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Abstract 

An expression was developed for prediction of drag coefficients for any spherical particle, drop 

or bubble in an infinite, homogeneous liquid. The formula reproduces the limiting cases for gas 

bubbles and solid spheres, as well as the exact Hadamard-Rybczynski solution. The accuracy of 

the expression, which is valid for Reynolds numbers up to a few hundred, is confirmed by 

comparison with published numerical predictions of the drag coefficient for a range of physical 

circumstances. 

Introduction 

Bubbles, drops and particles are widespread in science and engineering phenomena. Knowledge 

of the behavior of single bubbles and drops is not only directly relevant to many applications; it 

also supports understanding of the corresponding swarms [e.g., 1]. 

Wegener et al. [2] recently provided a comprehensive review of theory, experimental data and 

pertinent approximations describing the dynamics of single drops in fluid systems. The steady 

rate of movement of spherical particle, drops and bubbles is quantified by the drag coefficient, 

Cd. Of relevance here is Wegener et al.’s summary of drag formulas (their Tables 1 and 2), and 

the ranges of (drop) Reynolds numbers over which the different formulas apply. 

We consider the drag on a single spherical solid particle, liquid drop or gas bubble (collectively 

referred to as a particle) moving in an otherwise quiescent, infinite, homogeneous liquid, without 

interphase mass transfer (i.e., Sherwood number of zero). Spherical particles will occur if surface 

tension is dominant, or if inertia is negligible. Clift et al. [3] and Bhaga and Weber [4] provide 

systematic characterizations of particle shape as it varies with Reynolds, Eötvös and Morton 
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numbers. These authors show, for instance, that spherical shapes for Reynolds numbers of about 

100 or higher are found for sufficiently small Eötvös and Morton numbers. 

Below, we develop and test a new expression for Cd applicable to spherical particles. Our 

approach is to build an interpolation based on known limiting cases (e.g., small Reynolds 

number), as well as a validated large Reynolds number drag expression. 

Theory 

Drag formula interpolations between gas bubbles and solid spheres There are several 

approximations for Cd in the literature for the limiting cases of bubbles or solid spheres [5-8]. As 

mentioned, Wegener et al. [2] provide a summary of these approximations, remarking that they 

“approximate only certain intervals of the standard drag curve.” 

A well-known interpolation is that of Rivkind and Ryskin [9]: 

 
 1 1/3 0.78

0 0 024 4 14.9

1
d

X R R R
C

X

   


, (1) 

with 

 R0 = 2U0a
1

0

 ; X = 1
1

0

 , (2) 

where  is the density,  the viscosity, U the (steady) velocity of the sphere, R0 the Reynolds 

number, X the viscosity ratio (X ® 0 for a gas bubble and ¥ for a solid sphere) and a the sphere 

radius. Subscript “0” refers to the material outside the sphere and “1” to that within. Although 

Eq. (1) is straightforward, it does not approach known limits, as given below. 
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Analytical drag results for small Reynolds number For R0 ® 0, the exact Hadamard-Rybczynski 

limit [e.g., 3], valid for all X, is: 
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For the solid sphere, the small-R0 limit is [10]: 
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Oliver and Chung [11] recommended using Eq. (1) for 502 0  R  and, for 20 R : 
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with  = 8/5 [12]. If we instead take  = 2 in Eq. (5), then it gives the exact small-R0 result for a 

solid sphere, Eq. (4). 

Analytical drag results for large Reynolds number Unlike the situation for R0 ≪ 1, exact results 

for R0 ≫ 1 do not exist. For laminar flow (i.e., oscillations of the particle do not occur), Harper 

and Moore [13] as well as Parlange [14] obtained approximate expressions for the drag for this 

case, however. In both [13] and [14], it was observed that, to a first approximation, flow inside 

the particle is described by a Hill’s vortex, and outside by a potential flow. Both approaches give 

drag predictions that are “numerically indistinguishable” [14]. This conclusion follows from the 

minor effect on the drag made by slightly different assumptions in [13] and [14]. Barry and 

Parlange [15] compared predictions of both theories to experimental results on recirculation 
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within the particle [4], and found that the theory of Parlange [14] is more accurate. Thus, this 

theory is the starting point for the developments presented below. 

The drag formula of Parlange [14] is: 
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where P = 1
1

0

  is the density ratio. The two constants,  and , are defined by integrals. 

Parlange [14] simplified Z by taking  = 2 and  = 1. Numerical evaluations (Appendix) give  

and  as: 

  = 2.5891,  = 0.9879. (7) 

In the following, we use  and  as given by Eq. (7). For later convenience in manipulating Eq. 

