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Abstract
The dominant navigation system for small civilian UAVs today is based on integration of

inertial navigation system (INS) and global navigation satellite system (GNSS). This strategy

works well to navigate the UAV, as long as proper reception of GNSS signal is maintained.

However, when GNSS outage occurs, the INS-based navigation solution drifts very quickly,

considering the limited quality of IMU(s) employed in INS for small UAVs. In beyond visual line

of sight (BVLOS) flights, this poses the serious danger of losing the UAV and its eventual falling

down. Limited payload capacity and cost for small UAVs, as well as the need for operating in

different conditions, with limited visibility for example, make it challenging to find a solution

to reach higher levels of navigation autonomy based on conventional approaches. This

thesis aims to improve the accuracy of autonomous navigation for small UAVs by at least

one order of magnitude. The proposed novel approach employs vehicle dynamic model

(VDM) as process model within navigation system, and treats data from other sensors such as

IMU, barometric altimeter, and GNSS receiver, whenever available, as observations within

the system. Such improvement comes with extra effort required to determine the VDM

parameters for any specific UAV. This work investigates the internal capability of the proposed

system for estimating VDM parameters as part of the augmented state vector within an

extended Kalman filter (EKF) as the estimator. This reduces the efforts required to setup

such navigation system that is platform dependent. Multiple experimental flights using two

custom made fixed-wing UAVs are presented together with Monte-Carlo simulations. The

results reveal improvements of 1 to 2 orders of magnitude in navigation accuracy during

GNSS outages of a few minutes’ duration. Computational cost for the proposed VDM-based

navigation does not exceed 3 times that of conventional INS-based systems, which establishes

its applicability for online application. A global sensitivity analysis is presented, spotting the

VDM parameters with higher influence on navigation performance. This provides insight

for design of calibration procedures. The proposed VDM-based navigation system can be

interesting for professional UAVs from at least two points of view. Firstly, it adds little to no extra

hardware and cost to the UAV. Secondly and more importantly, it might be currently the only

way to reach such significant improvement in navigation autonomy for small UAVs regardless

of visibility conditions and electromagnetic signals reception. Possibly, such environmental

condition independence for navigation system may be needed to obtain certifications from

legal authorities to expand UAV applications to new types of mission.

Key words: UAV, Navigation, Vehicle Dynamic Model, GNSS Outage, Inertial, Kalman Filter
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Résumé
Le système de navigation dominant pour les drones civils de petite taille est basé aujourd’hui

sur l’intégration d’un système de navigation inertielle (Inertial Navigation System : INS) et

du système mondial de navigation par satellites (Global Navigation Satellite System : GNSS).

Cette stratégie fonctionne correctement pour la navigation des drones, tant qu’une réception

correcte des signaux GNSS est maintenue. Toutefois, lors de la perte de ces signaux, la solution

de navigation basée sur l’intégration d’un système de navigation inertielle diverge très rapide-

ment en raison de la qualité limitée de la centrale inertielle (Inertial Measurement Unit : IMU)

employée dans les systèmes de navigation inertielle pour les drones de petites taille. Les vols

opérés sans contact visuel avec le drone présentent un risque élevé de perte et de chute au

sol ultérieure. La charge utile limitée et le coût des drones de petite taille, ainsi que le besoin

d’opérer sous différentes conditions, avec une visibilité limitée par exemple, rendent difficile

l’utilisation des méthodes conventionnelles pour atteindre des niveaux élevés de navigation

autonome. Cette thèse a pour but d’améliorer la précision de la navigation autonome pour

les drones de petite taille, d’au moins un ordre de magnitude. L’approche proposée emploie

le modèle dynamique d’un véhicule (Vehicle Dynamic Model : VDM) comme modèle du

processus au sein du système de navigation, et traite les données des capteurs comme des

IMUs, un altimètre barométrique, et un récepteur GNSS, quand disponible, comme modèle

d’observation du système. Une telle amélioration requière des efforts supplémentaires pour

déterminer les paramètres VDM pour n’importe quel drone. Cette thèse explore la capacité

du système proposé à estimer les paramètres VDM comme faisant partie d’un vecteur d’états

augmenté au sein d’un filtre de Kalman étendu (Extended Kalman Filter : EKF) comme esti-

mateur. Ceci réduit les efforts requis pour mettre en place un tel système de navigation qui

est dépendant de la plateforme utilisée. Plusieurs vols expérimentaux utilisant deux drones

personnalisés à aile fixe sont présentés avec des simulations de Monte-Carlo. Les résultats

révèlent une amélioration d’un à deux ordres de magnitude dans la précision de la navigation

sujette à un système GNSS défaillant pendant quelques minutes. La charge de calcul pour

la navigation proposée basée sur VDM n’excède pas trois fois celle d’un système basé sur

un INS conventionnel, ce qui souligne son applicabilité pour des applications en temps réel.

Une analyse globale de sensibilité est présentée, qui permet d’identifier les paramètres VDM

possédant une influence élevée sur la performance de la navigation. Ceci donne une intuition

pour la conception d’une procédure de calibration. Le système de navigation VDM proposé est

intéressant pour des drones professionnels sur au moins deux aspects. Premièrement, son im-

plémentation ne requiert pas ou peu d’équipement additionnel et n’implique aucun surcoût.
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Deuxièmement et encore plus important, il est peut-être actuellement la seule solution pour

atteindre une amélioration si significative dans la navigation autonome de drones de petite

taille sans se soucier des conditions de visibilité et réceptions des signaux électromagnétiques.

Il est possible qu’une telle indépendance des conditions environnementales pour un système

de navigation soit nécessaire pour obtenir des certifications émanant d’autorités légales pour

accroître l’application des drones dans de nouveaux types de mission.

Mots clefs : Drones, Navigation, Modèle dynamique d’un véhicule, GNSS défaillant, Inertiel,

filtre de Kalman
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Introduction

Context

INS1/GNSS2 (INS-based navigation, in general) is the dominant navigation system for small

UAVs3 today [57, 9]. In such a system, INS provides autonomous PVA4 solution with high

frequency (typically 50 to 500 Hz for UAVs) in a dead reckoning fashion. This PVA solution gets

updated in a navigation filter whenever observations from other sensors/sources are available.

The most common navigation aid comes from GNSS receivers, which in loosely coupled

scheme consists of PVT5 solution at a lower frequency (1 to 10 Hz, normally). The integration

of these data types can provide solutions with sufficient short-term and long-term accuracy

for many applications. Since IMU6 is an environment dependent sensor (its measurements

do not depend on external infrastructures or electromagnetic signal reception, for example),

INS offers “autonomous navigation”. Another common aiding sensor is barometer providing

altitude data autonomously.

During regular presence of GNSS observations, conventional INS-based navigation provides

sufficient accuracy for most applications within reasonable expectations from the sensor setup.

However, navigation faces serious challenges when GNSS outage happens [46, 80, 30]. This is

not a rare situation and can happen due to intentional corruption of GNSS signals (jamming

and spoofing), or loss of direct line of sight to the satellites, or unintentional electromagnetic

interference in satellite signal reception [27]. In such cases, navigation is continued based on

stand-alone INS with possible aiding from navigation aids such as barometric altimeters. The

accuracy of the data provided by INS is directly determined by the quality of the IMU(s) that

is used in the system. The long-term accuracy of 3D7 inertial coasting based on small and

low-cost IMUs available for small UAVs today is so low that after only seconds or a minute of

1Inertial Navigation System
2Global Navigation Satellite System
3Unmanned Aerial Vehicle
4Position, Velocity, and Attitude
5Position, Velocity, and Time
6Inertial Measurement Unit
7Three Dimensional
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GNSS outage, the position uncertainty is too far from being of practical use. If this “drift” is

not controlled by some other means in case of long outages in BVLOS1 flights, the UAV gets

quickly lost in space [8], posing dangers on people, animals, or objects on ground. This is one

of the reasons why operation of MAVs2 is limited to VLOS3 in most developed countries (e.g.,

USA [1], Canada [10], and a large part of the EU [51]).

Research Objectives

There are mainly two categories of approaches to address the problem of rapid drift of nav-

igation solution for small UAVs during GNSS outages. The first is trying to improve sensor

error modeling (with IMU in focus) using advanced techniques [58, 54, 55], and the second

one is employing additional sensors to aid the system [82, 48, 77]. The first approach, essen-

tially, can only improve modeling and compensation for time-correlated errors. It cannot

help with time-uncorrelated errors, which in many cases is a main contributor of low-cost

inertial sensors errors. In general, this approach does not provide qualitatively sufficient

improvements for UAVs to overcome problems in GNSS outage conditions. Solutions related

to the second approach add cost, weight, and complexity to the system, and more importantly,

their performance may depend on environmental conditions that are not met all the times,

which challenges the autonomy of the navigation system. A widely used (yet partial) solution

of the second category is employing vision based methods that provide relative or absolute

measurements to inertial navigation [80, 11, 3, 69]. Apart from adding extra weight and hard-

ware and software complications, their correct functioning requires some prerequisites on

light, visibility, and terrain texture. While very attractive in nominal scenarios, they might not

work reliably, for example, at night or in foggy conditions or over ground with uniform texture

(vegetation, water, snow, etc.).

The main objective of this research is to introduce a navigation algorithm that considerably

(i.e., at least by one order of magnitude) mitigates the quick drift of low-cost inertial navigation

during GNSS outage in airborne environment, while preserving the navigation autonomy

and avoiding additional sensors and thus extra cost and weight. Ideally, the effort required to

design and implement such a navigation system is kept reasonably low so it can be practically

adopted for small UAVs. A suitable solution of such kind can be extremely beneficial for

increasing the reliability of autonomous navigation of small UAVs.

Approach

UAV is a physical system that can be associated with a dynamic model (called VDM4 through-

out this thesis) that provides some information on its behavior. This fact is totally ignored

1Beyond Visual Line Of Sight
2Micro Aerial Vehicle
3Visual Line Of Sight
4Vehicle Dynamic Model
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by conventional (INS-based) navigation systems, which are fundamentally based on sensor

data. Even in their process models, INS-based navigation filters still rely on sensor data from

IMU(s). This means that all the knowledge on dynamic behavior of the UAV, which is basically

available for free from hardware point of view, is not used in navigation. In other words, the

physical constraints on UAV motion are not considered, meaning that any physically impos-

sible motion suggested by the sensors due to their errors is accepted within the navigation

system.

The primary idea of this research is to integrate the knowledge on dynamic behavior of the

UAV for improving the quality of navigation (in terms of PVA determination) with emphasis on

improving positioning accuracy in GNSS outage conditions. The “price to pay” is to drop the

very attractive property of INS-based navigation systems from design point of view, which is

platform independence. INS-based navigation systems can be used on any platform without

knowing anything about it, as long as the sensor setup is suitable for the operation conditions

(such as maximum speed for GNSS or acceleration for IMU). VDM-based navigation on

the other hand, requires some knowledge on the specific platform navigation for which is

intended.

Thesis Outline

The thesis is structured in 4 parts, comprising 7 chapters in total.

Part I: Preliminaries

This part provides background material related to integrated navigation and dynamic model-

ing.

• Chapter 1: Essential aspects of integrated navigation are reviewed. A general description

of INS and GNSS as the main players in integrated navigation of UAVs today is provided,

along wide fundamental definitions and models used in INS-based navigation systems

that are expandable to VDM-based navigation. Kalman filter as the most frequently used

estimator is then briefed, followed by some notes on modeling techniques for stochastic

sensor errors.

• Chapter 2: A brief overview of classical mechanics and flight aerodynamics is presented,

as the requirements for deriving the VDM for a UAV. Advantages of different formulations

of classical mechanics and their relevance to different situations in dynamic modeling

are also briefly discussed.

Part II: VDM-Based Navigation Framework

The main contribution of the thesis is presented in this part, which is the development of the

VDM-based navigation.

• Chapter 3: The theory of VDM-based navigation is developed and presented in general

3
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form for aerial applications. Navigation system architecture is detailed, followed by

presentation of process models for all the augmented states and the observation models

for all the sensors employed in the research, considering their errors and mounting

misalignments.

• Chapter 4: The general VDM-based navigation introduced in Chapter 3 is applied to a

specific fixed-wing platform with a single propeller in front and four (or five) control

surfaces (two [coupled] ailerons, an elevator (or two coupled ones), and a rudder).

The experimental setup used in the research is detailed, followed by description of

navigation filter setup.

Part III: Results and Analyses

Simulation and experimental results are presented and analyzed in this part.

• Chapter 5: Results and analyses of applying VDM-based navigation to the specific UAV

introduced in previous chapter are presented. At the first stage, proof of concept is

established via Monte-Carlo simulations. Effects of wind velocity on the performance of

the navigation system are also evaluated via Monte-Carlo simulations. Experimental

results from flights of two platforms of the same type are then presented to backup the

simulation results and reveal practical details about navigation performance.

• Chapter 6: Some further analyses of VDM-based navigation are presented. First, a

global sensitivity analysis is presented to reveal the most and the least influential VDM

parameters for the specific UAV used in the research, results of which can potentially

assist the VDM calibration. Afterwards, a navigation scenario without IMU is presented

to assess the ability of VDM-based navigation in attitude estimation in absence of IMU

data, which could have practical application in case of IMU failure or malfunction.

Finally, a brief discussion on computational cost of VDM-based navigation is presented,

with comparison made to INS-based navigation.

Part IV: Conclusion Remarks

This short part, contains conclusion remarks from the conducted research in Chapter 7,

followed by some suggestions for the future research on the subject.

4



Part IPreliminaries

5





1 Integrated Navigation

Overview

Integrated navigation can be viewed as an estimation problem to optimally combine data

from different sources and deliver navigation information such as position and attitude.

Among others, this task requires relevant modeling of stochastic errors of input data. This

chapter establishes preliminary materials on essential aspects of integrated navigation.

Most wordings and equations on “attitude representations”, “frames definition”, and

“stochastic processes” are borrowed from [71]. The same is true for [23] regarding “esti-

mation methods”.

The term “navigation” is commonly understood as determination of position, velocity, and

attitude (referred to as “navigation states” hereinafter) of a moving platform. Occasionally,

this term is used equivalently as guidance, which usually refers to designing/planning desired

navigation states along the mission, further aimed to reach by the control system using

actuators to manipulate the motion of platform/vehicle. Throughout this document, the first

meaning of navigation is always meant.

Navigation is performed based on data/information available from different sensors and

models. A navigation system that fuses data/information from two or more sources is called

an “integrated navigation” system [20, 21, 26, 63, 74]. The main motivation behind performing

integrated navigation is to increase accuracy and reliability of navigation through combining

usually complementary benefits of different sensors/models. Sensors/models can have differ-

ences in terms of short-term and long-term accuracy, autonomy, relativeness or absoluteness

of provided data, navigation states they cover, data frequency, working conditions, resilience

to environmental disturbances, and so on.

INS/GNSS is probably the most frequently used and well known integrated navigation system

for outdoor applications in terrestrial, aerial, and marine applications [20, 21, 26, 63, 74]. As

the navigation concept proposed in this thesis is closely related to INS-based navigation and

INS/GNSS integration, fundamentals of the latter are briefly presented in this chapter, along

7



Chapter 1. Integrated Navigation

with some estimation methods and sensor error modeling techniques. This presentation is not

exhaustive, as it is meant to only provide sufficient basis for introduction of the VDM-based

navigation as the main contribution of this research.

1.1 Fundamentals of INS-based Navigation

Based on data coming from IMU, namely specific forces and rotation rates/angular velocities,

standalone or aided INS provides determination of PVA at high rates. INS is a dead reckoning

system, meaning it calculates navigation states based on the solution of a previous time and

the knowledge/estimation on the rate of change of this solution (velocity/acceleration) over

the passed interval. While INS autonomously provides high frequency (50 to 2000 Hz, typically)

PVA solution with good short term accuracy, it is prone to drift due to its dead reckoning nature

that integrates not only the true signal measured by the IMU, but also the accompanying

error. This solution, therefore, gets updated using other sources (navigation aids) whenever

available. For outdoor applications, GNSS is usually the main and minimum navigation aid.

GNSS provides absolute PVT solution with good long term accuracy at lower frequencies,

provided that signals from sufficient number of satellites are well received.

1.1.1 Coordinate Systems

A coordinate system provides a parameterization of position of any point in space. In navi-

gation, two frequently used coordinate systems are Cartesian and ellipsoidal systems, both

depicted in Figure 1.1.

Cartesian Coordinate System

In a 3D Cartesian coordinate system, position of a point p is determined by a vector
[
x, y, z

]T

containing its signed distances (the coordinates) from an origin point O along three mutually

orthogonal axes x, y, and z. For simplicity, sometimes the same notation is used for both

the coordinates and the axes. This, however, does not normally make an ambiguity and the

meaning is well understood in the context. If directions of x, y, and z axes obey the right hand

rule, the coordinate system is called “right handed”, otherwise it is “left handed”. Throughout

this thesis, all the Cartesian coordinates are right handed.

Ellipsoidal Coordinate System

An ellipsoidal coordinate system, is set up in relation to Cartesian coordinates and is based on

an ellipsoid of revolution with semi-major axis a along x and y and semi-minor axis b along z.

Ellipsoidal coordinates of a point p are expressed as
[
φ,λ,h

]T representing latitude, longitude,

and altitude (height), respectively. Although the definitions related to this frame should

be clear from Figure 1.1, more formal definitions and transformations to/from Cartesian

8
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φ
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x

x
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Rp

Figure 1.1 – Cartesian (x, y, z) and ellipsoidal (φ,λ,h) coordinate systems (adapted from [32])

coordinates can be found in [32].

1.1.2 Attitude Representation

Among several representations of attitude of a reference frame1 (or an object) with respect

to another one, three are frequently used in navigation, namely rotation matrix (or direction

cosine matrix), Euler angles, and quaternion. These three representations are reviewed in this

section, with most wordings and equations borrowed from [71].

Vectors can be expressed in different reference frames, which are indicated as a superscript.

For example, xa represents vector x expressed in a-frame.

Rotation Matrix

A rotation matrix is a matrix transforming a vector expressed in a Cartesian frame b to the same

vector expressed in another Cartesian frame a, and throughout this document is denoted as

Ca
b , where

xa =Ca
b xb . (1.1)

1A reference frame is a specific realization of a coordinate system. More details and definitions of the ones
used in this thesis are presented in Section 1.1.3

9
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The matrix Ca
b is an orthonormal matrix, therefore

(
Ca

b

)T = (Ca
b

)−1 =Cb
a and det

(
Ca

b

)= 1. The

columns of Ca
b matrix represent the unit vectors of b-frame projected along a-frame axes, or

cosines of the three angles between each unit vector of b-frame and the three axes of a-frame.

In other words, the element of the i th row and j th column of Ca
b is the cosine of the angle

between the i th axis of a-frame and the j th axis of b-frame. This is why Ca
b is also called a

DCM1.

Euler Angles

The rotation from b-frame to a-frame can be performed by three sequential elementary

rotation matrices, denoted as Ci (·) : i = 1,2,3, associated to three Euler angles often called roll

(r ), pitch (p), and yaw (y) in navigation, and performed about associated axis of the rotated

frame. The composed rotation is then given as following.

Ca
b =C1(r )C2(p)C3(y)=

⎡
⎢⎣

1 0 0

0 cosr sinr

0 −sinr cosr

⎤
⎥⎦
⎡
⎢⎣

cos p 0 −sin p

0 1 0

sin p 0 cos p

⎤
⎥⎦
⎡
⎢⎣

cos y sin y 0

−sin y cos y 0

0 0 1

⎤
⎥⎦ (1.2)

Similarly, the inverse transformation can be obtained as

Cb
a =

(
Ca

b

)T =CT
3 (y) CT

2 (p) CT
1 (r ). (1.3)

Quaternions

Instead of describing rotations between two frames using the Euler angles, quaternions can be

used with some advantages (see [2], for example). A quaternion is a four-parameter attitude

representation method based on Euler’s theorem, which states that a transformation from

one reference frame to another can be performed by a single rotation of magnitude ||u|| about

the vector u= [
ux ,uy ,uz

]T [75]. The four elements of the quaternion, denoted here by the

symbol q, are functions of the vector u and the magnitude of rotation as

q=

⎡
⎢⎢⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos
( ||u||

2

)
(

ux
||u||

)
sin

( ||u||
2

)
(

uy

||u||
)

sin
( ||u||

2

)
(

uz
||u||

)
sin

( ||u||
2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1.4)

where ||u|| =
√

u2
x +u2

y +u2
z .

The operations of addition, subtraction, and multiplication by a scalar are done in the same

manner as in vector algebra. The quaternion multiplication of q= [
q0, q1, q2, q3

]T with an-

1Direct Cosine Matrix

10



1.1. Fundamentals of INS-based Navigation

other quaternion p= [p0, p1, p2, p3
]T , denoted by the symbol ⊗, is defined as following.

q⊗p=

⎡
⎢⎢⎢⎢⎣

q0p0−q1p1−q2p2−q3p3

q0p1+q1p0+q2p3−q3p2

q0p2+q2p0−q1p3+q3p1

q0p3+q3p0+q1p2−q2p1

⎤
⎥⎥⎥⎥⎦ (1.5)

Extensive details about quaternion algebra can be found in [2, 75]. The relationship between

the rotation matrix Ca
b and its corresponding attitude quaternion qa

b is

Ca
b = f(qa

b )=

⎡
⎢⎣

q2
0 +q2

1 −q2
2 −q2

3 2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3+q0q1) q2
0 −q2

1 −q2
2 +q2

3

⎤
⎥⎦ . (1.6)

Rotation of Reference Frames

Reference frames may rotate arbitrarily with respect to each other. In order to study motions

of reference frames experiencing such relative rotations, it is necessary to calculate derivatives

of attitude representations.

If the vector ωb
ab = [ω1,ω2,ω3]T represents the angular velocity (rotation rate) of b-frame with

respect to a-frame and expressed in b-frame, time-derivative of rotation matrix Ca
b is given

as [21]

Ċa
b =Ca

bΩ
b
ab , (1.7)

where Ωb
ab is the skew-symmetric matrix representation of associated ωb

ab = [ω1,ω2,ω3]T

vector as

Ωb
ab =

[
ωb

ab×
]
=

⎡
⎢⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎥⎦ . (1.8)

The time-derivative of Euler angles can be shown to be calculated as following [75].

ṙ =ω1+ (ω2 sinr +ω3 cosr ) tan p

ṗ =ω2 cosr −ω3 sinr (1.9)

ẏ = (ω2 sinr +ω3 cosr )sec p

Note that the well known singularity of Euler angles can be seen in Equation (1.9) when

p =±π/2.

11



Chapter 1. Integrated Navigation

Finally, the time-derivative of quaternion qa
b is expressed as [75]

q̇a
b =

1

2
qa

b ⊗
[
ωb

ab

]
q

, (1.10)

with
[
ωb

ab

]
q
= [0,ω1,ω2,ω3]T being the quaternion equivalent of ωb

ab = [ω1,ω2,ω3]T .

At points, it may be necessary to transform an angular velocity vector or its skew-symmetric

matrix representation from one reference frame to another. In case of an angular velocity

vector, this can be done in the same way it is done for any vector using rotation matrices as

expressed in Equation (1.1).

ωc
ba =Cc

dω
d
ba . (1.11)

For the skew-symmetric matrixΩd
ba , such transformation can be done as following.

Ωc
ba =Cc

d Ω
d
ba Cd

c (1.12)

1.1.3 Frames Definition

A reference frame is a specific realization of a coordinate system, with a well defined origin

and axes. In INS-based navigation, five reference frames are frequently used. These reference

frames and the wind-frame, later used in VDM-based navigation, are briefly defined as follow-

ing, with most wordings borrowed from [71]. More details on definition of these frames can be

found in [32, 71].

Inertial Frame (i-frame)

Inertial frame is a non-accelerating and non-rotating reference frame that is at rest or subject

to a uniform translational motion. In such a frame, the laws of Newtonian mechanics are valid.

Considering the limited resolution and accuracy of most sensors today and the tolerance for

the resulting errors, an inertial frame is approximated as a celestial frame with origin at the

center of mass of the Earth, such that the xi axis points towards the vernal equinox and is,

thus, the intersection line between the equatorial and the ecliptic plane, the zi axis points

towards the mean celestial pole, and the yi axis completes the 3D right-handed Cartesian

system [71]. Figure 1.2 depicts the i-frame, as well as e-frame, l-frame, and b-frame, defined in

the following.

Earth Frame (e-frame)

Earth frame frame with origin at the center of mass of the Earth, such that the xe axis points

towards the Greenwich meridian, the ze axis points towards the mean direction of the rotation

axis of the Earth, and the ye axis completes the 3D right-handed Cartesian system. This

12



1.1. Fundamentals of INS-based Navigation

O

zi , ze

xe

ye

xl

zl

yl

xi

yi

yb

xb

zb

(east)
(north)

(vernal equinox)

(Greenwich meridian)

Figure 1.2 – Inertia (i ), Earth (e), local-level (l ), and body (b) frames

frame is therefore an ECEF1 frame. Examples of important realizations are the ITRF2 and the

WGS3-84 being the reference frame of GPS4. Any point in this frame can be expressed either in

Cartesian coordinates
[
xe , ye , ze

]T , or ellipsoidal coordinates
[
φ,λ,h

]T [71].

Local-Level Frame (l-frame)

Local-level frame is a local geodetic frame with arbitrary origin, for example a point on

the Earth surface, such that the xl axis points to geographical north, the yl axis points to

geographical east, and the zl axis points down along ellipsoidal normal. The NED5 frame is

right-handed. To be strictly correct, this frame should be called ellipsoidal tangential frame

rather than local-level frame. However, for the purpose of navigation, the difference between

astronomical and ellipsoidal local-level frames can be neglected [71]. Therefore, throughout

the rest of this thesis, the local-level frame or local frame refers to the ellipsoidal NED frame.

Body Frame (b-frame)

The body frame is a frame attached to the body of the object/vehicle. The usual convention is

choosing the forward or longitudinal direction of the vehicle for xb axis, while yb axis points

towards right and zb axis is downward. The rotation matrix Cb
l to transform vectors from local-

1Earth Centered Earth Fixed
2International Terrestrial Reference Frame
3World Geodetic System
4Global Positioning System
5North-East-Down
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Chapter 1. Integrated Navigation

level frame to body frame (as vb = Cb
l vl ) is defined as follows, with Euler angles as attitude

parameters and Ci (·) elementary rotation matrices defined in Equation (1.2).

Cb
l =C1(r )C2(p)C3(y) (1.13)

The parameterization of attitude by Euler angles (roll r , pitch p, and yaw y) exhibits a singular-

ity at p =π/2, reason for which alternative ways of attitude representation such as quaternions

are provided in Section 1.1.2.

Note that the axis around which roll angle is measured is the same as the vehicle roll axis (xb),

which is not the case for the other two Euler angles. The axis of pitch angle is the vehicle pitch

axis (yb) rotated back by roll angle. Similarly, the axis of yaw angle is the vehicle yaw axis (zb)

rotated back by roll angle and then pitch angle. This arises some confusions or criticisms

with the widely accepted terminology, as the “rate of change of roll/pitch/yaw angle” is not

generally equal to the “roll/pitch/yaw rate”. One can investigate Equation (1.9) to see that the

two are equal (for arbitrary values of ωi ’s) only when roll and pitch angles are zero.

