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Everything that happens happens as it should, and if you observe carefully, you
will find it to be so. (Marcus Aurelius)
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Abstract

Our work studies network neutrality, a property of communication networks which
means that they treat all traffic the same, regardless of application, content provider
or communication protocol. This is an important problem, because sometimes users
suspect their ISPs of violating network neutrality, but apply inaccurate methods to
check their suspicions, reaching incorrect conclusions.

Prior non-neutrality detection methods either provide only detection, but lack
localization capabilities; or also perform localization, but assume perfect measure-
ments. For the latter, we show that, in practice, the measurement process can
severely impact the results.

We present a method that performs both non-neutrality detection and localiza-
tion, using only end-to-end measurements, and assuming an imperfect measurement
process. We identify the sources of measurement error that may affect our method,
we address them, and evaluate the method extensively with simulations, emulations
and experiments on the Internet. We also use our method in two studies, investigat-
ing suspicions that a set of ISPs prioritize speed-test traffic, or differentiate against
BitTorrent traffic; despite circumstancial evidence that they do, we obtain reliable
evidence to the contrary. Finally, we present the network emulator that we built to
evaluate our method, hoping that it will be a useful tool in future research.

We conclude that it is feasible to detect and localize network neutrality violations
based solely on end-to-end measurements, without assuming a perfect measurement
process; and that it is important that reasoning about network neutrality is based
on reliable evidence of network behavior.
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Résumé

Notre recherche étudie la neutralité du réseau, une propriété des réseaux de commu-
nication ce qui signifie qu’ils traitent tout le trafic de la méme maniere, indépendam-
ment de 'application, du fournisseur de contenu ou du protocole de communication.
C’est un probleme important, car parfois les utilisateurs soupgonnent leurs FAI de
violer la neutralité du réseau, mais appliquent des méthodes inexactes pour vérifier
leurs soupcons, qui peut conduire a des conclusions erronées.

Les méthodes de détection antérieures de la non-neutralité soit fournissent seule-
ment la détection, mais manquent de fonctionnalités de localisation; soit effectuent
également la localisation, mais suppose que les mesures sont parfaites. Pour ce
dernier, nous montrons que, dans la pratique, le processus de mesure peut avoir une
incidence sévere sur la fidélité des résultats.

Nous présentons une méthode qui effectue la détection et la localisation de la
non-neutralité, analysant des mesures prises aux points d’extrémité d’une réseau
informatique, en supposant un processus de mesure imparfait. Nous identifions les
sources d’erreur de mesure qui peuvent affecter notre méthode, nous les adressons,
et nous évaluons la méthode avec des simulations, des émulations et des expériences
sur I'Internet. Nous utilisons notre méthode dans deux études, pour examiner les
soupcons selon lesquels un ensemble de FAI privilégient le trafic de test de vitesse,
ou ralentissent le trafic BitTorrent; malgré les preuves circonstancielles qui suggerent
qu’ils le font, nous obtenons des preuves fiables au contraire. Enfin, nous présentons
I’émulateur de réseau que nous avons construit pour évaluer notre méthode, en
espérant qu’il sera un instrument outil dans des recherches futures.

Nous concluons que c’est possible de détecter et localiser les violations de la
neutralité du réseau en se basant exclusivement sur des mesures prises aux points
d’extrémité du réseau, sans assumer un processus de mesure parfait; et que c’est
important que le raisonnement sur la neutralité du réseau est basé sur des preuves
fiables du comportement du réseau.
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1. Introduction

1.1. Network neutrality

Network neutrality has been debated widely throughout the world over the last
decade. But what is exactly network neutrality? The most commonly given defini-
tion of a neutral network is that it is a network that treats all traffic the same; for
example, it does not favor an application, a content provider or a subset of users
over others. This definition is not very precise, since there are several exceptions to
this rule: for example, it is perfectly reasonable for a network to throttle or block
denial-of-service traffic, malicious traffic, or traffic from unintentionally misbehaving
systems that may have a negative impact over the communication of others—mnone
of these actions make a network less neutral. Perhaps a more accurate definition,
that remains intuitive without delving into legal terms, is the following:

A neutral network is a network where any two endpoints (i.e. users and
content providers) that decide to exchange traffic with each other are
able to do so without the network blocking, impairing or improving the
performance experienced by their communication based on any criteria
other than data rates and data volume limits agreed upon between the
network and the respective endpoints.

We think that this definition summarizes well recent net neutrality guidelines pro-
vided by European legislators [Council of the European Union, 2015|, and that it
also covers the major scenarios that caused widespread debate over the last decade:
First there were discussions about Internet service providers (ISPs) throttling Bit-
Torrent traffic crossing their network boundaries [M Dischinger et al., 2008]. Then
attention switched to ISPs throttling [Vukas, 2014] or not providing sufficient band-
width for [The Verge, 2014] transit traffic from popular content providers. More
recently, there has been recurring user suspicion and circumstantial evidence that
some ISPs prioritize speed-test traffic to create an exaggerated impression of the
bandwidth they provide to their users [Byrne, 2016].

Currently, end-users apply improvised, inaccurate methods to determine whether
their ISPs are differentiating against some of their traffic. A simple web search for
“is my ISP throttling BitTorrent?” or “is my ISP prioritizing speed-test traffic?”
finds a large number of reports from users suspecting their ISP of non-neutrality.
But at closer inspection, we found that most of them reach this conclusion using
methods that are too rudimentary to eliminate common types of biases that cause
performance differences in neutral networks. For example, a BitTorrent download
may be slower than a web download simply because the number of peers in the
swarm is small, or because they are found in distant locations. Similarly, speed-tests
may observe faster throughput than regular web downloads only because the testing
server is located in the same ISP as the user, whereas the other data is transferred
from a more distant network. These are just two examples, but in practice there
is a variety of reasons why simple throughput measurements may yield conflicting
results [Sundaresan et al., 2011].



We need a method that accurately assesses the neutrality of a given link or
link sequence, going beyond circumstantial evidence. We are not arguing for rigid
neutrality rules, just for transparency: if an ISP differentiates against specific end-
hosts, protocols, or applications, that should be visible to the affected parties: End-
users should be able to prove it with a well-defined level of confidence.

There are already several methods that can be used to detect non-neutrality.
Some of them, like DiffProbe [Kanuparthy and Dovrolis, 2010] and Glasnost [Marcel
Dischinger et al., 2010], rely on throughput differences: they consider one source-
destination pair at a time, make it exchange traffic of type x (e.g., HT'TP traffic)
then of type y (e.g., BitTorrent traffic), and compare the achieved throughput;
a significant difference indicates non-neutrality. Others, such as [Kanuparthy and
Dovrolis, 2011] and [Flach et al., 2016], analyze packet captures from each individual
flow to determine if its performance was limited by a traffic shaper or traffic policer.

We present a different kind of method, which takes as input end-to-end mea-
surements from a small set of paths and determines whether a given link sequence,
traversed by these paths, is neutral, i.e. treated all measurement traffic the same.
Our method differs from existing ones in two ways:

1. It can determine the neutrality of relatively short link sequences, not only end-
to-end paths; hence, we can not only detect non-neutrality, but also localize it
to specific parts of the network.

2. It is not affected by differentiation criteria: if the links treat some part of the
measurement traffic worse than the rest, our method will detect it, even if the
differentiation is based on network-layer criteria, such as throttling all traffic
between specific source-destination pairs.

Neither of these goals can be achieved by methods that consider a single source-
destination pair at a time.

1.2. Network tomography

Our work builds upon network performance tomography: a set of techniques that
infer performance properties of links (such as loss rate, latency, congestion status, or
congestion probability) based on external observations, i.e. without monitoring these
links directly, only taking measurements at the edge of the network. A tomographic
technique typically forms a system of equations

y=A-7, (1)

where ¢/ is a given vector of external observations (end-to-end path measurements),
A is a given matrix that specifies the relationships between links and paths, and Z is
the vector of link properties that we are trying to infer. It then estimates Z, either by
solving this system of equations when it has a unique solution [Caceres et al., 1999;
Coates and Nowak, 2000; Bu et al., 2002; Nguyen and Thiran, 2007a, 2007b; Ghita
et al., 2010] or by choosing a solution that has some desirable property: for exam-
ple, assumes the smallest number of problematic links [Padmanabhan et al., 2003;
Duffield, 2006; Song et al., 2006; Dhamdhere et al., 2007] or occurs with the highest
probability [Nguyen and Thiran, 2007b].



Network performance tomography fundamentally relies on the assumption that
the network is neutral (each link treats traffic from all paths equally), otherwise it
would be impossible to express path measurements as a function of link properties
and form a solvable system of equations.

Recent work [Z. Zhang, Mara, and Argyraki, 2014] turned this assumption on
its head in order to detect and localize non-neutral links. It relies on the following
observation: if we perform perfect end-to-end measurements from different vantage
points, and find them to be inconsistent with each other, this necessarily means
that the network covered by the measurements is non-neutral. Hence, unlike network
performance tomography, which typically tries to form solvable systems of equations
that connect link and path properties, this work tries to form unsolvable systems of
equations that connect link and path properties, because such systems constitute
evidence of non-neutrality.

The main problem with applying this work in practice is that it assumes perfect
measurements. There are three aspects that are problematic:

Firstly, the method assumes that different paths that share a congested link will
experience identical congestion states, the latter being computed from the measure-
ments by comparing a performance metric (loss rate) with a fixed threshold. This is
problematic because different paths may observe slightly different values of the per-
formance metric. When the threshold is close to these values (for example, equal to
their average), congestion states of different paths will not be identical, but poorly
correlated.

Secondly, the method does not take into account uncertainty in estimating the
frequencies with which paths are congested. The uncertainty is negligible only when
the number of congestion state samples is very large, but this would require exper-
iment durations of tens to hundreds of hours. These are impractical, because on
such time scales, network conditions or even the topology itself are likely to change,
rendering the measurements unusable. Ignoring the uncertainty and applying the
algorithm anyways leads to unreliable results, which we demonstrate through simu-
lations.

Thirdly, the method uses hand-picked thresholds to reason about congestion
and neutrality. In the presence of imperfect measurements, such an approach is not
reliable: without estimating the uncertainties in the measurements and analyzing
how they affect the inference, it cannot be guaranteed that the thresholds are high
enough to avoid false positives; or small enough to allow detection of non-neutrality.

1.3. Contributions

This dissertation contributes a tomography-based method that detects and localizes
non-neutrality, using only end-to-end measurements, and assuming an imperfect
measurement process. In particular:

o We identify three aspects of Zhang et al’s theory that do not hold when faced
with an imperfect measurement process, and we propose three techniques that,
in combination, enable reliable neutrality inference:

 Identifying and filtering out inaccurate path congestion measurements:



This is an important problem, due to the way Zhang et al’s method
correlates congestion states of different paths. We propose a method
that estimates the accuracy of the measured states in the absence of any
ground-truth knowledge, and eliminates those considered unreliable;

o Modeling and computing the uncertainty in the inferred link perfor-
mance: We show that this uncertainty is significant and unavoidable
in practical scenarios, due to the limited duration over which paths and
network conditions are stable in typical networks; the latter imposes a
constraint over the number of samples we can collect, and thus over the
accuracy of the inference. We design a method to estimate this uncer-
tainty from the measurements;

e Redesigning non-neutrality inference as a method that takes into account
uncertainties caused by imperfect measurements and no longer uses any
arbitrary hand-picked thresholds: instead, it is configured by a desired
significance level of the non-neutrality verdict.

We evaluate the redesigned method empirically with simulations, emulations
and Internet experiments in controlled setups.

We present two studies where we apply our method to investigate neutrality
violations against two types of traffic: BitTorrent traffic (which is known to
have been throttled in the past) and Internet “speed test” traffic (which is
suspected of being prioritized).

« We find that no such violations occur in the networks we investigate.

o We show that our method is more reliable than a naive, throughput-based
alternative, which would have yielded false positives in our context.

o We conduct what-if analyses and show that our method would have cor-
rectly detected and localized throttling or prioritization, had they oc-
curred in the investigated networks.

We present a network emulator that we built to evaluate our method. We show
that, for networks consisting of up to a few hundred links, our emulator offers
accurate packet processing at a granularity of 10 microseconds on average,
with a worst case of about 100 microseconds. This makes it a useful tool for
evaluating not only tomography algorithms, but also methods for detecting
and localizing many different network policies, such as queuing, traffic shaping
or traffic policing.

We conclude that it is feasible to detect and localize network neutrality violations
based solely on end-to-end measurements, without assuming a perfect measurement
process.

1.4. Outline

The contents of the thesis are organized as follows: Section 2 presents a quick review
of prior work in the field of network performance tomography and neutrality infer-
ence. Section 3 presents our setup, including definitions, notations and assumptions;
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it also describes our problem statement, and the algorithm from the prior work our
method is based upon. Section 4 identifies and addresses the issues that occur when
applying the algorithm in practice; it then presents the redesigned method and its
evaluation through simulations, emulations and Internet experiments in controlled
setups. Section 5 presents two studies where we apply our method to investigate neu-
trality violations on the Internet. Section 6 describes our network emulation setup,
and the results of a performance and accuracy evaluation. Finally, the conclusions
are presented in Section 7, followed by the Appendix.






2. Related work

2.1. Network Performance Tomography

2.1.1. Overview

Network performance tomography is a set of techniques that infer performance prop-
erties of links in the network based on external observations, i.e. without monitoring
these links directly, only taking measurements at the edge of the network. Typically,
these techniques operate in three stages:

1. Topology discovery: the topology of the network connecting the measurement
endpoints is obtained, often by using tools like traceroute, although other
sources, such as BGP route dumps, may be used;

2. Measurement collection: the performance of the traffic exchanged between
endpoints is recorded. Traffic may consist either of regular traffic exchanged
naturally between endpoints, in which case we call the measurement process to
be passive; or probing traffic, such as ICMP pings', UDP pings, constant-rate
or Poisson UDP traffic etc., in which case we call the measurement process to
be active;

3. Performance inference: the topology is used to determine the relationships
between the performance metrics of links and paths, creating a system of
equations where the link performance metrics are unknown, and the path
performance metrics are given (measured). This system is then solved to
determine the link performance metrics.

What varies among these techniques is:

o The type of traffic that is measured—there are a lot of different methods,
particularly in the case of active probing measurements;

o The performance metric that is used, such as loss rate, latency, congestion
status, or congestion probability;

o The assumptions made about links and traffic, for example assuming temporal
and spatial independence of link performance is very common;

o How the path overlay is chosen; some techniques work only on trees, while
others can handle general graphs;

o How the system of equations is formed; the most common choices are systems
of linear equations, systems of boolean (binary) equations and ad-hoc, graph-
based models;

o The method used to solve the system of equations, in particular how a solution
is chosen when it is not unique.

1Only the end-to-end outcome of ping probing is used, for example whether the probe or its
reply has been received or not, or with what delay; network tomography techniques do not typically
require nor make use of cooperation from network devices on the forwarding path; for example,
they do not probe each hop from the path, nor use traceroute results as performance measurements.
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2.1.2. Literature Selection

We now provide a selection of works published in the field of network performance
tomography that are related to our method. This selection is by no means complete
nor exhaustive. We focus on prior techniques, findings and insights that offered key
elements our work could be based upon.

The first well-known network performance tomography technique was the work
of [Caceres et al., 1999]: it inferred link loss rate from end-to-end multicast probing
measurements taken from a tree topology. While not practical on the Internet due
to the use of multicast traffic, several of its key elements have been used extensively
in following tomography work, such as: packet loss events modeled as Bernoulli
processes; the assumption of temporal and spatial independence of link performance;
and choosing a single “best” solution from multiple possible solutions, in this case
via Maximum Likelihood Estimation.

The work of [Coates and Nowak, 2000] provided a similar, but more practical
technique that used unicast probing. It introduced the assumption that packet loss
events are correlated on short time scales. The probing method was designed to take
advantage of this assumption: a combination of single and two-packet back-to-back
probes sent through the network. The network topology was still limited to a tree.

[Bu et al., 2002] took tomography in a different direction: they still used multicast
probing, but created an algorithm that could work on general graphs, consisting of
multiple, overlapping trees. They were among the first to show that tomography
could be adapted to other performance metrics, in particular queuing delay.

Further work to scale tomography to large graphs was done, among others,
by [Song et al., 2006]. They studied measurement path selection, and showed that
results having good accuracy can be obtained by taking measurements from as little
as 2% of the paths in the network.

[Tsang et al., 2000] applied network tomography to passive (unicast) measure-
ments of TCP traffic flows. While the topology was very simple—a tree, consisting
of a server at the root, sending traffic to clients located at the leaves—and the in-
ference still used packet pairs (sampled from the traffic), the work provided useful
results and insights related to packet loss correlation on short time scales, and how
to avoid it by sampling packets with a minimum time spacing. We applied a similar
technique in our method.

Another work that used passive measurements was [Padmanabhan et al.; 2003].
For us, the most important aspect of the work were the extensive, real measurements
they collected from a busy Microsoft server, which allowed them to provide the
following insight: on most paths, loss rate tends to be stable over a period of several
minutes. This is useful, since we will show that we divide our experiments in time
intervals of 1 minute each, and we assume that loss rate is stationary in each interval.
This prior result supports our assumption. As a side note, this is also the earliest
article we found to describe performance metrics assigned to sequences of links—
linear sections of a network path that contain no branches—, which we also use in
our method.

The work of [Duffield, 2003, 2006] introduced the notion of binary network to-
mography: instead of inferring link loss rates, he changed the target to simply infer
which links were affected by congestion or failures. We found interesting the detailed



discussion of the assumptions made about the network: (i) that links are fair for
the flows that traverse them; (ii) that failure events are rare; and (iii) that failures
are independent and equally likely to occur on any link in the network. The first
assumption hints at network neutrality; the paper follows by stating:

Even if we do not perform correlated end-to-end measurements at the
individual packet level, it is still reasonable to expect that two distinct
packet streams that pass through a given link over the same period of
time would exhibit some correlation in performance at a statistical level.

This assumption relaxes the previous stringent measurement requirements, by elim-
inating the need of packet-level correlation (such as the one obtained through back-
to-back probing) in binary tomography.

The paper also introduced the notion of separability—the connection between
congestion on the links and on the paths in the network— and made the distinction
between strong separability (a path is congested if and only if at least one of its
constituent links is congested) and weak separability (a path being congested implies
at least one of its constituent links is congested). An insight we found useful in our
work was that they showed that the congestion threshold—used to detect congestion
by comparing loss rate against it—can be always chosen such that weak separability
holds.

NetDiagnoser, presented in [Dhamdhere et al., 2007] relaxed two assumptions
from Duffield’s binary tomography method: (i) they provided an algorithm that
works on arbitrary graphs, not just trees; and (ii) they assume that inter-AS links
might not treat traffic fairly (which may happen due to BGP misconfigurations or
by intentional filtering at the domain edges). They proposed a method that, given
sufficient path coverage, is able to infer link states for each class of traffic. Their
idea, to split each potentially non-neutral inter-AS link into multiple parallel links,
one for each class of traffic, is something we also use in our method.

The work of [Nguyen and Thiran, 2007b] improved binary tomography in a differ-
ent way: They showed that extra equations can be formed by combining data from
multiple paths, which allows the system of equations to become fully determined,
thus a unique solution can always be found. Our previous work from [Z. Zhang et
al., 2014], and also our current work, are based upon this specific technique.

Also notable is the work of [Ghita et al., 2010], which improved binary tomog-
raphy further by relaxing the spatial link independence assumption: they showed
that under certain conditions, binary tomography can be used effectively even when
some of the links are correlated with each other.

2.2. Neutrality Inference

The prior research related to neutrality inference falls into the following main cate-
gories:

Comparing the performance of different types of traffic over the same path: most
notable are the following projects: [Marcel Dischinger et al., 2010] starts transfers
between a user and a testing server, and compares the throughput achieved by dif-
ferent types of traffic; this project has been used extensively to detect differentiation



against, and blocking of BitTorrent traffic; [Bashko et al., 2013] applies a similar
method, but targets specifically mobile network users; [Lu et al., 2007] analyzes
end-to-end measurements by performing rank classification of loss rates for differ-
ent types of traffic; [Y. Zhang et al., 2007] attempts to identify significant loss rate
differences between different types of traffic, with path segments traversing certain
ISPs; [Kanuparthy and Dovrolis, 2010] compares the delays and packet losses ex-
perienced by a regular flow and a probing flow; and [Molavi Kakhki et al., 2015]
detects if a path is differentiating against a type of traffic by recording and replaying
the traffic in encrypted form and with different port numbers, then comparing the
observed performance. The common theme of these methods is to have two end-
hosts exchange different traffic flows over the same network path; if the performance
results are significantly different, then the network path must be non-neutral. Traf-
fic classes are defined by transport-layer headers or payload. Unlike our algorithms,
these methods were not designed to detect traffic differentiation that affects all flows
of an end-host, nor localize it to specific links. Still, the Glasnost project made steps
towards localization, since its wide-scale deployment and large userbase allowed for
compiling non-neutrality statistics per groups of paths, for example per ISP and per
country [Marcel Dischinger and Gummadi, 2011]; similar efforts were undertaken
by [Y. Zhang et al., 2007].

