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Global Auto-Regressive Depth Recovery
via Iterative Non-Local Filtering

Jingyu Yang

Abstract—Existing depth sensing techniques have many
shortcomings in terms of resolution, completeness, and accuracy.
The performance of 3-D broadcasting systems is therefore limited
by the challenges of capturing high-resolution depth data. In this
paper, we present a novel framework for obtaining high-quality
depth images and multi-view depth videos from simple acqui-
sition systems. We first propose a single depth image recovery
algorithm based on auto-regressive (AR) correlations. A fixed-
point iteration algorithm under the global AR modeling is derived
to efficiently solve the large-scale quadratic programming. Each
iteration is equivalent to a nonlocal filtering process with a
residue feedback. Then, we extend our framework to an AR-
based multi-view depth video recovery framework, where each
depth map is recovered from low-quality measurements with the
help of the corresponding color image, depth maps from neigh-
boring views, and depth maps of temporally adjacent frames.
AR coefficients on nonlocal spatiotemporal neighborhoods in the
algorithm are designed to improve the recovery performance.
We further discuss the connections between our model and other
methods like graph-based tools, and demonstrate that our algo-
rithms enjoy the advantages of both global and local methods.
Experimental results on both the Middleburry datasets and other
captured datasets finally show that our method is able to improve
the performances of depth images and multi-view depth videos
recovery compared with state-of-the-art approaches.

Index Terms—Depth recovery, multi-view depth video, auto-
regressive model, nonlocal correlation, iterative filtering.

I. INTRODUCTION

D IMAGING applications have rapidly gained interest
in recent years, as they promise to enhance the visual
experience by extending the conventional 2D video to a
more immersive experience. However, the technologies con-
stituting 3D imaging systems are not fully mature yet to
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accomplish these targets. Depth maps need to be either cap-
tured with specialized apparatus or estimated from scene
textures, and generating high-quality depth maps that are cru-
cial in 3D computer vision stays difficulty. In short, there
are two main categories of methods to obtain depth informa-
tion: passive methods and active methods. Passive methods,
i.e., stereo/multi-view matching [1], [2] have been an active
area for several decades. However, the requirement of accu-
rate image rectification and the inefficiency in texture-less
areas have limited their practical application. Alternatively,
active methods directly acquire depth information using depth
sensors such as Time-of-Flight (ToF) cameras, or Microsoft
Kinect. Recently, the new version of Kinect (Kinect v2), which
uses the ToF technique, enables higher accuracy than the
previous version Kinect v1.

While the new depth sensors are promising, the use of
depth cameras is still limited by the low quality of the pro-
duced depth maps that have low resolution, noise, and depth
missing in some areas. Therefore, effective post-processing
and fusion techniques are needed to create high-quality
depth maps for a truly 3D experience [3], [4]. Several
methods have been proposed on the depth recovery from
low-quality depth observations [3]-[15]. Usually, texture and
depth data captured in the same view exhibit a strong struc-
tural correlation. Therefore, one can use the auxiliary tex-
ture images to enhance the low resolution depth maps by
joint image filtering techniques [6], [12]-[15], global func-
tional optimization [5], [8]-[10], or the recent deep neural
networks [16], [17]. However, their performance is still subject
to some artifacts, for example, jagging, blurring, and texture
copying.

Moreover, the above methods mainly focus on the recovery
of single depth map. Practical applications such as robotic
vision and tracking require the processing of depth videos,
or even multi-view depth videos. Only a few work exploit
the recovery of depth video [18], [19] or multi-view depth
maps [20]-[22]. However, temporal consistency enforcement
by using only optical flow in these methods cannot preserve
sharp depth discontinuities especially in complex texture and
intensive motion areas. More investigations are still necessary
for high quality depth recovery to fully consider spatial, inter-
view, and inter-frame correlation.

In this paper, we present a novel framework for obtain-
ing high-quality depth images and videos. There are two
parts in our framework, i.e., AR-based single depth image
recovery (ARSDIR) and multi-view depth video recovery
(ARMDVR). We first derive a fixed-point iteration algorithm
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The overall framework of multi-view depth video recovery. The built-in calibration applied in the Kinect v2 and multi-view sensor calibration are

both used to correct lens distortion and warp the depth map from different views to the current view.

under the basic AR model to recover single depth images.
Each iteration is equivalent to a non-local filtering process
on the observed depth map and the recovered one at the last
iteration with a residue feedback. Then, we extend the orig-
inal spatial AR model to multi-view depth video settings by
exploiting spatial, inter-view, and inter-frame correlations. The
AR coefficients on nonlocal spatiotemporal neighborhoods
in our algorithms are carefully designed, and are adaptively
updated on-the-fly for better performance. Then, we dis-
cuss the connections and differences between our model and
other closely-related methods, including local filtering based
methods, global optimization based methods, and graph-based
methods.

We construct a multi-view depth sensing prototype using
Kinect v2 (shown in Fig. 1) to evaluate the recovery
performance in multi-view settings. Experimental results on
both the Middleburry datasets and captured real datasets finally
show that our method is able to improve the performances
of depth images and multi-view depth videos recovery over
several state-of-the-art approaches, as our algorithms own the
advantages of both global and local filtering methods.

The contributions of our work are summarized into the
following three aspects:

1) A fixed-point iteration algorithm with updating AR
coefficients on nonlocal spatiotemporal neighborhoods is
derived under global AR modeling. The proposed algorithm is
applicable to the whole depth maps, remedying the difficulty
of the direct least squares approach [10] in inverting large
matrices, and shortens the running time compared to classical
methods [8]-[10]. The ability to refresh parameters on-the-
fly also improves recovery performance over the direct least
squares solution.

2) A new model is proposed for depth recovery on multi-
view depth videos by exploiting spatial, inter-view, and inter-
frame correlations, while former schemes [9], [10], [18] only
consider part of this information. This work also provides in-
depth discussions on the connections and differences between
our model and other depth recovery methods including graph-
based techniques.

3) Comprehensive evaluation on public datasets with
three synthetic degradation types (undersampling, ToF-like
degradation, and Kinect-like degradation) compared with

state-of-the-art methods. This work also setups a multi-view
depth sensing prototype, which evaluates the proposed multi-
view depth video recovery algorithm in scenarios close to
practical settings.

The paper is organized as follows. In Section II, we
present a brief overview of related work. We describe our
ARSDIR algorithm and ARMDVR algorithm in Section III
and Section IV, respectively, and discuss the connections
between our proposed method and other recovery methods in
Section V. Finally, experimental results and conclusion are
shown in Section VI and Section VII, respectively.