Wind Frame (w-frame)

Wind frame is not typically used in INS-based navigation, unless air data is also integrated

within the system. However, since this frame will be used in the proposed navigation system,

its definition is presented here.

The airflow around a vehicle (UAV) which is due to the composition of its velocity v and wind

velocity w, is described by the airspeed vector V. The wind frame has its origin coinciding with

that of the body frame and its first axis in the direction of V, and is defined by two angles with

respect to body frame. These angles are called the angle of attack α and the sideslip angle

β, and are depicted in Figure 1.3. The following equation relates UAV’s velocity v and wind

velocity w via airspeed V (see Figure 1.3).

v=V+w (1.14)

This reads in body frame as

vb =Vb +Cb
l wl ⇔ Vb = vb −Cb

l wl ⇔

⎡
⎢⎣

V b
x

V b
y

V b
z

⎤
⎥⎦=

⎡
⎢⎣

vb
x

vb
y

vb
z

⎤
⎥⎦−Cb

l

⎡
⎢⎣

wl
x

wl
y

wl
z

⎤
⎥⎦ . (1.15)

The rotation matrix to transform vectors from body frame to wind frame is defined as

Cw
b =C3(β)CT

2 (α)=

⎡
⎢⎣

cosβ sinβ 0

−sinβ cosβ 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

cosα 0 sinα

0 1 0

−sinα 0 cosα

⎤
⎥⎦ . (1.16)
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v

w
V

α

βxb

yb

zb

Ob

xw

yw

zw

Figure 1.3 – Body (b) and wind (w) frames with airspeed (V), wind velocity (w), UAV velocity
(v), angle of attck (α), and sideslip angle (β)

The airspeed magnitude V , the angle of attack α, the sideslip angle β, and the dynamic

pressure q̄ are defined as follows, where ρ denotes air density. The dynamic pressure will be

used in expressions for aerodynamic forces and moments in Sections 4.1.1 and 4.1.2.

V =
√

V b
x

2+V b
y

2+V b
z

2
, q̄ = ρV 2

2
, α= arctan

(
V b

z

V b
x

)
, β= arcsin

(
V b

y

V

)
(1.17)

Sensor Frame

Sensor frame is a rigidly attached to a sensor with its origin at the observations reference point,

and its axes along principal directions of the sensor, if such directions are defined. For example,

these principal axes for an IMU will be in the direction of single accelerometers/gyroscopes

inside the sensor (assuming perfect orthogonality), along which the accelerations and rotation

rates are expressed by the sensor.

As in general there can be non-orthogonality among the principal directions of a sensor that

prevents defining a Cartesian frame based on those directions, the principal axes in definition

of the sensor frame throughout this thesis are considered to be the ones after taking the

non-orthogonality into account. As discussed in Section 3.5.1, raw data from sensors (IMU)

are compensated for pre-calibrated non-orthogonality [and scale factors], and then they are

assumed to be perfectly orthogonal and forming the sensor frame. As the pre-calibration is

imperfect in general, there will be some residual errors, which are absorbed by the additive

errors considered in observations. This modification of definition is made to avoid defining a

separate reference frame for the sensor either before or after taking non-orthogonality into

account, which would have equivalent result in navigation.
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Chapter 1. Integrated Navigation

In case of some sensors, there is no principal direction, as far as navigation system is concerned.

In case of a GNSS receiver, for example, the observations are only related to the phase center

of the antenna, regardless of its orientation. In these cases, only the origin of the sensor frame

matters and the direction of its axes are arbitrary or irrelevant.

Sensor frames for the sensors used in this thesis are presented in Section 3.4.5.

1.1.4 Inertial Navigation System (INS)

INS is composed of an IMU providing inertial measurements and a computer running a

navigation algorithm to calculate navigation solution based on such measurements. In UAV

applications, the strapdown mechanization is used, in which the inertial sensors are rigidly

attached (strapped down) to the platform. This is as opposed to the gimbaled mechanization,

in which the sensors are mounted on a platform that is mechanically isolated from rotational

motion of the platform thanks to gimbals. In strapdown mechanization, all the inertial mea-

surements are resolved in IMU sensor frame (after compensation for non-orthogonality), that

is normally in a fixed position and orientation relation to the body frame. Unless the body

frame coincides with the sensor frame, the misalignment between the two frames (sensor and

body) needs to be determined and compensated for. The navigation equations are convention-

ally derived assuming that measurements are available in body frame (after applying necessary

compensations). As INS is principally integrating the linear accelerations and rotation rates to

obtain PVA solution, the measurements need to be expressed in navigation frame –the frame

in which the navigation solution is to be determined.

Navigation equations can be derived and then solved in any reference frame, as long as

everything is clearly defined and the equations are treated correctly. Applying the pertinent

transformations, the results will be equivalent regardless of the choice of reference frames.

Therefore, one needs to check which reference frames provide the most helpful representation

of the navigation solution for the intended application. In this research, a set of frames have

been chosen that are usually adopted in aerial navigation and are also beneficial for VDM-

based navigation. Position is stated with respect to e-frame and is expressed in ellipsoidal

coordinate system, as

rl
e =

[
φ,λ,h

]T . (1.18)

Velocity is also stated (measured) with respect to e-frame (ve ), but expressed in l-frame (vl
e ) for

more comprehensive representation. The relation between vl
e and ve is established via the

following rotation.

vl
e = [vN , vE , vD ]T =Cl

e ve (1.19)

Finally, attitude is expressed with respect to l-frame and is represented by the quaternion

ql
b for continuity and computation efficiency benefits. For results representation, though,
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1.1. Fundamentals of INS-based Navigation

Euler angles are used, as they provide a more comprehensible and intuitive representation of

attitude. The INS navigation state vector is then defined as

xl =

⎡
⎢⎣

rl
e

vl
e

ql
b .

⎤
⎥⎦ (1.20)

In order to obtain navigation equations (time-derivative of xl ), Newton’s second law of motion

for a rigid body in i-frame is first considered.

r̈i =Ci
bfb + ği (r). (1.21)

Substituting ri by re =Ce
i ri and considering Equation (1.7) when taking time derivative of Ce

i

gives Newton’s second law of motion in e-frame.

r̈e =Ce
bfb + ğe −2Ωe

ie ve −Ωe
ieΩ

e
ie re (1.22)

Note that in deriving Equation (1.22), the angular velocity of Earth with respect to inertial

frame (Ωe
ie) is assumed to be a constant, which is quite acceptable for navigation purposes.

As both the gravitational acceleration ğe and the centrifugal accelerationΩe
ieΩ

e
ie re are only a

function of position and the main part of both is in the same direction (along xD in l-frame),

they are normally combined to form the local gravity vector ge as

ge = ğe −Ωe
ieΩ

e
ie re . (1.23)

Denoting ṙe by ve and using Equation (1.23) in Equation (1.22), velocity dynamics in e-frame

can be written in a more compact form as

v̇e =Ce
bfb +ge −2Ωe

ie ve . (1.24)

Rewriting Equation (1.24) for vl
e as defined in Equation (1.19) and considering Equation (1.7)

when taking time derivative of Cl
e gives velocity dynamics equation in l-frame as

v̇l
e =Cl

bfb +gl −
(
Ωl

el +2Ωl
i e

)
vl

e , (1.25)

where the angular velocity vectors ωl
i e (angular velocity of Earth expressed in local frame) and

ωl
el (local frame transport rate) are defined as follows, with ωi e = 7.292115×10−5r ad/s being

magnitude of angular velocity of the Earth [59]. The rotation matrix Cl
b is calculated from the

quaternion ql
b using Equation (1.6).

ωl
i e =

[
ωi e cosφ 0 −ωi e sinφ

]T
(1.26)

ωl
el =

[
λ̇cosφ −φ̇ λ̇sinφ

]T
(1.27)

A gravity model for the ellipsoidal local frame can be used to evaluate the gravity vector gl in
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Chapter 1. Integrated Navigation

local frame, for example as proposed by WGS-84 model [59] and used in this research.

Time derivative of position vector rl
e can be expressed as

ṙl
e =D−1vl

e , (1.28)

where the matrix D−1 matrix is defined as

D−1 =

⎡
⎢⎣

1
RM+h 0 0

0 1
(RP+h)cosφ 0

0 0 −1

⎤
⎥⎦ , (1.29)

to convert velocity from Cartesian to ellipsoidal coordinates. The quantities RM = a(1−e2)
(1−e2 sin2(ϕ))3/2

and RP = a

(1−e2 sin2(ϕ))1/2 represent meridian radius of curvature and prime vertical radius of

curvature, respectively, with a being the semi-major axis of the reference ellipsoid and e being

its eccentricity [59].

According to Equation (1.10), time derivative of ql
b as the attitude representative can be

expressed as following.

q̇l
b =

1

2
ql

b ⊗
[
ωb

lb

]
q
= 1

2
ql

b ⊗
[
ωb

ib −
(
Cl

b

)T (
ωl

i e +ωl
el

)]
q

(1.30)

Finally, Equations (1.28), (1.25), and (1.30) can be collected to form the time derivative of INS

navigation state vector1 xl as following.

ẋl =

⎡
⎢⎣

ṙl
e

v̇l
e

q̇l
b

⎤
⎥⎦=

⎡
⎢⎢⎣

D−1vl
e

Cl
bfb − (2Ωl

i e +Ωl
el

)
vl

e +gl

1
2 ql

b ⊗
[
ωb

ib −
(
Cl

b

)T (
ωl

i e +ωl
el

)]
q

⎤
⎥⎥⎦ (1.31)

This is the final form of INS navigation equations in l-frame adopted in this research. As men-

tioned before, INS navigation equations can take different –yet equivalent– forms according

to choices made on coordinate systems, reference frames, and attitude representations.

1.1.5 Global Navigation Satellite System (GNSS)

GNSS is usually the minimum –and the most important– aiding system in INS-based nav-

igation for outdoor applications. GNSS provides range related observations per satellite of

the constellation, usually converted to higher level measurements on absolute PVT solution

1Rigorously defined, states are independent, while the four components of the quaternion ql
b are not, as there

is the unity constraint (||ql
b || = 1). A rigorous way to resolve this issue is replacing the four quaternion states by

three error states for attitude [71]. However, for the sake of implementation simplicity, especially the automated
linearization as described in Section 4.3.3, the four quaternion states are kept in the state vector in this research,
with the unity of quaternions being preserved externally.
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for terrestrial and aerial –and even space– applications, based on triangulation using the

observed pseudo-distances to satellites. Currently, there are four fully or partially operational

constellations [5], namely the American GPS1, the Russian GLONASS2, the European global

satellite-based navigation system (Galileo), and the Chinese BeiDou-2 navigation satellite

system. There are also three regional constellations, namely the Chinese BeiDou-1 navigation

satellite system, the Indian NAVIC3, and the Japanese QZSS4.

Although the principle seems simple and straightforward, algorithmic implementation can be

very complex due to the many systematic and stochastic effects that have to be accounted for,

such as relativistic effects, timing errors on satellite and receiver clocks, atmospheric effects on

signal propagation, multi-path phenomena in signal reception, and low signal power. Today,

there are still ongoing research activities on hardware and software aspects to get the most out

of available signals. Furthermore, the raw observations from GNSS receivers can be processed

in many different ways to get the position/velocity data, from single point positioning to multi-

constellation multi-frequency carrier phase differential methods [5]. Positioning accuracy can

vary from several meters to a few centimeters for kinematic applications.

The level of integration with INS can vary from loosely to tightly coupled schemes, depending

on the internal loops between the two systems. The simplest and most common integration

scheme is loosely coupling, in which each system provide their independent navigation

solutions (PVA for INS and PVT for GNSS) that are then fused together to estimate the final

solution. This is the coupling scheme used in this research. More details on estimation

methods is provided in Section 1.2.

1.2 Estimation Methods

Integrated navigation is essentially an estimation problem to find navigation states (and

perhaps other augmented states) based on fusion of data/information available from sensors

and models. This section provides brief explanation on some estimation methods commonly

used in navigation. Most wordings and formulations are borrowed from [23] with adjustments

in notation.

Estimation is defined in [23] as the “process of extracting information from data –data which

can be used to infer the desired information and may contain error.” This definition may

get further clarified and detailed via definition of an optimal estimator as “a computational

algorithm that processes measurements to deduce a minimum error –in accordance with

some stated criterion of optimality– estimate of the state of a system by utilizing: knowledge of

system and measurement dynamics, assumed statistics of system noise and measurement er-

1Global Positioning System
2GLObal NAvigation Satellite System (read as “GLObalnaya NAvigatsionnaya Sputnikovaya Sistema” in Rus-

sian)
3NAVigation with Indian Constellation
4Quasi-Zenith Satellite System
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Chapter 1. Integrated Navigation

rors, and initial condition information” [23]. From temporal point of view, there are three types

of estimation problems for dynamic systems, namely prediction, filtering, and smoothing, as

schematically depicted in Figure 1.4.

t

Prediction:

Filtering:

Smoothing:

t

t

time span of available
measurement/observation data

Figure 1.4 – Three types of estimation problems (adapted from [23])

When the time at which the estimation is required is outside the time span of available

measurement/observation1 data, the estimation problem is referred to as prediction. In this

case, the state of the system is to be estimated for a future time with respect to the last available

measurement. When the time at which the estimation is required coincides with the last point

of the time span of available measurement data, the estimation problem is referred to as

filtering. In this case, the state of the system is to be estimated for the current time with

respect to the last available measurement. When the time at which the estimation is required

is inside the time span of available measurement data, the estimation problem is referred to

as smoothing. In this case, the state of the system is to be estimated for a time with available

measurements before and after that [23].

Even today after more than half a century since it was first introduced [35], Kalman filter is

probably the most well known and frequently used filtering algorithm in many fields including

aerial navigation. In the rest of this section, the original (linear) Kalman filter and some

extended versions of it for nonlinear systems are briefly introduced.

1.2.1 Linear Kalman Filter (KF)

Kalman filter was originally developed to solve filtering problem in linear systems. It is the

optimal estimator in such systems, minimizing a weighted scalar sum of diagonal elements of

the covariance matrix of the estimation error after a measurement is applied, or equivalently,

the length of the estimation error vector [23].

1Throughout this thesis, “measurement” and “observation” are used interchangeably.
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There are several formulations, depending on whether the system dynamics/process model1

and observation equation are available/expressed in continuous or discrete form. In a com-

mon situation in engineering problems, the system dynamic is expressed in continuous

form, while the measurements are available in discrete domain, and estimation is also done

discretely with k denoting the current step (index) in time.

Ẋ= F(t )X+L(t )U+G(t )w (1.32)

Zk =Hk Xk +nk (1.33)

The states are denoted by X, the observations by Z, the deterministic input by U. System

dynamics noise or process noise denoted by w and observation noise denoted by n are both

supposed to follow a Gaussian distribution. The matrices F, L, G, and H are usually called

system dynamics matrix, input matrix, process noise shaping matrix, and observation matrix.

Kalman filter has two separate phases. In prediction phase, the system dynamics is used

to obtain the estimation of the state vector at current step (k) based on all the information

available up to the previous step (k − 1) denoted as X̂k|k−1 and the associated covariance

matrix P̂k|k−1 at current step. In discrete domain, the prediction phase can be formulated as

following.

X̂k|k−1 =Φ(tk , tk−1)X̂k−1|k−1+
∫tk

tk−1

Φ(tk ,τ)L(τ)U(τ)dτ (1.34)

P̂k|k−1 =Φ(tk , tk−1)P̂k−1|k−1Φ
T (tk , tk−1)+Qk,k−1 (1.35)

Here,Φ(t2, t1) is the transition matrix, calculated as following.

Φ(t2, t1)= e
∫t2

t1
F(t )dt (1.36)

The discrete covariance matrix Qk,k−1 accounts for system dynamic uncertainty, calculated as

Qk,k−1 =
∫tk

tk−1

Φtk ,τG(τ)Q(τ)GT (τ)ΦT
tk ,τdτ, (1.37)

where Q(t ) is the spectral density matrix for system dynamic noise vector w. When tk − tk−1

is sufficiently small (depending on the desired precision), a first order approximation can be

used for Qk,k−1.

Qk,k−1 ≈G(tk )Q(tk )GT (tk ) (tk−1− tk ) (1.38)

In the update phase, if available, the measurements Zk and their associated covariance matrix

RK are used to obtain the estimation of the state vector at current step (k) based on all the

information available up to the current step (k) denoted as X̂k|k and the associated covariance

matrix P̂k|k at the current step. In order to do so, the gain matrix needs to be calculated first,

1Throughout this thesis, “system dynamics” and “process model” are used interchangeably.
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as

Kk = P̂k|k−1HT
k

(
Hk P̂k|k−1HT

k +RK
)−1

, (1.39)

where RK is the covariance matrix of measurement noise vector rk . Then the update phase

can be performed as,

X̂k|k = X̂k|k−1+Kk
(
Zk −Hk X̂k|k−1

)
(1.40)

P̂k|k = (I−Kk Hk ) P̂k|k−1 (1.41)

where I denotes the identity matrix [23].

1.2.2 Extended Kalman Filter (EKF)

In many cases, such as navigation, the system dynamic and the observation equations are

nonlinear, as following.

Ẋ= f(X,U, t )+G(t )w (1.42)

Zk =hk (Xk )+nk (1.43)

EKF is one of the extensions of Kalman filter to deal with such nonlinearities. In this method,

f(X,U) and hk (Xk ) functions are linearized as following.

f(X,U, t )≈ f(X̂,U, t )+ ∂f(X,U, t )

∂X

∣∣∣∣
X=X̂, U=U(t )

(
X− X̂

)
(1.44)

hk (Xk )≈hk (X̂)+ ∂h(X)

∂X

∣∣∣∣
X=X̂

(
X− X̂

)
(1.45)

The nonlinear part of the original system dynamics can be expressed as following.

˙̂X= f(X̂,U, t ) (1.46)

Now, two new variables ΔX and ΔZ are introduced, and F and H matrices are defined as

following.

ΔX=X− X̂ (1.47)

ΔZ= Z−h(X̂) (1.48)

F(t )� ∂f(X,U, t )

∂X

∣∣∣∣
X=X̂, U=U(t )

(1.49)

H� ∂h(X)

∂X

∣∣∣∣
X=X̂

(1.50)
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Then, the remaining part of the system dynamics and the observation model form a new linear

system as following.

ΔẊ= F(t )ΔX+G(t )w (1.51)

ΔZk =Hk (ΔXk )+nk (1.52)

In prediction phase, the nonlinear part (Equation (1.46)) is solved in time to obtain X̂k|k−1.

Then the update phase of a linear Kalman filter is applied to the linear system of Equation (1.51)

and Equation (1.52) to calculate ΔX̂k|k assuming ΔX̂k|k−1 = 0. The updated state vector can

now be calculated as following.

X̂k|k = X̂k|k−1+ΔX̂k|k (1.53)

The propagation of covariance matrix is performed in the same manner as in linear Kalman

filter.

1.2.3 Unscented Kalman Filter (UKF)

In EKF, covariance matrix is propagated via an exact method, but applied to a linearized version

of system dynamic, which is accurate only to first order. In case of high nonlinearities, this

may cause high errors and even unstability. UKF on the other hand, features a deterministic

sampling approach to generate a set of points that can capture the mean of the states, as

well as the covariance matrix to the second order. These points are then propagated using

the original [nonlinear] system dynamics, and again collocated to estimate new mean and

covariance. Therefore, the way to represent covariance information (using the spread of a set

of points) is not exact. However, the propagation of such representation occurs via nonlinear

version of system dynamics with no approximations. This can be seen as opposed to EKF,

in which the way to represent covariance information is exact, whereas its propagation is

performed via the linearized model accepting an approximation.

In many cases, UKF has been reported to produce better results, when the system is highly

nonlinear in the time scale of propagation [78]. However, better performance of UKF over EKF

is not always the case [62]. When the duration of propagation at each step (or the sampling

frequency) is short enough and no extraordinary nonlinearity is expected in the system, EKF

may be the preferred choice due to lower computational cost. This is probably the reason

why EKF is still the dominant filtering method in navigation. It is also the preferred choice for

VDM-based navigation in this research. More details on definition and formulation on UKF, as

well as ready to implement explanations can be found in [70].
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1.3 Sensor Error Modeling

Measurements from real sensors always have errors, at least when it comes to continuous

quantities. In this section, a very brief overview of common types of errors encountered in

INS-based navigation and some modeling/estimation techniques is presented.

1.3.1 Systematic and Stochastic Errors

The errors in a sensor data can be divided into two categories of systematic and stochastic

errors. Systematic errors are the ones with predictable behavior and known cause, and are

often constant or changing very slowly. An example is nonorthogonality in IMU data, caused

by physical deviation of sensors triad from mutual orthogonality to some extent. Systematic

errors can usually be measured directly or estimated in a calibration procedure. In such cases,

the errors can be directly compensated. However, this calibration may have not been done

for any sensor used in a setup, or there may be some residual to such errors. In such cases,

these errors can be modeled and be a part of augmented states in the navigation filter to be

estimated/refined.

Stochastic (or random) errors on the other hand, are the ones with unknown causes or very

complicated models, which are often randomly changing over time. These can be further

categorized into time-correlated and time-uncorrelated errors. Time-correlated errors such as

random biases can be part of augmented states in the navigation filter and estimated each time

the navigation is performed. Time-uncorrelated errors, often assumed to be white Gaussian

noise, cannot be estimated by nature and are only introduced to the filter as observation

uncertainty. In any case, performance of filtering depends to a great extent on relevant

modeling of stochastic errors.

1.3.2 Stochastic Processes

Four types of stochastic processes that are frequently used in navigation are white noise,

random bias, random walk, and first order Gauss-Markov process. These are introduced in

this section, with most wordings and equations borrowed from [71]. More details and formal

definitions can be found in [71].

White Noise

Continuous white noise, denoted by W (t), is a stationary process with equal intensity at

different frequencies, resulting in a constant PSD1. Although a white noise process can have

any probability distribution, the Gaussian distribution is often assumed for time-uncorrelated

errors, making it a white Gaussian noise.

1Power Spectral Density

24



1.3. Sensor Error Modeling

The equivalent discrete-time white noise process {Wk : k ∈Z} is defined as the consecutive

averages of W (t) over small periods of time (Δtk = tk − tk−1). A discrete white Gaussian

(normally distributed) noise process Wk with zero mean and variance σ2
W N is denoted by

Wk ∼N
(
0,σ2

W N

)
.

Random Constant (Bias)

A random constant or a random bias, as the name suggests, is a process with constant yet

randomly determined value over time. Therefore, the governing equation in continuous

domain has the form

Ẋ (t )= 0, (1.54)

and the following form in discrete domain.

Xk+1 = Xk (1.55)

The initial condition for this process is often assumed to be follow a Gaussian (normal)

distribution with variance σ2
W N .

Random Walk

A random walk process is the output of integrating a Gaussian white noise in time, with the

following governing equation in continuous domain.

Ẋ (t )=W (t ) for t ∈R. (1.56)

Integrating this equation yields

X (t )=
∫t

t0

W (s)ds (1.57)

with initial condition X (t0), often assumed to be zero. The random walk process is not

stationary.

The equivalent discrete process is the sequence {Xk : k ∈Z} such that

Xk+1 = Xk +Wk , (1.58)

with Wk ∼N
(
0,σ2

RW

)
.
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First Order Gauss-Markov Process

A first order Gauss-Markov process has a first order delay model driven by Gaussian white

noise W (t ). This is equivalent to a first order autoregressive model. The governing equation in

continuous time is as following.

Ẋ (t )=−βGM X (t )+W (t ) for t ∈R, (1.59)

where q = 2σ2
GMβGM with βGM ∈R+ assumed constant in time.

The discrete version is the sequence {Xk : k ∈Z} described by

Xk+1 = e−βGMΔt Xk +Wk , (1.60)

such that Wk ∼N
(
0, qk

)
with

qk =σ2
GM

[
1−e−2βGMΔt

]
. (1.61)

1.3.3 Stochastic Modeling

Consider the sequence {yk : k = 1, . . . , N } representing the observed one-dimensional error

signal of a sensor. This sequence can be seen as a realization of an univariate Gaussian time

series {Yk : k ∈Z} to which the conditional distribution F (Yk |Yk−1,Yk−2, . . . ,θ) with parameters

θ is associated.

Stochastic modeling consists of two main tasks. The first one called model building refers

to determining the types of processes observed within a signal to be modeled, denoted by

F (·). The second task called model estimation refers ot determining the parameters of those

models, denoted by θ.

In this section, some methods for stochastic modeling are briefly presented. First, some of

frequently used traditional methods will be presented, and then a recent and very power-

ful method called GMWM1 [29] will be presented, as the method used in this research for

stochastic modeling of sensor errors.

1.3.4 Traditional Methods

Three of the most frequently used traditional methods for stochastic modeling are mentioned

here.

1Generalized Method of Wavelet Moments
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1.3. Sensor Error Modeling

Signal Autocorrelation Method

Computing the ACF1 of the observed signal {yk : k = 1, . . . , N } may reveal the presence or

the absence of [time-]correlated noise. This modeling technique assumes the noise to be

composed of an uncorrelated and a correlated part. The procedure, described with a detailed

example in [81], consists of low-pass filtering to remove the uncorrelated part, and then fitting

a model to the ACF of the remaining correlated filter output.

Allan Variance Method

In 1998, the IEEE2 standard put forward this technique as a noise identification method to

determine the characteristics of the underlying random processes that perturb data [72].

Let Ȳk (τ) be the sample average of τ consecutive observations.

Ȳk (τ)= 1

τ

τ−1∑
j=0

Yk− j (1.62)

The Allan variance at scale τ, noted as σ2
Ȳ

(τ), aims to measure how much the sample aver-

age Ȳk(τ) changes from one period of time to another. This quantity is defined as half the

expectation of squared differences between adjacent non-overlapping Ȳ (τ):

σ2
Ȳ

(τ)= 1

2
E
[(

Ȳk (τ)− Ȳk−τ(τ)
)2
]

. (1.63)

Several estimators of the Allan variance, noted σ̂2
ȳ (τ), have been proposed. One of the most

efficient ones has been proposed in [25] and can be computed from a realization {yk : k =
1, . . . , N } using

σ̂2
ȳ (τ)= 1

2(N −2τ+1)

N∑
k=2τ

(
ȳk (τ)− ȳk−τ(τ)

)2 . (1.64)

In general, only basic processes are considered with the Allan variance, such as quantization

noise, white noise (also known as angular random walk), bias instability (also known as flicker

noise), random walk (also known as rate random walk), and the random rate ramp. Under

these considerations, θ is usually estimated by performing linear regressions on (visually)

identified linear regions in the Allan variance curve plotted using logarithmic scales. However,

this method is only well defined for these few types of processes and it is not clear how

inference on θ can be made with this approach [28].

1AutoCorrelation Function
2Institute of Electrical and Electronics Engineers
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Power Spectral Density (PSD) Method

The PSD analysis is a convenient method for analyzing and characterizing signals, and for

stochastic modeling. It is especially well suited for analyzing periodic or aperiodic signals.

Similarly to the Allan variance methods, noise coefficients of well defined processes, usually

random walk, flicker noise, white noise, and quantization noise, can be identified by linear

regions in the log-log PSD plots.

1.3.5 Limitations of Traditional Stochastic Modeling Methods

Autocorrelation Method

When several processes are superposed, the ACF does not always enable to clearly separate

them. The estimation of the model parameters becomes challenging or even impossible in

such cases. As an example, the estimation task for a signal consisting the sum of a white

noise and a first order Gauss-Markov process is non-trivial, despite its apparent simplicity.