Detecting specific methods of throttling by analyzing packet timings: Shaper-
Probe [Kanuparthy and Dovrolis, 2011], Packsen [Weinsberg et al., 2011} and [Flach
et al., 2016] detect whether a network path is shaping or policing a user’s traffic
and also determine the parameters of the shaper/policer. These methods are com-
plementary to our work: while they detect whether any single flow is subjected to
rate limiting and identifies the parameters, we detect whether different traffic flows
are subjected to different treatment (of any kind) and localize this differentiation to
specific links.

Traceroute-like probing: NetPolice [Y. Zhang et al., 2007] uses traceroute-like
probes to measure the loss rate inflicted by an ISP on traffic associated with dif-
ferent neighboring ASes. By targeting specific path segments, it can perform both
detection and localization of differentiation. This is complementary to our work,
since we focus on the scenario where we cannot rely on traceroute-like probes to di-
rectly measure the loss rates of links, for example when such probing is not possible,
or probes are not treated the same as other traffic.

Statistical comparison of wide-scale measurements: Nano [Tariq et al., 2008]
collects a large set of measurements and then applies statistical methods to detect
whether different ISPs inflict different performance on the same kind of traffic. Such
methods are also complementary to our work: we detect whether any particular link
(or link sequence) inflicts different performance on different traffic.
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3. Setup

We state our network model in Section 3.1, we describe the link and path perfor-
mance metrics in Section 3.2 and we provide a formal definition of network neutrality
in Section 3.3. We present our formal problem statement in Section 3.4, our notation
in Section 3.5, and the assumptions on which the models and algorithms are based
upon in Section 3.6. Finally, we describe the strawman algorithm from [Z. Zhang
et al., 2014], on which our work is based upon, in Section 3.7.

3.1. Topology

We model the network as a graph where each vertex corresponds to a node and each
edge corresponds to a link connecting two nodes. Edges are directed, since we are
interested in link performance, which may be different in opposite directions.

Nodes are divided into end-hosts and relays. The former source and/or sink
traffic, but never relay traffic between other nodes. The latter do, for example they
may be routers or switches.

A path is a loop-free sequence of consecutive links starting and ending at end-
hosts. While in reality relays may also send or receive their own traffic, in our work
we rely on only end-to-end measurements, thus we are not interested in paths that
start or end at a relay.

The basic notation we use are [ to refer to a link, L = (l;,...l;) to refer to a
loop-free sequence of links, p to refer to a path, and P = {p;,pi} to refer to a path
pair.

We organize our measurement traffic into traffic classes, i.e. criteria the network
might use to introduce traffic differentiation. For example, to model a network that
deprioritizes BitTorrent traffic relative to other traffic, we could define traffic class
1 as non-BitTorrent traffic and class 2 as BitTorrent traffic?. For simplicity, we
assume that each path carries traffic from a single class, but that is by no means a
requirement of our method.

For example, Figure 1 shows a network with five links and four paths. Traffic
class 1 (in blue) consists of all traffic carried by path pair {p;, p2}, while traffic class
2 (in red) consists of all traffic carried by path pair {ps, ps}.

PP, P3P,

Figure 1. Example network.

2For consistency, we usually denote with a lower number the higher priority traffic.
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3.2. Performance metrics

In boolean network tomography, we use end-to-end measurements to classify the
observed performance of a path during a given time interval as either congested or
good; where congested means that the path experiences poor performance according
to some specific criterion. In order to define these two possible states precisely, we
choose a performance metric that can be measured from end-to-end data, such as
loss rate, throughput or latency, and we compare it with a congestion threshold. For
example, to determine whether a path carrying video traffic has good performance,
we can use throughput as a performance metric and set the congestion threshold to
the minimum throughput value required to support some specific video quality, say
5 Mbps. If we observe only 4 Mbps in a measurement, the path is congested; if we
observe 7 Mbps, the path is good.

In addition to the performance metric, we are also interested in the performance
number, which is the probability that a path has good performance during an ar-
bitrary time interval. While the performance metric shows the performance of the
path during one measurement interval, the performance number shows how the
path performs in general. The latter is important because performance metrics may
vary from measurement to measurement, thus a single measured value is not suf-
ficient to draw a reliable conclusion regarding the general performance of a path.
Even well-provisioned paths may suffer occasional congestion, thus some samples
of the performance metric might be poor, yet the performance number is close to
1, because most samples are good. By contrast, a poorly provisioned path suffers
congestion often, so its performance number is lower. Performance numbers allow
us to discriminate between paths that suffer different amounts of congestion, and
are used extensively in our work.

3.2.1. Loss rate

Paths are characterized by loss rates and performance numbers, defined as follows:
During a given time interval, the loss rate of path p, denoted by A,, is the
probability with which a packet from p is dropped by any of the links that compose
p. A, is a continuous random variable that can take values from 0 to 1.
During a given time interval, the performance number of path p, denoted by y,,
is the probability that p’s loss rate does not exceed a congestion threshold t.:

yp = Pri A, <t (2)

During a given time interval, the performance number of path pair P = {p;, i},
denoted by yp, is the probability that none of the two paths’ loss rates exceed the
congestion threshold:

yp = Pri Ay, <t A A, <t (3)
Informally, when we say that a path is “congestion-free,” we mean that traffic along

this path suffers relatively little loss; a path’s performance is the frequency with
which the path is congestion-free.
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Link sequences are characterized by similar metrics, with the difference that a
link sequence may behave differently toward each traffic class, because it may be
non-neutral:

During a given time interval, the class-c loss rate of link sequence L, denoted
by Ap(c), is the probability with which L drops a packet from class ¢. Ap(c) is a
continuous random variable that may take values from 0 to 1.

During a given time interval, the class-c¢ performance number of link sequence
L, denoted by z(c), is the probability that L’s loss rate for class ¢ does not exceed
the congestion threshold %.:

zr(c) = Pr[Ar(c) <t.]. (4)

Informally, when we say that a link sequence is “congestion-free for traffic class c,”
we mean that it drops relatively few packets from this class; the class-c performance
of a link sequence is the frequency with which the link sequence is congestion-free
for class c.

3.2.2. Other Metrics

We have decided to use loss rate as a performance metric, but we could have also
worked with throughput or latency.

Existing neutrality methods, like Glasnost [Marcel Dischinger et al., 2010] and
DiffProbe [Kanuparthy and Dovrolis, 2010], rely on throughput differences: compare
the throughput achieved along the same path p for traffic type x and traffic type .

We choose not to rely on throughput differences, firstly because they do not
always provide the hard evidence that we want. The fact that traffic type x achieves
significantly higher throughput than traffic type y along the same path p could be due
to non-neutrality on any link along p (not the specific link sequence we are interested
in), or the source pacing itself differently for the two traffic types. The latter is
possible, for example, if the source is a content server that paces itself differently
when sending video versus other traffic. Our method should never mistaken self-
pacing at the source with non-neutrality inside the network. Unlike Glasnost, in our
experiments we often do not have control over the software used on both endpoints
of a path, thus we cannot assume that such issues do not occur.

Secondly, a method that relies on throughput differences can be manipulated
by the network it is checking. For instance, a network that throttles BitTorrent
traffic may throttle all traffic exchanged between nodes running BitTorrent clients;
or, a network that prioritizes speed-test traffic may prioritize all traffic sent by
nodes running speed-test servers. In both cases, it would be impossible to catch
this behavior by comparing throughput values achieved along the same path. We
have no evidence that networks perform such manipulation today, and they have no
reason to. However, our method would give them a reason, if successful, hence we
want to make it robust to such manipulation.

Regarding latency, it is a useful metric to detect buffering, which may be caused
by congestion or traffic shaping. The problem is that it is not influenced by traffic
policing, which causes packet drops without introducing any buffering, therefore
latency is a less useful metric than packet loss as it cannot be used to detect policing.
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We chose loss over latency because there is strong, recent evidence that ISPs may
employ policing as their throttling mechanism [Flach et al., 2016].

3.3. Non-neutrality

We focus on neutrality violations where traffic from different paths experiences dif-
ferent performance on the same link. This happens, for instance, when a link throt-
tles traffic of a certain type, i.e. it upper-bounds its throughput to a fraction of
the link’s capacity; this can result in higher packet-loss rate and/or latency than
the one experienced by unthrottled traffic. Hence, in our model, a traffic type is
represented by a set of paths. For example, suppose a network link throttles traffic
coming from a specific content provider; we model this by saying that the network
has two “traffic classes,” one class comprising all the paths that start at the content
provider, and the other class comprising all the other paths. Similarly, suppose a
network link throttles a specific kind of P2P traffic; again, we model this by saying
that the network has two traffic classes, one class comprising all the paths that carry
this form of P2P traffic, and the other class comprising all the other paths.

There are scenarios where neutrality violations occur where different types of
traffic do not share the same links. For instance, an ISP may identify a specific type
of traffic and decide to route it differently than regular traffic, on a path that might
be longer or offer less capacity. While this would be a valid neutrality violation,
its mechanism is very different than the one where a shared link throttles some of
the traffic. The effects on the traffic and on the end-to-end performance metrics
measurable by the user, such as packet loss rate or delay, are different; thus the two
scenarios might require different detection methods. Our method does not address
this kind of violations. We focus only on neutrality violations that occur on shared
links, and we narrow the definition of “neutrality violation” to the situation where
traffic from two different network paths experiences different performance when
traversing the same network link.

We do not target specific mechanisms the non-neutral links may use to throttle
traffic. These may include traffic policing, which drops traffic that exceeds a con-
figured average rate; traffic shaping, which buffers in a separate queue traffic that
exceeds a configured average rate; or more sophisticated packet queue management
algorithms, such as weighted fair queuing (WFQ), weighted random early detection
(WRED) etc.

As long as the throttling method introduces a non-negligible difference in
throughput and loss rate for the different types of traffic, our technique should
be able to detect it. This offers an advantage compared to ad-hoc methods tailored
for a specific kind of throttling, since our method does not have to be adjusted every
time a new mechanism is invented, or an existing one is changed.

3.4. Problem statement

Our input is a link sequence L and a set of paths that traverse L, such that their
pairwise intersection is L, whose loss rates and performance numbers we can measure
actively or passively (we want our method to work with both kinds of measurements).
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Our goal is to assess whether L’s performance differs significantly across traf-
fic classes. For example, in Figure 1, the target link sequence is link /;, and we
want to assess whether [;’s class-1 performance differs significantly from [;’s class-2
performance.

Our primary use case is that our method is used to check whether a given net-
work differentiates against or in favor of a given traffic type, for example, against
BitTorrent, against Netflix video, or in favor of speed-test traffic. The user of the
method defines two traffic classes: one that consists of the traffic type in question,
and one that consists of other, “standard” traffic, such as HTTP requests and re-
sponses. The method determines whether the given network (more precisely, a link
sequence in that network) has significantly different performance across the two
traffic classes.

The main deployment challenge is finding the right paths to measure. As we will
see, we need paths that can be grouped in pairs, such that each pair intersects at the
same link sequence (and this is the link sequence whose neutrality we can assess).
When the goal is to check a given ISP for differentiating against BitTorrent traffic,
or prioritizing speed-test traffic, finding such paths is relatively easy for anyone with
access to PlanetLab or cloud-hosted clients (we describe how we do it for our case
study in Section 5.1). But when the goal is to check a given ISP for differentiating
against traffic from a given content provider, then the only entity that is guaranteed
to find the necessary paths is the content provider itself—but we, as third parties,
may not be able to find and measure path pairs that carry traffic from the given
content provider and intersect at the same link sequence within the given ISP.

Another use case—that we do not explore in this work—is that the method is
used to check whether a given network employs differentiation in general. In this
case, the user of the method generates measurement traffic that involves many dif-
ferent IP addresses and/or port numbers and randomly assigns measurement flows
to traffic classes; if the method determines that the given network performs differ-
ently across classes, then the user can analyze the classes to determine the network’s
differentiation criteria. We did not try this, because, in order for it to be useful, one
needs access to a large variety of measurement vantage points, which is beyond our
reach. However, a popular content provider or distribution network should be able
to use the method in this way, as long as they were willing to passively measure the
loss rates and performance numbers of the end-to-end paths accessed by their users
(which, to the best of our understanding, some of them already do).

3.5. Notation

Table 1 summarizes our notation. We observe the following rules:

Network topology elements are denoted by latin letters, specifically [ denotes a
link, L denotes a link sequence; p denotes a path, and P denotes a path pair.

We use Ly, to denote the longest common link sequence of paths p; and py,
and Ly, to denote the longest link sequence traversed by path p; but not path p.
For example, in Figure 1, Ly, \,, = (l2), Lp,\p, = (l3), and Ly, qp, = (l1).

Regarding performance metrics and measurements, capital greek letters are used
for random variables, while small greek letters denote true values that random vari-
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ables take at specific instances; small greek letters with a hat denote measurement-
based estimates of true values. For example, in a particular time interval i, A, takes
value )\, ;; if we estimate this value by observing some traffic from path p, the result

is denoted by Ap.
3.5.1. Paths

We define the congestion state of a path p as X, a boolean random variable with a
value of 0 indicating congestion, and 1 indicating good performance:

Yp = Np <t (5)
The true value ¥, takes in a given interval 7 is denoted by o, ;, defined as:
Op,i = /\p7i <t (6)

The value of the congestion state we estimate from end-to-end measurements in a
given interval ¢ is denoted by &,,, which is computed from the loss rate estimate

A

pii-
a-p,i = )\p,i < t. (7)

Finally, the true performance number of a path p is denoted by y,,, while its estimate
derived from end-to-end measurements is denoted by g,:

N 1 R
Yp = Tzap,h (8)
HE=

where [ is the set of all measurement intervals.

3.5.2. Path pairs

We use similar notation for path pairs, specifically ¥p is a random variable that
represents the congestion state of path pair P = (p;, px):

Yp= Epj N Epk (9>
The true congestion state of the path pair in a given interval is denoted by op,:
O'pﬂ' = Upj,i A O-Pkﬂ' (10)

The estimated congestion state of the path pair in a given interval is denoted by
0p,i, defined as:
Opi = Opyi N Opyi (11)

Finally, the true performance number of the path pair P is denoted by yp, while its
estimate derived from end-to-end measurements is denoted by yp:

Up = 7= ) Opj, (12)



3.5.3. Link sequences

Similar notation is used for link sequences, except that we must take into account
that link sequences may exhibit different performance for each traffic class when
they are non-neutral.
The congestion state of a link sequence L for traffic class ¢ is denoted by the
random variable:
Sp(e) = Ar(e) < to(L) (13)

where t.(L) is the congestion threshold used for the link sequence?.

The true congestion state of the link sequence in a given interval ¢ is denoted by:
ori(c) = Api(c) <t.(L) (14)

Finally, the true performance number of the link sequence L for traffic class c is
denoted by x(c), as defined in Equation (4). Its estimate derived from end-to-end
measurements by an inference algorithm is denoted by % (c); when the estimate has
been derived from measurements taken for a single path pair P, we may denote it
by x L(P )

For simplicity, when a link sequence is known to be neutral, we may ommit the
traffic class from the notation of the performance number, i.e. we write x;, instead

of zp(c).

3.6. Assumptions

This section presents the assumptions that allow us to form the equation systems
used in boolean network tomography.

3.6.1. Link independence

The congestion states of different links are independent. Formally, for any two
different links [;, [y, we have that ;. 1 33, .

This is a well understood assumption in network tomography; we will not discuss
it in detail.

3.6.2. Performance correlation

Different paths from the same traffic class that share a common link sequence ex-
perience the same congestion states (at the same time) on that link sequence.

Formally, for any two different paths p;,p, from the same traffic class ¢, that
share a link sequence L, we have that oy ;(p;) = or:(pk), Vi € I, where o ,(p;) is
the congestion state of the link sequence L in interval ¢+ when taking into account
only packets from path p; when computing the loss rate.

This assumption is important, since it allows us to perform localization of con-
gestion, by comparing congestion states of every two paths that intersect, pairwise,

3Traditionally, network tomography uses different congestion thresholds for link sequences,
depending on the expected number of simultaneously congested links. This is related to the Sepa-
rability assumption discussed in Section 3.6. However we will see that the choice of this parameter
is not important in our case, as we do not use it in the inference algorithm.
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Identifier Formula Description
1 - A measurement time interval
I - The set of all measurement intervals during an experiment
I,L - A link, a link sequence
p, P - A path, a path pair
Ly rp,, - The longest common link sequence traversed by paths p; and py
Lyp, - The longest link sequence traversed by path p; but not path py
A, - The loss rate of path p (random variable)
Ap,i - The true value of A, during time interval ¢
5‘p,i - The estimated value of A, ; during time interval i
te - The congestion threshold
Xy A, <t The congestion state of path p (random variable)
Op,i Api < te The true value of the congestion state of path p in interval i
Op,i Api < te The estimated value of the congestion state of path p in interval ¢
Yp Pr[¥X,=1] | The performance number of path p
Up ”—}” > ic10pi | The estimate of y,
Yp Yp, AN Xy, The congestion state of path pair P = (p;,py) (random variable)
opi Op, i NOp,i | The true congestion state of path pair P in interval i
opi Opji N\ Opyi The estimated congestion state of path pair P in interval ¢
yp Pr(Xp=1] | The performance number of path pair P = (p;, px)
Jp HlTH > ic10pi | The estimate of yp
Ar(e) - The loss rate of link sequence L for class ¢ (random variable)
Yr(e) Ap(e) <t. The congestion state of link sequence L for class ¢
or,i(c) Ari(c) <t. | The true congestion state of link sequence L in interval 4
xr(c) Pr[ X1 (c) = 1] | The performance number of link sequence L for class ¢
Zr(P) - The estimate of zr,(c) derived from measurements for path pair P

Table 1. Notation for topology elements, congestion states and performance metrics.

as it will be seen in the Section 3.7. The intuition behind it is that when two paths
traverse a link sequence that is neutral, or one that is non-neutral but the paths
belong to the same traffic class, the link sequence will treat the traffic neutrally, thus
it should experience similar performance. However, there are two possible scenarios
in which this assumption is violated in practice:

Firstly, the loss rate of a shared, congested link may be slightly below the con-
gestion threshold when taking into account packets from all paths that traverse
the link, but each of the paths might observe a slightly different loss rate; for some
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paths, the loss rate might exceed the congestion threshold, while for others it will be
below. Therefore some paths observe congestion, while others do not. This effect is
possible, since the packet sets used to compute the two loss rate values are different.
The violation becomes less likely to occur as the difference between loss rate and
congestion threshold increases. We take into account this measurement problem,
relaxing this assumption, in Section 4.6.

Secondly, the shared link may use fair queuing (FQ) [Nagle, 1985, 1986] instead
of FIFO as queue management algorithm, which may lead to placing packets of
the two paths into separate queues. While FQ attempts to ensure that the two
paths achieve similar egress throughput, it does not guarantee that the loss rates
are similar. On the contrary, if one of the paths has higher ingress throughput
than the other, it will probably experience a higher loss rate. However, if the two
paths have similar ingress throughputs, the loss rates should be similar: either
their ingress throughput is lower than the fair share enforced by the link, in which
case both paths do not saturate their queues; or their ingress throughput is higher
than the fair share, in which case both paths saturate their queues and experience
congestion. It is therefore important to only consider path pairs that send traffic
at similar throughput through a link sequence that we suspect might perform fair
queuing. If this is not possible, we should at least use a large number* of path
pairs to infer the congestion state (or the neutrality) of the link sequence; if the
link sequence is neutral but uses fair queuing, the inference results from multiple
pairs will likely be inconsistent, therefore we will not misdetect the link sequence as
non-neutral.

3.6.3. Separability

A path is congested if and only if at least one of its links (or link sequences) is
congested. Formally, if a path p from class ¢ consists of the disjoint link sequences
L ={Ly, Ly, ..., Ly}, we have that:

Xy = ApecXr(c) (15)

This assumption links the path states to the link states, allowing us to form our
systems of equations, and eventually to reason about the link congestion state while
only observing end-to-end measurements.

A possible scenario in which the assumption is violated occurs when a path
traverses multiple bottleneck links, the loss rate of each being below the congestion
threshold, but the overall loss rate of the path exceeds the congestion threshold.
Paths that traverse only one of the bottlenecks do not observe congestion, while
paths that traverse multiple bottlenecks do. The violation becomes less likely to
occur as the difference between loss rate and congestion threshold increases. We take
into account this measurement problem, relaxing this assumption, in Section 4.6.

4In our experiments, we encountered networks that appeared to employ fair queuing; with as
little as 6-8 paths, we could choose a sufficient number of path pairs to observe inconsistent results,
thus avoid false positives.
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3.6.4. Canonicity

The performance number of any link sequence or path is non-zero.

A performance number equal to zero represents complete network failure, or
traffic blocking (such as blackhole routing). We are not interested in diagnosing
such problems. While this assumption is not crucial for our algorithms to work, it
helps simplify the mathematical equations.

3.7. Neutrality Inference using Maximum Likelihood Estima-
tion

We now describe an algorithm that performs non-neutrality detection and localiza-
tion, given that all the assumptions from section 3.6 are satisfied and that measure-
ments are perfect. This is essentially the method proposed in [Z. Zhang, Mara, and
Argyraki, 2014]. We name it Straw, as we will use it as a reference to compare our
work against in Section 4.