II. RELATED WORK

The depth recovery task is to reconstruct high quality depth
information and fill the missing depth values from lower
resolution observations. The depth information and texture
information are two descriptions of the same scene, which
however present strong structural correlations. After alignment
by warping, the structural correlation between the depth map
and the texture image can be exploited for information recov-
ery. In this section, we briefly review the recent work related
to the depth recovery task.

A. Depth Image Recovery

Depth image recovery can be classified in two categories,
namely the global methods and local methods.

1) Global Methods: The global methods recast the depth
recovery task as a global optimization problem, which con-
sists in a data term and a smooth term in an energy function.
The data term penalizes the difference between the observa-
tion depth values and the recovered ones, while the smooth
term penalizes the difference between neighboring pixels on
the high-resolution depth map.

Diebel and Thrun [8] have proposed a two-layer MRF model
to represent the correlation between range measurements and
solved the MRF optimization with a conjugate gradient algo-
rithm. This method is able to improve the quality of depth
maps, but tends to over-smooth the depth images. To reduce
over-smoothing, Hannemann et al. [23] have incorporated the
amplitude values generated by Time-of-Flight camera into an
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MRF model to improve the quality of interpolation. The ampli-
tude can be evaluated as a confidence measurement for the
depth values. Lu et al. [24] have further extended this work
by designing a data term that fits the characteristics of depth
maps. Huhle er al. [25] have added a third layer to the MRF
framework [8], where image gradients are encoded as nodes
in the graph. Zhu et al. [26] have fused the stereo paral-
lax and depth information into a unified MRF model, thus
improving the accuracy and robustness of depth recovery.
Park et al. [9] have added a weighting scheme to the smooth
term, which involves edge, gradient, and segmentation infor-
mation extracted from high quality color images, and used an
extra non-local term to regularize depth maps. Ferstl et al. [27]
have modeled the smooth term as a second order total gener-
alized variation regularization, and guided the depth upsam-
pling with an anisotropic diffusion tensor calculated from a
high-resolution intensity image. Yang er al. [10], [28] have
proposed the adaptive color-guided auto-regressive models for
high quality depth recovery. The depth recovery task is for-
mulated as the minimization of AR prediction errors subject
to measurement consistency using least squares. Li et al. [29]
proposed a hierarchical global optimization framework based
on weighted least squares (WLS) technique. In the MRF
framework, Zuo et al. [30] explicitly model the discontinuity
inconsistency between the depth map and color image in the
smoothness term to reduce texture copy and blurring artifacts.

These global models could ensure the achievable math-
ematical optimality when using differentiable metrics, and
a number of well-understood numerical algorithms such as
belief propagation, graph cut, and least squares. However,
such algorithms require intensive computation to solve large-
scale problems, and some are even not applicable due to the
difficulty to inverting very large matrices. Moreover, model
parameters determined from the degraded depth map are sub-
optimal. Pizarro et al. [31] proposed an iterative procedure
to minimize the convex nonlocal data and smoothness model.
Inspired by this, in this paper, we propose a new fixed-point
iteration algorithm for the AR modeling, thus remedying the
difficulty of the direct least squares approach [10] in inverting
large matrices. The weighting scheme is updated on-the-fly to
make the proposed framework more adaptive to depth content.

2) Local Methods: The local methods for depth recov-
ery generally use local filters such as bilateral filters and
non-local means (NLM) filters [32]-[34]. The depth value at
a given pixel is refreshed by a weighted average of depth
values from neighboring pixels, and the weights are pre-
dicted by some weighting strategies derived from the color
image. Joint bilateral filtering [35] has been also used in
depth recovery algorithms using high quality auxiliary color
images [32], [33], [36]. Yang et al. used the joint bilateral fil-
tering on cost values [32] to super-resolve range images and
proposed a hierarchical joint bilateral filtering scheme [37]
for depth map upsampling. To fully exploit correlation across
more domains, the bilateral filter is extended into multi-lateral
cases [4], [38], [39]. Min et al. [18] have proposed a weighted
mode filtering method based on a joint histogram of depth
image, where the final solution is determined by seeking a
global mode on the histogram. He et al. [40] have investigated

guided filtering to derive an edge-preserving smoothing oper-
ator like the popular bilateral filter. Lu et al. [41] have
formulated the filtering process as a local multipoint regres-
sion problem, consisting of multipoint estimation within a
shape-adaptive local support, and aggregation of a number
of multipoint estimates available for each point. It models
a zero-order or linear relation between observed low resolu-
tion depth patch and color patch. Liu et al. [11] have used a
geodesic distance to compute the filtering coefficients based
on the similarity between pixels. Barron and Poole [42] have
proposed an edge-aware smoothing method based on fast bilat-
eral solver that combines the flexibility and speed of simple
filtering approaches.

In general, depth recovery schemes based on filtering tech-
niques enjoy the simplicity in design and implementation,
lower computational complexities, and often good recovery
results. However, the short-sighted local judgement cannot
provide enough information to recover the global structure,
and may introduce annoying artifacts in regions where the
associated color image contains rich textures. In this paper,
we propose the iterative non-local filtering algorithm to tackle
the global AR model, which enjoy both the merits of global
methods and local methods.

B. Depth Recovery for Depth Videos

Beyond the frame-wise recovery using single depth map
based methods, the recovery of depth videos usually involves
mechanisms that exploit temporal correlation (or even view
correlation in multi-view settings). Duan et al. [43] have taken
into account the temporal and spatial factors when using the
graph cut based on epipolar rectification. The penalty function
with coherence factor is introduced for temporal consistency.
Min et al. [18] have also extended their spatial method for
temporally neighboring frames. Simple optical flow estimation
and patch similarity measure are used for obtaining the high-
quality depth video in an efficient manner. Sheng et al. [19]
have proposed an intrinsic static structure, which defines a
static structure for the captured scene to enhance the depth
video. The structure is estimated iteratively by a probabilis-
tic generative model with sequentially incoming depth frames.
Wang et al. [44] uses nonlocal regression and total variation
prior in the global function to upsample multi-view RGB-D
images simultaneously. Zhang et al. [45] have proposed a uni-
fied scheme for texture super-resolution and depth estimation
from binocular video. Alternatively, Kim et al. [20] have per-
formed depth balancing and multi-view depth fusion based
on a confidence map in order to enhance multi-view depth
maps obtained from multiple ToF sensors. Liu et al. [21] have
proposed a gradient-domain based enhancement method for
multi-view depth. The method exploits the coherence of both
temporal and inter-view dimensions in addition of the spatial
one. Finally, Choi et al. [22] have improved the quality of the
depth map corresponding to each color view by increasing its
spatial resolution and enforcing interview coherence. However,
these methods only use part of the correlations among spa-
tial, inter-view and inter-frame information. Besides, temporal
consistency enforcement by using only optical flow in these
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methods cannot preserve sharp depth discontinuities especially
in the motion areas.

