kEUR/y] [y]

C3 - H2 1070 255 639 368 197 1.9
C10 - H2 600 40 22 250 110 2.3
C3 - H4 874 445 79 139 161 0.9
C10 - H10 384 480 41 117 71 1.7
C11 - H10 915 343 104 153 146 1
C2 - H11 700 343 218 207 112 1.8
C2 - H17 200 462 14 100 32 3.1

For a heat exchanger to be placed below the pinch, the slope ("ṁcp") of the hot stream should be

bigger than the one of the cold streams. A possible heat exchanger network redesign is presented in
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Table 3.11. This example shows that, despite the lower temperature gradients for the heat exchanges

and the lower number of available hot streams at high temperature, heat recovery targets are possible

to meet in an economic way, thanks to the lost cost of the heat exchanger and favorable utility cost

conditions.

3.5.2 Scenario 2

MER and penalising heat exchanges

Composite curves for S2 can be seen in Figure 3.18. In the reference situation S2.A, hot and cold

composite curves in the corrected temperature domain are very close to each other in the area

around the pinch point. However, the application of the methodology drastically changes the

temperature levels at which the heat is available within the same area, thereby changing the pinch

temperature.
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Figure 3.18 – Composite curves for S2.A (A) and S2.B (B).

In the reference case, potential for heat recovery amounts to 5.2MW whereas in the new case,

with the application of the proposed methodology, this potential equals to 3.4MW. For this second
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scenario, the use of a single ΔTmin for each stream, without taking into consideration the physical

and cost specificities of the system, leads to an overestimation of the potential for heat recovery of

35% at the targeting step.

Table 3.12 – MER results - S2

Actual
consumption

S2.A
(Tp = 107°C)

S2.B
(Tp = 100°C)

Difference

MERH [MW] 8.9 3.7 5.5 -1.8
MERC [MW] 14.8 9.5 11.4 -1.8

The ΔTmin/2 is for the majority of streams higher than 5◦C coupled with a larger Q̇min load. Good

examples are streams H4 and C4. When the methodology is applied, H4 and C4 are entirely located

respectively below and above the pinch point in corrected temperatures, both being therefore not

penalising. This is not the case in S2.A with the constant ΔTmin, for which H4 is entirely above and

C4 partly below, thereby creating a heat penalty.

The pinch point being lower in the corrected situation, penalties of streams C3, C7 and C10 are also

lower. For this scenario, this results in an overestimation of approximately 1.7 MW of the potential

for heat recovery when a uniform ΔTmin is used (Table 3.12 and Table 3.13).

Table 3.13 – Penalising heat exchanges for S2

Stream
S2.A
[kW]

S2.B
[kW]

Difference
[kW]

H1 136 0 -136
H3 35 0 -35
H4 460 0 -460
H12 781 781 0
H14 85 0 -85
C2 390 390 0
C3 962 869 -93
C4 461 0 -461
C7 350 0 -350
C10 1098 954 -144
C11 415 415 0
total 5173 3409 -1764

Impact on direct heat integration

Figures 3.19 (a) and (b) show the system above the pinch point respectively for S2.A and S2.B cases.

Compared to S2.B, 4 additional hot streams are located above the pinch in the reference case. H1,
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H3 and H14 are "pinched" streams and they all have a relatively small heat load.
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Figure 3.19 – Streams involved in HEN retrofit above the pinch point for S2.A (a) and S2.B (b).

Table 3.14 – Pairs of streams involved in heat recovery of S2.A above the pinch.

Load U A IC OC PBT
Streams [kW] [W/m2◦C] [m 2] [kEUR] [kEUR/y] [y]

H1 - C6 136 498 20 84 18 4.6
H3 - C6 35 422 8 96 5 20.3
H4 - C6 460 325 98 161 62 2.6
H14 - C6 85 411 15 85 11 7.4
H12 - C10 781 238 163 147 105 1.4

If S2.A is studied first, it is easy to show that hot pinch streams H1, H3 and H14, would never be

economically integrated with cold pinch streams (C4, C6 and C10). If the analysis is carried out for

each pinch stream together with C6 (best cold stream in term of U and LMTD) payback times are

always much higher than 3 years, as it can be seen in Table 3.14.

In the corrected case only H9 and H12 are located above the pinch, and H9 is already correctly

integrated with respect to the pinch point. The integration of H12 with C10, as it is the case in the

reference case, leads to a payback time of 1.4 years.

Figures 3.20 (a) and (b) show this time the system below the pinch point. The major differences

between S2.A and S2.B are that in the first case streams C4 and C7 are found below the pinch point,

while they are both located above in S2.B. C4, although being heated up from 69°C to 125°C, does

not appear in the list of streams below the pinch point due to its large Q̇min making it available only

above the pinch. The same behavior is observed for C7, also located entirely above the pinch in the

corrected temperature domain. H4 heat load is available entirely below the pinch in S2.B while it
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was above in S2.A. Finally, a decrease in cold streams penalties is observed due to the lower pinch

point as well as an increase of the heat of the hot streams available below the pinch, since most of

the high temperature hot streams below the pinched are not crossing it in S2.B.
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Figure 3.20 – Streams involved in HEN retrofit below the pinch point for S2.A (a) and S2.B (b).

Table 3.15 – Pairs of streams involved in heat recovery S2.B below the pinch.

Load U A IC OC PBT
Streams [kW] [W/m2◦C] [m 2] [kEUR] [kEUR/y] [y]

C3 - H4 460 240 68 141 62 2.3
C3 - H3 409 290 38 122 55 2.2
C10 - H16 954 2630 157 144 129 1.1
C2 - H14 390 284 32 119 47 2.6
C11 - H1 415 388 21 74 50 1.5
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In S2.A, pinch cold streams are C3, C4 and C10 and pinch hot streams are H1, H3 and H14. When

applied, the number of streams and "ṁcp" rules of the pinch design method cause extensive

stream splitting, leading to smaller areas and a larger number of connections, which are both more

expensive than a single larger heat exchanger.

Although not a pinch stream, both initial and target temperature of C7 are close to the pinch point,

making the heat integration with this hot stream also difficult. In the subsystem created by these 7

streams, the best scenario would be the integration of C7 with H16, which results in a payback time

of already 4.3 years.

As it was the case above, the corrected situation features generally larger minimum approach

temperatures for the heat recovery of the most critical streams, leading to lower heat exchanger

areas and lower investment costs. In S2.B, C7 and C4 are no longer present in the system below the

pinch and an additional back up is available for heating up the pinch cold streams with H4.

3.5.3 Impact on heat pumping potential and utility integration

The ΔTmin definition at the targeting stage has also an impact on indirect heat integration and utility

system optimisation. A good example is the evaluation of heat pumping opportunities from the heat

cascade results.

Taking as an example scenario 1, the smaller ΔTmin/2 for phase change streams compared to a

constant ΔTmin/2 = 5°C brings H16 above the pinch where it forms a self-sufficient pocket. In the

reference case S1.A, this same stream would be the best candidate for heat pump integration, in

order to supply part of C7 heat load. However, in the corrected scenario, heat pumping would then

take place between H10 and C7.

Not only theΔTmin definition changes the temperature levels of the cycle, whichmight aswell change

the fluid choice, but also the streams interacting with the heat pump. In turn this has an impact on

utility integration and optimisation, depending on the identified heat pumping opportunities.

Such possibilities are summarised in Table 3.16 with the corresponding integrated composite curves

for all situations on Figure 3.21. In cases S1.A HP1 and S1.B HP1, a single heat pump is evaluated

while in cases S1.A HP2 and S1.B HP2, two heat pumping stages are considered. The term Q̇out

corresponds to the heat delivered above the pinch point.
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Figure 3.21 – Different scenarios for heat pump and utility integration for S1.A (a) and S1.B (b). LPS
andMPS are respectively for low andmiddle pressure steam.

Table 3.16 – Scenario 1 heat pump integration schemes

S1.A HP1 S1.A HP2 S1.B HP1 S1.B HP2

LP steam [MW] 4.9 0.8 3.6 1.7
MP steam [MW] 7.1 7.1 5.5 5.5
HP1 streams H16/C7 H10/C7 H10/C7 H10/C7
HP1 Qout [MW] 2.7 4.1 2.9 2.9
HP1 COP [-] 25.9 9 14.4 14.4
HP2 streams - H16/C5 - H10/C5
HP2 Qout [MW] - 2.7 - 1.9
HP2 COP [-] - 10.7 - 8.1
Ei n,tot [MW] 0.10 0.71 0.20 0.44
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3.5.4 Discussion

One of the main advantages of this methodology is that targets for heat recovery are closer to a

realistic economical optimum than when using a single ΔTmin or typical values for ΔTmin/2, chosen

without any optimisation considering the characteristics of the systemunder study. Compared to the

area efficiency approach, thismethodology allows the use of different cost laws for individual streams

if need be and the possibility to account for different utility prices according to the temperature

levels of streams. Flexibility is also enabled, in the sense that the user can specify its own economic

objectives, heat exchangers costs and define its own set of parameters.

Another advantage is that calculations are relatively easy and quick to implement, which is of

major importance when carrying out energy reviews in the framework of energy audits or energy

management in industry. In these situations, being able to obtain realistic potential for energy

consumption reduction, without complex methods requiring significant computing resources and

advanced skills, is a main asset.

Beyond the refining of the ΔTmin definition, an interesting aspect of the approach is the calculation

of the parameter Q̇min and the temperature at which it is found for each stream. This approach

allows a pre-screening of streams through a better definition of the temperature-enthalpy profiles of

streams, according to the thermo-economic trade-off of the system.

Using pairs of identical parallel streams in the corrected profile generation implies two things.

Neglecting the wall resistance in Equation 3.7, the individual stream contribution can be determined

by dividing theΔTmin profile in two, thereby allowing to obtain the contribution of each stream to the

minimum temperature difference according to the temperature of the stream ΔTmi n/2= f (Tr eal ).

Secondly, by considering parallel streams the LMTD (being equal to ΔTmin) is the smallest possible,

meaning that the results for theminimumapproach temperature are located at the upper boundaries.

This aspect can be modified according to the user’s preferences. For example, a flat stream can be

used rather than a parallel stream, leading to slightly lower approach temperatures.