Consider the topology from Figure 2, which shows a network with five links and
four paths. There are two traffic classes, class 1 (in blue), consisting of all traffic
carried by path pair {p1,p>}, and traffic class 2 (in red), consisting of all traffic
carried by path pair {ps,ps}. Link [; (in red) is non-neutral: it is never congested
for class 1, whereas it is congested for class 2 half of the time. Also, suppose that
the other links are never congested (for either traffic class).

P, P, P3P,

Figure 2. Example network.
In this scenario, the performance numbers of the paths are y,, = vyp, = yp, = 1
(paths 1 and 2 are congestion-free with probability 1), while y,, = vy,, = yp, = 0.5
(paths 3 and 4 are congestion-free with probability 0.5, and they are congestion-
free at the same time). The performance numbers of the links are z;, (1) = 1,
r,(2) = 0.5 and z;, = 1,Vk = 2..5. Suppose that we only know the path and
path pair performance numbers, and we would like to compute the link performance
numbers.
Consider path pair P, = {p;,p2}. We can write:

Ypy = xll(]‘) Ly
Yps = xh(l) © Ly (16>
Yp = xll(l) "Lyt Llg-

As shown in [Nguyen and Thiran, 2007b], we can solve this system and obtain
xy, (1), 21, 21, as a function of y,,, y,,, yp,. Specifically, for link /; and traffic class 1:
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(1) = yy—y (17)
1

Consider path pair P, = {ps, ps}. We can write:

Yps = Tiy (2) an
Ypy, = iy (2) xas (18>
Yp, = Ty (2) "Lyt T

We can solve this system using MLE and obtain x;,(2),z;,,x;, as a function of
Yps» Ypa> Yp,- For link [; and traffic class 2, we obtain:

2,(2) = yy—y (19)
2

The two systems yield different values for link /1’s performance: System (16) yields
x;,(1) = 1, whereas System (18) yields z;,(2) = 0.5. Note that the path p3’s and
path p4’s concurrent congestion is attributed to link [, as opposed to concurrent
congestion in links /4 and [5, because we assume link independence—hence we cannot
have x;, = v, = x;, - x;, = 0.5.

Because of link [;’s non-neutrality, Straw’s observations of P; are inconsistent
with its observations of P5: the former indicate that link [; is congestion-free,
whereas the latter indicate that [; is congested half of the time; since these can-
not both be true in a neutral network, the network is non-neutral; and since the
only link that is shared between the four paths is [, this link must be the source of
non-neutrality.

3.7.1. Algorithm

The Straw algorithm takes as input a link sequence L and a set of paths P* that
can be grouped in pairs, such that each pair intersects exactly at L. Additionally,
it needs several parameters to be set by the user, as listed in Table 2. Then Straw
performs the following three steps:

Parameter | Description
Nint Number of time intervals in experiment
Npkt Number of measurement packets per time interval
te Congestion threshold
tn Neutrality threshold

Table 2. The parameters taken by the Straw algorithm.

Step 1: End-to-end measurements

Straw divides time in ng, fixed-size intervals and measures, in each interval, the
performance of each path and path pair in P*. For instance, consider a path p. In
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interval 4, Straw considers n,; measurement packets (packets that are sent on path
p), and estimates the value of p’s loss rate \,; as the fraction S\W- of measurement
packets that were dropped. At the end, Straw estimates p’s performance y, as g,
the fraction of intervals where 5\pﬂ- < t., i.e. p’s estimated loss rate was below the
congestion threshold.

Step 2: Inference of link performance.

For each defined traffic class ¢, Straw infers L’s class-¢ performance x(c) by creating
and solving a tomographic system of equations based on a different path pair. For
instance, consider a path pair P, = {p;,px} carrying traffic from class c¢. Straw
creates the following system of equations:

Yp, = rr(c)-p

Jp = () - LLp\p; (20)

gp = zr(c) - 7

Pj\Pk

Pj\Pk ) mLPk\Pj

On the left side of each equation we have the performance number of a path or path
pair, as measured in Step 1; on the right side, we have a product of the performance
numbers of different link sequences, which are unknown. Solving this system yields
a maximum likelihood estimate (MLE) of x(c).

Step 3: Neutrality assessment.

Straw labels L as non-neutral if its inferred performance numbers are significantly
different from each other. Specifically, Straw defines L’s neutrality bias as the max-
imum difference between any two of its performance numbers:

bias = max |z (c) — x(m)| (21)

c,m

Then, it labels L as non-neutral if bias > t,, where ¢, is a configurable neutrality
threshold.
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4. Reliable Neutrality Inference using Bayesian
Statistics

The theory behind the Straw algorithm (presented in Section 3.7) assumes perfect
measurements. As a result, in practice, Straw suffers from errors that we discuss
in 4.1. While we cannot eliminate these errors, we redesign the measurement process
such that we can reason about them and avoid magic thresholds; we describe how
in Section 4.1. We evaluate each the various components of our new measurement
process when we introduce them. At the end of the chapter, in Section 4.7, we also
evaluate the measurement process as a whole, in a realistic setting that is outside
our control.

4.1. Sources of Error

Straw is subject to four sources of error, each related to an algorithm parameter:

#1. Inaccurate path-congestion measurements (during one interval of
npke packets)

Step 1 estimates whether, in each interval, a path’s loss rate exceeds the conges-
tion threshold ¢.. The accuracy of each such estimate depends on the number of
measurement packets n,;.. Moreover, the closer the path’s actual loss rate is to %,
the harder it is to accurately determine whether one exceeds the other, hence the
larger the n,,; we need. The problem is that, without ground truth-—without some
a-priori knowledge of the network conditions—we do not know how to reason about
the reliability of these estimates.

#2. Inaccurate path-performance measurements (over multiple n;, in-
tervals)

Step 1 also estimates a path’s overall performance, by monitoring the path’s conges-
tion over ng;,, measurement intervals. The accuracy of each such estimate depends
on ng,. Moreover, the error of each such estimate can be significantly amplified in
Step 2, where the path-performance estimates serve as input to linear systems of
equations. Again, without some a-priori knowledge about the stability of network
conditions, we do not know how to reason about the reliability of these estimates
and the link performance numbers that we infer from them.

#3. Inappropriate neutrality definition (the choice of ¢,, the safety mar-
gin)

Step 3 determines the neutrality of a link sequence by comparing its maximum per-
formance gap to a neutrality threshold ¢,. Picking ¢, involves the usual balancing
act between false positives (favored by a low threshold) and false negatives (favored
by a high threshold). Moreover, we should ideally pick ¢, as a function of the num-
ber of intervals n;,: the fewer the intervals, the less reliable the path performance
estimates in Step 1 and the link performance inference in Step 2, hence the more
conservative we should be in Step 3 (the higher we should set t,,) to avoid false nega-
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tives. However, because we have no way to quantify the reliability of the estimation
and inference in Steps 1 and 2, we also have no basis for setting ¢,,.

#4. Inappropriate congestion definition (the choice of ¢.)

Step 1 compares each path’s estimated loss rate to a congestion threshold t.; not
surprisingly, the value of ¢, has a dramatic impact on the results. An inappropriate
threshold can lead to false negatives: if it is too low, paths appear to be congested
most of the time; if it is too high, paths appear to be congestion-free most of the time;
either way, paths appear to experience congestion with similar probabilities, which
may incorrectly indicate a neutral network. Moreover, an inappropriate threshold
can lead to false positives; for instance, if t. = 0.01, and path p; experiences loss
rate 0.009 (just below the threshold), while path p, experiences loss rate 0.011 (just
above), then the two paths appear to experience congestion with very different prob-
abilities, which may incorrectly indicate a non-neutral network. In short, Straw may
miss real neutrality violations or detect non-existent ones because of an unfortunate
combination of network conditions and the chosen congestion threshold.

4.2. Example Topology

In a small network like the one in Figure 2, Straw works well; to motivate our
changes, we need a more realistic example, where the sources of error we described
in Section 4.1 manifest clearly; we use the network in Figure 3, which has a similar
topology to Redlris, the Spanish academic network ["RedIRIS Network Map,” n.d.|,
obtained from the Internet Topology Zoo project [Knight et al., 2011].

Figure 3. Example network with 4 non-neutral shared links (in red), 17 neutral
shared links (in black and in blue), and 86 neutral edge links (in black). The blue
(red) nodes exchange class-1 (class-2) TCP traffic. The yellow nodes exchange UDP
traffic. The non-neutral links police class 2.

Our example network carries a mix of TCP and UDP flows of various sizes and
includes 4 shared non-neutral links (in red) and several shared neutral links (in
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black). The non-neutral links police the traffic exchanged by a particular set of
nodes (the red ones), so this traffic constitutes our class-2, while the rest of the
traffic constitutes class 1. The policing and generated traffic are such that the
non-neutral links introduce significant loss to class 2, while some of the neutral
links introduce significant loss to both classes. Our goal is to assess the neutrality
of all link sequences that are traversed by at least 2 path pairs, one from each
class (as link [, in Figure 2). A key challenge is to distinguish non-neutrality from
congestion, i.e., neither allow congestion to mask non-neutrality (and miss the fact
that certain congested link sequences are non-neutral), nor mistaken congestion for
non-neutrality (and miss the fact that certain congested link sequences are neutral).

We emulated this network in LINE [Mara, 2017], our network emulator built on
top of the PF_RING [Deri and others, 2004 packet processing framework. The
transmission rate of the shared links is 150Mbps, while that of the non-shared links
is 20-40Mbps; link latency is 3—10ms. The experiment lasts 40 minutes, with 40
measurement intervals of 1 minute each.

In each experiment, the end-hosts generate TCP and UDP traffic. Each pair
of communicating end-hosts starts a number of TCP flows with the transfer size
following a Pareto distribution; when a TCP flow ends, a new one starts after an idle
time that is governed by an exponential distribution. We chose this model because
there is evidence that it captures well the communication between pairs of Internet
end-hosts [Crovella and Bestavros, 1997], but it is not crucial to our results—it
is just one way of generating dynamic traffic patterns. To avoid symmetries, we
vary the number of flows adjacent to end-hosts, as well as the parameters of the
Pareto and exponential distributions (that govern flow size and inter-flow idle time,
respectively). These parameters are configured as follows:

Each node exchanges TCP traffic only with other nodes of the same color. Blue
and red pairs exchange TCP traffic in the following configuration: 35 blue and
35 red pairs exchange long TCP flows (infinite transfer size); 12 blue and 12 red
pairs exchange medium TCP flows (average transfer size 25MB); and 110 red pairs
exchange medium-long flows (average transfer size 50MB). Finally, there are 4 red—
yellow pairs exchanging Poisson UDP traffic at a rate of 30Mbps. All the TCP flows
serve as measurement traffic, while UDP serves as background traffic (it affects
network conditions, but does not participate in the measurements).

All traffic exchanged by the blue nodes belongs to class 1, and by the red nodes
to class 2. Three of the non-neutral links police class 2 at 30% of their capacity,
while the fourth one polices class 2 at 40% of its capacity.

4.3. Bayesian Performance Inference

We start from error source #2: inaccurate path-performance measurements. Straw
estimates path performance in Step 1 and uses the outcome to infer link performance
in Step 2; given that the estimates may be inaccurate, we must determine whether
the resulting inference is reliable.
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Figure 4. Class-1 (blue) and class-2 (red) performance for two path pairs inter-
secting over a neutral link sequence, as a function of the congestion threshold. The
topology is equivalent to the one in Figure 2. Top: true performance on the com-
mon link sequence. Upper mid: performance as inferred by Straw. Lower mid:
performance bias as inferred by Straw. Bottom: true performance on the outer link
sequences.
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4.3.1. Illustration of the Problem

Figure 4 illustrates how Straw mischaracterizes a neutral shared link (the blue link
in Figure 3). Figure 4a shows the ground truth, i.e., how frequently the link is
actually congestion-free with regard to class 1 (blue) and class 2 (red), as a function
of the congestion threshold .. Figure 4b shows Straw’s inference, i.e., how frequently
the link appears to be congestion-free with regard to each class based on two path
pairs, one carrying class-1 traffic, the other class-2: for t. = 0.07, the link appears
to be congestion-free 100% with regard to class 1 and 0% with regard to class 2,
while exactly the opposite happens for t. = 0.2. Figure 4c shows Straw’s conclusion,
i.e., the neutrality bias it computes for the link: the maximum gap between class-1
and class-2 performance is 100%, hence Straw incorrectly concludes that the link is
non-neutral.

The problem is that Straw’s math is very sensitive to inaccurate input when the
input values are small: System (20) has a unique solution as long as it is not the
case that both paths of a path pair are never congestion-free. If this assumption is
violated, then multiple solutions fit the end-to-end measurements: congestion could
be due to the shared part of the path pair, or due to the non-shared parts, or both.
If the assumption holds but one or both paths are rarely congestion-free, then many
solutions “almost fit” the end-to-end measurements, and a minor error in estimating
path performance might cause Straw to pick the wrong solution.

We can confirm that this is what went wrong in the inference by analyzing
the ground truth for the other links in the network. Figure 4d shows the true
performance numbers for the four links that act as bottlenecks for the four paths
used in Straw’s inference. For small values of the congestion threshold ¢., two of
the four paths are rarely congestion-free. The number of measurement intervals is
not sufficient for accurately estimating such small numbers. The estimation error of
each number is small, but it is amplified by System (20) and causes Straw’s inference
(Figure 4b) to differ significantly from the ground truth (Figure 4a).

4.3.2. Our Approach

Our solution is to replace Straw’s Step 2 with Bayesian inference: given a target
link sequence L, instead of inferring its performance number z(c) by solving a
tomographic system of equations, we infer z(c)’s posterior distribution Pr{z(c)|EF]
given the observed measurements E. The inferred posterior distribution does not
represent a unique solution, but the probability of each possible solution z(c) that
could match the observed measurements. This intrinsically encodes the reliability
with which we can solve the equations: when the posterior distribution is narrow, i.e.
it has a tall peak at the likeliest value, the measurements strongly support a single
solution or a small set of solutions close to it; by contrast, the more uniform the
posterior distribution, the less the likeliest value “stands out,” and the less reliable
our inference.

Figure 5a illustrates how this helps: For each value of the congestion threshold
t., we infer two posterior distributions, one for the link’s performance with regard
to class 1 (blue distribution) and one with regard to class 2 (red distribution). The
fact that none of our inferred distributions has a clear peak tells us that we cannot
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Figure 5. Performance computed with Bayesian inference.

reliably infer the link’s performance number with regard to any class, hence we
cannot reason about the link’s neutrality.

Our method captures the fact that not all inferences are equally reliable. Straw
assumes perfect measurements, which ensures that the tomographic system of equa-
tions it solves has a unique solution. The moment we admit imperfect measurements,
we also admit multiple possible solutions. If, assuming imperfect measurements,
there exist multiple solutions that fit our measurements, and they all occur with
similar probabilities, then we cannot reliably infer the true one. This is precisely
the information provided by the posterior distribution.

4.3.3. Our Approach in Detail

We now show how the posterior distribution can be computed from end-to-end
measurements. Consider a simpler topology consisting of a single path pair, as
shown in Figure 6, since the computation needs to be performed not for four paths
but one path pair at a time, essentially replacing Equation System (20). Assume
that the two paths p; and ps belong to the same traffic class c.

Our input consists of the end-to-end measurements for the paths g,, , 9,, and the path
pair yp, and of the number of measurement intervals n;,;; we denote them as F =
(Upy s Ups» UP, Mint). The goal is to compute the posterior distribution Pr[zy, (¢)|E].

4.3.4. Numerical Computation using Monte Carlo Simulation

We propose a method to approximate the posterior distribution using Monte
Carlo (MC) simulation. We restate our goal: compute the posterior distribution
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Figure 6. Network topology.

Prlz;, (¢)|E] given the end-to-end measurements £ = (4p,, Up,, Yp, Nint), for a topol-
ogy consisting of two paths and three links, as shown in Figure 6.

We should clarify that our method has nothing to do with network (e.g., NS3)
simulation as typically used to evaluate network proposals—we do not simulate
traffic generation, network conditions, etc. We simply use MC simulation as a
numerical method to solve a mathematical problem for which we could not find a
tractable analytical solution.

Our MC simulation creates a large number of possible “ground truths,” i.e.,
combinations of performance numbers for the three links in the network; this can
be done by iterating over the range of all real numbers between 0 and 1 with a
small fixed step e. For each ground truth, and for each link, the simulation creates
n¢ random samples of the link sequence’s congestion status that are compatible
with this ground truth; from these samples, it computes the congestion statuses
of the two paths during each interval, and the estimated performance numbers of
the two paths and the path pair. If the three computed performance numbers are
the same as the ones measured in the experiment (i.e., we created a ground truth
that fits the end-to-end measurements), then we record the corresponding samples;
otherwise we discard them. After the simulation has created enough ground truths
for the recorded sample set to reach 100,000 values or so, we use the samples to
estimate the posterior distribution of /;’s performance number z;, (¢). This method
is implemented by Algorithm 1.

Algorithm 1: Posterior Computation with Monte-Carlo simulation

# Computes the posterior distribution Prz; (c)|E]
# Input: E as gpu@pz?@P;nint

# Output: D = mapping zy,(c) € [0,1] — [0, 1]

# Parameters:

# * min_samples = 100,000

#

* € = 0.01
function ComputePosterior (¥, , Up,, Ypr, Mint) :
D ={}

n_samples = 0
while n_samples < min_samples:
for x_1 in range(0.0, 1.0, step=e):
for x_2 in range(0.0, 1.0, step=e):
for x_3 in range(0.0, 1.0, step=e):
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#
#
#
#

y_1, y_2, y_12 = SimulateExperiment(x_1, x_2, x_3, M)
# Check if the simulation result matches the measurements
if y_ 1 == y,, and y_2 == y,, and y_12 == gp:
n_samples += 1
D[x_1] += 1
# Normalize D
for x, value in D:
D[x] /= n_samples
return D

Simulates an experiment, computing a set of end-to-end measurements
from the ground truth.

Input: ground truth for the 3 links and the number of intervals
Output: one set of end-to-end measurements

function SimulateExperiment(x_1, x_2, X_3, N :

#
#
#

# End-to-end estimates
yl=y2=y12=20.0
# Simulate mngy intervals
for i in range(0, nu):
link state_1 = Bernoulli(x_1)
link state_2 = Bernoulli(x_2)
link state_3 = Bernoulli(x_3)
# Compute path states from link states
path_state_1 = link state_1 and link_state_2
path_state_2 link state 1 and link state 3
path_pair_state = path_state_1 and path_state_2
# Update end-to-end estimates
if path_state_1:
y_ 1 +=1
if path_state_2:
y_ 2 +=1
if path_pair_state:
y_ 12 += 1
# Normalize estimates to [0, 1]
y_l /= Nint
y_2 /= Noint
y_12 /= N
return (y_1, y_2, y_12)

Runs a Bernoulli trial.
Input: success probability of Bernoulli trial
Output: result of Bernoulli trial (boolean)

function Bernoulli(prob_success):

return rand uniform(0, 1) <= prob_success

While Algorithm 1 is quite simple and parallelizable, it is too inefficient to be prac-
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tical. The problem is in the step that checks if the simulation result matches the
measurements from function ComputePosterior. Given a fixed ground truth, the
number of possible end-to-end outcomes is in O(n? ,); although some are much less
likely than others, and some are impossible. This means that the probability that
a simulation result matches the measurement can be as small as n, > or even a few
orders of magnitude smaller; which means that for an experiment with 100 inter-
vals, we would have to run 1 million simulations to get just one sample of D, and
we need 100,000 of them; assuming that one random number generation requires
10 arithmetic operations, the computation would require up to 100,000 samples X
1,000,000 simulations x 100 intervals x 10 operations = 10'* operations, possibly
more. This means that running the inference algorithm for just one path pair might
take from several hours to several days. Clearly we need a method that offers better
performance.

What is striking about Algorithm 1 is that it does not compute simply
Prx;, (¢)|E]; in fact, it performs all the simulations needed to compute Prlz;, (c)|E]
for any possible value of E (with a fixed n;,;). This means that for a given n;,;, we
could run the simulations in advance, and instead of filtering by E, we could store
all the results in a mapping F — x;,(c) — [0, 1], which we could use as a lookup
table. Then, when we need to run the inference for a concrete value of F, we simply
search the lookup table to find the posterior distribution. While creating the lookup
table is straightforward, using it poses two challenges.

Firstly, the lookup table requires a non-negligible amount of storage, due to the
large number of posterior distributions we have to store. In practice it is difficult to
fix the number of intervals in advance, for which the reason is shown in Section 4.6.
Therefore we have to compute the mappings for many possible values, on the or-
der of a few hundreds. For each one, the number of distributions depends on the
number of possible values of E, which in turn depends on the granularity of the
measured path performance numbers, which is max(ﬁ, €); therefore we may have
up to min (7, %)3 values of E for each ng;,. FEach distribution requires storing %
pairs of floating point values, thus for values of n;,; up to 1,000, the required storage
may add up to hundreds of GB unless we use compression. However, we can take
advantage of the fact that the posterior distributions do not change significantly for
small variations of n;,; for example, for n;,, = 100 and n;,; = 110 they are very
similar. Therefore we can use a smaller granularity for n;,; We used a step of 10
for values under 100; a step of 50 for values between 100 and 500; and a step of 100
for values between 500 and 1200. This has reduced storage requirements by a factor
of 40. We reduced space further by using fixed-point arithmetic (for € = 0.01, we
can store real numbers using only 8 bits instead of 32), and compressing the table
further with DEFLATE [Deutsch, 1996] as implemented by the zlib library [Gailly
and Adler, 1998], which reduced the size by a factor of approx. 10. The final storage
size is 117 MB, smaller than a naive data format by a factor of 1600.