The low-pass filter design required for isolating the correlated noise part when using the

autocorrelation method is often problematic. This is especially true in cases of more complex

composite models like sums of first-order Gauss-Markov processes.

PSD and Variance Methods

Although the Allan variance (and PSD) method is a well-established technique for identifying

processes and estimating their parameters by performing linear regression of (visually) identi-

fied linear regions in such plots, it suffers from severe drawbacks [28]. The Allan variance (and

PSD) method works reasonably well only for processes which are clearly identifiable and sepa-

rable in the spectral domain. However, it does not allow to directly read out the parameters of

a Gauss-Markov process as large values of β make this process similar to Gaussian white noise,

while small values of β approximate a random walk. Like the autocorrelation method, both

the Allan variance and PSD do not allow the estimation of sums of Gauss-Markov processes.

1.3.6 Generalized Method of Wavelet Moments (GMWM)

GMWM is a recently introduced method for stochastic modeling [29], with many advantages

over traditional methods, from numerical stability and computational inefficiency to statistical

consistency. GMWM makes use of the wavelet varianceto estimate the parameter vector θ

of the complex models F (·) that underlie the observed error. A software was developed

recently in statistical tool R as a calibration platform based on GMWM [12]. Using GMWM

estimator properties, this platform provides some very useful tools for sensor error modeling.

For example, it provides confidence intervals for the parameters, and goodness of fit test

to determine if the selected model with estimated parameters fit well the observed data. It

also provides a criterion to assess the prediction error of the estimated model. Furthermore,
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1.3. Sensor Error Modeling

it allows to rank models of different structures according to an index that penalizes model

complexity and thus over-fitting. In this research, this platform is used for stochastic modeling

of IMU errors. Also, an online version of the tool is available under ggmwm.smac-group.com.

29





2 Basis for Dynamic Modeling of UAVs

Overview

Motion dynamics for a UAV can be described by a model obtained based on the principles of

classical mechanics for rigid bodies and flight aerodynamics to predict forces and moments

acting on a UAV during its flight. This chapter provides a brief presentation of the bases for

dynamic modeling of UAVs employed in this research.

2.1 Classical Mechanics

Classical mechanics is one of the oldest branches of science, studying motion of objects

involving not very small sizes and not very high velocities, which lie in the realms of quantum

mechanics and relativistic mechanics, respectively. The three main formulations for classical

mechanics, leading to equivalent results, are mentioned in the following.

2.1.1 Newtonian-Euler Formulation

Famous Newton’s laws of motion were formulated for point masses, to which only transla-

tional motions were associated. For a rigid body –as a continuous distribution of mass with

fixed distances between any two points in it– there can also be rotational motions. Based

on Newton’s laws of motion, Euler formulated equation’s of motion for rigid bodies. For a

rigid body with mass m under resultant force ΣF, denoting linear/translational acceleration

of its center of mass by aC M , the first Newton-Euler equation, or Newton’s second law for

translational motions, is formulated as following.

ΣF=maC M (2.1)
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The second Newton-Euler equation, or Newton’s second law for rotational motions, is formu-

lated as

ΣMC M = IC Mα+ω× IC Mω, (2.2)

where ΣMC M is the resultant moments applied to the rigid body about its center of mass, ω

is its angular velocity, and α denotes its angular acceleration. The moment of inertia matrix

for the rigid body around its center of mass is denoted by IC M , whose elements are defined

as [73]

Ii j �
∫

V
ρ(r)

(
δi j

3∑
k=1

(x2
k )−xi x j

)
dV , (2.3)

with V being the volume of the rigid body, ρ(r) being mass density as a function of position

of position vector r –from center of mass to any point–, xi being the i th element of position

vector, and δi j denoting Kronecker delta valued 1 for i = j and 0 otherwise.

2.1.2 Lagrangian Formulation

Newton-Euler formulation requires knowledge of all forces, including the ones related to

constraints applied on the body and also the conservative forces, i.e., the ones derived from a

potential filed whose work on the body in displacement from one point to the other does not

depend on the path. Lagrangian formulation, on the other hand, allows to obtain equations of

motion without explicitly expressing these forces.

Another very useful property of this formulation is working with generalized coordinates.

Generalized coordinates are the minimum number of parameters required to uniquely define

the configuration of the body. If there are holonomic constraints applied to the motion,

generalized coordinates implicitly contain those constraints and make the analysis easier due

to reduction in number of coordinates/dimensions (by the numbers of the constraints) and

eliminating the need to apply those constraints separately. Even in absence of holonomic

constraints, specific motions may be expressed more conveniently in coordinates other than

Cartesian, which can be handled using generalized coordinates in Lagrangian formulation

usually in an easier manner compared to Newton-Euler formulation.

If the generalized coordinates are denoted by qi , Lagrangian (L) of the system (which may

consist of more than one body) is defined as the difference between the kinetic energy (T ) and

the potential energy (U ) of the system.

L � T −V (2.4)
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The equations of motion for a system with N generalized coordinates is then states as [24]

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=Qi (for i = 1,2, . . . , N ), (2.5)

where Qi represents the generalized force not arising from a potential field.

2.1.3 Hamiltonian Formulation

Hamiltonian formulation is another formulation of classical mechanics. In this approach, for

a system with N degrees of freedom, the states of are chosen to be N generalized coordinates

qi as in Lagrangian formulation, and N generalized momenta pi , defined as

pi �
∂L

∂qi
. (2.6)

The Hamiltonian of the system is defined as

H(q, p, t )�
N∑

i=1
(pi q̇i )−L(q, q̇ , t ), (2.7)

which often, but not always, corresponds to the total energy of the system T +V .

The Hamiltonian equations of motion are represented as following [6].

q̇i = ∂H

∂pi
(2.8)

ṗi =−∂H

∂qi
+Qi (2.9)

While the equations of motion in Newton-Euler and Lagrangian formulations are represented

by N second order differential equations for a system with N degrees of freedom, Hamiltonian

formulation results directly in 2N first order equations for the 2N states of the system.

In specific problems, Hamiltonian formulation has some implementation and representa-

tion advantages over Lagrangian formulation. However, “the Hamiltonian methods are not

particularly superior to Lagrangian techniques for the direct solution of mechanical problems.

Rather, the usefulness of the Hamiltonian viewpoint lies in providing a framework for theoretical

extensions in many areas of physics. Within classical mechanics it forms the basis for further

developments, such as Hamilton-Jacobi theory, perturbation approaches and chaos. Outside

classical mechanics, the Hamiltonian formulation provides much of the language with which

present-day statistical mechanics and quantum mechanics is constructed” [24].
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2.2 Flight Aerodynamics

Aerodynamic forces and moments are the ones applied on a body immersed in a gas (usually

air) due to interactions between the body and the surrounding gas in relative motion with

respect to one another. Modeling these forces and moments is very challenging in general.

Theoretical approaches to model them, analyze the air (gas) flow around the body, allowing to

determine forces and moments applied on it in the boundaries with the body. According to

Newton’s third law of motion, the forces and moments applied on the body will be the equal

and oppositely directed reactions to those.

The most general governing equation for fluid dynamics often considered in engineering

applications is the Navier-Stocks equation. This equation represents application of classical

mechanics to a fluid flow field, assuming a linear constitutive relation between stress tensor

and rate of strain tensor and constant viscosity parameters η and ζ for the fluid [45].

ρ
Dv

Dt
=−∇p+η∇2v+

(
ζ+ 1

3
η

)
∇(∇·v) (2.10)

In this equation, ρ, p, and v denote density, pressure, and velocity fields, respectively. The

“material derivative” D
Dt is defined as

D

Dt
= ∂

∂t
+u ·∇, (2.11)

with ∇ being the gradient operator, and ∇2 being the Laplace operator defined as ∇2 =∇·∇. In

Cartesian coordinates, ∇ is defined as

∇= i
∂

∂x
+ j

∂

∂y
+k

∂

∂z
, (2.12)

with i, j, and k being the unit vectors in the directions of x, y , and z axes, respectively.

Analytical solution to Navier-Stocks equation is possible only in very specific situations. In fact,

even very fundamental aspects such as existence and uniqueness of solution are still subjects

of open questions. This has been recognized important enough by CMI1 to state it in the year

2000 as one of the seven “Millennium Problems” with a one-million-dollar prize, only one of

which2 solved to date. “The challenge is to make substantial progress toward a mathematical

theory which will unlock the secrets hidden in the Navier-Stokes equations3”[33].

In most cases, this equation, or a simplified version of it (ignoring viscosity or two dimensional

1Clay Mathematics Institute
2Poincaré conjecture
3Restricting the problem to incompressible fluids filling all of Rn
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modeling, for example) is solved via the methods and tools provided by CFD1 [31]. Experimen-

tal derivation of aerodynamic forces and moments is normally performed via wind tunnel

tests, performing of which can be very expensive in terms of time and cost, especially for larger

bodies.

The model for aerodynamic forces and moments used in the dynamic model of the aircraft

is usually represented by a set of equation in polynomial form, relating those forces and mo-

ments to dynamic states (such as velocity) and control commands (such as aileron deflection)

via some coefficients. These coefficients are specific to the aircraft and usually given via exten-

sive lookup tables obtained by CFD analyses or wind tunnel tests or a combination of both.

Depending on the fidelity, accuracy, and simplicity requirements on the final dynamic model

of the aircraft, these coefficients may be considered as constants over operational conditions

(excluding stall conditions, for example). Extensive details on flight aerodynamics can be

found in many references, a commonly referenced one of which being [64].

1Computational Fluid Dynamics
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3 Theory and System Architecture

Overview

The main contribution of this research, development of VDM-based navigation for aerial

applications, is described in this chapter in a general form for aerial applications. The

description is preceded by a review of related work in the literature on some forms of using

VDM within navigation system while establishing the novelties of current research. General

form of the VDM for UAVs and the architecture of the navigation system are detailed,

together with the process models of augmented states, as well as observation models

considering imperfections in measurements and mounting of sensors.

A considerable amount of wordings and equations throughout this chapter are borrowed

form peer reviewed published papers [36, 37, 38, 39, 41] and an under review paper [40].

In this chapter, the proposed VDM-based navigation algorithm is described in detail.

3.1 Related Work

There has been research activities on some forms of integration of VDM into navigation

system in order to improve the navigation accuracy of aerial vehicles, especially in GNSS

outage conditions. Most of these proposed solutions employ INS as main process model

within navigation filter [8, 79, 17], while using VDM output either in prediction phase or

in update phase within the filter (see Figures 3.1 and 3.2, for example). Such approach is

totally IMU dependent and is prone to divergence in case of IMU malfunctions. On the

other hand, high frequency content of IMU error coming from sensor noise or platform

vibrations is integrated within the navigation system, which increases the drift rate for the

navigation solution. Although both INS and VDM have been utilized at the same level in

multi process model architectures by some authors [44] (see Figure 3.1), navigation solution

at the end has been delivered based on filtered INS output and problems of total reliance

on IMU and integration of high frequency error content persist. In many cases, presence of

wind is discarded [8, 79, 17, 15], in-flight estimation of VDM parameters in not provided [8, 79,
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17, 15, 14], or VDM is integrated into navigation only partially [15, 16, 53]. Some researchers

also consider IMUs of higher accuracy [44], which is impractical for small UAVs in terms of

size, weight, and cost. A sample collection of mentioned studies are briefly reviewed in the

following.

One of the earliest studies on integrating VDM in navigation system of UAVs dates back to 1999,

when Koifman and Bar-Itzhack [44] studied the possibility of aiding INS by means of aircraft

dynamics for a fixed-wing platform. They suggested a navigation filter with two simultaneous

process models, VDM and INS, and employed observations from an unspecified source on

horizontal position, horizontal velocity, and attitude of the aircraft within the navigation

system. They also used an altimeter to dampen the vertical channel error in GNSS outage

conditions. Figure 3.1 depicts a simplified version of navigation system architecture in their

research to show the roles of IMU and VDM in determination of PVA solution. The study was

aimed at aiding low-grade INS. However, the proposed error statistics suggested a tactical-

grade INS, a system for which the quality of sensors is higher than those normally available

for small UAVs. Based on simulation results, they concluded that VDM is capable of aiding

INS under specific conditions. Appropriate maneuvering of the aircraft was found to be

necessary to estimate wind velocity and the errors in dynamic model. They reported that if not

estimated, errors of up to 10 percent in dynamic model coefficients led to large accumulation

of navigation errors that make the aiding pointless.

IMU

VDM

Filter

PVA

( )PVA

PVA

Figure 3.1 – Simplified system architecture in [44] showing roles of IMU and VDM in PVA
determination

Bryson and Sukkarieh [8] employed VDM to enhance the observability of sensor errors in INS

within the navigation system inside a fixed-wing UAV. They compared two configurations,

with INS computing the navigation solution in both, where a Kalman filter utilized VDM

output to estimate the error in INS. Figure 3.2 depicts a simplified version of navigation system

architecture in their research to show the roles of IMU and VDM in determination of PVA

solution. In configuration 1, which was found to have a better performance, VDM provided

the navigation filter with velocity and attitude data to estimate sensor errors in the IMU, as

well as velocity and attitude error in INS solution. Configuration 2 utilized acceleration and

rotation rate data from VDM to estimate only the sensor errors in the IMU. Wind was ignored,

and there was no mechanism for VDM parameter estimation.

Crocoll et al. [15] proposed and tested a navigation system for a quadcopter UAV that was
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IMU

VDM

Filter
( , )b b

ibf ( )VA

( )VA

PVA
IMU

VDM

Filter
( , )b b

ibf

PVA

( , )b b
ibf

Configuration 1 Configuration 2

Figure 3.2 – Simplified system architecture in [8] showing roles of IMU and VDM in PVA
determination

aided by a translational dynamics model. The authors unified the VDM and INS before Kalman

filter prediction step to reduce computational cost and improve stability. Their model ignored

rotational dynamics, and no considerable improvement in heading angle estimation was

observed. The effect of wind was also not considered, and a parameter identification step

was required to identify model parameters, which could not be re-calibrated in-flight. This

identification was carried out using measurements from a laser range finder. The in-flight

parameter estimation [16] and wind estimation [52, 53] were integrated into their system in

further developments, which proved the benefits of both in final navigation accuracy. However,

only the translational dynamic model was considered in these studies, as well. The reported

results revealed improvements over unaided navigation system, but probably not enough to

properly guide a UAV in case of GNSS outages of several minutes’ duration.

Sendobry reviewed and classified many studies on using VDM in navigation available in the

literature, and proposed a new approach of own [68]. This approach, along with the one

proposed in [14], may be considered as the closest ones to the one proposed here, in the sense

that inertial measurements are treated as observations and not as a process model. In-flight

parameter estimation was available within the filter, but no estimation on the wind velocity

was considered, and no results on navigation autonomy during GNSS outage was provided.

The algorithm performance was investigated through simulations for a quadcopter UAV.

In his doctoral dissertation, Lennon Cork [14] proposed a VDM-based navigation for a full-size

aircraft (F16). The dynamic model was borrowed from a publicly available NASA technical

report [56], derived from wind-tunnel tests covering a broad range of flight situations, in

form of large lookup tables for aerodynamic coefficients. Constructing such a model for

a small UAV is overly complex and impractical if not practically unfeasible (outside large

companies). In-flight VDM parameter estimation was not proposed, which can become

problematic for small UAVs if the structure undergoes some modifications (body or propeller

repairs altering aerodynamics, payload change, etc.). Wind estimation was also impossible in

absence (or malfunction) of airspeed sensors. Navigation performance of proposed system was

investigated via Monte-Carlo simulations, revealing 4 to 8 times improvement in positioning

accuracy during GNSS outages of up to 3 minutes.
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3.2 Methodology Overview

In this research, a navigation algorithm is proposed that integrates VDM within navigation

system. The main idea behind this algorithm is to benefit from available information on vehicle

dynamic modeling and control input within the navigation system to increase redundancy and

accuracy in PVA determination. Since VDM is a formulation of physical laws on UAV motion,

integration of it can reject parts of impossible motion suggested by sensors (including IMU)

due to their errors, as well as initialization errors. As will be seen in Chapter 5, it significantly

mitigates the drift of autonomous navigation during GNSS outages of a few minutes.

Since VDM is only a mathematical model and relies on no extra sensors, integrating it within

navigation system adds no additional cost and complexity in terms of hardware, which can be

an interesting aspect for small UAVs. VDM needs to be fed with the control input to the UAV,

though, which is principally available in the control/autopilot system. Correct time tagging

of this data in relation to IMU and other observations is required. Wind velocity is another

input that VDM needs, which can be estimated within the proposed navigation system even

in absence of airspeed sensor. In case airspeed sensor is available, the internal estimation

capability of wind estimation adds redundancy to the system that may be beneficial in case

the sensor malfunctions, and better performance is also expected. Detailed evaluation of wind

effects on performance of proposed navigation system can be found in Section 5.2.

A key feature in the proposed solution is VDM acting as the main process model within the

navigation filter, where its solution is updated with raw IMU observations and if available,

observations from GNSS receiver and other sensors (see Figure 3.3). Such architecture avoids

the complications of multi-process-model filters [8, 44] and thus leads to simpler filter imple-

mentation, smaller state vector, and lower computational cost. It is also preferred over the

architectures in which INS is the main process model that gets updated by VDM, due to the

following reasons. In case of IMU failure, the proposed architecture can simply stop using all

or some of inertial observations1, while the architecture with INS as the main process model

will fail. Of course, if the controller or the processing unit fails, VDM no longer works either,

but in such a case the whole system may be lost irrespective of its navigation quality.

On the other hand, the high frequency measurement noise in IMU data contribute to further

drift of the navigation solution when integrated within the navigation filter, as analytically

shown in [67]. The mechanical vibrations on the platform also affect the IMU measurements,

but not the VDM output. If these vibrations were of considerably lower frequencies than

sampling rate of the IMU, they could be properly reconstructed, and thus the navigation

accuracy would not be mitigated. However, these vibrations are mainly related to propellers

spinning, and typically can have frequencies of hundreds of Hz. Depending on the sampling

frequency of IMUs (usually between 50 to 500 Hz), parts of these vibrations may become

aliased noise that further deteriorates navigation performance. Theoretically, this can be

1provided that proper fault detection and exclusion is implemented, which goes beyond the scope of current
research.
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avoided by choosing IMUs with high enough sampling frequency. However, this may not

be affordable in all cases. Therefore, treating the IMU data as observations and avoiding

integration of them as a process model is expected to decrease the error growth in autonomous

navigation.

VDM

IMU

Filter

PVA

( )PVA

,b b
ibf

Figure 3.3 – Simplified system architecture in current research showing roles of IMU and VDM
in PVA determination

The structure of VDM depends on the host platform type (fixed-wing, copter, etc.) and its

control actuators, which is generally described well in the literature [13, 19, 22, 7]. The model

parameters, however, depend on specific platform at hand. These parameters can be either

identified/pre-calibrated, or estimated in-flight. The ability of proposed navigation system for

in-flight parameter estimation minimizes the required effort in design and operation.

3.2.1 Theoretical Benefits of VDM in Navigation

As a mathematical motion model of the platform (UAV), VDM provides information on linear

and rotational accelerations, very similar to an IMU. This is an independent additional source

of information to what is available in conventional INS-based navigation. Therefore, utilizing

VDM in navigation system increases redundancy, and if tuned well enough, the accuracy of

navigation.

VDM is constructed based on physical laws of motion, with its parameters being platform-

dependent. Therefore, even in presence of remaining structural and parametric uncertainties,

it suggests motions that are physically possible and exact for a hypothetical platform that is

similar to the real UAV. The degree of this similarity depends on the level of modeling errors.

INS is platform-independent, but affected by remaining systematic errors, as well as high

levels of stochastic errors with complex structure in case of MEMS IMUs. Hence, INS may

suggest motions that are not physically possible for any platform similar to the one at hand.

Therefore, fusion of VDM data with other available data, removes parts of impossible motions

suggested by IMU and reduces navigation error, as a result.

When GNSS updates are available regularly, the growth of navigation errors due to accumu-

lation of IMU errors is controlled. However, in long GNSS outages, bringing another source

of information and removing parts of IMU error can considerably limit growth of navigation
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error. This is what VDM-based navigation does by applying physical constraints on dynamic

behavior of the platform, even though with some uncertainty.

The role of VDM in UAV navigation may be compared to the role of non-holonomic constraints

in terrestrial vehicle navigation. Although these constraints are very simplistic, when com-

bined with IMU data, they substantially decrease uncertainty of inertial coasting by applying

physical constraints on motion, even though partially. In [18], as one example of many refer-

ences on this matter, applying non-holonomic constraints and odometry via a wheel encoder

has reported to reduce position error in horizontal channel from 808 meters to only 11 meter

in a GNSS free period of 2 minutes, meaning an improvement of over 70 times.

3.3 Navigation System Architecture

The sensors used for navigation of a UAV fall under two categories, “autonomous sensors” and

“environment dependent sensors”. IMUs and pressure sensors are examples of autonomous

sensors that provide data regardless of environmental features and conditions such as texture,

visibility, or signal reception conditions. On the other hand, there are environment dependent

sensors such as RF1 ranging sensors (GNSS receivers for example) and vision based sensors. In

conventional navigation system for a UAV, data from all these sensors are fused in a navigation

system with INS being the process model to provide the navigation solution, as depicted

schematically in Figure 3.4. Time stamping of sensor data to a common reference (usually

GPS time) may be handled inside sensors or externally.

S II

S I

Time stamper Navigation

filter

solution

Navigation

S I: Autonomous sensors

S II: Environment dependent sensors
(RF-ranging (e.g., GNSS), vision, ultrasound, optical flow, etc.)

(IMU, pressure sensor, etc.)

INS

INS: Inertial Navigation System

Figure 3.4 – Conventional (INS-based) navigation system for UAVs

As explained in Section 3.2, the main idea behind the proposed navigation algorithm in this

research is integrating information on dynamic model of UAV in a particular way within

the navigation system. This is achieved by using VDM as process model in navigation filter

1Radio Frequency
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(Extended Kalman filter, for example) and feeding the navigation filter with control input to

UAV, as schematically depicted in Figure 3.5. This figure, shows the general implementation

scheme for the proposed navigation system.

G

S II

C

M

S I

A

Autopilot/Control unit

Time stamper

Navigation

filter

solution

Navigation

G: Guidance system

C: Controller

A: Actuators

M: Manual control

S I: Autonomous sensors

S II: Environment dependent sensors
(RF-ranging (e.g., GNSS), vision, ultrasound, optical flow, etc.)

(IMU, pressure sensor, etc.)

VDM

VDM: Vehicle Dynamic Model

Figure 3.5 – General scheme for the proposed (VDM-based) navigation system for UAVs

Depending on specific sensors available on the platform, there are some hardware require-

ments for the proposed navigation method to work. The autopilot/control unit output to

actuators needs to be accessible by navigation system (since this information is needed by

VDM) and time-stamped with respect to other sensory data to a common reference. An alter-

native would be having sensors directly measuring actuator states such as propeller speed.

For autonomous navigation, for example, usually an IMU is a minimum necessary sensor

setup. With the proposed method, there is nevertheless the possibility for the system to work

(determine PVA) without the IMU, but with at least a single GNSS receiver or another setup

of sensors providing position fixes. Since an IMU is almost always used within a navigation

system for unmanned vehicles, such configuration can be most beneficial as a backup solution

in case of IMU failure to increase reliability of the whole system.
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Control input and data from all sensors must be properly referenced to a common time base

in order to be used within the navigation system. This requires a hardware/software time

stamper to perform data tagging with respect to a common time reference. Depending on

configuration of sensors, a partial time stamping may be performed in other manners. For

example, in case both an IMU and a GNSS receiver are available, there may be a connection

between them in which the GNSS time frame is used to tag IMU data. A time stamping unit

may also be available within the controller. In any case, all the data flow to the navigation

system needs to be referenced to a common time base.

3.3.1 General Form of VDM

Vehicle dynamic model (VDM) is a mathematical model describing dynamics of motion of the

platform. The VDM here is derived based on Newtonian formulation of classical mechanics,

and is presented in state space form with the following state vector1.

Xn =
[

rl
e

T
,vl

e
T

,ql
b

T
,ωb

ib
T
]T

(3.1)

The position vector rl
e = [φ,λ,h]T represents position of platform (represented by position

of body frame origin) in earth frame and in ellipsoidal coordinates. The velocity vector

vl
e = [vN , vE , vD ]T denotes velocity of platform as observed in earth frame and expressed in

local (NED) frame. The quaternion ql
b = [q0, q1, q2, q3]T defines orientation of body frame

(platform) with respect to local frame. Finally, the angular velocity vector ωb
ib = [ωx ,ωy ,ωz ]T

represents angular velocity (rotation rate) of body frame with respect to inertial frame, ex-

pressed in body frame.

The dynamic model is derived based on Newton-Euler formulation of classical mechanics as

presented in Section 2.1.1 and can be expressed as [38]

Ẋn =

⎡
⎢⎢⎢⎢⎣

ṙl
e

v̇l
e

q̇l
b

ω̇b
ib

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

D−1vl
e

Cl
bfb − (2Ωl

i e +Ωl
el

)
vl

e +gl

1
2 ql

b ⊗
[
ωb

ib −
(
Cl

b

)T (
ωl

i e +ωl
el

)]
q(

Ib
)−1 [

Mb −Ωb
ib

(
Ibωb

ib

)]

⎤
⎥⎥⎥⎥⎥⎦ , (3.2)

where Ib denotes the matrix of moments of inertia of the UAV, and Mb represents the [resultant]

vector of moments applied on the UAV, both expressed in b-frame. The rest of the symbols

were introduced/defined in Section 1.1.4.

The presented model (Equation (3.2)) is so far a general form of dynamic model for any rigid

body in arbitrary motion in 3D space affected by Earth gravity, external specific force f, and

external moment M, based on classical mechanics. Completing the model for a specific type

of vehicle, a fixed-wing UAV for example, requires proper models for f and M, an aerodynamic

1See footnote 1 on page 18 for a discussion on dependence of quaternion components in the state vector.
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model in this case, which can be a function of dynamic states, control inputs, and physical

parameters of the platform. Those physical parameters can be different per specific UAV.

3.3.2 Importance of Modeling Earth Effects

Although a “non-rotating flat Earth” model is widely assumed for UAV applications in robotics

community, a “rotating ellipsoidal Earth” model [59] is used in this research. It is a known

fact that for large platforms, even with rather short flight ranges and moderate speeds, con-

sidering a non-rotating flat Earth would result in large navigation errors. However, some

simplified calculations reveal that employing a non-rotating flat Earth model may influence

error accumulation to a non-trivial extent, even for small UAVs.

Ignoring Earth rotation introduces errors mainly due to discarding Coriolis acceleration.

For a UAV flying at 20 m/s, the discarded acceleration can be as big as 2.92× 10−3 m/s2

(= 2×7.29×10−5×20). In 3 minutes of inertial coasting, this leads to a position error of 47 m

(= 1/2×2.92×10−3×1802).

Assuming a flat Earth also introduces errors due to discarding changes in the direction of

gravitational force. Over a range of 1 km, considering the mean radius of 6371 km for Earth,

this change in direction is 1/6371 r ad . The average committed error in acceleration will

be 7.70×10−4 m/s2 (= 1/2×1/6371×9.81). In 3 minutes of inertial coasting, this can lead

to a position error of 12 m (= 1/2×7.70×10−4×1802), setting the combined error to 49 m

(=
�

472+122).