Based on the basic AR model, we propose a new model on
multi-view depth videos by exploiting spatial, inter-view, and
inter-frame correlations, and derive the corresponding fixed-
point iteration algorithm to solve the model.

III. AR-BASED SINGLE DEPTH
IMAGE RECOVERY (ARSDIR)

In this section, we propose an effective algorithm for sin-
gle depth image recovery (ARSDIR), using an auto-regressive
(AR) model. The AR model has shown to be an effective signal
model in recovering high quality depth maps from degraded
ones [10], but recovery algorithms have so far hit limitation
in terms of computational complexity. We show here a com-
putationally effective algorithm based on fixed-point iteration
method for recovering static depth maps.

A. Motivation

It has been shown that the AR model describes well the
depth maps that mainly containing smooth regions separated
by curves [10]. Denote by D the observed depth map, and C
the corresponding color image. Let D be the depth map to
be recovered, which has the same size as the color image C.
Denoting by p the pixel index, the depth (color) value at p is
represented by D), (Cp,). The depth recovery problem based on
the AR model is written as follows:

2
. ~\2
min y " hy(Dp = Dp)"+2 Y | Dp— Y wpgDy) -
p p qeN (p)\p
Egata EaRr
(1

where E gy, is the data term to make the recovered depth con-
sistent with the observation, EaR is the AR term to impose
AR regularization on the recovered depth map. N (p) is the
neighborhood of pixel p, and the parameter A represents the
weight between the two terms in (1). The parameter £, can
be 0 or 1, and describes whether D appears as a valid obser-
vation at p (1 for valid pixel, and O otherwise). Finally, the
weight w), , denotes the AR coefficient for the pixel ¢ in the
deleted neighborhood N (p)\p of p, which is defined accord-
ing to both the local correlation in the initial depth map and
the nonlocal similarity in the accompanied high quality color
image:

mwﬂ::exp<_£:1:fid_>exp<_HBpo(¢¢;-¢gﬂb>’

012 93
2

where o1 and o, are the decay rate of the range filter and
color filter, respectively. Here, P, denotes an extracted patch
centered at p in color image, “o” represents the element-wise
multiplication. B, represents the bilateral filter kernel around

pixel p on the color image.
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The above AR function (1) can be written in a matrix form
and recast as a least square problem as:

min[[d — Hd | + %1d — Qd3, 3)

where H and Q are the observation matrix (constructed by k)
and AR c%afﬁcient matrix, respectively; d and d are the vector
forms of D and D, respectively. The solution of problem (3)
can be obtained by solving the normal equation:

(PTPH(I—Q)T(I—Q))d:@, @)
b

A

Besides the direct inversion approach, there are a number of
alternative algorithms that are more efficient in terms of com-
putation or memory, including gradient-type algorithms (with
various variants and step-size strategies) and quasi-Newton
algorithms such as BFGS and L-BFGS [46]. However, the
numerical stability of these algorithms largely depends on the
invertibility of A. The first term P'P in A is a diagonal sam-
pling matrix, and is ill-conditioned. Besides, the invertibility
of Q' Q is largely determined by the effective support of the
prediction candidates for each target pixel, and Q" Q becomes
ill-conditioned when a few pixels have not enough effective
prediction candidates, especially in the region of rich textures.
Combining P and Q, the resulting matrix A might be still
highly ill-conditioned. Any small change in A can cause a
large change in the variable d, which would severely degrade
the performance of the depth recovery process.

Moreover, the scale of the matrix A is the square of the
depth-map size, which is beyond the capability of current desk-
top computer to recover the whole depth image at once due
to limited memory. The depth image should be divided into
overlapping patches, and the recovery process is done on each
patch to cope with the memory limitations. Then, the recov-
ered patches are integrated into an entire image. This patch
division and re-integration process would yet increase the
amount of calculation, and inverting a large number of matri-
ces (though with a smaller sizes) is still quite time-consuming.
Although the AR model itself has interesting properties, the
deficiency of the above algorithm itself impedes its actual
performance. This motivates us to find a better solution for
the global AR modeling.

B. Fixed-Point Iteration Algorithm

We now derive a robust and stable iterative procedure to effi-
ciently minimize the energy function in problem (1). The first
order optimality conditions imply that the partial derivative
with respect each component D), equals to zero:

oE

— =0, 5
D, 5)
where the partial derivative dE/0D), is calculated as follows.
oE . 8Edata aEAR
dD, D, oD, ’
0Eqata

aDp = ZhP(Dp _5P)’
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0EAR
oD,

=2|Dp - ZWp,qu
q
- Z Wwrep | Dr — Z wr.qDgq ) (6)
r q

We organize Eq. (5) and Eq. (6) into the following fixed point
form

D, = | kD, + 1 Z Wp.gDyq
q

+2.3 wep| D [y +3).

(7

Denote by k the iteration index, Formula (7) is readily written
into the following fixed-point iteration:

— Z Wi gDy
q

k n k—1
DY = hD, + 1) wp DED
q

Y e [ DI =Y v DIV ) (1 4 2),
r q

®)

where the depth map is initialized as the observed depth
samples, i.e., D© = D. The iterative procedure approaches
the solution of the first order optimality conditions of Eq. (5),
and hence the one of the AR-based depth recovery model
in Eq. (1) [46]. The above iterative formula is gssentially
a filtering processing of the observed depth map D and the
recovered one D® by the last iteration with a residue feed-
back. Concretely, the first term D), re-includes the observed
samples to ensure the consistency with the measurements;
the second term Zq wp,gDy is a standard linear filtering
on D® with AR prediction coefficients; the third term
2 WrpDy =32, wr qDg) is a residue feedback that compen-
sates for the AR prediction errors to the filtered depth map;
finally, the denominator k, + A is a normalization term for
stable filtering. The convergence is determined by the relative
error [|[D® — D=V, /ID*=D||,. Empirically, the algorithm
achieves stable recovery results after several iterations (see
Fig. 3), and therefore we set a maximal number of iterations
in our implementation.