Secondly, the lookup is non-trivial: due to potentially mismatched values of n,,
it might not be possible to find an exact match in the table for a measured F.
Therefore support for approximate lookups is necessary. For simplicity, we opted
to first choose the subtable computed for the closest value of n;,; then look up
the value from the subtable that is closest to the given @, , 9,,, yp, using Euclidean
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distance as a metric. To implement this search efficiently, we indexed the values
with ball trees.

The final method for precomputing and finding the posterior distribution is
sketched in Algorithm 2. The precomputation step was performed by a parallel
implementation on a machine with 48 CPU cores; we have sped up the simulations
further by using AVX-2 SIMD instructions to compute 4 values at a time in parallel,
and we used the xorshift128+ pseudo-random number generator (PRNG), currently
among the fastest non-cryptographic PRNG, while still providing good quality ran-
dom numbers [Marsaglia and others, 2003; Oya et al., 2011; Vigna, 2017]. Overall,
the optimized precomputation step ran for about 2 weeks.

Algorithm 2: Posterior Precomputation with Monte-Carlo simulation

# Precomputes the posterior distribution lookup table
# Input: Ny
# Output: D = mapping F € [0,1]* — x,(c) € [0,1] — [0,1]
# Parameters:
# * repeats = 48 * 4096
# *x e =0.01
function PrecomputeTable (n;,) :
D = {}
for x_1 in range(0.0, 1.0, step=e):
for x_2 in range(0.0, 1.0, step=e):
for x_3 in range(0.0, 1.0, step=e):
for r in range(0, repeats):
y_1, y_2, y_12 = SimulateExperiment(x_1, x_2, x_3, N
D[y _1]1[ly_2]1[y_121[x_1] += 1
# Normalize each D[y_1][y_2][y_12]
for y_1 in D:
for y_2 in D[y_1]:
for y_12 in D[y_1][y_2]:
total = sum([value for x, value in D[y_1][y_2][y_12]]1)
for x, value in D[y_1][y_2][y_12]:
D[x] /= total
return D

# Precomputes all lookup tables
# Parameters:
# * n_values = [10, 20, .., 100, 150, .., 500, 600, .., 1200]
function PrecomputeAllTables():
for n in n_values:
T = BallTree(PrecomputeTable(n))
Store(T)

# Computes the posterior distribution Prx; (c)|E]
# IHPUt : E as gp1 ) @pz? gP; Tint

# Output: D = mapping zy,(c) € [0,1] — [0, 1]
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# Parameters:
# * n_values = [10, 20, .., 100, 150, .., 500, 600, .., 1200]
function ComputePosterior (¥, , Up,, Upr, Mint) :

n = FindClosest(n_values, ng,)

T = Load(n)

y_1, y_2, y_12 = FindClosest (T, Up,, Up,, Up)

return T[y_1]1[y_2][y_12]

4.3.5. Alternative Method: Analytical Derivation

As an alternative to the Monte Carlo method, we also provide an analytical method
for computing the posterior distribution. Unfortunately, we show that the compu-
tation is intractable, thus this method is not practical. We still present our attempt
of solving the problem analytically for the sake of completeness, and also to justify
the necessity of the less elegant MC solution.

Under the assumptions from Section 3.6, the state of the network in each interval
i is fully characterized by the congestion states of the three links, i.e. the values
taken by the random variables ¥, (¢), ¥;,(c) and ¥;,(c). The path congestion states
are random variables that depend on the link congestion states:

Epl = Zh (C) A El2 (C)
EPQ = 2ll (C) A Els <C> (22)
Yp =23y (C) N X, (C) A X (C)

All the possible states the network can be in during one interval, and their proba-
bilities, are shown in Table 3. We use the following notation:

o wuy is the value taken by x;,(¢) = Pr[ ¥, (c) =1|;
e Uy is the value taken by x,(c) = Pr[ X,(c) =1 |;
 wug is the value taken by x;,(c) = Pr|[ ¥,(c) =1].

We can group the states the network can be in during one interval into four
possible end-to-end outcomes, with the corresponding probabilities:

PriE, (c)=0A%,,0)=0]=(1—u)(l—u)(l—usg)+ (1 —u)(l—uus +
+ (1 — up)ua(1 —uz) + (1 — uy)ugug +
+ur(l —ug)(l —wuz) =

= UUU3 — UTUs — UU3 + 1

(23)
Pr[S,,(¢) = 0A Sy (c) = 1] = uy(1 — up)us = (24)
Pr{ 3, (c) = 1A Y (c) =0] = wus(1 —ug) = (25)

Pr{5,(e) = 1A T(e) = 1] = wuzuy (26)

We now consider multiple intervals. We define the following variables:
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Congestion states Probability

Lijlo|ls|p1|p2| P -
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0/0|j1]0|0]O (1 —up)(1 —ug)us
of1]olo]olo] (1-u)us(l—us)
0j1(110]01]0 (1 — uy)ugus
1{ololo]0]0]| wu(l—u)(l—us)
110(1]0|1]0 up (1 — ug)ug
1j1{of1]o0]0 uruz (1 — ug)
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—
—
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Table 3. All the possible states of the network during one interval.

e ki is the number of intervals with the outcome (X, =0AX,, =0).

o ki — k12 is the number of intervals with the outcome (X, =0AX,, =1).

o ko — ky 2 is the number of intervals with the outcome (3,  =1A%,, =0).

o Nyp—k1—kao+ky 2 is the number of intervals with the outcome (3,, = 1AY,, =

1).

Note that (ki, ko, k12, 1ime) is equivalent to the end-to-end measurements E =
(Upys Ups» Up, Mint), Since we can write gy, = ”g—;’“, Upy = "Zt—;k? and yp =
w Then the probability to observe a given value of the end-to-end

measurements for the entire experiment can be written as:

Pr[ E|x;, (c) = uy A x,(c) = ug A xyy(c) = us | =
N Nint — k1 A Nint — ko N
PT(:UPIZ : N Ypy, = : Nyp =

Nint — k1 — ko + k1,2|
Nint Nint Nint

|z, (¢) = up Ay, () = ug A gy (c) = ug | =
_ <nmt) (nint - k’m) <nz’nt - kl) %
k12 ki — ki ky — k12
X Pr[ %, (c) = 0A%,,(c) = 0|z, (c) = uy Axy,(c) = ug A ay,(c) = ug ]2 x
X Pr[%,,(c) =0A%,,(c) = 1]z, (c) = up Ay, (c) = ug Ay (c) = ug |72 x
x Pr[ %, (c) = 1 AY,,(c) = 0|z, (c) = up A xy,(c) = ug A myy(c) = ug |27F12x

XPr[ X, (c) =1ANE,,(c) =1z, (c) = u Azp,(c) = ug A () = ug ]"W—kl_kﬁkl’?
(27)
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Which expands to:

Pr] E|x;, (¢) = uy Ax,(c) =ug Ay (c) =ug | =
_ (nmt> <nint - k1,2> (nmt - kl) %
k12 k1 — k1o ko — k12
X (uytgs — uyty — ujug + 1)F2x (28)
X (Ut — ugugus) M2 x
x (Ut — uyugus)2 M2 x

% (u1u2u3)nmt—k1—k2+k1,2

We can integrate it over uy and uz to compute:
Pr] Elx; (c) =u | =

1 1 (29>
- /0 /0 Pr| El|zy, (¢) = uy A xy,(c) = ug A xy,(¢) = ug |dusdus

To finally obtain the posterior distribution, we apply Bayes’ theorem and assume
that all possible link performance numbers are equally likely (Pr{z;, (¢) = wy] = 1):

Pr| E|x;,(¢) = uy |Pr| z;(c) = uy ] _
Pr[ E |

_ Pr| Elx;, (¢) = uy |

3 Pr Bl (¢) = uy Jduy

Prix;,(c) =w|E | =
(30)

Unfortunately, the double integral from Equation (29) is difficult to solve for sym-
bolic values of nu, k1, ka2, k1 2, the powers of the polynoms from Equation (28); and
still difficult for specific measured values due to the large numeric values of n;,; and
some, or all of ky, kg, and k; o. Therefore this derivation cannot be used in practice.

4.3.6. Evaluation Through Simulation

The simulations used to evaluate the Bayesian performance inference algorithm were
performed as follows: Consider a topology consisting of three links and two paths,
as in Figure 2. Starting from a known ground truth, i.e. the performance numbers
of the three links z;,, x;, and x;,, we use three corresponding Bernoulli processes to
generate random congestion states for the links in each of the n;, intervals. From
the link congestion states, we compute the path congestion states and the end-to-end
performance number estimates for the path and the path pair. From the end-to-end
data, we infer the performance number of the common link with two methods: (i)
the MLE, as computed by Straw; (ii) the posterior distribution, as computed by our
Bayesian algorithm.
The parameters used in the simulations are the following:

o Ny is set to 60, 300, 600 or 1200 (with 60-minute intervals, this corresponds
to 1 hour, 5 hour, 10 hour and 20 hour long experiments);
e The link performance numbers may be in one of three configurations:
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e good = 1.0, i.e. the link is never congested;
o light = 0.8, i.e. the link is congested 20% of the time;
e heavy = 0.2, i.e. the link is congested 80% of the time.

e There are four scenarios:

o Common link lightly congested, side links good;
o Common link good, side links lightly congested;
o Common link heavily congested, side links good;
o Common link good, side links heavily congested.

Figures 7 and 8 show the scenarios in which the common link is either good or lightly
congested. Due to the low amount of congestion in the network, these should be
easy scenarios for both algorithms. Indeed, we can see that: (i) the MLE is close
to the ground truth; (ii) the posterior distribution is also in concordance with the
ground truth, which falls within regions of high likelihood; (iii) the posterior is very
wide for lower numbers of intervals, showing high uncertainty, and only converges
visibly towards the ground truth starting from 600 intervals.

Interestingly, the posterior distributions from Figures 7a and 8a appear similar.
In the first scenario, the estimated good probabilities of the paths and the path
pair are all equal to 0.88, since the path congestion states are perfectly correlated,
pointing correctly to congestion on the common link. In the second scenario, they are
different but only slightly: 0.71, 0.81 and 0.61, because we observe “false” correlation
since in some intervals the two side links happen to be congested simultaneously.
For small number of intervals, it is not possible to discern between true and “false”
correlation, thus the posterior distribution is wide.

The scenarios showing heavy congestion are shown in Figures 9 and 10. When
the common link is heavily congested, all algorithms perform well: the peak of the
posterior distribution is close to the MLE and to the ground truth; and even for
a small number of intervals, the posterior distribution has a tall, relatively narrow
peak, showing high certainty.

The difficult scenario is when the side links are heavily congested and the com-
mon link is good. Again, in this case we observe false correlation (since in most
intervals both paths are congested), and the posterior distribution is wide, show-
ing high uncertainty, as expected. What is remarkable is that the MLE is highly
inaccurate, having an error of about 0.3 as seen in Figures 10a and 10b. Consider
what would happen if this result were used as by Straw in neutrality inference: when
comparing this path pair with another that also traversed link 1, but had the side
links only lightly congested (as in Figure 8), Straw would compute a large neutral-
ity bias and incorrectly classify link 1 as non-neutral. By contrast, the Bayesian
method would compare two wide posterior distributions, and correctly decide that
the link cannot be classified as non-neutral with sufficient certainty: the bias is 62%,
respectively 65% for the data for 60 and 300 intervals, well below the typically 90%
or 95% significance level required to conclude that the link is non-neutral.

We conclude that the Bayesian algorithm is more reliable at detecting congestion
than the MLE, which experiences very large errors under certain situations, leading
to potential false positives in non-neutrality detection. The disadvantage of using
the Bayesian is that it may not be able to return a conclusion with high certainty
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when the number of intervals is small; but this is a deficiency of the measurement
data, not of the algorithm per se.

0.012 T T T T 0.016 T T T T
— Posterior 0.014 — Posterior
.. 0010 — ME . : — MLE
= —— Ground truth = 0.012L — Ground truth
e} Qo
g 0.008 S o010}
< <
o 0.006 - Q 0.008 -
2 2
5 oooal g 0008
§ § 0.004
0.002) 0.002
0.000 L L L . 0.000 L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Good probability of link 1 Good probability of link 1
(7a) 60 intervals. (7b) 300 intervals.
0.035 T T T T 0.07 T T T T
— Posterior — Posterior
0.030H — X —
. MLE . 0.06 MLE
= ——  Ground truth = —— Ground truth
3 0.025 S 0.05
[} ]
Qo Qo
o 0.020 - <] 0.04 -
o o
5 0015} & 003}
5] @
b7} 0.010 - @ 0.02 -
o o
a o
0.005 - 0.01+
0.000 L L L L 0.00 L L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Good probability of link 1 Good probability of link 1
(7c) 600 intervals. (7d) 1200 intervals.
Figure 7. Common link lightly congested, side links good.
0.012 T T T T 0.025 T T T T
— Posterior — Posterior
0.010F — MLE — MLE
E —  Ground truth E 0020+ __ Ground truth
§ 0.008}- §
S S 0.015-
Q 0.006 - Q
g 2 o.010f
& 0.004F o}
3 3
T 9002k o  0005-
0000 L 1 L L 0000 L L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Good probability of link 1 Good probability of link 1
(8a) 60 intervals. (8b) 300 intervals.
0.05 T T T T 0.09 T T T T
: ;T_sEterior 0.08 : ;iséerior
::? 0.04H 5 ound truth 2 0.07 1 —  Ground truth
§ § 0.06|
S 003y S 005}
(=% (=%
& ool & 004
k3] & 003}
3 3
a 0.01r o 0.02 -
0.01+
0.00 L L L L 0.00 L L L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Good probability of link 1

(8¢) 600 intervals.

Good probability of link 1

(8d) 1200 intervals.

Figure 8. Common link good, side links lightly congested.
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Figure 9. Common link heavily congested, side links good.
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Figure 10. Common link good, side links heavily congested.
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4.4. Non-neutrality Inference with Confidence

We now address Straw’s error source #3: how to set an appropriate neutrality
threshold.

Bayesian inference allows us to redefine link neutrality in a more meaningful way:
not based on how much the link’s performance numbers differ, but on our confidence
that they do. In particular, we can redefine L’s bias as:

bias = max Prlzp(m) > xz(n) + €| E)] (31)
where € is a small value to account for rounding errors in the MC simulation, which
we set to max (1%, 1/ns,:) unless otherwise noted. In other words, a link’s bias is
the probability that its performance for any two different traffic classes differs by
more than e. We label L as non-neutral when bias > «, where « is our desired level
of confidence.

Figure 5b shows the (redefined) neutrality bias of the target link in our running
example. For all the values of the congestion threshold ¢., the neutrality bias (our
confidence that that the performance of the link differs for the two traffic classes)
ranges from 0 to 656%, reflecting the fact that there exist many “ground truths” that
fit the end-to-end measurements, hence we cannot reason about the link’s neutrality.

Why replace one pre-defined configuration parameter (,,) with two (¢ and «)?
Because, in our opinion, the latter better captures what network users want to know:
whether a link differentiates against certain traffic and how confident we are that it
does. Straw labels a link as non-neutral when its performance discrepancy exceeds
threshold ¢,,, not because network users would not care about smaller discrepancies,
but because it is, in general, harder to reliably detect smaller discrepancies. Instead,
we separate the issue of how large a performance discrepancy we want to detect
(that’s €) from the issue of how confident we are that the discrepancy exists (that’s
a).

4.5. Threshold-Free Inference

We now address Straw’s error source #4: how to set an appropriate congestion
threshold. We found this to be the most obvious yet most frustrating source of
error: obviously, the congestion threshold ¢, affects our ability to detect whether
different traffic classes experience congestion with different frequencies; but how can
we choose a value of ¢, without assuming knowledge of differentiation mechanisms
and configurations?

Our solution is to remove the need for choosing a congestion threshold: Straw
considers one congestion threshold and infers, for each path pair, one performance
number; instead, we consider the entire range of possible congestion thresholds and
infer, for each path pair, a performance curve, as well as a posterior distribution for
each point in this curve.

The insight is simple but, in our opinion, deeper than it may seem at first:
Choosing the congestion threshold is a hard, open problem in traditional network
tomography, where the ultimate goal is to infer link performance, and an unfortu-
nate threshold simply yields wrong results. Instead, our goal is to infer significant
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Figure 11. Neutrality assessment of three non-neutral shared links from Figure 3.

differences in link performance from the point of view of different traffic aggregates;
if such a difference exists, then some subset of all the possible congestion thresholds
will reveal it, i.e., some portion of the inferred performance curves will be different;
if it does not exist, then all inferred performance curves will be similar.

In more detail, Straw considers one congestion threshold ¢. and infers, for each
path pair P., one performance number x(c) = Pr[X;(c) = 0] = Pr[Ar(c) < t.],
which is, essentially, a point in the cumulative distribution function (CDF) of the
random variable Az(c) (L’s loss rate for class ¢). Instead, we consider a set of
congestion thresholds, t. = 0..1, that covers the entire range of loss-rate values from
0 to 1, and we repeat our measurement and inference steps for each one. As a result,
we infer, for each path pair, a set of performance numbers {z(c,t.) = Pr[Ap(c) <
te] | t = 0..1}. By connecting these points, we obtain a performance curve, which
is essentially an approximation of the CDF of the random variable Ay (c).

With this, we can amend our neutrality detection test to avoid having to choose
the congestion threshold t.. We redefine L’s bias as:

bias = max max Prizp(m,t.) > zp(n,t.) + €| E)] (32)
In words, a link’s bias is defined as the probability that there exists a congestion
threshold such that the link’s performance for any two different traffic classes differs
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by more than e. We label L as non-neutral when bias > «, where « is our desired
level of confidence. This is akin to the two-sample Kolmogorov-Smirnov test, a
standard non-parametric test used to determine whether two samples belong to the
same underlying probability distribution [Andrey, 1933; Nikolai, 1948].

Figure 11 illustrates how this helps: Each column concerns a shared non-neutral
link from Figure 3: the top graph shows the inferred posterior distribution of the
link’s performance with regard to the two traffic classes, while the bottom graph
shows the corresponding neutrality bias. All links have maximum neutrality bias
94% (we are that confident that they differentiate) but for different congestion
thresholds. The most interesting case is the first link (left-most graphs), where
both classes suffer different amounts of loss during different intervals due to conges-
tion; moreover, class 2 always suffers at least some minimal amount of loss due to
policing. As a result, we detect the link’s behavior most confidently when ¢. = 0: in
Figure 11a, the red distribution has a clear peak at 0 for t. = 0, and, in Figure 11b,
the neutrality bias peaks at 94% for ¢, = 0. However, as the congestion threshold
increases beyond 0.2%, the effect we catch is the one due to congestion, not policing:
in Figure 11a, when t. > 0.2%, it becomes hard to distinguish the blue from the red
distributions, and our confidence that the link differentiates goes to only 40%.

4.6. Measurement Filtering

Lastly, we address Straw’s error source #1. Even though we do not choose a single
congestion threshold, we still perform threshold-dependent measurements in Step 1:
like Straw, during each measurement interval, we estimate whether a path’s loss rate
exceeds a threshold ¢, given n,, measurement packets; unlike Straw, we repeat this
for multiple values of t.. We must ensure that each of these estimates is reliable.

There are three slightly different ways in which the measurements may be erro-
neous, which share the same underlying cause.

Firstly, the congestion state of the path might not be measured correctly. Due
to the fact that the number of packets per interval is limited, the estimated loss
rate may be different than the true theoretical value of the loss rate as used in our
model. As the number of packets increases, the two should become closer in value,
but will never be perfectly identical as long as the number of packets is finite. While
the difference may be small relative to the values, the problem is that when the
congestion threshold ¢, is similar in value to the loss rate, the true value may be
slightly below while the estimated one is slightly above the threshold, or vice versa.
Thus, the estimated congestion state of the path will not match the true one. The
consequence is that our equations that link path congestion states to link congestion
states no longer model the network correctly, thus the inference algorithm may return
incorrect results. While we could increase the number of packets per interval, and
thus increase the sampling rate for estimating the loss rate more accurately, this
comes with a trade-off: we either reduce the number of intervals, which may reduce
the non-neutrality detection rate; or we increase the duration of the experiment,
which may not be practical (for example, due to topology changes or changes in
network conditions). Therefore none of these solutions are desirable.

Secondly, the performance correlation assumption (shown in Section 3.6) may

41



be violated. Consider the case when the loss rate of a congested link shared by
multiple paths is close in value to the congestion threshold. Due to the fact that the
traffic of each of the paths that traverse the link consists of disjoint packet sets, each
path might observe a slightly different loss rate on that link. For some paths, the
loss rate might exceed the congestion threshold, while for others it might be below.
Therefore some paths might observe congestion, while others do not. Again, this
affects our system of equations and may cause errors in the inference.

