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Abstract—In the Internet-of-Things (IoT) era, there is an
increasing trend to enable intelligent behavior in edge computing
sensors. Thus, a new generation of smart wearable devices
for health monitoring is being developed, able to perform
complex Digital Signal Processing (DSP) routines that extract
features of clinical relevance from the acquired data. These
new edge computing sensors for personalized healthcare must
operate within a tight energy envelope; addressing the ensuing
challenge, we herein introduce an inexact and heterogeneous
edge computing architecture, specifically tailored to the bio-DSP
domain. We observe that bio-signal analysis applications present
task-level parallelism, intensive computational hotspots and a
high degree of resilience towards errors. These characteristics
drive our new bio-DSP edge node architecture design composed
of multiple processing cores, a Coarse-Grained Reconfigurable
Array (CGRA) accelerator, and hardware-software co-design
support to become resilient to a non-zero probability of bit-flips
at runtime. All these characteristics enable our new bio-DSP
architecture to operate with an ultra-low voltage operating point.
Indeed our results indicate that the energy benefits attained from
the inclusion of all these characteristics in bio-DSP architectures
are more than additive: task parallelism is harnessed both at the
processor and the accelerator level, and the high tolerance of
the CGRA towards voltage down-scaling is exploited to further
decrease the IoT edge bio-DSP system energy envelope.

I. INTRODUCTION

Embedded sensor devices that continuously acquire and
analyze sensed data are opening novel and exciting oppor-
tunities for the future of healthcare in the context of Internet-
of-Things (IoT), as they enable long-term monitoring of
bio-signals outside the hospital environment with minimal
medical supervision. These smart IoT sensors (also called
edge computing sensors in the literature) perform complex
bio-signal related Digital Signal Processing (bio-DSP) on
the input bio-data to extract relevant features, which can
then be wirelessly transmitted to a hub for decision making
by specialized medical personnel. However, bio-DSP often
involves complex functions and hence introduces high power
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requirements. To address this challenge, previous works have
shown that task-level parallelism, typically present in bio-
DSP applications, can be leveraged by multicore architectures
with Single-Instruction Multiple-Data (SIMD) capabilities [1],
while the execution of computational hotspots (kernels) can be
effectively supported by Coarse-Grained Reconfigurable Array
(CGRA) accelerators [2] [3] [4]. Thanks to the faster and
more efficient execution achieved with the aforementioned
techniques, smart bio-DSP IoT systems can remain longer
in deep-sleep mode, consequently reducing their energy con-
sumption.

An interesting and complementary paradigm is inexact
computing [5], which waives the requirement of exact results,
to reduce power requirements. Inexactness has been shown to
be acceptable in some application domains where other con-
siderations, such as energy efficiency, deadlines or throughput,
are more important than precise results. Similarly, applications
in the healthcare domain are amenable to some degree of errors
because they are inherently subject to noise, while their outputs
frequently have a qualitative or statistical nature. Therefore,
they can tolerate a non-zero probability of runtime failures to
improve the efficiency of the system, as long as the produced
data retains appropriate clinical value and the system is never
trapped in unrecoverable or erroneous states. This tolerance to
inexactness can be exploited via Near-Threshold Computing
(NTC), which enables aggressive power savings by operating
electronic systems at sub-nominal voltage points.

In NTC, the reliability bottleneck of digital platforms resides
in SRAM banks, which contain instructions and data [6].
On the contrary, combinational elements, such as Arithmetic
Logic Units (ALUs), and registers (flip-flops) are less sensitive
to the voltage supply level, particularly at low frequencies (few
MHz). The robustness of SRAMs when operating at Near-
Threshold Voltages (NTVs) is further hampered when runtime
supply voltage fluctuations (droops) are taken into account.

In this work, we therefore focus on memories (data and in-
struction) as a source of failures, manifested as bit-flips in IoT
edge systems. First, we analyze their application-level effect
on two real-world bio-DSP benchmarks. Then, we introduce
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Fig. 1: Previous works have explored, in isolation, multicore
processing, CGRA acceleration and inexact computing in the
scenario of ultra-low power bio-signal processing. Here, we

explore their ensuing synergies.

architectural techniques, such as memory protection, input and
intermediate buffer surveillance, and monitoring of runtime
synchronization between computing elements, to minimize the
impact of failures and guarantee system recovery. While these
techniques result in some (bounded) data loss produced by
system resets, they ensure that computation resumes correctly
afterwards, confining errors to small time windows without
permanent effects.