The corresponding algorithm procedures are summarized in
Algorithm 1.

Based on the above derivation, the global optimization of
Eq. (3) is broken down into a sequence of iterative fixed-point
filtering steps, which does not require constructing and invert-
ing the large-scale matrix A in Eq. (4). Unlike well-known
iterative algorithms such as the conjugated gradient type algo-
rithms and BFGS-type algorithms, each iteration could be
efficiently implemented in-place, hence without patch division
and re-integration process. Moreover, the parameters in our
algorithm are well interpreted from the perspective of image
filtering, and could be updated according to the recovered

Algorithm 1 The Fixed-Point Iteration Algorithm for
ARSDIR
Input: D© = D: initial depth map; C: the corresponding
color image; €: the stopping relative error; K: the maximal
number of iterations.
while [|[D® — DD, /ID* D, > € Il k < K do
for each pixel p in D® do
Update AR coefficients w), , using Eq. (2);
Estimate Dg‘) via nonlocal filtering with Eq. (8);
end for
k<~ k+1;
end while

depth map at each iteration to achieve better performance,
which is demonstrated in Section VI.

IV. AR-BASED MULTI-VIEW DEPTH
VIDEO RECOVERY (ARMDYVR)

We now extend the baseline ARSDIR framework to
more general multi-view/multi-frame settings by incorpo-
rating inter-frame and inter-view correlations for improved
performance. Correspondingly, we derive a new fixed-point
iteration algorithm and present the design of spatiotemporal
neighborhoods and the corresponding adaptation of the AR
weights.

A. The ARMDVR Model

In multi-view settings, the current view can have multiple
depth map candidates by warping depth samples from neigh-
bor views. The depth maps warped from other views can
provide depth information in occluded areas of the current
view. Denote by D' the depth map captured by the i camera
and registered to the current view. To avoid heavy notations,
the depth map at the current view to be recovered is denoted
by D without view index. We propose the following model
for multi-view depth image recovery from multiple observed
depth samples:

. ~TiN 2
(0, -BY)
+AZ D,— > wpeDy| 9)

geN (p)\p

The above model consists of multiple data terms that mea-
sure the proximity of D to the measured depth maps, and the
AR regularization term that measures the similarity between
the depth value at the current pixel p and its neighboring pix-
els in V' (p)\p. Differently from Eq. (1) in which A, indicates
whether the depth map has a valid observed sample at the
p1xe1 D, hp represents here the weight of the depth value
Dp from the i initial depth map. The reliability of observed
depth samples from neighboring views mainly depends on
calibration accuracy and rounding errors in view warping.
The calibration accuracy is mainly affected by the system
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setup: the larger the baseline distance between two cam-
eras is, the larger calibration errors would be. The rounding
errors could be suppressed by using advance interpolation
methods, but we observe that the improvement is marginal in
our framework. Hence, the reliability Al e [0, 1] is designed
to be zero for unobserved pixels, and to be monotonically
decreasing with respect to the baseline distance for available
pixels:

Rl — 0,

)
r exp(—bi/o),

) (10)
otherwise,

where b; is the baseline distance between the i camera and
the reference view, and o controls the decreasing rate. If there
is no depth sample in l~)[l], h},’ lis equal to zero. When b; is 0,
ie., p" represents the depth map of the current view, hy] is
set to one.

There would be flickering artifacts if the above model (9)
is applied to multi-view video sequences in the frame-by-
frame manner. We want to ensure consistency across time
and therefore incorporate temporal correlation into the AR-
based depth recovery framework. For clear notations, we
introduce a pair of superscripts [i,?] to denote the view
index and frame index, respectively. For example, D"/ is
the 1 depth frame at the /" view. Without loss of gener-
ality, we denote the current depth frame at the current view to
be recovered by DI and by D for compact presentation

omitting the superscripts. Our final ARMDVR model
reads:
. .0 ~1[i.,01\?

min Z > hy ]<DP_DP )

i€lyiew P

2
0,
A D= D wppe D WD aD
p 1€l temp @ eN(po)\pi

where I'yiew and I'emp are the index sets of involved neigh-
boring views and neighboring frames. The pixel p; rep-
resents a corresponding pixel of p in the M frame, and
q; is within the deleted neighborhood of p;, denoted by
N(p)\p. D[j;t] is the depth value at g; in the /" depth frame
D1 The weight Wp.p, is the temporal AR weight deter-
mined by the similarity between the patch around p and that
around p;, and wp, 4 is the spatial AR weight determined
by the similarity between pixel p; and pixel ¢, in the /™
frame.

Fully determining model (11) involves two types of corre-
spondence: 1) inter-view correspondence and 2) inter-frame
correspondence. The data term incorporates observed sam-
ples from neighboring views, where corresponding inter-view
pixels are established by view warping with calibration param-
eters. In the AR term, AR coefficients are calculated on
3D spatiotemporal neighborhoods, where the temporal cor-
respondence is established by optical flow as detailed in
Section (IV-B).

Similarly to the Algorithm 1 for the ARSDIR model of
Eq. (1), we also employ a fixed-point iteration algorithm to
solve the problem in Eq. (11). It is also derived by the first
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Algorithm 2 ARMDVR Algorithm

Input: D: depth frame to be recovered; D! neighbor-
ing frame of D; C: the current color frame; clifl. the
neighboring i color frame at M view;
while note converged do

for each pixel p in the current frame D® do
Compute the spatial weighting wy, 4, using %1 and
pLOAGk=1.

Compute the temporal weighting w), ,, between C and
clo.
Estimate D1(7k) by the filtering in Formula (12);
end for
k< k+1;
end while

it].

order optimality conditions, yielding the following iterative
procedure:

k+1) _ i,0] 73401 0,11(k
DD =% " hEOD, T 0 Y wpp | D WD
i t qr

0,7](k 0,t](k
3w | DO — 3, DIOA®
It qi

g

where k is the iteration index and r; is the pixel index belong-
ing to the deleted neighborhood around py, i.e., N (@) \pr.
The depth map is initialized as D® = Y, DI, which

fuses the depth maps 51[71,0] warped from neighbouring views.
Then, the depth map is recovered via iterative filtering on
the initial depth map and the recovered depth map at the last
iteration. The overall algorithm to solve the ARMDVR model
is summarized in Algorithm 2.