Thirdly, the separabiliy assumption (shown in Section 3.6) may be violated.
When a path traverses multiple bottleneck links, the loss rate of each being below
the congestion threshold, the overall loss rate of the path might exceed the congestion
threshold. Paths that traverse only one of the bottlenecks do not observe congestion,
while paths that traverse multiple bottlenecks do; our systems of equations are yet
again affected. For two bottleneck links, this problem occurs when the loss rate of
the links falls within in the interval [t./2,¢.]. This is a more rare problem than the
others. Due to the very specific conditions that have to be met so that a path has
multiple bottleneck links (the maximum achievable throughput over the links must
be almost identical and vary slightly over time so that queuing occurs on every link),
we do not think it is very likely to occur with two bottlenecks, and with more than
two it is higly unlikely. But if it does occur, we note that when the loss rate is not
similar in value to the congetion threshold, there is no ill effect over the equations
and the inference.

All three problems share the same cause: the loss rate (true or estimated) is too
close to the congestion threshold, leading to incorrect congestion state estimates.
Our solution is to filter the measurements, avoiding the intervals in which we sus-
pect incorrect estimates. For this purpose, we introduce a reliability metric for
the measurements. Without a-priori knowledge of network conditions, we may not
always choose a good n,;; and t. combination, but we can always use our reliabil-
ity metric to filter out unreliable measurements. Our metric is the probability of
a correct estimation given the estimated path loss rate S\W- and the measurement
parameters n, and t.:

a= Pr| (Ap <t.) = (;\p,i < t0)|5‘p,i7npktv te] (33)

We set a reliability threshold a and filter out measurements that do not meet it. We
compute this metric entirely from end-to-end measurements, without knowing any
ground truth about the underlying network.

4.6.1. Computation of the Measurement Reliability Metric

We now show how the reliability metric from Equation (33) can be computed.
We make the following assumptions:

o The loss rate is stable during the measurement interval. This is reasonable in
practice for intervals that are not too large.

o The transmission states (dropped or forwarded) of the probing packets are
independent. In practice, this is not true for packets that arrive at a link in
temporal proximity to each other, i.e. packet losses are correlated. Previ-
ous work has shown that correlation disappears for packets spaced by 10-20
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ms or more [Tsang et al., 2000]. We have confirmed empirically using auto-
correlation analysis of the end-to-end data that with a spacing of at around 50
ms between packets, almost all packet losses are independent. This imposes an
upper bound on the number of packets we can use per interval, if the interval
size T' is given in seconds:

T
< 1 _oor 34
"kt =5 050 (34)

For example, with 100 second intervals, we can consider up to 2,000 packets.

When these two assumptions hold, the number of lost packets during one interval
Niost is a random variable that follows a binomial distribution with parameters® Mpht
and \:

m

PT’[ Nlost =m ] - <npkt> )\m(l - )‘)npkt_mﬂ m= 07 1"npkt <35>

The distribution of the estimated loss rate A = JXZ—”I;* is:
P

(T:::;}\))\npkt)\(l _ )\)npkt(lf)\)’ lf >\ = O’ ﬁl (36)
0, otherwise.

PHA:M:{

Equation (36) is the basis for quantifying the measurement errors. We use the
notation fr(npk, A, A) for the probability mass function of the estimated loss rate:

Fu s A A) = ( - ) XA (L= At (37)

Npkt

In practice, the number of packets n,, and the loss rate estimate )\ are known, but
the true value of the loss rate A is not known. There are two possible situations:

1. When the observed congestion state of the path is good, i.e. A<t

~

A < A =
a=Pr{A<tlhoi)z DrASEAN=A]
PriA=\]
[y PrlA=AAA=X]d\ [ PrlA=AA=X]Pr[A=X]d\

TTPA=AA=AIPI[A=AJdA [T Pr[A=AJA=X]Pr[A = AdA
7f0c fL(npkt7 /\a S\)PT[ A=A ]d}\
i (i A N Pr A = X]dA

(38)
2. When the observed congestion state of the path is congested, i.e. A > t.:

a=Pr[A>tJA=\]= g

! ) (39)
o Fr(nprs A )P A = A ]dA
== _
Jo fr(nppe, A, A)Pr[ A = X ]dA
To simplify the notation, we drop the path and the interval from the loss rate, i.e. we write

instead of A, ;. The theory from this subsection refers to a single path and a single measurement
interval.
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Thus the final formula for computing the measurement reliability metric is:

0 fr (Mg A NPT A = X |dA R

. i<t
fol Jr(npkes A, \)Pr[ A = X JdA "
Jo Sl A NPIIA=NJaN
fol Jr(npkt, )\,;\)PT[AZ )\]d/\7 '

Using this formula in practice poses two problems.

Firstly, in order to compute the accuracy metric, we need to know the prior
distribution of the ground truth A to compute Pr[ A = X ]. This is obviously
unknown. Without any prior information, we could assume that A is uniformly
distributed from 0 to 1, i.e. P(A = X) = 1; but this may not be realistic, since loss
rates of more than a few percent are very unlikely in practice. An alternative is to
estimate the distribution of A from the sampling distribution of the measurements

~

Ap,i from all intervals. We evaluate both methods in Section 4.6.3.

Secondly, integrals of the form fab T (Mpkts A, X)d)\ are difficult to compute analyti-
cally due to the large exponents in f;. We approximate them numerically by dividing
the interval [0, 1] taken by A into a discrete set of numbers S = {0,1/K,2/K,--- 1},
intersecting this set with [a, b] and approximating:

b
/ fL(npkta )\7 S\)d)\ ~ Z fL(npkt7 %7 5‘) (41>

keSN[a,b]

For each number from S, we have to compute a binomial coefficient, which may be
costly for large values of npy, thus we want to reduce K as much as possible while
still providing a reasonably accurate result. We choose K such that the number
of values from S that are below the threshold ¢. or the measured loss rate 5\, is at
least 100; we found empirically that this offers a sufficient performance-accuracy
trade-off for our data. Additionally, we take advantage of the fact that f7 is convex;
we start the integration from the peak, and we iterate over S in both directions,
stopping when the value is 200 times smaller than the peak. Overall, the optimized
implementation generally incurs an error of less than 1% for our data, but is more
than two orders of magnitude faster than integrating numerically at a fixed step. We
found this optimization important: for the topology from Figure 3, having a few tens
of paths and over 100 intervals, without optimizations, the accuracy computation
alone for a single experiment would take several hours; optimized, it runs in under
1 minute.

4.6.2. Example

We provide intuition on how this technique helps with an example: Consider a
link that subjects all traffic from a given class to packet loss 2.5%. Any two paths
carrying traffic from this class experience highly correlated congestion, and capturing
this correlation is key to reasoning about the link’s neutrality. The blue (lowest)
curve in Figure 12 shows the correlation of the performance numbers of two such
paths, as inferred by Straw, as a function of the congestion threshold t.. as t.
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Figure 12. Same-class performance correlation.

approaches the true loss rate of the paths, correlation decreases (which is bad for
neutrality inference), because the estimated loss rates of the two paths increasingly
fall on opposite sides of t.. The other curves show the same information, but after
we have performed measurement filtering, each curve corresponding to a different
reliability threshold a. If we choose a = 90%, our filtered measurements perfectly
capture the performance correlation of the two paths, except in the unlucky case
where the congestion threshold falls exactly on the actual path loss rate of 2.5%.

In short, with measurement filtering we avoid the measurements for which the
congestion states might be estimated incorrectly, which ensures that the systems
of equations that link the path congestion states to the link congestion states are
correct, thus we can apply the inference algorithm.

4.6.3. Evaluation Through Simulation

To evaluate the measurement filtering algorithm, we performed simulations in the
following way: Consider a topology that consists of a single path, which in turn
consists of a single link®. During an experiment, suppose we send on the path a
fixed number of packets n, in each of the n;,; measurement intervals. Suppose
the loss rate of the link is governed by the random variable A: in each interval, we
sample this variable to obtain the ground truth of the loss rate ;. We simulate
packet losses using a Bernoulli process with loss probability \;, whose outcomes we
use to compute the loss rate estimate S\Z The estimated congestion state of the path
is then computed for several values of the congestion threshold. At the same time, we
use the true value of the loss rate to compute the true congestion state of the path as
a reference: we compare the two states to determine the fraction of the intervals for
which they are consistent. Our primary goal is to confirm that measurement filtering
raises this fraction closer to 1. A secondary goal is to determine whether estimating
the prior distribution of the loss rate from the data is sufficiently accurate; as we
have seen from Equation (40), some way of estimating the prior distribution (which
includes even assuming a uniform distribution) is necessary.
We use the following parameters:

e Ny = 1,000: this corresponds to an interval size of just under 1 minute and
a packet sampling rate of 1 every 50 ms;

SWhile not realistic, this is the simplest possible topology that demonstrates the measurement
filtering problem.
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e Ny = 60: i.e. 1-hour experiments;
e A follows one of the distributions:

o Constant(0.5%): lightly congested link;

o Constant(2%): heavily congested link;

o Pareto(mean = 0.5%, scale = 2, shifted-to-zero): lightly congested link,
long-tailed distribution;

o Pareto(mean = 2%, scale = 2, shifted-to-zero): heavily congested link,
long-tailed distribution.

o The measurement filtering algorithm is one of the following:

o Not performed;

o Performed assuming a uniform prior distribution of A;

o Performed estimating the prior distribution of A from the samples \;, 7 =
L.

o Performed using the true prior distribution of A (impossible in practice,
but included for comparison).

e The minimum accepted value of the reliability metric, used to filter the mea-
surements, is set to 0.9.

For each scenario (i.e. choice of A), we plot the fraction of intervals for which
the measured and the true congestion states are consistent as curves: each curve
corresponds to a filtering method, with the congestion threshold ¢, varying on the
X-axis. We also plot the estimated loss rate distribution (obtained from the n,
measured loss rate samples), the true distribution of the measured loss rate (which
we obtain by simulating 1,000,000 intervals) and the likelihood function of the
measured loss rate (i.e. f; from Equation (37)).

Figures 13 and 14 show the results for the scenarios using constant loss rate. We
can see that without filtering, the fraction of consistent intervals drops to half when
the loss rate threshold coincides with the peak of the measured loss rate distribution.
Filtering with an uniform prior produces results that are almost good enough to
satisfy our minimum reliability threshold; while filtering with the estimated prior
produces excellent results, which are almost identical to filtering with the true prior.

Figures 15 and 16 show the results for the scenarios using long-tailed loss rate.
In this case, the fraction of consistent intervals is quite high even without filtering;
filtering improves it slightly, and the choice of loss rate prior does not seem to
matter. The reason why the latter happens is the following: when computing the
reliability metric, the integrand from Equation (40) is weighted by the likelihood
function fr; when the measured loss rate p.d.f. and f; have different shapes’, the
most common values of the measured loss rate are assigned only a small weight; the
values that matter most in the integration are the ones from the tail of the measured
loss rate, where it has an almost uniform distribution—thus an uniform prior works

7 fr, has the shape of the binomial distribution. When A has a small variance, the true loss rate
in every interval is about the same, so the measured loss rate will also follow a distribution similar
to the binomial. But when A has high variance, or in this case, a tail, the measured loss rate p.d.f.
will have a higher “spread” than f, and possibly a different peak.
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about as well as the estimated one. But when the two curves match, as we have
seen in Figures 13 and 14, the prior becomes important. In practice, we cannot
know whether the curves are similar or not, therefore it is safer to always use the
estimated prior.

From these simulations, we conclude that the measurement filtering, using a
loss rate prior estimated from the measured data, works as expected and produces
acceptable results.
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4.7. Evaluation

4.7.1. Emulations

We now present the final results from the emulation experiment performed on the
RedlIris topology, for which we discussed a few examples in Section 4.2.

Table 4 shows the results obtained when running the unmodified Straw algo-
rithm. While its detection rate is good, the false positive rate is very high: even for
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a large value of the neutrality threshold, one third of the non-neutral links it detects
are actually neutral.

Table 5 shows the results obtained when running a modified version of the Straw
algorithm, which filters out measurements that do not satisfy the reliability metric.
While this helps slightly for neutrality threshold 0.2, the rest of the results are not
much different from Straw’s.

Finally, Table 6 shows the results obtained for the Bayesian algorithm (measure-
ment filtering included). For a significance level of 0.9, the true positive rate is 77%,
i.e. as good as Straw’s, while the false positive rate is only 16%, slightly above our
acceptable margin of error of 10%—a result that fulfills expectations.

When increasing the significance level to 0.95, non-neutrality is no longer de-
tectable due to the too-small number of intervals. While this seems a poor result, it
is actually normal: from the given data, it is impossible to detect non-neutrality for
very high values of the significance level. In fact, an algorithm that always detects
non-neutrality for arbitrary values of the significance level is probably incorrect and
unreliable.

The burden of choosing the desired significance level rests on the users: only
they can decide the appropriate trade-off between acceptable false positive rate and
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detection rate. In this experiment, a threshold of 90% offers good detection rate, but
the users should be aware that around a tenth of the links may be misdetected as
non-neutral. The advantage over Straw is twofold: (i) the neutrality threshold has
a clear meaning, with simple and well-understood effects on the detection metrics;
and (ii) false positive rates are much lower.

Neutrality threshold (t,)

True positives

False positives

0.2 96 % 77 %
0.3 85 % 54 %
0.4 78 % 42 %

Table 4. Inference results for algorithm Straw.

Neutrality threshold (¢,)

True positives

False positives

0.2 85 % 54 %
0.3 77 % 53 %
0.4 % 46 %

Table 5. Inference results for algorithm Straw + measurement filtering.

Neutrality threshold (¢,,)

True positives

False positives

0.9

77 %

16 %

0.95 2% 4%

Table 6. Inference results for the Bayesian algorithm.

4.7.2. Detecting Amazon SMTP Throttling

To test whether our method functions correctly on a real Internet setup where the
ground truth is known, we leverage the fact that cloud providers like Amazon throttle
outgoing SMTP connections, in an attempt to reduce the amount of spam e-mail
sent from compromised clients. This is an excellent opportunity for evaluating our
method in the wild, because the fact that certain traffic is throttled is documented,
although the throttling happens outside our control.

Clarification: Unlike other kinds of throttling, SMTP connection throttling is
neither controverisal nor denied. The point of this section is not to reveal that cloud
providers engage in this behavior (which is already known), but to assess we can
detect and localize realistic throttling correctly.

Ground truth: Amazon throttles outgoing SMTP connections [Ama-
zon.com, 2016]. To the best of our knowledge, neither the rate of the throttling
nor its physical location within the Amazon network are publicly disclosed.
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Topology: Figure 17 shows a small piece of the network topology covered by
our experiments: one node hosting two sources, located in the Amazon cloud, and
two PlanetLab [Chun et al., 2003] nodes, each one hosting two destinations; all
traffic from the Amazon node to the same PlanetLab (PL) node follows the same
path and traverses 3—4 Autonomous Systems (ASes). Our topology consists of many
interconnected such pieces: the same Amazon node sends traffic to multile PL node
pairs, and the same PL node receives traffic from multiple Amazon nodes. In total,
we use 10 Amazon nodes, located in datacenters in Frankfurt, London, or Dublin,
and 74 PL nodes, chosen because they are supposed not to be installed behind
firewalls or intrusion detection systems [The PlanetLab Consortium, n.d.], which
could potentially block or throttle our traffic.

Traffic classes: We define two classes of measurement traffic: class 1 consists of
traffic that we have no reason to believe is throttled (details soon to follow); class 2
consists of SMTP connection setup traffic (TCP SYN packets with destination port
25), which we know is throttled. Initially, we defined class 1 as HTTP connection
setup traffic (TCP SYN packets with destination port 80). However, we noticed
that HT'TP and SMTP traffic sent by the same source took different paths through
the cloud network—mnot surprising, given that Amazon is known to perform load-
balancing by 5-tuple (which includes the transport protocol). This prevented us
from creating a topology like the one in Figure 2, i.e., with a shared link where we
could localize the neutrality violation. Thus, we redefined class 1 as TCP non-SYN
packets with destination port 25, which led to our class-1 and class-2 traffic having
the same 5-tuple, hence follow the same path through the cloud network.

Experiments: Fach experiment lasts 2 hours, divided into 15-second intervals
and involves 10 sources. Each source sends traffic from one class to 2 destinations,
at a rate of 4 requests per minute per destination; all this serves as measurement
traffic. Moreover, each source sends background traffic to the same destinations,
which is like class-1 and class-2 traffic but does not contribute to the measurements.
Throughout the experiment, each source also performs periodic traceroutes to the
same destinations, to ensure that the path to each destination is stable.

Inference example: Figure 18a shows an example of inferred distributions for two
traffic classes of which one is known to be throttled; the computed non-neutrality
bias is 95.7%, thus the link sequence is correctly detected as non-neutral. Figure 18b
shows another example in which both traffic classes are expected not to be throttled.
In this case the non-neutrality bias is only 61.8%, and the link sequence is correctly
detected as neutral with respect to these two traffic classes. In both cases, the
number of valid intervals (during which routes were stable) was n;,;, = 42, i.e. a
duration of 21 minutes.

Throttling link sequences: After discarding unstable paths, we are left with
282 instances of the scenario in Figure 17, where a link sequence located inside the
Amazon cloud is traversed by 2 path pairs, each one carrying traffic from a differ-
ent class. In 129 out of these 282 instances, we correctly conclude that the target
link sequence differentiates against class 2 with confidence 95%; in the remaining
instances, our measurements are not accurate enough to draw this conclusion with
the same confidence. The fact that not all instances lead to a non-neutrality con-
clusion is not surprising: to avoid blacklisting, our sources send traffic at a rate of
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Figure 17. A small piece of our topology.

4 requests per minute per destination; this low rate combined with small numbers
of time intervals for which routes are stable often causes measurement data that is
not sufficient to support conclusive inference.

In Figure 19 we summarize the results from 10 different experiments. If a link

sequence detected as non-neutral contains links from the same AS number as our
provider known to throttle, it is counted as a true positive; otherwise it is a false
positive. We observed that for link sequences covered by stable paths in up to 200
intervals (100 minutes), we detect non-neutrality in about a third of them; overall
the detection has a 129/282 = 45.7% true positive rate.
Non-throttling link sequences: After discarding unstable paths, we are left with
538 instances where a link sequence located outside the Amazon cloud is traversed
by 2 path pairs, each one carrying traffic from a different class. We have no ground
truth about these link sequences but expected most of them to not differentiate, as
networks hosting PL nodes are not supposed to perform any throttling. Indeed, in
only 3 out of the 538 instances we conclude (with confidence 95%) that the target
link sequence differentiates against class 2.

Our algorithm has also detected 7 other anomalies, that we initially thought
were false positives. We hand-checked each of these, and concluded that they were
caused by a small subset of PlanetLab nodes located in networks that block TCP
SYN packets sent to port 25. In fact, these were true positives.
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Figure 18. Inferred posterior distribution of the performance number for two link
sequences.
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Figure 19. The true positive and false positive rate as a function of the number of
intervals used.

Granularity of localization: All the Amazon link sequences that we confi-
dently characterized as throttling consisted of a few links connecting the source to
the cloud network, i.e., we found that Amazon throttles SMTP connections very
close to their source. The 3 non-Amazon link sequences that we confidently char-
acterized as throttling spanned from 1 to 3 ASes. We should clarify that existing
neutrality methods that rely solely on throughput differences could have detected
that a given end-to-end path throttles SMTP connections, but not localized the
throttling to specific link sequences.
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5. Studies

5.1. Speed Test Prioritization

We used our method to investigate whether ISPs perform speed-test® prioritization,
which has been confirmed to happen on at least one occasion [Byrne, 2016].

5.1.1. Background

On one confirmed occasion, an ISP exploited the fact that a popular speed-test
protocol uses TCP port 80807 to exchange test traffic, whereas standard web traffic
typically uses port 80. The ISP configured its network to prioritize all traffic with
source port 8080, i.e., all traffic going from a speed-test server to an ISP client testing
its download throughput. We have also found a guide for system administrators to
perform exactly this kind of prioritization [Jahanzaib, 2015], which suggests that
such behavior may be common.

Unfortunately, it is not known exactly why the ISP had decided to implement
this kind of traffic management, but we can discuss the situation hypothetically. At
a first look, prioritizing speed-test traffic between clients and a test server located in
their proximity seems strange: the very reason many ISPs choose to host speed-test
servers is that this causes the measurement results of their clients to reach excellent
values, i.e. high throughput and low latency. This is because most speed-testing
applications select the closest server to the client; thus if the server is located in
the same ISP, the round-trip time is usually low, allowing TCP to ramp up the
transmission rate quickly; also, the short paths benefit from high capacity. In fact,
this is why speed-test results are often better than the actual experience of the user,
since regular traffic exchanged with the Internet usually crosses multiple ISPs over
longer paths, thus incurs higher latency and lower throughput!?. Yet this ISP has
decided to prioritize speed-test traffic, enhancing the results. This suggests that
without prioritization, the results might have been unsatisfactory; most likely, the
ISP was suffering from capacity issues, thus users could not achieve the expected
throughput. Prioritizing speed-test traffic may thus reduce the amount of complaints
received from the clients, and also avoid bad publicity, since test results are often
shared between users; both are incentives for ISPs to implement it.

