
Towards a Solution to the Red Wedding Problem

Christopher S. Meiklejohn
Université catholique de Louvain

Instituto Superior Técnico

Heather Miller
Northeastern University

École Polytechnique Fédérale de Lausanne

Zeeshan Lakhani
Comcast Cable

Abstract

Edge computing promises lower latency interactions for
clients operating at the edge by shifting computation
away from Data Centers to Points of Presence which are
more abundant and located geographically closer to end
users. However, most commercially available infrastruc-
ture for edge computing focuses on applications without
shared state. In this paper, we present the Red Wedding
Problem, a real-world scenario motivating the need for
stateful computations at the edge. We sketch the design
and implementation of a prototype database for opera-
tion at the edge that addresses the issues presented in the
Red Wedding Problem and present issues around imple-
menting our solution on commercial edge infrastructure
due to limitations in these offerings.

1 Edge Computing

Edge computing promises lower latency interactions for
clients operating at the edge by shifting computation
away from Data Centers (DCs) to Points of Presence
(PoPs) which are more abundant and located geograph-
ically closer to end users. Not only do PoPs reduce
latency, but they also serve to alleviate load on origin
servers enabling applications to scale to sizes previously
unseen.

Recently, large-scale cloud providers have started pro-
viding commercial access to this edge infrastructure
through the use of “serverless” architectures, giving ap-
plication developers the ability to run arbitrary code at
these PoPs. To support this, client code is normally ex-
ecuted inside of a transient container where the applica-
tion developer must resort to using storage that’s typi-
cally provided only at the DC. Therefore, to take most
advantage of the edge, application developers are incen-
tivized to use these architectures for applications where
there is no shared state, thereby ruling out one of the most
common types of applications developed today: collabo-

rative applications which rely on replicated, shared state.

The first generation of edge computing services pro-
vided by Content Delivery Networks (CDNs) let cus-
tomers supply code that will be run at PoPs during the
HTTP request-response cycle. Akamai [1], for instance,
allows customers to author arbitrary JavaScript code that
operates in a sandboxed environment and is permitted
to modify responses before the content is returned to
the user. Fastly [7] gives users the ability to extend
their CDN with similar rewrite functionality by author-
ing code in the Varnish Configuration Language (VCL),
which is also executed in a restricted environment. In
both cases, customers are not allowed to inspect or mod-
ify content operating at the PoP and can only modify re-
quests to and from the origin and to and from the end
user.

Second generation services, such as Amazon’s
Lambda [2] and its extension to the edge, Amazon
Lambda@Edge, enables the customer to write state-
less Lambda functions that either run inside one of
Amazon’s region availability zones or at any number
of the hundreds of PoPs it has through its CloudFront
caching service. While Lambda provides black-box bi-
nary execution in a restricted containerized environment,
Lambda@Edge is limited to Node.JS applications. Both
Google Cloud’s Cloud Functions and Microsoft Azure’s
Functions at IoT Edge provide similar services to Ama-
zon’s Lambda and Lambda@Edge.

This paper defines a real-world scenario for motivat-
ing stateful computations at the edge, titled the Red Wed-
ding Problem. We sketch the design and implementa-
tion of a prototype eventually consistent, peer-to-peer
replicated database operating at the edge using Amazon
Lambda that is aimed at addressing the issues presented
by the Red Wedding Problem. In realizing our prototype
on real-world edge infrastructure, we ran into numerous
limitations imposed by Amazon’s infrastructure that are
presented here.



2 The Red Wedding Problem

We present the Red Wedding Problem12: an industry use
case presented to us by a large commercial CDN in the
United States around the handling of traffic spikes at the
edge.

Game of Thrones [9] is a popular serial fantasy drama
that airs every Sunday night on HBO in the United
States. During the hours leading up to the show, through-
out the hour-long episode, and into the hours following
the airing, the Game of Thrones Wiki [6] experiences a
whirlwind of traffic spikes. During this occurrence, ar-
ticles related to characters that appear in that episode,
the page for the details of the episode, and associated
pages to varying concepts referenced in the episode un-
dergo traffic spikes—read operations upon viewing re-
lated pages—and write spikes while updating related
pages as events in the episode unfold.

While handling read spikes is what CDNs were de-
signed for, the additional challenge of handling write
spikes is what makes the Red Wedding Problem inter-
esting. More specifically, the Red Wedding Problem re-
quires that the programmer be made aware of and opti-
mize for the following constraints:

• Low latency writes. By accepting and servicing
writes at the PoP, user’s experience lower latency
requests when compared to an approach that must
route writes to the origin;

• Increased global throughput. By accepting writes
at the PoP, and avoiding routing writes through to
the origin DC, write operations can be periodically
sent to the origin in batches, removing the origin
DC as a global throughput bottleneck.