(12)

B. AR Coefficients on Nonlocal Spatiotemporal
Neighborhoods

It is straightforward to adapt the AR weighting scheme (2)
for the depth video recovery model by extending 2D patches
to 3D patches and searching nonlocal similar 3D patches in the
video volume. However, such a 3D nonlocal search requires
huge amount of computation. To limit the computational com-
plexity, we decouple the spatial dimension and the temporal
dimension, and operate on 2D patches in the formation of
spatiotemporal neighborhoods.

When enforcing temporal consistency, the information of
the temporal neighbors should be incorporated in a way that
is robust to errors on the depth discontinuities. As illustrated
in Fig. 2, we first establish rough pixel-wise temporal corre-
spondences of the current color frame, to neighboring frames
with optical flow [47]. Denote by p; the rough correspondence
of pixel p in the neighboring frame with index z. Let P, be a
patch centered at p in the color frame. Then, we find the most
similar patch P, around the roughly estimated patch Pp, in a
searching window N (p;) by using the approximate K-nearest
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Fig. 2. Tllustration of nonlocal spatiotemporal neighbourhood between two
consecutive frames for the calculation of AR coefficients. The similarity
between two pixels are estimated from the associated patches around.

neighbors structure (AKNN) (48], where the matching cost
is measured by the sum of square distances (SSD):

p;=arg min (P, —P, (13)
! gq,eN(ﬁ,)” » = Pl
where N (p;) is the neighbourhood around p; in the ™ frame.

Then, the spatiotemporal neighbourhood, denoted by
Niap(p), is formed by stacking the 2D neighbourhoods of
all the temporal correspondences of p, ie., NM3p(p) =
{(Map(p)lt € [temp). Fig. 2 shows the construction details
of the spatiotemporal neighbourhood at pixel p between two
consecutive frames. The AR coefficient on the spatiotemporal
neighbourhood is then defined as

1

Woige = Wp.pWprars (14)

where w), ,, measures the correlation between pixel p and its
temporal correspondence p;, wy, 4, measures the correlation
between pixel p; and pixel g; in frame at time ¢, and c¢: =
D Wt q' € N3p(p), is the normalization factor. The weight
Wp,.q, 18 calculated according to Eq. (2), and w), p, is calculated
as the similarity between two patches around p and p;:

P =7 Hi)

Wpp, = exp( 5
g3

(15)

where o3 controls the decay rate of the similarity.

In the global optimization scheme of Eq. (4), the AR
coefficients are set only once before solving the normal
equation. One could also update the AR coefficients using the
recovered depth image, and then perform global optimization
for better depth recovery. However, this would require sig-
nificant amounts of computation. One merit of the proposed
iterative scheme is that AR coefficients can be updated
on-the-fly using the intermediate recovered depth map D®.
Concretely, the AR coefficients are initialized according
to Eq. (2) for depth image recovery and to Eq. (14) for
depth video recovery with the assistance of color images.
As iterations go on, AR coefficients are updated using
the intermediate depth map D® and the associated color
image. Since the recovered depth map D® becomes more
reliable than the observed depth map D@, we simplify the

Note that AKNN structure aims to find non-local patch similarities using
fast searching strategy.

patch-based color similarity measurement ||B), o (P, — Pq)||§
in Eq. (2) into the pixel-based one |C), — Cq||%, where C,
and C; are color values at p and ¢. This simplification also
reduces the required computation in patch-wise similarity
calculation. To sum up, the iterative updating strategy does
not only improve depth recovery performance, but also lowers
the computational complexity.

V. CONNECTIONS TO OTHER METHODS

This section discusses the connections between our
proposed method and other closely-related methods, includ-
ing local filtering based methods, global optimization methods,
and graph model based methods.

A. Local Filtering Based Methods

The basic form of local filtering is essentially the weighted
average of neighbouring samples:

D, = Z Wp.gDg.
geN (p)\p

(16)

where the weights are usually normalized, i.e., Zq Wpq = L.
The filter in Eq. (16) is also called shrinking smoother [49].
Most local filters such as Gaussian filter, bilateral filter and
its variants [50], and nonlocal means filter [51] fall into
this framework, differing in the determination of weights
{wp.q}. For example, bilateral filter introduces a range filter to
consider the similarity of signal intensities. Nonlocal means
filters further exploits the signal similarity at the patch rather
than pixel level.

Comparing our proposed method in Eq. (8) with Eq. (16),
each filtering iteration contains the shrinking smoother as
a special case, in which no initial depth map and residue
feedback is involved. An iterative shrinking smoother would
yield stable smoothing results (usually over-smoothed) [49],
while the results from our algorithm are consistent with the
observations thanks to the inclusion of the observed depth
samples at each iteration. Regarding to the residue feedback
>, wrpDED 3 p w,,qD;k_U), the AR prediction errors at
pixels whose neighbourhood containing pixel p are weighted
averages, and then added back to the filtering value as a
compensation. This feedback mechanism makes our algorithm
more robust than other filtering methods, particularly in the
prediction of edges and fine structures (see more details in
Section VI).

B. Global Optimization Based Methods

Global optimization-based depth recovery methods assume
local smoothness, which are usually modeled by the Markov
random field (MRF). Using the same notations as our model,
the MRF-based global model in [7]-[9], [27] and [29] can be
unified into the following formulation:

. ~ .2 2
min Z hp(Dp —Dyp)” + 2 Z Z Wp,q(Dp —Dg)”,
p P qeN@p)\p
(17)

where different weighting schemes {w) ,} are designed in
particular methods. For example, Park et al. [9] used
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edge, gradient, and segmentation information extracted from
high quality color images to construct the weights, while
Ferstl et al. [27] introduced an anisotropic diffusion tensor
calculated from the color image. We can also derive a
fixed-point algorithm [7], [29] from the global model (17):

_ hpDp + & Zq wp,qDy

g hy + A
Comparing Eq. (18) and Eq. (8), our AR-based iterative
algorithm is an augmented version of the MRF-based
iterative algorithm by adding a feedback of AR prediction

residue ), wrp(Dr — }°, wrgDyg), which contributes to the
performance improvement as shown in Section VI.

, (18)

C. Graph-Model Perspective of AR Modeling

If we denote by K(p, g) = wp, 4 the similarity between pixels
p and g, the matrix form of the filtering in Eq. (8) on the whole
depth image is written as:

d* = N"'Kd, 19)

where d* and d represents the vector form of the filtered result
and the observed depth map, respectively. N is a diagonal
matrix in which each row is normalized by > K@, 9).