5.1.2. Stage 1: Suspect Selection

We identified approximately 6000 speed-test nodes, deployed in various ISPs around
the world, with the following property: each one hosts both a speed-test web server

8While the correct term is “throughput test”, most of the tools use the name “speed-test”.

9This is due to a technicality: when the same machine runs both a standard web server and a
speed-test web server, it is practical to isolate the two services through different port numbers.

10While searching for documented cases of speed-test prioritization, we found many reports from
users who did not understand this inherent bias, thus were falsely accusing their ISP of cheating
the tests. Confirming a case of prioritization currently requires either the manual intervention of
an expert who can interpret the data correctly, or using specialized tools to collect and analyze the
measurements automatically. We think that untrained users are unlikely to reach a correct verdict
when looking only at speed-test data and trying to interpet it themselves.

93



listening on port 8080, and a speed-test web server running an older protocol on
port 80. The nodes are evenly distributed geographically across all continents, with
the exception of Africa and Oceania, as shown in Table 7.

Continent Node count | Fraction (%)
Europe 2070 33.5
North America 1271 20.5
South America 1263 20.4
Asia 1191 19.3
Africa 255 4.1
Oceania 135 2.2

Table 7. Geographical distribution of the speed-test nodes we used.

Since our measurement pipeline requires experiments that last for about 30 min-
utes or more in order to detect non-neutrality, testing this many speed-test nodes
is not practical: the entire probing would take several months; it would consume a
large amount of bandwidth; and it may put pressure on the speed-test infrastructure,
possibly affecting other user’s results.

Therefore we have decided to probe the nodes in two stages: In the first stage,
we only conducted short throughput measurement experiments, to identify quickly
“suspect cases,” where traffic with source port 8080 achieves significantly higher
throughput than traffic with source port 80. Then in the second stage, we ran the
longer experiments of our pipeline. We now focus on the first stage.

We used a single probing node to measure throughput to and from each of the
6000 speed-test nodes. The probing node was located on our university campus
and was connected to the Internet via a 1 Gbps link, fast enough to ensure that
our campus network was not the bottleneck—mecessary since our goal is to detect
throttling in other ISPs. The speed-test nodes were probed sequentially; in addition,
each of the two protocols supported by the node were probed in sequence, with
throughput measured during a 60-second transfer. For each node and protocol,
the measurement was repeated 10 times, with the different protocol measurements
alternated; this was done in order to improve measurement accuracy in case of
network conditions variable on short-term, such as a third party starting a test with
the same speed-test node we were probing. This design is similar to the method used
by the Glasnost project to measure throughput reliably when two hosts communicate
over different protocols [Marcel Dischinger et al., 2010].

As an optimization that shortened the overall probing time, and also avoided
stressing the speed-test nodes, we stopped probing a node if port 80 traffic achieved
over 100 Mbps during the first 10 seconds of the transfer at the earliest. We chose
this specific threshold because it is higher than the download throughput achieved
by 95% of residential Internet users, statistic we extracted from the dataset pub-
lished by M-Lab’s NDT project [Measurement Lab, 2017] using a method presented
in Appendix 8.1. About 80% of the nodes achieved a high throughput and were
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eliminated. For the 1328 remaining slower nodes, we present the histogram of the
throughput per transfer grouped by port in Figure 20. Both distributions appear
bimodal, with a common tallest peak in the range 0-5 Mbps; the second tallest peaks
are different, showing a bias towards higher throughput for port 8080 traffic. It is
useful to also compare the throughput values achieved on the two port numbers for
each node, which is shown in Figure 21: each point in the scatter plot represents
a node, with the X and Y coordinates showing the port 80 and 8080 throughput,
respectively. We draw bands that show the magnitude of the relative difference, for
example for points that fall inside the green band, of relative difference up to 10%,
we have

max(tputy, tputgys) _ 110 (42)

min(tputy, tputyysy) 100
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Figure 20. Histogram of the average throughput per transfer, grouped by port

number.
From the scatter plot, we can conclude the following:

o Most of the points are located above the main diagonal, meaning that through-
put on port 8080 is generally higher than on port 80, which confirms the bias
we have seen in the histograms;

e There are many nodes for which the throughput ratio is above 1.5;

o There are a few nodes with very high throughput ratios, of 8:1 and more;

o For nodes with small throughput on both ports, say under 15 Mbps, the
relative difference is less meaningful, as most are scattered outside the bands
both above and below, because the bands are too narrow. It is not clear if
there is indeed a bias for these or it is just noise.

The fact that a fraction of nodes do not show a bias; some show a bias, but not very
strong; and there are some nodes that show a very strong bias, suggests that there
may be multiple mechanisms at play that lead to different amounts of bias. But not
all are of interest to us. To understand why, consider four examples of nodes that on
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Figure 21. Scatter plot of the median throughput per server and port number.

a first look show a bias: Figures 22, 23, 24 and 25 present the measured throughput
over time and the corresponding empirical CDFs (for throughput sampled once
per second during the transfer). While the CDFs suggest different distributions,
interpreting the timeline plots reveals a different story: Figure 22a shows that during
3 out of 10 transfers, port 80 (class 2) traffic has achieved the same throughput
as port 8080 (class 1), thus the difference may be caused by changing network
conditions. Figure 23a shows a similar situation, where the change in network
conditions is higher in magnitude and more consistent over time. Figure 24a shows
that both types of traffic achieve the same maximum throughput, but throughput
for port 80 traffic has a much higher variance, which causes the difference in shape of
the CDFs. Figure 25a shows another case of inconsistent differences, which may be
caused by a combination of network conditions and higher variance of the throughput
for both types of traffic.

The two mechanisms we have seen that lead to a bias, but are not caused by
non-neutrality in the network are: (i) changing network conditions between mea-
surements, and (ii) different variance in throughput measurements. The former is
clearly not under our control, thus the best we can do is identify it and filter it out.
The latter is more difficult to reason about. The difference in variance appears to
be caused by different traffic patterns for the two protocols, which in turn originate
in the way the two protocols have been designed: the protocol sending traffic on
port 8080 sends pseudo-random data from a small circular memory buffer; the other
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Figure 22. A node for which the differences in throughput are inconsistent. We
can see in the timeline that class 2 traffic sometimes achieves the same throughput

as class 1.
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(23b) Empirical cumulative distribution function.

Figure 23. A node for which the apparent differences in throughput in the CDFs
are likely caused by changing network conditions.

protocol transfers a static file repeatedly over HT'TP. The messaging pattern is the
same: the measurements use a single TCP connection with requests sent repeatedly
back-to-back. The only difference that remains is that one application has to per-
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Figure 24. A node for which the apparent differences in throughput in the CDFs
are caused by high variance experienced by one of the protocols.
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Figure 25. Another node for which the differences in throughput are inconsistent.

form a couple of disk seeks and some extra processing every few seconds to serve
the file, while the other one incurs no such overheads as it works only in memory.
This may be sufficient to lead to different traffic patterns and the higher variance
and slightly lower average throughput measured on port 80 that we have seen in
many experiments, even in a neutral network. Unfortunately this difference between
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applications takes place server-side, on nodes that we do not control, so the best we
can do is filter out these effects.
The algorithm we used to identify suspect nodes is the following:

1. For each node, we pair together the transfers that occured in sequence on
different protocols into 10 pairs. Each pair contains 60 throughput samples
for each of the two protocols. We compare the samples pairwise using the
Kolmogorov-Smirnov statistical test to determine if they belong to the same
distribution. The result is a set of 10 boolean values, one for each pair.

2. If all 10 results are identical, we add the node to the list of suspects. This step
rules out primarily measurements affected by changing network conditions.

3. If the difference in average throughput is higher than 3:1, we label the node
as suspect with very high bias. This is a very likely candidate for testing with
our Bayesian method.

4. If the difference in average throughput is higher than 3:2, we label the node
as suspect with high bias. After a few iterations with different parameters, we
have found empirically that this ratio is high enough to exclude most biases
caused by differences in throughput variance.

5. Otherwise, we simply label the node as suspect with possible bias and we
inspect the result manually.

Out of 1400 nodes, only 4 were labeled with very high bias. The most dramatic result
is the one shown in Figure 26: port 80 traffic achieves a mere 12 Mbps, whereas
port 8080 reaches 500 Mbps, i.e. the average throughput ratio is about 40:1. The
second highest bias is shown Figure 27, with 70 vs. 8 Mbps.
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Figure 26. A node showing very high differences in throughput between the two
protocols.
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Figure 27. Another node showing very high differences in throughput between the
two protocols.

We labeled another 15 nodes with high bias, such as the one shown in Figure 28,
and 12 nodes with possible bias. From the latter, after manual inspection we have
chosen only 2 nodes, for a total number of suspects of 21. In other words, less
than 0.4% out of all 6000 existing nodes appeared to show a bias, according to
our criteria. The suspect nodes do not appear clustered in any specific country or
network: almost all belong to different ISPs and are located in regions with a variety
of network conditions, such as U.S.A., Brazil, Austria, Russia etc.

5.1.3. Stage 2: Long Experiments

In the second stage, we ran the longer experiments of our pipeline, targeting 42
speed-test nodes: the 21 suspect cases identified in the first stage (which we call
“suspect”), plus another 21, chosen at random as control (which we call “control”).
For each of them, we created 6 topologies like the one in Figure 29: the speed-test
node (always hosting two web servers, listening at ports 8080 and 80) exchanges
traffic with two probing nodes, each one hosting two clients. The speed-test clients
run on 9 probing nodes under our control, rented from several cloud providers and
each one located in a different datacenter from Europe or North America.
We defined two classes of measurement traffic: class 1 consists of traffic with source
port 8080, which is suspected to be prioritized, while class 2 consists of traffic with
source port 80. In all figures, plot elements corresponding to class 1 traffic are shown
in dark blue or light blue, while those of class 2 traffic are shown in red or orange.
We conducted experiments lasting 1 hour, divided into 60 1-minute intervals,
targeting either one suspect or one control speed-test node. In each experiment,
each client initiates subsequent 25-second speed-tests with the server. The measure-
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Figure 28. A node showing high differences in throughput between the two proto-
cols.
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Figure 29. One of our topologies.

ment traffic consists of the traffic sent from the servers to the clients. Unlike the
suspect selection experiments, traffic is now exchanged simultaneously on the two
port numbers, instead of alternately.

5.1.4. Results

In all 21 experiments concerning control nodes, as well as in 18 out of 21 experi-
ments concerning suspect nodes, we found no evidence of differentiation: the inferred
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posterior distributions for the two traffic classes overlapped significantly, and the
corresponding neutrality biases were small. In the 3 remaining experiments, there
was inconsistent evidence of differentiation, i.e. the Bayesian method reported non-
neutrality for some combinations of paths, but not all. Further manual analysis
showed that although loss rate and throughput appeared to have different distribu-
tions for the two traffic classes, the most likely explanation was not differentiation in
the network, but at the source: the nodes were probably performing self-throttling
at the application layer. So, the method drew the right conclusion—technically,
the target link sequence was non-neutral-—but it was not an interesting conclusion,
because it did not indicate controversial ISP behavior.

We now choose two experiments, one belonging to each category, to discuss in
more detail.

5.1.4.1. Experiment Showing Verdict: Neutral

We provide a detailed analysis of a node labeled as having high bias in the suspect
selection stage, yet shows no evidence of non-neutrality when investigated with our
pipeline in stage 2. The result of the first stage is shown in Figure 30: there is a
visible difference in throughput, with class 1 traffic achieving about twice more than
class 2 on average.
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Figure 30. Result of the suspect selection stage.

The result of the inference performed in the second stage is shown in Figure 31.
For the entire range of values of the congestion threshold, the posterior distributions
overlap almost completely, thus the inferred neutrality bias is always under 70%,
much lower than the significance level of 95% we require to reach a non-neutrality
verdict.

Unfortunately, the ground truth of the shared link sequence is not known, thus
we cannot verify precisely whether this result is correct or not. However, we can
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Figure 31. Result of the Bayesian inference performed in the second stage.

inspect the end-to-end data further, taking advantage of the fact that the two traffic
types exchanged by each speed-test and probing node pair share the same path;
thus we can compare the end-to-end loss rate and throughput. The data is shown
in Figures 32 and 33. As we can see, the curves correspnding to class 2 data are
very similar to the ones for class 1, for both loss rate and throughput, which means
that there is no evidence of non-neutrality, confirming our result.

A question that arises is why the node was flagged during the suspect selection
stage, when there is a visible difference in throughput between the two traffic classes.
A clue to the answer is given by Figure 33a, which shows that the variance of the
throughput in the long experiment is large: for example for the dark blue curve, the
10-th percentile is 10 Mbps, while the 90-th percentile is 35 Mbps, a 3.5x difference.
This is most likely caused by changing network conditions: there is probably a
common bottleneck on both paths (since the empirical distributions of the loss
rate are very similar) which in addition to our measurement traffic, carries other
background traffic we cannot observe. We can verify this by plotting the throughput
over time for the four types of traffic in a stacked plot, shown in Figure 33b: the
aggregate throughput varies over time, instead of reaching a constant limit (as it
would if our traffic alone was saturating a bottleneck link). Due to the varying
background traffic, the share of the bottleneck capacity taken by measurement traffic
varies randomly over time. The data shows that when using a single TCP connection
at a time (as in the suspect selection stage), class 1 traffic is able to get a higher
share of the capacity than class 2; but when we use multiple parallel connections
(as in the second stage), this effect is diminished and both types of traffic achieve
similar throughput.

Without more information about what background traffic was exchanged on the

63



Cumulative frequency

Cumulative frequency

1.0

0.81

0.6 1 —— Probing server 1

041 —_— Prob!ng server 2
—— Probing server 1

0.27 ——— Probing server 2

0.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Loss rate (%)

(32a) Empirical CDF of the loss rate.

1.0

0.8 1

0.6 1 —— Probing server 1

0.4 _— Probfng server 2
—— Probing server 1

0.21 —— Probing server 2

0.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Raw loss rate (%)

(32b) Empirical CDF of the raw loss rate (without packet sampling).

=
0
c
=
©)

Cumulative frequency

Throughput (Mbps)

32. End-to-end loss rate measurements in the second stage.
1.0
0.81
0.6 1 Probing server 1
041 —_— Probing server 2
—— Probing server 1
0.2 —— Probing server 2
0.0 7 T T T T T T T
0 5 10 15 20 25 30 35 40
Throughput (Mbps)
(33a) Empirical CDF of the throughput.
100 Probing server 1
75 Probing server 2
Probing server 1
50 Probing server 2
25
0
0 500 1000 1500 2000 2500 3000 3500
Time (s)

(33b) Timeline of the throughput, stacked plot.

Figure 33. End-to-end throughput measurements in the second stage.

bottleneck link,

and how the speed-test server is configured, we cannot give a good
explanation for why this happens. A plausible explanation is that port-80 traffic
achieves lower throughput because it is paced at the source per flow, not because it
encounters more network congestion. As the number of connections increases, the
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aggregate throughput increases, causing congestion on the bottleneck, which lowers
the throughput per flow below the limitation, its effect disappearing. A speed-test
node may pace its outgoing port-80 traffic if all services running on the node are
rate-limited except for the speed-test server listening at port 8080, such that other
traffic does not interfere with speed-testing. We do not have sufficient evidence to
conclude that this is indeed the case, but it is a possible explanation.

5.1.4.2. Experiment Showing Verdict: Non-Neutral

Among the 3 experiments for which we found evidence of differentiation, one is the
experiment with the highest throughput bias we have seen earlier in the suspect
selection stage in Figure 26. Figure 34 shows the results of Bayesian inference,
Figure 35 shows the end-to-end loss rate measurements and Figure 36 shows the
end-to-end throughput measurements. We can see that for congestion threshold
0.05% and 0.10%, the inference finds a significant bias of 95.4%, just above the
95% threhsold, thus the verdict is that the common link sequence is non-neutral.
However, the threshold was exceeded only for some of the path pair combinations,
others (not shown here) reaching a neutral verdict; thus we decided that the exper-
iment required further investigation. We can see from the end-to-end loss rate data
shown in Figure 35a that there indeed appears to be a small difference between the
empirical CDFs for the two traffic classes of each node (i.e. light blue vs. orange,
and dark blue vs. red). The difference is also present in Figure 35b, showing the
raw loss rate (i.e. the actual loss rate experienced by the TCP flow, before sampling
packets). Figures 36a and 36b too show a very clear difference in throughput.
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Figure 34. Result of the Bayesian inference for a topology detected as non-neutral.
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Figure 35. End-to-end loss rate measurements.
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Figure 36. End-to-end throughput measurements.

At a first look, all data supports the conclusion that there is indeed non-
neutrality. However, we found three details suspicious: (i) the throughput timeline
plot of class 2 traffic is very smooth; this would exclude traffic policing as throttling
method (since in our experience, it usually causes a higher variance in throughput),
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which leaves only shaping and application-layer pacing as possible differentiation
mechanisms; (ii) the inferred bias is high only for a small range of congestion thresh-
olds; whereas in our lab experiments that introduce differentiation, there is usually
a wider range of thresholds for which the bias is high (as it can be seen in Figure 11,
for example) since the loss rate of congested flows tends to have high variance, and
thus a “wider” CDF; (iii) differentiation was visible only for about half of the path
pair combinations. In the light of these observations, we decided that the result is
inconclusive, requiring further investigation to confirm the result and potentially to
discover the throttling mechanism.

We performed 10-minutes, single-flow transfers on each port number from a single
probing node and we captured the traffic. We inspected the packet capture and we
found that when we exchanged traffic over port 80 with a single flow, there was no
packet loss for long periods of time, while TCP throughput was almost perfectly
constant (i.e. there was no sawtooth behavior). By contrast, port 8080 traffic was
normal-looking TCP traffic, with variations in throughput over time and periodic
retransmissions. This shows that throughput is likely limited at the application
layer (source paced) by the web server running on port 80; while port 8080 traffic is
limited by the network. This explains what we have seen in the experiment involving
multiple paths: the non-throttled flows were filling all the available capacity of the
bottleneck link, introducing a small amount of packet loss that was experienced
by both types of flows. Due to the fact that packets were paced differently (port
8080 flows sending packets more than an order of magnitude more often than the
others), there were small differences in measured packet loss between the two types
of traffic; packet sampling reduced this effect, but did not eliminate it completely,
which lead occasionally to a non-neutral verdict in the Bayesian inference. This
suggests that the bottleneck link shared by the flows is in fact, neutral; but the link
sequence we targeted—which includes the source node—is non-neutral, since the
source is self-throttling port-80 traffic''. Similar results were observed for the other
2 speed-test nodes for which our tool returned a non-neutral verdict for some path
pair combinations.

Although this result is not sensational, we still think it is interesting: if we
consider only the throughput achieved by the two traffic classes, it is tempting to
hypothesize that the network prioritizes port-8080 traffic. Our tool avoids this false-
positive most of the time, because it infers the congestion behavior of the shared
link sequence where prioritization would occur.

5.1.5. What-if Analysis

We still wanted to test whether our tool would catch actual speed-test prioritization,
if it happened, so we implemented it ourselves: We modified all our topologies,
such that both probing nodes were located in our campus. In each topology, we
connected the probing nodes to a switch with QoS capabilities, itself connected to
a router performing traffic classification, as shown in Figure 37. We configured the

1A speed-test node may be configured to self-throttle port-80 traffic when all services running
on the node are rate-limited except for the speed-test server listening at port 8080, such that other
traffic does not interfere with speed-testing.
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router to set the DSCP field in the IP header of each forwarded packet to a value
encoding whether the packet belongs to class 1 or class 2; we configured the switch
to accept this label and police class 2 traffic at a maximum rate of 20Mbps, while
allowing class 1 traffic to consume as much as the entire available capacity of the
link (1Gbps). The exact configuration is shown in Appendix 8.2. Then we repeated
the same 42 experiments as above.
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Figure 37. The topology where we introduce differentiation ourselves. The non-
neutral link is drawn in red.

Our tool correctly concluded that there was differentiation in about one third of the
experiments. In the remaining experiments, there was actually no differentiation,
despite the presence of the policer: either the policed link was not bottlenecked,
so policing did not kick in at all; or policing did kick in, but both traffic classes
experienced significant congestion on other links, which reduced the impact of the
policer.

As example, we present an experiment where the non-neutrality we introduced
was detected. The result of the inference is shown in Figure 38: the posterior distri-
butions are well separated for a range of values of the congestion threshold between
0.6% and 1.1%; the gap reaches a maximum of 97.1%, leading to a non-neutral
verdict, as expected. Figures 39 and 40 show the end-to-end measurements: there
is a clear difference in the distribution of both loss rate and throughput measure-
ments between the two traffic classes. This confirms that our method can detect
non-neutrality in experiments like the ones performed in this study.
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Figure 38. Result of the Bayesian inference for a non-neutral topology.
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(39b) Empirical CDF of the raw loss rate (without packet sampling).

Figure 39. End-to-end loss rate measurements.
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Figure 40. End-to-end throughput measurements.
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5.2. BitTorrent Throttling

We have also used our tool to investigate whether ISPs perform BitTorrent [Co-
hen, 2001] prioritization, which has been ivestigated extensively during the last 10
years, for example by the Glasnost project [Marcel Dischinger et al., 2010].