However, several design considerations of the Red
Wedding Problem make the problem difficult to solve.

• Storing state. How should state be stored at the
edge, especially when leveraging “serverless” in-
frastructures at the edge which are provided by most
cloud providers today;

• Arbitrating concurrent writes. How should con-
current writes be arbitrated when accepting writes at
the edge to minimize conflicts and maximize batch-
ing?

• Application logic. As clients do not communicate
with the database directly in most applications, how
should application logic be loaded and leveraged at
the edge.

1Private communication, Fastly.
2Many examples of the Red Wedding Problem exist: live European

football game commentary posted on Reddit is one such example.

3 Solving the Red Wedding Problem

Our proposed solution is presented in Figure 1. In solv-
ing the Red Wedding Problem, we had the following de-
sign considerations:

• Application logic at the edge. Application logic
for authentication and authorization, as well as
for mapping user requests into database reads and
writes, must also live at the PoP;

• Elastic replica scalability at the PoP. To avoid
moving the bottleneck from the origin to the PoP,
there must be elastic scalability at the PoP that al-
lows the system to instantiate more data replicas on
demand;

• Inter-replica communication. Replicas located at
the PoP should be able to communicate with one
another to allow for data sharing between instances
at the edge without having to communicate through
the origin server;

• Convergent data structures. As modifications will
be effecting data items concurrently, the data model
needs to support objects that have well-defined
merge semantics to ensure eventual convergence;

• Origin batching. To alleviate load on the origin
server, updates should be able to be batched while
removing redundancy and periodically sent back to
the origin server.

Our solution assumes that application code is con-
tainerized and can be deployed to the PoP to interpose on
requests to the origin: enabling the application to scale
independently at the edge. As demand from end users
ramps up, more instances of the application are spawned
to handle user requests. These instances of the applica-
tion generate read and write traffic that is routed to the
database. In traditional architectures, these application
instances would normally communicate with a database
operating at the DC.

We use a containerized database to enable data stor-
age at the PoP. Each of these database instances would
be scaled in the same manner as the application code
at the PoP and its state would be bootstrapped from the
data center upon initialization. These instances of the
database would be instantiated on demand and interpose
on read and write operations from the application code
inside of the PoP.

Each replica running at the PoP should be able to boot-
strap from other replicas, if still running, at the PoP.
This enables faster bootstrapping and communication be-
tween replicas that can serve to speed up the anti-entropy
process within the PoP, increasing the probability that
data items are the freshest amongst the different replicas
within the same PoP.

2



us-west-1

eu-west-1

cf1

cf2

cf3

cf4

Read serviced by 
PoP cache

Writes routed to 
origin

State is propagated 
between Lambda 

invocationsState is batched to 
origin server

Read and writes 
handled by the PoP

Traditional 
architecture

Ideal 
architecture

Figure 1: Architecture diagram with both the traditional and ideal architectures presented, where (traditional) writes
are sent to the origin and reads are serviced by the edge; and (ideal) writes are stored in transient database instances at
the edge at the load increases.

Finally, the use of concurrent data structures can be
used at the edge to avoid conflicting updates that cannot
be merged. For instance, several previous works [5, 12,
3] have identified how to build abstract data types where
all operations commute or have predefined merge func-
tions to avoid issues where changes do not commute.

4 Implementation

We have developed a prototype that enables us to store
content inside of transient serverless invocations using
Lambda. To achieve this, we have taken an open source
distributed peer-to-peer key-value database [10, 11] writ-
ten in Erlang and have embedded it inside of a Node.JS
6.10 application that is deployed to Lambda in several
AWS regions.

4.1 Lambda
Amazon’s Lambda is a stateless computation service for
end users, allowing them to upload functions that will be
invoked in response to triggered events. With Lambda,
users specify the events that uploaded code should re-
spond to and users’ application code is guaranteed to au-
tomatically scale, when necessary, by creating additional
invocations to deal with the increasing demand.

Invocations in Lambda are designed to be opaque.
Users upload a compressed file containing their appli-
cation code and upon the first event, the application code
will be decompressed and executed inside of a container.
When the invocation completes, the container is paused
until the next invocation; however, after a period of
somewhere between 5 to 60 minutes, the container will
be terminated. Containers will be reused for invocations
when possible, but concurrent invocation will cause ad-
ditional containers to be created on demand. This mech-
anism is transparent to the end user, as the user only in-
teracts on a per-event level.