The main drawback is the division of each stream profile in many segment, which might cause

problems in heat cascade calculations. This also leads to "fictive" segments corresponding to Q̇min

and the transition zone until it reaches the ΔTmin/2. As a result the composite and grand composite

curves directly obtained are more difficult to read.

A simplification can be to divide the stream profile in two segments only (Q̇min and a constant

ΔTmin/2). However, in doing so the transition area is lost, resulting is a slight overestimation or

underestimation of Q̇min.
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3.6 Conclusion

This third chapter aims to answer to the following research question:

How to generate economically feasible minimum energy consumption targets in pinch analysis, with

the minimum level of detail for streams definition?

It discusses first the influence of the level of detail for streams definition on the minimum energy

requirements and the shape of the grand composite curve. An example is used to show how for

the sameminimum heating and cooling demands, corresponding to the "white box" level of detail

for streams definition, only a third of the process requirements needs to be detailed at this level.

Although the optimum trade-off for streams definition cannot be known in advance, the default list

of streams can be refined by following heuristic rules, targeting process streams in the area of the

pinch point.

This chapter shows that existing methods for the definition of the ΔTmin in existing industrial

systems are often not adapted and can lead to serious over- or underestimation of minimum energy

consumption targets. The proposed methodology differs from traditional approaches involving the

use of the area efficiency for the determination of the ΔTmin, while still considering the thermo-

economic trade-off resulting from the characteristics of the system. Instead of generating a single

optimum ΔTmin, each stream is characterised individually, thereby enabling the use of several

equipment cost laws and utility costs depending on the system under study and the temperature

levels of the streams.

With a better approximation of the contribution to the minimum approach temperature of each

stream along its temperature, the heat recovery between process streams is refined and small

penalising heat exchanges which would not be profitable are either highly corrected or transformed

to black boxes. This approach has the advantage of refining the targeting step and providing more

reliable energy integration targets at the early stage, prior to the generation of the heat exchanger

network.
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4 Reaching the energy consumption target

Chapter overview:

> From the minimum energy consumption target to the list of energy saving opportunities.

STEP 3: REACHING THE ENERGY CONSUMPTION TARGET

energy saving opportunities 
(EnSO’s) identification

- list of opportunities 

Tools & techniques used
> how to convert energy 
resources to process 
requirements?
> how can waste heat be 
valorised?

- bottom-up approach
- modelling 

EnSO’s evaluation 
- thermoeconomic tradeoff
- decision/classification criteria

Tools & techniques used > what are the parameters 
impacting the evaluation and 
prioritisation of EnSO’s?

- cost estimates
- economic indicators

4.1 Bottom-up approach

At this point, the hot and cold utility consumption of the system is mapped, verified and translated

into process requirements. The heat removal and heat supply to the process can be seen on the total

site profile, and the maximum heat recovery potential is determined via the pinch analysis on the

process streams. The difference between the actual and minimum energy requirements is explained

by the penalising heat exchangers.

Building on these results, the objective of this last step is to generate a list of energy saving op-

portunities (EnSO’s), aiming to reach the heat recovery target and look at the energy conversion

technologies to satisfy the remaining process heating and cooling requirements. It is important

to adopt a no-taboo strategy at this stage and list all possible modifications that would increase

the overall energy efficiency. Opportunities can be missed if they are disregarded too fast based on
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preconceptions or a priori constraints. The goal is to generate a full list of options, from the deepest

level of detail corresponding to the process itself, to the energy conversion and distribution system.

Each opportunity is evaluated with a thermo-economic analysis, which determines its profitability

estimating on one side the capital expenditure linked to the capital cost of the modification, and

on the other side the operating cost savings. Both sides of the economic analysis are subject to

uncertainty and so are the resulting economic indicators selected for decision making. Sensitivity

analysis has to be carried out on the main uncertain parameters to understand how they influence

the thermo-economic analysis results.

Since energy efficiency improvement is linked to carbon dioxide emissions reduction, CO2 emissions

taxes should also be taken into account in the analysis. Finally, in some countries, subsidies are put

in place to help companies finance the implementation of energy efficiency projects with medium

to long payback times, which are often responsible for large energy savings. It is for example the

case for cogeneration units.

This chapter presents first the procedure for the generation of energy saving opportunities, in

the form of an onion diagram representing the ordered optimisation layers. A case study is then

used to show an example of energy efficiency improvements identified at several levels and a

simple sensitivity analysis on each option is carried out to demonstrate the impact of the economic

parameters.

4.1.1 Onion diagram for the identification of energy saving opportunities

The optimisation layers for chemical process design are traditionally represented by an onion dia-

gram, which consists of consecutively embedded circles starting from the first layer of optimisation.

A typical onion diagram for process design can be seen on Figure 4.1 (a) [123], derived from the first

reported one from Linnhoff et al. [2] where the compression and expansion layer was included in

the heat recovery layer.

The optimisation of the energy consumption of existing industrial systems can also be represented

by an onion diagram. Figure 4.1 (b) shows the optimisation layers that are defined in this thesis to

generate the list of energy saving opportunities:

1. Process technology: modifications at the level of the chemical process technology itself.

Examples are new technology switching, replacement of existing reactors with more efficient

ones and unit debottlenecking.

2. Process operating parameters: modifications of operating conditions (e.g. temperature,

pressure, reflux ratio) to increase energy efficiency. Such opportunities are often found at the

108



4.1. Bottom-up approach

Figure 4.1 – (a) Typical onion diagram for chemical process design (derived from [2]) and (b)modified
onion diagram for the identification of EnSO’s.

level of the separation step, with the optimisation of distillation columns operation. Examples

can be pressure modification to enable direct process integration and optimisation of the

reflux ratio to reduce reboiler and condenser heat loads.

3. Process heat integration: penalising heat exchangers resulting from the pinch analysis heat

cascade are removed through the redesign of the heat exchanger network, and direct or

indirect heat recovery schemes are generated to get as close as possible to the minimum

energy requirements.

4. Heat pumping: depending on the shape of the grand composite curve, heat pumping oppor-

tunities can be identified, involving the increase in temperature of a heat source below the

pinch and lifting it above the pinch to supply heat to cold streams. Several technologies exist

for heat pumping (i.e) mechanical vapour recompression (open cycle), one/several -stage(s)

heat pumps and absorption heat pumps.

5. Energy conversion: the remaining process heating and cooling requirements have to be

supplied by the utility system. Again based on the grand composite curve and process require-

ments, the energy conversion units can be optimised or replaced to better match the process

energy profile. Examples can be the installation of a gas turbine, the optimisation of boiler

operation, the optimisation of the steam network (maximisation of electricity cogeneration,

flash steam production, condensates return), or the integration of an organic Rankine cycle to

produce electricity from the waste heat.

6. Operation and maintenance: the last level of energy efficiency optimisation relates to the

determination of optimal operation set points and the development of proper maintenance
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routines, especially at the level of the steam network (e.g. status checks on insulation and

steam traps, identification of leaks) and heat exchangers cleaning (fouling removal).

This onion diagram for the energy efficiency optimisation of existing industrial systems follows a

bottom-up approach. In this thesis, modifications on the process technology itself are left out of

the propositions for energy saving opportunities. The analysis starts with the actual production

route and process configuration.

These layers define guidelines for the identification of EnSO’s, guarantying that the optimisation

starts at the right point, that is from the process characteristics and its real energy requirements,

rather than from the optimisation of the utility system. In reality, strong interactions are found

between layers. While the more efficient system can be designed based on thermodynamic targets,

it is not necessary the one which will be selected for implementation. Several alternatives for energy

saving opportunities should then be identified and evaluated, even if they are in competition. This

is the case for example between different direct or indirect heat recovery scenarios, heat pumping

configurations, or energy conversion systems.

Each opportunity has to be evaluated economically but also issues linked to its implementation,

which can be of safety, technological or topological nature, need to be estimated as key for final

decision making. Keeping in mind the minimum energy consumption targets and the energy profile

of the system, the best combinations of energy saving opportunities can be selected while still

keeping track of the others.

4.2 Example on a case study

This section shows an example of energy saving opportunities that can be identified on a case study,

from the system already presented in Chapter 3. The total site profile and grand composite curve of

the case study can be respectively seen on Figure 4.2 (a) and (b), withminimum energy requirements

(MER) detailed in Table 4.1. It is based on the optimum list of streams introduced at the beginning

of the last chapter and available in Table A.4 in the Appendix.

Table 4.1 – Pinch analysis results (Tpinch = 89.5°C).

Hot utility [MW] Cold utility [MW] Heat recovery [MW]

Actual system 31.4 36.2 14.2
MER 25.5 30.3 20
Difference 5.9 5.9 5.9

In the actual system, cooling is carried out by cooling water and heating is provided by steam at two

pressure levels: middle pressure (Tsat = 207◦C) and low pressure (Tsat = 142◦C) steam. A simplified

scheme of the steam network is depicted in Figure 4.3.
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Figure 4.2 – (a) Total site profile and (b) grand composite curve of the case study.

Figure 4.3 – Utility system in place in the case study.

Superheated high pressure steam is first produced in a natural gas boiler and expanded in a back

pressure steam turbine down to 18 bar. Middle pressure steam is desuperheated with demineralised

water injection. Low pressure steam is obtained via valve expansion from the middle pressure steam

header. The electricity production of the turbine is of 4.1 MW under nominal operating conditions.

Considering the useful heat and electricity production compared to the natural gas consumption,
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the system has an efficiency of 80%. Energy prices1 for natural gas and cooling water consumption,

as well as the selling price for electricity are summarised in Table 4.2.

Table 4.2 – Energy prices and economic parameters

Natural gas Cooling water Electricity selling Interest rate Lifetime
22AC/MWh 0.02AC/m3 50AC/MWh 8% 20 years

The pinch analysis results show a potential for energy consumption reduction of approximately 6

MW, which is explained by the penalising heat exchanges listed in Table 4.3. Two heat penalties

are linked to the use of a cold utility to cool down process streams above the pinch point, and the

three others correspond to badly designed process integration, causing heat to be transferred across

the pinch. Among the five penalising heat exchanges, two explain 85% of the total penalty. After

investigation, the three other penalising streams were removed from the list since the heat penalty

was judged to be infeasible to be removed, due to safety issues and location of streams.