5.2.1. Background

After its appearance in 2001, BitTorrent rose quickly in popularity, becoming in the
following years the dominating peer-to-peer file-sharing protocol, estimated to be re-
sponsible for between 10 to 30% of the global Internet traffic'? [TorrentFreak, 2010;
Sandvine, 2016]. Unlike client-server file transfer protocols, such as HTTP or FTP,
BitTorrent nodes exchange data with many other nodes simultaneously. Some pop-
ular implementations, at their default settings, open up to 50 parallel connections
per transfer and up to 250 connections overall'*. While this helps maximize the
overall throughput achieved by the node, it may impair performance for other TCP
flows that share the same bottleneck: other applications and/or endpoints might
transfer data over a single TCP flow, and TCP achieves only per-flow fairness, not
per-application or per-endpoint fairness. Thus if the bottleneck is shared by multiple
users, as it might happen in a metropolitan area network that is not sufficiently well
provisioned to handle utilization from many users at the same time, performance
may suffer for all active users.

The immediate reaction from many ISPs, to this surge in peer-to-peer traffic,
was to throttle it. The Glasnost project provided an invaluable tool to discover
such practices, identifying dozens of ISPs that showed strong evidence of differ-
entiation [Marcel Dischinger and Gummadi, 2011]. Shortly after, users from the
BitTorrent community started a joint project to document whether their own ISPs
appeared to throttle BitTorrent traffic, which lead to the creation of a list of “Bad
ISPs” in a wiki page hosted by the then-popular Azureus client ["Bad ISPs,” n.d.].
In 2009, the FEuropean Union initiated a three-year investigation that concluded
that approximately 22% of ISPs in Europe throttled peer-to-peer traffic on some
occasions between 2009-2012 [BEREC, 2012].

From 2015 onwards, legislation passed in many countries and regions, such as the
European Union [?All You Need to Know about Net Neutrality Rules in the EU,”
n.d.], in combination with the bad publicity caused by application-specific traffic
management practices, have led to many ISPs from Europe and North America
to reduce or eliminate such measures. In place, many providers that experience
congestion often in metropolitan networks use “capping”, i.e. limiting traffic from
heavy users, regardless of the application and/or protocols used; either by setting
a maximum short-term throughput limit, or by limitting the amount of traffic that
can be exchanged for a longer period of time, such as per day or per month. This
method remains legal, and is generally viewed as more fair by users, since it does
not dictate what kind of traffic users can send or receive, while still allowing a fair

12This trend has diminished in recent years, with video streaming and cloud-based file storage
now dominating Internet traffic.

13Not necessarily all connections are transferring data, due to the “choking” mechanism in the
protocol, but many might be.
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distribution of available network capacity between active users.

We wanted to find out whether our tool can be used to detect and localize
BitTorrent throttling. Although performing such a study in 2017 is not very likely
to find many occurences, we hoped that we might still identify throttling in ISPs
from countries that have not yet passed net neutrality legislation, or in ISPs that
have not yet updated their configurations.

5.2.2. Experiments

To generate BitTorrent traffic, we used our own BitTorrent client based on the
libtorrent library [Norberg, n.d.]. What makes it different from regular BitTorrent
clients is that:

e Once a torrent reaches 90% completion, it clears all downloaded data and
restarts it from scratch. This allows us to run long-lasting experiments in
which our nodes are active downloaders, not just uploaders (in BitTorrent
jargon, “seeds”);

« It bans fast peers, that is peers with which we achieve a throughput exceeding
100 Mbps. Similar to the node filtering we performed in the speedtest study,
we want to exclude very fast nodes, since these are unlikely to be throttled,
and will just congest our access links;

o It uses only TCP as a transport protocol, with two modes of communication:
either regular BitTorrent traffic exchanged on the standard port numbers
(6881-6889), or obfuscated BitTorrent traffic exchanged on a non-standard
port (8080 and 443);

o It keeps downloaded data only in memory, to avoid any overheads related to
disk writes, which may otherwise become a bottleneck and affect performance
(since the network links we use are fast, at 1 Gbps, and we already write to
the disk captured traffic at a non-negligible rate).

We deployed the client to 7 nodes rented from two cloud service providers, most of
them located in different datacenters in Europe, and one in Canada. We configured
the client to join the BitTorrent swarms sharing the installation disc images of 10
popular Linux distributions, with a total file size of about 25 GBs. On each node,
we run an instance of the client using regular traffic, and another using obfuscated
traffic. We took packet captures of all BitTorrent transfers, and we also performed
whois and geolocation lookups and collected traceroutes for all observed peers. The
experiment ran continuously for approximately 1 week.

The two classes of traffic we define consist of regular BitTorrent traffic sent on
the standard port numbers (class 2) and obfuscated BitTorrent traffic sent on HTTP
port numbers (class 1). We expect that the most common type of throttling targets
class 2 traffic, while class 1 often evades classification and throttling. While it is
known that BitTorrent traffic obfuscation may still be detected using deep packet
inspection and packet size and timing analysis [Carvalho et al., 2009], we hope that
it is not a common practice, since it requires more expensive equipment, and that
exchanging such traffic from HTTP port numbers (443 and 8080) may help avoid
detection.
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We found it difficult to target specific networks, or to create specific topologies,
such as two probing nodes exchanging traffic with the same peer simultaneously.
This is because BitTorrent nodes choose the peers they exchange traffic with based
on a complicated, randomized algorithm; thus the probability that one would choose
two of our nodes out of hundreds, or thousands of peers in the swarm is very low.
Indeed, we tried this approach by configuring one of the probing nodes as a “mas-
ter”, and all the other probing nodes in “follower” mode, only allowing connections
to/from peers the master has been exchanging traffic over the last 15 minutes; most
of the time, the followers failed to connect to any peers, or if they did, they would
exchange very little traffic with them, insufficient for our inference algorithm. Thus
we confirmed that such an approach performs poorly. Instead, we opted for a brute
force approach: we joined a large number of swarms at the same time from all
probing nodes and we allowed the protocol to choose the peers at will, hoping that
some of the probing nodes would connect to the same peers. When this occurs, the
respective paths intersect, forming sub-topologies of the entire overlay network that
are useful for our inference.

The topologies we are interested in are the ones where two or more probing nodes
connect to the same peer and exchange both classes of traffic, as shown in Figure 41.
These topologies allow us to reason about the common link sequence, located most
likely in the ISP of the peer—but may also include some transit ISPs. We think
transit ISPs are less likely to throttle due to inter-ISP agreements, thus the result
would be relevant to the peer’s ISP. The mirror topologies, where a single probing
node connects to two or more peers, can also be used to run our inference algorithm,
however in this case the common link sequence is located in our cloud providers (and
possibly in a few transit ISPs), which is not useful in our case since we know that
our [SPs are not throttling BitTorrent traffic. Thus we do not consider them.
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Figure 41. A topology that can be used for neutrality inference.

During the entire experiment, we exchanged over 100 TB of traffic with 50,307 peers
from almost 5,000 ISPs (more precisely, autonomous systems) from 189 countries.
The top 20 ISPs by peer count are shown in Table 8, while the top 20 countries are
shown in Table 9. From this overlay netowrk, we were able to extract approximately
7,000 topologies of the form shown in Figure 41, for 556 ISPs in 76 countries.

73



ASN | Peer count | Topology count Name Country
AS28573 996 34 Embratel Brazil
AS8151 841 47 UNINET Mexico
AS3223 811 1 voxility.net Brazil
AST738 743 1 Oi’s route object Brazil
AS3320 600 187 Deutsche Telekom Germany
AS4755 576 0 BSNL-VSNL India
AS8708 554 38 RDSNET Romania
AS8167 527 2 Oi’s route object Brazil
AS3269 524 10 Interbusiness Ttaly
AS43350 476 67 NFOrce Entertainment Netherlands
AS20845 454 127 DIGI-10 Hungary
AS5483 390 15 Magyar Telekom Hungary
AS8048 384 34 CANTV-NET Venezuela
AS12322 367 140 Free SAS France
AS28513 354 1 Claro Dominican Republic
AS8402 344 37 Corbina Russia
AST7922 328 75 Comcast United States
AS8436 312 45 UPC Magyarorszag Hungary
AS55836 310 0 R4AG India
AS3215 289 42 France Telecom France
AS3352 274 34 Red IP Multi Acceso Spain
AS8452 269 2 Telecom-Egypt-Data Egypt
AS6830 264 45 UPC Technology Austria
AS12389 260 10 ROSTELECOM NETS Russia
AS16276 246 0 OVH Poland
AS6697 244 0 Beltelecom Belarus
AS41440 235 22 Sibirtelecom Russia
AS1267 227 3 Infostrada Ttaly
AS17974 227 0 PT Telekomunikasi Indonesia
AS6057 223 0 ANTEL Uruguay
AS6849 216 1 UKRTELECOM Ukraine

Table 8. Top ISPs we exchanged traffic with.
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Code | Peer count | Topology count Name
BR 6707 9 Brazil
RU o874 3 Russia
US 4364 7 United States
IN 3160 1 India
UA 2029 1 Ukraine
HU 1634 4 Hungary
FR 1513 16 France
DE 1355 22 Germany
IT 1328 19 Ttaly
MX 1136 4 Mexico
GB 1031 67 United Kingdom
ES 1027 5 Spain
NL 1017 170 Netherlands
CN 955 2 China
RO 906 1 Romania
AR 904 18 Argentina
CA 800 14 Canada
PL 719 2 Poland
AU 519 1 Australia
ID 502 0 Indonesia
CL 457 10 Chile
VE 440 7 Venezuela
CO 429 1 Colombia
SE 390 4 Sweden
PK 355 3 Pakistan
DZ 354 2 Algeria
VN 343 1 Vietnam
EG 337 2 Egypt
BY 329 1 Belarus
TR 327 5 Turkey
TH 326 1 Thailand

Table 9. Top countries we exchanged traffic with.
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5.2.3. Results

Figure 42 shows the end-to-end measurement statistics for all paths in the network.
We can see that there is a slight difference between the two classes of traffic for loss
rate zero: class 1 achieves zero loss rate in just over 40% of the intervals, whereas
class 2 in only 20%; then the curves become similar at around 3% packet loss. In the
plot of the loss rate without packet sampling, the difference persists. On the other
hand, the throughput distributions show almost no performance difference between
the two classes. These plots suggests that there might be a small performance
difference between the two classes of traffic, but it is not clear if the cause is the
network being non-neutral, or if there is another kind of bias, such as nodes using
the standard port number being connected to the Internet via better-provisioned
links that experience less packet loss, because they are special-purpose nodes used
to seed these torrents.

1.0
0.8 1
0.6 1
0.4+

—— Class 2
0.2 —— Class 1
0.0

0 2 4 6 8 10
Loss rate (%)

Cumulative frequency

(42a) Empirical CDF of the loss rate (with packet sampling).
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(42b) Empirical CDF of the raw loss rate (without packet sampling).
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Figure 42. End-to-end metric statistics for all paths in the experiment.

We applied the inference algorithm on the 7,000 topologies; only 3 were found
to be non-neutral with sufficient confidence. They are listed in Table 10.
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ASN Topology count | Non-neutral Name Country

AS29562 20 1 KabelBW Germany
AS11351 52 2 Time Warner | United States

Table 10. The ISPs for which we had positive results.

5.2.4. Case Study

We now present the results obtained for AS11351, for which 2 topologies were iden-
tified as non-neutral. The two topologies show similar results, so we present them
together. The inference results are shown in Figures 43 and 45; and the end-to-end
measurements are shown in Figures 44 and 46, respectively. The two topologies
share the same remote peer; just the probing nodes are different.

We can see that the inference detects a significant gap consistently for a wide
range of congestion thresholds. The difference is also visible in the end-to-end mea-
surements. The data suggests that the network is treating the two classes of traffic
differently. What is striking is the large loss rate (90-th percentile around 10%), and
the small throughput (90-th percentile at around 0.3 Mbps). In general, small values
of throughput can be explained by the fact that the interval size is of 1 minute, while
BitTorrent peers may exchange only a few blocks at a time, thus traffic tends to be
sent in short bursts that may last only a few seconds; this can cause throughput
measurements of even an order of magnitude lower than expected. However, this
does not explain why we observe such a large loss rate in these experiments for both
classes of traffic (although with different distributions). It is possible that these are
users connecting over wireless links; these may introduce high packet loss.

For the same ISP, we have also analyzed the topologies for which the inference
verdict is neutral. For about half of these nodes, we observed a much smaller
amount of loss rate, and slightly higher throughput; as an example, the data from
one topology is shown in Figures 47 and 48. But for other nodes, the measurements
are similar to the non-neutral case: very large values of the loss rate, and slightly
different distributions of the end-to-end loss rate and throughput, for example as
shown in Figures 49 and 50. In these cases the verdict was neutral because the
number of intervals was much smaller, thus the inferred posterior distributions were
wide and the neutrality inference algorithm could not reach a positive verdict with
strong confidence.

We conclude that for this ISP, there are several nodes for which the network
appears to treat BitTorrent traffic differently. Unfortunately in each case the com-
mon link sequence includes the last mile to the users, thus it is not possible to tell
if it was the ISP that introduced this performance difference, or a problem in the
user’s local network (such as a wireless link suffering from poor signal and/or high
interference).
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(43a) Posterior distributions.
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(43b) Inferred neutrality bias.
Figure 43. Result of the Bayesian inference for a topology detected as non-neutral.
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Figure 44. End-to-end loss rate measurements.
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(45a) Posterior distributions.
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(45b) Inferred neutrality bias.
Figure 45. Result of the Bayesian inference for a topology detected as non-neutral.
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Figure 46. End-to-end loss rate measurements.
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(47a) Posterior distributions.
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(47b) Inferred neutrality bias.
Figure 47. Result of the Bayesian inference for a topology detected as neutral.
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Figure 48. End-to-end loss rate measurements.
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Figure 49. Result of the Bayesian inference for a topology detected as neutral.
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Figure 50. End-to-end loss rate measurements.
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5.2.5. What-if Analysis

We wanted to test whether our tool would catch actual BitTorrent throttling, if it
happened, so we implemented it ourselves: We ran a new experiment, in which we
throttled traffic exchanged on the standard BitTorrent port range (6881-6889) at a
maximum rate of 20 Mbps; any other traffic, including obfuscated BitTorrent traffic,
was free to consume the entire capacity of the link, i.e. 1 Gbps. Traffic throttling
was performed in both directions: ingress traffic was policed, while egress traffic was
shaped; both methods were implemented using the Linux traffic control (tc) tool.
The exact configuration we used is presented in Appendix 8.3.

BitTorrent O itTorrent
peer 2 / i peer P
Targeted
? link sequence
© 0
Cls1Cls 2

broling node
Figure 51. A topology that can be used for neutrality inference.

When analyzing the data, we extracted the topologies formed by a single probing
node that is exchanging traffic with two peers, as shown in Figure 51. The throttled
link is shown in red: it is the link connecting the probing node to the Internet. After
running our experiment for 6 hours, we communicated with about 10,000 peers from
150 countries and 2,231 ISPs; from this overlay, we extracted 2,812 topologies like
the one in Figure 51.

Figure 52 shows the end-to-end measurement statistics for all paths in the net-
work. We can see that there is a visible difference in loss rate between the two
classes of traffic: class 1 achieves zero loss rate in just over 60% of the intervals,
whereas class 2 almost never does; the curves do not converge not even in the 90-th
percentile (10% loss rate for class 1 vs. over 50% for class 2). The difference persists
in the plot of the loss rate without packet sampling, slightly smaller in magnitude,
but still significant. The throughput distributions also show differences between the
two classes: a small difference at the median, and a large difference at the 90-th
percentile, where class 2 achieves only 0.5 Mbps, whereas class 1 achieves almost 10
Mbps!®. These plots suggest that there is likely a performance difference between

5There is a large difference between the 90-th percentile for throughput in what-if experiments
versus the regular experiments. This is because for what-if experiments, although the number of
peers is smaller than in regular experiments, we can form a very large number of inference topologies
(millions). We could not process so much data, thus we filtered many topologies, preferring those
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the two classes of traffic, which is much more pronounced compared to the plots we
have seen for non-throttled (at least not by us) traffic from the previous section (i.e.
Figure 42).
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(52a) Empirical CDF of the loss rate (with packet sampling).
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(52b) Empirical CDF of the raw loss rate (without packet sampling).
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Figure 52. End-to-end metric statistics for all paths in the experiment.

When applying the inference algorithm, we reached a non-neutral verdict for 188
out of 2,812 topologies, i.e. about 10%. The detection rate is quite low, because for
many paths, the throttling had little to no effect in many or even all intervals, due
to the small throughput, i.e. the throttled link was not the bottleneck. Even so,
the detection rate is much higher than in the case of the non-throttled experiment.
This shows that our method can be used to detect BitTorrent throttling implemented
with traffic policing and/or traffic shaping.

that had traffic in at least 30 intervals for both traffic classes (both, to avoid introducing a bias).
It is likely that considering all data, the overall throughput would decrease; but we think a bias
would remain.
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6. Network Emulation Setup

6.1. Motivation

We now present the network emulation setup we developed to help us evaluate our
neutrality inference method. We used this setup extensively in our work through-
out all the iterations it took to design and improve our method; it has also helped
immensely by making it easy to take measurements from any point in the network,
allowing us to observe and understand how traffic reacts to congestion and differ-
entiation. The motivation behind using emulation instead of simulations or instead
of replicating a network topology in the lab was the following:

Topology size: we wanted to run experiments in non-trivial topologies, with more
than a few links and paths. For example, one of the effects we wanted to observe is
how congestion manifests in a link that carries traffic from many users, such as the
link serving a small neighborhood that is insufficiently provisioned. In this case, we
may want to have many paths that intersect over the link, possibly carrying traffic
from flows that have different RTTs or different numbers of hops; some may also
experience congestion in a remote network. This is a scenario difficult to replicate
in the lab, as it requires configuring a large number of switches and/or routers. It
also requires introducing propagation delays on the links, otherwise all RTTs would
likely be under 1 ms and certain effects affecting TCP flows would be different!S.
This is not trivial to achieve in the lab: the only practical option is to introduce
additional machines on each link, that add a constant delay using, for example,
the netem component of Linux traffic control, but this greatly increases the number
of machines we must dedicate for the experiments, adding cost, installation and
maintenance burden to the disadvantages.

Flexibility: as we made gradual changes to our algorithms or the traffic configu-
ration, we sometimes wanted to rerun older experiments. Using a real topology in
the lab would make this difficult, as we would have had to either reconfigure the
topology often, or to have multiple topologies constantly present.

Realism: network emulation reflects real network behavior better than simula-
tion, since it carries real traffic, exchanged by real software and hardware network
stacks. Network simulators usually reimplement the entire stack up to the appli-
cation layer, and the resulting behavior may be slightly different from how a real
machine performs. Emulation eliminates this disadvantage.

Control: when using a real topology, the experimenter is usually limited to
using the traffic management capabilities offered either by proprietary equipment,
or by software such as the Linux kernel. Both of them have various quirks, and
are not flexible enough to cover all the possible behaviors of equipment performing
differentiation. For example, certain devices that offer such features allow setting
only the policing or shaping rate, but not always also the token buffer size; Linux
offers more flexible mechanisms, but they are more quirky: for example, it is not
recommended to use both throttling and adding propagation delay on the same
machine. With emulation, this problem is easier to solve, since if it does not support

16For example, we have seen that the performance of TCP flows that are policed while having a
small RTT is poor; however it improves greatly as the RTT increases to more than 10 ms.
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precisely what we need, we can modify it ourselves more easily than changing the
Linux kernel, or proprietary equipment.

6.2. Design

We modeled our emulator after ModelNet [Vahdat et al., 2002], a network emulator
written as a FreeBSD kernel module. We found that making changes to an in-
kernel emulator is time consuming and error prone; so we rewrote it from scratch in
userspace as a Linux application. The first working implementation, which we will
call version 1, was completed as my Master’s thesis project [Mara, 2011]; however
it took much more development effort until it was capable of emulating a large
non-neutral topology such as the one in Figure 3; we call the current setup wversion
2.

The emulator consists of two components: the routing core and the traffic gen-
erator, as shown in Figure 53. The traffic generator consists of one or more real
machines that run network applications, sending all their traffic towards the rout-
ing core. The routing core consists of a single machine emulating all the routers
and links in the network: it receives traffic, emulates all the link behavior (routing,
queuing, propagation delays, packet drops, traffic shaping etc.) and finally sends
some of the traffic back to the traffic generator.

The architecture of the routing core is depicted in Figure 54. There are three
subcomponents, each running in real-time!” on a dedicated CPU core:

o The packet receiver captures traffic efficiently from the network card via the
PF_RING [Deri and others, 2004] kernel module, with packets bypassing the
Linux network stack. Each incoming packet is stored in a data structure,
using memory from a pre-allocated memory pool to avoid memory allocation
latencies. Some initial processing is performed, for example analyzing the IP
and TCP headers to determine how the packet should be classified by emulated
links, and to compute the path the packet will take through the emulated
network. Then a pointer to this structure is sent to the event scheduler.

o The event scheduler performs the bulk of the work: queuing incoming packets
on the emulated links, forwarding packets between links, managing all the
policers and shapers, dropping packets as needed, and finally, sending packets
that exit the network towards the packet sender.

o The packet sender simply receives packets from the scheduler, adjusts the
network and link-layer headers as needed, and sends them via PF_RING
outside the routing core.