Note that K also provides an interpretation of the structure
of the latent depth image as a graph. Consider the depth image
as a graph G = (V, E), where V is the set of all pixels in the
image and E represents the edges that link pairwise neigh-
bouring pixels. Let K(p, g) be the edge weight between p and
q. Now, we define the Laplacian of the graph. Let n, be the
degree of vertex p, which is equal to the sum of the weights
on the edges connected to this vertex. For a graph with an
adjacent matrix K, we get n, = Zq K(p, q). With the degree
matrix N(p, p) = n,, the graph Laplacian is given by

L=N'N-Ky=I-N"'"K=I1-W. (20)

Ideally, the filtering of a ground-truth depth image should be
the same as the input, i.e., d* = Wd*, which is the assumption
behind the AR model [10]. We can therefore obtain:

d* = Wd* = (I — W)d* = Ld* = 0. 1)

Conditioned by the consistency with the observations, we
have the following minimization problem:

min|d — Hd|3 + 3 £d]3, 22)
Note that model in Eq. (22) is exactly the same as the AR-
based depth recovery model in Eq. (3) with the following
identity: £ = I —Q, which establishes the connection between
our AR-based depth recovery model and graph models.

The above discussions reveal that 1) our AR-based depth
recovery model is essentially a global method enhanced by AR
prediction error compensation, which inherits the advantages
of this type of algorithms, e.g., achievable optimal solution and
convenient mathematical analysis; 2) the derived algorithm to
approximate the global optimum are a series of filtering on the
observed depth maps and recovered ones with a feedback of
AR prediction error, which enjoy the low-complexity of filter-
ing based approaches; and 3) the proposed model is equivalent
to a graph based model, which suggest that the AR-based
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Fig. 3. The convergence curve of our fixed-point algorithm. Mean absolute
difference (MAD) computed from the dataset captured in our lab is used for
measuring the results of difference between two consecutive iterations.

(a) (b) ()

Fig. 4. Depth recovery results at: (a) the 1 iteration, (b) the ond iteration,
and (c) the 4" iteration. For easy observation, the image contrast is manually
stretched to make the result more clearly, and the region in the red rectangular
is enlarged.

depth recovery could be further improved via graph-model
tools, e.g., graph transforms [52].

VI. EXPERIMENTS AND RESULTS

In this section, we first investigate the behavior of the
proposed fixed-point iteration algorithm (Section VI-A), and
then evaluate the depth recovery performance in two sub-
sections: 1) Section VI-B: experiments on depth image
recovery using Middlebury benchmark datasets with various
synthetic degradations and some real captured depth images;
2) Section VI-C: experiments on multi-view depth video
recovery using datasets captured by our stereo RGB-D acqui-
sition system. The mean absolute difference (MAD) is used
to measure the difference between two depth maps.

The parameters are set as follows: for both ARSDIR and
ARMDVR algorithms, A is set at 0.1 for high-fidelity depth
inputs, and at larger values in the noisy cases (e.g., A = 10 if
the noise variance is around 15). The number of iterations is set
to 4. In addition, for the temporal parameters in the ARMDVR
algorithm, the size of the neighborhood N in Eq. (13) and the
variance 03 in Eq. (15) are set at 9 x 9 and 3, respectively. The
number of frames involved in spatiotemporal neighborhood is
set to 2 for a reasonable performance-computation tradeoff.
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TABLE I
THE OBJECTIVE COMPARISON (MAD) BETWEEN OUR PROPOSED ALGORITHM (ARSDIR) AND GLOBALAR [10]. THE RESULTS
OF THREE KINDS OF TYPICAL DEGRADATIONS, I.E., UNDERSAMPLING (2x, 4%, 8%, 16x), TOF-LIKE DEGRADATION
(8x UNDERSAMPLING WITH NOISE), AND KINECT-LIKE DEGRADATION (MISSING) ARE SHOWN IN THE TABLE

ARSDIR GlobalAR
Upsampling ToF-like  Kinect-like Upsampling ToF-like  Kinect-like
2x 4x 8x 16x 8x 2x 4x 8x 16x 8x

Art 022 046 0.63 1.52 1.79 0.49 0.18 049 064 2.01 1.70 0.58
Book 0.10 0.21 0.40 0.72 1.13 0.49 0.12 022 037 0.77 1.15 0.53
Moebius i 0.11 021 0.41 0.74 1.10 0.53 0.10 0.20 040 0.79 1.15 0.60
Reindeer { 0.16 0.34 0.57 1.23 1.48 0.64 0.22 040 058 1.00 1.28 0.68
Laundry { 0.14 0.29 0.51 1.04 1.49 0.68 0.20 0.34 053 112 1.30 0.75
Dolls 0.13 0.25 0.50 1.05 1.37 0.67 0.21 0.34 050 0.82 1.32 0.69
Average | 0.14 0.29 0.50 1.04 1.39 0.58 0.17 0.33 050 1.09 1.22 0.64

(a) (b)

Visual comparison between the recovered results using: (a) iterative

Fig. 5.
filtering without residue feedback, (b) our ARSDIR (with residue feedback).
The weighting schemes in both conditions are identical.

A. Evaluations of Convergence and Residue Feedback

1) Convergence Results: Fig. 3 shows MAD values
between the recovered depth maps of two consecutive itera-
tions, averaged over different depth maps captured by us. The
MAD values decrease dramatically at the beginning, and turn
to be stable after four iterations. Fig. 4 shows the visual results
of recovered depth maps on the captured dataset Standing at
the 1, 2¢, and 4™ iterations, respectively. At the 2" iteration,
all the missing depth pixels have been filled in, but the intense
noise is still present in the recovered depth map; while at the
4™ jteration, most noise has been removed while preserving
depth discontinuities. This demonstrates that our algorithm
converges rapidly, generally after the fourth iteration for all the
datasets. Experiments results in Section VI-B will further show
that, with only four or five iterations, our iterative algorithm
achieves comparative results to the global method [10].

2) Results on Residue Feedback: The significant differ-
ence between our proposed algorithms in Eq. (8) and other
methods lies in the residue feedback derived through the
fixed-point iteration algorithm of the recovery model. Fig. 5
shows the comparison between iterative filtering in Eq. (18)
(without residue feedback) and our proposed algorithm (with
residue feedback). Both methods use the same weighting
scheme defined in Eq. (2). Visual results in Fig. 5 show that,
thanks to the residue feedback, our proposed algorithm recov-
ers sharper depth contours than the filtering scheme without
residue feedback.