These streams were transformed to black box, in order to account for their energy requirement but

remove their potential for heat recovery. The new hot and cold minimum energy requirements are

respectively 26.2 MW and 31.0 MW.

Table 4.3 – Penalising heat exchangers, total = 6 MW.

Tin Tout Load Tin* Tout* Qpen Share penalty
[◦C] [◦C] [kW] [◦C] [◦C] [kW] [% tot.] type

RECYCLING 139 119 495 135 115 495 8
cold utility
above pinch

COND2_1 96 91 2693 94.5 89.5 2693 45
cold utility

above pinch
EXTRACT1

(with FEED1)
99 27 2225 95 23 170 3 cross pinch

EXTRACT2
(with FEED2)

103 28 878 99 28 111 2 cross pinch

PROD_COND_2
(with HEAT1)

101 89 3059 99.5 87.5 2549 42 cross pinch

4.2.1 Process operating parameters

The first layer of optimisation focuses onmodifications of the process operating conditions which

would result in an increase of the energy efficiency. For the case study, such opportunity is located

at the level of the first distillation column.

1Energy prices observed for case study location in France, in 2014.
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The feed stream enters the distillation column at 30◦C, while the saturation temperature of the

columnmeasured at the feed tray is about 100◦C. From the grand composite curve it can be seen

that the feed could be preheated until the pinch temperature (Tpinch(89.5
◦C) -ΔTmin/2) using excess

process heat, which would reduce the load of the reboiler.

Figure 4.4 shows schematically the initial process configuration and the required systemmodifica-

tions to realise the feed preheating. For the latter, the overhead condensation stream of the same

column is integrated with the feed to be heated up, since it is the hot stream below the pinch with

the highest temperature and the closest in term of geographical location.
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Figure 4.4 – Distillation column without (initial) and with feed preheating.

The start and final temperatures of the hot stream are respectively 91◦C (corresponding to the pinch

point in real temperature) and 88◦C. The new heat exchanger to install is then pinched at the hot

end. The implementation of feed preheating would result in a reduction of 2 MW of middle pressure

steam (MPS) consumption in the reboiler.

The composite curves displayed on the figure show the heat recovery from the overheads and the

decrease in steam requirements for the case with preheating.

Table 4.4 – Thermo-economic analysis of the feed preheating

OC savings [kAC/y] IC [kAC] NPV [kAC] PBT [y]

313 207 3’000 0.66
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A summary of the results of the thermo-economic analysis is provided in Table 4.4, showing the

expected operating cost savings (OC savings), investment cost (IC), net present value (NPV) and

payback time (PBT) of the feed preheating opportunity. Details on calculations related to the heat

exchanger cost are available in Appendix C (Table C.3).

This configuration makes use of the excess heat below the pinch. The overhead condensation

straight at the outlet of the column occurs above the pinch point with 2.7 of MW of heat to evacuate

(heat exchanger E7), and corresponds to the penalising stream COND2_1 being cooled down by a

cold utility. The use of this heat to preheat the feed would reduce the reboiler heat load by the same

amount for a smaller heat exchanger to install, but it would still be a penalising heat exchange. This

option should be considered only if the integration of COND2_1 with other process stream to reach

the heat recovery target is judged infeasible.

From this first opportunity, the list of streams has to be updated for the rest of the analysis. A cold

stream corresponding to the feed preheating from 30◦C to 85.5◦C (Tpinch-ΔTmin/2) is added and the

reboiler heat load is decreased. The hot and cold energy requirements are reduced by the 2 MW of

heat integration identified in this section.

More generally, distillation columns are major energy consumers in any chemical processes in-

cluding a separation step. When thermodynamic models of columns are available, modifications

of their configuration (i.e. different feed conditions, addition of a side reboiler and/or condenser,

reflux ratio modification) can be studied in detail, and the integration of the columns with the rest

of the process can be further optimised. A good demonstration can be found in [124], where the

temperature-enthalpy profiles of columns are generated and operating conditions and/or columns

layout are changed to improve the overall system heat integration.

NB: It is important to mention here that costing methods for heat exchangers available in the literature

turn out to poorly estimate the real investment cost. When presenting cost estimates to industrial

partners, it was always pointed out that the values were notably underestimated, compared to

installation costs they observe. The principal reasons probably being the additional costs linked to

piping modification and installation and plant rearrangement. An additional factor should then be

introduced to account for these supplementary costs. This observation is valid in this section for all

the investment cost estimates related to pieces of equipment.

4.2.2 Process direct heat integration

The second optimisation layer targets the removal of the heat penalty caused by a non-optimal

heat exchanger network configuration. The two penalising streams to remove are COND2_1 and

PROD_COND_2 (see Table 4.3). The actual heat exchanger network configuration can be seen on

Figure 4.5. The two penalising heat exchangers are displayed in yellow. PROD_COND_2 is cooled
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down via cooling water above the pinch and 80% of heat exchanger E1 load crosses the pinch point.

In order to remove the total heat penalty, the heat exchanger connections and streams temperatures

need to be rearranged with respect to the process pinch point and streams definition. To do so, the

actual heat integration represented by the black circles on the figure needs to be modified.

Figure 4.5 – Initial heat exchangers configuration.

A new system configuration, depicted in Figure 4.6, has been identified and proposed. In this new

configuration, the evaporating stream RECOVERY is not anymore integrated with the hot process

stream exiting the reaction section at the level of E5. Instead, part of the heating is now supplied by

the penalising hot stream COND2_1, removing entirely its penalty.

This new heat exchange implies two things. First, an increase in heat exchange area of E7 is required

since for the same heat load the temperature gradient is nowmuch smaller, and second an addi-

tional heat exchanger needs to be installed to supply the remaining heat load required for stream

RECOVERY. Considering its temperature level (88◦C), low pressure steam can be used. To be noted

that this heating requirement is visible on Figure 4.2 (b), with the plateau at 89.5◦C.

The other penalty is removed through a better integration of the hot and cold process streams

entering and leaving the reaction section. E4 is required to adjust the temperature level of the stream

entering the reaction section, however its heat load can be reduced. The cold stream inlet and

outlet temperatures of E3 are then both increased by 4◦C. While the heat load is still the same, the

temperature gradient is slightly reduced.

115



Chapter 4. Reaching the energy consumption target

Figure 4.6 – Redesign of the heat exchangers configuration.

The MP steam consumption in E2 is decreased through the cold stream splitting and its integration

with the hot stream exiting the reaction section at the level of E5. Finally, PROD_COND_2 inlet

and outlet temperatures at the level of E1 are modified in such a way that it becomes a pinch heat

exchanger located below the pinch point.

As for stream COND2_1 integration with RECOVERY, these modifications imply additional heat

exchange areas to be installed due to the smaller temperature gradients and the increased heat

recovery. The thermo-economic analysis results of the proposed heat exchanger redesign can be

seen in Table 4.5, with the details on the additional heat exchange area provided in Appendix C.

Table 4.5 – Thermo-economic analysis of the heat exchanger network redesign.

OC savings [kAC/y] IC [kAC] NPV [kAC] PBT [y]

867 2’504 6’005 2.89

4.2.3 Heat pumping

Once direct and indirect heat recovery schemes are investigated, the next layer of optimisation is to

check for heat pumping opportunities. Studying the grand composite curve, it can be seen that the

process requires 4.3 MW of heat at the level of the pinch point, corresponding to the RECOVERY
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stream which is involved in the heat exchanger redesign.
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Figure 4.7 – Zoom on the process GCC with heat pumping integration possibilities: (a) MVR or (b)
close HP cycle with multi-products stream and (c) MVR with single product condensing stream.

Instead of consuming low pressure steam, heat pumping can be used to lift waste heat from below to

above the pinch point. Figure 4.7 shows several possible configurations to do so. The first option (a)

is to directly compress a column overhead stream composed of several chemical compounds. The

second option (b) uses an external cycle with a working fluid to recover the heat and pump it above

the pinch. Finally, the last option (c) involves mechanical vapour recompression of another column

overhead stream to heat up the RECOVERY stream, which in reality corresponds to the reboiler of

the same column.

After studying each possibility, the last option was selected. While the first one is the most promising

in terms of coefficient of performance, the varying composition andmulti-product characteristic

of the stream were not suitable for direct recompression. This is avoided with the second option

but at the expense of an external system, implying the addition of another heat exchanger. The last

option is the most promising and convenient due to the proximity of the hot and cold stream and

the absence of operational or safety constraints.

The proposed mechanical vapour recompression is depicted on Figure 4.8. The initial temperature

of the condensing and evaporating streams being close (respectively 82◦C and 88◦C) and the overall

heat transfer coefficient being rather high since the heat exchange involves two streams changing

phase (allowing a small temperature difference), the required pressure increase is only of 0.7 bar.

The associated mechanical power to drive the compressor is of 235 kW (ηc = 0.8).

Table 4.6 – Thermo-economic analysis of the mechanical vapour recompression.

OC savings [kAC/y] IC [kAC] NPV [kAC] PBT [y]

683 1’572 5’138 2.3
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Figure 4.8 – Implementation of mechanical vapour recompression on a distillation column.

One reboiler of the distillation column 2 (E7) is already integrated with another process stream from

the heat exchanger network redesign step. The installation of E8 to supply the remaining heat of the

reboiling stream also resulted from this redesign. The implementation of the MVR removes the need

of steam consumption of the distillation column. Heat exchanger E8 still needs to be installed but

its design is changed due to the lower temperature gradient of the process-process heat exchange.

Table 4.6 summarises the thermo-economic analysis results of the proposed MVR, with calculation

details available in Appendix C.
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Figure 4.9 – Updated GCC including the mechanical vapour recompression.

The grand composite curve of the process including the mechanical vapour recompression can be
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seen on Figure 4.9. The newminimum energy requirements are now 20.3 MW of hot utility and 25.2

MW of cold utility.

4.2.4 Energy conversion

The actual energy conversion system is composed of a natural gas boiler producing saturated high-

pressure steamwhich is first expanded in a turbine to cogenerate electricity, before being distributed

across the site to heat the process. Cogeneration is then already taking place in the steam network.