Error of such magnitude seems to be negligible compared to the errors that typical MEMS1

IMUs produce in the same situation (in order of kilometers). However, as will be seen in

Chapter 5, this is almost on par with the ranges of errors in VDM-based navigation, and thus

quite important to avoid. Also, as those errors grow linearly with speed and flights range and

quadratically with time, modeling Earth effects becomes more important for larger platforms

and in beyond visual line of sight (BVLOS) operations.

3.3.3 VDM as Process Model

The proposed navigation system utilizes VDM as the main process model within the navigation

filter. The filter provides estimation of navigation states and other necessary augmented states

as will be discussed in Section 3.4. An extended Kalman filter (EKF) [23] is chosen to estimate

the states (X) and associated covariance matrix (P). Other types of filters/estimators such

as unscented Kalman filter (UKF) could also be used. As mentioned in Section 1.2.2, while

prediction of state vector X is provided by the generally nonlinear process model, EKF utilizes

a linearized version of the process model (via F= ∂Ẋ/∂X, with Ẋ= f(X,U, t) and X being the

state vector, U being the vector of deterministic inputs, and t denoting time) and a linearized

1Micro-Electro-Mechanical Systems
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version of observation model (via H= ∂Z/∂X, with Z= h(X, t) being the observation vector)

to provide prediction of covariance matrix P and to update both state vector and covariance

matrix. More details on Kalman filters can be found in [23] and many other sources available

on the subject. Description of different states and their process model will be presented in

Section 3.4.

VDM

Other models:

- Actuator dynamics
- VDM parameters
- Actuator parameters
- Wind velocity
- Sensor errors
- Sensor misalignments
- ...

IMU

Other sensors:

- GNSS receiver
- Barometer
- Airspeed
- ...

Navigation
filter

(e.g., EKF)

XXXX X

Z Observation 
model

Z

Autopilot

X

U

Figure 3.6 – VDM-based navigation filter architecture (X̃k ≡ X̂k|k−1)

As depicted in Figure 3.6, VDM provides the navigation solution (Xn) that is updated as a

part of the augmented states vector (X) by the filter based on available observations. Hence,

IMU data are treated as observations, just the way data from other sensors such as GNSS

receiver, barometer, and airspeed sensor are when available. It is important to note that IMU

observations are related to system states via the VDM, as discussed in Section 3.5.1. Any other

available sensor such as optic flow sensor or magnetometer can also be integrated within the

navigation system as an additional observation source.
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VDM is fed with the control input (U) acting on the UAV, which is commanded by the autopilot

and therefore available. To be more exact, VDM needs to be fed with actuator states. If internal

dynamics of the actuators is ignored, actuator states will be equivalent to the control input (U).

Otherwise, the control input is fed to associated models for actuator dynamics, which provide

actuator states to be fed to the VDM. In such a case, the unknown parameters of actuator

dynamics model may also be considered as a part of the augmented states to be estimated

within the filter.

Another needed input for VDM is the wind velocity (Xw ), which can be estimated within the

navigation system with or without the aid of airspeed sensors. Of course, if airspeed sensors

are available, better performance is expected thanks to the direct measurements and the

introduced redundancy.

Finally, the parameters of VDM, which are basically the physical properties of the UAV, are

required. Pre-calibration of these parameters as fixed values is an option. However, to increase

flexibility and accuracy of the proposed approach while minimizing design effort, in-flight

estimation/refinement of VDM parameters (Xvp ) is implemented.

The state vector can be further augmented to include actuator parameters, sensor errors, and

sensor mounting misalignment. Depending on the needs and available observations and

maneuvers to provide the required observability, these can be estimated or only compensated

for. State space augmentation is detailed in Section 3.4.

3.4 State Space Augmentation

The navigation filter may be used to estimate some parameters or variables in addition to the

navigation states, and this is done via augmenting the state vector. In the following, all the

states that may be included in the augmented state vector (either for the purpose of calibration

or navigation) are introduced with their process model. The process model is dynamic (Ẋ �= 0)

in general, but it can be static (Ẋ= 0) if a constant variable (a parameter) is being estimated

within the filter.

3.4.1 Actuator Dynamics

The internal dynamic of any actuator state ai (such as propeller speed, and deflections of

aileron, elevator, and rudder for a fixed-wing UAV) is modeled considering first-order delay,

scaling, and shifting of the command as

ȧi = 1

τi
(bi ui + ci −ai ) , (3.3)

where ai denotes the actuator state and ui is the desired (commanded) value for ai . Three

parameters are recognized for this model, being τi as a first order delay, bi as a scale factor,
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and ci as a shift. All these parameters can be also included in the augmented state vector. If

this is the case, they are modeled as constants (for example, τ̇i = 0). To sum up, if there are M

actuators on the platform, the state space is augmented by an actuator state vector as

Xa = [a1, a2, . . . , aM ]T , (3.4)

and an actuator parameter state vector as

Xap = [τ1,b1,c1,τ2,b2,c2, . . . ,τM ,bM ,cM ]T . (3.5)

The process model for Xa is simply a collocation of (3.3), and the process model for Xap is as

following.

Ẋap = [0]3M×1 (3.6)

3.4.2 VDM Parameters

Parameters used in dynamic model of the UAV reflect physical properties of the platform,

which are normally constant. However, their constant values may not necessarily be known

initially (e.g., for a new UAV) with sufficient certitude, hence the possibility of estimating them

within the filter is desirable, at least for the purpose of calibration. A static model is used for

them within the filter. The VDM parameters vector (Xvp ) contains mainly the aerodynamic

coefficients used in the UAV dynamic modeling. Mass and moments of inertia of the UAV are

not included in this vector, since they appear as scaling factors in the equations of motion and

therefore they are completely correlated with the already included coefficients of aerodynamic

forces and moments. Also, geometric measures of the UAV such as propeller diameter can be

measured physically (or using 3D models of the platform) with sufficient accuracy. In such a

case, they are not part of the augmented states vector. If there are N aerodynamic coefficients

(pi ) in the VDM estimation of which within the filter is intended, the VDM parameters vector

will be

Xvp =
[
p1, p2, . . . , pN

]T , (3.7)

with the process model as

Ẋvp = [0]N×1 (3.8)

3.4.3 Wind Velocity

The wind velocity is stated as a vector in local-level frame consisting of the three components

in north, east, and down directions.

Xw = [wn , we , wd ]T (3.9)
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Although in usual cases wind velocity is expected to change rather slowly and smoothly from

one moment to another, in general there is no information on such transition. Therefore, no

deterministic part is considered in the process model for wind velocity, and only a stochastic

model is considered for wind. If a white noise is assumed to rule the transition in time, this

leads to a random walk process model. Constant part of the wind is also covered by the random

walk process if a non-zero initial uncertainty is attributed to it within the filter.

3.4.4 Sensor Errors

Time correlated errors of a sensors may be modeled and estimated within the filter stochasti-

cally. Frequently used models are bias (random constant), random walk, and autoregressive

models such as first order Gauss-Markov. The time uncorrelated error for each sensor is

considered as a Gaussian white noise that is taken into account as observation uncertainty

within the filter. The usage of sensor error sates (as well as sensor mounting misalignment

states introduced in Section 3.4.5) in observation models is detailed in Section 3.5, while the

purpose of this section is presenting these states generally with their process models.

In case a random walk process is considered for the error of a sensor, there will be no added

value for modeling separately a bias, as the bias can be estimated by the random walk provided

that a non-zero initial uncertainty is set for it. In other words, a random walk process with

non-zero initial uncertainty is equivalent to the sum of a bias and a random walk process with

zero initial uncertainty.

IMU

For the IMU in this research, a random walk (eI
RW ) and a first order Gauss-Markov (eI

GM ) error

vector are considered as additive errors, each consisting three elements for accelerometers

(denoted by superscripts ai ) and three elements for gyroscopes (denoted by superscripts g i ).

This model has been found sufficient for the low-cost IMU in consideration here, but can be

extended as needed. Non-orthogonality and scale factors were pre-determined and compen-

sated during filtering1.

eI
RW =

[
ea1

RW ,ea2
RW ,ea3

RW ,eg 1
RW ,eg 2

RW ,eg 3
RW

]T
(3.10)

eI
GM =

[
ea1

GM ,ea2
GM ,ea3

GM ,eg 1
GM ,eg 2

GM ,eg 3
GM

]T
(3.11)

1In practice, not all the different error types are well observable, and therefore, some error types (e.g., scale
factor) may be partially absorbed by other error types (e.g., additive errors). The unabsorbed parts will remain as
sources of error, though. One may only do their best to estimate them and then accept the residuals and possibly
modify error statistics within the filter to better reflect the real situation.
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The IMU error states vector concatenates these two as

XI
e =

[(
eI

RW

)T
,
(
eI

GM

)T ]T
. (3.12)

Barometer

For the barometer, an additive error modeled as a random walk (eB
RW ) is considered, as well as

a scale factor (eB
SF ) that is also modeled by a random walk. Random walk is chosen over bias

to account for unpredicted changes in environmental conditions (temperature and pressure).

The barometer error states vector contains the additive random walk and the scale factor as

XB
e =

[
eB

RW ,eB
SF

]T
. (3.13)

Airspeed Sensor

The considered error states for the airspeed sensor are very similar to the barometer, an

additive error as a random walk (e A
RW ), as well as a scale factor (e A

SF ) that is also modeled by a

random walk. Hence, the airspeed error states vector is defined as

XA
e =

[
e A

RW ,e A
SF

]T
. (3.14)

3.4.5 Sensor Mounting Misalignments

A sensor frame is associated to any sensor mounted on the platform, with the origin at the

effective point of the sensor, at which the measurements are made, and the axes oriented in

the directions in which the measurements are made, for the ones with a direction dependent

measurement. In general, the sensor frames are not aligned perfectly with the body frame.

The misalignment between a sensor frame and the body frame is defined via translational (i.e.,

lever-arm) and rotational (i.e., boresight) components. Lever-arm is a position vector from

body frame origin to sensor frame origin, expressed in body frame. Boresight is a rotation

(in any representation form) expressing the attitude of sensor frame with respect to body

frame. While lever-arm needs to be determined for every sensor, boresight is defined only

for some sensors. For example, measurements from barometer and GNSS receivers do not

have any orientation in body frame. The additional states accounting for the sensor mounting

misalignments are detailed in the following. The usage of these states in observation models

is detailed in Section 3.5, though.

If the platform and the mountings of rigidly attached sensors are not physically modified, the

lever-arms and boresights are stable in time. Since their values may be difficult to measure

directly, especially for boresights, they are modeled as random constants to be refined in-flight

during calibration flights. Once they are estimated with satisfactory certainty, they can be
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removed from augmented states and be used only for compensation1.

IMU

The relative alignment of IMU and body frame is depicted in Figure 3.7. The lever-arm is

expressed as the position vector rb
bI = [LI

1,LI
2,LI

3]T , and boresight is represented by the vector

Θb
bI = [B I

1,B I
2,B I

3]T containing the three Euler angles parameterizing the rotation matrix CI
b .

This rotation matrix is calculated as

CI
b =C1(B1)C2(B2)C3(B3), (3.15)

with elementary rotation functions Ci (·) defined in Equation (1.2). The associated state vector

is then as following.

XI
m =

[(
rb

bI

)T
,
(
Θb

bI

)T
]T

(3.16)

zI

zb

Ob

yb

xb

xI

yI

rb
bI

OI

Figure 3.7 – IMU frame alignment with respect to body frame

As discussed in sensor frame definition in Section 1.1.3, the internal non-orthogonality of the

sensor is modeled separately, and the introduced misalignment here refers to the misalign-

ment between the IMU sensor frame after accounting for non-orthogonality and the body

frame.

1In practice, sensor mounting misalignments, especially in case of boresight, can be very weekly observable.
Therefore, their fine estimation is frequently discarded and some modification (in conservative direction) is made
in sensor error statistics within the filter to partially absorb their effects.
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GNSS Antenna

To express the misalignment between the GNSS antenna phase center and the body frame,

only the lever-arm (rb
bG ) is required, making the associated state vector look like the following.

XG
m = rb

bG =
[
LG

1 ,LG
2 ,LG

3

]T
(3.17)

Barometer

Similar to GNSS antenna, only a lever-arm (rb
bB ) is required to express the misalignment

between the barometer frame and the body frame, resulting in the following state vector.

XB
m = rb

bB =
[
LB

1 ,LB
2 ,LB

3

]T
(3.18)

Airspeed Sensor

For airspeed sensor, relative alignment with respect to body frame is depicted in Figure 3.8.

In this case, in addition to the position vector rb
bA = [LA

1 ,LA
2 ,LA

3 ]T for lever-arm, the vector

Θb
bA = [B A

1 ,B A
2 ]T containing the two boresight angles is also required to express the direction

of the unit vector ûb
A along which the airspeed measurement is made. As the rotation of the

airspeed sensor around its effective axis (ûb
A) does not affect its measurements, a third angle is

not required for expressing the boresight. The unit vector ûb
A is calculated as

ûb
A =

⎡
⎢⎣

cosB A
2 cosB A

1

cosB A
2 sinB A

1

sinB A
2

⎤
⎥⎦ . (3.19)

The state vector for airspeed sensor mounting misalignment is as following.

XA
m =

[(
rb

bA

)T
,
(
Θb

bA

)T
]T

(3.20)

3.4.6 State Vector in Most General Case

In the most general case here, the augmented state vector is composed of navigation states

(Xn), actuator states (Xa), actuator parameters (Xap ), VDM parameters (Xvp ), wind velocity

(Xw ), IMU error (XI
e ), barometer error (XB

e ), Airspeed error (XA
e ), IMU mounting misalignment

(XI
m), GNSS antenna mounting misalignment (XG

m), barometer mounting misalignment (XB
m),

and airspeed sensor mounting misalignment (XA
m).

X=
[

XT
n ,XT

a ,XT
ap ,XT

vp ,XT
w ,XI

e
T

,XB
e

T
,XA

e
T

,XI
m

T
,XG

m
T

,XB
m

T
,XA

m
T
]T

(3.21)
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Figure 3.8 – Airspeed frame alignment with respect to body frame

However, not all these states are necessarily present in the augmented states vector in every

situation. For example, sensor mounting misalignment or the VDM and actuator parame-

ters may have been already calibrated to an acceptable level for excluding them from the

estimation. Also, keeping all of these states at the same time will most probably not result

in best performance outside a calibration scenario, due to the lack of enough observability.

For example, if the altitude change is small, the additive error and the scale factor for the

barometer may not decorrelate and therefore they are estimated poorly. Apart from the choice

on augmented states, observability depends on the available observations and the maneuvers

that the UAV performs. The designer needs to consider all these facts when deciding on the

states to include.

3.5 Observation Models

Observations from onboard sensors need to be clearly related to system states via observation

models in order to be used in the filter. This section provides the observation models for all

the employed sensors, considering the modeled errors and the mounting misalignments.

3.5.1 IMU data

An ideal (error-free) IMU consists of an orthogonal triad of accelerometers, measuring specific

force applied to the IMU casing expressed in IMU frame (fI
I ), and an orthogonal triad of

gyroscopes measuring rotation rate (angular velocity) of the casing with respect to inertial

frame expressed in IMU frame (ωI
i I ). In VDM navigation equations (Equation (3.2)), specific

force applied to body expressed in body frame (fb
b) and rotation rate of body frame with respect

to inertial frame expressed in body frame (ωb
ib) are required. The IMU is assumed to be rigidly

attached to the body, with misalignment (XI
m) as expressed in Equation (3.16) and additive

error (XI
e ) as expressed in Equation (3.12).

To obtain the relation between fI
I and fb

b , let’s start with the relation between position vector of
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IMU and body frame origins, expressed in inertial frame.

ri
I = ri

b +Ci
brb I b (3.22)

Differentiating this equation twice with respect to time and applying the rigid attachment

assumption (meaning constant rb I b) and using Equation (1.7) leads to

r̈i
I = r̈i

b +Ci
bΩ̇

b
ibrb

bI +Ci
bΩ

b
ibΩ

b
ibrb

bI . (3.23)

On the other hand, according to Equation (1.21), r̈i
I and r̈i

b can be written as following.

r̈i
I = fi

I +gi
I =Ci

bCb
I fI

I +gi
I (3.24)

r̈i
b = fi

b +gi
b =Ci

bfb
b +gi

b (3.25)

Substitution of Equations (3.24) and (3.25) in Equation (3.23) and multiplying both sides by Cb
i

yields

Cb
I fI

I +Cb
i gi

I = fb
b +Cb

i gi
b +Ω̇

b
ibrb

bI +Ωb
ibΩ

b
ibrb

bI . (3.26)

Discarding the difference between gi
I and gi

b , and denoting fI
I as fI and fb

b as fb to simplify

notation, Equation (3.26) can be solved for fI as following.

fI =CI
b

(
fb +

(
Ω̇

b
ib +Ωb

ibΩ
b
ib

)
rb

bI

)
(3.27)

Considering ωI
i I =ωI

ib+ωI
bI and applying the rigid attachment assumption (meaning constant

CI
b and hence, zero ωI

bI ), one can have

ωI
i I =CI

bω
b
ib . (3.28)

Finally, putting fI from Equation (3.27) and ωI
i I from Equation (3.28) together in ZI vector,

corrupted by non-orthogonality, scale factors, additive errors as in Equation (3.12), and nI

measurement noise, IMU observation model is obtained as

ZI = (I+N+S)

[
CI

b

(
fb +

(
Ω̇

b
ib +Ωb

ibΩ
b
ib

)
rb

bI

)
CI

bω
b
ib

]
+XI

e +nI , (3.29)

where I is the identity matrix. Both the skew-symmetric matrix of non-orthogonality factors

(N), and the diagonal matrix of scale factor (S) are pre-determined and compensated for within

the navigation filter.
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3.5.2 GNSS Position and Velocity

In loosely coupled integration, GNSS observations consist of position of GNSS antenna in Earth

frame (re
G ) and velocity of GNSS antenna with respect to Earth frame expressed in local frame

(Cl
e ve

G ). Considering GNSS antenna mounting misalignment as expressed in Equation (3.17),

re
G can be related to system states as

re
G = re

b + re
bG = re

b +Ce
brb

bG = re
b +Ce

l Cl
brb

bG . (3.30)

Differentiating Equation (3.30) with respect to time and applying the rigid attachment as-

sumption (meaning constant rb
bG ) yields

ṙe
G = ṙe

b +Ce
bΩ

b
ebrb

bG . (3.31)

Defining vl
ea �Cl

e ve
a =Cl

e ṙe
a for any arbitrary point a, Equation (3.31) can be rewritten as

vl
eG = vl

eb +Cl
e Ce

bΩ
b
ebrb

bG = vl
eb +Cl

bΩ
b
ebrb

bG . (3.32)

ConsideringΩb
eb =Ωb

ib−Ωb
ie andΩb

eb =Cb
l Ω

l
ebCl

b , and denoting vl
eb as vl

e to simplify notation,

Equation (3.32) takes the following form.

vl
eG = vl

e +
(
Cl

bΩ
b
ib −Ωl

i e Cl
b

)
rb

bG (3.33)

Finally, putting re
G from Equation (3.30) and vl

eG from Equation (3.33) together in ZG vector,

corrupted by nG measurement noise, GNSS observation model is obtained as following.

ZG =
[

re
b +Ce

l Cl
brb

bG
vl

e +
(
Cl

bΩ
b
ib −Ωl

i e Cl
b

)
rb

bG

]
+nG (3.34)

3.5.3 Barometric Altitude

A barometer measures static air pressure. Assuming a hydrostatic model for the atmosphere,

this pressure is then related to the altitude of the barometer inlet point hB , knowing the atmo-

spheric states (temperature and pressure) at some initial point for each mission. Considering

barometer misalignment as expressed in Equation (3.18), hB can be related to system states as

hB = hb +
[

0 0 1
]

Cl
br b

bB . (3.35)

Corrupting hB with barometer error as expressed in Equation (3.13) and nB measurement

noise, and denoting hb as h to simplify notation, barometer observation model is obtained as

following.

ZB =
(
1+eB

SF

)(
h+

[
0 0 1

]
Cl

br b
bB

)
+eB

RW +nB (3.36)
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Another option to employ the barometric data is including the parameters of the hydrostatic

model for the atmosphere in the navigation (or a separate) filter and keep estimating them as

long as GNSS position observations are present. This approach was explored in [47].

3.5.4 Airspeed

A single-axis airspeed sensor measures dynamic pressure (difference between total/stagna-

tion pressure and static pressure) along its axis, which after some internal calibration and

transformation gives the airspeed along its axis at inlet point VûA , which can be expressed as

following.

VûA =Vb
e A · ûb

A =
(
Vb

e A

)T
ûb

A =
(
Vl

e A

)T
ûl

A =
(
vl

e A−wl
e A

)T (
Cl

bûb
A

)
(3.37)

In exactly the same way vl
eG was expressed in terms of system states in Equation (3.33), vl

e A

can be expressed as

vl
e A = vl

e +
(
Cl

bΩ
b
ib −Ωl

i e Cl
b

)
rb

bA . (3.38)

Assuming wl
e A as representative of wind velocity wl

eb acting on the platform and substituting

Equation (3.38) in Equation (3.37) yields

VûA =
(
vl

e +
(
Cl

bΩ
b
ib −Ωl

i e Cl
b

)
rb

bA−wl
eb

)T (
Cl

bûb
A

)
(3.39)

Finally, corrupting VûA with airspeed error as expressed in Equation (3.14) and nA measure-

ment noise, and denoting wl
eb as wl to simplify notation, airspeed observation model is

obtained as following.

ZA =
(
1+e A

SF

)(
vl

e +
(
Cl

bΩ
b
ib −Ωl

i e Cl
b

)
rb

bA−wl
eb

)T (
Cl

bûb
A

)
+e A

RW +nA (3.40)
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4 Fixed-Wing Implementation

Overview

This chapter presents the implementation of the VDM-based navigation proposed in Chap-

ter 3 for a specific fixed-wing platform. Development of the VDM for this platform with

models of aerodynamic forces and moments is presented, as well as description of the

experimental setup and the navigation filter setup used in Chapters 5 and 6.

A considerable amount of wordings and equations throughout this chapter are borrowed

form peer reviewed published papers [36, 37, 38, 39, 41] and an under review paper [40].

4.1 VDM for a Typical Fixed-Wing UAV

As depicted schematically in Figure 4.1, the fixed-wing UAV considered here has a single

propeller in front and four (or five) control surfaces; two [coupled] ailerons, an elevator (or

two coupled ones), and a rudder. The models for aerodynamic forces and moments for this

UAV are borrowed from [19] and presented in Sections 4.1.1 and 4.1.2. These are, however, just

sample models for aerodynamic forces and moments, and can be replaced by other models.

4.1.1 Aerodynamic Forces

Four components of aerodynamic forces are recognizable in this model. The thrust force is

expressed in body frame (along xb axis), while the lift, lateral, and drag forces are expressed in

wind frame.

Thrust force is expressed as

FT = ρω2
pD4CFT (J ), (4.1)

where ρ is the air density, ωp is the propeller speed, D is the propeller diameter, and J is

called thrust advance ratio and defined as J = V
Dπωp

with V being the airspeed magnitude. The
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left elevator

xb

yb

zb

Ob

right aileron

left aileron

right elevator
rudder

propeller

Figure 4.1 – Schematic of the fixed-wing UAV used in this research with propeller, aileron(s),
elevator(s), and rudder

dimensionless thrust force coefficient CFT is expressed as

CFT (J )=CFT 1+CFT 2 J +CFT 3 J2, (4.2)

with CFT ...s being the thrust force derivatives for the particular UAV at hand.

Drag force is expressed as

F w
x = q̄SCFx (α,β), (4.3)

where S is the wing surface, and q̄ , α and β denote dynamic pressure, angle of attack and

sideslip angle, respectively, defined in Equation (1.17). The dimensionless drag force coeffi-

cient CFx is expressed as

CFx (α,β)=CFx 1+CFxαα+CFxα2α
2+CFxβ2β

2, (4.4)

with CFx ...s being the drag force derivatives for the particular UAV at hand.

Lateral force is expressed as

F w
y = q̄SCFy (β), (4.5)

where the dimensionless lateral force coefficient CFy is stated as

CFy (β)=CFy 1β, (4.6)

with CFy 1 being the lateral force derivative for the particular UAV at hand.
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Lift force is expressed as

F w
z = q̄SCFz (α), (4.7)

where the dimensionless lift force coefficient CFz is expressed as

CFz (α)=CFz 1+CFzαα, (4.8)

with CFz ...s being the lift force derivatives for the particular UAV at hand.

The specific force vector f is composed of these four components (summed up with necessary

rotations applied) divided by the mass of the UAV.

fb = 1

m

⎛
⎜⎝
⎡
⎢⎣

FT

0

0

⎤
⎥⎦+Cb

w

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦
⎞
⎟⎠ (4.9)

The rotation matrix between wind frame and body frame (Cw
b ) is defined in (1.16) as a function

of α and β.

4.1.2 Aerodynamic Moments

In addition to aerodynamic forces, three components of aerodynamic moments are also

recognizable in the model. The dimensionless angular velocities used in expressions for

aerodynamic moments are defined as

ω̃x =
bωl ,x

2V
, ω̃y =

c̄ωl ,y

2V
, ω̃z =

bωl ,z

2V
, (4.10)

with ωl ,x , ωl ,y , and ωl ,z being components of angular velocity (rotation rate) of body frame

with respect to local level frame, expressed in body frame defined as seen in Equation (1.30)

and repeated here.

ωb
lb =ωb

ib −
(
Cl

b

)T (
ωl

i e +ωl
el

)
(4.11)

Roll moment is expressed as

Mb
x = q̄SbCMx (δa ,β,ω̃x ,ω̃z), (4.12)

where q̄ , S, and β were just mentioned in Section 4.1.1, b is the wing span, and δa is the

normalized aileron deflection (δa ∈ [−1,1]). The dimensionless roll moment coefficient CMx is

expressed as

CMx (δa ,β,ω̃x ,ω̃z)=CMx aδa +CMxββ+CMx ω̃x ω̃x +CMx ω̃z ω̃z , (4.13)
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with CMx ...s being the roll moment derivatives for the particular UAV at hand.

Pitch moment is expressed as

Mb
y = q̄Sc̄CMy (δe ,α,ω̃y ), (4.14)

where α was just mentioned in Section 4.1.1, c̄ is the mean aerodynamic chord, and δe is the

normalized elevator deflection (δe ∈ [−1,1]). The dimensionless pitch moment coefficient is

expressed as

CMy (δe ,α,ω̃y )=CMy 1+CMy eδe +CMy ω̃y ω̃y +CMyαα. (4.15)

with CMy ...’s being the pitch moment derivatives for the particular UAV at hand.

Yaw moment is expressed as

Mb
z = q̄SbCMz (δr ,ω̃z ,β), (4.16)

where δr is the normalized rudder deflection (δr ∈ [−1,1]). The dimensionless yaw moment

coefficient is expressed as

CMz (δr ,ω̃z ,β)=CMz rδr +CMz ω̃z ω̃z +CMzββ. (4.17)

with CMz ...s being the yaw moment derivatives for the particular UAV at hand.