B. Experiments on Single-Image Depth Recovery

1) Results on Synthetic Datasets: Six datasets, Art, Book,
Moebius, Reindeer, Laundry, and Dolls from the Middlebury’s
benchmark [53] are used for evaluation. The datasets with
three kinds of typical degradations in [10],? i.e., undersam-
pling, ToF-like degradation, Kinect-like degradation, are used
for evaluation.

First, we compare the proposed iterative algorithm with the
direct least squares solution (GlobalAR) in [10]. Both solve
the same AR-based depth recovery model. Depth recovery
results in MAD in Table I show that the proposed iterative
algorithm generates better results than GlobalAR, especially
for upsampling and the recovery of Kinect-like degradation.

More importantly, the running time of the proposed algo-
rithm is much smaller than GlobalAR. As analyzed in [10],
the superiority of (closed-loop) global methods is subject to
higher computational complexity than the (open-loop) local
filtering methods. The running time of most global methods is
within the range of 10°-10! minutes, while the local filtering
methods require significantly less running time (about 10°-10!
seconds). Implemented in unoptimized MATLAB code and run
on a desktop with a 3.4 GHz Core4 i7 CPU and 8 GB memory,
the proposed algorithm takes about 6 seconds to recover a
depth map to the size of 1920 x 1080 while the GlobalAR
method takes about 4 minutes on average. Our proposed algo-
rithm solves the same global objective function as GlobalAR,

2http://cs.tju.edu.cn/faculty/likun/proj ects/depth_recovery/index.htm
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Fig. 6. Depth recovery results in MAD. From left to right, the recovery results of upsampling (2%, 4x, 8%, 16x), ToF-like degradation, and Kinect-like

degradation are given successively, in which each group has compared using six datasets, i.e., Art, Book, Moebius, Reindeer, Laundry, and Dolls, from left to
right. The compared methods are represented in different colors shown in the legend.

and also enjoys the low-complexity merit of local filtering
methods.

Then, we compare our algorithm with other nine meth-
ods, including Bicubic interpolation, guided image filtering
(Guided) [40], edge-weighted NLM-regularization (Edge) [9],
cross-based local multipoint filtering (CLMF) [41], joint
geodesic filtering (JGF) [11], total generalized variation
(TGV) [27], fast bilateral solver (FBS) [42], fast global inter-
polation(FGI) [29], and GlobalAR [10]. Fig. 6 shows depth
recovery results of eight methods on six datasets with vari-
ous types of synthetic degradation. For compact presentation,
results are visualized in a bar chart. From left to right, the
recovery results of upsampling (2x, 4x, 8%, 16x), ToF-like
degradation, and Kinect-like degradation are given succes-
sively, where the results of each group are for Art, Book,
Moebius, Reindeer, Laundry, and Dolls, from left to right. In
general, the results for higher upsampling factors (e.g., 16x)
have relatively large MAD values due to more missing depth
values in the measurements. Similarly, due to the mixture of
noise and undersampling, the recovery results for ToF-like
degradation also have large MAD values. On all the datasets,
our proposed algorithm (ARSDIR, in red) has comparable
recovery performance to GlobalAR as they solve the same
model. It further outperforms other methods, which demon-
strates the effectiveness of the proposed iterative algorithm
with on-the-fly updating of AR coefficients.

2) Experiments on Real Datasets: Fig. 7 (a) shows two
real datasets captured by Kinect v2 in our laboratory. The
captured depth maps contain missing values caused by under-
sampling and structural holes along depth discontinuities,
which are harder to recover than the regular missing values
in pure upsampling. Structural artifacts around depth edges
lead to ambiguity in locating the depth discontinuities and
thus increase the difficulty of depth recovery.

We compare our ARSDIR model with FBS [42], FGI [29],
and GlobalAR [10] on the two datasets. FBS and FGI are the
latest depth recovery methods, and have great improvement
in both speed and accuracy. FBS is a local filtering methods

TABLE II
OBJECTIVE RESULTS (IN TERMS OF MAD IN
MILLIMETERS) ON TOFMARK DATASETS

Bicubic Guided CLMF  JGF TGV GlobalAR ARSDIR
Books 16.23 15.74 13.89 17.39 1236 12.25 12.09
Shark 17.78 18.21 15.10 18.17 1529 1471 14.54
Devil 16.66 27.04 1455 19.02 14.68 13.83 13.29

based on proposed fast bilateral solver, while FGI focuses on
global modeling that decomposes the depth upsampling pro-
cess into hierarchical global interpolation. Results are shown
in Fig. 7 (b)~(e). GlobalAR tends to generate some jaggy arti-
facts, while FGI brings slight over-smoothing results around
edges. These two methods have results that are comparable
to ours. However, FBS contains over-smoothing and texture-
copying results due to rich color textures and the discontinuity
mismatch between the color images and depth maps. With
a carefully designed weighting scheme, our method achieves
quite promising recovery quality particularly around depth
discontinuities, and avoids the texture copying artifacts.

Moreover, we also evaluate our algorithm on the ToFMark
datasets [54] (Books, Shark, Devil). Table II presents the objec-
tive results in terms of recovery error measured by MAD
in millimeter. Our method obtains the lowest recovery error
for all the three test cases compared with other six meth-
ods. Visual results in Fig. 8 on ToFMark Books show that
the proposed algorithm successfully recovers the structure of
the stick and the cup while TGV [27] and GlobalAR [10] still
present obvious artifacts.

C. Experiments on Multi-View Depth Images/Videos

The proposed ARMDVR model for multi-view depth video
recovery extends the ARSDIR model by incorporating inter-
frame and inter-view correlations. In this section, we test the
performance on our ARMDVR model on both multi-view
images and multi-view depth videos.
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Fig. 7.

Depth recovery results for two real datasets captured in our laboratory: (a) color image, recovered depth maps by (b) FBS [42], (c) FGI [29],

(d) GlobalAR [10], and (e) ARSDIR. For visual inspection, regions highlighted by rectangles are enlarged.
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Fig. 8. Visual quality comparison on depth recovery for Books from ToFMark datasets: (a) Ground truth, (b) TGV [27], (c) GlobalAR [10], (d) Our method.