However, the actual steam pressure levels could be lowered, thereby generating more electricity

thanks to a higher pressure difference. Another turbine (or a new two-stages turbine) could also be

added between the high and low pressure steam levels, increasing the electricity production. The

temperature of the fumes at the outlet of the boiler, which is of 250◦C, can be lowered through a

better integration with the steam generation and air preheating below the pinch. Suchmodifications

of the actual utility system configuration would lead to an additional electricity generation of 1.5

MW (with the updated MER after the MVR) and a higher combustion efficiency.

When looking at the temperature-enthalpy profile of the process requirements, with or without the

implementation of the energy saving opportunities previously identified, themaximum temperature

of the cold streams is 170 ◦C. Instead of a natural gas boiler, a gas turbine could be installed coupled

to the steam network, to supply the heat requirements while cogenerating electricity. In this case,

the conversion unit would become at the same time a power production unit.

The integrated composite curves for both situations can be seen on Figure 4.10, in corrected temper-

atures as well as using the Carnot factor (1-Ta/T) for the y-axis.

When working in the Carnot factor domain, the area between the process and the utility curve

represents the exergy destroyed in the system. Here, it is shown how the energy conversion units

(i.ie boiler and gas turbine) are integrated with the steam network, the latter delivering heat to the

process streams.

With the natural gas boiler, the temperature difference between the combustion gases and the

intermediate steam production shows an important exergy loss, represented by the area between

the boiler curve (Tadiabatic to Tfumes) and the superheated steam production (70 bar 450◦C). This
area is much smaller in the case of the gas turbine integration.

Supplying the heating demand of the process via the cooling down of the combustion gases of the

gas turbine implies consuming more natural gas for the same thermal power production. On the

other side more than a third of natural gas energy content is converted to electricity. Figure 4.11

shows on the same Sankey diagram, the natural gas conversion to thermal power and electricity for

a fixed final heating demand, for the gas turbine and the boiler. It can be seen that the natural gas
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Figure 4.10 – Corrected temperature and Carnot integrated composite curve of the systemwith (a&c)
the initial natural gas boiler and (b&d) a gas turbine with lower steam pressure levels.

consumption is increased by 75% in the case of the gas turbine, corresponding to 21.3 MW. At the

same time 17.4 MW of additional electricity is generated.

To be noted that the gas turbine losses at the level of the steam generation (SPgt_L) are higher than

what could be achieved with this type of technology. These losses are coming from the flue gases

which are exiting at 230°C, since there is no need for additional heat below this temperature level

from what is already being delivered to the process.

Depending on the price of these two energy vectors and the electrical demand of the site/cluster as

well as neighbouring industrial sites, the installation of a gas turbine can be very interesting. With

the energy prices of natural gas and electricity (see Table 4.2), the net yearly operating cost for the

gas turbine and the boiler are respectively 150 kAC/y and 3044 kAC/y, which would correspond to an

annual energy bill decrease of 95% thanks to the selling price of electricity. Although it is hard to find

detailed cost data for gas turbine, the capital cost was estimated to 16.2 million euros (1101 $/kW

[125]).
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Figure 4.11 – Sankey diagram in the case of gas turbine integration (left to center) and boiler (right
to center) to supply the process heating demand.2

4.2.5 Summary

Table 4.7 summarises the energy saving opportunities previously described together with the cor-

responding impact on the hot utility consumption (HU). The bottom-up approach, starting from

the process operating parameters and energy requirements, allowed to identify three opportunities

which would have been missed if the focus of the analysis were put at the utility optimisation level.

The combination of these opportunities leads to an expected 35% decrease in the thermal power

consumption of the site (11.1 MW).

Table 4.7 – Summary of the energy saving opportunities.

OC savings [kAC/y] IC [kAC] NPV [kAC] PBT [y] HU [MW]

Actual consumption - - - - 31.4
Option 1: feed preheating 313 207 3’000 0.7 29.5
Option 2: HEX redesign 867 2’504 6’005 2.9 24.3
Option 3: MVR 683 1’572 5’138 2.3 20.3
Option 4: gas turbine 2’894 16’200(?) 12’124 5.6 20.3

While this summary is useful to get a first overview of the different possibilities to increase the energy

efficiency of the site and decide on the energy strategy, the values for the economic indicators must

be taken with care. Uncertainty on both sides of the thermo-economic analysis has to be kept in

2gt/GT = gas turbine, b/B = boiler, SP = steam production, ST = steam turbine, Pheat = process heat, L = losses, Elec =
electricity
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mind, as well as the other engineering constraints (e.g. safety, topological, technical) which might

prevent implementation or increase the investment cost.

4.2.6 Sensivity analysis

This section presents the effect of the uncertainty or variation of costing parameters on the economic

indicators used for decision making. The three first options identified in the case study are used as

examples. Table 4.8 shows which parameters were selected in the sensitivity analysis.

Table 4.8 – Summary of the energy saving opportunities.

Parameter Variation

Investment cost +/- 25%
Steam price (NG cost) +/- 25%
CO2 tax 0 - 30AC/t of CO2

Interest rate 5 - 10 %

The variation range associated with the investment cost of the equipment corresponds to the typical

accuracy of preliminary cost estimates [108]. The steam price, which is intrinsically linked to natural

gas price, is set to vary around its actual price +/- 25% (+/- 5AC/MWh). The interest rate is allowed to

be located anywhere between 5% and 10%. Another parameter is introduced in this section, which

is a CO2 tax for each ton of CO2 emitted. A reduction in energy consumption automatically leads to

a reduction of CO2 emissions. Depending on the carbon price, additional benefits will come from

the implementation of energy saving opportunities.

NB: When electricity consumption or production is involved in the energy saving opportunity, the

electricity price variation should also be taken into account in the sensitivity analysis.

Results of the sensitivity analysis are displayed on Figure 4.12 for the three different options. The

maximum andminimum payback time can be read in the legend on the right, while the net present

value variation is seen on the left vertical axis. The value range of the interest rate for each point can

be known thanks to its shape.

As expected, the trend is similar for each opportunity. High PBT and low NPV are linked to high

interest rates and low steam price and carbon tax. On the contrary, when energy costs and carbon

tax are high, the profitability of the energy saving opportunities is at the highest. While these

results seem straightforward they highlight the need to consider the uncertainty on both sides of

the thermo-economic analysis, to understand how the economic indicators vary according to the

financial conditions of the system.
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5% < i < 6.7%
6.7% < i < 8.3%
8.3% < i < 10%

5% < i < 6.7%
6.7% < i < 8.3%
8.3% < i < 10%

5% < i < 6.7%
6.7% < i < 8.3%
8.3% < i < 10%

Figure 4.12 – Sensitivity analysis results for the feed preheating (top), heat exchanger network
redesign (middle) and mechanical vapour recompression (bottom). Results for 1000 evaluations.
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4.3 Study of a new heat transformer

During this thesis, the production of High Density Polyethylene (HDPE) via the slurry process has

been investigated, among other polymerisation processes. The study of the composite curves of

the system lead to the observation that a significant amount of heat is released by the exothermic

reaction below the pinch point, currently being evacuated through a cooling water loop itself cooled

down by the cooling water network (see Figure 4.13). This heat load is defined as residual waste heat

since it is an unavoidable release by the production process and is in excess below the pinch point

[126].
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Figure 4.13 – Grand composite curves of the HPDE slurry process when the initial cooling water and
real reaction temperatures are considered.

When the current equipment layout is put aside and the real temperature of the reaction medium is

considered, the exothermicity of the polymerisation reaction offers a very interesting potential for

waste heat valorisation via heat pumping.

In the HDPE slurry process, the reaction heat is released at around 80◦C-90◦C and low-pressure

steam is injected in the stripping section located near the reactors to remove the solvent. The

minimum steam pressure for the stripper is 1.6 bar, corresponding to a saturation temperature of

113◦C. Low-pressure steam is also consumed at other locations in the plant. The temperature lift

of the heat pump has then to be around 40-50◦C, depending on the reaction temperature and the

temperature difference between the working fluid and the process streams.

The total heat of reaction removed by cooling water is around twice the heat that has to be delivered

to the process by low-pressure steam. Instead of using only around half of the heat of the reaction to

produce low pressure steam, the rest of the heat could be used to produce directly the mechanical

work driving the cycle compressor. This system, which is called a heat transformer, has been

investigated in this thesis and applied to the HDPE slurry process in particular.
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This section is organised as follows. A literature review on existing waste heat valorisation systems is

first carried out, identifying which alternative technologies are related to and competing with the

proposed heat transformer. This new technology is then described in a general way before detailing

its special features when it is integrated with the HDPE slurry process. The last section investigates

the use of other working fluids for the heat transformer and discusses the actual technical limitations

of the system and its possible application to other similar processes.

4.3.1 Heat pumping technologies overview

When industrial waste heat is identified, several technologies can be used to valorise this heat, as

heat itself at a higher temperature, as electricity or as cold. Main waste heat to heat and waste

heat to electricity technologies are depicted on Figure 4.14. Three main technologies are used as

active waste heat valorisation to generate useful heat: absorption heat pumps (AHP), absorption

heat transformers (AHT) and mechanical vapor compression heat pumps (MVC). The first two

technologies rely on the heat of absorption/desorption and are almost entirely thermally driven,

since electrical input is only required at the level of the pumps. On the contrary, electricity is required

to drive the compressor in mechanical vapour compression cycles. A MVC cycle can be coupled

with an organic Rankine cycle (ORC) in order to eliminate the external input of electricity [127, 128].

This system, also referred to as ORC-HP, is called a thermally driven heat pump.

Figure 4.14 – Overview of active waste heat recovery technologies for heat and electricity production
(from [3]). The two highlighted technologies are the ones involved in the proposed heat transformer.

The pressure-temperature diagram for each cycle (AHP, AHT, ORC-HP) is depicted in Figure 4.15.

In addition to these systems, the P-T cycle of the new heat transformer proposed in this thesis

is also represented (d). While all these cycles are waste heat to heat technologies, they differ on

several aspects: (1) on the working fluid type, (2) on the number of pressure levels and (3) on the

temperature and pressure levels of the heat sources and sinks.
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AHP and AHT both use a working fluid pair composed of a refrigerant and an absorbent. The absorp-

tion releases heat (Q̇ AB ) as well as the refrigerant condensation (Q̇CO). Inversely, desorption (Q̇GE )

and refrigerant evaporation (Q̇EV ) require a heat input. The most widely used refrigerant/absorbent

pairs are water-lithium bromide (H2O-LiBr) and ammonia-water (NH3-H2O) [129]. The ORC-HP

and proposed heat transformer use only a refrigerant as working fluid, which can be a pure fluid or a

mix of fluids. The core of the two systems is the turbo-compressor, where the heat pump compressor

is driven by the mechanical work generated in the turbine.