As a result of this, invocations are incentivized to be
completely stateless, or authorized and able to store and
fetch required state from an external service, such as S3
or DynamoDB, as Amazon recommends.

4.2 Prototype

We built an eventually-consistent replicated peer-to-peer
database that runs in Lambda. The interface provided
to the user is Redis-like; read and update operations are
identified by a unique key and a data structure type that
are issued against the database.

Data structures provided by the data store are Conflict-
Free Replicated Data Types [12] (CRDT), distributed

3



data structures with a merge function to ensure that state
remains convergent in the event of concurrent modifica-
tions at multiple locations. CRDTs come in a variety of
different flavors providing distributed versions of many
common abstract data types: ie. registers, sets, dictionar-
ies, graphs.

Operations are always performed at a local replica and
asynchronously propagated to other nodes in the system
using an anti-entropy [4] protocol: this prevents blocking
the system for write acknowledgements.

When the Lambda function is invoked, an instance of
the database starts up. There can be multiple instances of
the database running in each Amazon region. Every time
a database instance is invoked, it kicks off a compulsory
anti-entropy session. The databases bootstrap one an-
other by running anti-entropy sessions over AMQP. All
data structures in the database are CRDTs in order to
avoid conflicting updates.

4.3 Limitations of Lambda
In building our prototype on Lambda, we ran into a num-
ber of complications. We discuss those here.

Inter-node communication. Inter-node communica-
tion is required for the compulsory anti-entropy sessions
amongst database replicas. Lambda does not allow pro-
cesses to bind ports inside of the container they are ex-
ecuting in. Therefore, our key-value store was unable
to open sockets and receive incoming connections from
other nodes in the system. To work around this limi-
tation, we used an external message queue service that
provided AMQP and sent out all of the inter-node com-
munication on this transport layer. Given nodes could
not accept incoming connections, we established connec-
tions out to an external AMQP broker and reused those
connections to receive traffic from other nodes.

Concurrent invocations. Utilizing multiple invoca-
tions at the same time is key to elastic scalability and the
operation of multiple replicas. Lambda’s unique design
does not provide the developer any insight to the num-
ber of containers that are currently being invoked, and
scale-out is transparent as demand calls for it. Therefore,
we needed a mechanism for all nodes to identify one an-
other in order to route messages to each other and partic-
ipate in an anti-entropy session. To achieve this, we set a
single topic on the AMQP broker for membership com-
munication. On this specific channel, a single CRDT set
containing all of the members of the cluster gets period-
ically broadcast to all nodes in the system. Upon receipt
of this membership information, each node updates its
local view of membership.

Per-invocation work. Keeping the instances alive long
enough to perform anti-entropy is important for scaling

the throughput of the system and ensuring no updates
are lost. Each Lambda has a maximum invocation of
300 seconds. Therefore, we ensure that a Lambda is in-
voked per-region faster than that interval, and after ser-
vicing a request, each invocation performs a compulsory
anti-entropy session with its peers to populate incoming
replica state and establish that existing replicas dissemi-
nated their state before termination. Scaling out the num-
ber of concurrent invocations only required increasing
this interval per-region.

4.4 Lambda@Edge Challenges

Operating our key-value store on Lambda was the neces-
sary first step towards moving to Lambda@Edge, Ama-
zon’s extension of Lambda to CloudFront PoPs. Once
running on Lambda@Edge, we should be able to inter-
pose on writes to and from the origin servers through
CloudFront, and, therefore, provide low-latency writes to
clients, serviced from their local and closest PoP, rather
than from their origin server.

In planning our migration to Lambda@Edge, we ran
into a number of other complications. We discuss those
here.

Message brokering at the edge. Inter-node commu-
nication at the PoP is important for keeping the anti-
entropy sessions as efficient as possible and increasing
system scalability. One notable drawback to Amazon’s
infrastructure is that there is no mechanism for colocat-
ing a message broker at a CloudFront cache location.
Since Lambda invocations cannot communicate with one
another directly, this requires that Lambdas must com-
municate through their closest Amazon region and avail-
ability zone, inflating latency costs to the local availabil-
ity zone for anti-entropy between instances. As nodes
will communicate solely with their local broker, and
therefore may not observe messages in the same order as
other nodes in the system, our convergent CRDT-based
model is essential.

Application code. Operation of application code at the
edge enables our system to keep most of the execution
inside of the PoP and not rely on the DC for request pro-
cessing. Therefore, our design assumes that users will be
able to run a component of their application code at the
edge location as well.