(6), we define A as: 

  2 2
6 3 5 2 14 1.10535.

5
A


    (8) 

New drag formula Equation (6) holds for R0 ≫ 1, so it is not surprising that Eq. (3) (the 

Hadamard-Rybczynski limit) is not obtained for R0 ≪ 1. However, we can force Eq. (6) to do so 

by using standard Padé approximations [16]. First, we rewrite Eq. (6) as: 
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which is identical in order to Eq. (6) but additionally approaches Eq. (3) as R0 0. Next, we 
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modify Eq. (9) so that it will reduce to Eq. (5) (with  = 2), in which case it must be corrected for 

R0 ≪ 1 without affecting predictions for R0 ≫ 1. This occurs with a Padé approximant that 

maintains the first two orders of Eqs. (4) and (6) for R0 small and large, respectively. We proceed 

stepwise and satisfy the different limiting cases given above. First, to ensure that the predictions 

of Eq. (9) are not affected for R0 ≫ 1, we take corrections that are exponentially small in that 

limit, and so replace Eq. (9) with: 

 
 

 
   

1/2 1/2

0 0

11/2 1/2
0 0 0

exp48 3
1

1 2 1 3 3 exp
d

R AZ R
C X

R X R X AZ R


   
  

      

 

 
, (10) 

which reduces to Eq. (9) for R0 ≫ 1 (or for τ = 0) and Eq. (3) for R0  0. Second, the parameters 

τ, λ and ω (all > 0) are chosen to ensure that Eq. (10) reduces to the other limits given above. For 

this purpose, we observe that Eq. (5) requires a Padé approximant in powers of R0, rather than 

2/1

0R , appearing in Eq. (10). The initial appearance of 2/1

0R  is removed from the small-R0 expansion 

of Eq. (10) if: 

 1  and 
 

1

3 1 X



 . (11) 

In addition, to satisfy Eq. (5) (with  = 2) for R0 ≪ 1 requires that τ is given by: 
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Once τ is obtained using Eq. (12),  and  follow straightforwardly from Eq. (11). 
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The only arbitrary element in the deviation of Eq. (10) is the form of the exponential corrections. 

Alternative functional forms were investigated, with the most promising being (1+ 2/1

0R )-1. 

However, based on comparisons with published numerical results (below), we found that only 

the exponential form reduced to Eq. (9) rapidly enough for R0 ≫ 1. 

Equation (10) constitutes a new, fully analytical, expression for the drag of a spherical particle. It 

reduces quickly to Eq. (9) for R0 ≫ 1. All coefficients are determined by the behavior of Cd 

under different conditions, i.e., no empirical coefficient is determined by curve fitting of 

numerical results. 

Because the bubble (X = 0) and the solid sphere (X → ∞) are oft-investigated special cases, we 

present Eq. (10) for these limits. 

Bubble (X = 0) 
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Solid Sphere (X → ∞) 
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Comparison with numerical results 

Equation (10) is compared with numerical results from the literature. For convenience, numerous 

comparisons are collected in the Supplementary Material. Specifically, tables of results from Eq. 

(10) are compared with those from [3, 11, 17-27]. Representative results are presented below. 
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First, we consider in Fig. 1 the gas bubble (X = 0), where results from the literature are collected. 

The figure compares Eq. (10) with values given by Clift et al. [3], Oliver and Chung [11], 

Brabston and Keller [18] and Magnaudet et al. [25]. For the data of Clift et al. [3], the predictions 

agree well with the published values except for R0  200. This is not surprising as Clift et al. [3] 

obtained values at R0 = 300 and 400 by interpolation with higher Reynolds numbers, when Eq. 

(10) does not apply. Equations (1) and (5) are accurate over their reported ranges of validity. The 

numerical simulations of Brabston and Keller [18] for R0 up to 200 are in close agreement with 

Eq. (10). The accuracy of the numerical results of Brabston and Keller is confirmed from their 

agreement with the numerical results of Oliver and Chung [11] over the narrower range of 1/2 < 

R0  50. The results of Magnaudet et al. [25] agree well with Eq. (10) for the entire range of R0 

considered. 

Figure 1. Comparison of various numerical data sets with predictions of drag 

formulas for the case of the gas bubble. 

Figure 2 makes the same comparison for a solid sphere. Interestingly, the disagreement with the 

Clift et al. [3] values, and the predictions of the Rivkind and Ryskin [9] formula, Eq. (1), is very 

small and is limited to R0 between approximately 10 and 100. Again, the drag values reported by 

Oliver and Chung [11], Chang et al. [23] and Chang and Maxey [24] are all similar, and agree 

more closely with Eq. (10) than the results reported by Clift et al., although the results from Eq. 