The second difference concerns the number of pressure levels. Absorption cycles usually operates

between two pressure levels, while the other cycles require three pressure levels.

The last difference is the temperature levels at which waste heat is recovered and the useful heat is

produced. AHP and ORC-HP cycles both have a heat input at high and low temperatures (TH and

TL), while useful heat is delivered at the medium temperature level (TM). AHT and the proposed HT

cycle receive heat at medium temperature, lift a fraction of this heat to a higher temperature level

while the remaining heat is evacuated at a lower temperature level.

Figure 4.15 – P-T representations of an (a) absorption heat pump, (b) absorption heat transformer,
(c) ORC-HP and (d) of the proposed heat transformer (reversed ORC-HP).
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Based on this last observation AHP (a) and ORC-HP (c) are referred to as thermally driven heat

pumps (TDHP), whereas AHT (b) and the proposed heat transformer (d) are thermally driven

heat transformers (TDHT). A heat transformer is then a system which can deliver heat at a higher

temperature than the temperature of the heat source, without an external import of electricity [130].

The proposed heat transformer is the reverse operation of the original ORC-HP cycle. Figure 4.16

represents both cycles in a T-s diagram where this can clearly be seen.

Figure 4.16 – T-s diagrams of (a) the ORC-HP cycle, (b) proposed heat transformer

The temperature levels of thermally driven heat pumps make them more suitable for domestic

heating application, coupled with solar energy or boilers. In the petrochemical industry, the excess

heat at medium temperature and the need of heat above the pinch point make thermally driven

heat transformers and traditional heat pump cycles the technologies of choice.

4.3.2 System description

The proposed thermally driven heat transformer evaporates a working fluid at medium temperature

and pressure and compresses part of it to a higher pressure, using the mechanical power produced

by the expansion of the other part of the fluid into a turbine. The general layout of the HT is depicted

on Figure 4.17.

Working fluids are classified in three categories: wet, dry and isentropic fluids [131]. This classifi-

cation is based on the slope of the saturation curve on a T-s diagram. If it is positive, the fluid is

defined as dry, if it is negative, the fluid is wet. For isentropic fluid the slope is infinite. A wet fluid in

saturated vapour state will start to condense with isentropic expansion, whereas a dry fluid at the

same state will start to condense with isentropic compression, as it can be seen on Figure 4.18. Only

isentropic fluids will remain in the vapor state for both pressure changes.

Depending on the fluid characteristics and cycle temperature and pressure levels, a superheater

can be added before the turbine or the compressor and a preheater before the evaporator. The
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superheater has to be supplied by the heat released from the high-pressure condenser since the

superheating temperature is above the waste heat temperature.

Figure 4.17 – Schematic representation the heat transformer.

Figure 4.18 – T-s diagrams of a (a) wet fluid, (b) dry fluid and (c) isentropic fluid, and the effect of
isentropic expansion or compression from the saturated vapour state.

4.3.3 Integration with polymer production

The integration of the proposed heat transformer on the HDPE slurry process defines the tempera-

ture levels for the evaporator and the two condensers of the cycle.

With a reaction heat available around 85-87◦C, the fluid evaporation temperature is set to 80◦C.
The goal of the heat transformer is to produce low pressure steam with a minimum pressure of

1.6 bar, corresponding to a saturation temperature of 113◦C. The condensation temperature of
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the high-pressure condenser is set to 120◦C. Finally, the condenser temperature is limited by the

use of water cooling with an outlet temperature of 20◦C. The condensation temperature of the

low-pressure condenser is set to 25◦C. In summer, depending on the location and climate, cooling

water temperature can increase up to 30°C. The lower temperature level of the cycle will then also be

increased, implying a higher split fraction of the fluid towards the turbine side.

The choice of the working fluid is made based on the actual solvent used for the polymerisation

reaction. The polymer being in suspension in hexane, this fluid was selected for the heat transformer.

In this way, there are no safety issues related to potential leakage and the product is readily handled

and available on the site.

Figure 4.19 – Schematic representation the heat transformer integratedwith theHDPE slurry process,
using hexane as working fluid.

With hexane as working fluid, the low, medium and high pressure levels are respectively 0.21 bar,

1.45 bar and 3.98 bar. The turbine and compressor pressure ratios are then 6.9 and 2.7. Since it

is a dry fluid, a superheater is required before the compressor. The superheated temperature is

defined as the minimum temperature required to be able to stay in the vapour state at the outlet

of the compressor. With a compressor isentropic efficiency of 80%, the fluid temperature before

entering the compressor is of 96.7◦C. Pressure drops in heat exchangers are neglected. A schematic
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representation of the integrated heat transformer using hexane is shown on Figure 4.19 and a

screenshot of the Belsim Vali model is available in Appendix D.

System performance

The integrated composite curves of the proposed heat transformer using hexane can be seen on

Figure 4.20. The three plateaus from the highest to the lowest temperature correspond to the fluid

condensation to produce low pressure steam, the fluid evaporation receiving the reaction heat and

the fluid condensation at low pressure, cooled down by cooling water. The small segment between

the pinch point and 100◦C corresponds to the superheating, and the other one starting at 50◦C is the

desuperheating after the turbine.

The integration of the heat transformer to the polymerisation process would decrease the low-

pressure steam consumption by 8.1 MW, which corresponds to a 50% decrease in hot utility con-

sumption.
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Figure 4.20 – Integrated composite curves of the hexane heat transformer with the rest of the system

The efficiency of a heat pump is denoted by its coefficient of performance (COP). ThemaximumCOP

of a heat pump is given by Equation 4.1, where Tsink and Tsource are respectively the temperatures of

the heat sink (113◦C) and the heat source (85◦C) in degree Kelvin.

COPHP,th = Tsi nk

Tsi nk −Tsour ce
(4.1)

COPHP,r eal =
Q̇si nk

Ėi n
=COPth ·η (4.2)
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The observed COP is determined thanks to Equation 4.2, by calculating the ratio between the heat

load delivered at high temperature (Q̇si nk) and the electrical input (Ėi n). For the proposed heat

transformer the electrical input corresponds to the turbocompressor shaft power, which is of 1320

kW. The theoretical and real COP are then respectively of 13.8 and 6.9, giving a system efficiency of

the heat pump part of η = 0.5.

The overall heat transformer efficiency (COPHT) has been defined as the ratio of the useful heat

produced (Q̇si nk ) over the heat entering the cycle, which corresponds to the evaporator (Q̇sour ce),

superheater (Q̇suphc ) and preheater (Q̇pr eh) heat loads. It is expressed by Equation 4.3. Based on

values from Figure 4.19, the COP of the hexane HT is equal to 0.45.

COPHT = Q̇si nk

Q̇sour ce +Q̇suphc +Q̇pr eh
(4.3)

This efficiency can be compared with the direct competing technology which are absorption heat

transformers, for which the COP is determined by Equation 4.4.

COP AHT = Q̇ AB

Q̇GE +Q̇EV
(4.4)

Table 4.9 presents the comparison of the performance of the hexane heat transformer with two

recent studies involving AHT with similar temperature levels for the three main heat exchangers

(i.e. condenser, evaporator and absorber, which is the high pressure condenser in the proposed

HT). The results show that the COP of the hexane HT is slightly lower than the one of AHTs for the

temperature levels considered in this study. For a higher temperature lift, the efficiency seems to be

lower. Care has to be taken with these literature values since only a few systems with the required

temperatures were available for comparison.

Improvement of the HT performance while keeping the same temperatures levels can only be

realised by changing the fluid type. Otherwise, the temperatures of the heat sink and source should

respectively be decreased and increased. A comprehensive review on absorption heat transformers

with different configurations, temperature levels and working fluids can be found in [130].

Table 4.9 – Comparison of system COP with AHT examples.

Tevap [◦C] Tcond [
◦C] Tabs = Tcond,hp [

◦C] working pair COP [-]

AHT Guo et al. [132] 74 25 123 H2O-LiBr 0.45
HT 80 25 120 - 0.45
AHT Horuz Kurt [133] 80 25 130 H2O-LiBr 0.48
HT 80 25 130 - 0.40
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Open cycle configuration

Another option which was identified to recover the polymerisation heat of reaction would be an

open cycle heat transformer, using water as working fluid. In this system, water below atmospheric

pressure is evaporated thanks to the heat of reaction. Around half of the saturated steam produced

is expanded in a condensation turbine coupled with a compressor to produce 1.6 bar steam, which

can be directly injected into the process. A water make-up has then to be preheated to be mixed

with the water coming back from the turbine side, before entering again the evaporator.

This open heat transformer is represented in Figure 4.21, with the Vali model available in Appendix

D. Such configuration has the advantage of directly using the steam from the compressor in the

system, which removes the temperature difference between the working fluid and the steam to be

produced. As a result, the system ismuchmore efficient for the same final purpose, with a coefficient

of performance of 0.55.

Figure 4.21 – Schematic representation of the integrated open cycle heat transformer using water.

The major disadvantage and technical difficulty is the medium pressure level of 0.48 bar of the

evaporator, which requires to operate the reactor cooling below the atmospheric pressure. The

integrated composite curves of the open heat transformer can be seen on Figure 4.22. Compared to

Figure 4.20 with the closed HT using hexane, the integration of the open heat transformer with the

rest of the process eliminates entirely the need for low pressure steam, which is of 10.1 MW. The

total hot utility consumption would be decreased by 63%.
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Figure 4.22 – Integrated composite curves of the open heat transformer.

4.3.4 Perspectives

Working fluid selection

For fixed cycle temperatures, the coefficient of performance of the closed HT can be improved by

changing the working fluid type. A significant body of work can be found in the literature on the

optimal fluid selection for organic Rankine cycles [134, 135, 136].

Table 4.10 – Heat transformer COP and pressure levels for different working fluids.