The moments vector M is composed of these three components.

Mb =

⎡
⎢⎣

Mb
x

Mb
y

Mb
z

⎤
⎥⎦ (4.18)

Equation (3.2) together with Equations (4.1) to (4.18) form the VDM for the specific fixed-wing

UAV employed in this research that is schematically shown in Figure 4.1.

4.1.3 Air Density Model

Depending on accuracy requirements and fidelity of modeling, the air density may be consid-

ered as a constant or as a function of local pressure and temperature according to a suitable

model for the application. Local pressure and temperature can theoretically be observed on

board or expressed as functions of the altitude as is the case here. For example, according to

the International Standard Atmosphere model for low altitude, the air density can be presented

as [19]

ρ = p0[1+ah/T0]4.2561

RaT0
, (4.19)
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with p0 and T0 denoting local pressure and temperature at the reference altitude, h being the

altitude, Ra = 287.3m2K−1s−2 being the specific gas constant of air, and a =−6.5×10−3K m−1

being the air temperature gradient.

However, in cases that were considered in this thesis, using a fixed value for air density or using

the mentioned model did not make a meaningful difference in results. The reason is likely

the high correlation between air density and in-flight recalibrated aerodynamic coefficients,

which causes the effects of considering a variable air density model to be absorbed by the

aerodynamic coefficients to a high extent, especially when considering the limited change in

altitude in the trajectories.

4.1.4 Actuator Dynamics

As described in Section 3.4.1, whenever applicable, dynamics of actuators is modeled consid-

ering first-order delay, scaling, and shifting, as in Equation (3.3). For the employed fixed-wing

UAV in this research, there are four actuator states, being the propeller speed n, aileron de-

flection δa , elevator deflection δe , and rudder deflection δr . The last three, are normalized by

maximum deflections, therefore being numbers in the range [−1,1]. Note that the two ailerons

are coupled, which is why only one state is considered for aileron deflection.

4.2 Experimental Setup

This section provides details on the experimental setup used in this research.

4.2.1 Platforms

The UAVs used for this study are custom made fixed-wing UAVs of the same type but in two

realizations. They were constructed in “Geodetic Engineering Laboratory TOPO” at EPFL

for serving the research in navigation and precise mapping. The first realization (called

“TOPO plane 1”) taken from [60] is shown in Figure 4.2(a), and the second realization (called

“TOPO plane 2”) is shown in Figure 4.2(b). Both planes are equipped with the open-source au-

topilot Pixhawk [50] and have a maximum payload capacity of around 0.8 kg, with operational

mass around 2.5 to 2.7 kg. The geometric measures of the two platforms used in the VDM are

shown in Table 4.1. Flying endurance is about 45 minutes, and nominal airspeed is around

15 m/s. Thanks to its lightweight construction, the launching can be done from hand and it

requires only a small place for landing.

4.2.2 Sensor Setup

The sensor setup is presented here, which is very similar for the two platforms. The stochastic

models presented in this section are used in simulations to generate realistic sensor data.
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Figure 4.2 – Custom made UAVs, TOPO plane 1 (a) and TOPO plane 2 (b), together with the
IMU board (c)

These are not necessarily the stochastic models used in the navigation filter, which are detailed

in Section 4.3.1.

IMU

The inertial measurements come from Navchip MEMS IMUs [34] on a custom made board

called Gecko4Nav [42] shown in Figure 4.2(c) with a high resolution barometer. The board

can host up to four IMUs, that can be software-combined to an R-IMU1. To obtain a realistic

stochastic model for IMU errors, an in-house identification was performed, using the novel

approach of GMWM introduced in Section 1.3.6. Summary of IMU error parameters from the

GMWM analysis and the values provided by the manufacturer are provided in Table 4.2. In

this research, values from the GMWM analysis are used.

1Redundant IMU
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Table 4.1 – Geometric measures of the fixed-wing platform

Parameter Symbol Value Unit

Wing span b 1.630 m

Wing surface S 0.3439 m2

Mean aerodynamic chord c̄ 0.225 m

Propeller diameter D 0.362 m

Table 4.2 – MEMS IMU error stochastic model

Sensor Error type Parameter

Value

UnitData sheet [34]
GMWM

TYP* MAX**

Accelerometers

Bias σ 3 15 – mg

White Noise σ 50 83 67 μg /
�

Hz

first order σ 0.04 0.10 0.15 mg

Gauss-Markov T – – >200 s

Gyroscopes

Bias σ 720 1440 – ◦/hr

White Noise σ 0.003 0.005 0.005 ◦/s/
�

Hz

first order σ 5 10 31 ◦/hr

Gauss-Markov T – – >200 s

*“TYP Specs are mean values or 1σ for values that are nominally zero.” [34]

**“MAX Specs are maximum factory test limits unless otherwise specified.” [34]

GNSS Receiver

Both planes are equipped with multi frequency multi constellation high-end GNSS boards

(Javad G3T and Topcon B110 for TOPO plane 1 and TOPO plane 2, respectively) receiving RF

signals from an L1/L2 GNSS antenna from Maxtena [49] and provide position and velocity data

to the autopilot. Both receivers have RTK1 capability and store internally raw observations

(range, carrier phase, and Doppler measurements). These observations were then post pro-

cessed using a proprietary software to obtain PPK2 solution at 10 Hz. Throughout the thesis,

the standalone solution at 1 Hz is used for navigation –whether in simulations or experimental

tests– unless stated otherwise. PPK solution is used either in experimental scenarios either for

calibration phase or to provide the reference for evaluating navigation solutions. Although

the processing of raw data provides the confidence levels for position and velocity data at

1Real Time Kinematic
2Post Processed Kinematic
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each point, typical error statistics for both PPK and standalone modes can be considered as

presented in Table 4.3.

Table 4.3 – Stochastic models for GNSS data errors

GNSS mode
Position error (m) Velocity error (cm/s)

Horizontal* Vertical Horizontal* Vertical

PPK 0.03 0.05 4 5

Standalone 1 2 3 4

*Each of the two horizontal channels

TOPO plane 1 carries also low-cost GNSS receiver/antenna from “u-blox” [76] that is connected

to the autopilot, as well.

Barometer

A high resolution barometer is available on the Gecko4Nav board together with the IMUs. Raw

temperature and pressure observations from the barometer needs to be properly calibrated

and converted to altitude data, which can be done separately in a Kalman filter [47]. In this

research, however, temperature and pressure data are mapped to altitude with some default

constant calibration parameters, leaving a bias (in order of tens of meters) and a scale factor

(in order of a few percents) in addition to a white noise with σ= 0.5 m.

Airspeed Sensor

The airspeed sensor provides dynamic pressure measurements, which are then converted

to airspeed observations for internal usage of the autopilot. Airspeed is extracted from the

autopilot (with velocity dimension) together with control commands. To determine the error

statistics of this sensor, over 3 hours of static data (with expected output of zero) were collected

and analyzed. The error identification was performed after removal of the mean value at

2.41 m/s, using the novel approach of GMWM introduced in Section 1.3.6. Summary of

airspeed error parameters is provided in Table 4.4.

4.2.3 Actuators

The control commands from the autopilot are extracted as PWM1 values. To be used in the

VDM, these values needs to be mapped to steady state values of actuator states. In order

to obtain the map, some lab tests were performed, measuring actuator states (propeller

speed and deflections of ailerons, elevator, and rudder) in several (at least 5) fixed values of

associated commands in PWM from zero to maximum value (in both directions for control

1Pulse Width Modulation
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Table 4.4 – Airspeed error stochastic model

Error type Parameter Value Unit

White Noise σ 0.99 m/s

first order σ 0.15 m/s

Gauss-Markov T 24 s

first order σ 0.21 m/s

Gauss-Markov T 284 s

surface deflections). Control surface deflections were normalized to the maximum values to

lie within the range [−1,1]. As the two ailerons are coupled, their deflections are superposed.

A linear relationship was then established between the commands in PWM and the actuator

states in steady condition as Actuator state = Scale × PWM + Shift. The scale and shift values

for TOPO plane 2 are presented in Table 4.5 with the goodness of fit for linear regression

presented as R2 values.

Table 4.5 – Summary of the map between control commands in PWM and actuator states in
steady condition for TOPO plane 2

Actuator state Unit Scale Shift R2

Propeller speed [rad/s] 1.15 −1240 0.957

Aileron deflection [ ] −3.20×10−3 4.87 0.999

Elevator deflection [ ] 3.02×10−3 −4.63 0.997

Rudder deflection [ ] 3.31×10−3 −4.94 0.962

4.3 Filter Setup

In this section, main aspects of the setup of the navigation filter are detailed.

4.3.1 Stochastic Models for Observations

Unless stated otherwise, the stochastic models for observations within the navigation fil-

ter, used in both simulation and experimental scenarios in Chapters 5 and 6, are the ones

presented in this section.
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Inertial Measurements

In navigation on both simulation and experimental data, IMU error was first modeled as

a random walk and a first order Gauss-Markov process. Inspecting Table 4.2 for IMU error

model, one can see that the time-correlated errors are a bias and a first order Gauss-Markov

process with a correlation time of 200 s. Considering the duration of flight, 200 s seems long

enough for the first order Gauss-Markov process to have a similar signature to a random

walk process. On the other hand, a random walk process naturally covers also a bias (as a

non-zero mean process) when its initial uncertainty is set to a non-zero value (as discussed

in Section 3.4.4). Therefore, navigation was repeated by replacing the bias and the first order

Gauss-Markov process with only a single random walk process in the filter. This covered both

the bias and the first order Gauss-Markov process with “long” correlation time and leaded to

practically the same results. As this approach reduces the number of states in the filter without

affecting the performance, it was preferred and implemented afterwards. The values of error

model parameters following from GMWM analysis are summarized in Table 4.2.

GNSS Position and Velocity

The error for GNSS position and velocity data is considered as white noise with the statistics

presented in Table 4.3 for both PPK and standalone modes.

Barometric Altitude

The error statistics used in the filter are the same as presented in Section 4.2.2. The white

noise is considered with σ= 0.5 m, and the bias and scale factor are either removed before

navigation, or estimated within the filter thanks to the availability of GNSS position data

during the initial part of the flight.

Airspeed

According to the error model for the real sensor presented in Section 4.2.2, apart from the

bias, a white noise and two first order Gauss-Markov processes are recognized for the sensor.

Considering the relatively small powers of the two Gauss-Markov processes, only a bias with

initial uncertainty of 2 m/s and a white noise with σ= 1 m/s is considered within the filter.

4.3.2 Initialization

Navigation States

As the VDM in this research was developed for the flying phase (considering only the aero-

dynamic forces and moments), it cannot be used to predict navigation states when the UAV

is not flying (e.g., before take-off). This means that the VDM-based navigation filter needs
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to be initialized “in the air” when the UAV is flying. The following procedure is followed for

initialization.

1. Navigation states (position, velocity, and attitude) are initialized for INS-based naviga-

tion.

2. INS-based navigation is performed until flight phase is detected. This detection can be

conservative, as the passage to VDM-based navigation does not need to be immediate.

3. The VDM based navigation is activated. This requires that the navigation states provided

by INS-based navigation, and possibly auxiliary states such as IMU errors, are transferred

as initial conditions for the VDM-based navigation.

It is worth mentioning that as currently the navigation is performed in post process mode,

VDM-based navigation is activated manually. In online implementation, though, the flying

condition should be detected automatically [61] to activate VDM-based navigation. Otherwise,

the activation will require an input from a human user during the flight.

Unless stated otherwise, the considered initial uncertainties for navigation states in Chapters 5

and 6 are as following. For position and velocity, initial uncertainties correspond to GNSS

observations uncertainty presented in Table 4.3. In cases where GNSS velocity observations

were not used, an initial uncertainty of 1 m/s was considered for each velocity component.

The initial attitude uncertainty was considered at 4◦ for roll and pitch and 6◦ for yaw, while

2◦/s of initial uncertainty was considered for each angular velocity component.

VDM Parameters

The nominal values for VDM parameters (aerodynamic coefficients) used in simulations in

Chapters 5 and 6 follow from [19] and are presented in Table 4.6. Mass and geometry related

parameters for both TOPO plane 1 and TOPO plane 2 are measured in the lab and presented

in Section 4.2.1. In simulations, a random error with standard deviation of 10% was applied

to the nominal values, unless stated otherwise. These nominal values are also used as the

starting point for calibration in experimental scenarios.

Other States

For wind velocity, sensor errors, and sensor mounting misalignment, initial values of zero

were considered, unless stated otherwise. Initial uncertainty for sensor errors were considered

in accordance with sensor error statistics presented in Section 4.2.2. Values not provided in

this section are presented separately for each case in Chapters 5 and 6.
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Table 4.6 – Nominal values of VDM parameters (aerodynamic coefficients) [19]

Parameter CFT 1 CFT 2 CFT 3 CFx 1 CFxα CFxα2 CFxβ2

Value 0.0842 −0.136 −0.928 −0.0212 −0.0266 −1.55 −0.401

Parameter CFy 1 CFz 1 CFzα CMx a CMxβ CMx ω̃x CMx ω̃z

Value −0.379 0.0129 −3.25 0.0679 −0.0130 −0.192 0.0361

Parameter CMy 1 CMy e CMy ω̃y CMyα CMz r CMz ω̃z CMzβ

Value 0.0208 0.545 −9.83 −0.0903 0.0534 −0.214 0.0867

4.3.3 Model Linearization for EKF

Manual Linearization

As stated in Chapter 3, an EKF is used in this research as the estimator. This implies that

the linearized versions of both process model and observation model is required. In the

early development stages when the non-rotating flat Earth model was considered and fewer

augmented states were included, the linearization was done manually to come close to the

most algebraically simplified and compact linearized version in favor of easier implemen-

tation and lower computational cost. Considering the complexity of the models and high

number of the states, such a manual task is laborious and results in long expressions and

implementation/verification process. To reflect the complexity and hint to the motivation

behind automation of this process, manual linearization of the main part of a simplified VDM

is reported in Appendix A. It is worth mentioning that the validity of the manual linearization

was ensured using symbolic toolbox of MATLAB.

Automated Linearization

As some simplifications in modeling were dropped and the state vector was further augmented

to include new effects/parameters, new sensors, and more detailed observation models, the

effort for manual linearization became impractical. Therefore, an object oriented MATLAB

software was developed to design and construct the filter entirely, including linearized models,

in an automated manner with minimum input required from the user. In fact, the user only

provides the bare minimum information required from theoretical point of view to design

the filter, including the process and observation models in a symbolic manner. Such a setup,

allows for extreme flexibility in filter design and facilitates testing different scenarios.

As an example, all the required input from the user to define main process and observation

models in construction of a basic INS-GNSS navigation filter is presented as the following

MATLAB script.
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Required user input in automated construction of a basic INS/GNSS navigation filter

1 %% Process Model: INS

2 syms phi lambda h v_N v_E v_D q0 q1 q2 q3 real

3 syms f_x f_y f_z omega_x omega_y omega_z real

4 syms B_I1 B_I2 B_I3 L_I1 L_I2 L_I3 real

5 syms e_rw_a1 e_rw_a2 e_rw_a3 e_gm1_a1 e_gm1_a2 e_gm1_a3 e_gm2_a1 ...

e_gm2_a2 e_gm2_a3 real

6 syms e_rw_g1 e_rw_g2 e_rw_g3 e_gm1_g1 e_gm1_g2 e_gm1_g3 e_gm2_g1 ...

e_gm2_g2 e_gm2_g3 real

7 e_a = [e_rw_a1 e_rw_a2 e_rw_a3].' + [e_gm1_a1 e_gm1_a2 e_gm1_a3].' + ...

[e_gm2_a1 e_gm2_a2 e_gm2_a3].';

8 e_g = [e_rw_g1 e_rw_g2 e_rw_g3].' + [e_gm1_g1 e_gm1_g2 e_gm1_g3].' + ...

[e_gm2_g1 e_gm2_g2 e_gm2_g3].';

9 f_I = [f_x f_y f_z].';

10 omega_iI_I = [omega_x omega_y omega_z].';

11 C_b_I = C_elementary(B_I1,1) * C_elementary(B_I2,2) * ...

C_elementary(B_I3,3);

12 r_bI_b = [L_I1 L_I2 L_I3].';

13 f_b = C_b_I.' * ((f_I-e_a) - ...

(SkSymMat(omega_iI_I)*SkSymMat(omega_iI_I)) * C_b_I*r_bI_b);

14 omega_ib_b = C_b_I.' * (omega_iI_I-e_g);

15 r_e_l = [phi; lambda; h];

16 v_e_l = [v_N; v_E; v_D];

17 q_b_l = [q0; q1; q2; q3];

18 R_M = WGS84.a * (1 - WGS84.e^2) / (1 - (WGS84.e*sin(phi))^2)^(3/2);

19 R_P = WGS84.a / sqrt(1 - (WGS84.e*sin(phi))^2);

20 D_inv = diag([1/(R_M+h), 1/((R_P+h)*cos(phi)), -1]);

21 dot__r_e_l = D_inv * v_e_l;

22 dot__phi = dot__r_e_l(1);

23 dot__lambda = dot__r_e_l(2);

24 g_l = [0; 0; WGS84_gravity( WGS84, phi, h )];

25 C_b_l = quat2dcm(q_b_l);

26 omega_ie_l = [WGS84.w * cos(phi); 0; -WGS84.w * sin(phi)];

27 omega_el_l = [dot__lambda * cos(phi); -dot__phi; -dot__lambda * sin(phi)];

28 omega_lb_b = omega_ib_b - C_b_l.' * (omega_ie_l+omega_el_l);

29 dot__q_b_l = 1/2 * quatMult(q_b_l,[0; omega_lb_b]);

30 dot__v_e_l = C_b_l * f_b + g_l - (SkSymMat(omega_el_l) + ...

2*SkSymMat(omega_ie_l)) * v_e_l;

31 INS_model_data.X_sym = [r_e_l; v_e_l; q_b_l];

32 INS_model_data.dX_sym = [dot__r_e_l; dot__v_e_l; dot__q_b_l];

33 INS_model_data.ModelName = 'INS';

34 INS = SubModel(INS_model_data);

35 %% Observation Model: GNSS

36 syms L_G1 L_G2 L_G3 real

37 r_bG_b = [L_G1 L_G2 L_G3].';

38 GNSS_position = [phi; lambda; h] + D_inv*C_b_l*r_bG_b;

39 GNSS_velocity = [v_N; v_E; v_D] + ...

(C_b_l*SkSymMat(omega_ib_b)-SkSymMat(omega_ie_l)*C_b_l)*r_bG_b;

40 GNSS_model_data.obsMdl = [GNSS_position; GNSS_velocity];

41 GNSS_model_data.name = 'GNSS';

42 GNSS = Sensor(GNSS_model_data);
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5 Main Results

Overview

This section provides simulation and experimental results that demonstrate performance of

the proposed VDM-based navigation system. The results are organized in 4 sections, each

verifying a different aspect of navigation performance and reliability. A short description of

these 4 sections is represented in the following list, with a summary in Table 5.1. This list

also provides references to previously published papers on current research from which

most wordings and results are borrowed.

Section 5.1: Proof of concept was done via Monte-Carlo simulation. There were 100 runs

with different realizations of random terms on sensor errors, initialization errors, and VDM

parameters error. The simulated flight follows a trajectory with ascending, 90 degree turns,

level flight, and descending. Most wordings and results in this section are taken from two peer

reviewed papers [37, 38].

Section 5.2: Effects of wind on navigation performance was evaluated via Monte-Carlo simu-

lation using real 3D wind data [43]. Wind is a major factor affecting the behavior of the UAV,

and its estimation is critical in VDM predictions. There were 50 runs with different 3D wind

velocity profiles applied on the UAV. Wind velocity came from real data [43]. Most wordings

and results in this section are taken from a peer reviewed paper [39].

Section 5.3: To validate the simulations and evaluate real-world performance of VDM-based

navigation, some experiments were performed using TOPO plane 1 UAV, described in Sec-

tion 4.2.1. The results of one of the flights are presented here. Data collected form the real

flight were processed with VDM-based navigation system. Then, the real trajectory was used

to generate way-points in a Monte-Carlo simulation to emulate reference data and sensor

data for navigation. Similar to Section 5.1, there were 100 runs with different realizations of

random terms on sensor errors, initialization errors, and VDM parameters error. Comparison

between the navigation results in experimental scenario and emulation scenario reveals the

level of validity of simulations. Most wordings and results in this section are taken from a peer
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reviewed paper [41] and an under review paper [40].

Section 5.4: To further evaluate VDM-based navigation performance, more experiments were

performed using a second UAV, TOPO plane 2, described in Section 4.2.1. The results of two of

these flights are presented here. The first flight, containing some high dynamics parts in the

trajectory that was used to estimate the VDM parameters in the navigation system. Navigation

was then performed on the second flight with a area mapping type trajectory to estimate

navigation performance during GNSS outages.

Table 5.1 – Summary of results section organization

Section Main Goal Type Main variations
in Monte-Carlo

Trajectory UAV

5.1 proof of
concept

simulation sensor errors,
initialization
errors, VDM

parameters error

ascending, 90
degrees turns, level

flight, and
descending

synthetic

5.2 evaluation
of wind
effects

simulation wind velocity same as 5.1 synthetic

5.3 validation
of

simulations

emulation
&

experiment

same as 5.1 area mapping type TOPO
plane 1

5.4 further ex-
periments

experiment – high dynamics for
calibration & area

mapping type

TOPO
plane 2

General Remarks

Unless stated otherwise, stochastic models to simulate sensor error come from Section 4.2.2,

and filter setup, such as initialization and observation error statistics, is in accordance with

the details presented in Section 4.3.

For better interpretation of results, position is presented in Cartesian coordinates in a local

level frame ENU1 fixed at some point close to/coinciding the initial position, and attitude is

presented by Euler angles (roll, pitch, and yaw).

The main focus of the results presented in this section is the navigation system performance

during GNSS outages of a few minutes. However, the added value of the navigation system in

precise attitude estimation for photogrammetry/mapping applications was investigated via

1East-North-Up
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Monte-Carlo simulations, whose results were published in a peer reviewed paper [36].

5.1 Proof of Concept

This section presents some simulation results, performed primarily as a proof of concept that

the proposed VDM-based navigation system works and has potential to significantly improve

the accuracy of autonomous navigation with respect to conventional INS-based navigation. A

minimum sensor setup was used in this simulation, comprising an IMU and GNSS position

observations. Most wordings and results in this section are taken from a previously published

paper [38].

The Monte-Carlo simulation was performed with 100 runs, using real 3D wind velocity

data [43]. While the trajectory and the wind were kept the same in each realization, the

error in observations, initialization, and VDM parameters changed randomly for each indi-

vidual run. Figure 5.1 depicts the reference trajectory, as well as the solution from a sample

run. The trajectory has an approximate ground footprint of 2 km×2 km and a total change of

1km in altitude. Detailed results are presented in sections 5.1.1 and 5.1.2, and a discussion on

observability is provided in Section 5.1.3.

Figure 5.1 – Reference trajectory and the solution from a sample run with GNSS signals
available during first 100s only (adapted from [38])
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5.1.1 Navigation States

The position error is presented in Figure 5.2 for all the 100 Monte-Carlo runs. The graphs show

how the error grows as time passes after GNSS outage starts, and how the overall behavior is

similar for individual runs. An empirical RMS1 is calculated from these individual errors and

plotted against the predicted confidence level (1σ) in the same figure.

Figure 5.2 – Position errors for all the 100 Monte-Carlo runs with empirical RMS and predicted
confidence level (adapted from [38])

Figure 5.3 depicts the empirical RMS of attitude errors for all the 100 runs, with associated

predicted values of confidence (1σ). In order to avoid clattering the graph, error values are

depicted at discrete times with an interval of 40 seconds. First thing to notice is how closely

(and slightly conservatively) the error is predicted within the filter, which reveals the relevance

of stochastic setup. The results are promising in terms of preserved navigation accuracy as

well, with the RMS of position error being less than 110m after 5 minutes of autonomous

navigation during GNSS outage. This error is only 0.007◦ for roll, 0.020◦ for pitch, and 0.38◦ for

yaw. In comparison, the classical INS coasting would result in errors of 11.7km for position,

2.6◦ for roll, 1.5◦ for pitch, and 16.6◦ for yaw under exactly the same situations.

Figure 5.4 represents the comparison of the RMS of position and yaw errors for all the 100 runs

between proposed VDM-based and INS-based navigation approaches over the whole interval.

The improved performance of the proposed filter is noticeable also during the availability of

GNSS in estimating yaw.

1Root Mean Square
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Figure 5.3 – RMS of attitude errors from 100 Monte-Carlo runs (adapted from [38])

Figure 5.4 – Comparison between INS-based and VDM-based navigation: RMS of position
and yaw errors from 100 Monte-Carlo runs (adapted from [38])
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5.1.2 Auxiliary States

Figure 5.5 shows the empirical RMS of errors in estimation of IMU error terms for all the

100 runs, which were modeled as random walk processes. The predicted confidence values

(1σ) are again close to empirical RMS, and the accuracy of the estimation is satisfactory in

comparison to the amplitude of simulated errors (realization values) plotted on the same

graph.

Figure 5.5 – RMS of estimation error for IMU error terms from 100 Monte-Carlo runs, together
with the amplitude of simulated errors (adapted from [38])

The empirical RMS of mean error in estimation of VDM parameters for all the 100 runs is

plotted in Figure 5.6. Although the prediction of confidence levels of estimation by the filter

is slightly optimistic here, the difference does not exceed 24%. The evolution of this error

reveals that there is a sharp decrease in the mean error of parameter estimation from the

initial 10% error to 6% during the first 40 seconds with GNSS available, which is followed by

a slowly decreasing trend. The reason behind the second regime is the correlation between

some parameters within the set. In such situations, some parameters are estimated as a group
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(in some sense) rather than individually, and the remaining individual errors contribute to

increasing the mean error for the whole set. More details on this can be found in section 5.1.3

when discussing the observability of the states. Note that the mean error is calculated in an

RMS sense for all the parameters at any given time to be stricter and to cover both the mean

value and the standard deviation.

Figure 5.6 – RMS of estimation error for VDM parameters from 100 Monte-Carlo runs (adapted
from [38])

Finally, the RMS of error in estimation of wind speed for all the 100 runs is depicted in Figure 5.7.

Again, the filter has been able to provide a close and slightly conservative prediction on the

estimation error, and the accuracy of the estimation is good enough for navigation purposes,

especially when considering the fact that no airspeed sensor was considered in the system and

the estimation is provided just as a courtesy of the UAV dynamic model provided with IMU

data. As revealed by the slow growth of predicted error, the wind speed estimation uncertainty

is expected to increase as time passes during GNSS outage. However, the rate of this growth

is well controlled, reaching only 0.7m/s after 5 minutes of GNSS outage. It is worth noting

that all the three components of the wind velocity are estimated within the filter, which are

converted to the wind speed when presenting results in favor of the plot being less clattered.

5.1.3 Discussion on Observability

This section discusses some aspects of the observability of filter states. The discussion will be

based on analysis of covariance matrix throughout the time. Close agreement between the

empirical errors and the predicted confidence levels through covariance matrix as revealed in

sections 5.1.1 and 5.1.2, provides the validity of stochastic parameters setup in the filter, so
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Figure 5.7 – RMS of estimation error for wind speed from 100 Monte-Carlo runs, together with
real wind speed [43] (realization values) (adapted from [38])

that the subsequent discussion based on analyzing the covariance matrix can take place.