(10) seem slightly high. This figure includes results calculated from the formula of Flemmer and 

Banks [28, Eq. (7)], which tends to be slightly lower than the numerical results. Besides the 

Flemmer and Banks [28] formula, there are several expressions for the solid sphere drag 

coefficient available. However, as shown by Mikhailov and Silva Freire [29], the largest 
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variations between them occur at about R0 = 100, with a maximum deviation of about 5%, so the 

Flemmer and Banks formula can be taken as representative. 

Figure 2. Comparison of various numerical data sets with predictions of drag 

formulas for the case of the solid sphere. 

Table 1. Drag coefficient, Cd, estimated by Oliver and Chung [11] for various 

viscosity ratios (X) over a range of Reynolds numbers (R0) compared with 

predictions of Eqs. (1) and (10). 

R0 

 

X  0 0.333 1 3  

0.5 O&C† 33.8 38.2 42.7 47.2 51.8 

 Eq. (1) 25.6 32.4 39.3 46.2 53.0 

 Eq. (10) 33.7 38.1 42.6 47.1 51.7 

1 O&C 17.6 20.0 22.5 25.0 27.5 

 Eq. (1) 14.9 18.2 21.5 24.7 28.0 

 Eq. (10) 17.5 19.9 22.4 24.9 27.5 

2 O&C 9.4 10.8 12.2 13.6 15.1 

 Eq. (1) 8.68 10.3 11.9 13.6 15.2 

 Eq. (10) 9.39 10.8 12.2 13.6 15.1 

5 O&C 4.33 5.02 5.75 6.50 7.28 

 Eq. (1) 4.25 4.97 5.69 6.42 7.14 

 Eq. (10) 4.33 5.04 5.80 6.59 7.42 

10 O&C 2.48 2.94 3.43 3.93 4.45  

 Eq. (1) 2.47 2.92 3.37 3.81 4.26 

 Eq. (10) 2.50 2.96 3.48 4.02 4.59 

20 O&C 1.43 1.74 2.09 2.45 2.81 

 Eq. (1) 1.44 1.75 2.06 2.37 2.67 

 Eq. (10) 1.46 1.78 2.14 2.55 2.96 

50 O&C 0.70 0.90 1.15 1.44 1.72 

 Eq. (1) 0.705 0.920 1.14 1.35 1.56 

 Eq. (10) 0.703 0.896 1.14 1.44 1.73 
† Oliver and Chung [11] 
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Comparisons for various X are given in Table 1, which lists drag values computed by Oliver and 

Chung [11] for X = 0, 0.333, 1, 3,  and 1/2  R0  50. The results for X = 0 and X   were 

already presented in the figures, of course. As expected, the agreement for intermediate X values 

is excellent and is similar to that shown in Figs. 1 and 2. Table 1 includes the estimates 

calculated with Eq. (1), which are less accurate than those from Eq. (10). 

Table 2. Drag coefficient, Cd, for R0 = 100 for different viscosity (X) and density (P) ratios. 

Roman values (dashes: no values provided) from Juncu [30], results from Eq. (10) are in italics, 

results in the rightmost column are from Eq. (1). 

X  P0.01

 

0.1 0.2 0.5 1.0 2.0 5.0 10.0 100.0 Eq. (1) 