Fluid Q̇i n [kW] Q̇si nk [kW] COP [-] Ph [bar] Pm [bar] Pl [bar] Pratio,T Pratio,C

water 1022 484 0.47 2 0.47 0.03 15 4.2
ebenzene 1039 484 0.47 0.64 0.17 0.01 13 3.8
benzene 1025 471 0.46 3 1 0.13 8 3
toluene 1024 469 0.46 1.3 0.39 0.04 10 3.4
R141b 1022 461 0.45 10 4.2 0.78 5.4 2.5
hexane 1069 477 0.45 4 1.45 0.21 7.1 2.8
R113 1054 468 0.44 6.8 2.6 0.45 5.9 2.6
R11 1026 453 0.44 12 5.2 1.1 4.9 2.4
R123 1028 450 0.44 12 4.9 0.91 5.4 2.5
pentane 1055 461 0.44 9 3.7 0.68 5.4 2.5
isopentane 1055 456 0.43 11 4.6 0.91 5 2.4
R245ca 1040 444 0.43 14 5.7 1 5.7 2.5
ammonia 1071 451 0.42 91 41 10 4.1 2.2
R245fa 1010 417 0.41 19 7.9 1.5 5.3 2.4
butane 1005 412 0.41 22 10 2.4 4.2 2.2
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The proposed heat transformer being at its early theoretical development stage, only a few common

working fluids were investigated in this study. The best fluid for the proposed heat transformer

should maximise the electricity production from the ORC cycle (turbine side) while also being

suitable for the heat pump cycle (compressor side). The maximum pressure ratios for the turbine

and compressor sides were respectively set at 7 and 4.

Results for 15 working fluids can be seen in Table 4.10, including hexane. For the four best fluids in

terms of COP, the pressure ratio on the turbine side is considered too high for the turbocompressor

to work effectively. Hexane is then one of the best working fluids from this specific list, together with

R141B, with a COP of 0.45 and turbine and compressor pressure ratios respectively of 7.1 and 2.8.

Technical limitations

The major limitation for the development and implementation of the proposed heat transformer is

of technical nature. Changing the heat removal of the reactor, currently realised with a cooling water

loop (30-40◦C) itself cooled down by cooling water, and replacing it by the evaporation of a fluid at

80◦C implies several considerations.

Temperature control is of major importance in polymerisation processes since it influences the

molecular structure and composition of the polymer. Also, the temperature of the reaction medium

might not be constant inside the reactor. The use of cooling water eases the cooling of the reactor

since the flow can quickly be changed and adjusted and no phase change is involved. Heat removal

via the evaporation of a fluid is more technical than water cooling, and the proposed system also

implies a much smaller temperature difference between the reaction medium and the cooling fluid.

These two aspects directly impact the design of the reactor itself currently being a loop reactor

made of long vertical jacketed sections. Further investigation is required to estimate the technical

feasibility of the proposed closed (and open) heat transformer.

Application to other processes

The heat transformer was initially developed based on the temperature-enthalpy profile of the

HDPE slurry process. It can however be applied to other processes. Any chemical production

process releasing a significant amount of heat below the pinch point (70-100◦C) and having steam

requirements above (with a maximum temperature lift of 40°C) could theoretically integrate the

proposed heat transformer for heat pumping.
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4.4 Conclusion

This last chapter corresponds to the last step of the methodology. It aims at answering the following

research questions:

How to generate energy savings opportunities in a systematic way from the production process to the

integration of utilities and how to properly evaluate their profitability?

What are the available technologies to recover waste heat?

The two first steps of the methodology provide information on the energy efficiency and the maxi-

mum heat recovery potential of the system. Based on the shape of the grand composite curve and

the identification of penalising heat exchangers, this last step aims at generating a list of energy

saving opportunities to improve the energy efficiency of the site, thereby decreasing its energy

consumption and CO2 emissions.

A bottom-up approach is introduced, derived from the onion diagram for chemical process design,

which defines optimisation layers for the generation of EnSO’s in a systematic way. It starts from

the modification of process operating parameters towards the last layers which consist of the

optimisation of the energy conversion and utility system and the development of maintenance and

operation strategies. A case study is used to illustrate the identification of EnSO’s.

A thermo-economic analysis is carried out for each opportunity, estimating on the one hand the

investment cost and on the other hand the expected savings associated to the energy consumption

reduction. The uncertainty on the capital costs and the main parameters influencing the operating

cost savings is briefly studied, showing how the economic indicators used for decision criteria and

risk evaluation are varying according to different sets of economic parameters.

Finally, this chapter highlights the potential for heat pumping in chemical processes, especially

when exothermic reactions are taking place. It introduces a new heat transformer system made

of a mechanical vapour compression cycle coupled with an organic Rankine cycle to generate the

mechanical work which drives the compressor. This system has the characteristic of producing both

higher temperature heat and mechanical work from the waste reaction heat, rather than importing

electricity from the grid. It is shown how its integration to a polymerisation process can reduce the

steam consumption by 50 to 63%.
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Overview

• Summary of the results and main contributions of the thesis

• Future perspectives

Results summary

The increase of energy efficiency at existing industrial sites has been recognised by the International

Energy Agency as one of the key elements to mitigate greenhouse gas emissions of the industry

sector [12]. Since 2012, the European Union pushes into this direction through the Energy Efficiency

Directive (EED) [4]. This directive regulates the entire energy chain and is part of Europe’s strategy

to reach its ambitious energy targets for 2030 (35% of energy efficiency increase, endorsed by the

European Parliament in plenary sitting on January 17th, 2018 [10]).

The EED requires regular energy audits to be carried out for large industrial companies and promotes

the implementation of energy measures and energy management systems. In both cases, it means

that the energy consumption should be understood, the energy performance evaluated and energy

saving opportunities generated and quantified.

The focus of the thesis is on the chemical and petrochemical industry. This sector is responsible for

19% of Europe’s industry final energy consumption [17]. The analysis of the literature revealed a

lack of detailed and appropriate methods to carry out energy review on (petro)chemical sites, which

adds up to two other important issues that are the availability and reliability of data and the lack of

time for a proper analysis.

Chapter 1: Methodology for energy reviews

The first contribution of this thesis corresponds to the development of a systematic methodology

for detailed energy reviews in the chemical and petrochemical sector, bringing an answer to the

following research question:
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How to carry out an energy review covering the whole energy chain and enabling the identification of

energy savings opportunities at an adequate level of detail?

The proposed methodology comprises three main steps: 1) the energy consumption analysis 2) the

energy consumption reduction targeting and 3) and the achievement of the energy consumption

reduction. It makes use of state-of-the-art tools and techniques (e.g. statistical analysis, data recon-

ciliation, pinch analysis) applied in a logical and ordered way, and enables the realisation of detailed

energy reviews in compliance with existing regulations and standards in the field. Figure 4.23 ex-

tends Figure 2 presented in the introduction, showing which step(s) of the proposed methodology

addresses the ISO 50001 energy review requirements.

Although the external context for the thesis relates to the European regulatory context, this method-

ology for energy reviews in the framework of energy audits and energy management systems is valid

worldwide. Energy efficiency is a key element to reduce the environmental impact of industrial

activities and reduce the consumption of energy resources.

analyse energy 
consumption

identify areas of significant 
energy use

identify, prioritise & record
energy savings opportunities

determine the energy 
performance

energy sources
energy consumption trend

+energy baseline

analysis & classification

energy consumption breakdown
influencing factors

optimal energy needs
+energy performance indicators

STEP 1 

STEPS 1&2 

STEP 3 

STEP 1 

Figure 4.23 – Key requirements of an energy review as defined in ISO 50001 and link to the steps of
the methodology.

At each substep of the methodology, open questions and limitations of the existing tools are raised

and investigated in the other chapters of the thesis. They are summarised on Figure 4.24 next to the

substep to which they belong, together with the different contributions of this thesis to answer to

these questions.

The proposed methodology combines a top-down approach at the level of the energy consumption

analysis, to characterise the system down to the process and equipment level, and a bottom-up ap-

proach to generate the energy savings opportunities starting from this level to the energy conversion

system. It includes all the requirements for a proper energy review and can be briefly summarised
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Figure 4.24 – Overview of methodology and thesis contributions
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as follows.

In the first step, the energy flows entering the system boundaries are identified and quantified

and the energy baseline is generated. From the characterisation of the black box level, the energy

consumption is thenmapped by gradually entering into the site and processes details in order to

spot where and why energy is consumed. The required data to be able to analyse and evaluate the

energy efficiency of the system, as well as to carry out pinch analysis in the second step, is collected.

Raw data is then checked and validated to ensure that the results of the analysis can be trusted.

Data reconciliation and/or mass and energy balances can then be used to check the consistency of

data. Finally, key performance indicators are developed to characterise the energy efficiency of the

system, which can also be used for monitoring purposes.

From the data acquisition, leading to a consistent list of streams, pinch analysis in carried out. This

second step determines the potential for heat recovery via heat integration and defines minimum

energy consumption targets. Based on these results, a list of energy saving opportunities is generated

in the third step, aiming at getting as close as possible to the heat integration targets and improving

the overall energy efficiency of the system. The level of detail of the energy review allows to identify

options covering the entire energy chain, from the process operation to the energy conversion

system optimisation. Each opportunity is then evaluated by a thermo-economic analysis.

Chapter 2: Energy consumption analysis

The major issues which were identified at the level of the energy consumption analysis of large

industrial sites are the lack of time, the availability and reliability of data and the need for a systematic

approach. This lead to the formulation of the following research question:

How to analyse and characterise the efficiency of the energy chain down to the end-use consumers, in

a suitable and reliable manner, while keeping the required time for data collection and complexity of

the analysis at an acceptable level?

To characterise and evaluate the energy efficiency from the site raw energy consumption down to

the final use of energy, a top-down approach is followed with well-defined intermediate level of

details (i.e. black box, site map, process block flow diagram and process flowsheet). This approach

allows to gradually enter into the site details, track mass and energy flows, to ultimately understand

where and why energy is consumed and how efficiently it is done.

At the level of the system boundaries (black box), recommendations for energy vectors characterisa-

tion and comparison are provided, as well as guidelines to properly establish the energy baseline.

This is important since the energy baseline serves as reference for the evaluation of the energy saving

opportunities.