Moreover, our results show that the energy gains derived
from the combined application of CGRA acceleration, SIMD
execution and inexact computing are more than additive. In
fact, SIMD reduces the amount of memory accesses, while
during the execution of kernels on CGRAs no instruction
memory accesses are performed. Thus, both strategies increase
the system robustness toward an aggressive scaling of the
voltage supply. Indeed our study of the benefits deriving
from this synergistic (hardware-software) co-design strategy
(as depicted in Fig. 1) is the main contribution of this work. We
embodied its conclusions in the design of an ultra-low power
system, which features a CGRA mesh as a computational
resource shared by multiple processors, and, at the same time,
is able to operate at extremely low supply levels, countering
the impact of ensuing memory bit-flips. Our results showcase
energy efficiency gains of up to 70% with respect to an
equivalent multi-core bio-DSP IoT architecture that does not
consider hardware acceleration and inexact computing.

II. ARCHITECTURE

A. Multi-core system

As depicted in Fig. 2, and similarly to [2] and [12], the
target platform features multiple RISC processors, which are
interconnected through combinational crossbars to separate
data and instruction memory banks. Each processor imple-
ments a Harvard architecture [13], supported by a three-stage
pipeline, which can be clock-gated by a synchronizer unit
while waiting for another processor to finish its task or when
a kernel acceleration is running on the CGRA.

At the application level, the processors rely on several
synchronization instructions to support SIMD execution modes
and producer-consumer relationships between cores, as pro-
posed in [1]. Then, an additional special instruction enables the
request for a kernel acceleration in the CGRA [2]. Two further
architectural modules define our bio-DSP IoT edge system.

First, the CGRA Controller handles acceleration requests from
processors, enabling both concurrent and sequential access to
the reconfigurable resource. Requests are stored in a dedicated
queue and are mapped on the CGRA mesh (whose structure
is described in Section II-B) as soon as enough resources are
available. Second, the Execution Monitor resets the platform if
an incorrect system state (derived from a bit-flip in memory)
is detected. Its architecture is detailed in Section II-C.

B. CGRA accelerator

The CGRA is composed of a mesh of Reconfigurable
Cells (RCs) connected in a torus configuration. Each of them
embeds a Configuration Register (CR, 16 words of 32 bits),
which stores the instructions to be executed by an RC when
processing a kernel. RCs support SIMD execution, by featur-
ing two datapaths governed by the same control logic. Thus,
the same kernel requests originating from different processors
(and hence operating on different input data) can be efficiently
processed in SIMD mode [2]. When not operating in SIMD
mode, kernels can be concurrently mapped on separate CGRA
columns. To support this feature, each column of the mesh has
its own program counter, that selects the configuration word
in the CR that should be executed at each clock cycle.

Each datapath is composed of an ALU, a local register
file for storing intermediate data, and multiplexers required
to select input operands (either from the local register file, or
from the output generated by the RC itself, or by any of its 4
neighbors). Then, the ALU is capable of executing arithmetic
operations (addition, subtraction, multiplication), arithmetic
and logical shifts, and bitwise operations (AND, OR, XOR,
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Fig. 2: High-level block scheme of the heterogeneous and
inexact bio-DSP IoT edge system architecture.



XNOR). It also generates 1-bit condition flags (zero, sign and
overflow), which are used in the MUX operation to implement
if-conversion, thus allowing the execution of kernels with con-
ditional statements. Moreover, one ALU per CGRA column is
equipped with a square root calculator.

At runtime, each kernel must be configured (mapped) on
the CGRA before its execution. In the configuration phase, the
parameters related to the kernel (number of iterations, number
of columns employed and modulo scheduling parameters,
instruction bit-streams) are fetched from the CGRA Config-
uration RAM to configure the required CGRA column(s).