5 Related Work

ExCamera [8] is a system for parallel video encoding de-
veloped on top of Lambda to parallelize video encoding.
ExCamera partitions the job of video encoding into a se-
ries of chunks and uses a work-queue pattern leveraging

4



the maximum amount of Lambda instances available to
reduce video encoding time as much as possible.

Our system differs from the ExCamera work in a num-
ber of ways.

• ExCamera relies on the use of a central ren-
dezvous server for passing messages between dif-
ferent Lambda invocations. Our system relies on the
use of AMQP, which supports geographically dis-
tributed exchanges and brokers to be leveraged for
message delivery, allowing for our nodes to com-
municate with one another through their closest ge-
ographically located exchange;

• State in the ExCamera system is stored in Ama-
zon S3. In our system, state is stored in the tran-
sient instances themselves, which are bootstrapped
by other nodes as they come up online, and that
handoff their state to other nodes before termina-
tion;

• Finally, ExCamera was primarily designed for work
dispatch and as fast as possible concurrent process-
ing by a large number of Lambda instances. Our
system is designed for transient state management
at the edge, mainly to reduce real-time latency costs
during traffic spikes, as demonstrated by The Red
Wedding Problem.

6 Conclusion

Recent innovations in publicly available edge comput-
ing services, such as Amazon’s Lambda@Edge, enable
developers to run application code closer to end users,
taking advantage of proximity resulting in both lower la-
tency interactions and increased scalability. However,
most of these services available only enable stateless
computation at the edge or require collaborative applica-
tions that operate with shared state use a data store that’s
located at one of the provider’s data centers, thereby re-
ducing the full potential for edge computing. This paper
presents an alternative design for a system that enables
these interactions at the edge.

References

[1] AKAMAI TECHNOLOGIES. Akamai: Cloudlets. https://

cloudlets.akamai.com/. Accessed: 2018-03-14.

[2] AMAZON WEB SERVICES. AWS Lambda. https://

aws.amazon.com/lambda/. Accessed: 2018-03-14.

[3] BURCKHARDT, S., FÄHNDRICH, M., LEIJEN, D., AND WOOD,
B. P. Cloud types for eventual consistency. In Proceedings
of the 26th European Conference on Object-Oriented Program-
ming (Berlin, Heidelberg, 2012), ECOOP’12, Springer-Verlag,
pp. 283–307.

[4] DEMERS, A., GREENE, D., HAUSER, C., IRISH, W., LARSON,
J., SHENKER, S., STURGIS, H., SWINEHART, D., AND TERRY,
D. Epidemic algorithms for replicated database maintenance. In
Proceedings of the sixth annual ACM Symposium on Principles
of distributed computing (1987), ACM, pp. 1–12.

[5] ELLIS, C. A., AND GIBBS, S. J. Concurrency control in group-
ware systems. In Proceedings of the 1989 ACM SIGMOD In-
ternational Conference on Management of Data (New York, NY,
USA, 1989), SIGMOD ’89, ACM, pp. 399–407.

[6] FANDOM. Game of Thrones Wiki. http://

gameofthrones.wikia.com/wiki/Game of Thrones Wiki.
Accessed: 2018-03-19.

[7] FASTLY. Fastly Edge SDK. https://www.fastly.com/
products/edge-sdk. Accessed: 2018-03-14.

[8] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRA-
MANIAM, K., ZENG, W., BHALERAO, R., SIVARAMAN, A.,
PORTER, G., AND WINSTEIN, K. Encoding, fast and slow: Low-
latency video processing using thousands of tiny threads. In NSDI
(2017), pp. 363–376.

[9] HOME BOX OFFICE. Official website for the HBO series Game
of Thrones. https://www.hbo.com/game-of-thrones. Ac-
cessed: 2018-03-19.

[10] MEIKLEJOHN, C., AND VAN ROY, P. Lasp: A language for
distributed, coordination-free programming. In Proceedings of
the 17th International Symposium on Principles and Practice of
Declarative Programming (2015), ACM, pp. 184–195.

[11] MEIKLEJOHN, C. S., ENES, V., YOO, J., BAQUERO, C.,
VAN ROY, P., AND BIENIUSA, A. Practical evaluation of the
lasp programming model at large scale: An experience report. In
Proceedings of the 19th International Symposium on Principles
and Practice of Declarative Programming (New York, NY, USA,
2017), PPDP ’17, ACM, pp. 109–114.

[12] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZAWIRSKI,
M. Conflict-free replicated data types. In Symposium on Self-
Stabilizing Systems (2011), Springer, pp. 386–400.

5