140



Conclusions

In order to reduce the time required for data collection, this chapter introduces strategies and

heuristics (i.e. minimum data set, Pareto principle, hot streams targeting) to answer to the three key

questions preparing the input for the pinch analysis: who are the energy consumers? what is the

energy used for? and howmuch each end-usage is consuming? While these guidelines were proven

to be very useful in application, it is not bulletproof in all situations. If significant data is missing or

when the measurement system is in poor condition, data gathering remains a difficult step.

The reliability of data in energy reviews is of major importance. In order to ensure the validity of data

when data reconciliation cannot be applied, key mass and energy balances have been developed

at the site-level but also for each main entity of the site map (i.e. energy conversion units, steam

network, process units). This consistency check allows to quantify energy flows and determines

the order of magnitude for losses. A set of key performance indicators was proposed at the same

levels as for the consistency check in order to evaluate the energy efficiency of the system. The

balances and KPI’s defined in this chapter can be applied in the majority of cases. For sites or

production processes with specific characteristics having an impact on the energy consumption,

complementary ones could also be developed.

This chapter does not present novel scientific contributions but rather concentrates on providing

guidelines, recommendations and best practices to analyse the energy consumption of an industrial

site, based on the needs identified in the literature and observed empirically.

Chapter 3: Targeting heat recovery

The research question of the third chapter was expressed as follows:

How to generate economically feasible minimum energy consumption targets in pinch analysis, with

the minimum level of detail for streams definition?

The grey-box default level for pinch analysis allows to quickly obtain the temperature-enthalpy

profile of the process energy requirements, without spending too much time on data collection. The

first energy targets obtained from the heat cascade can however be investigated further to identify

additional potential for heat recovery. This chapter provides additional heuristic rules to refine the

initial list of process hot and cold streams, targeting "white box" process streams in the area of the

pinch point.

The main research contribution of the third chapter concerns the novel methodology for the defi-

nition of the minimum approach temperature in pinch analysis when it is carried out on existing

systems. Current methods to determine the ΔTmin, such as the area efficiency or the use of typical

values, show several limitations and often lead to an over- or underestimation of the heat recovery

target.

Instead of generating a single optimum ΔTmin for the system, the thermo-economic trade-off for
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heat recovery is carried out for each stream individually along its temperature-enthalpy profile. This

approach enables the use of several equipment cost laws, depending on the heat exchanger to be

installed, and utility costs depending the temperature levels of the streams. It has the advantage of

refining the targeting step and providing more reliable energy integration targets at the early stage,

prior to the generation of the heat exchanger network.

Further work needs to be carried out to refine and validate the proposed methodology. The defini-

tion of the slope of the fictive stream in the generation of the corrected profiles might be adapted

depending on the characteristics of the system. The use of a flat stream will increase the temper-

ature gradient and lead to lower ΔTmin compared to parallel streams. A method to generate an

intermediate slope can be an option.

A recurring observation made during this thesis is the difficulty to obtain good cost estimates for

equipment. Available costing methods in the literature show very different results for the same heat

exchanger, and most of them are limited regarding the heat exchanger type, material and pressure

factors. Moreover, when capital cost estimations are presented to site managers and engineers, they

are often judged insufficient to cover all the indirect costs linked to the installation, although factors

to account for these additional expenses are included in literature cost estimates. More accurate

and up-to-date costing methods should therefore be developed as this has a major impact on the

energy targeting step, but also on the energy saving opportunities economic evaluation.

Chapter 4: Reaching the energy consumption target

The last chapter provides guidelines to generate and evaluate energy saving opportunities and

thereby answers the following research question:

How to generate energy savings opportunities in a systematic way from the production process to the

integration of utilities and how to properly evaluate their profitability?

It is shown how a bottom-up approach following ordered optimisation layers can generate opportu-

nities for energy efficiency improvement, starting from the modification of the process operating

parameters towards the optimisation of the energy conversion and utility distribution system. The

best combination of options was presented for a case study. Although the proposed list of oppor-

tunities was considered as the optimal one with respect to energy and exergy efficiencies, other

sub-optimal alternatives should also be studied and evaluated, in the case where the optimum

scenario is not implemented due to diverse reasons (e.g. safety, technical, incorrect estimations,

process modifications). In this way, a complete portfolio is available for decision making, based on

the thermodynamic and economic characteristics of the system.

Heat pumping opportunities to recover waste heat below the pinch point were often identified in the

industrial sites studied in the framework of this thesis. More specifically, polymerisation reactions
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such as the HDPE slurry process releases a significant amount of heat in the temperature range of

80-90◦C, below the pinch point of the global process. A new heat transformer was proposed and

described in this chapter, together with its integration with the HDPE slurry process. The proposed

system is made of a mechanical vapour compression cycle, coupled with an organic Rankine cycle

which generates the mechanical power for the compressor. The same working fluid is evaporated,

split and a fraction is compressed to a higher temperature level thanks to the expansion of the rest

of the fluid. This system has the advantage of producing the required mechanical power directly

from the waste heat rather than importing electricity from the grid. Its potential for thermal energy

consumption reduction of the site was evaluated from 50% to 63% depending of the configuration

of the heat transformer.

Further research on the technical and economic aspects related to the development and implemen-

tation of this heat transformer is required to evaluate its feasibility and relevance, since heat removal

in polymerisation reaction is critical to ensure the product quality.

Methodology application

The proposed methodology was developed, tested and refined on 10 different petrochemical sites,

enabling a comprehensive analysis of their energy efficiency and leading to the identification of

promising energy saving opportunities to increase the energy efficiency and reduce the environ-

mental impact of their production.

Results for 7 of the 10 industrial sites studied in this thesis are presented in Figure 4.25. Consider-

ing the three other industrial sites, two featured batch processes. For these specific case studies,

significant potential for heat recovery through better scheduling of batches and optimisation of

thermal storage was found, but not investigated further due to the lack of time. The main objective

for these two sites was to generate the required results and data for ISO 50001 certification. The last

industrial site showed no potential for heat recovery, although additional operational cost benefits

were found through the maximisation of low-pressure steam and hot water generation to export to

the neighbouring sites.

In the upper graph of Figure 4.25, the total height of each bar corresponds to the maximum yearly

operating cost savings determined from the pinch analysis outcomes. The lower graph shows how

these operating cost savings translate into relative savings in the energy bill related to the thermal

power consumption. The contributions of energy saving opportunities to reaching this target can

be seen for each site. The size of the circles represents the order of magnitude for CO2 emissions

reduction.

Apart from site A, for which the pinch analysis was carried out at the white box level, the default

grey box level was applied to all the other sites. The lower operating cost savings obtained for sites

D and E can be explained on one side by the low heat recovery potential typically found with this
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type of processes (combined with a lower share of thermal power consumption in the total end-use

consumption) and the use of coal to produce steam, which is cheaper than natural gas.

Figure 4.25 – Results of the application of the methodology on different industrial sites.

Perspectives

In addition to the previously mentioned recommendations for further research work related to

the thesis contributions, twomain complementary lines of research have been identified bringing

exciting challenges.

The first one relates to energy consumption monitoring. The energy review covers mostly the

energy consumption analysis and the energy efficiency improvement through the identification of
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energy saving opportunities. The link with energy consumption monitoring is made at the level of

the key performance indicators (2.5) and the specific energy consumption models (2.1.4). These

two elements can be implemented online for a follow-up and control of the plant operation, as

it was investigated in the framework of the MORE European project [48]. However, a recurring

observation from the numerous case studies of this thesis is that production solely do not explain

energy consumption variation. In several cases, the utility consumption was highly varying for the

same production output. In this case, other factors influence the energy consumption, such as the

catalyst condition, the reflux ratio, reactants and products composition, etc.

Monitoring strategies could be developed based on the generation of specific energy consumption

models including the impact of all influencing factors at different levels (e.g. units, process blocks

or major consumers). A powerful combination of modelling, data reconciliation and statistical

analysis can be used to generate such surrogate models of production processes from archived

data. These models could then be tested and refined by implementing them in real time and be

finally used for monitoring and detecting of deviations from normal/expected behaviour. The CoPro

European project [57], started in November 2016, includes partly this research by providing tools

for site optimisation which should be based on process operation models, thereby including units

energy consumption and production models.

The second line of research adds the resource efficiency to the energy efficiency. Production sites

are often embedded in larger industrial clusters, either with companies active in the same industrial

sector or a different one. By looking at resources efficiency (e.g. reduction of water consumption

and waste production, waste valorisation), additional opportunities can be identified across sectors

to reduce the environmental impact and energy consumption at a larger scale. This is one of the

objectives of the EPOS European project [137], which explores cross-sectorial symbiosis between

five different industry sectors, including the petrochemical one.
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A List of streams depending on the level of

details

Table A.1 – Streams definition for the grey box level.

name Tin [°C] Tout [°C] Q [kW] ΔTmin/2 [°C] type

HEAT2_1 87 120 11711 4 cold
HEAT2_3 155 170 1274 4 cold
REBOILER1 139 139 11259 1.5 cold
REBOILER2 110 110 6064 1.5 cold
REBOILER3 103 103 928 1.5 cold
REBOILER4 94 94 131 1.5 cold
REBOILER5 88 88 5 1.5 cold
RECYCLING 139 119 495 4 hot
PROD_COND_3 89 30 11218 4 hot
INTERCOOL 110 38 39 7 hot
COND5 65 65 60 1.5 hot
COND2_1 96 91 2693 1.5 hot
COND2_2 91 87 2714 1.5 hot
COND2_3 87 85 1091 1.5 hot
COND2_4 85 81 838 1.5 hot
COND2_5 81 78 241 1.5 hot
COND2_6 78 70 388 1.5 hot
SUBCOOL 70 30 1249 4 hot
EXTRACT1 99 27 2225 4 hot
COND3_1 68 60 108 7 hot
COND3_2 60 60 3457 1 hot
COND3_3 60 24 664 4 hot
EXTRACT2 103 28 878 4 hot
COND4 57 57 362 1.5 hot
COND6_1 82 77 138 7 hot
COND6_2 77 77 7503 2 hot
COND6_3 77 55 804 4 hot
COOLING 39 27 84 4 hot
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Appendix A. List of streams depending on the level of details

Table A.2 – Streams definition for thegrey box Pareto level.