One should note that although the plots presented in this section are related to one sample

Monte-Carlo run, the stochastic aspects discussed here are very similar for all the 100 runs.

Figure 5.8 shows the ratios of uncertainties of states during GNSS presence period (top) and

GNSS outage period (bottom). During GNSS presence period, the uncertainties of all the states

except a few of VDM parameters were reduced significantly, which indicates the observability

of them, even during this relatively short availability period (100 seconds) for stand-alone

satellite positioning. The uncertainties of those few VDM parameters were not increased

either, which indicates no divergence is expected on their estimation.

As expected, during GNSS outage (bottom part of Figure 5.8), the uncertainty of position and

velocity has grown. The uncertainty of attitude was reduced by a factor of 0.3 for roll, and

increased by factors of only 1.2 and 2.3 for pitch and yaw, respectively, which is considered an

excellent performance in attitude determination after 5 minutes of autonomous navigation.

The uncertainty of rotation rates was reduced, thanks to direct measurements from the IMU.

The uncertainties of all VDM parameters were kept more or less constant during GNSS outage,

which means the filter has been able to maintain the estimation of them even in the absence

of GNSS measurements. Conceptually, this is achieved by the redundancy of information

on linear accelerations and rotation rates provided by VDM and IMU. The uncertainty of

IMU error terms was almost unchanged, as well. Finally, the uncertainty of wind velocity has

experienced an increase of almost 4 times, which is still a quite useful result for navigation.

Further improvement can also be expected with the use of airspeed sensor observations,
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as long as the uncertainty of such observations are low with respect to the uncertainty of

estimated values by the filter without them.

Figure 5.8 – Ratios of uncertainties of states during GNSS presence and GNSS outage periods
(navigation starts with GNSS available at t = 0s, GNSS outage begins at t = 100s, and navigation
ends at t = 400s) (adapted from [38])

Figure 5.9 depicts the correlation coefficients among all the states within the filter at the end

of the navigation. As can be seen, the navigation, IMU error, and wind velocity states are well

decorrelated in general, which indicates their good observability. The VDM parameters block

shows the highest level of correlations, especially among different aerodynamic coefficients

for any specific moment component (this is distinguishable as almost all white small square

blocks on the diagonal). This means that rather than individual VDM parameters, groups

of VDM parameters are getting estimated within the filter. Decorrelating individual VDM

parameters demands longer time, more dynamic maneuvers, and possibly longer periods of

GNSS availability. Considering the fact that these are practically constants for a particular

platform, their better estimation can be carried only once during a calibration scenario. This

shall result in lower uncertainties of their initial values for subsequent scenarios. Anyway, for

the purpose of navigation, and not necessarily parameter estimation, Monte-Carlo simulations
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reveal that the VDM parameters are estimated well enough to enable the proposed VDM-based

navigation reaching much better performance compared to inertial coasting.

The other point to notice is how well the VDM parameters are decorrelated from other states

of the filter. There remains also a considerable level of correlation between wind velocity

components and position and velocity of the UAV. As depicted in Figure 5.7, the uncertainty of

wind velocity estimation grows steadily, yet slowly as time passes during GNSS outage. This

is in relation to the level of process noise on the wind model. When gustier conditions are

expected, higher values on this process noise can be used to allow capturing more sudden

changes in wind velocity, at the price of increasing the uncertainty of navigation solution

during GNSS outage, as well. However, including airspeed observations might be a good

answer to such compromise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Correlation Coefficient

Figure 5.9 – Correlation matrix at the end of navigation (adapted from [38])

Last but not least, as the observability concerns during GNSS outage are mainly related to

VDM parameters and they are expected to be more or less constant under normal condition,

one may exclude such parameters from estimation during GNSS outages. This means that the

last estimated values of these parameters are kept constant and used within the filter. To be

extremely cautious, the same can be done for IMU error terms, although the results presented
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in this section do not hint at necessity of such action.

5.2 Evaluation of Wind Effects

This section presents some simulation results, performed to evaluate the effects of wind

velocity on performance of the proposed VDM-based navigation system. The sensor setup,

flight plan (waypoints), and error statistics are the same as those used in Section 5.1. Most

wordings and results in this section are borrowed from a peer reviewed published paper [39].

In Section 5.1 (and [38]), 100 runs were performed using the same trajectory and realization of

time-varying wind velocity, while the sensor errors and initialization errors changed randomly

in each individual run (Called “case A” throughout this section). Here in contrary, 50 runs

have been performed with wind velocity, coming from real 3D data [43], changing in each run

while keeping one representative realization of sensor errors and initialization errors for all

the runs (Called “case B” throughout this section). The selected realization of sensor errors

and initialization errors here is the one with closest position error to the RMS of all the 100

runs in case A. To investigate further the effect of wind power on navigation performance, the

50 runs of case B have been performed again with scaled up (2 times) real wind velocity. The

process model noise within the filter have been modified accordingly once (Called “case C”

throughout this section), and kept unchanged another time (Called “case D” throughout this

section). Table 5.2 presents a summary of mentioned Monte-Carlo simulation cases.

Table 5.2 – Summary of Monte-Carlo simulation cases (adapted from [39])

Variations on

Case Sensor and
initialization errors

Wind velocity
data

Scaled up wind
velocity

Modified
process noise

A [38] X

B X

C X X X

D X X

Although the trajectory may be slightly different in each realization here due to changes in

wind velocity, the way-points has been kept the same, so all the 50 trajectories are close to

each other, corresponding to the one depicted in Figure 5.1.

Table 5.3 reveals some statistics of the 50 wind velocity realizations for case B. Turbulence

intensity at each direction is defined as the RMS of eddy velocity (equivalent to standard

deviation of velocity) at that direction divided by mean wind speed. Turbulence kinetic energy

is defined as the mean kinetic energy per mass due to eddy velocity. Eddy velocity is the

difference between instantaneous and mean wind velocity.
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Table 5.3 – Wind velocity statistics for case B (adapted from [39])

Characteristic Minimum Maximum Mean RMS

Mean Wind Speed 2.0 5.0 3.5 3.6

Streamwise Turbulence Intensity 0.017 0.097 0.042 0.046

Transversal Turbulence Intensity 0.014 0.072 0.036 0.038

Vertical Turbulence Intensity 0.004 0.032 0.013 0.014

Turbulence Kinetic Energy [ j /kg ] 0.003 0.057 0.022 0.026

The results of Monte-Carlo simulations are presented in Sections 5.2.1 and 5.2.2.

5.2.1 Navigation States

Figure 5.10 shows comparison of RMS of position and yaw errors for all the 50 runs between

proposed VDM-based and classical INS-based navigation systems over the whole 400 s interval

for case B. The availability of GNSS positioning is assumed only during the first 100 s, while

the remaining 300 s is left to autonomous navigation. While the RMS of position error is

14.3 km for classical INS coasting after 5 minutes (300 s), this is reduced to less than 86 m with

VDM-based navigation under exactly the same situations. This represents an improvement

of more than two orders of magnitude in position accuracy. The attitude determination also

shows an improvement of 1 to 2 orders of magnitude, which will be detailed shortly. It is worth

mentioning here that the improved estimation of yaw is noticeable with the proposed filter

also during the availability of GNSS observations.

The position error for all the 50 Monte-Carlo runs is presented in Figure 5.11 for case B. The

graphs show how the error grows as time passes after GNSS outage starts, and how the overall

behavior is more or less similar for individual runs. An empirical RMS is calculated from

these individual errors and plotted against the predicted confidence level (1σ). The close

correspondence between empirical and predicted confidence levels of positioning reveals

relevant stochastic assumptions in filter setup.

Figure 5.12 depicts the empirical RMS of attitude errors for all the 50 runs, with associated

predicted values of confidence (1σ) for case B. The results are promising in terms of preserved

navigation accuracy, with the RMS of error to be only 0.04◦ for roll, 0.08◦ for pitch, and 1.34◦

for yaw after 5 minutes of autonomous navigation during GNSS outage. In comparison, the

classical INS coasting would result in errors of 3.36◦ for roll, 1.77◦ for pitch, and 26.87◦ for yaw

under exactly the same situations.

For all the cases, A to D, the maximum RMS of errors after 5 minutes of autonomous navigation

during GNSS outage is summarized in Table 5.4. As can be seen in this table, in cases C and D

where the wind speed was two times bigger, the error in navigation states experienced also an

increase of almost two time. This is considered here as a positive result, since the navigation
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Figure 5.10 – Comparison between INS-based and VDM-based navigation: RMS of position
and yaw errors from 50 Monte-Carlo runs (case B) (adapted from [39])

Figure 5.11 – Position errors for all the 50 Monte-Carlo runs (case B) (adapted from [39])
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Figure 5.12 – RMS of position and attitude errors from 50 Monte-Carlo runs (case B) (adapted
from [39])

error grows only proportionally against wind speed, yet stays significantly smaller compared

to INS coasting. As mentioned at the beginning of Section 5.2, the only difference between

cases C and D is the modification to the process model noise within the filter to adapt to

the change in wind speed. This modification was done in case C and avoided in case D. The

navigation errors were quite comparable in these two cases, revealing low sensitivity to the

stochastic setup of wind model within the filter. The main difference was in the predicted

confidence levels (1σ). While in cases A, B, and C, they were in good agreement with actual

errors, the predicted confidence levels were too optimistic (by a factor of 2) with respect to the

actual errors in case D.

Table 5.4 – Summary of maximum navigation errors for cases A to D [39]

Case Navigation
RMS of errors

position roll [◦] pitch [◦] yaw [◦]

A
INS-based 11.7 km 2.62 1.47 16.61

VDM-based 110 m 0.01 0.02 0.38

B
INS-based 14.3 km 3.35 1.77 26.87

VDM-based 86 m 0.04 0.08 1.34

C
INS-based 14.1 km 2.49 2.80 25.10

VDM-based 185 m 0.09 0.15 2.20

D
INS-based 14.1 km 2.49 2.80 25.10

VDM-based 199 m 0.11 0.14 2.24
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5.2.2 Auxiliary States

Successful estimation of auxiliary states is a key enabler of navigation improvement within

the filter. Due to general similarity of results to case A, the results for case B are presented in

this section in a less detailed manner. All the reported values were calculated as an RMS of the

values for all the 50 Monte-Carlo runs for case B.

Figure 5.13 shows the empirical RMS of errors in estimation of IMU error terms for all the 50

runs. The time correlated part of the IMU error gets estimated quickly during the first tens

of seconds of navigation and remains rather unchanged afterwards, even during the GNSS

outage period. The estimation error has an average of 4.9% for the three accelerometers and

an average of 5.2% for the three gyroscopes at the end of the whole navigation period.

Figure 5.13 – RMS of estimation error for IMU error terms from 50 Monte-Carlo runs, together
with the amplitude of simulated errors
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The mean error in estimation of VDM parameters shows a sharp decrease from the initial

value of 9.13% to 5.86% during the first 40 seconds with GNSS available, which is followed by a

slowly decreasing trend until the end. The reason behind the second regime is the correlation

between some parameters within the set. In such situations, the groups of parameters are esti-

mated rather than individual parameters, and those individual errors contribute to increasing

the mean error for the whole set.

Figure 5.14 – RMS of estimation error for VDM parameters from 50 Monte-Carlo runs

Finally, the wind velocity is estimated well during GNSS availability period, reaching an error

of only 5.1% for wind speed after 100 seconds. As depicted in Figure 5.15, the estimation error

starts to grow when GNSS outage begins. However, the rate of this growth is well controlled,

and the error is still below 12.7% after 5 minutes of GNSS outage.

5.3 Validation of Simulations

This sections presents the results of one of the experiments performed to validate the simu-

lations. The flight was performed with TOPO plane 1, described in Section 4.2. While only

the standalone GNSS data were used in navigation, PPK GNSS data provided cm-level posi-

tion information ad reference for evaluation of navigation performance. Another use for the

high accuracy GNSS data was generating waypoints for the emulation scenario. Similar to

Section 5.1, a Monte-Carlo simulation was performed on emulated sensor data with 100 runs

each having a different realization of random terms on sensor errors, initialization errors, and

VDM parameters error. As presented in Section 5.3.1 and 5.3.2, closeness of navigation results

in simulation and experimental scenarios reveals the realistic setup and validity of the former.

Most wordings and results in this section are taken from a peer reviewed paper [41] and an
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Figure 5.15 – RMS of wind estimation errors from 50 Monte-Carlo runs (case B) (adapted
from [39])

under review paper [40]

As real data are involved in experiments in this section, Earth rotation and curvature were

considered in navigation, which was not the case in synthetic scenario presented in Sec-

tions 5.1 and 5.2. There, a flat non-rotating Earth model was considered for both generating

the reference and sensor data as well as the navigation. Therefore, no considerable difference

was expected by ignoring Earth rotation and curvature, there. This was also confirmed in some

complementary tests.

Barometric altimeter measurements were used in all simulation and experimental results, for

both conventional INS-based and proposed VDM-based navigation systems, unless stated

otherwise.

In order to make the emulation scenario as close as possible to the experimental one, the

following points were considered:

• The waypoints used in flight simulation were taken from the high accuracy GNSS data

in experimental trajectory. Then, the flight simulation was run to fly through these

waypoints and emulate reference data and sensor data for Monte-Carlo simulation. As

can be seen in Figure 5.16 and 5.22, the trajectories for simulation and experimental

scenarios were very similar and visually indistinguishable, at least in terms of position.

• The wind data used in the above-mentioned flight simulation came from real wind

measurements [43].
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• The values of VDM parameters used in simulations were the same as the ones related to

the real platform used in experimental scenario navigation.

• The sensor errors used in the Monte-Carlo emulation scenario were generated by

stochastic models that were identified for the real sensors onboard the real plane in

static conditions, as described in Section 4.2.2.

• The sensor error stochastic models that were used in the navigation filter were the same

for both simulation and experimental scenarios. These are simplified versions of what

was obtained from sensor identification. More details are provided in Section 4.3.1.

5.3.1 Emulation Scenario

A Monte-Carlo simulation has been performed with 100 runs, using real 3D wind velocity

data [43]. While the trajectory and the real wind velocity has been kept the same in all

realizations, the errors in observations, initialization, and VDM parameters have changed

randomly for each individual run (realization).

Figure 5.16 provides horizontal view of the reference trajectory, as well as the solutions from

a sample run of Monte-Carlo simulation. The trajectory emulates that of the experimental

flight. It has an approximate ground footprint of 1000 m×500 m and about 50 m change in

altitude. The sensor setup is also simulated as close as possible to the one used in the real

flight. Detailed results of Monte-Carlo simulations are presented in Sections 5.3.1 and 5.3.1.

Navigation States

Figure 5.17 depicts position errors for all the 100 Monte Carlo runs, as well as the RMS of them

and predicted uncertainty by the filter (1σ). As can be seen, during 3 minutes of GNSS outage,

maximum RMS of position errors for VDM-based navigation reached only 38 m and this

error is in good agreement with filter predicted confidence, which confirms proper stochastic

configuration. Under exact same emulation scenario, the error for INS-based navigation was

681 m, almost 18 times larger.

RMS of attitude errors for all the 100 Monte Carlo runs, as well as predicted uncertainty (1σ)

are depicted in Figure 5.18. As can be seen, during 3 minutes of GNSS outage, maximum RMS

of errors for VDM-based navigation reached only 0.20◦, 0.19◦, and 0.96◦ for roll, pitch, and yaw,

respectively. The attitude uncertainty prediction in filter (1σ) was conservative slightly for roll

and pitch and rather considerably for yaw. This may be related to over-pessimistic setup of

process model noise in rotational dynamics part. Under exact same emulation scenario for

INS-based navigation, maximum RMS errors for roll, pitch, and yaw were 0.67◦, 0.68◦, and

7.28◦, respectively.

Discarding barometer data made navigation errors considerably larger for INS-based naviga-

tion as errors in vertical channel were no longer limited, while it had very little to no impact on

92



5.3. Validation of Simulations

Figure 5.16 – Horizontal view of reference trajectory in Monte-Carlo simulations and naviga-
tion solutions from a sample run with GNSS signals available during first 100s only (adapted
from [40])

VDM-based navigation results. A summary of navigation errors with and without barometer

data is provided in Table 5.5.

Auxiliary States

Figure 5.19 shows the empirical RMS of errors in estimation of IMU error terms obtained

from all the 100 runs. The predicted uncertainties (1σ) are close to empirical RMS, and the

accuracy of the estimation is satisfactory in comparison to the amplitude of simulated errors

(i.e., realization values) plotted on the same graph.

The empirical RMS of mean error in estimation of VDM parameters obtained from all the 100

runs is plotted in Figure 5.20. Here, the filter is slightly optimist in predicting the estimation

accuracy, but the difference does not exceed 20%. The evolution of this error reveals that there

is a sharp decrease in the mean error of parameter estimation from the initial 10% error to

6% during the first 40 seconds with GNSS available, which is followed by a slowly decreasing

trend afterwards. The reason behind the second regime seems to be the correlation between

some parameters within the set. Normally, the groups of parameters are estimated rather than
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Figure 5.17 – Position error in Monte-Carlo simulation for VDM-based navigation, with maxi-
mum RMS of 38 m during 3 minutes of GNSS outage. The same error for INS-based navigation
was 681 m (adapted from [40]).

Figure 5.18 – RMS of attitude errors in 100 Monte-Carlo simulation runs for VDM-based
navigation, with maximum RMS of 0.20◦, 0.19◦, and 0.96◦ for roll, pitch, and yaw, respectively,
during 3 minutes of GNSS outage. The same errors for INS-based navigation were 0.67◦, 0.68◦,
and 7.28◦ (adapted from [40]).
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Table 5.5 – Maximum RMS of position and attitude estimation error in Monte-Carlo simula-
tions with and without barometric altimeter [40]

Error
With barometer Without barometer

VDM-based INS-based VDM-based INS-based

Position [m] 38 681 39 2856

Roll [◦] 0.20 0.67 0.20 2.30

Pitch [◦] 0.19 0.68 0.19 2.30

Yaw [◦] 0.96 7.28 1.02 7.64

individual parameters in such situations, and those individual errors contribute to increasing

the mean error for the whole set. More details on this can be found in Section 5.3.3 when

discussing the observability of the filter states. Note that the mean error is calculated in an

RMS sense for all the parameters at any given time to cover both the mean value and the

standard deviation.

Finally, the RMS of error in estimation of wind speed obtained from all the 100 runs is depicted

in Figure 5.21. Again, the filter has been able to provide a close prediction on the estimation

uncertainty, and the accuracy is good enough for navigation purposes, especially when con-

sidering the fact that no airspeed sensor was considered in the system and the estimation is

provided just as a courtesy of the UAV dynamic model. As revealed by the slow growth of pre-

dicted error, the wind speed estimation accuracy is expected to decrease as time passes during

GNSS outage. However, the rate of this growth is well controlled, reaching only 0.3 m/s after

3 minutes of GNSS outage. It is worth noting that all the three components of the wind velocity

are estimated within the filter, which are converted to the wind speed for more comprehensive

presentation in the plot of Figure 5.21.

5.3.2 Experimental Scenario

The results of a real flight are presented in this section. The experimental setup used for the

tests is introduced in Section 4.2.

Figures 5.22 shows the reference trajectory obtained from PPK GNSS solution (not used

within the navigation system), as well as the navigation solution from proposed VDM-based

navigation. Available standalone GNSS position data that are used in navigation are also

depicted in this figure. The duration of GNSS outage is 3 minutes.

As can be seen in Figure 5.22, in contrary to inertial coasting, the VDM-based solution after

3 minutes of autonomous navigation (during GNSS outage) is still following the reference

trajectory qualitatively. To get quantitative measures on navigation quality, the 3D position

error over the whole trajectory is depicted in Figure 5.23.
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Figure 5.19 – RMS of estimation error for IMU error terms from 100 Monte-Carlo runs for
VDM-based navigation, together with the amplitude of simulated errors (realization values)
(adapted from [40])

The maximum position error after 3 minutes of GNSS outage is 53 m for proposed VDM-based

navigation. Under exact same conditions, this error is almost 39 times higher at 2076m for

the INS-based navigation. Note that the error in vertical channel is limited by barometer

data. For both conventional and proposed navigation systems, the predicted uncertainty is in

good agreement with the actual error. The experimental results are also in good agreement

with those obtained by simulation. Based on experimenting with longer availability periods

for GNSS, one main reason why experimental errors are slightly higher than the ones in

simulations seems to be the unresolved part of initialization errors. Unmodeled sensor errors

and misalignments among sensors, unmodeled dynamics of the UAV, higher uncertainty in

initial values of VDM parameters, and the noise on control input from autopilot that was not

considered in simulations, can be other reasons for this difference.

Figure 5.24 depicts the velocity components provided by the VDM-based navigation versus

reference values coming from PPK GNSS data. Despite being a bit noisy, VDM-based results

capture the trend and follow the reference values closely, even in absence of GNSS position
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Figure 5.20 – RMS of estimation error for VDM parameters from 100 Monte-Carlo runs (adapted
from [40])

Figure 5.21 – RMS of estimation error for wind speed from 100 Monte-Carlo runs, together
with real wind speed (adapted from [40])
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Figure 5.22 – Horizontal view of reference trajectory in the real flight and navigation solutions
with GNSS signals available during first 100s only (altitude change � 50m) (adapted from [40])

updates for the last 3 minutes of the flight. Note that no GNSS velocity measurement was used

in the navigation.

It is worth mentioning that prior to running the VDM-based navigation in this experimental

scenario, the VDM parameters were calibrated to some extent. On another piece of the

trajectory in the same flight, VDM-based navigation was performed without any GNSS outage

to mainly estimate the VDM parameters. Then the estimated parameters at the end of that

phase were used as priors in the evaluation phase, results of which were presented in this

section. However, a more systematic and reliable approach to VDM parameters calibration

with two separate flights for calibration and evaluation will be detailed in Section 5.4.

5.3.3 Observability Discussions for Emulation Scenario

The results and discussions presented in this section are very similar to what was presented in

Section 5.1.3 for a different trajectory. There are subtle differences, though, which is why such

discussions are presented here, as well.

This section discusses some aspects of observability of filter states. The discussion is based

on analysis of covariance matrix throughout the time. Close agreement between the resulted
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Figure 5.23 – Position error in the real flight for VDM-based navigation, with maximum value
of 53 m during 3 minutes of GNSS outage. The same error for INS-based navigation was
2076 m (adapted from [40]).

errors and the predicted confidence levels through the covariance matrix as revealed in

Section 5.3.1 and 5.3.2, supports the validity of the stochastic configuration, so that the

subsequent discussion can take place.

The covariance and correlation plots presented in this section are related to one sample

Monte-Carlo run, since the stochastic aspects discussed here are very similar for all the 100

runs.

Figure 5.25 shows the ratios of uncertainties of states during GNSS presence (top) and GNSS

outage (bottom) periods. During GNSS presence period, uncertainties of all the states except

a few of VDM parameters were reduced significantly, which indicates observability of them,

even during this relatively short duration (100 seconds). Uncertainties of weakly observable

VDM parameters were not increased either, which indicates no divergence is expected in their

estimation.

During GNSS outage, as expected, uncertainties of position and velocity have grown. This

growth was small in vertical channel, thanks to barometric altimeter data. Uncertainties of

attitude were reduced by a factor of 0.8 for pitch, and increased by factors of only 1.3 and

5.6 for roll and yaw, respectively, which is considered an excellent performance in attitude

determination after 3 minutes of autonomous navigation in relation to the inertial sensor
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Figure 5.24 – Velocity components for VDM-based navigation with GNSS signals available
during first 100s only (adapted from [40])

quality. Uncertainties of rotation rates slightly decreased, thanks to the direct measurements

from IMU. The uncertainty of none of VDM parameters increased during GNSS outage, which

means their estimation is preserved even in the absence of GNSS measurements. The same

is true for IMU error terms. Finally, uncertainties of wind velocity have increased 2.8 times

in horizontal channels, and decreased 0.8 times in vertical channel, the latter thanks to

barometric altimeter data. The combined uncertainty for wind speed increased by almost 4

times, which is still quite a useful result for the navigation purposes. Further improvement

can also be expected with the use of airspeed sensor observations, as long as the uncertainty

of such observations are low with respect to the uncertainty of estimated values by the filter

without them.

Figure 5.26 depicts correlation coefficients among all the states within the filter at the end of the

trajectory++. As can be seen, the states are well decorrelated in general, which is an indicator

of their observability. The VDM parameters block shows the highest level of correlations,

especially among different aerodynamic coefficients for any specific moment component (this

is distinguishable as very bright small square blocks on the diagonal). This means that rather

than individual VDM parameters, groups of VDM parameters are getting estimated within

the filter. In this scenario, decorrelating individual VDM parameters demands longer time,
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Figure 5.25 – Ratios of uncertainties of states during GNSS presence and GNSS outage periods
in a sample Monte-Carlo run (GNSS outage begins at t = 100s, and navigation ends at t = 280s)
(adapted from [40])

higher dynamic maneuvers, and possibly longer periods of GNSS availability. Considering

the fact that the VDM parameters are normally constant for a particular platform, their better

estimation can be potentially carried out during a calibration scenario. This shall result in

lower uncertainties of their initial values for subsequent usages. Anyway, for the purpose of

navigation, and not necessarily for VDM parameter estimation, the simulation results reveal

that the VDM parameters are estimated well enough to enable the proposed VDM-based

navigation reaching much better performance compared to inertial coasting.

The other point to notice is how well the VDM parameters are decorrelated from other states of

the filter. There remains a considerable level of correlation between wind velocity components

and position and velocity of the UAV. As depicted in Figure 5.21, the uncertainty of wind

velocity estimation grows steadily, yet slowly, as time passes during GNSS outage. This is in
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relation to the level of process noise on the wind model. When more gusty conditions are

expected, higher values on this process noise can be used to allow capturing more sudden

changes in wind velocity, at the price of increasing the uncertainty of navigation solution

during GNSS outage, though. Therefore, including airspeed observations might be a good

answer to such compromise.

Figure 5.26 – Correlation matrix at the end of navigation in in a sample Monte-Carlo run
(adapted from [40])

As mentioned in Section 5.1.3, the observability of VDM parameters are limited during GNSS

outage. Since they are expected to be more or less constant under normal condition, one

may exclude such parameters from estimation during GNSS outages. This means that the last

estimated values for them will be kept constant and used within the filter. To be extremely

cautious, the same can be done for IMU error terms, although the results presented in this

section does not hint at necessity of such action.
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5.3.4 Observability Discussions for Experimental Scenario

As depicted in Figure 5.27 and Figure 5.28, results on covariance matrix in real tests are

very similar to those obtained in emulations. This makes most of the arguments made in

Section 5.3.3 directly applicable to experimental scenario.

Figure 5.27 – Ratios of uncertainties of states during GNSS presence and GNSS outage periods
in the real flight (GNSS outage begins at t = 100s, and navigation ends at t = 280s) (adapted
from [40])

However, one noticeable difference is uncertainty evolution of lateral and vertical velocity

components during GNSS presence period being greater than 1, while the same values in

simulation results were smaller than 1. Again, this seems to be due to initialization errors

that are likely larger and not fully resolved within 100 s of GNSS presence. Inclusion of GNSS

velocity observations is expected to improve this. Another difference to notice in Figure 5.28 is

that the VDM parameters are decorrelated better among themselves, which may be caused by

more dynamic excitation of the platform and stabilization commands by the autopilot in real
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Figure 5.28 – Correlation matrix at the end of navigation in the real flight (adapted from [40])

scenario.