C. Execution Monitor (EM)
Even small voltage supply fluctuations can result in memory

access failures when operating in the NTV region. Instead of
employing large (and costly) voltage guardbands, our platform
features a hardware monitor that checks system consistency
by monitoring few critical elements: First-In First-Out (FIFO)
buffers used for inter-processor I/O communications, the se-
quence of synchronization instructions issued by the cores,
and the legality of performed instruction memory (IM) and
data memory (DM) accesses. In particular, the EM (Fig. 2)
supports the following error mitigation strategies:

• Runtime coherence: Detects inconsistencies in the syn-
chronization sequence and in the execution flow of the
cores. It ensures synchronization events are processed in
a Last-In First-Out (LIFO) fashion for each core. A vio-
lation of this constraint indicates an erroneous execution
flow (e.g., due to a jump to an incorrect location).

• FIFO surveillance: Monitors overflows and underflows
in FIFOs, which indicate that a processor is stuck (e.g.,
due to a bit-flip causing the execution of an infinite loop).

• DM protection: Detects illegal data writes to read-only
memory locations.

• IM footprint violation: Detects erroneous jumps to non-
initialized IM addresses.

If an error is detected, the EM activates a global reset signal
to restart the platform from a safe initial state. The above-
mentioned consistency checks can be realized with small
hardware overhead (∼ 1% of the total area for the considered
system), and no performance penalties.

Similarly to [12], we classify the transient errors (i.e., bit-
flips induced by voltage droops) affecting the execution of the
system or the computed results into three categories:

• Masked errors: A bit-flip with no visible effects on the
execution flow of the application or on its outputs.

• Silent Data Corruption errors (SDC): A bit-flip which has
no visible effects on the execution flow of the application,
but degrades the output results.

• Unrecoverable errors: A bit-flip leading to a critical
runtime change in the execution flow of the application
(e.g., memory footprint violation, execution stuck in an
infinite loop), triggering the assertion of a system reset
from the EM to recover a consistent state.

Crucially, consistency checks allow us to counter all unre-
coverable errors and most SDCs (cf. Section III).

III. EXPERIMENTAL EVALUATION

A. Experimental setup

To evaluate our inexact and heterogeneous bio-DSP IoT
architecture, we have developed a hybrid framework com-
bining a post-synthesis model and a cycle-accurate simulator
of the system represented in Fig. 2. The RTL, cycle-accurate
(SystemC) model and compiler of the processors are derived
using Synopsys ASIP Designer [14]. The complete system
includes 8 processors, a data memory of 64KiB (32K of
16 bit words) and an instruction memory of 96KiB (32K of
24 bit words). The Configuration RAM has a size of 6KiB
(1.5K of 32 bit words), which is sufficient to store all the
configurations of the considered kernels.

The CGRA, the EM and the memory subsystem have been
developed as HDL modules (using pre-synthesized models
from the memory vendor), and the whole system has been
synthesized using Synopsys Design Compiler [15] with a
65 nm UMC low-leakage library. The kernels were simulated
with Mentor Graphics ModelSim [16] and the correspond-
ing switching activities were then used to accurately derive
the power consumption of the CGRA, considering complete
power-gating of unused columns at runtime. Similarly, the
performance and power consumption of the various compo-
nents of the inexact system were derived by running small
synthetic benchmarks (both with and without SIMD support)
on a post-synthesized design. The obtained energy profiles,
along with the kernel run-times on the CGRA, were then used
in the SystemC simulator of the system, thus enabling faster
simulations.

To validate the experimental setup we employed two bio-
signal processing application benchmarks, written in C:

1) Eight-lead Compressed Sensing (CS) [2], which is a
highly parallel application to perform lossy encoding of eight
ECG leads, where each lead is processed by a different core.

2) Four-lead Morphological Filtering [17], combined with
CS (MF-CS). The MF stage processes four ECG leads in
parallel (one core per lead), removing high- and low-frequency
noise with morphological operators. The filtered ECGs are
then compressed by the remaining four cores, producing a
filtered and compressed ECG as output. Both benchmarks re-
ceive as input ECG signal windows of 1024 samples acquired
at 500Hz and extracted from the T-Wave Alternans Challenge
database [18]. After the 50% CS compression, signal windows
of 512 samples are delivered as output.