name Tin [°C] Tout [°C] Q [kW] ΔTmin/2 [°C] type

HEAT2_1 87 120 11711 4 cold
HEAT2_3 207 207 1274 0 cold
REBOILER1 139 139 11259 1.5 cold
REBOILER2 110 110 6064 1.5 cold
REBOILER3 142 142 928 0 cold
REBOILER4 142 142 131 0 cold
REBOILER5 142 142 5 0 cold
RECYCLING 25 15 495 0 hot
PROD_COND_3 89 30 11218 4 hot
INTERCOOL 25 15 39 0 hot
COND5 25 15 60 0 hot
COND2_1 96 91 2693 1.5 hot
COND2_2 91 87 2714 1.5 hot
COND2_3 87 85 1091 1.5 hot
COND2_4 85 81 838 1.5 hot
COND2_5 81 78 241 1.5 hot
COND2_6 78 70 388 1.5 hot
SUBCOOL 25 15 1249 0 hot
EXTRACT1 25 15 2225 0 hot
COND3_1 68 60 108 7 hot
COND3_2 60 60 3457 1 hot
COND3_3 60 24 664 4 hot
EXTRACT2 25 15 878 0 hot
COND4 25 15 362 0 hot
COND6_1 82 77 138 7 hot
COND6_2 77 77 7503 2 hot
COND6_3 77 55 804 4 hot
COOLING 25 15 84 0 hot
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Table A.3 – Streams definition for the white box level.

name Tin [°C] Tout [°C] Q [kW] ΔTmin/2 [°C] type

HEAT1 40 87 3059 4 cold
HEAT2_1 87 120 11711 4 cold
HEAT2_2 120 155 3092 4 cold
HEAT2_3 155 170 1274 4 cold
FEED1 14 71 537 4 cold
FEED2 28 74 560 4 cold
RECOVERY 88 88 6947 1.5 cold
REBOILER1 139 139 11259 1.5 cold
REBOILER2 110 110 6064 1.5 cold
REBOILER3 103 103 928 1.5 cold
REBOILER4 94 94 131 1.5 cold
REBOILER5 88 88 5 1.5 cold
RECYCLING 139 119 495 4 hot
GAS_COOL 170 133 3092 7 hot
PROD_COND_1 133 101 6947 1.5 hot
PROD_COND_2 101 89 3059 1.5 hot
PROD_COND_3 89 30 11218 4 hot
INTERCOOL 110 38 39 7 hot
COND5 65 65 60 1.5 hot
COND2_1 96 91 2693 1.5 hot
COND2_2 91 87 2714 1.5 hot
COND2_3 87 85 1091 1.5 hot
COND2_4 85 81 838 1.5 hot
COND2_5 81 78 241 1.5 hot
COND2_6 78 70 388 1.5 hot
SUBCOOL 70 30 1249 4 hot
EXTRACT1 99 27 2225 4 hot
COND3_1 68 60 108 7 hot
COND3_2 60 60 3457 1 hot
COND3_3 60 24 664 4 hot
EXTRACT2 103 28 878 4 hot
COND4 57 57 362 1.5 hot
COND6_1 82 77 138 7 hot
COND6_2 77 77 7503 2 hot
COND6_3 77 55 804 4 hot
COOLING 39 27 84 1.5 hot
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Table A.4 – Streams definition for the optimum box level.

name Tin [°C] Tout [°C] Q [kW] ΔTmin/2 [°C] type

HEAT1 40 87 3059 4 cold
HEAT2_1 87 120 11711 4 cold
HEAT2_2 120 155 3092 4 cold
HEAT2_3 155 170 1274 4 cold
FEED1 14 71 537 4 cold
FEED2 28 74 560 4 cold
RECOVERY 88 88 6947 1.5 cold
REBOILER1 139 139 11259 1.5 cold
REBOILER2 110 110 6064 1.5 cold
REBOILER3 142 142 928 0 cold
REBOILER4 142 142 131 0 cold
REBOILER5 142 142 5 0 cold
RECYCLING 139 119 495 4 hot
GAS_COOL 170 133 3092 7 hot
PROD_COND_1 133 101 6947 1.5 hot
PROD_COND_2 101 89 3059 1.5 hot
PROD_COND_3 89 30 11218 4 hot
INTERCOOL 25 15 39 0 hot
COND5 25 15 60 0.0 hot
COND2_1 96 91 2693 1.5 hot
COND2_2 91 87 2714 1.5 hot
COND2_3 87 85 1091 1.5 hot
COND2_4 85 81 838 1.5 hot
COND2_5 81 78 241 1.5 hot
COND2_6 78 70 388 1.5 hot
SUBCOOL 25 15 1249 0 hot
EXTRACT1 99 27 2225 4 hot
COND3_1 68 60 108 7 hot
COND3_2 60 60 3457 1 hot
COND3_3 60 24 664 4 hot
EXTRACT2 103 28 878 4 hot
COND4 25 15 362 0.0 hot
COND6_1 82 77 138 7 hot
COND6_2 77 77 7503 2 hot
COND6_3 77 55 804 4 hot
COOLING 25 15 84 0.0 hot
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B Scenarios 1 & 2 list of streams

Table B.1 – Scenario 1 - hot streams

Tin Tout Load U Corr.
Stream [◦C] [◦C] [kW] [W/m2◦C] stream

H1 103 40 540 350 CW
H2 96 81 1670 200 CW
H3(a) 118 113 915 600 C11
H3(b) 113 99 2785 600 CW
H4 99 82 1125 610 CW
H5 55 35 1965 200 CW
H6 70 70 1930 1000 CW
H7 60 35 880 300 CW
H8 67 67 550 1100 CW
H9 140 140 2400 900 C8
H10(a) 87 87 875 1200 C1
H10(b) 87 87 3875 1200 CW
H11 77 55 701 400 CW
H12 165 118 2590 200 CW
H13 82 30 985 250 CW
H14 112 30 1113 270 CW
H15 70 30 825 250 CW
H16 102 102 2250 500 CW
H17 55 40 3650 300 CW
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Table B.2 – Scenario 1 - cold streams

Tin Tout Load U Corr.
Stream [◦C] [◦C] [kW] [W/m2◦C] stream

C1 35 75 875 250 H10(a)
C2 35 70 900 300 LPS
C3 61 120 3935 350 MPS
C4 145 145 4960 800 MPS
C5 108 108 3030 900 LPS
C6 100 100 585 910 LPS
C7 96 96 4750 600 LPS
C8(a) 127 127 2400 1000 H9
C8(b) 127 127 1650 1000 MPS
C9 130 170 430 450 MPS
C10 62 170 3905 300 MPS
C11 40 75 915 200 H3(a)

Table B.3 – Scenario 2 - hot streams

Stream
Tin

[◦C]
Tout

[◦C]
Load
[kW]

U
[W/m2◦C]

Corr.
stream

HEX
type

HEX
material

HEX P
[bar]

H1 120 70 850 350 CW FT CS/CS 8
H2 96 88 1470 400 CW FH CS/CS 2
H3 113 100 450 280 CW FH CS/CS 1
H4 118 115 460 200 CW FH SS/SS 5
H5 55 35 1765 450 CW FT CS/CS 1.5
H6 70 70 1730 950 CW FT SS/SS 3
H7 60 35 680 600 CW FH SS/SS 3.5
H8 101 101 621 730 CW FT CS/CS 3
H9 140 140 2200 850 C8(a) FT SS/SS 8
H10(a) 87 87 400 600 C1 FT CS/CS 2
H10(b) 87 87 2150 600 CW FT CS/CS 2
H11 77 55 500 600 CW FH CS/CS 2
H12 165 120 781 180 CW FH CS/CS 3
H13 82 30 485 350 CW FT CS/SS 3
H14 120 70 530 270 CW FH SS/SS 3
H15 70 30 625 200 CW FT CS/CS 3
H16 110 95 1390 210 CW FH CS/CS 2.5
H17 110 105 290 300 CW FH SS/SS 2.5
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Table B.4 – Scenario 2 - cold streams

Stream
Tin

[◦C]
Tout

[◦C]
Load
[kW]

U
[W/m2◦C]

Corr.
stream

HEX
type

HEX
material

HEX P
[bar]

C1 30 75 400 300 H10(a) FT SS/SS 3
C2 30 85 390 300 LPS FT CS/CS 2
C3 61 101 962 300 MPS FT CS/CS 8
C4 69 117 670 260 MPS FH CS/SS 3
C5 120 120 1830 850 MPS FH CS/SS 1.5
C6 102 102 415 860 LPS FH CS/CS 1.5
C7 91 98 350 200 LPS FH CS/SS 2
C8(a) 127 127 2200 950 H9 FT CS/SS 2.5
C8(b) 127 127 650 950 MPS FT CS/SS 2.5
C9 130 170 250 415 MPS FH CS/CS 3
C10 62 170 2964 350 MPS FH CS/CS 1.5
C11 40 75 415 435 LPS FT CS/CS 8
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C Calculation details for EnSO’s evaluation

Table C.1 – Feed preheating new heat exchanger.

Thot,in [◦C] 91

Thot,out [
◦C] 88

Tcold,in [◦C] 30

Tcold,in [◦C] 85.5

LMTD [◦C] 22.3

U [kW/m2◦C] 0.53

Area [m2] 165

HEX type [-] FH

HEXmaterial [-] CS/SS

Pressure [bar] 3

Table C.2 – Heat exchanger network redesign.

E1 E3 E5 E7 E8 (new)

Initial area [m2] 244 528 382 77 -

Initial LMTD [◦C] 28 14 16 73 54

U [kW/m2◦C] 0.46 0.42 0.7 0.65 0.82

New LMTD [◦C] 16 10 6.8 5 -

Total area [m2] 410 741 1994 820 92

Additional area [m2] 166 212 1612 743 -

HEX type [-] FH FH FH FH FH

HEXmaterial [-] CS/CS CS/CS CS/CS SS/SS CS/SS

Pressure [bar] 2 2 2 3 3
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Appendix C. Calculation details for EnSO’s evaluation

Table C.3 – Mechanical vapour recompression

Heat exchanger

LMTD [◦C] 6

U [kW/m2◦C] 0.65

Area [m2] 1058

HEX type [-] FH

HEXmaterial [-] CS/SS

Pressure [bar] 3

Compressor

Material [-] CS
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D Vali models of the heat transformer

Figure D.1 – Vali model of the integrated heat transformer with hexane as working fluid.

157



Appendix D. Vali models of the heat transformer
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