5.4 Further Experimental Results

In the last section of this chapter, some results from two additional flights are presented,

employing a different UAV, TOPO plane 2, as described in Section 4.2.1. In order to ensure

about validity of model calibration and applicability of the designed navigation system in

real scenarios, two separate flights were performed on two different days. The first flight

contained some highly dynamic maneuvers, and the second one contained an area mapping

type trajectory with less harsh maneuvers. Data from the first flight were used to calibrate

VDM parameters, using internal capabilities of the navigation system for estimation of them.

In this phase, cm-level PPK GNSS observations (position and velocity) were used. These VDM

parameters were then used in the second flight, to evaluate navigation performance in GNSS

outages.
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5.4.1 Calibration Flight

The procedure to calibrate the VDM parameters is briefed as following.

Step 1. The center of mass of the UAV and the lever-arms for sensors was directly measured

with cm-level accuracy.

Step 2. Flight data were processed with INS-based navigation filter employing PPK GNSS

solution. The outputs of this step were the navigation states (PVA), IMU error, and

possibly refined GNSS lever-arm. One should note that this provides the lever-arm

between the IMU and GNSS antenna phase center. For use in VDM-based navigation,

this needs to be then superposed with the lever-arm between the IMU and body frame

origin. Barometer was pre-calibrated using PPK GNSS altitude data.

Step 3. Flight data were processed with VDM-based navigation filter employing the INS-based

PVA solution (from previous step) as observations. Considering the high number of

states and limited observability of some of them, this strategy was found much more

effective than using only the unprocessed sensor data in the VDM-based navigation

filter. The prioirs on IMU errors, as well as refined GNSS lever-arm were directly

imported from INS-based solution. Considering the large initial uncertainty of VDM

parameters at this stage, sensor mounting misalignments were not estimated within

the filter, but the coarse values known a priori were applied. This yielded a better

performance in evaluation phase (next step) compared to the case in which sensor

mounting misalignments were estimated in the filter. However, the difference was

not drastic and no divergence was observed when trying to estimate sensor mounting

misalignments.

Step 4. One should note that in the real flight there was no reference on the values of VDM

parameters and the ultimate goal was improving navigation performance rather than

precise determination of VDM parameters. Therefore, position error in VDM-based

navigation was used to evaluate indirectly the goodness of VDM parameter calibration.

Using the calibrated VDM parameters, flight data were processed with VDM-based

navigation once again, this time using only stand alone GNSS solution (position and

velocity) and introducing a GNSS outage of 3 minutes at the end. The position error

during GNSS outage was then checked, and a few iterations were made to previous

step to refine the estimation of VDM parameters so that the quality is acceptable for

VDM-based navigation purposes.

Discussion on VDM Parameter Calibration

One should consider the possibility that the calibrated VDM parameters as just described,

may not have converged to true values (which are unknown) necessarily. However, certain

sufficiency of this set for VDM-based navigation purposes was established by assessing the

105



Chapter 5. Main Results

navigation error not only for the same trajectory as in calibration flight, but also for a different

trajectory from an evaluation flight performed on a different day. Getting closer to true values

for at least some of VDM parameters for any specific platform at hand could be possible via

methods such as CFD analysis, wind tunnel testing, and performing exhaustive calibration

maneuvers exciting only a subset of dynamics at a time. However, the goal here is to minimize

the design effort by exploiting internal estimation capabilities of the VDM-based navigation to

a level that achieves a substantial improvement in the quality of autonomous navigation in

comparison to inertial coasting.

Calibration Trajectory

The trajectory of the calibration flight is shown in Figure 5.29. The trajectory has an approx-

imate ground footprint of 350 m×600 m and a total change of almost 120 m in altitude. Its

duration was over 6.5 minutes, over which the average speed was 16.3 m/s.

Figure 5.29 – Horizontal view (left) and altitude profile (right) for the reference trajectory used
in VDM parameters calibration

State Estimation

The evolution of IMU errors determined in Step 2 is shown in Figure 5.30.

Refinement of GNSS lever-arm over time in Step 2 is shown in Figure 5.31. At the end of the

calibration, the initial values of −45 cm, 0 cm, and −4 cm along the three axes, were refined

to −32 cm, 0 cm, and 9 cm, respectively. As the phase center of the GNSS antenna does not

necessarily lie within its body, the resulting refinement is not unexpected.

The relative change in some sample VDM parameters (CFzα, CFxβ2, and CMx ω̃x ) and the mean
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Figure 5.30 – IMU error estimated via INS-based navigation filter in Step 2

of absolute values for all of them during calibration in Step 3 is depicted in Figure 5.32. As

can be observed in the figure, this change is relatively big with the mean of absolute values

reaching over 350%.

Finally, when applying the calibrated VDM parameters within the same calibration flight, the

maximum position error in 3 minutes of GNSS outage for VDM-based navigation was 65 m,

while this error for INS-based navigation under the same conditions was 1207 m. Figure 5.33

depicts the evolution of position error for VDM-based and INS-based navigation.

Note that for the evaluations (Step 4 in calibration flight and in evaluation flight), the stan-

dalone GNSS observations were used instead of PPK observations. The standalone observa-

tions come from the same receiver and the same antenna, which means that the lever-arm is

also the same.
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Figure 5.31 – Refinement of GNSS lever-arm via INS-based navigation filter in Step 2

Figure 5.32 – Relative change in VDM parameters during calibration via VDM-based navigation
filter in Step 3: mean of absolute values for all parameters and 3 sample ones
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Figure 5.33 – Position error in evaluation of VDM parameters calibration in Step 4 with 3 min-
utes of GNSS outage at the end

5.4.2 Evaluation Flight

The evaluation flight data were processed with VDM-based navigation filter in the same way

as in Step 4 of Section 5.4.1 (i.e., using the priors on VDM parameters as obtained in the

calibration flight).

The trajectory of the evaluation flight is shown in Figure 5.34. The trajectory has an approx-

imate ground footprint of 350 m×750 m and a total change of almost 90 m in altitude. Its

duration was 6 minutes, over which the average speed was 16.6 m/s.

The maximum position error in 3 minutes of GNSS outage on the calibration flight trajectory

using the calibrated VDM parameters was 75 m, with its evolution being depicted in Figure 5.35.

This error for INS-based navigation under the same conditions reached 1220 m.

Figure 5.36 depicts the velocity components provided by the VDM-based navigation versus

reference values coming from PPK GNSS. Despite being a bit noisy, VDM-based results capture

the trend and follow the reference values closely, even in absence of GNSS position and velocity

updates for the last 3 minutes of the flight.
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Figure 5.34 – Horizontal view (left) and altitude profile (right) for the reference trajectory used
in evaluation flight with VDM-based navigation solution for 3 minutes of GNSS outage at the
end

Note on Airspeed Sensor Data

Due to high noise level of the airspeed sensor data as mentioned in Section 4.2.2 (σ= 1 m/s),

inclusion of such data did not provide any meaningful improvement to navigation results.

Therefore, airspeed measurements were not used in navigation. However, such measurements

are expected to be helpful in case of higher wind velocities, as well as longer GNSS outages.

Further investigation on effects of using airspeed sensor data is the subject of one of the

suggestions for future research presented in Section 7.2.
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Figure 5.35 – Position error in evaluation flight with 3 minutes of GNSS outage at the end
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Figure 5.36 – Velocity components for VDM-based navigation in evaluation flight with 3 min-
utes of GNSS outage at the end
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6 Further Analyses

Overview

This chapter presents some further results and analyses on VDM-based navigation.

First, a global sensitivity analysis is presented to rank the VDM parameters based on the

effect of their uncertainty on navigation performance.

Afterwards, a scenario is studied, in which no IMU data is used in navigation. The main goal

is to assess the ability of VDM-based navigation in attitude determination without using

IMU data, which might be helpful in case of IMU failure or malfunction for the purpose of

UAV control.

Finally, a brief discussion is presented on computational cost of VDM-based navigation.

6.1 Global Sensitivity Analysis

VDM contains a number of parameters related to the specific platform at hand. Some param-

eters such as mass, or those directly related to geometrical measures, can be determined a

priori with rather high confidence. However, the aerodynamic coefficients are in general more

difficult to measure or calculate, and are therefore associated with higher levels of uncertainty.

The methods to estimate these coefficients vary in time and cost required to setup, such as

estimation within the navigation system through a calibration scenario, CFD analyses, and

wind tunnel tests. Based on a [rough] prior knowledge of parameter values, sensitivity analysis

provides a quantitative base to assess the effect of errors in each parameter on VDM output

and order the parameters in terms of their influence. This might help in taking decisions on

refinement of parameters and the strategy for calibration.

As explained in the following section, local sensitivity analyses fail to consider the wide range

of inputs/parameters in the models. Considering the need to cover a large portion of flight

envelope in VDM-navigation, a global sensitivity analysis is performed, theory of which is

briefly described in the following.
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6.1.1 Theory

Sensitivity analysis is a term of many definitions and interpretations, and even more methods

to perform. A possible definition for “sensitivity analysis” is given in [65] as “the study of

how the uncertainty in the output of a model (numerical or otherwise) can be apportioned to

different sources of uncertainty in the model input”. A related practice, which is sometimes

mistakenly used instead of sensitivity analysis, is “uncertainty analysis”, meaning quantifi-

cation of uncertainty in model output. Ideally, these two analyses should be performed in a

chain with the uncertainty analysis preceding [66].

Two main categories for sensitivity analyses are local and global analyses. Local sensitivity

analysis is the one with the longer history, as a measure of the effect of a given parameter (or

input) of the model on a given output. To assess this measure, a single point in parameter space

is considered, and the output variation due to variation of a single parameter is estimated.

In case there exists a closed form mathematical model, this task can be accomplished via

partial derivatives. Many reports on the sensitivity analyses found in physical science journals

are local analyses, which is not always the appropriate approach [65]. For a system of the

form Y = f (X1, X2, . . . , Xn), sigma normalized derivatives can be considered as local sensitivity

indices and are calculated as [66]

Sσ
Xi
= σXi ∂Y

σY ∂Xi
. (6.1)

They provide a measure of how changes in Xi are magnified in Y , via ∂Y
∂Xi

, which is further

normalized by σXi to give more importance to parameters with a wider range of variation, and

by σY to make interpretation of results easier as
∑n

i=1

(
Sσ

Xi

)2 = 1.

Global analyses, on the other hand, can take into account the effect of all parameters. In

such methods, based on a given distribution of all parameters, a measure is obtained for each

parameter that reflects how much the output is affected by the variation of that parameter.

This gives a measure that is averaged over the entire parameter space and takes into account

the combined effect of any group of parameters rather than the single ones. For a system of

the form Y = f (X1, X2, . . . , Xn), conditional variances can be considered as global sensitivity

indices. The first order indices are calculated as

Si =
VXi

(
EX∼i (Y |Xi )

)
V (Y )

. (6.2)

The term EX∼i (Y |Xi ) is the average of Y value when Xi is fixed at some value (Y |Xi ) and all

other parameters (X∼i ) vary. VXi

(
EX∼i (Y |Xi )

)
is the variance of this conditional average, if the
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fixed value of Xi is changed over all its possible values. Normalizing this variance by V (Y )

ensures 0≤ Si ≤ 1 for easier interpretations. A high value for Si reveals a high importance of Xi .

However, a small Si does not necessarily represent an unimportant Xi , because Si contains

information only on direct (first order) effects of Xi on Y , and not on how variation of Xi in

combination with variations of other parameters affects the variance of Y .

If the variance of Y is conditioned on more than one parameter, higher order sensitivity indices

emerge naturally. For example, for i �= j and in general case,

VXi ,X j

(
EX∼i , j

(
Y |Xi , X j

))
V (Y )

≥ VXi

(
EX∼i (Y |Xi )

)
V (Y )

+
VX j

(
EX∼ j

(
Y |X j

))
V (Y )

,

which hints to define second order sensitivity index Si j with i �= j as

Si j =
VXi ,X j

(
EX∼i , j

(
Y |Xi , X j

))
V (Y )

− VXi

(
EX∼i (Y |Xi )

)
V (Y )

−
VX j

(
EX∼ j

(
Y |X j

))
V (Y )

=
VXi ,X j

(
EX∼i , j

(
Y |Xi , X j

))
V (Y )

−Si −S j . (6.3)

Total effects index for Xi is then defined as sum of all possible sensitivity indices of any order

that contains Xi .

STi = Si +
n∑

j=1, j �=i
Si j +

n∑
j=1, j �=i

n∑
k=1,k �=i ,k �= j

Si jk + . . .+S123...n (6.4)

Since the sum of all possible sensitivity indices of any order should sum up to 1, total effects

index STi can be calculated from

STi = 1− VX∼i

(
EXi (Y |X∼i )

)
V (Y )

, (6.5)

in which
VX∼i

(
EXi (Y |X∼i )

)
V (Y ) is equivalent to the sum of all sensitivity indices that do not contain

Xi .

Although for a system with n parameters, there are 2n −1 sensitivity indices, “a good, synthetic,

though nonexhaustive characterization of the sensitivity pattern for a model with n factors

is given by the total set of first-order terms plus the total effects” [66]. This translates into 2n

indices only.

Numerical evaluation of sensitivity indices is performed based on a Monte-Carlo method

proposed in Chapter 4 of [66].
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6.1.2 Results

Any effect from VDM parameters on navigation quality comes from calculated values of

aerodynamic forces and moments utilizing those parameters. Therefore, sensitivity analysis is

performed on aerodynamic forces and moments rather than on navigation solution, which is

directly influenced by the former.

One has to notice that the global sensitivity analysis performed here gives an overall image of

sensitivity over a wide range of values for states and flight conditions. In case of any specific

maneuver, the order of importance for parameters may change compared to what global

sensitivity analysis suggests. Therefore, if the navigation sensitivity in any specific maneuver

is intended to be studied, the described sensitivity analysis should be performed by defining

a navigation quality measure as the output function and adjusting the distribution of states

according to the specific maneuver. However, due to very limited application of scenarios of

such kind and considering the fact that the navigation system is normally expected to work

over a wide range of maneuvers, the global sensitivity analysis is preferred in this research over

local analyses.

Distribution of states for the global sensitivity analysis was considered as following, where

δe(level ) denotes the value of δe to perform a straight leveled flight at 15 m/s, and Xvp(nominal )

is the vector of nominal (unperturbed) VDM parameters presented in Table 4.6.

Velocity: vb
x ∼N

(
15,52

)
, vb

y ∼N
(
0,32

)
, vb

z ∼N
(
0,32

)
Attitude: r ∼N

(
0,(π/6)2

)
, p ∼N

(
0,(π/6)2

)
Rotation rate: ωx ∼N

(
0,(π/3)2

)
, ωy ∼N

(
0,(π/3)2

)
, ωz ∼N

(
0,(π/3)2

)
Wind velocity: wN ∼N

(
0,42

)
, wE ∼N

(
0,42

)
, wD ∼N

(
0,12

)
Actuator states: δa ∼N

(
0,0.12

)
, δe ∼N

(
δe(level ),0.12

)
, δr ∼N

(
0,0.12

)
,

ωp ∼N
(
100,102

)
VDM parameters: Xvp ∼N

(
Xvp(nominal ), (0.2|Xvp(nominal )|)2

)

Aerodynamic Forces

Values of sensitivity indices for VDM parameters affecting the magnitude of deviation in

aerodynamic forces are presented in Table 6.1.

As can be seen, CFzα was identified as the most influential parameter, while CFxα2 was among

the least influential ones. One should be aware that due to very close values of sensitivity

indices for least influential parameters while considering the uncertainties in numerical

evaluation of indices, the sorting gets less confident towards the end of the ordered list of

parameters. Also, relatively low values of sensitivity indices for VDM parameters shall not be
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Table 6.1 – First order (S) and total effects (ST ) indices in sensitivity analysis of aerodynamic
forces (limited to 3 decimal digits)

Index CFzα CFT 1 CFT 2 CFT 3 CFx 1 CFz 1 CFy 1 CFxβ2 CFxα CFxα2

S 0.055 0.023 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ST 0.101 0.052 0.006 0.005 0.002 0.002 0.002 0.002 0.002 0.002

interpreted as low importance of them in general. This is because a large share of the variance

in the output is due to variations in factors other than VDM parameters, such as navigation

states and wind velocity.

As a sample demonstration of how these parameters can affect the navigation performance,

the test scenario presented in Section 5.3 was considered again. VDM-based navigation was

performed on real and simulated data using nominal set of VDM parameters (as used in

Section 5.3) and four additional sets with the most and the least influential parameters (CFzα

and CFxα2, respectively) perturbed by±20%. The reference trajectory is depicted in Figure 5.16

for simulation and in Figure 5.22 for experimental data. Stochastic models to simulate sensor

error come from Section 4.2.2, and filter setup, such as initialization and observation error

statistics, is in accordance with the details presented in Section 4.3. Table 6.2 summarizes

maximum positioning error during 3 minutes of GNSS outage.

Table 6.2 – Maximum position error during 3 minutes of GNSS outage with perturbations on
most and least influential VDM parameters in aerodynamic forces

VDM parameters Nominal CFzα+20% CFzα-20% CFxα2 +20% CFxα2-20%

Position error [m] in

simulation results
38.3 38.6 38.2 38.4 38.1

Position error [m] in

experimental results
53.4 259.9 59.4 60.2 78.8

There are a number of points to notice in Table 6.2. In simulation results, an error of 20%

in neither of the parameters had a considerable effect on positioning error, which can be

explained by most of the parameters being estimated very well within the filter. In experimental

results, though, one can see that the change in positioning error is in accordance with what

the sensitivity analysis suggested, where CFzα was expected to be more influential than CFxα2.

Also, increasing parameter errors in a specific direction (+ or -) can sometimes work against

other error sources such as sensor errors and thus have a very different effect than the same

error in the opposite direction. This is, however, highly case-dependent and therefore difficult

to predict. For this reason, perturbations were made in both directions in this demonstration.
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Aerodynamic Moments

Values of sensitivity indices for VDM parameters affecting the magnitude of deviation in

aerodynamic moments are presented in Table 6.3.

Table 6.3 – First order (S) and total effects (ST ) indices in sensitivity analysis of aerodynamic
moments (limited to 3 decimal digits)

Index CMy e CMx a CMzβ CMz r CMz ω̃z CMx ω̃x CMy ω̃y CMy 1 CMyα CMxβ CMx ω̃z

S 0.012 0.010 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ST 0.031 0.020 0.014 0.013 0.006 0.004 0.004 0.003 0.000 0.000 0.000

Here, CMy e was identified as the most influential parameter, while CMx ω̃z was among the

least influential ones. The sample demonstration for aerodynamic forces was repeated for

aerodynamic moments, as well, results of which are summarized in Table 6.2.

Table 6.4 – Maximum position error during 3 minutes of GNSS outage with perturbations on
most and least influential VDM parameters in aerodynamic moments

VDM parameters Nominal CMy e+20% CMy e-20% CMx ω̃z +20% CMx ω̃z -20%

Position error [m] in

simulation results
38.3 38.8 38.0 38.7 38.0

Position error [m] in

experimental results
53.4 67.5 55.9 63.9 62.3

The observations related to simulation results are very similar to what they were in case of aero-

dynamic forces. The experimental results, though, do not reflect exactly what the sensitivity

analysis suggested on relative importance of parameters. This may highlight two points. First,

isolated performance evaluations with specific trajectories may be misleading on how differ-

ent parameters affect system performance over a larger portion of flight envelope.Therefore,

generalization of sample observations shall be avoided. Second, sorting important parameters

according to a formal sensitivity analysis in a global sense does not reflect in all the sample

cases, and should be interpreted in an average sense over entire distribution of parameters

and inputs considered in the analysis.

6.2 VDM-based Navigation without IMU

Although not as probable as GNSS outage, IMU failure or malfunction is a potential problem

in navigation/control system of UAVs, a reason for which there is a recent appearance of

redundant IMUs in autopilots even for MAVs [4]. Most navigation systems for UAVs are relying

mainly on inertial observations for attitude determination, and with faulty or unavailable IMU

data, attitude determination becomes impossible or of very poor quality, even in presence of
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GNSS position and velocity observations. Considering the role of attitude determination in

flight control, this can have a severe impact on flight performance and stability of the platform.

This section presents the results of an investigation performed to assess the feasibility of

using VDM-based navigation as an emergency solution for attitude determination with no

IMU data. The simulation and experimental flight data described in Section 5.4.2 –reference

trajectory of which is shown in Figure 5.34– were processed again. VDM-based navigation

was performed with aiding from standalone GNSS position and velocity data, results of which

were compared with those of INS-based navigation with the same aiding GNSS data. The

respective results are described in the Section 6.2.1 for emulation scenario and in Section 6.2.2

for experimental scenario. Stochastic models to simulate sensor error come from Section 4.2.2,

and filter setup, such as initialization and observation error statistics, is in accordance with

the details presented in Section 4.3.

6.2.1 Emulation Scenario

A Monte-Carlo simulation with 100 runs was performed on the emulated trajectory resulted

from the experimental flight, reference trajectory of which shown in Figure 5.34.

Figure 6.1 – Roll errors for all the 100 runs of Monte-Carlo simulation with empirical RMS

Figure 6.1 shows the comparison of roll error for VDM/GNSS and INS/GNSS navigation setups.

After the first minute of navigation when the effect of initialization errors was considerably

mitigated, the RMS of roll error for 100 runs did not exceed 0.30◦ for INS/GNSS. This error was

0.69◦ for VDM/GNSS, which is still acceptable for guidance and control of the UAV.

Pitch errors for VDM/GNSS and INS/GNSS navigation setups are compared in Figure 6.2. After
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Figure 6.2 – Pitch errors for all the 100 runs of Monte-Carlo simulation with empirical RMS

leaving out the first minute for mitigation of initialization errors, the maximum value of RMS

of pitch error for 100 runs was 0.20◦ for INS/GNSS. This error went up to 0.97◦ for VDM/GNSS,

which should be still acceptable for the purpose of guidance and control of the UAV.

Finally, Figure 6.3 shows the comparison of yaw error for VDM/GNSS and INS/GNSS naviga-

tion setups. Discarding the first minute of navigation for mitigation of initialization errors,

the RMS of yaw error for 100 runs reached a maximum of 1.05◦ for INS/GNSS and 1.61◦ for

VDM/GNSS, which is again an acceptable result for UAV guidance and control.

The summary of attitude errors is presented in Table 6.5, providing also the maximum RMS of

errors during the first minute.

Table 6.5 – Maximum RMS of attitude errors for VDM/GNSS and INS/GNSS navigation in
emulation scenario, during and after the first minute for mitigation of initialization errors

Navigation Roll error[◦] Pitch error[◦] Yaw error[◦]

type t ≤ 60s t > 60s t ≤ 60s t > 60s t ≤ 60s t > 60s

VDM/GNSS 3.70 0.69 6.87 0.97 5.13 1.61

INS/GNSS 2.90 0.30 2.94 0.20 5.35 1.05

6.2.2 Experimental Scenario

Attitude errors for experimental scenario are depicted in Figures 6.4 to 6.6. The reference

values were obtained from fusion of the same IMU data with PPK GNSS data in an INS/GNSS
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Figure 6.3 – Yaw errors for all the 100 runs of Monte-Carlo simulation with empirical RMS

filter. Due to use of the same IMU data, this is not an entirely independent reference, but the

best available. Note that the GNSS data used in the test came from stand-alone mode.

As evident from the figures and summarized in Table 6.6, attitude errors for VDM/GNSS

navigation are typically an order of magnitude bigger than the those for INS/GNSS, and

probably too large for the purpose of UAV control. This is considerably different from what

was observed in simulation scenario. The reason behind such large errors in VDM/GNSS

navigation seems to be unresolved errors in VDM parameters. The calibrated set of VDM

parameters was sufficiently good for autonomous positioning during GNSS outage with

positioning accuracy improvement of one to two orders of magnitude in comparison to

inertial coasting (as seen in Section 5.4.2). However, the remaining errors –supposably in

moment related parameters– are too large to perform attitude determination without IMU

data.

Table 6.6 – VDM/GNSS and INS/GNSS attitude errors in experimental scenario

Navigation Roll error[◦] Pitch error[◦] Yaw error[◦]

type Maximum Mean Maximum Mean Maximum Mean

VDM/GNSS 40.6 5.3 17.9 4.8 18.0 3.8

INS/GNSS 2.3 0.3 2.8 1.1 2.7 0.7
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Figure 6.4 – Roll error for experimental data

Figure 6.5 – Pitch error for experimental data
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Figure 6.6 – Yaw error for experimental data

6.3 Computational Cost

An increase in computational cost due to higher number of states and more complicated

equations may be a concern with VDM-based navigation. This subject is briefly discussed

here.

Conventional INS-based navigation is widely used and even older embedded systems have

enough processing power to run it. Therefore, a relative comparison is made here between

proposed VDM-based and conventional INS-based navigation algorithms. A trajectory of

5 minutes with GNSS observations at 1 Hz was emulated and post-processed 100 times at

IMU frequency of 100 Hz on a personal computer. Mean and standard deviation of required

computation time for both algorithms are presented in Table 6.7. Normalization is done with

respect to 16-states INS-based navigation.

Table 6.7 – Computation time comparison (VDM-based 1 and 2: without and with VDM
parameters estimation, respectively)

Navigation

algorithm

Number of states
Normalized

computation time

Absolute Normalized Mean Standard deviation

INS-based 16 1 1 0.02

VDM-based 1 23 1.44 1.7 0.01

VDM-based 2 49 3.06 2.7 0.07
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As can be seen in Table 6.7, VDM-based navigation (with VDM parameters estimation) has a

computation time of only 2.7 times higher than INS-based navigation, which can be further

reduced to 1.7 times by disabling VDM parameters estimation (in case these parameters are

pre-calibrated, for example). Although these results were obtained using MATLAB codes

running on a PC1, it seems safe to assume that with available computation resources on most

small UAVs today, running the proposed VDM-based navigation should be possible. On the

other hand, such difference in computational cost gets less importance as time passes and

embedded computers get more powerful.

1personal computer
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7 Conclusions and Suggestions

This research aimed at development of a new navigation algorithm for UAVs to considerably

improve navigation accuracy during GNSS outages, as a prerequisite for safer operations and

expanding operational scenarios, with three main characteristics:

1. Preserving navigation autonomy in a wide range of conditions. This means that envi-

ronment dependent sensors such as cameras are not considered to avoid dependency

on lighting conditions, signal propagation, terrain texture, etc.

2. Avoiding extra cost and weight due to additional sensors, which is a critical issue for

small civilian UAVs.

3. Avoiding complex and time consuming design and setup procedures compared to

normal operations of small civilian UAVs.

With these requirements in mind, a VDM-based navigation system was proposed that benefits

from information on motion dynamics of UAVs in navigation. After a brief presentation of

the preliminary concepts, the general theory and architecture of the proposed navigation

system were detailed. Implementation was then presented for a specific fixed-wing UAV and

the experimental setup was described, which was followed by simulation and experimental

analyses. Further analyses were performed on sensitivity of navigation accuracy to errors in

VDM parameters, and on navigation in absence of IMU data using VDM/GNSS setup as a

backup solution for IMU failure and malfunction. In the following, conclusion remarks and

suggestions for future research are presented.