We rely on VARIUS-NTV [19] to obtain SRAM failure rates
due to stability and timing violations. Furthermore, we model
voltage droops as random fluctuations, following a normal
distribution centered on the nominal supply value V dd and
with variance σn. Three types of memory access corruptions
are considered: data read, data write and instruction read. For
each benchmark and for each type of memory access failure, a
representative set of 1000 input windows was processed, each
incurring in a bit-flip at run-time. Then, we observed the bit-
flip impact at the application level (i.e., if it caused an SDC,
an unrecoverable error, or if its effect was masked).
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Fig. 3: QoS for different voltage supply values and droop
variations for the inexact bio-DSP IoT architecture.

B. Experimental results

To assess the system performance from an inexact com-
puting perspective, we define, as metric for the Quality-of-
Service (QoS) of the system, the ratio between the windows
that terminate the required processing and the total number of
signal windows. In our experiments, we have pessimistically
assumed that an entire ECG window is discarded upon the
detection of any error by the EM. The resulting QoS of the
system depending on the supply voltage in presence of voltage
droops is presented in Fig. 3. The QoS remains high (> 90%)
till the supply voltage is reduced to 0.89V and 0.93V (at
σn = 70mV), for CS and MF-CS, respectively. These supply
voltage values correspond to withstanding bit-flip rates in the
order of thousands per hour. In comparison, an exact system
that guarantees less than one bit-flip per year needs a supply
voltage of 1.3V, meaning that the inexact system reduces the
supply voltage requirements by 31.5% and 28.5% for CS and
MF-CS, respectively.

Fig. 4 shows the energy consumed per valid window of com-
puted ECG (i.e., the ones that are not discarded due to a reset
assertion by the EM). Using this graph, the optimal supply
voltage can be inferred as the point in which the amount of
energy per valid window is minimized. Considering an average
σn = 70mV, the optimal Vdd values are 0.9V and 0.95V,
which guarantees a very high QoS of 94.1% and 96.7% for
CS and MF-CS, respectively. The number of bit-flips per hour
at these supply voltages are 6500 and 1050, respectively.

To assess the effect of undetected SDC errors on the
received signal quality, we calculate the Signal-to-Noise Ra-
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tio (SNR) and the Percentage Root-mean-square Difference
(PRD) of the received signals [20]. We compare them to error-
free executions, according to the expected amount of correct
windows and windows affected by SDCs (computed by our
system depending on the voltage supply level). Our results
show that, when working at the optimal Vdd, the system’s
SNR remains very high (65.8 dB for CS and 79.3 dB for MF-
CS), with a net PRD falling in the range of very good signal
quality [21] (0.36 for CS and 0.11 for MF-CS).

Finally, Fig. 5 compares the energy consumption of different
platforms, for the two considered applications. The reference
point is the exact bio-DSP IoT system (running at 1.3V)
without CGRA acceleration. The first comparison is made with
a system working at the same Vdd but with CGRA support.
By transferring the execution of kernels to the accelerator, the
time to process a sample of signal is reduced by 36.3% and
41.7% on average for CS and MF-CS, respectively, leading to
energy savings of 40.3% and 29.2% for the two applications.
Thanks to inexact computing, further energy savings can
be obtained, due to voltage overscaling. When running at
the energy-optimal Vdd obtained from Fig. 4, the inexact
system without CGRA increases its efficiency by 50.2% and
44.2%, for the two considered benchmarks. By combining an
inexact system with CGRA acceleration, 70.7% and 59.8%
energy consumption savings are obtained for CS and MF-CS,
respectively, over an exact system without CGRA acceleration.

IV. CONCLUSION

Low-power edge computing platforms are fundamental
components in advanced IoT ecosystems for healthcare appli-
cations. In this paper we have explored how the combination
of several techniques, namely, multicore processing, CGRA
acceleration and inexact computing, can synergistically reduce
the energy consumption required for bio-DSP IoT systems.

Our proposed IoT system, embedding these characteristics,
achieves savings in energy consumption of up to 70.7% and
59.8% for two real-world workloads (standalone compressed
sensing or in combination with morphological filtering), in
comparison with traditional exact architectures without CGRA
accelerators. Thus, experimental evidence showcases that con-
siderable energy benefits can be obtained by leveraging the
high-level characteristics of edge computing applications for
healthcare in the design of ultra-low power, domain-specific
smart bio-DSP IoT platforms.
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