The traffic generator is more simple: it consist of one or more machines that run
network applications. Both sides of the communication (i.e. the client and the
server) are handled by these machines. To ensure that traffic is routed through the

1"While Linux is not a real-time OS, we obtain real-time behavior by pinning the three threads
to specific CPU cores, and disabling the process scheduler and interrupt handling on these cores.
Thus the threads can run indefinitely without interruption. Sharing of data between the three
threads is performed with lock-free lists instead of mutexes, to reduce synchronization delays to a
minimum.
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userspace and the kernel, or the kernel and the network card.

emulator and not shunted directly between them, we use static NAT applied twice
on the emulator side (on packet reception and on sending). This means that any
application that opens normal network sockets can be used on the traffic generator.
In case that many hosts are needed in the network, multiple virtual network inter-
faces can be configured on the same machine, this functionality being provided by
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the Linux kernel; in this case, the different applications must bind their sockets to
their corresponding IP address.

We found that running one application per IP address does not scale well in
emulated networks when the ratio between processes and the number of CPU cores
in the traffic generator exceeds a few hundred: in some of our experiments, CPU
load was 100%, but the system was spending more than a third of the time in kernel
mode. We were not sure if this affected the generated traffic patterns or not—but we
wanted to eliminate the risk that the application, instead of the network, became the
bottleneck. For this reason, we changed our traffic generation approach to using a
single process per core; each process manages a fraction of the network connections,
opening and closing sockets as needed, and exchanging data using non-blocking,
event-based 1/0. This has improved performance, reducing the time spent in kernel
mode. However it also limited us in terms of the traffic we were sending: we could
no longer run any application we desired, at least not without modifying its code to
merge its event loop with ours.

The traffic types we have implemented in our traffic generator are the following;:

o On-off traffic: TCP or UDP flows that start or stop at fixed or random times;

o Poisson UDP traffic: UDP flows that send traffic at a configured average rate
(measured in packets per second);

e Poisson TCP flows: TCP transfers that initiate at a configured average rate
(measured in flows per second);

o Random Pareto-distributed transfer sizes for TCP and UDP flows;

o Per-flow TCP congestion control algorithm configuration (all the algorithms
supported by the Linux kernel);

e Media streaming emulation: rate-limited TCP flows that adapt their sending
rate based on their recent performance.

6.3. Contributions

Version 1 of the emulator was functional, but suffered from a few deficiencies:

Accuracy: Version 1 did not offer satisfactory accuracy in experiments longer
than a few minutes. We measure accuracy the same way as the original ModelNet
paper did: in terms of packet processing delay in the routing core, compared to the
theoretical delay that should be experienced by the packets. For example, if the
emulated links have a propagation delay of 10 ms, a packet processing delay of 1
ms would cause a 10% error. The acceptable error threshold we used throughout
our experiments was 10%, and we used links with at least 10 ms propagation delay,
thus the maximum acceptable processing delay was 1 ms.

While version 1 obtained a packet processing delay of hundreds of microseconds
on average, which was sufficiently small, there were occasional latency spikes that
caused a maximum processing delay of up to a few tens of milliseconds. Such
spikes caused trains of packets of up to 1-2 seconds to experience unacceptable
extra latency. They usually occured about once or twice per minute.

We made two changes that eliminated latency spikes:

o We removed all memory allocations during the experiment, since these may
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cause latency spikes due to the locking in the allocator code. Instead, we pre-
allocated all data structures, or used memory pools of pre-allocated objects. To
make this manageable, we wrote a small library preloaded in the routing core,
that intercepts all memory allocation calls made to the standard C library, and
records a histogram of the amount of time they took to execute, optionally
also dumping a stacktrace and stopping the program. We used this library
to eliminate one by one all allocations from the latency-sensitive code paths,
such as the event scheduler loop.

o In addition to pinning the three threads of the routing core to separate CPU
cores, we also instructed the Linux kernel to isolate those cores, such that
no other applications are scheduled to execute there; we disabled handling
of all interrupts on those cores (and stop the IRQ balancer daemon, which
may undo this); and we compiled a custom kernel with the tickless option set,
which allowed us to completely disable the process scheduler on those cores.
Latencies introduced by context switches caused by the scheduler may be in
excess of 1 ms; these measures eliminated them.

With these changes, version 2 achieved a maximum processing delay of the same
order of magnitude with the average processing delay, for all the topologies we used
in our experiments, such as the one seen earlier in Figure 3.

Performance: Version 1 could not emulate topologies having a total capacity—
i.e. the maximum rate at which traffic can arrive at the routing core, equal to the
sum of the capacities of all the emulated access links—of more than a few hundreds
of Mbps. There were two potential bottlenecks in our design: the receiving and
sending of traffic from/to the network card; and the queuing event scheduler loop.

The former was not under our control, but given that we used a fast packet
capture and injection framework, we expected the bottleneck to be higher than 1
Gbps, thus it was likely not the culprit. We confirmed this by bypassing the queuing
event scheduler, i.e. the routing core would just receive packets, perform NAT, and
send them back into the network. With this setup, we could reach over 2 Gbps
easily.

The bottleneck was the scheduler loop. We found that some of the changes we
made to eliminate latency spikes also helped in increasing its throughput. Here is
why: the scheduler loop must process events at specific moments in time; at each
iteration, the loop reads the system clock, checks which events have expired so must
be processed, processes them—which may schedule new events for later—and then
moves on to the next iteration. Any latency spikes in a previous iteration may
cause the scheduler to process much more expired events than usual in the current
iteration, causing it to take longer than usual, thus triggering another latency spike
in an avalanche effect. If this lasts for at least a few hundreds of milliseconds, the
hosts that are injecting traffic into the routing core will slow down due to normal
TCP behavior (since the hosts observe an increase of RT'T), which causes throughput
to drop. If the drop is large enough, the routing core may recover, but then TCP
flows increase their sending rate gradually until the core is overloaded again and
another latency spike occurs. Eliminating random latency spikes prevents this effect
and makes the emulator more predictible: given the total capacity of the network,
we can tell whether the emulator can run the experiment with satisfactory accuracy
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consistently, regardless of the topology!'?, based on previous benchmarks.

Another major improvement we made that helped improve throughput was to
optimize the scheduler loop. Initially, we were storing all events in a priority queue
implemented with a map from event expiration time to a packet structure. We
bechmarked three different implementations for this map: the C++ STL map, which
uses internally a red-black tree; the Qt QMap, which uses skip lists; and our own
implementation, using a pairing heap. We found that the average scheduler loop time
was twice as small in the STL version than in the other two implementations, i.e. the
STL version was the fastest. However in the end we decided to eliminate the global
event queue completely, taking advantage of the fact that events are intrinsically
ordered correctly in the packet queues of the emulated links. In each iteration of the
loop, the scheduler can poll all queues to see if any events need processing; in case
they do, the respective packets are removed from the queues and possibly pushed
in the queues of other links'®. Implementing the queues with circular buffers, we
can process each event in O(1) operations instead of O(lognum_ packets), as was
the case with a red-black tree (where num_ packets is the total number of packets
in flight in the network). This reduced the average loop iteration time by a factor
of 5; for example, on a topology for which the loop using a priority queue achieved
140 us, version 2 of the emulator achieves around 30 us. Another advantage of
this approach is that the processing delay does not depend strongly on the number
of packets in flight in the network; whereas for the priority queue it does, with
all packets suffering extra processing delay during periods of high congestion, for
example if there is queuing on many links in the network.

Traffic management: Version 1 did not support any traffic management methods,
only a single tail-drop, head-drop or random-drop queue per link. In version 2, we
implemented traffic shaping, allowing the use of multiple queues per link, with the
possibility to assign different rates and buffer sizes to each queue; and traffic policing,
allowing the use of one or more token buffer filters that either allow or drop packets
before queuing packets on the link. Packets are assigned to the corresponding shaper
or policer based on the Differentiated Services field from the IP header; we support
up to 8 traffic classes, but we could extend this to 256 by using all the bits in the
field. To improve performance, we do not perform traffic classification in the routing
core; instead, the applications from the traffic generator set the correct value of the
field through a socket option for every connection.

Monitoring: Version 1 took measurements only through packet counters on the
links in the network. We sometimes wanted to inspect what happened on a link
in more detail; for this purpose, we implemented in version 2: (i) metric recording,
which records periodically various parameters of the links or token buckets, similar
to SNMP performance monitoring; (i) packet captures, i.e. all ingress or egress
traffic for an emulated link could be captured in a PCAP file, which could then
be manually inspected. Both of them store data in pre-allocated buffers in memory

19Within reasonable limits, since increasing the number of links over a certain limit will eventually
reduce throughput. However, in most of our topologies, consisting of up to a few hundred links,
this was never a bottleneck. Thus we did not study this limitation.

18We do not store packet contents in the queues as that would be inefficient. We just store
pointers to packet structures.
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until the end of the experiment, to avoid the performance impact that may be caused
by disk accesses.

6.4. Performance Evaluation

Our goal is to emulate networks with as much total capacity as possible, while still
achieving acceptable accuracy. Thus we evaluate the emulator performance by run-
ning benchmarking experiments on topologies with the same shape but different
total capacities. For each one, we measure the average and maximum packet pro-
cessing delay. Generally, we use links with 10 ms of propagation delay, so we define
acceptable processing delays as maximum delays under 1 ms.

The topology we use in the benchmarking experiments consists of 5 parallel
paths, each one traversing 3 links. The links have 10 ms propagation delay and the
buffer size set to 1 RTT worth of traffic. On each path, we start 20 long TCP flows,
i.e. the total number of flows in the network is 100. We run the experiment for 1
minute.

6.4.1. Performance of Version 1
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Figure 55. Benchmark results for emulator version 1.

The results of the benchmark for version 1 are presented in Figure 55. The processing
delay is excellent for a network capacity of 50 Mbps, but almost reaches the 1 ms
limit for a capacity of 500 Mbps. As the network capacity increases, the average
processing delay remains below the limit, but the maximum delay increases to tens
of milliseconds, well beyond the acceptable limit. After the network capacity reaches
2 Gbps, we see an apparent drop in processing delay; but this just an artefact that
appears because the emulator starts dropping packets during packet capture, since
the code is unable to read them quickly enough from the PF RING buffers. The
drop fraction is small, just above 0.1% of packets; but packets are dropped in trains
during high latency periods. As a result, TCP flows observe larger packet loss and
back off, thus the amount of traffic that enters the emulator is reduced, leading to
the drop in processing delay that can be seen in the plot.
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The data shows that version 1 of the emulator can emulate accurately only
topologies with a total capacity below 0.5 Gbps.

6.4.2. Performance of Version 2

The results of the same benchmark, this time ran on version 2 of the emulator,
are shown in Figure 56. We can see that the processing delay is very small (under
100 us) for emulated network capacities of up to 3.5 Gbps, and only exceeds the
acceptable limit at 4 Gbps. For this entire range of capacities, no packet drops were
experienced by the receiver, unlike we have seen for version 1.

Similar results are obtained for more complex topologies or longer experiments.
For example, the emulated topology we have seen earlier in Figure 3 had a total
capacity of just over 1 Gbps, and an experiment duration of 33 minutes. The
average processing delay was recorded as 20 us, and the maximum 329 us. The
maximum relative error in the delay experienced by packets over the paths they
traversed, relative to the theoretical one, was of only 1%.

Based on this data, we can state with good confidence that the emulation setup
we used to evaluate our method offered sufficient performance and accuracy to ensure
that the measurements we collected were reliable and realistic.

—e avg
[| == max

Ll — limit

Processing delay (ms)

0 500 1000 1500 2000 2500 3000 3500 4000
Network capacity (Mbps)

Figure 56. Benchmark results for emulator version 2.
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7. Conclusion

We studied the problem of assessing the neutrality of a target link sequence based on
end-to-end measurements. For this purpose, we based our work on the method pre-
sented by [Z. Zhang et al., 2014], which assumes perfect measurements. In practice,
that method suffers from several sources of errors. We identified and analyzed each
one, and redesigned the measurement and inference process to be reliable, by not
making unrealistic assumptions or using magic thresholds. We made three major
modifications:

Firstly, we modeled the uncertainty in the inferred link performance, and pro-
posed a method to estimate it. We showed that this uncertainty is significant and
unavoidable in practical scenarios, due to the limited duration over which paths
are stable in typical networks (due to routing changes); which in turn imposes a
constraint over the number of samples we can collect. We designed a method to
estimate this uncertainty from the measurements using Bayesian inference.

Secondly, we proposed a method to identify and filter out inaccurate path con-
gestion measurements. We found that without this filtering, up to 40% of the path
pair congestion states may be incorrect in some experiments, due to the way Zhang
et al’s method correlates congestion states of different paths. We showed that our
method to estimate the accuracy of the measured congestion states in the absence
of any ground-truth knowledge, in order to filter out the ones likely to suffer from
poor correlation, is effective: it could reduce the fraction of incorrect states to the
target value we desired.

Thirdly, we redesigned the non-neutrality inference step to take into account
the uncertainties caused by imperfect measurements, and to eliminate any arbitrary
hand-picked thresholds. The method we proposed is configured by a single, well-
understood parameter: the desired significance level of the non-neutrality verdict.

We evaluated the method with simulations, emulations and on real networks.
We used simulations to test each component of our method in isolation, and showed
that they work as expected. We used emulations to evaluate the full method on real
traffic, in a controlled environment; we found this setup particularly useful, so we
published it, in the hope that it may aid future research. Finally, we evaluated the
method on the Internet, leveraging documented throttling of SMTP connections
in the Amazon cloud; we demonstrated that we can correctly detect and localize
realistic throttling outside our control.

We used our method in two studies, investigating suspicions that a set of ISPs
prioritize speed-test traffic, or differentiate against BitTorrent traffic. We obtained
reliable evidence that they do not. We also conducted what-if analyses to show that
our method would have correctly detected and localized throttling or prioritization,
had they occurred in the investigated networks.

In a world where the edge has moved towards playing an active role in shaping
traffic behavior, such as through source pacing or custom congestion control, there
are many reasons why two traffic classes may experience different end-to-end per-
formance. If we care to reason about network neutrality, we suggest that we do it
based on reliable evidence of network behavior.

We conclude that it is feasible to detect and localize network neutrality violations
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based solely on end-to-end measurements, without assuming a perfect measurement
process. We hope that this work is a small step toward making the Internet more
transparent.
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8. Appendix

8.1. M-Lab Download Throughput Statistics Extraction

Algorithm 3: BigQuery script that computes throughput histogram.

SELECT
ROUND ((web100_log_entry.snap.HCThruOctetsAcked * 8) /
(web100_log_entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log entry.snap.SndLimTimeSnd) / 10) * 10
AS Throughput,
COUNT (*) AS Count
FROM
plx.google:m_lab.ndt.all
WHERE
-— NDT
project = 0 AND
-- Server to client (download)
IS_EXPLICITLY DEFINED(connection_spec.data_direction) AND
connection_spec.data_direction = 1 AND
-- Last row in table contains the experiment result
IS_EXPLICITLY DEFINED(web100_log entry.is_last_entry) AND
web1l00_log_entry.is_last_entry = True AND
-— The TCP connection was established normally
(web100_log_entry.snap.State == 1 OR
(web100_log_entry.snap.State >= 5 AND
web100_log entry.snap.State <= 11)) AND
-— At least 8kB were sent
IS_EXPLICITLY_DEFINED(web100_log_entry.snap.HCThruOctetsAcked) AND
web100_log_entry.snap.HCThruOctetsAcked >= 8192 AND
-- Test did not fail (ran for >= 9 seconds)
(web100_log entry.snap.SndLimTimeRwin +
web100_log_entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) >= 9 * POW(10, 6) AND
-- Test stopped normally (ran for <= 1 hour)
(web100_log entry.snap.SndLimTimeRwin +
webl00_log entry.snap.SndLimTimeCwnd +
web100_log_entry.snap.SndLimTimeSnd) < 3600 * POW(10, 6) AND
-- Data is sane
IS_EXPLICITLY_DEFINED(web100_log_entry.snap.SegsRetrans) AND
IS_EXPLICITLY_DEFINED(web100_log_entry.snap.DataSegsOut) AND
webl00_log_entry.snap.DataSegsOut > O AND
web100_log_entry.snap.SegsRetrans <
webl00_log_entry.snap.DataSegsOut
-- Date filter
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AND YEAR(UTC_USEC_TO_YEAR(web100_log_entry.log_time
* 1000000)) >= 2016
GROUP BY
Throughput
ORDER BY
Throughput ASC;

Results are shown in Table 11. The data was summarized from 117,671,648 download
throughput tests. 95% of tests achieved less than 110 Mbps, and 99% of tests
achieved less than 200 Mbps.

Throughput (Mbps) | Count | Fraction (%) | Cumulative (%)

0-10 47987831 40.8 40.8
10-20 23558505 20 60.8
20-30 12149660 10.3 71.1
30-40 8035525 6.8 78.0
40-50 4884304 4.2 82.1
50-60 4115825 3.5 85.6
60-70 3818792 3.2 88.8
70-80 2068640 1.8 90.6
80-90 2531530 2.2 92.8
90-100 1605010 1.4 94.1
100-110 1149506 1.0 95.1
110-200 4632580 3.9 99
200-380 1164915 0.9 99.9

Table 11. Query results.
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8.2. Speed-test Throttling Configuration

We used a Cisco C3850 switch, configured to police traffic tagged with DSCP value
34 (0x22), at 20 Mbps:

configure terminal

class—-map match-any SLOW
match ip dscp 34

policy-map SLOW
class SLOW
police cir 20m bc 249810 conform-action transmit exceed-action drop

interface GigabitEthernet1/0/3
switchport mode access
speed 1000

interface GigabitEthernet1/0/4
switchport mode access
speed 1000

interface GigabitEthernet1/0/24
switchport mode access

speed 1000

service-policy input SLOW
service-policy output SLOW

end

Port 80 traffic was marked with the DSCP value on a Linux router using iptables:

$ iptables -t mangle -L
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

DSCP  tcp -- anywhere anywhere tcp spt:http DSCP set 0x22
DSCP  tcp -- anywhere anywhere tcp dpt:http DSCP set 0x22
DSCP  tcp -- anywhere anywhere tcp spt:5001 DSCP set 0x22
DSCP  tcp -- anywhere anywhere tcp dpt:5001 DSCP set 0x22

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
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Chain POSTROUTING (policy ACCEPT)
target prot opt source destination

Note: we also throttled port-5001 traffic (iperf ["iPerf - The TCP, UDP and SCTP
Network Bandwidth Measurement Tool,” n.d.]), which we used for testing that the
policer works correctly.
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8.3. BitTorrent Throttling Configuration

We used egress traffic shaping and ingress traffic policing via the Linux tc mecha-
nism ["Linux Advanced Routing and Traffic Control,” n.d.]:

#!/bin/bash
export PATH=$PATH:/sbin

# Find WAN interface
wan=$(ip route | grep default | grep -oE 'dev [a-z0-9]*' | cut -4 ' ' -f 2)

# Shape egress BitTorrent traffic at 20 Mbps

tc qdisc del dev $wan root

tc qdisc add dev $wan root handle 1: htb default 99

tc class add dev $wan parent 1: classid 1:66 htb rate 20mbit ceil 20mbit
tc gqdisc add dev $wan parent 1:66 handle 66: sfq perturb 10

# Classification for egress BitTorrent traffic (and iperf)
for port in 6881 6882 6883 6884 6885 6886 6887 6888 6889 5001
do
tc filter add dev $wan protocol ip parent 1: prio 1 \
u32 match ip dport $port Oxffff flowid 1:66
tc filter add dev $wan protocol ip parent 1: prio 1 \
u32 match ip sport $port Oxffff flowid 1:66
done

# Police ingress BitTorrent (and iperf) traffic at 20 Mbps
tc qdisc del dev $wan ingress
tc qdisc add dev $wan handle ffff: ingress
for port in 6881 6882 6883 6884 6885 6886 6887 6888 6889 5001
do
tc filter add dev $wan parent ffff: protocol ip prio 1 \
u32 match ip dport $port Oxffff \
police rate 20mbit burst 100k mtu 65535 drop flowid :1
tc filter add dev $wan parent ffff: protocol ip prio 1 \
u32 match ip sport $port Oxffff \
police rate 20mbit burst 100k mtu 65535 drop flowid :1
done

Note: we also throttled port-5001 traffic (iperf), which we used for testing that the
policer and the shaper work correctly.
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Figures
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Example network.

Example network.

Example network with 4 non-neutral shared links (in red), 17 neu-
tral shared links (in black and in blue), and 86 neutral edge links
(in black). The blue (red) nodes exchange class-1 (class-2) TCP
traffic. The yellow nodes exchange UDP traffic. The non-neutral
links police class 2.

Class-1 (blue) and class-2 (red) performance for two path pairs
intersecting over a neutral link sequence, as a function of the
congestion threshold. The topology is equivalent to the one in
Figure 2. Top: true performance on the common link sequence.
Upper mid: performance as inferred by Straw. Lower mid: per-
formance bias as inferred by Straw. Bottom: true performance
on the outer link sequences.
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ure 3.
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