0.01 0.384 - - - - - - - - 0.417 

 0.393 0.392 0.392 0.392 0.391 0.390 0.389 0.388 0.387  

0.1 - 0.421 0.421 0.422 0.423 0.425 0.427 0.430 - 0.473 

 0.432 0.430 0.429 0.428 0.427 0.426 0.425 0.425 0.427  

0.2 - 0.461 0.461 0.462 0.462 0.464 0.464 0.466 - 0.526 

 0.472 0.470 0.468 0.467 0.466 0.465 0.465 0.465 0.469  

0.5 - 0.558 0.558 0.558 0.559 0.560 0.562 0.566 - 0.641 

 0.576 0.571 0.570 0.568 0.567 0.566 0.567 0.568 0.574  

1.0 - 0.676 0.676 0.676 0.674 0.670 0.667 0.665 - 0.756 

 0.704 0.697 0.694 0.692 0.692 0.693 0.695 0.697 0.705  

2.0 - 0.812 0.812 0.812 0.811 0.810 0.807 0.799 - 0.871 

 0.856 0.846 0.844 0.843 0.843 0.846 0.850 0.853 0.862  

3.0 - 0.883 0.883 0.883 0.882 0.881 0.875 0.867 - 0.929 

 0.937 0.926 0.925 0.925 0.927 0.930 0.935 0.939 0.948  

5.0 - 0.951 0.951 0.951 0.951 0.951 0.948 0.944 - 0.987 

 1.017 1.006 1.005 1.007 1.011 1.015 1.020 1.024 1.033  

10.0 - 1.008 1.008 1.008 1.008 1.008 1.008 1.007 - 1.039 

 1.082 1.073 1.074 1.079 1.083 1.088 1.094 1.098 1.105  

100.0 - - - - - - - - 1.06 1.095 

 1.129 1.140 1.145 1.151 1.155 1.159 1.162 1.164 1.167  
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Table 2 lists numerical results from Juncu [30], who considered different density ratios, P, for R0 

= 100. We mention, in passing, that Cd is largely insensitive to changes in P, and if P is not 

specified typically P = X is assumed. The agreement between the numerical results and Eq. (10) 

is excellent. Again, the estimates of Eq. (10) are usually slightly above the numerical values. 

Table 2 includes predictions from Eq. (1), although this expression does not account for 

variations of Cd with P. 

Conclusion 

We developed a formula, Eq. (10), to predict the drag for a spherical particle, for all viscosity 

ratios between gas bubbles and solid spheres. It was derived as a Padé approximant that 

interpolates between known analytical results at low and moderate Reynolds numbers assuming 

that the particle does not oscillate or wobble. The formula can be used to predict the drag 

coefficient for spherical bubbles, drops and particles for any viscosity and density ratios. Surface 

tension is assumed sufficient to maintain the spherical shape of the particle. Both Fig. 2.5 of Clift 

et al. [3] and Fig. 8 of Bhaga and Weber [4] show how the particle shape changes (spherical, 

ellipsoidal, spherical cap, etc.) with the Eötvös, Morton and Reynolds numbers, and thus indicate 

the range of conditions for which Eq. (10) applies. Equation (10) is more theoretically based 

than, for instance, the formula of Rivkind and Ryskin [9] and appears to be more accurate as 

well, especially at low Reynolds numbers.  
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Appendix: Computation of α and β, Eq. (7) 

The definitions of  and , which appear in Eq. (6), are, respectively: 

 

21

1/2

0 1

0

2 24 8 2
2 3 2

3 5 3

16 4 1 8 3
9 3 3 , ierfc ,

7 3 92 4 2

N
A dYdr

Y

Y
N Y dY

 


 







     
            

     
        

      

 



 (A1) 
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1/2 2

0 1 0

8 2 27 8
2 ,

16 93

N
A dYdr N Y dY

Y
 



 



    
      

     
   . (A2) 

where ierfc is the integral of the coerror function [31]. Equations (A1) and (A2) are obtained 

from the general definition of Cd [13, Eq. (8.1)], with the velocity field of Parlange [14, Eqs. 

(18), (19) and (25)]. N is defined as: 

        
2

3/2 1
2

0

, sin exp
42

W
Y Y

N W Y W W W W W dW
  

    
 

 


, 0  W Y, (A3) 

with sin2(W) = 1 – 4cos2  arccos 9 / 4 1 / 3 / 3W     , and where , W and r are related by: 

      
22

cos  and 1 2
9

r W r r    . (A4) 

The integrals appearing in Eqs. (A1) and (A2) contain integrands that vary rapidly, viz., those 

containing N2 and (N/Y)2. However, the integral containing N and ierfc varies smoothly, and 

integrates to: 
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0

1 8 3
,  ierfc 0.29156.

9 4 2

Y
N Y dY




  

   
   

  (A5) 

The integrands containing of N2 and (N/Y)2 contain sharp peaks. To circumvent inaccuracies 

caused by these peaks, Möbius transformations of the integrands were used to make the integrals 

more amenable to quadrature [32]. Following transformation of the integrand to smooth forms, 

the standard 61-point Gauss-Kronrod rule was used, as it was for Eq. (A5). We then find: 

 2

0

8
, 0.26020.

9
N Y dY


 
 
 

  (A6) 

The final integral involving (N/Y)2 requires an additional step, i.e., calculation of the derivative 

N/Y. We first used different finite-difference approximations [33]. However, the results were 

not reliable as Y 0 so an additional Möbius transformation as used in that region, accounting 

for the case of W  8/9, which again involves a rapidly varying integrand. The result obtained 

is: 
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0 1

0.49823.
N

dYdr
Y





 
 
 

   (A7) 