7.1 Conclusions Remarks

1. Hundreds of simulations performed in Monte-Carlo scheme revealed improvements

of one to two orders of magnitude in position determination through autonomous

navigation during GNSS outages of 5 minutes, when compared to conventional INS-

based navigation under the same conditions. Consistent prediction of error levels for
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both navigation and auxiliary states by the navigation filter revealed proper stochastic

setup of the filter and provided a basis for observability discussions based on covariance

matrix analysis.

2. Monte-Carlo simulations using real 3D wind velocity data revealed an almost linear

dependency of navigation error to wind speed, when only internal capabilities of the

navigation filter were exploited to estimate wind velocity (i.e., in absence of airspeed

sensor). Navigation accuracy was insensitive to improper settings of process noise for

wind velocity within the filter.

3. In Monte-Carlo simulations, IMU errors and wind velocity were estimated with errors

typically bellow 10%. The average error on VDM parameters estimation, on the other

hand, stayed almost unchanged after an initial sharp decrease. Covariance matrix

analysis revealed the reason being some degree of unobservability for VDM parameters

that prevented individual parameters to be decorrelated with the available observations

and the performed maneuver. Carefully designed calibration maneuvers with higher

dynamics and longer periods are expected to result in better decorrelation of VDM

parameters.

4. Simulations were validated by exploiting experimental flight data collected by a custom

made fixed-wing MAV. First, Monte-Carlo simulation on emulated flight data based on

the trajectory of the real flight showed again an improvement of one to two orders of

magnitude in navigation accuracy during 3 minutes of GNSS outage. Second, similar

improvement and comparable absolute errors in autonomous navigation were observed

in reprocessing real flight data using cm-level GNSS positioning as the reference.

5. Further experimental tests were conducted with another realization of the same fixed-

wing UAV platform. VDM parameters were estimated in a “calibration flight” and then

used for navigation in an “evaluation flight” performed on another day with a different

trajectory. Maximum position error during 3 minutes of navigation with GNSS outage

was similar to the previous emulation and experiment, and also differed only by 15% be-

tween the calibration and evaluation flights, showing the applicability of the performed

VDM calibration as far as autonomous navigation is concerned.

6. Computation requirements were evaluated for VDM-based navigation in a post process-

ing scheme on an emulated trajectory, for a setup with 23 states (fixed VDM parameters)

and 49 states (re-estimated VDM parameters). The measured computation times were

respectively 1.7 and 2.7 times longer than those of conventional INS-based navigation

with 16 states. Repeating the simulations 100 times resulted in respective standard

deviations of 0.01 and 0.07 for the reported numbers. The excessive computational cost

gets less importance as time passes and processing capabilities grow.

7. Simplified calculations estimated the impacts of ignoring Earth rotation and curvature

on autonomous navigation. It was shown that even in flights limited to speed of 20 m/s,

range of 1 km, and duration of 3 minutes, a flat non-rotating Earth assumption would
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result in positioning errors of several tens of meters for inertial coasting, which is at the

same level of errors produced by VDM-based navigation during GNSS outages.

8. Results of individual local sensitivity analyses differed considerably from those of the

global sensitivity analysis that considered a wider range of possible flight conditions and

ranked the VDM parameters based on how their errors affect VDM output and therefore

VDM-based navigation accuracy. This emphasizes the limitations of making general

conclusions based on local sensitivity analyses.

9. Simulation results showed that in absence of IMU data, due to sensor failure for example,

VDM-based navigation was able to provide attitude estimation with an accuracy com-

parable to that of INS-based navigation with healthy data from the considered MEMES

IMU. The attitude error for VDM/GNSS navigation was at most 5 times larger than that

of INS/GNSS, keeping error of under 1 degree for roll and pitch and under 2 degrees

for yaw. This is sufficient for control of the UAV in case of IMU failure or malfunction,

provided that proper fault detection and exclusion is implemented. In the experimental

scenario, however, such performance for VDM/GNSS navigation was not achieved.

Some unanswered questions or unexpected observations encountered in this research, such

as the one just mentioned on VDM/GNSS attitude estimation, are mentioned in the next

section where suggestions for future research are presented.

7.2 Suggestions for Future Research

Compared to INS-based navigation with more than half a century of history for INS and more

than a quarter of century for INS/GNSS integration, VDM-based navigation is still in its infancy.

Therefore, there are various directions for further research and development on the subject.

This section briefly mentions a few, more in line with the observations made in this research.

1. As one of the main objectives of this research was keeping the effort required for im-

plementation of the proposed VDM-based navigation for any specific UAV, VDM pa-

rameters calibration was performed using only internal estimation capabilities of the

navigation filter. This approach proved to be effective as far as autonomous positioning

accuracy in GNSS outage conditions is concerned. However, further investigations

related to navigation without IMU data revealed a vast difference between experimental

and simulation results, hinting at insufficiency of the calibration procedure performed

for “IMU-free” attitude estimation. Furthermore, no direct evaluation of calibrated

VDM parameters was performed. Since VDM parameters are of great importance on

navigation performance, establishing and implementing more rigorous procedures for

VDM parameters calibration and evaluation can be a major contribution to the field.

2. In this research ,the integration with GNSS observations was performed in a loose cou-

pling scheme, where range and Doppler frequency measurements are preprocessed to
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provide position and velocity data. However, direct use of range and Doppler frequency

measurements, which is possible in a tight coupling scheme, has numerous benefits

for navigation quality and is well worthy of investigation. Benefiting from partial GNSS

data in marginal conditions when there are less than four usable ranges to get a position

fix in loose coupling scheme is one of the benefits. Direct use of raw measurements also

provides better stochastic modeling and hence higher accuracy.

3. Although models for including airspeed sensor in navigation were developed and imple-

mented, the practical benefits of using this instrument for VDM-based navigation are

yet to be confirmed. The main reason is the relatively high noise level (σ≈ 1 m/s) of the

instrument that prevented the beneficial usage within the navigation system in current

setup. Therefore, there is still the need for further investigation on how a better sensor

could improve wind velocity estimation in VDM-based navigation, or whether the same

sensor is still useful above a certain level of wind speed or in longer GNSS outages.

4. There are some auxiliary parameters, further refinement of which may let VDM-based

navigation to further improve the autonomous navigation performance. Some sensor

mounting misalignment parameters are examples of those. However, high correlation

of these parameters within themselves and with other parameters and states such as

sensor errors and VDM parameters makes their estimation challenging, on which further

research can be focused.

5. In this research, actuator dynamics was considered for the propeller and ignored for the

control surfaces, due to fast response of the employed servos. However, further research

may be conducted on modeling actuator dynamics and to evaluate in detail the effect of

unmodeled or mismodeled dynamics.

6. An alternative to modeling actuator dynamics and feeding such models with control

commands is direct measurement of actuator states (such as propeller speed and aileron

deflection) using proper sensors. Further research can investigate the feasibility and

added value of such approach.

7. As VDM-based navigation treats IMU as a sensor providing observations, multiple IMUs

can be independently used within the navigation system. While redundant IMUs are

proven to be able to deliver better performance in INS-based navigation systems, the

extent of their effectiveness in VDM-based navigation can be further investigated.

8. Online implementation on a small platform is a big step ahead for VDM-based navi-

gation and requires overcoming many scientific and engineering challenges worth of

further research, including but not limited to possible reduction in number of states

and model complexity guided by analysis of remaining correlations among some states,

online access to control commands or direct measurement of actuator states, as well

as design and implementation of a switching algorithm to automatically perform the

transition between INS-based and VDM-based navigations when the UAV takes off or

lands.
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7.2. Suggestions for Future Research

9. Finally, implementation of VDM-based navigation on other types of platforms such as

quadcopters is a valuable research direction. Early simulation results, not provided in

this thesis, were promising on the improvements that VDM-based navigation can bring

to quadcopters for positioning during GNSS outages.
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A Manual Model Linearization for a
Simplified Case

In this appendix, the manual linearization of the process model for a simplified case. Com-

pared to the final model used in this research and presented in Chapters 3 and 4, the following

simplifications/changes are recognized, despite of which the linearization is tedious and

rather complex.

• The state vector here contains only the navigation states Xn .

• A flat non rotating Earth model is assumed with a constant gravity model.

• Attitude is represented using Euler angles rather than quaternions.

• Velocity is expressed in body frame rather than the local level frame.

The state vector is presented as

X=
[
xN , xE , xD , vb

x , vb
y , vb

z ,r, p, y,ωx ,ωy ,ωz

]T
. (A.1)

The VDM can now be formulated as following.

⎡
⎢⎣

ẋN

ẋE

ẋD

⎤
⎥⎦=Cl

b

⎡
⎢⎣

vb
x

vb
y

vb
z

⎤
⎥⎦ , Cb

l =C1(r )C2(p)C3(y) (A.2)

⎡
⎢⎣

v̇b
x

v̇b
y

v̇b
z

⎤
⎥⎦=

⎡
⎢⎣

−g sin p

g sinr cos p

g cosr cos p

⎤
⎥⎦+ 1

m

⎡
⎢⎣
⎛
⎜⎝

FT

0

0

⎞
⎟⎠+Cb

w

⎛
⎜⎝

F w
x

F w
y

F w
z

⎞
⎟⎠
⎤
⎥⎦−

⎡
⎢⎣
ωy vb

z −ωz vb
y

ωz vb
x −ωx vb

z

ωx vb
y −ωy vb

x

⎤
⎥⎦ (A.3)
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⎡
⎢⎣

ṙ

ṗ

ẏ

⎤
⎥⎦=Cω

⎡
⎢⎣
ωx

ωy

ωz

⎤
⎥⎦ , Cω =

⎡
⎢⎣

1 tan p sinr tan p cosr

0 cosr −sinr

0 sinr /cos p cosr /cos p

⎤
⎥⎦ (A.4)

⎡
⎢⎣
ω̇x

ω̇y

ω̇z

⎤
⎥⎦= (Ib)−1

⎛
⎜⎝
⎡
⎢⎣

Mb
x

Mb
y

Mb
z

⎤
⎥⎦−

⎡
⎢⎣
ωx

ωy

ωz

⎤
⎥⎦× Ib

⎡
⎢⎣
ωx

ωy

ωz

⎤
⎥⎦
⎞
⎟⎠ (A.5)

Calculating the partial derivative of Ẋ with respect to X produces the F matrix.

F= ∂Ẋ

∂X
(A.6)

Rows 1 to 3 of F matrix

The first three rows are easily calculated according to Equation (A.2).

F([1 2 3], [4 5 6])= ∂

∂[vb
x vb

y vb
z ]T

⎡
⎢⎣

ẋN

ẋE

ẋD

⎤
⎥⎦=Cl

b (A.7)

F([1 2 3],7)= ∂

∂r

⎡
⎢⎣

ẋN

ẋE

ẋD

⎤
⎥⎦= ∂Cl

b

∂r

⎡
⎢⎣

vb
x

vb
y

vb
z

⎤
⎥⎦=CT

3 (y)CT
2 (p)

(
∂

∂r
CT

1 (r )

)⎡⎢⎣
vb

x

vb
y

vb
z

⎤
⎥⎦ (A.8)

F([1 2 3],8)= ∂

∂p

⎡
⎢⎣

ẋN

ẋE

ẋD

⎤
⎥⎦= ∂Cl

b

∂p

⎡
⎢⎣

vb
x

vb
y

vb
z

⎤
⎥⎦=CT

3 (y)

(
∂

∂p
CT

2 (p)

)
CT

1 (r )

⎡
⎢⎣

vb
x

vb
y

vb
z

⎤
⎥⎦ (A.9)

F([1 2 3],9)= ∂

∂y

⎡
⎢⎣

ẋN

ẋE

ẋD

⎤
⎥⎦= ∂Cl

b

∂y

⎡
⎢⎣

vb
x

vb
y

vb
z

⎤
⎥⎦= ( ∂

∂y
CT

3 (y)

)
CT

2 (p)CT
1 (r )

⎡
⎢⎣

vb
x

vb
y

vb
z

⎤
⎥⎦ (A.10)

F([1 2 3], [1 2 3 10 11 12])= ∂

∂[xN xE xD ωx ωy ωz ]T

⎡
⎢⎣

ẋN

ẋE

ẋD

⎤
⎥⎦= [0]3×6 (A.11)
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Rows 4 to 6 of F matrix

To calculate rows 4, 5, and 6 of F , Equation (A.3) is rewritten as

⎡
⎢⎣

v̇b
x

v̇b
y

v̇b
z

⎤
⎥⎦=P1+P2+P3, (A.12)

where

P1 =

⎡
⎢⎣

−g sin p

g sinr cos p

g cosr cos p

⎤
⎥⎦−

⎡
⎢⎣
ωy vb

z −ωz vb
y

ωz vb
x −ωx vb

z

ωx vb
y −ωy vb

x

⎤
⎥⎦ ,P2 = 1

m

⎡
⎢⎣

FT

0

0

⎤
⎥⎦ ,P3 = 1

m
Cb

w

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦ . (A.13)

The partial derivatives of these three parts (P1,P2,P3) will be calculated separately, and then

summed up at the end. The first part is the easiest to handle. Considering Equation (A.13):

F1(4, [5 6 8 11 12])= ∂

∂[vb
y vb

z p ωy ωz ]T
P1(1,1)= [ωz −ωy − g cos p − vb

z vb
y ], (A.14)

F1(5, [4 6 7 8 10 12])= ∂

∂[vb
x vb

z r p ωx ωz ]T
P1(2,1)

= [−ωz ωx g cosr cos p − g sinr sin p vb
z − vb

x ], (A.15)

F1(6, [4 5 7 8 10 11])= ∂

∂[vb
x vb

y r p ωx ωy ]T
P1(3,1)

= [ωy −ωx − g sinr cos p − g cosr sin p − vb
y vb

x ]. (A.16)

Before handling the second and the third parts, it is worth calculating the partial derivatives

of V , α, and β, since they will appear frequently in those parts. Recalling Equations (1.15)

and (1.17), and grouping the concerned variables into η ∈ {vb
x , vb

y , vb
z ,r, p, y}, it can be easily

seen that

∂V

∂η
= 1

V

(
V.

∂V

∂η

)
,η ∈ {vb

x , vb
y , vb

z ,r, p, y}, (A.17)

∂α

∂η
= 1

V 2
v

(
V b

x
∂V b

z

∂η
−V b

z
∂V b

x

∂η

)
, (A.18)

∂β

∂η
= 1

V Vv

(
V
∂V b

y

∂η
−V b

y
∂V

∂η

)
, (A.19)
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where

Vv =
√

V b
x

2+V b
z

2 =
√

V 2−V b
y

2
,

∂V

∂u
=

⎡
⎢⎣

1

0

0

⎤
⎥⎦ ,

∂V

∂v
=

⎡
⎢⎣

0

1

0

⎤
⎥⎦ ,

∂V

∂w
=

⎡
⎢⎣

0

0

1

⎤
⎥⎦ ,

∂V

∂r
=−∂Cb

l

∂r

⎡
⎢⎣

wN

wE

wD

⎤
⎥⎦=−∂C1(r )

∂r
C2(p)C3(y)

⎡
⎢⎣

wN

wE

wD

⎤
⎥⎦ ,

∂V

∂p
=−∂Cb

l

∂p

⎡
⎢⎣

wN

wE

wD

⎤
⎥⎦=−C1(r )

∂C2(p)

∂p
C3(y)

⎡
⎢⎣

wN

wE

wD

⎤
⎥⎦ ,

∂V

∂y
=−∂Cb

l

∂y

⎡
⎢⎣

wN

wE

wD

⎤
⎥⎦=−C1(r )C2(p)

∂C3(y)

∂y

⎡
⎢⎣

wN

wE

wD

⎤
⎥⎦ . (A.20)

Now the second part can be handled more or less easily. According to Equations (A.13), (4.19)

(replacing h by −xD ), and (4.1):

F2(4,3)= ∂

∂xD
P2(1,1)= 1

m

∂FT

∂xD
= 1

m

∂FT

∂ρ

∂ρ

∂xD
= 1

m
ω2

pD4CFT

∂ρ

∂xD
. (A.21)

Considering Equations (A.13), (1.17), (4.1), and (4.2), and using Equation (A.17):

F2(4, [4 5 6 7 8 9])= ∂

∂[vb
x vb

y vb
z r p y]T

P2(1,1)= 1

m

∂FT

∂[vb
x vb

y vb
z r p y]T

= 1

m

∂FT

∂V

∂V

∂[vb
x vb

y vb
z r p y]T

= 1

m

ρωpD3

π

(
CFT 2+2CFT 3 J

) ∂V

∂[vb
x vb

y vb
z r p y]T

. (A.22)

Finally, the third part is handled as follows. Considering Equations (A.13), (1.16), (4.7), (4.5),

and (4.3):

F3([4 5 6],3)= ∂P3

∂xD
= 1

m
Cb

w
∂

∂xD

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦

= 1

m
Cb

w
∂

∂ρ

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦ ∂ρ

∂xD
= 1

m
Cb

w
1

ρ

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦ ∂ρ

∂xD
. (A.23)
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Note that from Equations (4.7), (4.5), and (4.3), it is obvious that

∂

∂ρ

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦= 1

ρ

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦ . (A.24)

Before proceeding, partial derivatives of Cb
w , F w

x , F w
y , and F w

z with respect toη ∈ {vb
x , vb

y , vb
z ,r, p, y}

are calculated. Considering Equations (1.16) and (1.17), and using Equations (A.18) and (A.19):

∂Cb
w

∂η
= ∂

(
C2(α)CT

3 (β)
)

∂η
= ∂C2(α)

∂η
CT

3 (β)+C2(α)
∂CT

3 (β)

∂η

= ∂C2(α)

∂α

∂α

∂η
CT

3 (β)+C2(α)
∂CT

3 (β)

∂β

∂β

∂η
(A.25)

According to Equations (4.3), (4.4), and (1.17), and using Equations (A.17), (A.18), and (A.19):

∂F w
x

∂η
= SCFx

∂q̄

∂η
+ q̄S

∂CFx

∂η
= SCFxρV

∂V

∂η
+ q̄S

(
∂CFx

∂α

∂α

∂η
+ ∂CFx

∂β

∂β

∂η

)

= SCFxρV
∂V

∂η
+ q̄S

((
CFxα+2CFxα2α

) ∂α
∂η

+2CFxβ2β
∂β

∂η

)
(A.26)

Similarly:

∂F w
y

∂η
= SCFy

∂q̄

∂η
+ q̄S

∂CFy

∂η
= SCFyρV

∂V

∂η
+ q̄S

∂CFy

∂β

∂β

∂η

= SCFyρV
∂V

∂η
+ q̄SCFy 1

∂β

∂η
(A.27)

∂F w
z

∂η
= SCFz

∂q̄

∂η
+ q̄S

∂CFz

∂η
= SCFzρV

∂V

∂η
+ q̄S

∂CFz

∂α

∂α

∂η

= SCFzρV
∂V

∂η
+ q̄SCFzα

∂α

∂η
(A.28)

Now the remaining elements of F3([4 5 6], :) can be calculated as

F3([4 5 6], [4 5 6 7 8 9])= ∂P3

∂[vb
x vb

y vb
z r p y]T

= 1

m

⎛
⎜⎝ ∂Cb

w

∂[vb
x vb

y vb
z r p y]T

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦+Cb

w
∂

∂[vb
x vb

y vb
z r p y]T

⎡
⎢⎣

F w
x

F w
y

F w
z

⎤
⎥⎦
⎞
⎟⎠ . (A.29)

Eventually, F([4 5 6], :) is calculated as

F([4 5 6], :)= F1([4 5 6], :)+F2([4 5 6], :)+F3([4 5 6], :). (A.30)
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Note that all the elements of F1([4 5 6], :), F2([4 5 6], :), and F3([4 5 6], :) that are not represented,

are zero.

Rows 7 to 9 of F matrix

In a more or less similar manner to rows 4, 5, and 6; rows 7, 8, and 9 of F are calculated

according to Equation (A.4).

F([7 8 9], [10 11 12])= ∂

∂[ωx ωy ωz ]T

⎡
⎢⎣

ṙ

ṗ

ẏ

⎤
⎥⎦=Cω (A.31)

F([7 8 9],7)= ∂

∂r

⎡
⎢⎣

ṙ

ṗ

ẏ

⎤
⎥⎦= ∂Cω

∂r

⎡
⎢⎣
ωx

ωy

ωz

⎤
⎥⎦ (A.32)

F([7 8 9],8)= ∂

∂p

⎡
⎢⎣

ṙ

ṗ

ẏ

⎤
⎥⎦= ∂Cω

∂p

⎡
⎢⎣
ωx

ωy

ωz

⎤
⎥⎦ (A.33)

F([7 8 9], [1 2 3 4 5 6 9])= ∂

∂[xN xE xD vb
x vb

y vb
z y]T

⎡
⎢⎣

ṙ

ṗ

ẏ

⎤
⎥⎦= [0]3×7 (A.34)

Rows 10 to 12 of F matrix

To calculate rows 10, 11, and 12 of F , Equation (A.5) is rewritten as

⎡
⎢⎣
ω̇x

ω̇y

ω̇z

⎤
⎥⎦=Q1+Q2, (A.35)

where

Q1 =−(Ib)−1

⎛
⎜⎝
⎡
⎢⎣
ωx

ωy

ωz

⎤
⎥⎦× Ib

⎡
⎢⎣
ωx

ωy

ωz

⎤
⎥⎦
⎞
⎟⎠ ,Q2 = (Ib)−1

⎡
⎢⎣

Mb
x

Mb
y

Mb
z

⎤
⎥⎦ . (A.36)

The partial derivatives of these two parts (Q1,Q2) will be calculated separately, and then

summed up at the end. The first part is easy to handle. It is first rewritten as

138



Q1 =

⎡
⎢⎣

ωyωz + J1 J2ωy (Ixzωx + Izωz)
1
Iy

(
Ixz(ω2

x −ω2
z)− (Ix − Iz)ωxωz

)
−ωxωy − J1 J2ωy (Ix p+ Ixzωz)

⎤
⎥⎦ ,

⎧⎨
⎩ J1 = 1

Ix Iz − I 2
xz

J2 =−Ix + Iy − Iz .
(A.37)

Now F1([10 11 12], :) can be easily calculated as

F1([10 11 12], [10 11 12])= ∂Q1

∂[ωx ωy ωz ]T
=

⎡
⎢⎢⎢⎣

J1 J2Ixzωy J1 J2Ixzωx + (1+ J1 J2Iz)ωz (1+ J1 J2Iz)ωy
1

Iy
(2Ixzωx − (Ix − Iz)ωz) 0

1

Iy
(−2Ixzωz − (Ix − Iz)ωx)

−(1+ J1 J2Ix)ωy −(1+ J1 J2Ix)ωx − J1 J2Ixzωz −J1 J2Ixzωy

⎤
⎥⎥⎥⎦ .

(A.38)

To handle the second part, Q2 is first rewritten as

Q2 =

⎡
⎢⎣

Jx Mb
x + Jxz Mb

z

Jy Mb
y

Jxz Mb
x + Jz Mb

z

⎤
⎥⎦ ,

⎡
⎢⎣

Jx 0 Jxz

0 Jy 0

Jxz 0 Jz

⎤
⎥⎦= (Ib)−1 =

⎡
⎢⎣

Ix 0 Ixz

0 Iy 0

Ixz 0 Iz

⎤
⎥⎦
−1

, (A.39)

and then partial derivatives of Mb
x , Mb

y , and Mb
z with respect to xD , η ∈ {vb

x , vb
y , vb

z ,r, p, y}, p,

q , and r are calculated. According to Equations (4.12), (1.17), (4.10), and (4.13), and using

Equations (A.17), (A.18), and (A.19):

∂Mb
x

∂xD
= ∂Mb

x

∂ρ

∂ρ

∂xD
= Mb

x

ρ

∂ρ

∂xD
(A.40)

∂Mb
x

∂η
= SbCMx

∂q̄

∂η
+ q̄Sb

∂CMx

∂η

= SbCMxρV
∂V

∂η
+ q̄Sb

(
CMxβ

∂β

∂η
− 1

V
CMx ω̃x ω̃x

∂V

∂η
− 1

V
CMx ω̃z ω̃z

∂V

∂η

)

= q̄SbCMxβ
∂β

∂η
+ρV Sb

(
CMx −

CMx ω̃x ω̃x +CMx ω̃z ω̃z

2

)
∂V

∂η
(A.41)

∂Mb
x

∂p
= q̄Sb2

2V
CMx ω̃x (A.42)

∂Mb
x

∂q
= 0 (A.43)
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∂Mb
x

∂r
= q̄Sb2

2V
CMx ω̃z (A.44)

Similarly:

∂Mb
y

∂xD
=

∂Mb
y

∂ρ

∂ρ

∂xD
=

Mb
y

ρ

∂ρ

∂xD
(A.45)

∂Mb
y

∂η
= q̄Sc̄CMyα

∂α

∂η
+ρV Sc̄

(
CMy −

CMy ω̃y ω̃y

2

)
∂V

∂η
(A.46)

∂Mb
y

∂p
= 0 (A.47)

∂Mb
y

∂q
= 1

4
Sc̄2ρCMy ω̃y V (A.48)

∂Mb
y

∂r
= 0 (A.49)

Also:

∂Mb
z

∂xD
= ∂Mb

z

∂ρ

∂ρ

∂xD
= Mb

z

ρ

∂ρ

∂xD
(A.50)

∂Mb
z

∂η
= q̄SbCMzβ

∂β

∂η
+ρV Sb

(
CMz −

CMz ω̃z ω̃z

2

)
∂V

∂η
(A.51)

∂Mb
z

∂p
= 0 (A.52)

∂Mb
z

∂q
= 0 (A.53)
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∂Mb
z

∂r
= 1

4
Sb2ρCMz ω̃z V (A.54)

Using Equation (A.39) along with Equations (A.40) to (A.54), F2([10 11 12], :) can be expressed

as

F2([10 11 12], [3 4 5 6 7 8 9 10 11 12])= ∂[ω̇x ω̇y ω̇z ]T

∂[xD vb
x vb

y vb
z r p y ωx ωy ωz ]T

=

⎡
⎢⎢⎢⎢⎣

Jx
∂Mb

x

∂[xD vb
x vb

y vb
z r p y ωx ωy ωz ]T + Jxz

∂Mb
z

∂[xD vb
x vb

y vb
z r p y ωx ωy ωz ]T

Jy
∂Mb

y

∂[xD vb
x vb

y vb
z r p y ωx ωy ωz ]T

Jxz
∂Mb

x

∂[xD vb
x vb

y vb
z r p y ωx ωy ωz ]T + Jz

∂Mb
z

∂[xD vb
x vb

y vb
z r p y ωx ωy ωz ]T

⎤
⎥⎥⎥⎥⎦ . (A.55)

Eventually, F([10 11 12], :) is calculated as

F([10 11 12], :)= F1([10 11 12], :)+F2([10 11 12], :). (A.56)

Note that all the elements of F1([10 11 12], :) and F2([10 11 12], :) that are not represented, are

zero.

At this point, calculation of F is completed for this simplified model. Considering all the

simplifications in VDM mentioned at the beginning of this appendix and the fact that the state

vector contained only the navigation states and the observation models were not treated

here, one can realize how complex the manual linearization would be for the final model used

in this research as presented in Chapters 3 and 4.
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