We set up a stereo RGB-D sensing system by using two
Kinect v2 cameras, which could be considered as a prototype
for 3DTV content generation using the multi-view video-plus-
depth (MVD) representation. Note that our system is readily
extendable by adding more Kinect v2 cameras for more robust
sensing and wider angle of views. In our system, each RGB-
D sensor has a frame rate of 30 frame/sec, and provides a
low-resolution depth video stream and a high-quality color
video stream. The resolutions of the color camera and depth
camera are 1024 x 768 and 512 x 414, respectively. The stereo
RGB-D camera rig is calibrated by the OpenCV calibration
module [55], and the captured depth maps are warped to the
viewpoint of the associated color camera.

Considering the length of Kinect v2 camera, the baseline
distance between the two RGB-D cameras is set at 29 cm.
Such a long baseline would cause more incorrect warping

locations during calibration process, e.g., some background
pixels would appear in the foreground areas after warping.
To handle this, we remove some background pixels that likely
belong to occluded areas by comparing the current depth value
with the average of its neighboring pixels in a local window.

1) Results on Multi-View Images: Fig. 9 shows depth recov-
ery results on three datasets captured by the stereo RGB-D
camera rig. The stereo depth images are recovered by solv-
ing the AR-based multi-view depth recovery model in Eq. (9).
For the recovery of each view, the warped depth image from
the other view is also used as observed depth samples. Note
that large areas with missing depth values appear around depth
discontinuities because of occlusions. As a result, as shown in
Fig. 9 (b) and (c), the fusion of multi-view depth images pro-
vides denser depth samples, which makes depth recovery less
of an ill-posed problem. Figure 9 (d) and (e) show the recovery
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Fig. 9. Multi-view depth maps recovery on real datasets: (a) color image; (b) the depth maps of current view; (c) the fused depth maps from multi-view depth
observation; (d) recovered results using the depth maps in (b); (e) recovery results using fused depth maps in (c). For visual inspection, regions highlighted

by rectangles are enlarged.

results from the observed depth maps in Fig. 9 (b) and (c),
respectively. For all the three datasets, the results recovered
from multi-view depth images have better quality than the
recovery from single view alone. For example in the first
dataset, without multi-view information, jaggy artifacts appear
around the leg of the girl. In other two datasets, due to the large
set of missing depth values (of width 20 missing pixels on
average), the contours of the boys’ head cannot be recovered
correctly (in Fig. 9 (d)). On the contrary, as shown in Fig. 9 (e),
the contour of the heads are correctly recovered thanks to the
incorporation of interview information, which illustrates the
effective of our extended AR-based depth recovery model with
multi-view depth images.

2) Results on Multi-View Depth Videos: For evaluation, two
stereo depth videos are captured by our RGB-D camera rig,
named Meeting and Yoga as shown in Fig. 10. Consecutive 30
frames are used for each dataset. We compare our ARMDVR
model in Eq. (11) with weighted mode filtering (WMF) [18],
the state-of-the-art video super-resolution method. Besides, the
AR-based multi-view depth image recovery model in Eq. (9)
applied frame by frame is also compared to demonstrate the

advantageous of the proposed ARMDVR model considering
temporal information. The parameters in the WMF method are
set according to [18].

The recovered results on the 3™ and 6 frames for Yoga,
and the 8™ and 11" frames for Meeting, are shown in Fig. 10.
For the frame-wise application of AR-based multi-view depth
image recovery, the results are subject to severe flickering arti-
facts in the background and particularly on the regions around
depth discontinuities due to the ignorance of temporal consis-
tency. For example, the contour of the man’s head in Meeting
is not consistent across the two frames, and the thin structure
of handrail in Meeting can not be restored in 11" frame. Both
the proposed ARMDVR model and WMF integrate temporal
information. However, WMF generates blurry and less tem-
porally consistent results than ours, particularly around thin
structures. Note that the rapid movement of the speaker’s hand
in Meeting leads to blurring in color frames. The simple opti-
cal flow used in WMF cannot estimate the motion accurately,
which result in the ambiguity of depth estimation (the bot-
tom row). Our method refines optical flow results to yield a
more precise correspondence, and generates more temporally
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(d)

Fig. 10. Multi-view depth videos recovery results on the dataset Meeting and Yoga. (a) and (b) shows 3" and 6 frames picked from Meeting, while (c) and
(d) shows 8" and 11" frames from Yoga. From top row to bottom row displays color frames, recovered results by spatial AR model (Eq. (9)), ARMDVR,

and WMF [18], respectively.

consistent high-quality depth frames than WMF (shown in the
third row).

Finally, we use the MAD values between neighboring
frames as an objective metric to evaluate temporal consistency
of the recovered results. Note that the difference originates

from two parts, i.e., temporal flickering and object motion.
Assuming that object motion is generally significant enough to
be estimated, results with smaller MAD values are considered
to have less flickering artifacts. Table III shows MAD values
between 3"-6" frames for Meeting and 8"-11" frames for
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TABLE III
OBJECTIVE COMPARISON (IN MAD) BETWEEN NEIGHBORING FRAMES
ON 3RP_6™ FRAMES FROM Meeting AND 8TH-11TH FRAMES FROM Yoga

Spatial AR WMF ARMDVR
Index
Yoga | Meeting | Yoga | Meeting | Yoga | Meeting
1 0.525 1.096 0.225 0.510 0.195 0.493
2 0.532 0.923 0.278 0.381 0.204 0.362
3 0.528 0.844 0.230 0.442 0.199 0.425

Yoga, respectively. The results in Table III is consistent with
the analysis above and with visual observation as well. The
framewise AR-based multi-view depth image recovery model
in Eq. (9) has the largest MAD values, corresponding to severe
flickering artifacts, while our ARMDVR has the lowest MAD
values for all cases, indicating temporally consistency.

VII. CONCLUSION

In this paper, we present the ARSDIR and ARMDVR frame-
works for single depth image recovery and multi-view depth
video recovery, respectively. We derive fixed-point iteration
algorithms to efficiently solve the global AR-based depth
recovery models. Besides, the connections between our model
and other closely-related methods are discussed. Experimental
results demonstrate that our algorithms inherit the advantage of
global AR-based modeling, exploit low-complexity filtering-
based approach with observation recurrence and residue feed-
back to approximate the global optimum, and could be
analyzed and improved via graph-model tools.

Regarding the future work, an interesting direction is to
explore more depth cues, such as object motion and stereo
parallax, and to incorporate them into the proposed frame-
work to improve the depth estimation result. Besides, we can
also resort to some recent work on graph model, e.g., [52], to
further improve the performance.
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